WO2019100791A1 - 基于鱼眼透镜的无线电波定位系统、定位及充电方法 - Google Patents

基于鱼眼透镜的无线电波定位系统、定位及充电方法 Download PDF

Info

Publication number
WO2019100791A1
WO2019100791A1 PCT/CN2018/102674 CN2018102674W WO2019100791A1 WO 2019100791 A1 WO2019100791 A1 WO 2019100791A1 CN 2018102674 W CN2018102674 W CN 2018102674W WO 2019100791 A1 WO2019100791 A1 WO 2019100791A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
antenna
fisheye lens
positioning
receiving antenna
Prior art date
Application number
PCT/CN2018/102674
Other languages
English (en)
French (fr)
Inventor
李斌
Original Assignee
李斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李斌 filed Critical 李斌
Publication of WO2019100791A1 publication Critical patent/WO2019100791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present invention relates to the field of radio wave application technologies, and in particular, to a fish wave lens-based radio wave positioning system, a charging and positioning method.
  • the fisheye lens is an extreme wide-angle lens, also known as a panoramic lens, which has a visual effect similar to that of a fisheye lens in the water.
  • the lens with a range of more than 140 degrees is collectively referred to as a fisheye lens.
  • One of the characteristics of fisheye lens imaging is that it can correctly describe the image points of the target points in the three-dimensional space on the imaging plane, and can accurately establish the correspondence. Any point in the space can be mapped to the focal plane by the fisheye lens. Corresponding imaging points.
  • Conventional fisheye lenses are commonly used in the field of optical imaging, such as camera lenses.
  • two or three negative meniscus lenses are generally used as the front light group.
  • the square field of view is compressed to the field of view required by conventional lenses, so that ordinary images or lines are distorted and curved, thereby obtaining images that are different from other lens shots.
  • a lens antenna is an antenna capable of obtaining a pen-shaped, sector-shaped or other shaped beam by electromagnetic waves, converting a spherical wave or a cylindrical wave of a point source or a line source into a plane wave.
  • the phase velocity of the electromagnetic wave is adjusted by appropriately designing the lens surface shape and the refractive index n to obtain a plane wavefront on the radiation aperture.
  • the lens can be made of natural medium (n>1) or artificial medium (n>1 or n ⁇ 1) composed of metal mesh or metal plate. According to the existing lens antenna theory, the size of the lens surface When it is much larger than the size of the radio wavelength, electromagnetic waves can be processed in a physical optical manner.
  • the fluctuation characteristics of the electromagnetic wave are neglected, and the electromagnetic wave is considered as a cluster of rays to be irradiated onto the mirror surface, and the reflection and refraction formula in the optical theory is applied to process the electromagnetic wave passing through the lens.
  • the electromagnetic wave incident on the fisheye lens can be imagined as an optical ray, which is found in the focal plane of the fisheye lens by optical refraction theory.
  • the point of arrival of this electromagnetic wave When the receiving antenna is covered in the focal plane, the system can receive electromagnetic waves from different directions in the space, but since any receiving antenna has an area, each receiving antenna corresponds to a spatial angle. It is not a spatial point, so that the receiving antenna forms a one-to-one correspondence with different azimuths in the space.
  • the charger interface for current electronic products has various problems and different standards. When the charger is repeatedly plugged and unplugged, it is easy to cause interface wear, so the life of the charging interface becomes one of the important factors that restrict the service life of electronic products.
  • the use of wireless charging to charge electronic products is gradually recognized by people, which has the following advantages: no socket and cable binding, more convenient charging, more convenient to carry; no charger interface, charging of different brands and different products
  • the interface is unified; no wire connectors are required, and the size of the mobile electronic device is further reduced; since there is no metal contact or opening on the device casing, the waterproofness of the electronic product can be enhanced.
  • the wireless charging technology is derived from the wireless energy transmission technology, and the manner of wireless charging can be roughly divided into four types: electromagnetic induction type, magnetic field resonance type, electric field coupling type, and radio wave type.
  • the radio wave type captures the radio wave energy rebounded from the wall through the microwave transmitting device and the microwave receiving device, and maintains a stable DC voltage while performing adjustment with the load to achieve wireless charging.
  • the existing radio wave type wireless charging has a long energy transmission distance, a flexible position of the power receiving device, and can realize mobile charging. But its shortcomings are also quite obvious: the energy at the transmitting end is divergent in all directions, resulting in low energy utilization efficiency.
  • the positioning and navigation technology represented by GPS and Beidou is a macroscopic positioning, which cannot be applied to the microscopic precise positioning of indoor equipment and personnel.
  • the existing indoor positioning and navigation technology is that the terminal device calculates the position by superimposing the received Wi-Fi hotspot signal, that is, installing a plurality of positioning devices like wireless routers in the building, so that the transmitted signals can be covered. Every corner of the building.
  • the existing positioning system needs to place a plurality of positioning devices like wireless routers in different locations in a certain area, and the space occupancy rate is too high, and when a certain positioning device fails to work normally, the positioning device cannot be normally positioned. Therefore, there is a need for a new technical solution to solve the problems faced by the prior art.
  • the object of the present invention is to provide a radio wave positioning system, a charging and positioning method based on a fisheye lens, which can use a receiving antenna to locate multiple users through a fisheye lens, thereby saving space occupation rate, and the terminal device does not need to receive the receiving device.
  • the signals sent by multiple positioning devices are superimposed and calculated, which simplifies the algorithm process of the terminal device.
  • the invention can also be applied to the charging of radio waves to realize the mobile charging of the medium power and the low power device, the charging power is far greater than the energy of the WIFI, and the directional propagation of the energy is realized on the basis of preserving the advantages of the radio wave charging. Thereby improving energy efficiency.
  • the technical solution of the present invention is: a fisheye lens-based radio wave positioning system, the positioning system includes a spatial positioning module and a signal control module, and the spatial positioning module includes a fisheye lens, an antenna end face, a receiving antenna, a receiver; the fisheye lens is provided with a convex lens group and a concave lens group, the convex lens group and the concave lens group are sequentially disposed; the antenna end surface is disposed at a focal plane of the fisheye lens; and the receiving antenna is disposed At the upper end of the antenna end face, the number of receiving antennas is at least one, and the receiving antenna forms an antenna array; the number of the receiver channels corresponds to the receiving antenna, the receiver is connected to the receiving antenna, and the receiver connects the signal a control module; the signal control module and the spatial positioning module establish a connection relationship through the receiver.
