WO2019101128A1 - 分布式智能植物工厂 - Google Patents

分布式智能植物工厂 Download PDF

Info

Publication number
WO2019101128A1
WO2019101128A1 PCT/CN2018/116916 CN2018116916W WO2019101128A1 WO 2019101128 A1 WO2019101128 A1 WO 2019101128A1 CN 2018116916 W CN2018116916 W CN 2018116916W WO 2019101128 A1 WO2019101128 A1 WO 2019101128A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
planting
central controller
tank
pipeline
Prior art date
Application number
PCT/CN2018/116916
Other languages
English (en)
French (fr)
Inventor
熊煜
卢大军
刘潇
陈杰超
向宇
何庆华
Original Assignee
中实创科技(广东)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中实创科技(广东)有限公司 filed Critical 中实创科技(广东)有限公司
Publication of WO2019101128A1 publication Critical patent/WO2019101128A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to modern agricultural technology, and more particularly to a distributed intelligent plant factory.
  • the existing plant hydroponic techniques are basically outdoor planting, river planting, lake planting, etc., which can also ensure the normal growth of plants, but the normal sunshine time of sunlight is not enough, and it depends on the natural environment. Realization, so the control of the environment is difficult to determine, the growth period of plants or vegetables can not be effectively shortened.
  • agricultural planting has evolved into an automated plant plant. Increase the land utilization rate by 100-200 times, save water consumption to one-fiftieth of the land planting, and reduce the heavy labor process such as heavy land reversal, watering, weeding, fertilization, and medicine.
  • the annual planting amount of 50 mu of land, and away from smog, pesticides, and pests, to achieve safe, green, nutritious and delicious food and vegetable factory planting.
  • a distributed intelligent plant factory comprising a closed cabinet
  • the automatic planting rack is arranged along the length of the box body, and comprises a plurality of planting troughs arranged in parallel, wherein the plurality of planting troughs are arranged in a rack and are sequentially stacked in a vertical direction, and the planting trough is connected through a pipeline
  • a nutrient solution pool is connected, and a nutrient solution circulates between the planting tank and the nutrient solution tank, wherein one end of the planting tank is a planting end, and the other end of the planting trough is away from the planting end as a harvesting end.
  • a plurality of planting plates are arranged on the planting trough, and the planting plates are sequentially moved from the planting end to the harvesting end on the same planting trough, and the plants planted in the planting plates are completed on the planting trough. process of growth;
  • the artificial illumination system mainly includes an artificial light source disposed on the top of the planting plate, and the artificial light source is directly opposite to the plant in the planting plate below, and the planting groove is divided into a plurality of regions along the length direction, and each region is respectively separated Corresponding to different growth stages in the growth process of the plant, the artificial light sources in each area are different;
  • the exhaust fan comprising a pipeline pressurizing device and an air outlet pipe connected to the pipeline pressurizing device, the plurality of outlets
  • the air duct corresponds to the plurality of planting troughs, and is disposed in parallel along the length direction of the planting trough, and the airflow is blown by the air outlet duct to the corresponding plant, and the airflow is not in the different areas of the planting trough. the same;
  • a central controller for controlling the working state of the artificial light source and the pipeline pressurizing device.
  • the ventilation system further includes a return air duct disposed at a top of the tank, the return air duct is connected to the pipeline pressurizing device, and the air is operated by the pipeline pressurizing device After the outlet duct is blown to its corresponding plant, it is recovered by the return duct to the pipeline pressurizing device, thereby forming an inner circulation airflow inside the tank.
  • the ventilation system further includes a ventilating device including an exhaust fan and a venting line connected to the exhaust fan, the outer end opening of the venting line extending outside the box and Communicating with the outside world, thereby forming an outer circulation airflow, wherein the ventilation pipeline is provided with at least one layer of filter material for filtering dust and pests in the boundary air, the exhaust fan
  • the central controller controls the timing on and off.
  • an air conditioner is further disposed inside the cabinet, the air conditioner is controlled by the central controller, and the central controller is connected to a temperature sensor for detecting the internal temperature of the cabinet, when When the internal temperature of the cabinet is higher than a preset range, the central controller issues an opening signal to the air conditioner, and the air conditioner is turned on to lower the temperature inside the cabinet.
  • a dehumidifier is further disposed inside the box, the dehumidifier is controlled by the central controller, and the central controller is connected with a humidity sensor for detecting the humidity inside the box.
  • the central controller sends an opening signal to the dehumidifier, and the dehumidifier is turned on to reduce the humidity inside the casing.
  • a moisture collecting box is further disposed inside the tank, the moisture collecting box is configured to collect the condensed water generated by the air conditioner and the dehumidifier, and the moisture collecting tank is connected to the nutrient liquid pool through a pipeline. Thereby, the collected moisture can be used to replenish into the nutrient solution, thereby achieving the recycling of moisture.
  • the nutrient solution pool is further provided with an automatic rehydration system comprising one or more nutrient solution storage tanks, wherein the nutrient solution storage tank stores concentrated nutrient solution, and the nutrient solution storage tank passes through the pipeline Connected to the nutrient solution tank, an infusion pump or an electronic valve is also connected in series on the pipeline, wherein the nutrient solution pool is provided with an EC sensor, and the infusion pump or the electronic valve and the EC sensor are respectively associated with the central controller Connected, the central controller monitors the concentration of nutrient elements in the nutrient solution in the nutrient solution pool by the EC sensor, when the concentration value of one or more nutrient elements returned by the EC sensor is lower than a preset The central controller sends an opening signal to the infusion pump or the electronic valve, the infusion pump or the electronic valve is opened, and the concentrated nutrient solution stored in the nutrient solution storage tank is input into the nutrient through the pipeline.
