WO2019114338A1 - 高放废物处置库巷道开挖扰动区安全阻隔方法 - Google Patents
高放废物处置库巷道开挖扰动区安全阻隔方法 Download PDFInfo
- Publication number
- WO2019114338A1 WO2019114338A1 PCT/CN2018/104637 CN2018104637W WO2019114338A1 WO 2019114338 A1 WO2019114338 A1 WO 2019114338A1 CN 2018104637 W CN2018104637 W CN 2018104637W WO 2019114338 A1 WO2019114338 A1 WO 2019114338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roadway
- level waste
- sealing
- buffer material
- sealing section
- Prior art date
Links
- 239000002927 high level radioactive waste Substances 0.000 title claims abstract description 44
- 238000009412 basement excavation Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000000903 blocking effect Effects 0.000 title claims abstract description 11
- 238000007789 sealing Methods 0.000 claims abstract description 50
- 239000000463 material Substances 0.000 claims abstract description 49
- 239000011435 rock Substances 0.000 claims abstract description 40
- 230000009471 action Effects 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000004888 barrier function Effects 0.000 claims description 21
- 238000002955 isolation Methods 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000003673 groundwater Substances 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 5
- 239000004576 sand Substances 0.000 claims description 4
- 238000000105 evaporative light scattering detection Methods 0.000 claims description 3
- 239000002689 soil Substances 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 description 16
- 229910000278 bentonite Inorganic materials 0.000 description 16
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/103—Dams, e.g. for ventilation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/103—Dams, e.g. for ventilation
- E21F17/107—Dams, e.g. for ventilation inflatable
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/103—Dams, e.g. for ventilation
- E21F17/12—Dam doors
Definitions
- the invention relates to the technical field of high-level waste disposal, and particularly relates to a method for safely blocking a roadway excavation disturbance zone in a high-level waste disposal repository.
- the repository is often referred to as the “high-level waste geological repository”, hereinafter referred to as the “repository”.
- the design concept of the repository is generally a “multi-barrier system”, including a surrounding rock geological barrier, an artificial barrier based on bentonite as a buffer material, and a waste storage container barrier.
- the glass-cured high-level waste is packaged in a special container made of highly corrosion-resistant high-grade alloy steel or copper. At the time of disposal, the cured container is filled with a bentonite material with good adsorption properties, which constitutes a plurality of "artificial barriers”. In addition to this, there is an excellent "natural barrier”.
- the high-level waste repository is built in a stable geological layer (such as granite, clay rock, salt rock, etc.) that is several hundred meters deep underground. Over time, the groundwater in the surrounding rock will gradually erode into the bentonite material, bentonite. It will gradually swell and expand to fill the gap between the bentonite blocks and between the bentonite block and the surrounding rock, thereby sealing.
- the artificial barrier based on bentonite as a cushioning material and the waste storage container barrier has certain safety hazards.
- the high-level waste storage container may be broken, causing leakage of the nuclide.
- the artificial barrier and surrounding rock geological barrier made of bentonite as a buffer material can well block the further leakage and migration of the nuclides.
- the original dense and stable geological layer within a certain range is activated, expanded and penetrates a large number of microcracks, and the nuclide migrates and leaks through these microcracks, and exceeds the disturbance zone.
- the range of rock mass remains stable and compact. Therefore, when the nuclide passes through the micro-crack, the nuclide can no longer migrate further after the water vapor moves laterally to a certain extent, that is, beyond the excavation disturbing zone, and the stable geological layer provides good airtightness. In this direction, the repository is safe.
- the nuclide can pass through the micro-cracks in the longitudinal direction, and can directly pass the artificial barrier based on bentonite as a buffer material.
- the present invention provides a safety barrier method for excavation and disturbance area of a high-level waste disposal warehouse, and excavates a plurality of sets of sealing sections on the wall of the original high-level waste disposal repository, and fills and seals with a cushioning material.