  • a fisheye lens-based radio wave positioning system as described above the positioning system is connected with a positioning terminal, the positioning terminal is provided with a communication module, and the positioning terminal establishes a connection relationship with the spatial positioning module through the communication module .
  • the positioning terminal can be a handheld device such as a mobile phone, a computer, etc., or it can be a simple RFID.
  • the azimuth information of the terminal device can be determined after the radio wave emitted by the positioning device is captured by the positioning system.
  • the positioning system is connected with a power transmission module, and when the radio wave positioning system is integrated with the power transmission module, radio wave type wireless charging can be realized, specifically,
  • the power transmitting module includes a first transmitting antenna, a radio frequency power combiner and a power amplifier, and a transmitting space angle of the first transmitting antenna is in a one-to-one correspondence with a spatial angle corresponding to the receiving antenna, and the number of the first transmitting antenna is at least one.
  • a plurality of first transmit antennas form a transmit antenna array;
  • the radio frequency power combiner establishes a connection relationship with the power amplifier;
  • the power amplifier establishes a connection relationship with the first transmit antenna; and
  • the positioning system is connected with a charging terminal,
  • the charging terminal is provided with a second transmitting wire, a power receiver;
  • the second transmitting antenna is used by the charging terminal to transmit a charging signal request to the positioning system, and the power receiver is used by the charging terminal to receive the power transmitting module to transmit Charging electromagnetic waves.
  • the beamwidth of the radiation pattern of the narrow beam angle antenna is small, and the narrow beam angle antenna can effectively overcome multipath and co-channel interference.
  • a one-to-one correspondence between the antenna and the spatial azimuth can be achieved by filling the receiving antenna with the focal plane of the fisheye lens, so that the positioning system can be used as the origin to divide the space into several regions, each region corresponding to a receiving antenna. Corresponding azimuth. Radio waves from different areas pass through the fisheye lens and are received by different receiving antennas and connected to the receiver at the back end.
  • the receiver performs functions such as frequency conversion, baseband signal processing and the like. If the signal is a positioning request signal, it is sent to the FPGA, and if it is an interference signal, it will not respond.
  • a fisheye lens-based radio wave positioning system as described above, the receiver comprising a receiving demodulation chip, the receiver establishing a connection relationship with the receiving antenna by receiving a demodulation chip, and receiving a demodulation chip for receiving
  • the electromagnetic wave signal received by the antenna is subjected to demodulation processing.
  • Receiving a demodulation chip belongs to the prior art, and demodulation is a process of recovering a message from a modulated signal carrying a message.
  • a transmitting end modulates a carrier with a message to be transmitted, and generates a carrier. The signal of the message, the receiver must recover the transmitted message in order to be utilized.
  • the invention also provides a radio wave positioning method based on a fisheye lens, wherein the positioning method adopts the above positioning system, and the positioning method comprises the following steps:
  • Step 1 arranging the fisheye lens in a certain space area, and setting the receiving antenna on the focal plane of the fisheye lens;
  • Step 2 The positioning terminal transmits a radio wave, and the radio wave is transmitted through the fisheye lens to a receiving antenna corresponding to the azimuth of the positioning terminal on the focal plane;
  • Step 3 The signal control module determines information about the azimuth angle of the positioning terminal according to the spatial azimuth information corresponding to the receiving antenna that receives the radio wave.
  • the positioning terminal includes but is not limited to a mobile phone, a computer or a radio frequency tag.
  • the present invention also provides a method for charging a radio wave based on a fisheye lens, the charging method adopting the above positioning system, and the charging method comprises the following steps:
  • Step 1 arranging the fisheye lens in a certain spatial region, setting the receiving antenna on the focal plane of the fisheye lens, and receiving the electromagnetic wave signal at the corresponding spatial angle in the spatial region by using the receiving antenna;
  • Step 2 The charging terminal in a certain azimuth of the space region transmits a radio wave request of the charging signal, and the radio wave is transmitted to the corresponding receiving antenna on the focal plane via the fisheye lens;
  • Step 3 The receiver corresponding to the receiving antenna demodulates the charging signal radio wave by receiving the demodulation chip, and transmits the charging signal request of the terminal device to the signal control module;
  • Step 4 The signal control module turns on a transmitting antenna corresponding to the azimuth angle of the charging terminal according to the charging request fed back by the receiver;
  • Step 5 The transmitting antenna transmits energy to the charging device in the form of radio waves and is received by the power receiver of the charging device to realize charging of the charging device.
  • a fisheye lens-based radio wave charging method as described above wherein in the first step, the receiving antenna forms a spatial correspondence between the fisheye lens and the spatial region, that is, each receiving antenna corresponds to a certain orientation in the spatial region.
  • the signal control module determines the radio wave signal transmitted by the charging terminal, and when it is determined to be the charging request signal, the transmitting antenna power transmission link corresponding to the charging terminal is turned on.
  • the charging method can realize mobile charging of the medium power and the small power device, and the charging power is far greater than the energy of the WIFI; the directional charging of the mobile device can be realized, the energy is concentrated in the space of the charging device, and the energy utilization rate is improved;
  • the system realizes spatial positioning, which is much lower than the cost of the phased array system; the charging distance is far, and the charging distance is increased by more than three times compared with the mainstream magnetic field resonant charging method.
  • FIG. 1 is a schematic diagram of a radio wave positioning system based on a fisheye lens
  • FIG. 2 is a schematic diagram of a fisheye lens-based radio wave positioning system to which a positioning terminal is connected;
  • FIG. 3 is a schematic diagram of a fisheye lens-based radio wave positioning system to which a charging terminal is connected;
  • FIG. 4 is a schematic diagram of a radio wave positioning method based on a fisheye lens
  • FIG. 5 is a schematic diagram of a radio wave charging method based on a fisheye lens
  • Fig. 6 is a schematic diagram of a radio wave charging process based on a fisheye lens.