  • an automatic rehydration system comprising one or more nutri
  • the concentration of nutrient elements in the nutrient solution pool gradually increases, and the EC sensor synchronously detects the concentration of nutrient elements in the infusion adjustment process Value, the concentration value reaches a predetermined range, the central controller the infusion pump output to close the valve or electronic signal, the electronic infusion pump or valve is closed, the concentration of nutrients in the nutrient solution remained stable.
  • an infusion pump or an electronic valve connected to and controlled by the central controller is also provided on the pipeline connecting the moisture collection tank and the nutrient solution tank, when the EC sensor returns one or more
  • the central controller determines that the nutrient solution is in a water shortage state, and controls the infusion pump or the electronic valve to input the water stored in the moisture collection tank through the pipeline.
  • the nutrient solution pool is used to replenish moisture and reduce the concentration of nutrients in the nutrient solution.
  • the nutrient solution pool is further provided with a pH sensor connected to the central controller, and the pH sensor is used for detecting the pH of the nutrient solution, and the nutrient solution pool is connected with the acid-base balance liquid storage tank through the pipeline, and the pipeline is also connected in series. There are infusion pumps or electronic valves. It is thus possible to maintain the pH of the nutrient solution by controlling the addition of the acid-base balance solution.
  • the distributed intelligent plant factory adopting the above technical scheme is an agricultural system for realizing continuous crop production by high-precision environmental control, that is, using a computer to automatically control environmental conditions such as temperature, humidity, illumination and nutrient solution of plant growth, A labor-saving production that allows plants in the facility to be born with little or no natural conditions.
  • the plant can realize the production of vegetables, flowers, fruits, medicinal materials, edible fungi and some food crops. It is an intensive three-dimensional agricultural production method with intensive knowledge and technology.
  • the distributed intelligent plant factory is the highest level of plant cultivation. It provides the best environment for plant growth and development. It integrates fully automatic and intelligent environment simulation technology to create the best artificial environment for plant growth and development.
  • the distributed intelligent plant factory can be used for supermarkets and restaurants to produce a variety of plant foods; it can also be used in special environment conditions such as plateau, desert, island, underground, north and south pole and space base to meet special circumstances.
  • FIG. 1 is a schematic structural view of a distributed intelligent plant factory according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an automated planting rack of the distributed intelligent plant factory shown in FIG. 1.
  • FIG. 3 is a schematic structural view of an artificial light source of the distributed intelligent plant factory shown in FIG. 1.
  • Fig. 4 is a schematic view showing the distribution of various regions of the planting trough shown in Fig. 1.
  • FIG. 5 is a schematic structural view of an exhaust fan of the distributed intelligent plant factory shown in FIG. 1.
  • FIG. 5 is a schematic structural view of an exhaust fan of the distributed intelligent plant factory shown in FIG. 1.
  • FIG. 6 is a schematic structural view of a ventilating device of the distributed intelligent plant factory shown in FIG. 1.
  • Fig. 7 is a schematic view showing the internal structure of the casing shown in Fig. 1.
  • FIG. 8 is a schematic diagram of circuit control of the distributed intelligent plant factory shown in FIG. 1.
  • the apparatus includes a closed cabinet 1 and an automated planting rack 2, a full artificial lighting system, a ventilation system 4 and a central controller 5 mounted inside the cabinet 1.
  • the closed box 1 is a standard container.
  • the automated planting rack 2 is placed along the length of the casing 1 and includes a plurality of planting troughs 21 arranged in parallel.
  • a plurality of planting tanks 21 are provided in one bracket 22 and are sequentially stacked in the vertical direction.
  • the planting tank 21 is connected to a nutrient solution tank 24 through a pipe.
  • a water pump 23 pumps the nutrient solution to circulate between the planting tank 21 and the nutrient solution tank 24.
  • One end of the planting trough 21 is a planting end, and the other end of the planting trough 21 away from the planting end is the harvesting end.
  • a plurality of planting plates 25 are placed on the planting trough 21.
  • the planting plates 25 are sequentially moved from the planting end to the harvesting end on the same planting trough 21, and the plants planted in the planting plate 25 complete the entire growing process on the planting trough 21;
  • the full artificial illumination system mainly includes an artificial light source 3 provided on the top of the planting plate 25.
  • the artificial light source 3 faces the plants in the lower plate 25.
  • the planting trough 21 is divided into a seedling region 21a, a growing region 21b, a mature region 21c, and a picking region 21d along the length direction, wherein the plants are in a seedling stage, a growing period, a maturity period, and a picking period, respectively.
  • Each region corresponds to different growth stages in the process of plant growth, and the illumination intensity and color temperature of the artificial light source 3 in each region are different.
  • the light emitted by the artificial light source 3 is mainly composed of red light, blue light and near infrared light, the red light wavelength is 650-660 nm, the blue light wavelength is 450-460 nm, and the near infrared wavelength is 700-800 nm.
  • the setting parameters of the light emitted by the artificial light source 3 in each different area are as shown in Table 1 below.