- the existence of the sealing section effectively blocks the leakage of nuclide from the crack of the rock formation, thereby ensuring the safety of the high-level waste disposal repository and eliminating the safety hazard of the radionuclide leakage.
- a high-level waste disposal repository roadway excavation disturbance zone safety barrier method the high-level waste disposal repository includes a high-level waste storage area, a roadway and a pedestrian passage;
- the security barrier method comprises the following steps :
- Step 1 Put the high-level waste into the high-level waste storage area. After the placement is completed, close the metal gate to form a metal isolation layer and seal the high-level waste storage area.
- Step 2 The rock mass detection device is used to detect the roadway, and the rock mechanics knowledge is combined to determine the range and depth of the roadway excavation disturbance zone.
- Step 3 According to the test results, a plurality of sets of sealing segments for nuclide blocking are excavated on the wall of the roadway using a rock excavation device.
- Step 4 According to the shape and size of the sealing section and the size of the roadway, several buffer material blocks of different sizes are respectively prepared.
- Step 5 Filling the prefabricated buffer material block in the roadway from the inside to the outside.
- the sealing section When passing through the sealing section, the corresponding sealing section is first filled and sealed, and then the roadway is filled, so that the filling of the entire roadway is completed in order to form a buffer material isolation layer.
- Step 6 Pouring concrete outside the buffer material isolation layer to form a concrete sealing layer.
- Step 7 Under the action of groundwater, the buffer material block absorbs water and expands to achieve roadway sealing.
- step 5 when the sealing section is filled, the prepared buffer material block is uniformly layered and embedded in the sealing section, and the order of loading is from bottom to top, and the buffer material block in the sealing section formed in the lower part of the roadway is directly
- the layers of cushioning material in the sealing section above the roadway side and in the upper part are anchored to the rock of the roadway wall by anchor bolts.
- each set of said sealing segments is a closed groove formed along the cross-sectional profile of the roadway.
- each of the grooves has a thickness of 0.3 m, and a distance between adjacent two grooves is 6-8 m.
- the buffer material has a soil and sand ratio of 0.7:0.3.
- the rock mass detecting device is a rock mass acoustic wave testing device
- the rock body excavating device is a rock drilling machine.
- the present invention discloses a high-level waste disposal library roadway excavation disturbance zone safety barrier method advantages:
- the safety barrier method of the excavation disturbance zone determines the extent and depth of the excavation disturbance zone according to the geological conditions on the roadway wall of the original high-level waste disposal repository and excavates a plurality of sets of sealing sections, and then fills with a buffer material block in the groundwater Under the action of the buffer material block, the sealing of the sealing section is achieved.
- the existence of the sealing section effectively blocks the leakage of nuclide from the crack of the rock formation, thus ensuring the safety of the high-level waste disposal repository and eliminating the leakage of nuclide.
- the safety hazard, and the method is less difficult to construct, reducing labor difficulty, and saving the overall cost of the high-level waste disposal repository.
- Figure 1 is a structural diagram of a high-level waste disposal repository.
- a high-level waste disposal repository includes a high-level waste storage area 1, a roadway and a pedestrian passage 6, and the safety barrier method for the excavation disturbance zone includes the following steps:
- Step 1 Put the high-level waste into the high-level waste storage area 1. After the placement is completed, close the metal gate to form the metal isolation layer 2, and seal the high-level waste storage area.
- Step 2 The rock mass detection device is used to detect the roadway, and the rock mechanics knowledge is combined to determine the range and depth of the roadway excavation disturbance zone.
- the rock mass detecting device is not limited, and the rock mass acoustic wave testing instrument is the preferred one among them.
- Step 3 According to the test result, a plurality of sets of sealing segments 3 for nuclide blocking are excavated on the roadway wall by using the rock mass excavation device, and the depth of the sealing segment 3 is determined according to the depth of the excavation disturbing zone.
