WO2019100945A1 - 一种电制动能量回馈系统 - Google Patents
一种电制动能量回馈系统 Download PDFInfo
- Publication number
- WO2019100945A1 WO2019100945A1 PCT/CN2018/114554 CN2018114554W WO2019100945A1 WO 2019100945 A1 WO2019100945 A1 WO 2019100945A1 CN 2018114554 W CN2018114554 W CN 2018114554W WO 2019100945 A1 WO2019100945 A1 WO 2019100945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- control circuit
- voltage
- voltage signal
- energy storage
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/16—Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/22—Dynamic electric resistor braking, combined with dynamic electric regenerative braking
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/06—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
- H02P3/18—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/06—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
- H02P3/18—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
- H02P3/22—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
- B60L2210/42—Voltage source inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/526—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to the field of urban rail transit technology, and in particular to an electric brake energy feedback system.
- the low-floor tram is a new type of transportation equipment in modern cities. It can be laid on the existing roads in the city. It has the advantages of green environmental protection and low noise. It is one of the most advanced urban transportation systems in the world.
- Some new urban rail transit systems represented by low-floor trams, often use inter-zone power (that is, coexistence of networked and unnetworked power supplies) in order to influence the urban landscape too much. Therefore, the optimal use of energy becomes more important when the train is free to operate between the networked and networkless power lines.
- the present invention provides an electric brake energy feedback system, the system comprising:
- a rectifying inverter circuit for connecting with a traction motor for inverting the received direct current into a corresponding alternating current under traction conditions to drive the traction motor to operate, and also for using the traction condition
- the alternating current generated by the traction motor is rectified to a corresponding direct current
- An intermediate DC circuit connected to the rectification inverter circuit and configured to be connected to the auxiliary power supply system to transmit electric energy to the auxiliary power supply system;
- a first voltage detecting circuit connected to the intermediate DC circuit for detecting positive and negative voltages of the intermediate DC circuit to obtain a first voltage signal
- the bidirectional DC/DC conversion circuit is connected to the intermediate DC circuit for voltage conversion and transmission of the electrical energy transmitted by the intermediate DC circuit according to actual operating conditions. And to an energy storage system connected thereto, or converting the electric energy provided by the energy storage system to the intermediate DC circuit, wherein the regeneration control circuit is connected to the intermediate DC circuit and the power flow to the control circuit, And is further configured to be connected to the contact network DC port for conducting or disconnecting a conductive loop between the intermediate DC circuit and the DC port of the contact network under the control of the power flow to the control circuit;
- control circuit coupled to the first voltage detecting circuit and the bidirectional DC/DC converting circuit and/or the regenerative control circuit, for controlling the bidirectional DC/DC converting circuit and/or according to the first voltage signal
- the operating state of the regeneration control circuit The operating state of the regeneration control circuit.
- the power flow to the control circuit is configured to determine whether the first voltage signal is less than or equal to a first preset voltage threshold, wherein, if so, control
- the bidirectional DC/DC conversion circuit and/or the regenerative control circuit are in an inactive state such that the intermediate DC circuit transmits all of the received electrical energy to the auxiliary power supply system.
- the bidirectional DC/DC conversion circuit when the vehicle is in a braking condition, if the first voltage signal is greater than the first predetermined voltage threshold but less than or equal to a second predetermined voltage threshold, the power flows to the control circuit Then, the bidirectional DC/DC conversion circuit is configured to perform voltage conversion on the electric energy that cannot be consumed by the auxiliary power supply system provided by the intermediate DC circuit, and then transmit the energy to the energy storage system to charge the energy storage system.
- the power flows to the control circuit And then configured to control the regeneration control circuit to transmit power that cannot be consumed by the auxiliary power supply system provided by the intermediate DC circuit to the contact network DC port.
- system further comprises:
- a third voltage detecting circuit connected to the bidirectional DC/DC converting circuit and the power flow direction control circuit for detecting a voltage between the ports of the bidirectional DC/DC converting circuit near the side of the energy storage system to obtain a third voltage Signaling, and transmitting the third voltage signal to the power flow to the control circuit;
- the power flow control circuit is configured to determine a state of charge of the energy storage system based on the third voltage signal.
- system further comprises:
- a second voltage detecting circuit connected to the regeneration control circuit and the power flow control circuit for detecting positive and negative voltages of the contact network DC port, obtaining a second voltage signal, and transmitting the second voltage signal The electrical energy flows to the control circuit.
- the power flow control circuit is configured to determine whether the second voltage signal is greater than zero, and if yes, further determining whether the first voltage signal is greater than a second predetermined voltage threshold, wherein If yes, configured to control the regenerative control circuit to conduct a conductive loop between the intermediate DC circuit and the contact network DC port, such that the regeneration control circuit provides the auxiliary power supply system and the energy storage system provided by the intermediate DC circuit Undisabled power is transferred to the catenary DC port.
- system further comprises:
- a brake chopper circuit connected to the power flow control circuit for conducting or disconnecting a conductive loop between the intermediate DC circuit and the braking resistor under the control of the power flow to the control circuit.
- the power flow control circuit is configured to control the brake chopper circuit Conducting a conductive loop between the intermediate DC circuit and the braking resistor such that the braking resistor consumes electrical energy that is not consumed by the auxiliary power supply system and the energy storage system provided by the intermediate DC circuit.
- the power flow to the control circuit is configured to determine whether the first voltage signal is greater than a second predetermined voltage but less than or equal to a third preset voltage threshold And if so, configured to control the regenerative control circuit to conduct a conductive loop between the intermediate DC circuit and the contact network DC port, such that the regeneration control circuit supplies the auxiliary power supply system and the energy storage provided by the intermediate DC circuit The power that the system cannot consume is transmitted to the catenary DC port.
- the power flow control circuit is configured to control the regeneration control circuit to conduct the middle a conductive loop between the DC circuit and the DC port of the contact network, and controlling the brake chopper circuit to conduct a conductive loop between the intermediate DC circuit and the braking resistor, such that the braking resistor consumes the middle
- the power provided by the DC circuit, the auxiliary power supply system and the energy storage system cannot be consumed, and the power that the contact net cannot absorb.
- the electric brake energy feedback system adopts different ways to control the flow of electric energy generated by the traction motor based on the line segment where the vehicle is located, so that the vehicle can maximize the electric power when the line between the zones runs. Brake energy is recovered and consumed as little as possible by the braking resistor, which in turn makes the vehicle and the entire transportation system more energy efficient.
- FIG. 1 is a schematic structural view of an electric brake energy feedback system according to an embodiment of the present invention.
- FIG. 2 is a schematic structural view of an electric brake energy feedback system according to another embodiment of the present invention.
- FIG. 3 is a schematic structural view of an electric brake energy feedback system according to still another embodiment of the present invention.
- the electric braking energy can be recovered to the greatest extent and consumed as much as possible on the braking resistor, so that the entire transportation system is more energy-saving and environmentally friendly.
- This embodiment provides a new electric brake energy feedback system.
- FIG. 1 is a schematic structural view of the electric brake energy feedback system in the embodiment.