  • the ventilation system 4 is arranged in parallel with the planting trough and facing the planting trough.
  • the exhaust fan 4 includes a line boosting device 41 and an air outlet pipe 42 connected to the line pressurizing device 41. ,
  • the plurality of outlet ducts 42 correspond to the plurality of planting tanks 21, and are disposed in parallel along the longitudinal direction of the planting tank 21.
  • the air flow is blown by the air duct 42 to its corresponding plant.
  • the size of the air flow is different in different areas of the planting trough 21.
  • the central controller 5 is for controlling the working state of the artificial light source 3 and the line boosting device 41.
  • the ventilation system 4 further includes a return duct 43 provided at the top of the casing 1.
  • the return air duct 43 is connected to the line pressurizing device 41.
  • the air is blown to the corresponding plant by the air outlet pipe 42 by the pipe pressurizing device 41, and then recovered by the return air pipe 43 to the pipe pressurizing device 41, thereby forming an inner loop inside the casing 1. Airflow.
  • the ventilation system 4 further includes a ventilating device including an exhaust fan 44 and a venting line 45 connected to the exhaust fan 44.
  • the outer end of the ventilation duct 45 extends outside the casing 1 and communicates with the outside. This creates an externally circulated gas stream.
  • At least one layer of filter material 46 is provided in the vent line 45.
  • Filter material 46 is used to filter dust and pests in the air.
  • the exhaust fan 44 is controlled to be turned on and off periodically by the central controller 5.
  • An air conditioner 6 is also provided inside the cabinet 1.
  • the air conditioner 6 is controlled by the central controller 5 to its switching state.
  • the central controller 5 is connected to a temperature sensor 51 for detecting the internal temperature of the casing 1.
  • the central controller 5 issues an opening signal to the air conditioner 6, and the air conditioner 6 is turned on to lower the temperature inside the cabinet 1.
  • a dehumidifier 7 is also provided inside the casing 1.
  • the dehumidifier 7 is also controlled by the central controller 5 in its switching state.
  • the central controller 5 is connected to a humidity sensor 52 for detecting the humidity inside the cabinet 1.
  • the central controller 5 issues an opening signal to the dehumidifier 7, and the dehumidifier 7 is opened to lower the humidity inside the casing 1.
  • a moisture collecting box 8 is also provided inside the casing 1.
  • the moisture collection tank 8 is for collecting the condensed water generated by the air conditioner 6 and the dehumidifier 7.
  • the moisture collection tank 8 is connected to the nutrient solution tank 24 through a pipe, whereby the collected moisture can be used for replenishment into the nutrient solution, thereby achieving the recycling of moisture.
  • the nutrient solution pool 24 is also provided with an automatic fluid replenishment system.
  • the automatic fluid replenishment system includes a plurality of nutrient solution storage tanks 9.
  • the nutrient solution storage tank 9 stores a concentrated nutrient solution.
  • the nutrient solution tank 9 is connected to the nutrient solution tank 24 through a pipe.
  • An infusion pump 91 is also connected in series to the pipeline.
  • An EC sensor 53 is provided in the nutrient solution pool 24.
  • the infusion pump 91 and the EC sensor 53 are connected to the central controller 5, respectively.
  • the central controller 5 monitors the concentration of nutrient elements in the nutrient solution in the nutrient solution pool 24 through the EC sensor 53.
  • the central controller 5 sends an opening signal to the infusion pump 91, and the infusion pump 91 is turned on and stored in the nutrient solution tank 9
  • the concentrated nutrient solution is fed into the nutrient solution pool 24 through a pipe, and the concentration of nutrient elements in the nutrient solution pool 24 is gradually increased.
  • the EC sensor 53 synchronously detects the concentration value of the nutrient element during the infusion adjustment process, and when the concentration value reaches a predetermined range, the central controller 5 outputs a shutdown signal to the infusion pump 91, the infusion pump 91 is turned off, and the concentration of nutrient elements in the nutrient solution is reached. Maintain stability.
  • the pipe connecting the moisture collecting tank 8 and the nutrient solution tank 24 is also provided with an infusion pump 91 connected to and controlled by the central controller 5, and the concentration value of one or more nutrient elements returned by the EC sensor 53.
  • the central controller 5 determines that the nutrient solution is in a water shortage state, and controls the infusion pump 91 to input the water stored in the moisture collection tank 8 into the nutrient solution pool 24 through the pipeline to replenish moisture and reduce The concentration of nutrients in the nutrient solution.
  • the nutrient solution tank is further provided with a pH sensor connected to the central controller.
  • the pH sensor is used for detecting the pH of the nutrient solution
  • the nutrient solution pool is connected to the acid-base balance liquid storage tank through the pipeline.
  • the distributed intelligent plant factory adopting the above technical scheme is an agricultural system for realizing continuous crop production by high-precision environmental control, that is, using a computer to automatically control environmental conditions such as temperature, humidity, illumination and nutrient solution of plant growth, A labor-saving production that allows plants in the facility to be born with little or no natural conditions.
  • the plant can realize the production of vegetables, flowers, fruits, medicinal materials, edible fungi and some food crops. It is an intensive three-dimensional agricultural production method with intensive knowledge and technology.
  • the distributed intelligent plant factory is the highest level of plant cultivation. It provides the best environment for plant growth and development. It integrates fully automatic and intelligent environment simulation technology to create the best artificial environment for plant growth and development.
  • the distributed intelligent plant factory can be used for supermarkets and restaurants to produce a variety of plant foods; it can also be used in special environment conditions such as plateau, desert, island, underground, north and south pole and space base to meet special circumstances.

