WO2019100812A1 - 气体突破压力测试装置及方法 - Google Patents

气体突破压力测试装置及方法 Download PDF

Info

Publication number
WO2019100812A1
WO2019100812A1 PCT/CN2018/104638 CN2018104638W WO2019100812A1 WO 2019100812 A1 WO2019100812 A1 WO 2019100812A1 CN 2018104638 W CN2018104638 W CN 2018104638W WO 2019100812 A1 WO2019100812 A1 WO 2019100812A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sample
cylinder
base
testing device
Prior art date
Application number
PCT/CN2018/104638
Other languages
English (en)
French (fr)
Inventor
刘江峰
倪宏阳
宋帅兵
曹栩楼
浦海
茅献彪
陈树亮
Original Assignee
中国矿业大学
徐州佑学矿业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州佑学矿业科技有限公司 filed Critical 中国矿业大学
Priority to RU2019118231A priority Critical patent/RU2723232C1/ru
Priority to AU2018372341A priority patent/AU2018372341B2/en
Publication of WO2019100812A1 publication Critical patent/WO2019100812A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values

Definitions

  • the invention relates to the technical field of high-level waste disposal, and particularly relates to a device and a method for testing a gas breakthrough pressure of a buffer material in a high-level waste disposal repository.
  • the repository is often referred to as the “high-level waste geological repository”, hereinafter referred to as the “repository”.
  • the design concept of the repository is generally a “multi-barrier system”, including a surrounding rock geological barrier, an artificial barrier based on bentonite as a buffer material, and a waste storage container barrier.
  • the glass-cured high-level waste is packaged in a special container made of a highly corrosion-resistant high-grade alloy steel or copper; when disposed, the cured container is filled with a bentonite material with good adsorption properties. This constitutes a multi-channel "artificial barrier”; in addition, there is an excellent "natural barrier”.
  • the high-level waste repository is built in a stable geological layer (such as granite, clay rock, salt rock, etc.) that is several hundred meters deep underground.
  • gases will gradually be produced in the repository due to complex physical and chemical reactions. These gases come from the following aspects: (1) hydrogen produced by metal cans in the bentonite and groundwater environment; (2) The decomposition of microorganisms causes the carbon dioxide, methane, nitrogen and other gases generated by the decay of organic matter; (3) the hydrogen produced by the radiation. With the continuous generation of these gases, the air pressure in the repository gradually increases, and the accumulated gas will escape to the outside. For the gas breakthrough pressure test, it is usually carried out in a three-axis pressure chamber, but due to the sample and device. There is a relatively smooth contact surface between them, which leads to inaccurate measurement results.
  • the present invention provides a gas breakthrough pressure testing device comprising a cylinder for holding a sample, the inner wall of the cylinder is formed with a sealing section, and the sealing section is provided for a sample having expansion property. After water absorption, the sample expands and blocks the sealing section to achieve sealing, so that the sample and the cylinder are no longer smooth contact surfaces in the vertical direction, avoiding gas breakthrough from the interface between the sample and the cylinder, effectively improving The gas breaks through the accuracy of the stress test results.
  • the gas breakthrough pressure testing device comprises a cylinder body for holding a sample, the cylinder body has an air inlet end at one end and an air outlet end at the other end, and the air inlet device is connected to the air inlet end.
  • a gas monitoring device is connected to the gas outlet end, and an inner wall of the cylinder body is formed with a sealing section. During testing, the sample is in close contact with the inner wall of the cylinder to seal.
  • the inlet end of the cylinder body is detachably and fixedly connected with a pressure head, and the pressure head is formed with an air inlet hole, and the air inlet hole is connected to the gas transmission device;
  • the air outlet end of the cylinder body is detachably and fixedly connected a base, the base is formed with an air outlet, the air outlet is connected to the gas monitoring device;