  • a fisheye lens-based radio wave positioning system includes a spatial positioning module 1 and a signal control module 2, wherein the spatial positioning module 1 includes a fisheye lens 3 and an antenna end face 4. a receiving antenna 5 and a receiver 6; the fisheye lens 3 is provided with a convex lens group 7 and a concave lens group 8, the convex lens group 7 and the concave lens group 8 are sequentially disposed; the antenna end surface 4 is disposed at a focal plane of the fisheye lens; and the receiving antenna 5 is disposed At the upper end of the antenna end face 4, the number of receiving antennas 5 is at least one, and the receiving antenna 5 forms an antenna array; the number of receivers 6 corresponds to the receiving antenna 5, the receiver 6 is connected to the receiving antenna 5, and the receiver 6 is connected to the signal control module 2 The signal control module 2 and the spatial positioning module 1 establish a connection relationship through the receiver 6.
  • the positioning system is connected to the positioning terminal 9.
  • the positioning terminal 9 is provided with a communication module 10, and the positioning terminal 9 establishes a connection relationship with the spatial positioning module 1 through the communication module 10.
  • the positioning terminal 9 can be a handheld device such as a mobile phone, a computer, etc., or it can be a simple RFID.
  • the azimuth information of the terminal device can be determined after the radio wave emitted by the positioning device is captured by the positioning system.
  • the signal control module 2 uses an MCU or an FPGA, and the signal control module 2 is used by the MCU or the FPGA to establish a one-to-one correspondence between the positioning terminal 9 or the charging terminal and the receiving antenna 5 through the fisheye lens 3 to establish a spatial azimuth.
  • the receiver 6 includes a receiving demodulation chip, and the receiver 6 establishes a connection relationship with the receiving antenna 5 through the receiving demodulating chip, and the receiving demodulating chip is configured to perform demodulation processing on the electromagnetic wave signal received by the receiving antenna 5.
  • Receiving a demodulation chip belongs to the prior art, and demodulation is a process of recovering a message from a modulated signal carrying a message.
  • a transmitting end modulates a carrier with a message to be transmitted, and generates a carrier. The signal of the message, the receiver must recover the transmitted message in order to be utilized.
  • a fisheye lens-based radio wave positioning system connected with a charging terminal includes a spatial positioning module 1 and a signal control module 2, wherein the spatial positioning module 1 includes a fisheye lens. 3.
  • the receiving antenna 5 is disposed at the upper end of the antenna end face 4, the number of receiving antennas 5 is at least one, and the receiving antenna 5 forms an antenna array; the number of receivers 6 corresponds to the receiving antenna 5, the receiver 6 is connected to the receiving antenna 5, and the receiver 6
  • the signal control module 2 is connected; the signal control module 2 and the spatial positioning module 1 establish a connection relationship through the receiver 6.
  • the positioning system is connected to the power transmitting module 11.
  • the power transmitting module 11 includes a first transmitting antenna 12, a radio frequency power combiner 13 and a power amplifier 14.
  • the transmitting space angle of the first transmitting antenna 12 corresponds to the receiving antenna 5.
  • the spatial angles form a one-to-one correspondence, the number of the first transmitting antennas 12 is at least one, and a plurality of first transmitting antennas 12 form a transmitting antenna array;
  • the RF power combiner 13 establishes a connection relationship with the power amplifier 14;
  • the power amplifier 14 and the first A transmitting antenna 12 establishes a connection relationship;
  • the positioning system is connected with a charging terminal 17, the charging terminal 17 is provided with a second transmitting antenna 15, and a power receiver 16; and the second transmitting antenna 15 is used for the charging terminal 17 to transmit a charging signal request to the positioning system.
  • the power receiver 16 is used by the charging terminal 17 to receive the charging electromagnetic wave emitted by the power transmitting module 11.
  • the first transmit antenna 12 employs a narrow beam angle antenna.
  • the beamwidth of the radiation pattern of the narrow beam angle antenna is small, and the pointing accuracy of the narrow beam angle antenna depends on the temperature gradient of the antenna and the support system bracket.
  • the narrow beam angle antenna can effectively overcome multipath and co-channel interference.
  • a one-to-one correspondence between the antenna and the spatial azimuth can be achieved by filling the receiving antenna 5 on the focal plane of the fisheye lens 3, so that the positioning system can be used as the origin to divide the space into several regions, each region corresponding to one The azimuth corresponding to the receiving antenna 5.
  • Radio waves emitted from different areas pass through the fisheye lens 3 and are received by different receiving antennas 5 and connected to the receiver 6 at the rear end.
  • the receiver 6 performs functions such as frequency conversion, baseband signal processing and the like. If the signal is a positioning request signal, it is sent to the FPGA, and if it is an interference signal, it will not respond.
  • the signal control module 2 uses an MCU or an FPGA, and the signal control module 2 is used by the MCU or the FPGA to establish a one-to-one correspondence between the first transmitting antenna 12 and the receiving antenna 5 through the fisheye lens 3 to establish a spatial azimuth.
  • the receiver 6 includes a receiving demodulation chip, and the receiver 6 establishes a connection relationship with the receiving antenna 5 through the receiving demodulating chip, and the receiving demodulating chip is configured to demodulate the electromagnetic wave signal received by the receiving antenna 5.
  • Receiving a demodulation chip belongs to the prior art, and demodulation is a process of recovering a message from a modulated signal carrying a message.
  • a transmitting end modulates a carrier with a message to be transmitted, and generates a carrier. The signal of the message, the receiver must recover the transmitted message in order to be utilized.
  • the radio wave positioning system connected with the charging terminal can realize the mobile charging of the center power and the small power device, and the charging power is far greater than the energy of the WIFI; the directional charging of the mobile device can be realized, and the energy is concentrated in the space of the charging device, and the space is increased. Energy utilization rate; the use of lens system to achieve spatial positioning is much lower than the cost of phased array system; the charging distance is far, and the charging distance is increased by more than 3 times compared with the mainstream magnetic field resonant charging method.