Abstract

一种分布式智能植物工厂,包括一个封闭的箱体(1)和安装在箱体(1)内部的自动化种植架(2)、全人工光照系统、通风系统(4)和中央控制器(5)。采用以上技术方案的分布式智能植物工厂,是一种通过高精度环境控制实现农作物周年连续生产的农业系统,它为植物提供了生长发育的最佳环境,集成了全自动、全智能的环境模拟技术为植物的生长与发育创造出最佳的人工环境。

Description

分布式智能植物工厂 技术领域
本发明涉及现代化农业技术,特别涉及一种分布式智能植物工厂。
背景技术
目前,我国的土地利用面积逐渐减少,要满足自给自足的情况下,种植业正面临严峻的挑战,农业技术人员只能通过无土栽培缓解土地紧张的压力。
现有的植物水培技术基本上都是室外种植,河流种植,湖泊种植等,也能保证植物的正常生长,但是阳光的正常光照时间8小时左右是远远不够的,而且都是依靠自然环境实现,因此环境的掌控方面很难确定,植物或蔬菜的生长期还是不能够得到有效的缩短。为了减轻繁重的农业劳动,将农业种植进化为自动化植物工厂种植。将土地利用率提高100-200倍,节约用水量至土地种植的五十分之一,减去了繁重的翻地、浇水、除草、施肥、打药等繁重的劳动工序,实现单体劳动力的50亩地的年种植量,且远离雾霾、农药、远离虫害,实现安全、绿色、营养、美味的食品蔬菜工厂化种植。
将自动化的理念应用于农业蔬菜种植,将繁重的农业劳动进化成现代化的工厂自动化生产形式,且彻底解决虫害农残问题,为未来现代化农业种植树立新的标杆。
但是,现有技术中的无土栽培技术在运行过程中仍然存在诸多不足:
1)对空间利用率不高,仍然需要较大的占地面积;
2)一般采用统一种植和统一收获的模式,对整个空间内环境要素的一致性要求比较高,而且无法实现栽培产品,尤其是蔬菜的持续供给;
3)全人工光照系统采用直接照射,光照时间、波长等不能精确控制, 导致其在栽种不同植物时,无法营造出最合适的光照条件;
4)缺乏相应的风循环系统,无法模拟自然界中的风吹效果,从而使得植物在生长过程中叶子不会摇摆,影响其蒸腾效果,不利于其生长;
因此,迫切需要一种能够解决上述问题的植物工厂系统,以便于大规模、工业化的对植物进行种植,以减缓对土地的压力。
发明内容
本发明的目的是提供一种分布式智能植物工厂。
根据本发明的一个方面,提供了一种分布式智能植物工厂,包括一个封闭的箱体,
以及安装在箱体内部的:
自动化种植架,沿所述箱体长度方向摆放,包括多个平行设置的种植槽,多个所述种植槽设于一个支架中,并沿竖直方向依次层叠,所述种植槽通过管道与一个营养液池相连接,营养液在所述种植槽与所述营养液池之间循环流动,所述种植槽一端为种植端,沿所述种植槽长度方向远离所述种植端的另一端为收获端,所述种植槽上摆放有多个种植板,所述种植板在同一个种植槽上由种植端向收获端依次移动,栽种在所述种植板中的植物在所述种植槽上完成整个生长过程;
全人工光照系统,主要包括设于所述种植板顶部的人工光源,所述人工光源正对下方所述种植板中的植物,所述种植槽沿长度方向分为多个区域,各个区域依次分别对应植物生长过程中的不同生长阶段,各个区域内所述人工光源各不相同;
通风系统,与所述种植槽平行设置且正对所述种植槽,所述排气扇包括管路增压装置和与所述管路增压装置相连接的出风管,多个所述出风管与多个所述种植槽相对应,且沿所述种植槽长度方向平行设置,气流由所述出风管吹向其对应的植物,在所述种植槽的不同区域内气流的大小不相 同;
中央控制器,用于控制所述人工光源和所述管路增压装置的工作状态。
进一步地,通风系统还包括设于所述箱体顶部的回风管,所述回风管与所述管路增压装置相连接,空气在所述管路增压装置的作用下由所述出风管吹向其对应的植物后,再由所述回风管回收至所述管路增压装置,由此在所述箱体内部形成一个内循环的气流。
进一步地,通风系统还包括换气装置,所述换气装置包括排气扇以及与所述排气扇相连接的通风管路,所述通风管路外端开口伸出所述箱体外且与外界相连通,由此形成一个外循环的气流,所述通风管路中设有至少一层过滤材料,所述过滤材料用于滤除外界空气中的灰尘以及病虫害,所述排气扇由所述中央控制器控制定时开启和关闭。
进一步地,箱体内部还设有空调,所述空调受所述中央控制器控制其开关状态,所述中央控制器与一个用于检测所述箱体内部温度的温度传感器相连接,当所述箱体内部温度高于预先设定的范围时,所述中央控制器向所述空调发出开启信号,所述空调开启以降低所述箱体内部的温度。
进一步地,箱体内部还设有除湿器,所述除湿器受所述中央控制器控制其开关状态,所述中央控制器与一个用于检测所述箱体内部湿度的湿度传感器相连接,当所述箱体内部湿度高于预先设定的范围时,所述中央控制器向所述除湿器发出开启信号,所述除湿器开启以降低所述箱体内部的湿度。
进一步地,箱体内部还设有水分收集箱,所述水分收集箱用于收集所述空调和所述除湿器产生的冷凝水,所述水分收集箱与所述营养液池通过管道相连接,由此,收集的水分可以用于补充至营养液中,从而实现水分的循环使用。