  • the cylinder is internally formed with a hollow cavity, the sample is contained in the hollow cavity, and the sealing section is formed in the cylinder and the test On the inner wall of the sample.
  • the sealing section height H t is related to the sample height H sample , the cylinder inner diameter D t and the sample diameter D sample as follows:
  • the sealing segments are a plurality of sets of grooves uniformly distributed along the axial direction of the cylinder block, and each set of grooves is arranged or segmented along the inner wall of the cylinder.
  • each of the grooves has a depth of 0.3 mm and a width of 1 mm, and a spacing between adjacent sets of grooves is 4 mm.
  • the indenter and the base are respectively formed with protrusions, and the protrusions are embedded in the cavity in the cylinder.
  • a gas breakthrough pressure testing method adopts the above testing device, the testing device comprises a cylinder body, a pressing head and a base, wherein the cylinder body is internally formed with a hollow cavity, and the sample is contained in the hollow cavity, and the cylinder body and the test a sealing section is formed on the inner wall of the sample contact, an air inlet hole is formed on the pressure head, and an air outlet hole is formed on the base;
  • the test method includes the following steps:
  • Step 1 Place the prepared sample into the sealing section of the cavity in the cylinder.
  • Step 2 Increase the humidity of the test space, and the sample absorbs water and expands to block the sealing section until it is sealed.
  • Step 3 The indenter and the base are respectively fixed to the air inlet end and the air outlet end of the cylinder body by bolts, and the air inlet hole formed on the pressure head is connected with the gas conveying device, and the air outlet hole formed on the base is connected with the gas monitoring device.
  • Step 4 Gradually increase the gas pressure of the air inlet from 0. When the continuous air flow is detected at the air outlet of the base, the pressure difference between the two ends is the gas breakthrough pressure of the sample.
  • the test space temperature is 20 °C.
  • the advantages of the device disclosed in the present invention for testing the breakthrough pressure of the buffer material of the high-level waste disposal repository are:
  • the gas breakthrough pressure testing device disclosed in the present invention comprises a cylinder body containing a sample, the inner wall of the cylinder body is formed with a sealing section, and a sealing section is processed on the inner wall of the cylinder body, so that for the sample having swelling property, After water absorption, the sample expands and blocks the sealing section to achieve sealing, so that the sample and the cylinder are no longer smooth contact surfaces in the vertical direction, avoiding gas breakthrough from the interface between the sample and the cylinder, effectively improving the gas. Break the accuracy of the stress test results.
  • Fig. 1 is a cross-sectional view 1 of the first embodiment.
  • Figure 2 is a cross-sectional view 2 of the first embodiment.
  • Figure 3 is a cross-sectional view 1 of the second embodiment.
  • Figure 4 is a cross-sectional view 2 of Embodiment 2
  • FIGS. 1 - 4 illustrate a preferred embodiment of the present invention, which are detailed in a detailed view of the structure.
  • the gas breakthrough pressure testing device shown in FIG. 1-2 includes a cylinder 6 for containing the sample 5.
  • the cylinder 6 has an intake end at one end and an air outlet at the other end, and a gas delivery device is connected to the intake end.
  • the gas monitoring device is connected to the end, and the inner wall of the cylinder body 6 is formed with a sealing section, and the structure of the sealing section is not limited.
  • the gas delivery device may be an inert gas
  • the gas monitoring device may be a gas leak detector or a flow meter. Gas monitoring is performed at different time intervals when using a gas leak detector, and when the gas continuously overflows, the gas is continuously broken. When using a flow meter for gas monitoring, when the detected gas flow suddenly increases, it can be determined that the gas continues to break through.