  • a method for positioning a radio wave based on a fisheye lens is provided.
  • the positioning method adopts the above positioning system, and the positioning method includes the following steps:
  • S1 arranging a fisheye lens in a certain space area, and setting a receiving antenna on a focal plane of the fisheye lens;
  • the positioning terminal transmits a radio wave, and the radio wave is transmitted through the fisheye lens to a receiving antenna corresponding to the azimuth of the positioning terminal on the focal plane;
  • the signal control module determines information about the azimuth of the positioning terminal according to the spatial azimuth information corresponding to the receiving antenna that receives the radio wave.
  • the positioning terminal includes, but is not limited to, a mobile phone, a computer, or a radio frequency tag.
  • a radio wave charging method based on a fisheye lens is provided.
  • the charging method adopts the above positioning system, and the charging method includes the following steps:
  • N1 arranging a fisheye lens in a certain spatial region, and setting a receiving antenna on a focal plane of the fisheye lens, and receiving an electromagnetic wave signal at a corresponding spatial angle in the spatial region by using a receiving antenna;
  • the charging terminal in a certain azimuth of the spatial region transmits a charging wave radio wave request, and the radio wave is transmitted to the corresponding receiving antenna on the focal plane via the fisheye lens;
  • the receiver corresponding to the receiving antenna demodulates the charging signal radio wave by receiving the demodulation chip, and transmits the charging signal request of the terminal device to the signal control module;
  • the signal control module turns on a transmitting antenna corresponding to an azimuth angle of the charging terminal according to the charging request fed back by the receiver;
  • the transmitting antenna transmits energy to the charging device in the form of radio waves and is received by the power receiver of the charging device to realize charging of the charging device.
  • the receiving antenna in N1 forms a spatial correspondence between the fisheye lens and the spatial region in a one-to-one correspondence, that is, each receiving antenna corresponds to a certain azimuth angle in the spatial region; in N4, the signal control module
  • the radio wave signal transmitted by the charging terminal is judged.
  • the transmitting antenna power transmission link corresponding to the charging terminal is turned on.
  • the transmitting link of the power transmitting module is turned off; when the receiving and demodulating chip of the spatial positioning module receives and determines When the signal transmitted by the terminal device is the charging request signal, the signal control module turns on the corresponding power transmission link to charge the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Aerials With Secondary Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开一种基于鱼眼透镜的无线电波定位系统、定位及充电方法,空间定位模块包括鱼眼镜头、天线端面、接收天线、接收机;鱼眼镜头设有凸透镜组和凹透镜组,凸透镜组和凹透镜组依次设置;天线端面设置在鱼眼透镜的焦平面处;接收天线设置在天线端面上端,接收天线数量至少为1个,接收天线形成天线阵列;接收机通道的数量对应于接收天线,接收机与接收天线连接,接收机连接信号控制模块;信号控制模块与空间定位模块通过接收机建立连接关系。本发明通过鱼眼透镜利用接收天线可对多用户进行定位,节省空间占用率,本发明还可以应用到无线电波的充电中,实现对中功率与小功率设备的移动充电,实现能量的定向传播,从而提高能量利用率。