- Each set of sealing segments 3 is a closed groove formed along the cross-sectional profile of the roadway, and the thickness of the grooves and the spacing of the grooves are determined on a case-by-case basis.
- each groove has a thickness of 0.3 m and a distance between adjacent two grooves is 6-8 m.
- the sealing section 3 is an annular groove, and the arc of the buffer material block in the annular groove is consistent with the arc of the annular groove.
- the rock mass excavation device is not limited, and the rock drill is the preferred one.
- Step 4 According to the shape and size of the sealing section 3 and the size of the roadway, a plurality of buffer material blocks of different sizes are respectively prepared.
- the buffer material block is made of a bentonite mixture, and is tested in the laboratory according to the relationship between the dry density of the bentonite mixture and the expansion force and the expansion force required at the construction site, and finally determines the bentonite mixture buffer material required at the site.
- a bentonite mixture of the corresponding quality is prepared according to the calculation result, and then a cushioning material block is prepared. Specifically, the soil and sand ratio of the buffer material block is 0.7:0.3.
- Step 5 Filling the pre-formed buffer material block from the inside to the outside in the roadway.
- the corresponding sealing section 3 is first filled and sealed, and then the roadway is filled, so that the entire roadway is filled in order to form the buffer material isolation layer 4.
- the sealing section 3 is filled, the prepared buffer material block is evenly layered into the sealing section 3, and the order of loading is from bottom to top, and the buffer material block in the sealing section 3 formed in the lower part of the roadway is directly layered.
- the cushioning material block in the sealing section 3 above the roadway side and in the upper part is anchored to the rock of the roadway wall by the anchor rod, and the anchoring and the support of the lower block body can achieve the effect of stabilizing the upper part.
- the gap between the cushioning material blocks and the gap between the cushioning material block and the rock mass are filled with the filler of the bentonite mixture by the sand filling machine, so that the cushioning material isolating layer 4 is sufficiently filled.