进一步地,营养液池还设有自动补液系统,所述自动补液系统包括一 个或者多个营养液储罐,所述营养液储罐中储存有浓缩的营养液,所述营养液储罐通过管道与所述营养液池相连接,管道上还串联有输液泵或者电子阀门,所述营养液池内设有EC传感器,所述输液泵或者电子阀门以及所述EC传感器分别与所述中央控制器相连接,所述中央控制器通过所述EC传感器监测所述营养液池中的营养液中营养元素的浓度,当所述EC传感器返回的一种或者多种营养元素的浓度数值低于预先设定的范围时,所述中央控制器向所述输液泵或者电子阀门发出开启信号,所述输液泵或者电子阀门开启并将存储在所述营养液储罐中的浓缩营养液通过管道输入所述营养液池中,所述营养液池中的营养元素的浓度逐渐上升,所述EC传感器同步检测输液调整过程中营养元素的浓度数值,在浓度数值达到预先设定的范围时,所述中央控制器向所述输液泵或者电子阀门输出关闭信号,所述输液泵或者电子阀门关闭,营养液中营养元素的浓度维持稳定。
进一步地,水分收集箱与所述营养液池相连接的管道上也设有与所述中央控制器连接并受其控制的输液泵或者电子阀门,当所述EC传感器返回的一种或者多种营养元素的浓度数值高于预先设定的范围时,所述中央控制器判断营养液处于缺水状态,并控制所述输液泵或者电子阀门将储存在所述水分收集箱中的水通过管道输入所述营养液池中,以补充水分并降低营养液中营养元素的浓度。
进一步地,营养液池内还设有与中央控制器相连接的pH传感器,pH传感器用于检测营养液的酸碱度,所述营养液池通过管道与酸碱平衡液储罐相连接,管道上也串联有输液泵或者电子阀门。由此可以通过控制添加酸碱平衡液以维持营养液的酸碱度。
采用以上技术方案的分布式智能植物工厂,是一种通过高精度环境控制实现农作物周年连续生产的农业系统,即利用计算机对植物生育的温度、湿度、光照以及营养液等环境条件进行自动控制,使设施内植物生育不受 或很少受自然条件制约的省力型生产。植物工厂可实现蔬菜、花卉、水果、药材、食用菌以及一部分粮食作物等生产,是知识与技术密集的集约型立体农业生产方式。该分布式智能植物工厂是植物栽培的最高境界,它为植物提供了生长发育的最佳环境,集成了全自动、全智能的环境模拟技术为植物的生长与发育创造出最佳的人工环境,不仅是完全可控可调、按照人的意志进行管理的一种生产模式,而且还是集约化最高的一种农业生产方式,采用完全工厂化流程式作业的生产模式,规避了外界气候因子的一切干扰,实现了栽培环境的精确模拟,所生产的蔬菜品质高、产量好,具有传统栽培模式无法比拟的优势。该分布式智能植物工厂既可用于超市、餐厅自产自销多种植物性食物;亦可应用于高原、沙漠、海岛、地下、南北极和空间基地等特殊地带环境条件下,满足特殊环境下长期活动人员的植物性食物连续供给与空气净化需求,还可用于家庭自主生产新鲜蔬菜。
附图说明
图1为本发明一种实施方式的分布式智能植物工厂的结构示意图。
图2为图1所示分布式智能植物工厂的自动化种植架的结构示意图。
图3为图1所示分布式智能植物工厂的人工光源的结构示意图。
图4为图1所示种植槽的各个区域分布示意图。
图5为图1所示分布式智能植物工厂的排气扇的结构示意图。
图6为图1所示分布式智能植物工厂的换气装置的结构示意图。
图7为图1所示箱体的内部结构示意图。
图8为图1所示分布式智能植物工厂的电路控制示意图。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
图1至图8示意性地显示了根据本发明的一种实施方式的一种分布式智能植物工厂。如图所示,该装置包括一个封闭的箱体1以及安装在箱体1 内部的自动化种植架2、全人工光照系统,通风系统4和中央控制器5。
其中,封闭的箱体1为标准集装箱。
自动化种植架2沿箱体1长度方向摆放,包括多个平行设置的种植槽21。
多个种植槽21设于一个支架22中,并沿竖直方向依次层叠。
种植槽21通过管道与一个营养液池24相连接。
一个水泵23泵取营养液在种植槽21与营养液池24之间循环流动。
种植槽21一端为种植端,沿种植槽21长度方向远离种植端的另一端为收获端。
种植槽21上摆放有多个种植板25。
种植板25在同一个种植槽21上由种植端向收获端依次移动,栽种在种植板25中的植物在种植槽21上完成整个生长过程;
全人工光照系统主要包括设于种植板25顶部的人工光源3。
人工光源3正对下方种植板25中的植物。
种植槽21沿长度方向分为幼苗区域21a、生长区域21b、成熟区域21c和采摘区域21d,其中的植物分别处于幼苗期、生长期、成熟期和采摘期。
各个区域依次分别对应植物生长过程中的不同生长阶段,各个区域内人工光源3的光照强度和色温各不相同。
具体而言,
沿幼苗区域21a至采摘区域21d,人工光源3发出的光线中红光的比例逐渐增加;
沿幼苗区域21a至采摘区域21d,人工光源3发出的光线中蓝光的比例逐渐降低;
沿幼苗区域21a至采摘区域21d,人工光源3发出的光线中蓝光的比例逐渐降低;
人工光源3发出的光线主要由红光、蓝光和近红外线构成,红光波长为650-660nm,蓝光波长为450-460nm,近红外线波长为700-800nm。