Description

基于鱼眼透镜的无线电波定位系统、定位及充电方法 技术领域
本发明涉及无线电波应用技术领域,具体涉及一种基于鱼眼透镜的无线电波定位系统、充电及定位方法。
背景技术
鱼眼镜头是一种极端的广角镜头,也称全景镜头,其视觉效果类似于鱼在水中观察水面上的事物鱼眼透镜应用原理。在工程上视角范围超过140度的镜头即统称为鱼眼镜头,实际中也有视角超过甚至达到270度的镜头。鱼眼镜头成像的特点之一就是能够正确描述三维立体空间里的目标点在成像平面上的像点,并且能够准确建立对应关系,在空间中任意一点都可以通过鱼眼透镜映射到焦平面上对应的成像点。传统的鱼眼镜头通常使用在光学成像领域,如摄像镜头,其作为一种超大视场、大孔径的光学成像系统,一般采用两块或三块负弯月形透镜作为前光组,将物方超大视场压缩至常规镜头要求的视场范围,从而使普通图像或线条发生扭曲和弯曲,由此获取与其他镜头拍摄效果不同的图像。目前尚无鱼眼镜头用于室内定位及无线充电技术领域的记载。
理论上来讲,透镜天线作为一种能够通过电磁波、将点源或线源的球面波或柱面波转换为平面波从而获得笔形、扇形或其他形状波束的天线。通过合适设计透镜表面形状和折射率n,调节电磁波的相速以获得辐射口径上的平面波前。透镜可用天然介质(n>1)制成,也可用由金属网或金属板等构成的人造介质(n>1或n<1)制成,根据现有的透镜天线理论,当透镜面的尺寸远大于无线电波长的尺寸时,可以用物理光学的方式来处理电磁波。即忽略电磁波的波动特性,将电磁波考虑为一簇一簇 的射线照射到镜面上,同时应用光学理论中反射与折射的公式来处理经过透镜的电磁波。
结合以上两种理论,将鱼眼透镜的尺寸做成远远大于无线电波长的时候,即可将入射到鱼眼镜头的电磁波设想为光学射线,用光学折射理论在鱼眼透镜的焦平面中找到此电磁波的到达点。在焦平面上布满接收天线,则此系统就可以接收到空间中不同方位射来的电磁波,但是由于任何一个接收天线都是有面积的,因而每一个接收天线都对应的是一个空间角而不是空间点,这样接收天线与空间中不同方位角形成一一对应关系。
针对当前电子产品的充电器接口多种多样,标准不一的问题。充电器在反复插拔的情况下,很容易造成接口磨损,因而充电接口的寿命成为制约电子产品使用寿命的重要因素之一。目前,使用无线充电的方式给电子产品充电逐渐被人们所认可,其具有以下优点:不受插座和线缆束缚,充电更方便、携带更方便;无需充电器接口,不同品牌、不同产品的充电接口得以统一;不需要电线连接器,使移动类电子设备体积进一步缩小;由于设备外壳上没有金属接点或者开口,可以增强电子产品的防水性。
无线充电技术源于无线电能传输技术,实现无线充电的方式大致可分为四种:电磁感应式、磁场共振式、电场耦合式、无线电波式。其中无线电波式通过微波发射装置和微波接收装置,捕捉到从墙壁弹回的无线电波能量,在随负载做出调整的同时保持稳定的直流电压实现无线充电。现有的无线电波式无线充电虽然能量传输距离远、电能接收设备位置摆放灵活、可实现移动充电等。但其缺点也相当明显:即发射端的能量是向四面八方发散的,导致其能量利用效率很低。
目前,随着经济的发展,城市中大型超市或购物中心越来越多,在大型超市或购物中心进行消费时,经常会遇到同伴走散或孩子丢失的现象。当前以GPS、北斗为代表的定位导航技术为宏观定位,无法应用于室内设备和人员的微观精确定位。现有的室内定位导航技术为终端设备 将接收到的Wi-Fi热点信号,通过叠加计算出位置,即在建筑物内安装若干个像无线路由器一样的定位设备,使其发射的信号能覆盖到建筑物的各个角落。现有的定位系统需要在一定区域内的不同位置放置若干个像无线路由器一样的定位设备,空间占用率过高,且当某一个定位设备无法正常工作时往往无法正常定位。因此,亟需一种新的技术方案来解决现有技术所面临的问题。
发明内容
本发明的目的在于提供一种基于鱼眼透镜的无线电波定位系统、充电及定位方法,通过鱼眼透镜利用接收天线可对多用户进行定位,节省空间占用率,且终端设备不需要对接收到的多个定位设备发出的信号进行叠加计算,简化了终端设备的算法过程。同时本发明还可以应用到无线电波的充电中,实现对中功率与小功率设备的移动充电,充电功率远远大于WIFI的能量,在保留无线电波充电优点的基础上,实现能量的定向传播,从而提高能量利用率。
为实现上述目的,本发明的技术方案为:一种基于鱼眼透镜的无线电波定位系统,所述定位系统包括空间定位模块、信号控制模块,所述空间定位模块包括鱼眼镜头、天线端面、接收天线、接收机;所述鱼眼镜头设有凸透镜组和凹透镜组,所述凸透镜组和凹透镜组依次设置;所述天线端面设置在所述鱼眼透镜的焦平面处;所述接收天线设置在所述天线端面上端,接收天线数量至少为1个,接收天线形成天线阵列;所述接收机通道的数量对应于所述接收天线,接收机与所述接收天线连接,接收机连接所述信号控制模块;所述信号控制模块与所述空间定位模块通过所述接收机建立连接关系。
如上所述的一种基于鱼眼透镜的无线电波定位系统,所述定位系统连接有定位终端,所述定位终端设有通讯模块,定位终端通过所述通讯模块与所述空间定位模块建立连接关系。定位终端可以是一个手持设备 例如手机、电脑等等,也可以是一个简单的RFID。定位设备发出的无线电波被定位系统捕捉到后即可确定终端设备的方位角信息。
如上所述的一种基于鱼眼透镜的无线电波定位系统,所述定位系统连接有功率发射模块,当将无线电波定位系统整合功率发射模块时,可以实现无线电波式无线充电,具体的,所述功率发射模块包括第一发射天线、射频功率合成器和功率放大器,所述第一发射天线的发射空间角度与接收天线对应的空间角度形成一一对应关系,第一发射天线数量至少为1个,若干第一发射天线之间形成发射天线阵列;所述射频功率合成器与功率放大器建立连接关系;所述功率放大器与所述第一发射天线建立连接关系;所述定位系统连接有充电终端,所述充电终端设有第二发射电线、功率接收器;所述第二发射天线用于充电终端向所述定位系统发射充电信号请求,所述功率接收器用于充电终端接收所述功率发射模块发射的充电电磁波。
如上所述的一种基于鱼眼透镜的无线电波定位系统,所述第一发射天线采用窄波束角天线。窄波束角天线的辐射方向图的波束宽度很小,采用窄波束角天线可以有效地克服多径和同道干扰。
在鱼眼镜头的焦平面上布满接收天线即可实现天线与空间方位角的一一对应关系,这样以定位系统为原点可将空间分割为若干个区域,每个区域对应着一只接收天线对应的方位角。不同区域发出的无线电波经过鱼眼镜头后被不同的接收天线接收到并连接至后端的接收机,接收机完成变频、基带信号处理等等功能。若此信号为定位请求信号则送至FPGA,若为干扰信号则不予回应。