- Step 6 pouring concrete outside the cushioning material isolation layer 4 to form a concrete sealing layer 5.
- Step 7 Under the action of groundwater, the buffer material block absorbs water and expands to achieve roadway sealing.
- the present invention discloses a method for safely blocking a roadway excavation disturbance zone in a high-level waste disposal repository, and excavating a plurality of sets of sealing sections on the wall of the original high-level waste disposal repository, the sealing section is disturbed according to the excavation
- the geological conditions of the area determine its depth, and then it is filled with a buffer material block. Under the action of groundwater, the buffer material block expands to achieve sealing of the sealing section.
- the presence of the sealing section effectively blocks the leakage of nuclide from the cracks in the rock formation, thus ensuring the safety of the high-level waste disposal repository and eliminating The safety hazard of the leakage of nuclide, and the difficulty of the construction of the method is small, the labor difficulty is reduced, and the overall cost of the high-level waste disposal repository is saved.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种高放废物处置库巷道开挖扰动区安全阻隔方法,在原有的高放废物处置库巷道壁上开挖多组密封段(3),并用缓冲材料块进行填充,在地下水的作用下,缓冲材料块膨胀,实现密封段(3)的密封。在核素发生泄漏流入巷道并流经开挖扰动区时,密封段(3)的存在有效阻隔核素从岩层缝隙中泄漏,从而保证高放废物处置库的安全,消除核素泄漏的安全隐患。
Description
本发明涉及高放废物处置技术领域,具体涉及一种高放废物处置库巷道开挖扰动区安全阻隔的方法。
近年来,随着国民经济的蓬勃发展,能源短缺逐渐成为中国所面临的严峻问题,中国越来越重视核能的利用和发展,核能的利用,必将产生大量的核废料,因此核废料处置已经成为迫在解决的课题。
对于高放废物的处置,目前国际社会上普遍接受的可行方案是把高放废物深埋于地下500~1000m深的稳定的地层中:即将高放废物经过固化处理、灌装后,储藏在深部地质处置库中,该处置库通常称为“高放废物地质处置库”,以下简称为“处置库”。
处置库的设计思路,一般采用的是“多屏障系统”,包括围岩地质屏障,基于膨润土作为缓冲材料的人工屏障和废物储存容器屏障。玻璃固化的高放废物封装在特制的容器中,这种容器是用非常耐腐蚀的高级合金钢或铜等材料制造的。处置的时候,固化容器的周围还要填充吸附性能好的膨润土材料,这样构成了多道“人工屏障”。除此之外,还有优良的“天然屏障”。高放废物库建在几百米深地下的稳定地质层内(如花岗岩、粘土岩、盐岩等),随着时间的推移,围岩中的地下水将从四周逐渐侵蚀到膨润土材料中,膨润土将逐渐吸水膨胀,从而填满膨润土块体之间以及膨润土块体与围岩之间的空隙,从而起到密封作用。
在开挖地下深部处置库的过程中,将对其周围一定范围内的岩体应力场产 生明显扰动,开挖面附近一定范围内岩体的力学性质不可避免地发生明显变化,这种扰动主要体现为岩体内部大量微裂纹的萌生、扩展和贯穿、应力的重分布等,从而影响工程的安全性。发生这种扰动的区域被称为开挖扰动区(Excavation Disturbed Zone)或开挖损伤区(Excavation Damaged Zone)。
正是由于这种开挖扰动区域的存在,使得原本由围岩地质屏障,基于膨润土作为缓冲材料的人工屏障和废物储存容器屏障的这种“多屏障系统”存在一定得安全隐患。当处置库埋入地下非常久的时间后,高放废料储存容器有可能发生破裂,导致核素发生泄漏。这时,由膨润土作为缓冲材料的人工屏障和围岩地质屏障能够很好的阻隔核素的进一步泄露和迁移。但是,由于开挖扰动区的存在,使得周围一定范围内的原本致密的稳定的地质层萌生、扩展和贯穿大量的微裂纹,核素就通过这些微裂纹,发生迁移和泄漏,而超过扰动区的范围,岩体依然保持稳定和致密。所以,当核素穿过微裂缝,随着水汽横向迁移到一定范围后,即超出开挖扰动区时,核素无法再进一步迁移,稳定地质层提供了很好的密闭性。在这个方向上,处置库是安全的。但是,核素在纵向上穿过微裂缝,可以直接越过基于膨润土作为缓冲材料的人工屏障,最终,达到处置库外围连接着地表的巷道,再随着水气直接可抵达地表,造成核素泄漏,所以我们必须在这个方向上加一层人工屏障,限制核素的纵向迁移,消除这种安全隐患。