在本实施例中,各个不同区域中人工光源3发出的光线的设置参数如下表1所示。
表1 人工光源3光线的设置参数表
  红光与蓝光相对比例 近红外线比例
幼苗区域21a 5:1 6%;
生长区域21b 4:1 4%;
成熟区域21c 8:3 3%;
采摘区域21d 3:1 1%。
通风系统4与种植槽平行设置且正对种植槽。
排气扇4包括管路增压装置41和与管路增压装置41相连接的出风管42。、
多个出风管42与多个种植槽21相对应,且沿种植槽21长度方向平行设置。
气流由出风管42吹向其对应的植物。
在种植槽21的不同区域内气流的大小不相同。
中央控制器5,用于控制人工光源3和管路增压装置41的工作状态。
在本实施例中,通风系统4还包括设于箱体1顶部的回风管43。
回风管43与管路增压装置41相连接。
空气在管路增压装置41的作用下由出风管42吹向其对应的植物后,再由回风管43回收至管路增压装置41,由此在箱体1内部形成一个内循环的气流。
在本实施例中,通风系统4还包括换气装置,换气装置包括排气扇44以及与排气扇44相连接的通风管路45。
通风管路45外端开口伸出箱体1外且与外界相连通。由此形成一个外循环的气流。
通风管路45中设有至少一层过滤材料46。
过滤材料46用于滤除外界空气中的灰尘以及病虫害。
排气扇44由中央控制器5控制定时开启和关闭。
箱体1内部还设有空调6。
空调6受中央控制器5控制其开关状态。
中央控制器5与一个用于检测箱体1内部温度的温度传感器51相连接。
当箱体内部温度高于预先设定的范围时,中央控制器5向空调6发出开启信号,空调6开启以降低箱体1内部的温度。
箱体1内部还设有除湿器7。
除湿器7同样也受中央控制器5控制其开关状态。
中央控制器5与一个用于检测箱体1内部湿度的湿度传感器52相连接。
当箱体1内部湿度高于预先设定的范围时,中央控制器5向除湿器7发出开启信号,除湿器7开启以降低箱体1内部的湿度。
箱体1内部还设有水分收集箱8。
水分收集箱8用于收集空调6和除湿器7产生的冷凝水。
水分收集箱8与营养液池24通过管道相连接,由此,收集的水分可以用于补充至营养液中,从而实现水分的循环使用。
营养液池24还设有自动补液系统。
自动补液系统包括多个营养液储罐9。
营养液储罐9中储存有浓缩的营养液。
营养液储罐9通过管道与营养液池24相连接。
管道上还串联有输液泵91。
营养液池24内设有EC传感器53。
输液泵91以及EC传感器53分别与中央控制器5相连。
中央控制器5通过EC传感器53监测营养液池24中的营养液中营养元素的浓度。
当EC传感器53返回的一种或者多种营养元素的浓度数值低于预先设定的范围时,中央控制器5向输液泵91发出开启信号,输液泵91开启并将存储在营养液储罐9中的浓缩营养液通过管道输入营养液池24中,营养液池24中的营养元素的浓度逐渐上升。
EC传感器53同步检测输液调整过程中营养元素的浓度数值,在浓度数值达到预先设定的范围时,中央控制器5向输液泵91输出关闭信号,输液泵91关闭,营养液中营养元素的浓度维持稳定。
同时,水分收集箱8与营养液池24相连接的管道上也设有与中央控制器5连接并受其控制的输液泵91,当EC传感器53返回的一种或者多种营养元素的浓度数值高于预先设定的范围时,中央控制器5判断营养液处于缺水状态,并控制输液泵91将储存在水分收集箱8中的水通过管道输入营养液池24中,以补充水分并降低营养液中营养元素的浓度。
在其他的实施例中,营养液池内还设有与中央控制器相连接的pH传感器,pH传感器用于检测营养液的酸碱度,营养液池通过管道与酸碱平衡液储罐相连接,管道上也串联有输液泵或者电子阀门。由此可以通过控制添加酸碱平衡液以维持营养液的酸碱度。
采用以上技术方案的分布式智能植物工厂,是一种通过高精度环境控制实现农作物周年连续生产的农业系统,即利用计算机对植物生育的温度、湿度、光照以及营养液等环境条件进行自动控制,使设施内植物生育不受或很少受自然条件制约的省力型生产。植物工厂可实现蔬菜、花卉、水果、药材、食用菌以及一部分粮食作物等生产,是知识与技术密集的集约型立体农业生产方式。该分布式智能植物工厂是植物栽培的最高境界,它为植 物提供了生长发育的最佳环境,集成了全自动、全智能的环境模拟技术为植物的生长与发育创造出最佳的人工环境,不仅是完全可控可调、按照人的意志进行管理的一种生产模式,而且还是是集约化最高的一种农业生产方式,采用完全工厂化流程式作业的生产模式,规避了外界气候因子的一切干扰,实现了栽培环境的精确模拟,所生产的蔬菜品质高、产量好,具有传统栽培模式无法比拟的优势。该分布式智能植物工厂既可用于超市、餐厅自产自销多种植物性食物;亦可应用于高原、沙漠、海岛、地下、南北极和空间基地等特殊地带环境条件下,满足特殊环境下长期活动人员的植物性食物连续供给与空气净化需求,还可用于家庭自主生产新鲜蔬菜。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