  • the inlet end of the cylinder 6 is bolted to the indenter 1 , and the indenter 1 is formed with an air inlet 9 , and the air inlet 9 is connected to the gas transmission device; the outlet end of the cylinder 6 is bolted to the base 8 , and the base 8 is mounted on the base 8 An air outlet 7 is formed, and the air outlet 7 is connected to the gas monitoring device.
  • the cylinder 6 is internally formed with a hollow cavity 10, and the sample 5 is contained in the hollow cavity 10.
  • the sealing section is formed on the inner wall of the cylinder 6 which is in contact with the sample 5.
  • the sample 5 absorbs water and expands to block the sealing section for sealing.
  • the arrangement of the ram 1 and the base 8 makes the sealing effect of the cylinder 6 better, and the connection manner of the cylinder 6 with the ram 1 and the bottom 8 is not limited, and the bolting is only a preferred embodiment.
  • the height of the sealing section 5 and the sample height H t H sample, 6 the inner diameter of the cylinder diameter D t D sample and the sample 5 has the following relationship:
  • sealing segments are a plurality of sets of grooves 4 uniformly distributed along the axial direction of the cylinder block 6, and each set of the grooves 4 is disposed or segmented along the inner wall of the cylinder block 6.
  • each of the grooves 4 has a depth of 0.3 mm and a width of 1 mm, and the interval between the adjacent two sets of grooves 4 is 4 mm.
  • the gas breakthrough pressure testing device shown in Figures 3-4 is the same as in Embodiment 1, except that:
  • the ram 1 and the base 8 are respectively formed with projections 3 which are embedded in the cavity 10 in the cylinder 6.
  • the protrusion 3 is used together with the indenter 1 and the base 8 to facilitate the installation of the sealing ring, so that the sealing effect of the whole device is better.
  • the gas breakthrough pressure testing device disclosed in the present invention processes a sealing section on the inner wall of the cylinder block 6.
  • the sample 5 having expansion property, after the water absorption, the sample 5 expands and blocks the sealing section to achieve sealing, thereby making the sample 5 and the cylinder 6 is no longer a smooth contact surface in the vertical direction, avoiding gas breakthrough from the interface between the sample 5 and the cylinder 6, effectively improving the accuracy of the gas breakthrough stress test result.
  • the present invention also provides a gas breakthrough pressure testing method, which is implemented by using the device of the above embodiment, and the testing method comprises the following steps:
  • Step 1 Place the prepared sample 5 into the sealing section of the cavity 10 in the cylinder 6.
  • Step 2 Increase the humidity of the test space, and sample 5 expands to block the seal section until it is sealed.
  • Step 3 The indenter 1 and the base 8 are respectively fixed to the intake end and the outlet end of the cylinder 6 by bolts 2.
  • the air inlet 9 formed on the indenter 1 is connected with the gas transmission device, and the air outlet formed on the base 8 is formed. 7 Connect to the gas monitoring device.
  • Step 4 Gradually increase the gas pressure of the air inlet hole 9 from 0.
  • the pressure difference between the two ends is the gas breakthrough pressure of the sample.
  • test space temperature was 20 °C.
  • the gas breakthrough pressure testing device disclosed in the present invention comprises a cylinder body for holding a sample, the inner wall of the cylinder body is formed with a sealing section, and the sealing section is processed on the inner wall of the cylinder body, so that the sample having the expansion property is In the case of water absorption, the sample expands and blocks the sealing section to achieve sealing, so that the sample and the cylinder are no longer smooth contact surfaces in the vertical direction, thereby avoiding gas breakthrough from the interface between the sample and the cylinder. Effectively improve the accuracy of gas breakthrough stress test results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Fluid Pressure (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种气体突破压力测试装置及测试方法,涉及高放废物处置技术领域。该测试装置包括用以盛装试样(5)的缸体(6),缸体(6)的内壁成型有密封段,缸体(6)一端为进气端,另一端为出气端,进气端连接有输气装置,出气端连接有气体监测装置。在缸体(6)的内壁上加工密封段,对于具有膨胀性的试样(5)来说,在吸水之后,试样(5)膨胀堵塞密封段,实现密封,从而使得试样(5)与缸体(6)在竖直方向上不再是光滑的接触面,避免气体从试样(5)与缸体(6)的分界面突破,有效提高气体突破压力测试结果的准确性。