因此,鉴于以上问题,有必要提出一种有效防止核素纵向迁移的安全阻隔方法,以消除核素迁移所带来的安全隐患。
发明内容
有鉴于此,本发明提出一种高放废物处置库巷道开挖扰动区安全阻隔方法, 在原有的高放废物处置库巷道壁上开挖多组密封段,并以缓冲材料进行填充密封,当核素发生泄漏流入巷道,并流经开挖扰动区时,密封段的存在有效阻隔核素从岩层缝隙中泄漏,从而保证高放废物处置库的安全,消除核素泄漏的安全隐患。
根据本发明的目的提出的一种高放废物处置库巷道开挖扰动区安全阻隔方法,所述高放废物处置库包括高放废物存放区,巷道以及人行通道;所述安全阻隔方法包括以下步骤:
步骤一:将高放废物放入高放废物存放区内,放置完成后,关上金属大门,形成金属隔离层,密闭高放废物存放区。
步骤二:使用岩体检测装置对巷道进行检测,结合岩体力学知识确定巷道开挖扰动区的范围和深度。
步骤三:根据检测结果,使用岩体开挖装置在巷道壁上开挖多组用于核素阻隔的密封段。
步骤四:根据密封段的形状和尺寸以及巷道的尺寸,分别制作若干尺寸不一的缓冲材料块。
步骤五:在巷道内由里向外填充预制的缓冲材料块,当经过密封段时,先将对应密封段填充密封,再填充巷道,如此依次完成整个巷道的填充,形成缓冲材料隔离层。
步骤六:在缓冲材料隔离层外浇筑混凝土,形成混凝土密封层。
步骤七:在地下水的作用下,缓冲材料块吸水膨胀,实现巷道密封。
优选的,步骤五中密封段填充时,将制作好的缓冲材料块均匀的分层嵌入密封段内,放入的顺序从下到上,对于巷道下部成型的密封段中的缓冲材料块, 直接分层摆放,而对于巷道侧上方以及上部成型的密封段中的缓冲材料块,则通过锚杆锚固在巷道壁岩石上。
优选的,每组所述密封段为沿巷道横截面轮廓成型的闭合凹槽。
优选的,每一所述凹槽厚度为0.3m,相邻两凹槽之间的距离为6-8m。
优选的,所述缓冲材料块土、沙配比为0.7:0.3。
优选的,所述岩体检测装置为岩体声波测试仪,岩体开挖装置为凿岩机。
与现有技术相比,本发明公开的一种高放废物处置库巷道开挖扰动区安全阻隔方法的优点:
所述开挖扰动区安全阻隔方法在原有的高放废物处置库巷道壁上根据地质条件确定开挖扰动区的范围和深度并开挖多组密封段,然后用缓冲材料块进行填充,在地下水的作用下,缓冲材料块膨胀,实现密封段的密封。随着时间推移处置库中核素发生泄漏流入巷道并流经开挖扰动区时,密封段的存在有效阻隔核素从岩层缝隙中泄漏,从而保证高放废物处置库的安全,消除核素泄漏的安全隐患,而且该方法施工难度较小,降低劳动难度,同时节约高放废物处置库的整体造价。
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域中的普通技术人员来说,在不付出创造性劳动的前提下,还可根据这些附图获得其他附图。
图1为高放废物处置库结构图。
图中的数字或字母所代表的零部件名称为:
1、高放废物存放区;2、金属隔离层;3、密封段;4、缓冲材料隔离层;5、混凝土密封层;6、人行通道。
下面结合附图对本发明的具体实施方式做简要说明。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,均属于本发明保护的范围。
如图1所示,一种高放废物处置库包括高放废物存放区1,巷道以及人行通道6,开挖扰动区安全阻隔方法包括以下步骤:
步骤一:将高放废物放入高放废物存放区1内,放置完成后,关上金属大门,形成金属隔离层2,密闭高放废物存放区1。
步骤二:使用岩体检测装置对巷道进行检测,结合岩体力学知识确定巷道开挖扰动区的范围和深度。其中岩体检测装置不限,岩体声波测试仪为其中较佳的选择。
步骤三:根据检测结果,使用岩体开挖装置在巷道壁上开挖多组用于核素阻隔的密封段3,密封段3的深度根据开挖扰动区的深度进行确定。每组密封段3为沿巷道横截面轮廓成型的闭合凹槽,凹槽的厚度以及槽间距依具体情况而定。优选的,每一凹槽厚度为0.3m,相邻两凹槽之间的距离为6-8m。当巷道为环形时,密封段3为环形槽,环形槽内缓冲材料块的弧度与环形槽的弧度一致。其中岩体开挖装置不限,凿岩机为其中较佳的选择。
步骤四:根据密封段3的形状和尺寸以及巷道的尺寸,分别制作若干尺寸不一的缓冲材料块。其中该缓冲材料块由膨润土混合物制成,根据膨润土混合 物干密度和膨胀力之间的关系以及施工现场所需的膨胀力大小,在实验室中进行试验,最终确定现场所需的膨润土混合物缓冲材料的干密度ρ
d,再根据现场所需要的膨润土混合物体积V,计算出现场所需要的膨润土混合物质量m,计算公式是:m=ρ
d×V。根据计算结果准备相应质量的膨润土混合物,然后制作缓冲材料块。具体的,缓冲材料块的土、沙配比为0.7:0.3。
步骤五:在巷道内由里向外填充预制缓冲材料块,当经过密封段3时,先将对应密封段3填充密封,再填充巷道,如此依次填充完成整个巷道,形成缓冲材料隔离层4。其中密封段3填充时,将制作好的缓冲材料块均匀的分层嵌入密封段3内,放入的顺序从下到上,对于巷道下部成型的密封段3中的缓冲材料块,直接分层摆放,而对于巷道侧上方以及上部成型的密封段3中的缓冲材料块,则通过锚杆锚固在巷道壁岩石上,通过锚固以及下部块体的支撑,可以达到稳定上部的作用。缓冲材料块填充完成后,用砂石填充机对缓冲材料块之间的缝隙以及缓冲材料块与岩体之间的缝隙进行膨润土混合物颗粒填充,从而使得缓冲材料隔离层4充分填充。
步骤六:在缓冲材料隔离层4外浇筑混凝土,形成混凝土密封层5。
步骤七:在地下水的作用下,缓冲材料块吸水膨胀,实现巷道密封。