  1. 分布式智能植物工厂,其特征在于,包括一个封闭的箱体,以及安装在所述箱体内部的:
    自动化种植架,沿所述箱体长度方向摆放,包括多个平行设置的种植槽,多个所述种植槽设于一个支架中,并沿竖直方向依次层叠,所述种植槽通过管道与一个营养液池相连接,营养液在所述种植槽与所述营养液池之间循环流动,所述种植槽一端为种植端,沿所述种植槽长度方向远离所述种植端的另一端为收获端,所述种植槽上摆放有多个种植板,所述种植板在同一个种植槽上由种植端向收获端依次移动,栽种在所述种植板中的植物在所述种植槽上完成整个生长过程;
    全人工光照系统,主要包括设于所述种植板顶部的人工光源,所述人工光源正对下方所述种植板中的植物,所述种植槽沿长度方向分为多个区域,各个区域依次分别对应植物生长过程中的不同生长阶段,各个区域内所述人工光源各不相同;
    通风系统,与所述种植槽平行设置且正对所述种植槽,所述排气扇包括管路增压装置和与所述管路增压装置相连接的出风管,多个所述出风管与多个所述种植槽相对应,且沿所述种植槽长度方向平行设置,气流由所述出风管吹向其对应的植物,在所述种植槽的不同区域内气流的大小不相同;
    中央控制器,用于控制所述人工光源和所述管路增压装置的工作状态。
  2. 根据权利要求1所述的分布式智能植物工厂,其特征在于,所述通风系统还包括设于所述箱体顶部的回风管,所述回风管与所述管路增压装置相连接,空气在所述管路增压装置的作用下由所述出风管吹向其对应的植物后,再由所述回风管回收至所述管路增压装置,由此在所述箱体内部形成一个内循环的气流。
  3. 根据权利要求1所述的分布式智能植物工厂,其特征在于,所述通风系统还包括换气装置,所述换气装置包括排气扇以及与所述排气扇相连接的通风管路,所述通风管路外端开口伸出所述箱体外且与外界相连通,由此形成一个外循环的气流,所述通风管路中设有至少一层过滤材料,所述过滤材料用于滤除外界空气中的灰尘以及病虫害,所述排气扇由所述中央控制器控制定时开启和关闭。
  4. 根据权利要求1所述的分布式智能植物工厂,其特征在于,所述箱体内部还设有空调,所述空调受所述中央控制器控制其开关状态,所述中央控制器与一个用于检测所述箱体内部温度的温度传感器相连接,当所述箱体内部温度高于预先设定的范围时,所述中央控制器向所述空调发出开启信号,所述空调开启以降低所述箱体内部的温度。
  5. 根据权利要求4所述的分布式智能植物工厂,其特征在于,所述箱体内部还设有除湿器,所述除湿器受所述中央控制器控制其开关状态,所述中央控制器与一个用于检测所述箱体内部湿度的湿度传感器相连接,当所述箱体内部湿度高于预先设定的范围时,所述中央控制器向所述除湿器发出开启信号,所述除湿器开启以降低所述箱体内部的湿度。
  6. 根据权利要求5所述的分布式智能植物工厂,其特征在于,所述箱体内部还设有水分收集箱,所述水分收集箱用于收集所述空调和所述除湿器产生的冷凝水,所述水分收集箱与所述营养液池通过管道相连接,由此,收集的水分可以用于补充至营养液中,从而实现水分的循环使用。
  7. 根据权利要求6所述的分布式智能植物工厂,其特征在于,所述营养液池还设有自动补液系统,所述自动补液系统包括一个或者多个营养液储罐,所述营养液储罐中储存有浓缩的营养液,所述营养液储罐通过管道与所述营养液池相连接,管道上还串联有输液泵或者电子阀门,所述营养液池内设有EC传感器,所述输液泵或者电子阀门以及所述EC传感器分别 与所述中央控制器相连接,所述中央控制器通过所述EC传感器监测所述营养液池中的营养液中营养元素的浓度,当所述EC传感器返回的一种或者多种营养元素的浓度数值低于预先设定的范围时,所述中央控制器向所述输液泵或者电子阀门发出开启信号,所述输液泵或者电子阀门开启并将存储在所述营养液储罐中的浓缩营养液通过管道输入所述营养液池中,所述营养液池中的营养元素的浓度逐渐上升,所述EC传感器同步检测输液调整过程中营养元素的浓度数值,在浓度数值达到预先设定的范围时,所述中央控制器向所述输液泵或者电子阀门输出关闭信号,所述输液泵或者电子阀门关闭,营养液中营养元素的浓度维持稳定。
  8. 根据权利要求7所述的分布式智能植物工厂,其特征在于,所述水分收集箱与所述营养液池相连接的管道上也设有与所述中央控制器连接并受其控制的输液泵或者电子阀门,当所述EC传感器返回的一种或者多种营养元素的浓度数值高于预先设定的范围时,所述中央控制器判断营养液处于缺水状态,并控制所述输液泵或者电子阀门将储存在所述水分收集箱中的水通过管道输入所述营养液池中,以补充水分并降低营养液中营养元素的浓度。
  9. 根据权利要求7所述的分布式智能植物工厂,其特征在于,所述营养液池内还设有与中央控制器相连接的pH传感器,pH传感器用于检测营养液的酸碱度,所述营养液池通过管道与酸碱平衡液储罐相连接,管道上也串联有输液泵或者电子阀门。
PCT/CN2018/116916 2017-11-23 2018-11-22 分布式智能植物工厂 WO2019101128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711183046.1 2017-11-23
CN201711183046.1A CN107896970A (zh) 2017-11-23 2017-11-23 分布式智能植物工厂