Description

气体突破压力测试装置及方法 技术领域
本发明涉及高放废物处置技术领域,具体涉及一种测试高放废物处置库缓冲材料气体突破压力的装置及方法。
背景技术
近年来,随着国民经济的蓬勃发展,能源短缺逐渐成为中国所面临的严峻问题,中国越来越重视核能的利用和发展。然而核能的利用,必将产生大量的核废料,因此核废料处置已经成为迫在解决的问题。
对于高放废物的处置,目前国际社会上普遍接受的可行方案是把高放废物埋于地下500~1000m深的稳定地层中:即将高放废物经过固化处理、灌装后,储藏在深部地质处置库中,该处置库通常称为“高放废物地质处置库”,以下简称为“处置库”。
处置库的设计思路,一般采用的是“多屏障系统”,包括围岩地质屏障、基于膨润土作为缓冲材料的人工屏障以及废物储存容器屏障。玻璃固化的高放废物封装在特制的容器中,这种容器是用非常耐腐蚀的高级合金钢或铜等材料制造的;处置的时候,固化容器的周围还要填充吸附性能好的膨润土材料,这样构成了多道“人工屏障”;除此之外,还有优良的“天然屏障”。高放废物库建在几百米深地下的稳定地质层内(如花岗岩、粘土岩、盐岩等),随着时间的推移,围岩中的地下水将从四周逐渐侵蚀到膨润土材料中,膨润土将逐渐吸水膨胀,从而填满膨润土块体之间以及膨润土块体与围岩之间的空隙,从而起到密封作用。随着时间的演化,在处置库内由于复杂的物理化学反应,气体将会逐渐产生,这些气体来自于以下几个方面(1)金属罐在膨润土与地下水环境中腐蚀产生的氢气;(2)微生物分解作用导致有机物腐化而产生的二氧化碳、甲烷、氮气等气体;(3)辐射作用产生的氢气。随着这些气体的不断产生,处置库内的气压逐渐升高,积聚的气体将会向外界逃逸,而对于气体突破压力值的测试,目前通常在三轴压力室内进行,但由于试样与装置之间存在有较为光滑的接触面,进而导致测量结果不准确。
因此,鉴于以上问题,有必要提出一种能够准确测量缓冲材料气体突破压力大小的装置及方法,以避免由于试样和缸体之间存在光滑接触面而造成试验结果不准确的情况。
发明内容
有鉴于此,本发明提出一种气体突破压力测试装置,包括用以盛装试样的缸体,所述缸体的内壁成型有密封段,密封段的设置,对于具有膨胀性的试样,在吸水之后,试样膨胀堵塞密封段,实现密封,从而使得试样与缸体之间在竖直方向上不再是光滑的接触面,避免气 体从试样与缸体的分界面突破,有效提高气体突破压力测试结果的准确性。
根据本发明的目的提出的气体突破压力测试装置,包括用以盛装试样的缸体,所述缸体一端为进气端,另一端为出气端,所述进气端连接有输气装置,所述出气端连接有气体监测装置,所述缸体的内壁成型有密封段,测试时,试样与所述缸体内壁间紧密接触以密封。
优选的,所述缸体进气端可拆卸固定连接有压头,所述压头上成型有进气孔,所述进气孔连接输气装置;所述缸体出气端可拆卸固定连接有底座,所述底座上成型有出气孔,所述出气孔连接气体监测装置;所述缸体内部成型有中空腔,所述试样盛装于中空腔内,所述密封段成型于缸体与试样接触的内壁上。
优选的,密封段高度H t与试样高度H sample、缸体内径D t与试样直径D sample有如下关系:
Figure PCTCN2018104638-appb-000001
优选的,所述密封段为沿缸体的轴向均匀分布的多组凹槽,每组凹槽沿缸体内壁一周设置或分段设置。
优选的,每一所述凹槽的深度为0.3mm,宽度为1mm,相邻两组凹槽之间的间距为4mm。
优选的,所述压头与底座分别成型有凸出部,所述凸出部嵌入缸体中空腔内。
一种气体突破压力测试方法,采用上述测试装置,所述测试装置包括缸体、压头和底座,所述缸体内部成型有中空腔,试样盛装于中空腔内,所述缸体与试样接触的内壁上成型有密封段,所述压头上成型有进气孔,底座上成型有出气孔;
所述测试方法包括以下步骤:
步骤一:将制作好的试样放入缸体中空腔内密封段处。
步骤二:增加测试空间的湿度,试样吸水膨胀堵塞密封段,直至密封。
步骤三:将压头与底座通过螺栓分别固定在缸体的进气端与出气端,压头上成型的进气孔与输气装置连接,底座上成型的出气孔与气体监测装置连接。
步骤四:从0开始逐渐增加进气孔的气体压力,待底座出气孔处监测到持续的气流时,则两端压力差即为试样的气体突破压力。
优选的,测试空间温度为20℃。
与现有技术相比,本发明公开的一种测试高放废物处置库缓冲材料气体突破压力的装置的优点是:
本发明公开的气体突破压力测试装置包括盛装试样的缸体,所述缸体的内壁成型有密封 段,在缸体的内壁上加工密封段,这样,对于具有膨胀性的试样来说,在吸水之后,试样膨胀堵塞密封段,实现密封,从而使得试样与缸体在竖直方向上不再是光滑的接触面,避免气体从试样与缸体的分界面突破,有效提高气体突破压力测试结果的准确性。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域中的普通技术人员来说,在不付出创造性劳动的前提下,还可根据这些附图获得其他附图。
图1为实施例1剖面图1。
图2为实施例1剖面图2。
图3为实施例2剖面图1。
图4为实施例2剖面图2
图中数字或字母所代表的零部件名称为:
1、压头;2、螺栓;3、凸出部;4、凹槽;5、试样;6、缸体;7、出气孔;8、底座;9、进气孔;10、中空腔。
具体实施方式
下面结合附图对本发明的具体实施方式做简要说明。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,均属于本发明保护的范围。
图1-图4示出了本发明较佳的实施例,分别从不同的角度对结构进行了详细的剖析。
实施例1
如图1-2所示的气体突破压力测试装置包括用以盛装试样5的缸体6,缸体6一端为进气端,另一端为出气端,进气端连接有输气装置,出气端连接有气体监测装置,缸体6的内壁成型有密封段,密封段结构不限,满足测试时,试样5吸水膨胀与缸体6内壁间紧密接触以密封,试样5与缸体6之间为非光滑接触面即可。其中输气装置可以是惰性气体,而气体监测装置可以是气体泄漏探测仪或流量表。使用气体泄漏探测仪时不同时间间隔进行气体监测,当气体连续溢出时,即可确定气体连续突破。而使用流量计进行气体监测时,当检测气体流量突然增加时,即可确定气体连续突破。
进一步的,缸体6进气端螺栓连接有压头1,压头1上成型有进气孔9,进气孔9连接输气装置;缸体6出气端螺栓连接有底座8,底座8上成型有出气孔7,出气孔7连接气体监测 装置。缸体6内部成型有中空腔10,试样5盛装于中空腔10内,密封段成型于缸体6与试样5接触的内壁上,试样5吸水膨胀堵塞密封段以密封。其中,压头1与底座8的设置使得缸体6的密封效果更好,而缸体6与压头1和底部8的连接方式不限,螺栓连接只是其中较佳的实施例。
进一步的,密封段高度H t与试样5高度H sample、缸体6内径D t与试样5直径D sample有如下关系:
Figure PCTCN2018104638-appb-000002
实验证明,当处在这种关系中时,试样5吸水膨胀之后可以堵塞密封段,同时又不会因为膨胀力过大对外部岩体造成损伤。
进一步的,密封段为沿缸体6的轴向均匀分布的多组凹槽4,每组凹槽4沿缸体6内壁一周设置或分段设置。
进一步的,每一凹槽4的深度为0.3mm,宽度为1mm,相邻两组凹槽4之间的间距为4mm。
实施例2
如图3-4所示的气体突破压力测试装置,其余与实施例1相同,不同之处在于:
压头1与底座8分别成型有凸出部3,凸出部3嵌入缸体6中空腔10内。其中凸出部3与压头1和底座8配合使用,方便密封圈的安装,使得整个装置的密封效果更好。
本发明公开的气体突破压力测试装置在缸体6的内壁上加工密封段,对于具有膨胀性的试样5来说,在吸水之后,试样5膨胀堵塞密封段,实现密封,从而使得试样5与缸体6在竖直方向上不再是光滑的接触面,避免气体从试样5与缸体6的分界面突破,有效提高气体突破压力测试结果的准确性。
对应上述实施例的气体突破压力测试装置,本发明还提出一种气体突破压力测试方法,该方法使用上述实施例的装置来实现,测试方法包括以下步骤:
步骤一:将制作好的试样5放入缸体6中空腔10内密封段处。
步骤二:增加测试空间的湿度,试样5膨胀堵塞密封段,直至密封。
步骤三:将压头1与底座8通过螺栓2分别固定在缸体6的进气端与出气端,压头1上成型的进气孔9与输气装置连接,底座8上成型的出气孔7与气体监测装置连接。
步骤四:从0开始逐渐增加进气孔9的气体压力,待底座8出气孔7处监测到持续的气流时,则两端压力差即为试样的气体突破压力。
进一步的,测试空间温度为20℃。