- the electric brake energy feedback system 100 preferably includes: a precharge and input circuit 201, a regeneration control circuit 202, an intermediate DC circuit 203, a rectification inverter circuit 204, and a bidirectional DC/DC.
- the conversion circuit 205 and the power flow to the control circuit (not shown).
- the pre-charging and input circuit 201 is preferably an optional circuit for connecting to the catenary DC port 101 to receive DC power transmitted by the catenary DC port 101 or to feed DC power to the catenary DC port 101.
- the precharge and input circuit 201 is capable of precharging the received direct current and other related processing (e.g., filtering, etc.) and transmitting the processed direct current to the associated circuit connected thereto.
- the regeneration control circuit 202 is connected between the precharge and input circuit 201 and the intermediate DC circuit 203, and is also connected to the power flow to the control circuit.
- the regeneration control circuit 202 can turn on or off the conductive loop between the precharge and input circuit 201 and the intermediate DC circuit 203 under the control of the power flow to the control circuit.
- the DC power provided by the contact network DC port 101 can also be transmitted to the middle through the precharge and input circuit 201 and the regeneration control circuit 202.
- the DC circuit 203, or the DC power provided by the intermediate DC circuit 203 can be fed back to the catenary DC port 101 via the regeneration control circuit 202 and the precharge and input circuit 201.
- the regeneration control circuit 202 preferably includes an IGBT module 202a and a diode 202b.
- the positive pole and the negative pole of the diode 202b are respectively connected to the negative terminal and the positive pole of the output terminal of the precharge and input circuit 201, that is, the diode 202b is connected in reverse phase between the positive and negative terminals of the output terminal of the precharge and input circuit 201.
- the anode of the diode 202b is also connected to the cathode of the intermediate DC circuit 203.
- the emitter of the IGBT module 202a is connected to the anode of the precharge and input circuit 201 (ie, the cathode of the diode 202b), the collector is connected to the anode of the intermediate DC circuit, and the gate is connected to the power supply to the control circuit.
- the power flow direction control circuit controls the regenerative control circuit 202 to turn on or off the conductive circuit between the precharge and input circuit 201 and the intermediate DC circuit 203 by controlling the on/off state of the IGBT module 202a.
- the regenerative control circuit 202 when the voltage of the contact network DC port 101 is greater than the voltage of the intermediate DC link 203, the regenerative control circuit 202 is equivalent to the normally closed state due to the presence of the freewheeling diode in the IGBT module 202a.
- the power provided by the DC port 101 will be transmitted to the intermediate DC circuit 203 through the freewheeling diode.
- the voltage between the positive and negative terminals of the freewheeling diode in the IGBT module 202a will be the reverse voltage, and the freewheeling diode is also in the off state.
- the power flow to the control circuit can also turn on or off the conductive loop between the contact network DC port 101 and the intermediate DC circuit 203 by controlling the switching state of the IGBT element.
- the regeneration control circuit 202 can also be implemented by other reasonable circuit forms or other controllable switching devices, and the present invention is not limited thereto.
- the intermediate DC circuit 203 is also connected to the auxiliary power supply system 102, such that the auxiliary power supply system 102 is equivalent to being connected to the output of the regeneration control circuit 202.
- the intermediate DC circuit 203 or the catenary DC port 101 can also provide the auxiliary power supply system 203 with the electrical energy required to assist the operation of the load.
- the intermediate DC circuit 203 is connected between the regeneration control circuit 202 and the rectification inverter circuit 204, which preferably includes a supporting capacitor or the like.
- the rectification inverter circuit 204 can invert the DC power transmitted from the intermediate DC circuit 203 to the corresponding AC power and transmit it to the traction motor M connected thereto to drive the traction motor M to operate.
- the traction motor M will generate an alternating current as a generator and transmit the alternating current to the rectifying inverter circuit 204 connected thereto, at which time the rectifying inverter circuit 204 transmits the traction motor M.
- the incoming alternating current is rectified to the corresponding direct current and transmitted to the intermediate direct current circuit 203.
- one end of the bidirectional DC/DC conversion circuit 205 is connected to the intermediate DC circuit 203, and the other end is connected to the energy storage system 103.
- the bidirectional DC/DC conversion circuit 205 is also connected to the power flow control circuit.
- the bidirectional DC/DC conversion circuit 205 can perform voltage conversion on the electric energy transmitted by the intermediate DC circuit under the control of the electric energy flow to the control circuit according to the actual working condition, and then transmit the electric energy to the energy storage system 103 connected thereto to charge the energy storage system 103. .
- the bidirectional DC/DC conversion circuit 205 is further capable of voltage-converting the DC power transmitted from the energy storage system 103 under the control of the power flow to the control circuit according to actual operating conditions, and then transmitting the DC power to the intermediate DC circuit connected thereto, thereby serving as an auxiliary power supply system. 102 and/or traction motor M provides electrical energy.
- the system may further include a brake chopper circuit 206 .
- the brake chopper circuit 206 is connected to the power flow to the control circuit, and is capable of turning on or off the conductive loop between the intermediate DC circuit 203 and the braking resistor R1 under the control of the power flow to the control circuit. Wherein, if the conductive loop between the intermediate DC circuit 203 and the braking resistor R1 is turned on, the electrical energy provided by the intermediate DC circuit 203 will be partially or completely transmitted to the braking circuit R1 and converted by the braking resistor R1 into It is consumed by heat.
- the system further includes: a first voltage detecting circuit VH1, a second voltage detecting circuit VH2, a third voltage detecting circuit VH3, and a first current detecting circuit LH1.
- the first voltage detecting circuit VH1 is connected to the intermediate DC circuit 203, and is capable of detecting the positive and negative voltages of the intermediate DC circuit 203, and transmitting the obtained first voltage signal to the power connected thereto to the control circuit.
- the second voltage detecting circuit VH2 is connected to the regeneration control circuit 201 and the power flow control circuit, and is capable of detecting the positive and negative voltages at the input end of the regenerative control circuit 201 (ie, the positive and negative voltages of the contact network DC port), and the obtained second voltage signal.
- the power transmitted to it is directed to the control circuit.
- the third voltage detecting circuit VH3 is connected to the bidirectional DC/DC converting circuit 205, and is capable of detecting the voltage between the positive and negative terminals of the bidirectional DC/DC converting circuit 205 near the side of the energy storage system 103 (ie, the positive and negative of the energy storage system 103).
- the pole voltage is transmitted, and the obtained third voltage signal is transmitted to the power connected thereto to the control circuit.
- the first current detecting circuit is connected in series in the conductive loop of the energy storage system 103 and the bidirectional DC/DC converting circuit 205, and is capable of detecting the current flowing to the energy storage system 103 or the current output by the energy storage system 103, and the obtained The first current signal is transmitted to the electrical energy connected thereto to the control circuit.
- the power flow direction control circuit preferably determines the operating state of the vehicle based on the second voltage signal, that is, whether the vehicle is operating in a line segment having a contact network. Specifically, in this embodiment, if the second voltage signal is greater than zero, the power flow to the control circuit can also determine that the vehicle is running on the line segment with the contact network, otherwise the vehicle can be judged to be running at this time. The line segment of the contact network.