综上所述,本发明公开的一种高放废物处置库巷道开挖扰动区安全阻隔方法,在原有的高放废物处置库巷道壁上开挖多组密封段,该密封段根据开挖扰动区的地质条件确定其深度,然后用缓冲材料块进行填充,在地下水的作用下,缓冲材料块膨胀,实现密封段的密封。随着时间推移高放废物处置库中核素发生泄漏流入巷道并流经开挖扰动区时,密封段的存在有效阻隔核素从岩层缝隙中泄漏,从而保证高放废物处置库的安全,消除核素泄漏的安全隐患,而且该 方法施工难度较小,降低劳动难度,同时节约高放废物处置库的整体造价。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现和使用本发明。对这些实施例的多种修改方式对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神和范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (6)
- 一种高放废物处置库巷道开挖扰动区安全阻隔方法,其特征在于,所述高放废物处置库包括高放废物存放区(1),巷道以及人行通道(6);所述安全阻隔方法包括以下步骤:步骤一:将高放废物放入高放废物存放区(1)内,放置完成后,关上金属大门,形成金属隔离层(2),密闭高放废物存放区(1);步骤二:使用岩体检测装置对巷道进行检测,结合岩体力学知识确定巷道开挖扰动区的范围和深度;步骤三:根据检测结果,使用岩体开挖装置在巷道壁上开挖多组用于核素阻隔的密封段(3);步骤四:根据密封段(3)的形状和尺寸以及巷道的尺寸,分别制作若干尺寸不一的缓冲材料块;步骤五:在巷道内由里向外填充预制的缓冲材料块,当经过密封段(3)时,先将对应密封段(3)填充密封,再填充巷道,如此依次完成整个巷道的填充,形成缓冲材料隔离层(4);步骤六:在缓冲材料隔离层(4)外浇筑混凝土,形成混凝土密封层(5);步骤七:在地下水的作用下,缓冲材料块吸水膨胀,实现巷道密封。
- 根据权利要求1所述的一种高放废物处置库巷道开挖扰动区安全阻隔方法,其特征在于,步骤五中密封段(3)填充时,将制作好的缓冲材料块均匀的分层嵌入密封段(3)内,放入的顺序从下到上,对于巷道下部成型的密封段(3)中的缓冲材料块,直接分层摆放,而对于巷道侧上方以及上部成型的密封段(3)中的缓冲材料块,则通过锚杆锚固在巷道壁岩石上。
- 根据权利要求2所述的一种高放废物处置库巷道开挖扰动区安全阻隔方 法,其特征在于,每组所述密封段(3)为沿巷道横截面轮廓成型的闭合凹槽。
- 根据权利要求3所述的一种高放废物处置库巷道开挖扰动区安全阻隔方法,其特征在于,每一所述凹槽厚度为0.3m,相邻两凹槽之间的距离为6-8m。
- 根据权利要求4所述的一种高放废物处置库巷道开挖扰动区安全阻隔方法,其特征在于,所述缓冲材料块土、沙配比为0.7:0.3。
- 根据权利要求5所述的一种高放废物处置库巷道开挖扰动区安全阻隔方法,其特征在于,所述岩体检测装置为岩体声波测试仪,所述岩体开挖装置为凿岩机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711348730.0A CN108167021B (zh) | 2017-12-15 | 2017-12-15 | 高放废物处置库巷道开挖扰动区安全阻隔方法 |
CN201711348730.0 | 2017-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019114338A1 true WO2019114338A1 (zh) | 2019-06-20 |
Family
ID=62522233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/104637 WO2019114338A1 (zh) | 2017-12-15 | 2018-09-07 | 高放废物处置库巷道开挖扰动区安全阻隔方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108167021B (zh) |
WO (1) | WO2019114338A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113515840A (zh) * | 2021-04-14 | 2021-10-19 | 中国科学院武汉岩土力学研究所 | 一种岩体开挖扰动区的预测方法以及相关设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108167021B (zh) * | 2017-12-15 | 2018-12-25 | 中国矿业大学 | 高放废物处置库巷道开挖扰动区安全阻隔方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107014730A (zh) * | 2017-03-15 | 2017-08-04 | 中国矿业大学 | 一种模拟真实地下水侵蚀核废料处置库缓冲材料的方法 |
CN107039095A (zh) * | 2017-05-24 | 2017-08-11 | 长江勘测规划设计研究有限责任公司 | 基于闭式循环的发电与核燃料处理处置一体化核能基地 |
CN107052021A (zh) * | 2017-04-11 | 2017-08-18 | 中国矿业大学 | 一种高放废物地质处置库人工屏障缓冲材料的安置方法 |
CN107119742A (zh) * | 2017-04-20 | 2017-09-01 | 中国矿业大学 | 一种处置库缓冲材料的原位水化处理系统 |