综上所述,本发明公开的气体突破压力测试装置包括盛装试样的缸体,缸体的内壁成型有密封段,在缸体的内壁上加工密封段,这样,对于具有膨胀性的试样来说,在吸水之后,试样膨胀堵塞密封段,实现密封,从而使得试样与缸体在竖直方向上不再是光滑的接触面,避免气体从试样与缸体的分界面突破,有效提高气体突破压力测试结果的准确性。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现和使用本发明。对这些实施例的多种修改方式对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神和范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种气体突破压力测试装置,其特征在于,包括用以盛装试样(5)的缸体(6),所述缸体(6)一端为进气端,另一端为出气端,所述进气端连接有输气装置,所述出气端连接有气体监测装置,所述缸体(6)的内壁成型有密封段,测试时,试样(5)与所述缸体(6)内壁间紧密接触以密封。
  2. 根据权利要求1所述的气体突破压力测试装置,其特征在于,所述缸体(6)进气端可拆卸固定连接有压头(1),所述压头(1)上成型有进气孔(9),所述进气孔(9)连接输气装置;所述缸体(6)出气端可拆卸固定连接有底座(8),所述底座(8)上成型有出气孔(7),所述出气孔(7)连接气体监测装置;所述缸体(6)内部成型有中空腔(10),所述试样(5)盛装于中空腔(10)内,所述密封段成型于缸体(6)与试样(5)接触的内壁上。
  3. 根据权利要求2所述的气体突破压力测试装置,其特征在于,密封段高度H t与试样(5)高度H sample、缸体(6)内径D t与试样(5)直径D sample有如下关系:
    Figure PCTCN2018104638-appb-100001
  4. 根据权利要求3所述的气体突破压力测试装置,其特征在于,所述密封段为沿缸体(6)的轴向均匀分布的多组凹槽(4),每组凹槽(4)沿缸体(6)内壁一周设置或分段设置。
  5. 根据权利要求4所述的气体突破压力测试装置,其特征在于,每一所述凹槽(4)的深度为0.3mm,宽度为1mm,相邻两组凹槽(4)之间的间距为4mm。
  6. 根据权利要求5所述的气体突破压力测试装置,其特征在于,所述压头(1)与底座(8)分别成型有凸出部(3),所述凸出部(3)嵌入缸体(6)中空腔(10)内。
  7. 一种气体突破压力测试方法,其特征在于,采用权利要求1-6任一项所述的测试装置,所述测试装置包括缸体(6)、压头(1)和底座(8),所述缸体(6)内部成型有中空腔(10),试样盛装于中空腔(10)内,所述缸体(6)与试样(5)接触的内壁上成型有密封段,所述压头(1)上成型有进气孔(9),底座(8)上成型有出气孔(7);
    所述测试方法包括以下步骤:
    步骤一:将制作好的试样(5)放入缸体(6)中空腔(10)内密封段处;
    步骤二:增加测试空间的湿度,试样(5)吸水膨胀堵塞密封段,直至密封;
    步骤三:将压头(1)与底座(8)通过螺栓(2)分别固定在缸体的进气端与出气端,压头(1)上成型的进气孔(9)与输气装置连接,底座(8)上成型的出气孔(7)与气体监测装置连接;
    步骤四:从0开始逐渐增加进气孔(9)的气体压力,待底座(8)出气孔(7)处监测到持续的气流时,则进气孔(9)与出气孔(7)的气体压力差即为试样(5)的气体突破压力。
  8. 根据权利要求7所述的气体突破压力测试方法,其特征在于,测试空间温度为20℃。
PCT/CN2018/104638 2017-11-23 2018-09-07 气体突破压力测试装置及方法 WO2019100812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019118231A RU2723232C1 (ru) 2017-11-23 2018-09-07 Устройство и способ экспериментального определения давления прорыва газа
AU2018372341A AU2018372341B2 (en) 2017-11-23 2018-09-07 Gas escape pressure testing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711182357.6 2017-11-23
CN201711182357.6A CN108168768B (zh) 2017-11-23 2017-11-23 气体突破压力测试装置及方法