- the traction motor M will generate an alternating current and transmit the alternating current to the rectifying inverter circuit 204 connected thereto.
- the rectification inverter circuit 204 will be used as a rectification circuit to rectify the alternating current transmitted from the traction motor M to the corresponding direct current.
- the first voltage detecting circuit will detect the voltage difference and transmit the obtained first voltage signal to the power connected thereto to the control circuit.
- the power flow direction control circuit After receiving the first voltage signal, the power flow direction control circuit determines the specific flow direction of the electric energy provided by the traction motor M according to the first voltage signal. Specifically, in this embodiment, the power flow direction control circuit determines whether the first voltage signal is less than or equal to the first preset voltage threshold.
- the first voltage signal is less than or equal to the first preset voltage threshold, then it indicates that the electric energy generated by the traction motor M can be completely consumed by the auxiliary power supply system 102, so that the power flow to the control circuit also controls the two-way.
- the DC/DC conversion circuit 205, the regeneration control circuit 202, and the brake chopper circuit 206 are in an inactive state, such that the conductive loop between the intermediate DC circuit 203 and the auxiliary power supply system 102 will be in an on state, and the energy storage system 103 and The conductive loop between the rectifying inverter circuit 204, the conductive loop between the intermediate DC circuit 203 and the pre-charging and input circuit 201, and the conductive loop between the rectifying inverter circuit 204 and the braking resistor R1 are all in an open state. Thereby, all of the electrical energy generated by the traction motor M is transmitted to the auxiliary power supply system 102 to supply power to the auxiliary power supply system 102.
- the power flow to the control circuit further determines the first Whether the voltage signal is less than or equal to the second preset voltage threshold.
- the power flow direction control circuit will control the bidirectional DC/DC conversion circuit 205 to be in an active state, and control the regeneration control circuit. 202 and brake chopper circuit 206 are in a non-operating state.
- the conductive loop between the intermediate DC circuit 203 and the auxiliary power supply system 102 and the conductive loop between the energy storage system 103 and the rectifier inverter circuit 204 will be in an on state, and the intermediate DC circuit 203 and the precharge and input circuit 201
- the conductive loop between the conductive loop and the rectifying inverter circuit 204 and the braking resistor R1 will be in an open state, so that the bidirectional DC/DC converting circuit 205 can generate the auxiliary power supply system 102 generated by the traction motor M.
- the unconsumable electrical energy is transmitted to the energy storage system 103 by means of step-down chopping for storage by the energy storage system 103.
- the power flow control circuit will control the bidirectional DC/DC conversion circuit 205 and the regeneration control circuit 202 to be in operation, and The chopper circuit 206 is in an inactive state.
- the conductive loop between the intermediate DC circuit 203 and the auxiliary power supply system 102, the conductive loop between the energy storage system 103 and the rectification inverter circuit 204, and the conductive loop between the intermediate DC circuit 203 and the precharge and input circuit 201 will In a conducting state, the conductive loop between the rectifying inverter circuit 204 and the braking resistor R1 will be in an open state, thereby enabling the pre-charging and input circuit 201 to generate the auxiliary power supply system 102 and the traction motor M.
- the power that the energy storage system 103 cannot consume is transmitted to the catenary DC port 101 to store a portion of the electrical energy from the energy storage system 103 and return some of the electrical energy to the catenary.
- the power flow direction control circuit preferably determines the energy storage state (eg, the charge completion ratio, etc.) of the energy storage system 103 according to the third voltage signal and/or the first current signal.
- the power flow direction control circuit may also adopt other reasonable ways to determine the energy storage state of the energy storage system 103, and the present invention is not limited thereto.
- the power flow control circuit will control the bidirectional DC/DC conversion circuit 205, the regeneration control circuit 202, and the brake chopper circuit 206 to be in an active state.
- the conductive loop between the inverter circuit 204 and the braking resistor R1 will be in a conducting state, so that the traction motor M generates electrical energy that cannot be consumed by the auxiliary power supply system 102 and the energy storage system 103 and that cannot be absorbed by the contact network. It is transmitted to the brake chopper circuit 206, and finally the remaining electrical energy is converted into thermal energy by the braking resistor R1.
- the traction motor M will also generate an alternating current and transmit the alternating current to the rectifying inverter circuit 204 connected thereto.
- the rectifying inverter circuit 204 will function as a rectifying circuit to rectify the alternating current transmitted from the traction motor M to the corresponding direct current.
- the rectification inverter circuit 204 is close to the positive and negative terminals of the intermediate DC circuit 203 side (that is, between the positive and negative terminals of the intermediate DC circuit 203 near the rectification inverter circuit 204), and there is also a voltage difference.
- the first voltage detecting circuit will detect the voltage difference and transmit the obtained first voltage signal to the power connected thereto to the control circuit.
- the power flow direction control circuit After receiving the first voltage signal, the power flow direction control circuit determines the specific flow direction of the electric energy provided by the traction motor M according to the first voltage signal. Specifically, in this embodiment, the power flow direction control circuit determines whether the first voltage signal is less than or equal to the first preset voltage threshold.
- the power flow is controlled to the control circuit.
- the principle and process of each circuit and the above-mentioned vehicle running on a line segment having a contact network when the first voltage signal is less than or equal to the first preset voltage threshold, or the first voltage signal is greater than the first preset voltage threshold but less than or equal to the first When the voltage threshold is used, the specific control method of the power flow to the control circuit is the same, so the content of this part will be described here.
- the power flow control circuit controls the bidirectional DC/DC conversion circuit 205 and the brake chopper circuit 206 to be in an active state.
- the conductive loop between the intermediate DC circuit 203 and the auxiliary power supply system 102, the conductive loop between the energy storage system 103 and the rectifying inverter circuit 204, and the conductive loop between the rectifying inverter circuit 204 and the braking resistor R1 will be The conduction state, so that the electric energy generated by the traction motor M and the auxiliary power supply system 102 and the energy storage system 103 cannot be consumed is transmitted to the brake chopper circuit 206, and finally the remaining electric energy is converted into thermal energy consumption by the braking resistor R1. Drop it.
- the first preset voltage threshold, the second preset voltage threshold, and the third preset voltage threshold may be configured to different reasonable values according to actual working conditions, and There are two states of the contact network operation and the contactless network operation condition, and the first preset voltage threshold, the second preset voltage threshold, and the third preset voltage threshold may also be respectively configured to different reasonable values according to actual needs.
- the invention is not limited to this.
- the electric brake energy feedback system may further include only one of a regeneration control circuit and a bidirectional DC/DC conversion circuit.
- the invention is also not limited thereto.
- in an embodiment of the present invention as shown in FIG.
- the electric brake energy feedback system may not be configured with a bidirectional DC/DC conversion circuit and an associated energy storage system, so that when the vehicle is in a braking condition, If the first voltage signal is greater than the first preset voltage threshold but less than or equal to the second preset voltage threshold, the power flow control circuit is configured to control the regeneration control circuit to transmit the power that the auxiliary power supply system provided by the intermediate DC circuit cannot consume to the contact Network DC port to feed back to the catenary.
- the bidirectional DC/DC conversion circuit 205 and/or the regeneration control circuit 202 can be selected according to actual needs.