Publications (1)

Publication Number Publication Date
WO2019101128A1 true WO2019101128A1 (zh) 2019-05-31

Family

ID=61847577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116916 WO2019101128A1 (zh) 2017-11-23 2018-11-22 分布式智能植物工厂

Country Status (2)

Country Link
CN (1) CN107896970A (zh)
WO (1) WO2019101128A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528851B2 (en) 2020-11-05 2022-12-20 Haier Us Appliance Solutions, Inc. Indoor garden center with a moisture management system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896970A (zh) * 2017-11-23 2018-04-13 中实创科技(广东)有限公司 分布式智能植物工厂
CN111226779A (zh) * 2020-03-02 2020-06-05 内蒙古自治区生物技术研究院 一种智能控制的黄芪水培装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647386A (zh) * 2008-08-14 2010-02-17 方炜 植物立体栽培塔
CN102369856A (zh) * 2010-08-06 2012-03-14 株式会社格林普乐斯 利用照射装置培养植物的自动设备
CN104202965A (zh) * 2012-01-30 2014-12-10 垂直设计有限公司 用于自动化园艺和农业的方法和设备
WO2016061637A1 (en) * 2014-10-24 2016-04-28 Fodder Solutions Holdings Pty Ltd Fodder growing system and method
CN105638427A (zh) * 2016-02-02 2016-06-08 同济大学 一种自然光利用型植物栽培箱
CN105724231A (zh) * 2016-04-25 2016-07-06 崔学晨 一种人工环境水培作物生产线
CN107896970A (zh) * 2017-11-23 2018-04-13 中实创科技(广东)有限公司 分布式智能植物工厂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100553443C (zh) * 2006-04-19 2009-10-28 中国农业大学 密闭式完全利用人工光的环境控制型植物工厂
CN101300958B (zh) * 2007-05-11 2012-01-11 中国科学院沈阳应用生态研究所 一种间歇浸没式植物培养装置及其控制方法
CN102135366B (zh) * 2011-03-22 2016-08-03 王子韩 一种可利用光纤补光种菜的新型冰箱
CN207574234U (zh) * 2017-11-23 2018-07-06 中实创科技(广东)有限公司 分布式智能植物工厂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647386A (zh) * 2008-08-14 2010-02-17 方炜 植物立体栽培塔
CN102369856A (zh) * 2010-08-06 2012-03-14 株式会社格林普乐斯 利用照射装置培养植物的自动设备
CN104202965A (zh) * 2012-01-30 2014-12-10 垂直设计有限公司 用于自动化园艺和农业的方法和设备
WO2016061637A1 (en) * 2014-10-24 2016-04-28 Fodder Solutions Holdings Pty Ltd Fodder growing system and method
CN105638427A (zh) * 2016-02-02 2016-06-08 同济大学 一种自然光利用型植物栽培箱
CN105724231A (zh) * 2016-04-25 2016-07-06 崔学晨 一种人工环境水培作物生产线
CN107896970A (zh) * 2017-11-23 2018-04-13 中实创科技(广东)有限公司 分布式智能植物工厂

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528851B2 (en) 2020-11-05 2022-12-20 Haier Us Appliance Solutions, Inc. Indoor garden center with a moisture management system

Also Published As

Publication number Publication date
CN107896970A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN203206878U (zh) 一种微型植物工厂
CN105123488B (zh) 植物组培生根、炼苗一体化的培养装置及其培养方法
CN204409172U (zh) 一种蔬菜栽培机
CN203748378U (zh) 家用智能植物种植箱
CN202310799U (zh) 智能微型植物家庭工厂
CN103918540A (zh) 家用智能植物种植箱
CN205093314U (zh) 植物培育生长柜
CN106489707B (zh) 一种室内微纳米气泡水培装置
CN104737896A (zh) 一种数字化精准育苗系统
CN204634606U (zh) 一种数字化精准育苗系统
WO2019101128A1 (zh) 分布式智能植物工厂
CN206686837U (zh) 一种led灯和雾培联用的室内植物培育装置
CN204482606U (zh) 一种家用雾培蔬菜种植装置
CN206963577U (zh) 一体化牧草种植无土栽培温室大棚
CN104255343A (zh) 日光型多层潮汐式绿叶菜工厂化生产系统
CN108738935A (zh) 一种装备化多功能光照种植工厂
CN108834681A (zh) 一种组合型装备化多功能光照种植工厂
CN208509729U (zh) 装备化多功能光照种植工厂
CN208354154U (zh) 组合型装备化多功能光照种植工厂
CN111296129A (zh) 一种智能植物加代育种舱
CN204362671U (zh) 一种农业育苗培育箱
CN215530643U (zh) 深-浅液流植物栽培环境调控系统
CN205946815U (zh) 一种自动化立体潮汐灌溉机
WO2019101131A1 (zh) 智能化无土种植方法
CN212910967U (zh) 一种智能植物加代育种舱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880598

Country of ref document: EP

Kind code of ref document: A1