如上所述的一种基于鱼眼透镜的无线电波定位系统,所述信号控制模块使用MCU或FPGA,信号控制模块用于所述MCU或FPGA将第一发射天线与接收天线通过所述鱼眼镜头建立空间方位角的一一对应关系。
如上所述的一种基于鱼眼透镜的无线电波定位系统,所述接收机包括接收解调芯片,接收机通过接收解调芯片与所述接收天线建立连接关 系,接收解调芯片用于对接收天线接收到的电磁波信号进行解调处理。接收解调芯片属于现有技术,解调是从携带消息的已调信号中恢复消息的过程,在信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号,接收端必须恢复所传送的消息才能加以利用。
本发明还提供一种基于鱼眼透镜的无线电波定位方法,所述定位方法采用上述定位系统,所述定位方法包括以下步骤:
步骤一:在某一空间区域内布置鱼眼镜头,将接收天线设置在鱼眼镜头的焦平面上;
步骤二:定位终端发射无线电波,无线电波经鱼眼镜头传输到焦平面上对应于定位终端所处方位角的接收天线;
步骤三:信号控制模块根据接收到无线电波的接收天线对应的空间方位角信息确定定位终端所处方位角的信息。
如上所述的一种基于鱼眼透镜的无线电波定位方法,所述定位终端包含但不限于手机、电脑或射频标签。
本方案中只需要一个定位系统即可对多用户进行定位,节省空间占用率,且终端设备不需要对接收到的多个定位终端发出的信号进行叠加计算,简化了终端设备的算法过程。
此外,本发明还提供一种基于鱼眼透镜的无线电波充电方法,所述充电方法采用上述定位系统,所述充电方法包括以下步骤:
步骤一:在某一空间区域内布置鱼眼镜头,将接收天线设置在鱼眼镜头的焦平面上,利用接收天线接收该空间区域内对应空间角度上的电磁波信号;
步骤二:处于空间区域某一方位角内的充电终端发射充电信号无线电波请求,无线电波经鱼眼镜头传输到焦平面上对应的接收天线;
步骤三:接收天线对应的接收机通过接收解调芯片对充电信号无线电波进行解调处理,将终端设备的充电信号请求传输到信号控制模块;
步骤四:信号控制模块根据接收机反馈的充电请求,开启对应于充 电终端所处方位角的发射天线;
步骤五:发射天线向充电设备以无线电波的形式发射能量并被充电设备的功率接收器接收,实现充电设备的充电。
如上所述的一种基于鱼眼透镜的无线电波充电方法,所述步骤一中接收天线通过鱼眼镜头与空间区域形成空间方位一一对应关系,即每一个接收天线对应于空间区域内一定方位角;所述步骤四中,信号控制模块对充电终端发射的无线电波信号进行判断,当判断为充电请求信号时,对应于充电终端的发射天线功率发射链路开启。
本充电方法可以实现对中功率与小功率设备的移动充电,充电功率远远大于WIFI的能量;可以实现对移动设备的定向充电,能量集中于充电设备所在区域空间,提高能量利用率;利用透镜系统实现空间定位,比起相控阵系统成本大大降低;充电距离远,比起主流的磁场共振式充电方式,充电距离提高3倍以上。
附图说明
图1为基于鱼眼透镜的无线电波定位系统示意图;
图2为连接有定位终端的基于鱼眼透镜的无线电波定位系统示意图;
图3为连接有充电终端的基于鱼眼透镜的无线电波定位系统示意图;
图4为基于鱼眼透镜的无线电波定位方法示意图;
图5为基于鱼眼透镜的无线电波充电方法示意图;
图6为基于鱼眼透镜的无线电波充电流程示意图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
如图1、图2所示,提供一种基于鱼眼透镜的无线电波定位系统,定位系统包括空间定位模块1、信号控制模块2,其中,空间定位模块1包括鱼眼镜头3、天线端面4、接收天线5、接收机6;鱼眼镜头3设有凸透镜组7和凹透镜组8,凸透镜组7和凹透镜组8依次设置;天线端面4设置在鱼眼透镜的焦平面处;接收天线5设置在天线端面4上端,接收天线5数量至少为1个,接收天线5形成天线阵列;接收机6的数量对应于接收天线5,接收机6与接收天线5连接,接收机6连接信号控制模块2;信号控制模块2与空间定位模块1通过接收机6建立连接关系。
本实施例中,定位系统连接有定位终端9,定位终端9设有通讯模块10,定位终端9通过通讯模块10与空间定位模块1建立连接关系。定位终端9可以是一个手持设备例如手机、电脑等等,也可以是一个简单的RFID。定位设备发出的无线电波被定位系统捕捉到后即可确定终端设备的方位角信息。
信号控制模块2使用MCU或FPGA,信号控制模块2用于MCU或FPGA将定位终端9或充电终端与接收天线5通过鱼眼镜头3建立空间方位角的一一对应关系。
接收机6包括接收解调芯片,接收机6通过接收解调芯片与接收天线5建立连接关系,接收解调芯片用于对接收天线5接收到的电磁波信号进行解调处理。接收解调芯片属于现有技术,解调是从携带消息的已调信号中恢复消息的过程,在信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号,接收端必须恢复所传送的消息才能加以利用。
实施例2
如图1、图3所示,提供一种连接有充电终端的基于鱼眼透镜的无线电波定位系统,定位系统包括空间定位模块1、信号控制模块2,其中,空间定位模块1包括鱼眼镜头3、天线端面4、接收天线5、接收机6;鱼眼镜头3设有凸透镜组7和凹透镜组8,凸透镜组7和凹透镜组8依次 设置;天线端面4设置在鱼眼透镜的焦平面处;接收天线5设置在天线端面4上端,接收天线5数量至少为1个,接收天线5形成天线阵列;接收机6的数量对应于接收天线5,接收机6与接收天线5连接,接收机6连接信号控制模块2;信号控制模块2与空间定位模块1通过接收机6建立连接关系。
本实施例中,定位系统连接有功率发射模块11,功率发射模块11包括第一发射天线12、射频功率合成器13和功率放大器14,第一发射天线12的发射空间角度与接收天线5对应的空间角度形成一一对应关系,第一发射天线12数量至少为1个,若干第一发射天线12之间形成发射天线阵列;射频功率合成器13与功率放大器14建立连接关系;功率放大器14与第一发射天线12建立连接关系;定位系统连接有充电终端17,充电终端17设有第二发射天线15、功率接收器16;第二发射天线15用于充电终端17向定位系统发射充电信号请求,功率接收器16用于充电终端17接收功率发射模块11发射的充电电磁波。
第一发射天线12采用窄波束角天线。窄波束角天线的辐射方向图的波束宽度很小,窄波束角天线的指向精度,取决于天线和馈电系统支架的温度梯度,采用窄波束角天线可以有效地克服多径和同道干扰。在鱼眼镜头3的焦平面上布满接收天线5即可实现天线与空间方位角的一一对应关系,这样以定位系统为原点可将空间分割为若干个区域,每个区域对应着一只接收天线5对应的方位角。不同区域发出的无线电波经过鱼眼镜头3后被不同的接收天线5接收到并连接至后端的接收机6,接收机6完成变频、基带信号处理等等功能。若此信号为定位请求信号则送至FPGA,若为干扰信号则不予回应。
信号控制模块2使用MCU或FPGA,信号控制模块2用于MCU或FPGA将第一发射天线12与接收天线5通过鱼眼镜头3建立空间方位角的一一对应关系。
接收机6包括接收解调芯片,接收机6通过接收解调芯片与接收天线5建立连接关系,接收解调芯片用于对接收天线5接收到的电磁波信 号进行解调处理。接收解调芯片属于现有技术,解调是从携带消息的已调信号中恢复消息的过程,在信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号,接收端必须恢复所传送的消息才能加以利用。