- the electric brake energy feedback system uses different ways to control the flow of electric energy generated by the traction motor based on the line segment where the vehicle is located, thereby enabling the vehicle to be between the zones.
- the electric braking energy can be recovered to the greatest extent, and the braking resistor is consumed as little as possible, thereby making the vehicle and the entire transportation system more energy-saving and environmentally friendly.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种电制动能量回馈系统,其包括:整流逆变电路;中间直流电路;第一电压检测电路,其用于检测中间直流电路的正负极电压,得到第一电压信号;双向DC/DC变换电路和/或再生控制电路;电能流向控制电路,其用于根据第一电压信号控制双向DC/DC变换电路和/或再生控制电路的运行状态。本系统使得车辆能够在分区间的线路运行时能够最大程度地将电制动能量回收,并且尽可能少的由制动电阻消耗,进而使车辆以及整个交通系统更加节能环保。
Description
相关技术的交叉引用
本申请要求享有2017年11月23日提交的名称为:“一种电制动能量回馈系统”的中国专利申请CN 201711184169.7的优先权,其全部内容通过引用并入本文中。
本发明涉及城市轨道交通技术领域,具体地说,涉及一种电制动能量回馈系统。
低地板有轨电车是现代城市新型交通装备,其在城市现有道路即可铺设线路,具有绿色环保、噪声低等优点,是当今世界最先进的城市交通系统之一。
以低地板有轨电车为代表的某些新型城市轨道交通系统为了不过多的影响城市景观,通常采用分区间供电的方式(即有网供电和无网供电的并存方式)。因此列车在有网供电和无网供电两种线路之间自由运行时,对能量的最优利用就变得尤为重要。
发明内容
为解决上述问题,本发明提供了一种电制动能量回馈系统,所述系统包括:
整流逆变电路,其用于与牵引电机连接,用于在牵引工况下将接收到的直流电逆变为相应的交流电以驱动所述牵引电机运行,还用于在制动工况下将所述牵引电机产生的交流电整流为相应的直流电;
中间直流电路,其与所述整流逆变电路连接,还用于与辅助供电系统连接以向所述辅助供电系统传输电能;
第一电压检测电路,其与所述中间直流电路连接,用于检测所述中间直流电路的正负极电压,得到第一电压信号;
双向DC/DC变换电路和/或再生控制电路,所述双向DC/DC变换电路与所述中间直 流电路连接,用于根据实际工况将所述中间直流电路传输来的电能进行电压转换后传输至与之连接的储能系统,或是将所述储能系统提供的电能进行电压转换后传输至所述中间直流电路,所述再生控制电路与所述中间直流电路和电能流向控制电路连接,还用于与接触网直流端口连接,用于在所述电能流向控制电路的控制下导通或断开所述中间直流电路与接触网直流端口之间的导电回路;
电能流向控制电路,其与所述第一电压检测电路以及双向DC/DC变换电路和/或再生控制电路连接,用于根据所述第一电压信号控制所述双向DC/DC变换电路和/或再生控制电路的运行状态。
根据本发明的一个实施例,当车辆处于制动工况时,所述电能流向控制电路配置为判断所述第一电压信号是否小于或等于第一预设电压阈值,其中,如果是,则控制所述双向DC/DC变换电路和/或再生控制电路处于非工作状态,以使得所述中间直流电路将所接收到的电能全部传输至所述辅助供电系统。
根据本发明的一个实施例,在车辆处于制动工况时,如果所述第一电压信号大于所述第一预设电压阈值但小于或等于第二预设电压阈值,所述电能流向控制电路则配置为控制所述双向DC/DC变换电路将所述中间直流电路提供的辅助供电系统无法消耗的电能进行电压转换后传输至所述储能系统,以对所述储能系统进行充电。
根据本发明的一个实施例,在车辆处于制动工况时,如果所述第一电压信号大于所述第一预设电压阈值但小于或等于第二预设电压阈值,所述电能流向控制电路则配置为控制所述再生控制电路将所述中间直流电路提供的辅助供电系统无法消耗的电能传输至所述接触网直流端口。
根据本发明的一个实施例,所述系统还包括:
第三电压检测电路,其与所述双向DC/DC变换电路和电能流向控制电路连接,用于检测所述双向DC/DC变换电路靠近储能系统侧的端口之间的电压,得到第三电压信号,并将所述第三电压信号传输至所述电能流向控制电路;
所述电能流向控制电路配置为根据所述第三电压信号确定所述储能系统的充电状态。
根据本发明的一个实施例,所述系统还包括:
第二电压检测电路,其与所述再生控制电路和电能流向控制电路连接,用于检测所述接触网直流端口的正负极电压,得到第二电压信号,并将所述第二电压信号传输至所述电 能流向控制电路。
根据本发明的一个实施例,所述电能流向控制电路配置为判断所述第二电压信号是否大于零,如果是,则进一步判断所述第一电压信号是否大于第二预设电压阈值,其中,如果是,则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,以使得所述再生控制电路将所述中间直流电路提供的辅助供电系统和储能系统无法消耗的电能传输至所述接触网直流端口。
根据本发明的一个实施例,所述系统还包括:
制动斩波电路,其与所述电能流向控制电路连接,用于在所述电能流向控制电路的控制下导通或断开所述中间直流电路与制动电阻之间的导电回路。
根据本发明的一个实施例,如果所述第二电压信号不大于零但所述第一电压信号大于第二预设电压阈值,所述电能流向控制电路则配置为控制所述制动斩波电路导通所述中间直流电路与制动电阻之间的导电回路,从而使得所述制动电阻消耗所述中间直流电路提供的、所述辅助供电系统和储能系统无法消耗的电能。
根据本发明的一个实施例,如果所述第二电压信号大于零,所述电能流向控制电路配置为判断所述第一电压信号是否大于第二预设电压但小于或等于第三预设电压阈值,如果是,则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,以使得所述再生控制电路将所述中间直流电路提供的辅助供电系统和储能系统无法消耗的电能传输至所述接触网直流端口。
根据本发明的一个实施例,如果所述第二电压信号大于零且所述第一电压信号大于第三预设电压阈值,所述电能流向控制电路则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,并控制所述制动斩波电路导通所述中间直流电路与制动电阻之间的导电回路,从而使得所述制动电阻消耗所述中间直流电路提供的、所述辅助供电系统和储能系统无法消耗的以及接触网无法吸收的电能。
本发明所提供的电制动能量回馈系统基于车辆所处的线路段来采用不同的方式来控制牵引电机所产生的电能的流向,从而使得车辆能够在分区间的线路运行时最大程度地将电制动能量回收,并且尽可能少的由制动电阻消耗,进而使车辆以及整个交通系统更加节能环保。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显 而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
图1是根据本发明一个实施例的电制动能量回馈系统的结构示意图;
图2是根据本发明另一个实施例的电制动能量回馈系统的结构示意图;
图3是根据本发明又一个实施例的电制动能量回馈系统的结构示意图。
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。