Publications (1)

Publication Number Publication Date
WO2019100812A1 true WO2019100812A1 (zh) 2019-05-31

Family

ID=62527595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104638 WO2019100812A1 (zh) 2017-11-23 2018-09-07 气体突破压力测试装置及方法

Country Status (4)

Country Link
CN (1) CN108168768B (zh)
AU (1) AU2018372341B2 (zh)
RU (1) RU2723232C1 (zh)
WO (1) WO2019100812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132746A (zh) * 2019-06-19 2019-08-16 四川大学 三轴测试仪进行地质断层力学行为的室内实验模拟装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168768B (zh) * 2017-11-23 2019-03-01 中国矿业大学 气体突破压力测试装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556993A (zh) * 2013-11-07 2014-02-05 中国石油大学(北京) 低渗透油田平面五点法井网二氧化碳驱仿真实验模拟方法
CN103776744A (zh) * 2012-10-19 2014-05-07 中国石油化工股份有限公司 一种岩样三向渗透率的检测方法及其检测系统
CN204461880U (zh) * 2015-01-04 2015-07-08 中国石油天然气股份有限公司 岩芯突破压力测试装置
CN104792685A (zh) * 2015-04-23 2015-07-22 太原理工大学 一种破碎煤岩体气体渗透试验装置及方法
US20150355068A1 (en) * 2013-03-24 2015-12-10 Schlumberger Technology Corporation System and methodology for determining properties of a substance
CN105547848A (zh) * 2016-01-13 2016-05-04 重庆科技学院 一种混合岩心测试室及泥岩突破压力测试装置
CN108168768A (zh) * 2017-11-23 2018-06-15 中国矿业大学 气体突破压力测试装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274350A (ja) * 1995-03-29 1996-10-18 Yokogawa Electric Corp 半導体圧力センサ及びその製造方法
US5889211A (en) * 1995-04-03 1999-03-30 Motorola, Inc. Media compatible microsensor structure and methods of manufacturing and using the same
DE102008043175A1 (de) * 2008-10-24 2010-04-29 Endress + Hauser Gmbh + Co. Kg Relativdrucksensor
CN201358783Y (zh) * 2009-02-23 2009-12-09 大庆油田有限责任公司 压力流量集成式验封仪
DE102009028488A1 (de) * 2009-08-12 2011-02-17 Endress + Hauser Gmbh + Co. Kg Relativdrucksensor
CN202693192U (zh) * 2012-06-27 2013-01-23 龙泉市杰科汽车零部件有限公司 一种差压传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776744A (zh) * 2012-10-19 2014-05-07 中国石油化工股份有限公司 一种岩样三向渗透率的检测方法及其检测系统
US20150355068A1 (en) * 2013-03-24 2015-12-10 Schlumberger Technology Corporation System and methodology for determining properties of a substance
CN103556993A (zh) * 2013-11-07 2014-02-05 中国石油大学(北京) 低渗透油田平面五点法井网二氧化碳驱仿真实验模拟方法
CN204461880U (zh) * 2015-01-04 2015-07-08 中国石油天然气股份有限公司 岩芯突破压力测试装置
CN104792685A (zh) * 2015-04-23 2015-07-22 太原理工大学 一种破碎煤岩体气体渗透试验装置及方法
CN105547848A (zh) * 2016-01-13 2016-05-04 重庆科技学院 一种混合岩心测试室及泥岩突破压力测试装置
CN108168768A (zh) * 2017-11-23 2018-06-15 中国矿业大学 气体突破压力测试装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132746A (zh) * 2019-06-19 2019-08-16 四川大学 三轴测试仪进行地质断层力学行为的室内实验模拟装置及方法
CN110132746B (zh) * 2019-06-19 2024-05-10 四川大学 三轴测试仪进行地质断层力学行为的室内实验模拟装置及方法