连接有充电终端的无线电波定位系统可以实现对中功率与小功率设备的移动充电,充电功率远远大于WIFI的能量;可以实现对移动设备的定向充电,能量集中于充电设备所在区域空间,提高能量利用率;利用透镜系统实现空间定位,比起相控阵系统成本大大降低;充电距离远,比起主流的磁场共振式充电方式,充电距离提高3倍以上。
实施例3
如图4所示,本实施例中提供一种基于鱼眼透镜的无线电波定位方法,定位方法采用上述定位系统,定位方法包括以下步骤:
S1:在某一空间区域内布置鱼眼镜头,将接收天线设置在鱼眼镜头的焦平面上;
S2:定位终端发射无线电波,无线电波经鱼眼镜头传输到焦平面上对应于定位终端所处方位角的接收天线;
S3:信号控制模块根据接收到无线电波的接收天线对应的空间方位角信息确定定位终端所处方位角的信息。
基于鱼眼透镜的无线电波定位方法中,定位终端包括但不限于手机、电脑或射频标签。
本方案中只需要一个定位系统即可对多用户进行定位,节省空间占用率,且终端设备不需要对接收到的多个定位终端发出的信号进行叠加计算,简化了终端设备的算法过程。
实施例4
如图5所示,本实施例中提供一种基于鱼眼透镜的无线电波充电方法,充电方法采用上述定位系统,充电方法包括以下步骤:
N1:在某一空间区域内布置鱼眼镜头,将接收天线设置在鱼眼镜头 的焦平面上,利用接收天线接收该空间区域内对应空间角度上的电磁波信号;
N2:处于空间区域某一方位角内的充电终端发射充电信号无线电波请求,无线电波经鱼眼镜头传输到焦平面上对应的接收天线;
N3:接收天线对应的接收机通过接收解调芯片对充电信号无线电波进行解调处理,将终端设备的充电信号请求传输到信号控制模块;
N4:信号控制模块根据接收机反馈的充电请求,开启对应于充电终端所处方位角的发射天线;
N5:发射天线向充电设备以无线电波的形式发射能量并被充电设备的功率接收器接收,实现充电设备的充电。
基于鱼眼透镜的无线电波充电方法中,N1中接收天线通过鱼眼镜头与空间区域形成空间方位一一对应关系,即每一个接收天线对应于空间区域内一定方位角;N4中,信号控制模块对充电终端发射的无线电波信号进行判断,当判断为充电请求信号时,对应于充电终端的发射天线功率发射链路开启。
如图6所示,当空间定位模块的接收解调芯片接收并判断充电终端传输的信号不是充电请求信号时,功率发射模块的发射链路关闭;当空间定位模块的接收解调芯片接收并判断终端设备传输的信号是充电请求信号时,信号控制模块开启对应的功率发射链路对终端设备进行充电。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 一种基于鱼眼透镜的无线电波定位系统,其特征在于:所述定位系统包括空间定位模块、信号控制模块,所述空间定位模块包括鱼眼镜头、天线端面、接收天线、接收机;所述鱼眼镜头设有凸透镜组和凹透镜组,所述凸透镜组和凹透镜组依次设置;所述天线端面设置在所述鱼眼透镜的焦平面处;所述接收天线设置在所述天线端面上端,接收天线数量至少为1个,接收天线形成天线阵列;所述接收机通道的数量对应于所述接收天线,接收机与所述接收天线连接,接收机连接所述信号控制模块;所述信号控制模块与所述空间定位模块通过所述接收机建立连接关系。
  2. 根据权利要求1所述的一种基于鱼眼透镜的无线电波定位系统,其特征在于:所述定位系统连接有定位终端,所述定位终端设有通讯模块,定位终端通过所述通讯模块与所述空间定位模块建立连接关系。
  3. 根据权利要求1所述的一种基于鱼眼透镜的无线电波定位系统,其特征在于:
    所述定位系统连接有功率发射模块,所述功率发射模块包括第一发射天线、射频功率合成器和功率放大器,所述第一发射天线的发射空间角度与接收天线对应的空间角度形成一一对应关系,第一发射天线数量至少为1个,若干第一发射天线之间形成发射天线阵列;所述射频功率合成器与功率放大器建立连接关系;所述功率放大器与所述第一发射天线建立连接关系;
    所述定位系统连接有充电终端,所述充电终端设有第二发射电线、功率接收器;所述第二发射天线用于充电终端向所述定位系统发射充电信号请求,所述功率接收器用于充电终端接收所述功率发射模块发射的充电电磁波。
  4. 根据权利要求3所述的一种基于鱼眼透镜的无线电波定位系统,其特征在于:所述第一发射天线采用窄波束角天线。
  5. 根据权利要求1所述的一种基于鱼眼透镜的无线电波定位系统,其特征在于:所述信号控制模块使用MCU或FPGA,信号控制模块用于所述MCU或FPGA将第一发射天线与接收天线通过所述鱼眼镜头建立空间方位角的一一对应关系。
  6. 根据权利要求1所述的一种基于鱼眼透镜的无线电波定位系统,其特征在于:所述接收机包括接收解调芯片,接收机通过接收解调芯片与所述接收天线建立连接关系,接收解调芯片用于对接收天线接收到的电磁波信号进行解调处理。
  7. 一种基于鱼眼透镜的无线电波定位方法,所述定位方法采用如权利要求1至6任一项所述定位系统,其特征在于:所述定位方法包括以下步骤:
    步骤一:在某一空间区域内布置鱼眼镜头,将接收天线设置在鱼眼镜头的焦平面上;
    步骤二:定位终端发射无线电波,无线电波经鱼眼镜头传输到焦平面上对应于定位终端所处方位角的接收天线;
    步骤三:信号控制模块根据接收到无线电波的接收天线对应的空间方位角信息确定定位终端所处方位角的信息。
  8. 根据权利要求7所述的一种基于鱼眼透镜的无线电波定位方法,其特征在于:所述定位终端包含但不限于手机、电脑或射频标签。
  9. 一种基于鱼眼透镜的无线电波充电方法,所述充电方法采用如权利要求1至6任一项所述定位系统,其特征在于:所述充电方法包括以下步骤:
    步骤一:在某一空间区域内布置鱼眼镜头,将接收天线设置在鱼眼镜头的焦平面上,利用接收天线接收该空间区域内对应空间角度上的电磁波信号;
    步骤二:处于空间区域某一方位角内的充电终端发射充电信号无线电波请求,无线电波经鱼眼镜头传输到焦平面上对应的接收天线;
    步骤三:接收天线对应的接收机通过接收解调芯片对充电信号无线 电波进行解调处理,将终端设备的充电信号请求传输到信号控制模块;
    步骤四:信号控制模块根据接收机反馈的充电请求,开启对应于充电终端所处方位角的发射天线;
    步骤五:发射天线向充电设备以无线电波的形式发射能量并被充电设备的功率接收器接收,实现充电设备的充电。
  10. 根据权利要求9所述的一种基于鱼眼透镜的无线电波充电方法,其特征在于:所述步骤一中接收天线通过鱼眼镜头与空间区域形成空间方位一一对应关系,即每一个接收天线对应于空间区域内一定方位角;所述步骤四中,信号控制模块对充电终端发射的无线电波信号进行判断,当判断为充电请求信号时,对应于充电终端的发射天线功率发射链路开启。
PCT/CN2018/102674 2017-11-24 2018-08-28 基于鱼眼透镜的无线电波定位系统、定位及充电方法 WO2019100791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711194860.3A CN107911789B (zh) 2017-11-24 2017-11-24 基于鱼眼透镜的无线电波定位系统、定位及充电方法