为了使得诸如储能式低地板有轨电车在分区间供电的线路运行时可以最大程度地将电制动能量回收而尽可能少的消耗在制动电阻上,从而使得整个交通系统更加节能环保,本实施例提供了一种新的电制动能量回馈系统。
图1示出了本实施例中该电制动能量回馈系统的结构示意图。
如图1所示,本实施例所提供的电制动能量回馈系统100优选地包括:预充电及输入电路201、再生控制电路202、中间直流电路203、整流逆变电路204、双向DC/DC变换电路205以及电能流向控制电路(图中未示出)。其中,预充电及输入电路201优选地为选配电路,其用于与接触网直流端口101连接,以接收接触网直流端口101所传输来的直流电或是向接触网直流端口101回馈直流电。预充电及输入电路201能够对所接收到的直流电进行预充电处理以及其他相关处理(例如滤波等),并将处理后的直流电传输至与之 连接的相关电路。
本实施例中,再生控制电路202连接在预充电及输入电路201与中间直流电路203之间,同时,其还与电能流向控制电路连接。再生控制电路202能够在电能流向控制电路的控制下导通或断开预充电及输入电路201与中间直流电路203之间的导电回路。
其中,当预充电及输入电路201与中间直流电路203之间的导电回路导通时,接触网直流端口101所提供的直流电也就可以通过预充电及输入电路201和再生控制电路202传输至中间直流电路203,或是中间直流电路203所提供的直流电可以通过再生控制电路202和预充电及输入电路201回馈至接触网直流端口101。
而当预充电及输入电路201与中间直流电路203之间的导电回路断开时,接触网直流端口101所提供的直流电也就无法传输至车辆的后续电路中,或是车辆所生成的直流电也就无法回馈至接触网直流端口101。
如图1所示,本实施例中,再生控制电路202优选地包括:IGBT模块202a和二极管202b。其中,二极管202b的正极和负极分别与预充电及输入电路201的输出端负极和正极对应连接,即二极管202b反相连接在预充电及输入电路201的输出端正负极之间。同时,二极管202b的正极还与中间直流电路203的负极连接。
IGBT模块202a的发射极与预充电及输入电路201的输出端正极(即二极管关202b的负极)连接,集电极与中间直流电路的正极连接,栅极与电能流向控制电路连接。电能流向控制电路通过控制IGBT模块202a的通断状态,也就可以控制再生控制电路202导通或断开预充电及输入电路201与中间直流电路203之间的导电回路。
本实施例中,当接触网直流端口101的电压大于中间直流回路203的电压时,由于IGBT模块202a中续流二极管的存在,因此此时再生控制电路202也就相当于常闭状态,接触网直流端口101所提供的电能将通过续流二极管传输至中间直流电路203。而当接触网直流端口101的电压小于中间直流回路203的电压时,此时IGBT模块202a中续流二极管正负极之间的电压将为反相电压,续流二极管也就处于截止状态,因此此时电能流向控制电路也就可以通过控制IGBT元件的开关状态来导通或断开接触网直流端口101与中间直流电路203之间的导电回路。
当然,在本发明的其他实施例中,再生控制电路202还可以采用其他合理的电路形式或其他可控开关器件来实现,本发明不限于此。
如图1所示,本实施例中,中间直流电路203还与辅助供电系统102连接,这样辅助供电系统102也就等效于与再生控制电路202的输出端连接。这样中间直流电路203或接触网直流端口101也就能够向辅助供电系统203提供辅助负载运行所需的电能。
中间直流电路203连接在再生控制电路202与整流逆变电路204之间,其优选地包括支撑电容等。当车辆处于牵引工况时,整流逆变电路204能够将中间直流电路203所传输来的直流电逆变为相应的交流电并传输至与之连接的牵引电机M,以驱动牵引电机M运行。而当车辆处于制动工况时,牵引电机M将会作为发电机生成交流电并将该交流电传输至与之连接的整流逆变电路204,此时整流逆变电路204会将牵引电机M所传输来的交流电整流为相应的直流电并传输至中间直流电路203。
本实施例中,双向DC/DC变换电路205的一端与中间直流电路203连接,另一端与储能系统103连接,双向DC/DC变换电路205还与电能流向控制电路连接。双向DC/DC变换电路205能够根据实际工况在电能流向控制电路的控制下将中间直流电路所传输来的电能进行电压转换后传输至与之连接的储能系统103来为储能系统103充电。双向DC/DC变换电路205还能够根据实际工况在电能流向控制电路的控制下将储能系统103所传输来的直流电进行电压转换后传输至与之连接的中间直流电路,从而为辅助供电系统102和/或牵引电机M提供电能。
此外,如图1所示,可选地,本实施例中,该系统还可以包含制动斩波电路206。制动斩波电路206与电能流向控制电路连接,其能够在电能流向控制电路的控制下导通或断开中间直流电路203与制动电阻R1之间的导电回路。其中,如果中间直流电路203与制动电阻R1之间的导电回路导通,那么中间直流电路203所提供的电能将部分地或全部地传输至制动电路R1,并由制动电阻R1转换为热量而消耗。
具体地,本实施例中,该系统还包括有:第一电压检测电路VH1、第二电压检测电路VH2、第三电压检测电路VH3以及第一电流检测电路LH1。其中,第一电压检测电路VH1与中间直流电路203连接,其能够检测中间直流电路203的正负极电压,并将得到的第一电压信号传输至与之连接的电能流向控制电路。
第二电压检测电路VH2与再生控制电路201和电能流向控制电路连接,其能够检测再生控制电路201输入端正负极电压(即接触网直流端口的正负极电压),并将得到的第二电压信号传输至与之连接的电能流向控制电路。
第三电压检测电路VH3与双向DC/DC变换电路205连接,其能够检测双向DC/DC 变换电路205靠近储能系统103侧的正负极端口之间的电压(即储能系统103的正负极电压),并将得到的第三电压信号传输至与之连接的电能流向控制电路。而第一电流检测电路则串联在储能系统103与双向DC/DC变换电路205的导电回路中,其能够检测流向储能系统103的电流或是储能系统103输出的电流,并将得到的第一电流信号传输至与之连接的电能流向控制电路。
本实施例中,电能流向控制电路优选地根据上述第二电压信号来确定车辆的运行状态,即判断车辆是否运行在有接触网的线路段。具体地,本实施例中,如果第二电压信号大于零,那么电能流向控制电路也就可以判断出此时车辆运行在有接触网的线路段,否则也就可以判断出此时车辆运行在无接触网的线路段。
如果车辆运行在有接触网的线路段,当车辆处于制动工况时,牵引电机M将会生成交流电并将该交流电传输至与之连接的整流逆变电路204。此时整流逆变电路204将作为整流电路来将牵引电机M所传输来的交流电整流为相应的直流电。此时整流逆变电路204靠近中间直流电路203侧的正负极端口之间(即中间直流电路203靠近整流逆变电路204侧的正负极端口之间)将会存在电压差。第一电压检测电路将会检测到该电压差,并将所得到第一电压信号传输至与之连接的电能流向控制电路。
电能流向控制电路在接收到上述第一电压信号后,会根据第一电压信号来确定牵引电机M所提供的电能的具体流向。具体地,本实施例中,电能流向控制电路会判断第一电压信号是否小于或等于第一预设电压阈值。
其中,如果第一电压信号小于或等于第一预设电压阈值,那么则表示此时牵引电机M所产生的电能能够被辅助供电系统102全部消耗,因此此时电能流向控制电路也就会控制双向DC/DC变换电路205、再生控制电路202以及制动斩波电路206处于非工作状态,这样中间直流电路203与辅助供电系统102之间的导电回路将处于导通状态,而储能系统103与整流逆变电路204之间的导电回路、中间直流电路203与预充电及输入电路201之间的导电回路以及整流逆变电路204与制动电阻R1之间的导电回路将均处于断开状态,从而使得牵引电机M所产生的电能全部传输至辅助供电系统102,以为辅助供电系统102供电。
而如果第一电压信号大于第一预设电压阈值,那么则表示此时辅助供电系统102无法全部消耗掉牵引电机M所产生的电能,本实施例中,电能流向控制电路将会进一步判断第一电压信号是否小于或等于第二预设电压阈值。