Also Published As

Publication number Publication date
AU2018372341B2 (en) 2020-10-15
CN108168768B (zh) 2019-03-01
AU2018372341A2 (en) 2019-07-25
CN108168768A (zh) 2018-06-15
RU2723232C1 (ru) 2020-06-09
AU2018372341A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US8191430B2 (en) Method and apparatus for pipe testing
WO2019100812A1 (zh) 气体突破压力测试装置及方法
CN105352670B (zh) 一种油气井固井水泥环密封性评价系统
TW202036599A (zh) 放射性廢料貯存系統及方法
CN102011581A (zh) 应力敏感性地层钻井堵漏模拟评价装置
CN102830057A (zh) 一种固井水泥石腐蚀评价方法
US11837373B2 (en) Hazardous material repository systems and methods
JP2021527196A (ja) 有害物質キャニスタ
CN111963150B (zh) 一种煤层瓦斯压力测定装置及使用方法
US20220367080A1 (en) Storing hazardous waste material
CN206161249U (zh) 碗状密封总成的试压装置
CN210090197U (zh) 三轴泥水劈裂试验中试样与注浆底座的密封装置
Liu et al. Artificial ground freezing technique in tunnel construction considering uncertain drilling inaccuracy of freeze pipes
CN217932107U (zh) 一种随钻测井用闪烁体封装装置
CN114778433B (zh) 一种氢气存储密封层力学行为测试装置及方法
CN108457645B (zh) 煤气层氮气循环吞吐压裂可行性评价装置
CN1979118B (zh) 软岩饱水夹持器
CN110687017B (zh) 测定缓冲材料气体迁移特性与膨胀力的装置及方法
Pintado et al. Full-scale test for KBS-3H spent nuclear fuel repository alternative in Sweden
CN211043056U (zh) 一种用于煤层渗透率测定实验的煤样吸附装置
Talandier et al. Simulations of the hydrogen migration out of intermediate-level radioactive waste disposal drifts using TOUGH2
CN211500623U (zh) 一种用于吸水剖面测井装置
CN211906980U (zh) 高放射性核废料容器
CN101144379A (zh) 用于钻孔位移和水位同孔测量的测斜管
RU2155261C2 (ru) Способ испытания обсадных колонн газовых скважин на газогерметичность

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018372341

Country of ref document: AU

Date of ref document: 20180907

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880923

Country of ref document: EP

Kind code of ref document: A1