CN201711194860.3 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019100791A1 true WO2019100791A1 (zh) 2019-05-31

Family

ID=61848353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102674 WO2019100791A1 (zh) 2017-11-24 2018-08-28 基于鱼眼透镜的无线电波定位系统、定位及充电方法

Country Status (2)

Country Link
CN (1) CN107911789B (zh)
WO (1) WO2019100791A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911789B (zh) * 2017-11-24 2019-12-24 李斌 基于鱼眼透镜的无线电波定位系统、定位及充电方法
JP6795637B2 (ja) * 2019-02-20 2020-12-02 ミネベアミツミ株式会社 アンテナ装置、及び、給電装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243930A1 (en) * 2008-03-26 2009-10-01 Quanta Computer Inc. Method of generating better communication direction
CN101694519A (zh) * 2009-09-28 2010-04-14 广州中沙桥汽车用品有限公司 一种定位系统及其定位方法
CN105144472A (zh) * 2013-04-02 2015-12-09 瑞典爱立信有限公司 无线电天线定位
CN107040048A (zh) * 2015-09-16 2017-08-11 艾诺格思公司 用于无线功率充电的系统和方法
CN107911789A (zh) * 2017-11-24 2018-04-13 李斌 基于鱼眼透镜的无线电波定位系统、定位及充电方法
CN207560353U (zh) * 2017-11-24 2018-06-29 李斌 基于鱼眼透镜的无线电波定位系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682674B (zh) * 2013-11-20 2016-04-13 许河秀 一种宽带三维半鱼透镜天线系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243930A1 (en) * 2008-03-26 2009-10-01 Quanta Computer Inc. Method of generating better communication direction
CN101694519A (zh) * 2009-09-28 2010-04-14 广州中沙桥汽车用品有限公司 一种定位系统及其定位方法
CN105144472A (zh) * 2013-04-02 2015-12-09 瑞典爱立信有限公司 无线电天线定位
CN107040048A (zh) * 2015-09-16 2017-08-11 艾诺格思公司 用于无线功率充电的系统和方法
CN107911789A (zh) * 2017-11-24 2018-04-13 李斌 基于鱼眼透镜的无线电波定位系统、定位及充电方法
CN207560353U (zh) * 2017-11-24 2018-06-29 李斌 基于鱼眼透镜的无线电波定位系统

Also Published As

Publication number Publication date
CN107911789A (zh) 2018-04-13
CN107911789B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
US9160064B2 (en) Spatially diverse antennas for a headset computer
CN103281711B (zh) 一种短距离无线宽带通信方法和系统
CN110429723B (zh) 无线充电微波电力传输系统
US11616523B2 (en) Wearable device antenna
CN107219517A (zh) 基于led可见光通信的手机安卓相机定位系统及其方法
CN107421506A (zh) 一种基于室内可见光通信的视觉追踪定位系统和方法
WO2019100791A1 (zh) 基于鱼眼透镜的无线电波定位系统、定位及充电方法
JP5579691B2 (ja) 位置標定システム、移動端末、及び位置標定システムの制御方法
EP0986837B1 (en) A portable communication device arranged for state-dependently controlling non-uniform selection patterns among possible antenna directivity configurations
TW200814429A (en) Dipolar antenna set
WO2018035209A1 (en) Antenna arrangement for wireless virtual reality headset
KR20210093338A (ko) Rtk 기지국 장치, 신호 상호 작용 시스템 및 방법
KR20190074120A (ko) 렌즈를 포함하는 빔포밍 안테나 모듈
KR20150060308A (ko) 이동 통신 안테나 방향 설정 방법 및 장치
CN113067151B (zh) 天线组件、电子设备及通信系统
CN207560353U (zh) 基于鱼眼透镜的无线电波定位系统
CN106130631A (zh) 一种可见光通信装置
WO2021195834A1 (zh) 天线系统以及控制方法、处理器、摄像系统
CN109193154A (zh) 一种毫米波圆极化多波束平板圆柱介质透镜天线
TW318969B (zh)
CN109714704A (zh) 一种基于智慧室分的室内定位方法及装置
CN102025030A (zh) 平面指向性天线
CN108366209A (zh) 基于lte无线专网的移动摄像机及监控系统
CN209001962U (zh) 一种rtk基站装置及其信号交互系统
US20170358870A1 (en) Dual dipole omnidirectional antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881545

Country of ref document: EP

Kind code of ref document: A1