其中,如果第一电压信号大于第一预设电压阈值但小于或等于第二预设电压阈值,那么此时电能流向控制电路将控制双向DC/DC变换电路205处于工作状态,并且控制再生控制电路202以及制动斩波电路206处于非工作状态。这样中间直流电路203与辅助供电系统102之间的导电回路以及储能系统103与整流逆变电路204之间的导电回路将会处于导通状态,而中间直流电路203与预充电及输入电路201之间的导电回路以及整流逆变电路204与制动电阻R1之间的导电回路将均处于断开状态,从而使得双向DC/DC变换电路205能够将牵引电机M所产生的、辅助供电系统102无法消耗的电能通过降压斩波的方式传输至储能系统103,以由储能系统103进行存储。
如果第一电压信号大于第二预设电压阈值但小于或等于第三预设电压阈值,那么此时电能流向控制电路将控制双向DC/DC变换电路205以及再生控制电路202处于工作状态,并且制动斩波电路206处于非工作状态。这样中间直流电路203与辅助供电系统102之间的导电回路、储能系统103与整流逆变电路204之间的导电回路以及中间直流电路203与预充电及输入电路201之间的导电回路将会处于导通状态,而整流逆变电路204与制动电阻R1之间的导电回路将均处于断开状态,从而使得预充电及输入电路201能够将牵引电机M所产生的、辅助供电系统102和储能系统103无法消耗的电能传输至接触网直流端口101,以由储能系统103存储部分电能,并将部分电能回馈至接触网。
具体地,本实施例中,电能流向控制电路优选地根据第三电压信号和/或第一电流信号来判断储能系统103的能量存储状态(例如充电完成比例等)。当然,在本发明的其他实施例中,电能流向控制电路还可以采用其他合理方式来确定储能系统103的能量存储状态,本发明不限于此。
如果第一电压信号大于第三预设电压阈值,那么此时电能流向控制电路将控制双向DC/DC变换电路205、再生控制电路202和制动斩波电路206均处于工作状态。这样中间直流电路203与辅助供电系统102之间的导电回路、储能系统103与整流逆变电路204之间的导电回路、中间直流电路203与预充电及输入电路201之间的导电回路以及整流逆变电路204与制动电阻R1之间的导电回路都将会处于导通状态,从而使得牵引电机M所产生的、辅助供电系统102和储能系统103无法消耗的以及接触网无法吸收的电能被传输至制动斩波电路206,从而最终由制动电阻R1将剩余的电能转换为热能消耗掉。
如果车辆运行在无接触网的线路段,当车辆处于制动工况时,牵引电机M同样会生成交流电并将该交流电传输至与之连接的整流逆变电路204。此时整流逆变电路204将作 为整流电路来将牵引电机M所传输来的交流电整流为相应的直流电。此时整流逆变电路204靠近中间直流电路203侧的正负极端口之间(即中间直流电路203靠近整流逆变电路204侧的正负极端口之间)将同样会存在电压差。第一电压检测电路将会检测到该电压差,并将所得到第一电压信号传输至与之连接的电能流向控制电路。
电能流向控制电路在接收到上述第一电压信号后,会根据第一电压信号来确定牵引电机M所提供的电能的具体流向。具体地,本实施例中,电能流向控制电路会判断第一电压信号是否小于或等于第一预设电压阈值。
其中,本实施例中,当第一电压信号小于或等于第一预设电压阈值、或是第一电压信号大于第一预设电压阈值但小于或等于第二电压阈值时,电能流向控制电路控制各个电路的原理以及过程与上述车辆运行在有接触网的线路段时第一电压信号小于或等于第一预设电压阈值、或是第一电压信号大于第一预设电压阈值但小于或等于第二电压阈值时电能流向控制电路的具体控制方式相同,故在此故在对该部分内容进行赘述。
如果第一电压信号大于第二预设电压阈值,由于车辆运行在无接触网的线路段,此时牵引电机M所产生的辅助供电系统102以及储能系统103无法消耗的电能也就无法通过回馈至接触网而消耗掉,因此本实施例中,电能流向控制电路会控制双向DC/DC变换电路205和制动斩波电路206均处于工作状态。这样中间直流电路203与辅助供电系统102之间的导电回路、储能系统103与整流逆变电路204之间的导电回路以及整流逆变电路204与制动电阻R1之间的导电回路将会处于导通状态,从而使得牵引电机M所产生的、辅助供电系统102和储能系统103无法消耗的电能被传输至制动斩波电路206,最终由制动电阻R1将剩余的电能转换为热能消耗掉。
需要指出的是,在本发明的不同实施例中,上述第一预设电压阈值、第二预设电压阈值以及第三预设电压阈值可以根据实际工况配置为不同的合理值,同时,对于有接触网运行和无接触网运行工况两种状态,上述第一预设电压阈值、第二预设电压阈值以及第三预设电压阈值也可以根据实际需要分别配置为不同的合理值,本发明不限于此。
同时,需要指出的是,在本发明的其他实施例中,如图2和图3所示,上述电制动能量回馈系统还可以仅包含再生控制电路和双向DC/DC变换电路中的一个,本发明同样不限于此。例如,在本发明的一个实施例中,如图2所示,该电制动能量回馈系统还可以不配置双向DC/DC变换电路以及相关储能系统,这样在车辆处于制动工况时,如果第一电压信号大于第一预设电压阈值但小于或等于第二预设电压阈值,电能流向控制电路则配置 为控制再生控制电路将中间直流电路提供的辅助供电系统无法消耗的电能传输至接触网直流端口,以反馈至接触网。
此外,在本发明的其他实施例中,双向DC/DC变换电路205和/或再生控制电路202可以根据实际需要选配。
从上述描述中可以看出,本实施例所提供的电制动能量回馈系统基于车辆所处的线路段来采用不同的方式来控制牵引电机所产生的电能的流向,从而使得车辆能够在分区间的线路运行时能够最大程度地将电制动能量回收,并且尽可能少的由制动电阻消耗,进而使车辆以及整个交通系统更加节能环保。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构或处理步骤,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。
Claims (14)
- 一种电制动能量回馈系统,其中,所述系统包括:整流逆变电路,其用于与牵引电机连接,用于在牵引工况下将接收到的直流电逆变为相应的交流电以驱动所述牵引电机运行,还用于在制动工况下将所述牵引电机产生的交流电整流为相应的直流电;中间直流电路,其与所述整流逆变电路连接,还用于与辅助供电系统连接以向所述辅助供电系统传输电能;第一电压检测电路,其与所述中间直流电路连接,用于检测所述中间直流电路的正负极电压,得到第一电压信号;双向DC/DC变换电路和/或再生控制电路,所述双向DC/DC变换电路与所述中间直流电路连接,用于根据实际工况将所述中间直流电路传输来的电能进行电压转换后传输至与之连接的储能系统,或是将所述储能系统提供的电能进行电压转换后传输至所述中间直流电路,所述再生控制电路与所述中间直流电路连接,还用于与接触网直流端口连接,用于导通或断开所述中间直流电路与接触网直流端口之间的导电回路;电能流向控制电路,其与所述第一电压检测电路以及双向DC/DC变换电路和/或再生控制电路连接,用于根据所述第一电压信号控制所述双向DC/DC变换电路和/或再生控制电路的运行状态。
- 如权利要求1所述的系统,其中,当车辆处于制动工况时,所述电能流向控制电路配置为判断所述第一电压信号是否小于或等于第一预设电压阈值,其中,如果是,则控制所述双向DC/DC变换电路和/或再生控制电路处于非工作状态,以使得所述中间直流电路将所接收到的电能全部传输至所述辅助供电系统。
- 如权利要求2所述的系统,其中,在车辆处于制动工况时,如果所述第一电压信号大于所述第一预设电压阈值但小于或等于第二预设电压阈值,所述电能流向控制电路则配置为控制所述双向DC/DC变换电路将所述中间直流电路提供的辅助供电系统无法消耗的电能进行电压转换后传输至所述储能系统,以对所述储能系统进行充电。
- 如权利要求2所述的系统,其中,在车辆处于制动工况时,如果所述第一电压信号大于所述第一预设电压阈值但小于或等于第二预设电压阈值,所述电能流向控制电路则配置为控制所述再生控制电路将所述中间直流电路提供的辅助供电系统无法消耗的电能传 输至所述接触网直流端口。