US9833819B2 (en) * | 2015-04-06 | 2017-12-05 | Safe Nuclear Solutions, LLC | System for deep underground storage of radioactive waste |
CN108167021A (zh) * | 2017-12-15 | 2018-06-15 | 中国矿业大学 | 高放废物处置库巷道开挖扰动区安全阻隔方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105312298A (zh) * | 2015-12-11 | 2016-02-10 | 苏州华周胶带有限公司 | 一种废弃物稳定固化的环保处理方法 |
US10002683B2 (en) * | 2015-12-24 | 2018-06-19 | Deep Isolation, Inc. | Storing hazardous material in a subterranean formation |
CN106980915A (zh) * | 2016-08-18 | 2017-07-25 | 中国辐射防护研究院 | 高放废物地质处置安全评价方法 |
-
2017
- 2017-12-15 CN CN201711348730.0A patent/CN108167021B/zh active Active
-
2018
- 2018-09-07 WO PCT/CN2018/104637 patent/WO2019114338A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9833819B2 (en) * | 2015-04-06 | 2017-12-05 | Safe Nuclear Solutions, LLC | System for deep underground storage of radioactive waste |
CN107014730A (zh) * | 2017-03-15 | 2017-08-04 | 中国矿业大学 | 一种模拟真实地下水侵蚀核废料处置库缓冲材料的方法 |
CN107052021A (zh) * | 2017-04-11 | 2017-08-18 | 中国矿业大学 | 一种高放废物地质处置库人工屏障缓冲材料的安置方法 |
CN107119742A (zh) * | 2017-04-20 | 2017-09-01 | 中国矿业大学 | 一种处置库缓冲材料的原位水化处理系统 |
CN107039095A (zh) * | 2017-05-24 | 2017-08-11 | 长江勘测规划设计研究有限责任公司 | 基于闭式循环的发电与核燃料处理处置一体化核能基地 |
CN108167021A (zh) * | 2017-12-15 | 2018-06-15 | 中国矿业大学 | 高放废物处置库巷道开挖扰动区安全阻隔方法 |
Non-Patent Citations (1)
Title |
---|
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINERING, vol. 25, no. 04, 28 April 2006 (2006-04-28), pages 821 - 824 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113515840A (zh) * | 2021-04-14 | 2021-10-19 | 中国科学院武汉岩土力学研究所 | 一种岩体开挖扰动区的预测方法以及相关设备 |
CN113515840B (zh) * | 2021-04-14 | 2022-04-15 | 中国科学院武汉岩土力学研究所 | 一种岩体开挖扰动区的预测方法以及相关设备 |
Also Published As
Publication number | Publication date |
---|---|
CN108167021A (zh) | 2018-06-15 |
CN108167021B (zh) | 2018-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: a review | |
Tan et al. | Forensic diagnosis of a leaking accident during excavation | |
Shen et al. | Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai | |
Tan et al. | Catastrophic failure of Shanghai metro line 4 in July, 2003: Occurrence, emergency response, and disaster relief | |
Sui et al. | Hydrogeological analysis and salvage of a deep coalmine after a groundwater inrush | |
Zhang et al. | An incident of water and soil gushing in a metro tunnel due to high water pressure in sandy silt | |
Wang et al. | Treatment and effect of loess metro tunnel under surrounding pressure and water immersion environment | |