- 如权利要求1所述的系统,其中,所述系统还包括:第三电压检测电路,其与所述双向DC/DC变换电路和电能流向控制电路连接,用于检测所述双向DC/DC变换电路靠近储能系统侧的端口之间的电压,得到第三电压信号,并将所述第三电压信号传输至所述电能流向控制电路;所述电能流向控制电路配置为根据所述第三电压信号确定所述储能系统的充电状态。
- 如权利要求2所述的系统,其中,所述系统还包括:第三电压检测电路,其与所述双向DC/DC变换电路和电能流向控制电路连接,用于检测所述双向DC/DC变换电路靠近储能系统侧的端口之间的电压,得到第三电压信号,并将所述第三电压信号传输至所述电能流向控制电路;所述电能流向控制电路配置为根据所述第三电压信号确定所述储能系统的充电状态。
- 如权利要求3所述的系统,其中,所述系统还包括:第三电压检测电路,其与所述双向DC/DC变换电路和电能流向控制电路连接,用于检测所述双向DC/DC变换电路靠近储能系统侧的端口之间的电压,得到第三电压信号,并将所述第三电压信号传输至所述电能流向控制电路;所述电能流向控制电路配置为根据所述第三电压信号确定所述储能系统的充电状态。
- 如权利要求5所述的系统,其中,所述系统还包括:第二电压检测电路,其与所述再生控制电路和电能流向控制电路连接,用于检测所述接触网直流端口的正负极电压,得到第二电压信号,并将所述第二电压信号传输至所述电能流向控制电路。
- 如权利要求8所述的系统,其中,所述电能流向控制电路配置为判断所述第二电压信号是否大于零,如果是,则进一步判断所述第一电压信号是否大于第二预设电压阈值,其中,如果是,则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,以使得所述再生控制电路将所述中间直流电路提供的辅助供电系统和储能系统无法消耗的电能传输至所述接触网直流端口。
- 如权利要求9所述的系统,其中,所述系统还包括:制动斩波电路,其与所述电能流向控制电路连接,用于在所述电能流向控制电路的控 制下导通或断开所述中间直流电路与制动电阻之间的导电回路。
- 如权利要求10所述的系统,其中,如果所述第二电压信号不大于零但所述第一电压信号大于第二预设电压阈值,所述电能流向控制电路则配置为控制所述制动斩波电路导通所述中间直流电路与制动电阻之间的导电回路,从而使得所述制动电阻消耗所述中间直流电路提供的、所述辅助供电系统和储能系统无法消耗的电能。
- 如权利要求10所述的系统,其中,如果所述第二电压信号大于零,所述电能流向控制电路配置为判断所述第一电压信号是否大于第二预设电压但小于或等于第三预设电压阈值,如果是,则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,以使得所述再生控制电路将所述中间直流电路提供的辅助供电系统和储能系统无法消耗的电能传输至所述接触网直流端口。
- 如权利要求11所述的系统,其中,如果所述第二电压信号大于零,所述电能流向控制电路配置为判断所述第一电压信号是否大于第二预设电压但小于或等于第三预设电压阈值,如果是,则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,以使得所述再生控制电路将所述中间直流电路提供的辅助供电系统和储能系统无法消耗的电能传输至所述接触网直流端口。
- 如权利要求12所述的系统,其中,如果所述第二电压信号大于零且所述第一电压信号大于第三预设电压阈值,所述电能流向控制电路则配置为控制再生控制电路导通所述中间直流电路与接触网直流端口之间的导电回路,并控制所述制动斩波电路导通所述中间直流电路与制动电阻之间的导电回路,从而使得所述制动电阻消耗所述中间直流电路提供的、所述辅助供电系统和储能系统无法消耗的以及接触网无法吸收的电能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/764,974 US11325477B2 (en) | 2017-11-23 | 2018-11-08 | Electric-brake energy feedback system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711184169.7A CN109823187B (zh) | 2017-11-23 | 2017-11-23 | 一种电制动能量回馈系统 |
CN201711184169.7 | 2017-11-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019100945A1 true WO2019100945A1 (zh) | 2019-05-31 |
Family
ID=66631809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114554 WO2019100945A1 (zh) | 2017-11-23 | 2018-11-08 | 一种电制动能量回馈系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11325477B2 (zh) |
CN (1) | CN109823187B (zh) |
WO (1) | WO2019100945A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3971014A4 (en) * | 2019-07-05 | 2023-09-06 | Zhuzhou CRRC Times Electric Co., Ltd. | METHOD AND DEVICE FOR DISTRIBUTING ELECTRICAL BRAKE POWER OF A HYBRID ELECTRIC TRAMWAY AND MEDIUM |
US11897367B2 (en) | 2020-09-11 | 2024-02-13 | Transportation Ip Holdings, Llc | Drive system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110341517A (zh) * | 2019-06-06 | 2019-10-18 | 深圳先进技术研究院 | 一种电能双向转换装置、电动车以及电动车供电系统 |
CN110481330B (zh) * | 2019-09-12 | 2024-07-02 | 中国铁道科学研究院集团有限公司 | 用于消耗机车车辆制动电能的电能消耗装置和系统 |
CN111668863A (zh) * | 2020-05-29 | 2020-09-15 | 西安许继电力电子技术有限公司 | 一种城轨供电系统储能装置及其控制方法 |
CN112260376A (zh) * | 2020-10-27 | 2021-01-22 | 北京北方华创微电子装备有限公司 | 半导体工艺设备及其电能回收装置 |
CN113078628A (zh) * | 2021-05-07 | 2021-07-06 | 南京国电南自新能源科技有限公司 | 一种轨道交通能量吸收存储装置及控制方法 |
CN113911146B (zh) * | 2021-09-28 | 2022-09-09 | 西安中车永电电气有限公司 | 一种环保型内燃机车交直电传动系统 |
CN114301323A (zh) * | 2021-12-09 | 2022-04-08 | 广东美的白色家电技术创新中心有限公司 | 一种双向电源、双向电源的控制方法 |
CN114301070B (zh) * | 2021-12-30 | 2024-02-20 | 重庆中车时代电气技术有限公司 | 一种再生制动能量利用装置控制方法及相关组件 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010093892A (ja) * | 2008-10-06 | 2010-04-22 | Mitsubishi Electric Corp | 電気車制御装置 |
CN201901014U (zh) * | 2010-12-01 | 2011-07-20 | 南车株洲电力机车有限公司 | 双源制电力机车控制装置 |
CN102983634A (zh) * | 2012-12-27 | 2013-03-20 | 湖南恒信电气有限公司 | 车辆再生制动能量电容-逆变吸收方法 |
CN106428035A (zh) * | 2016-09-30 | 2017-02-22 | 中车南京浦镇车辆有限公司 | 一种适用于储能式有轨电车的主电路系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5260090B2 (ja) * | 2008-03-10 | 2013-08-14 | 株式会社日立産機システム | 電力変換装置 |
CN103153683B (zh) * | 2010-03-15 | 2015-08-26 | 同济大学 | 制动能量管理系统及其控制方法 |
CN202080279U (zh) * | 2011-06-02 | 2011-12-21 | 株洲南车时代电气股份有限公司 | 双动力源内燃机车电传动系统 |
ES2548679T3 (es) * | 2011-10-05 | 2015-10-20 | Bombardier Transportation Gmbh | Método y dispositivo para frenar vehículos ligados a una vía impulsados por motores de inducción |
JP5780126B2 (ja) * | 2011-11-17 | 2015-09-16 | トヨタ自動車株式会社 | 燃料電池システム |
CN104691343B (zh) * | 2015-03-10 | 2017-04-12 | 河北联合大学 | 基于大功率逆变器的电力机车制动系统 |
CN106042957B (zh) * | 2016-06-01 | 2019-04-30 | 北京交通大学 | 一种混合动力动车组牵引变流器过分相控制策略 |
CN106347140B (zh) * | 2016-09-26 | 2018-09-18 | 株洲中车时代电气股份有限公司 | 一种机车自适应混合制动控制方法 |
CN206317824U (zh) * | 2016-11-28 | 2017-07-11 | 盾石磁能科技有限责任公司 | 轨道交通再生制动能量综合回收利用装置 |
CN107031412A (zh) * | 2017-05-02 | 2017-08-11 | 深圳市虹鹏能源科技有限责任公司 | 一种轨道交通机车刹车制动能量回收装置及方法 |
-
2017
- 2017-11-23 CN CN201711184169.7A patent/CN109823187B/zh active Active
-
2018
- 2018-11-08 WO PCT/CN2018/114554 patent/WO2019100945A1/zh active Application Filing
- 2018-11-08 US US16/764,974 patent/US11325477B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010093892A (ja) * | 2008-10-06 | 2010-04-22 | Mitsubishi Electric Corp | 電気車制御装置 |
CN201901014U (zh) * | 2010-12-01 | 2011-07-20 | 南车株洲电力机车有限公司 | 双源制电力机车控制装置 |
CN102983634A (zh) * | 2012-12-27 | 2013-03-20 | 湖南恒信电气有限公司 | 车辆再生制动能量电容-逆变吸收方法 |
CN106428035A (zh) * | 2016-09-30 | 2017-02-22 | 中车南京浦镇车辆有限公司 | 一种适用于储能式有轨电车的主电路系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3971014A4 (en) * | 2019-07-05 | 2023-09-06 | Zhuzhou CRRC Times Electric Co., Ltd. | METHOD AND DEVICE FOR DISTRIBUTING ELECTRICAL BRAKE POWER OF A HYBRID ELECTRIC TRAMWAY AND MEDIUM |
US11897367B2 (en) | 2020-09-11 | 2024-02-13 | Transportation Ip Holdings, Llc | Drive system |
Also Published As
Publication number | Publication date |
---|---|
US20200398676A1 (en) | 2020-12-24 |
US11325477B2 (en) | 2022-05-10 |
CN109823187A (zh) | 2019-05-31 |
CN109823187B (zh) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019100945A1 (zh) | 一种电制动能量回馈系统 | |
CN107042762B (zh) | 一种轨道车辆的车载混合储能系统及其应用 | |
CN102340248B (zh) | 在矩阵转换器中减小瞬变电压峰值的系统和方法 | |
CN106921206B (zh) | 一种低待机功耗的充电模块及其控制方法 | |
CN207481695U (zh) | 一种电动车辆及其驱动和充电系统控制电路 | |
WO2020019540A1 (zh) | 双向高频辅助变流系统 | |
CN207150526U (zh) | 多组件级快速关断装置及光伏系统 | |
CN103683983B (zh) | 一种混合能馈式直流牵引供电装置及控制方法 | |
JP2013074733A (ja) | 充電制御装置 | |
CN102570571A (zh) | 一种汽车的混合能量存储装置 | |
CN104348358B (zh) | 功率电源转换方法及装置 | |
CN104527960A (zh) | 船舶制动能量控制系统及能量控制方法 | |
CN105790317B (zh) | 一种适用于多种电源供电的轨道交通车辆主电路 | |
CN203172639U (zh) | 双源制变频机车空调器控制装置 | |
CN203435006U (zh) | 总线隔离器 | |
CN103337841B (zh) | 基于双向buck变换器的双向限流器及双向限流方法 | |
CN106335373B (zh) | 煤矿井下四轮独立驱动电动车制动能量回收系统及方法 | |
CN205335986U (zh) | 一种大功率电能的无线传输电路 | |
CN209938340U (zh) | 一种轨道车辆动力电源混合供电系统 | |
CN103633720A (zh) | 一种双源电车电机驱动装置 | |
CN203850904U (zh) | 一种双源电车电机驱动装置 | |
CN109861566A (zh) | 一种同步整流电路、同步整流方法和无线充电装置 | |
CN205051431U (zh) | 一种确保电源不间断输出的交直流转换设备 | |
CN209233490U (zh) | 一种混合型轨道交通制动能量回馈设备 | |
CN205033959U (zh) | 一种用于无轨电车的能量管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18881781 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18881781 Country of ref document: EP Kind code of ref document: A1 |