Shivaei et al. | 3D numerical investigation of the coupled interaction behavior between mechanized twin tunnels and groundwater–A case study: Shiraz metro line 2 | |
Seol et al. | Ground Collapse in EPB shield TBM site: A case study of railway tunnels in the deltaic region near Nak-Dong River in Korea | |
Peng et al. | Failure mechanisms of ground collapse caused by shield tunnelling in water-rich composite sandy stratum: A case study | |
Guo et al. | Mechanism and treatment technology of three water inrush events in the Jiaoxi River Tunnel in Shaanxi, China | |
Ni et al. | Shield machine disassembly in grouted soils outside the ventilation shaft: a case history in Taipei Rapid Transit System (TRTS) | |
WO2019114338A1 (zh) | 高放废物处置库巷道开挖扰动区安全阻隔方法 | |
Liu et al. | Hydraulic fracture failure during excavation of a working shaft for subway station: Forensic diagnosis and postfailure rehabilitation | |
RU2405890C1 (ru) | Способ глубинного компенсационного уплотнения грунта | |
Tan et al. | Catastrophic Failure of Shanghai Metro Line 4 in July 2003: Postaccident Rehabilitation | |
Feng | The Meuse/Haute-Marne underground research laboratory: Mechanical behavior of the Callovo-Oxfordian claystone | |
He et al. | Study on stability of tunnel surrounding rock and precipitation disaster mitigation in flowing sand body | |
Boon et al. | Deep excavation of an underground metro station in karstic limestone: a case history in the Klang Valley SSP Line | |
Deng et al. | Study on the field monitoring, assessment and influence factors of pipe friction resistance in rock | |
El Raouf et al. | Three-dimensional Finite-element Analysis of the Influence of Tunneling on Pile Foundations. | |
Yang et al. | Monitoring and controlling on surface settlement in sand and gravel strata caused by subway station construction applying pipe-roof pre-construction method (PPM) | |
Li et al. | Numerical Simulation of the Influence of a Deep Foundation Pit Adjacent to a Utility Tunnel: Case Study | |
Cavuoto et al. | Urban tunnelling under archaeological findings in Naples (Italy) with ground freezing and grouting techniques | |
Russo et al. | Municipio Station Metro Line 6 in Naples: A case of urban tunnelling adopting ground freezing and grouting techniques to underpass archaeological findings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18889565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18889565 Country of ref document: EP Kind code of ref document: A1 |