WO2019100715A1 - 新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件 - Google Patents

新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件 Download PDF

Info

Publication number
WO2019100715A1
WO2019100715A1 PCT/CN2018/093186 CN2018093186W WO2019100715A1 WO 2019100715 A1 WO2019100715 A1 WO 2019100715A1 CN 2018093186 W CN2018093186 W CN 2018093186W WO 2019100715 A1 WO2019100715 A1 WO 2019100715A1
Authority
WO
WIPO (PCT)
Prior art keywords
room temperature
multiferromagnetic
neodymium iron
coupling material
novel
Prior art date
Application number
PCT/CN2018/093186
Other languages
English (en)
French (fr)
Inventor
于浦
陈天喆
杨树圳
周树云
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019100715A1 publication Critical patent/WO2019100715A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present application relates to the field of materials science, and in particular to a novel neodymium iron oxide room temperature multiferromagnetic coupling material, a preparation method and an electronic device.
  • Multiferroics is a material that has two or more of the three iron characteristics of (reverse) ferromagnetic, (reverse) ferroelectric, and iron bomb.
  • the magnetoelectric coupling material refers to the change of the ferroelectric state or the magnetic state of the material under the action of the external magnetic field or electric field, that is, the magnetic state of the material can be controlled by the electric field or the ferroelectric state of the external magnetic field control material can be realized.
  • the magnetoelectric coupling effect can be realized in single-phase multi-iron materials, especially at room temperature (300K) and above, the magnetoelectric coupling effect is even more numerous.
  • the limitation of single-phase multi-iron materials is that the general ferroelectric materials are mostly antiferromagnetic, while the antiferromagnetics do not show macroscopically or only show weak magnetic properties, and cannot achieve effective magnetic polarization characteristics of electric field regulation; In some other magnetic materials, ferroelectric properties are generated through special magnetic order, structure or charge sequence. Although the magnetoelectric coupling characteristics are relatively strong, the transition temperature is usually much lower than room temperature, which greatly restricts its practical application. Prospects. Therefore, the search for a multi-ferrous material having both ferroelectric and remarkable magnetism at room temperature and capable of achieving effective magnetoelectric coupling is a research wish of the industry in recent decades.
  • a novel neodymium iron oxide room temperature multiferromagnetic coupling material wherein the novel ferrocene oxygen room temperature multiferromagnetic coupling material has the structural formula AB x O y , wherein A is Bi, Pb, Sb, Sn or rare earth metal elements One or more, B is one or more of transition metal elements Fe, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Cu, the novel neodymium iron oxide room temperature multiferromagnetic
  • the coupling material has a hexagonal crystal structure.
  • the value of x is 4-6.5
  • the value of y is 7.5-10.5.
  • the rare earth metal element is one of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc. Or a variety.
  • the novel neodymium iron room temperature multiferromagnetic coupling material is BiFe x O y , x has a value range of 4-6.5, and y ranges from 7.5 to 10.5.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material has ferroelectricity at 800K or less and ferromagnetism or ferrimagnetism at 600K or less.
  • the ferroelectricity of the novel neodymium iron room temperature multiferromagnetic electrocoupling material coexists with ferromagnetic or ferrimagnetic in a temperature range of less than 600K.
  • the novel neodymium iron room temperature multiferromagnetic coupling material is BiFe 32/6 O 19/2 .
  • a novel method for preparing a neodymium iron oxide room temperature multiferromagnetic coupling material comprises the following steps:
  • A is one or more of Bi, Pb, Sb, Sn or rare earth metal elements
  • B is a transition metal element Fe, Sc, Ti, V, Cr, Mn, Co And one or more of Ni, Zn, and Cu, heating to cause the material containing the ABO component to generate a molecular beam, an atomic beam or a plasma;
  • the molecular beam, atomic beam or plasma is deposited onto the substrate to form the novel neodymium iron room temperature multiferromagnetic electrocoupling material.
  • the step of heating the material containing the ABO component to produce a molecular beam, an atomic beam or a plasma comprises:
  • the material containing the ABO component is heated by pulsed laser bombardment with an energy density of 0.3 J/cm 2 -3 J/cm 2 and a laser pulse frequency of 1-50 Hz.
  • an oxygen pressure of 0.01 Pa to 20 Pa is provided, and a substrate temperature of 500 to 750 ° C is maintained.
  • the present application provides a novel neodymium iron room temperature multiferromagnetic coupling material.
  • the novel ferrocene-oxygen room temperature multiferromagnetic electrocoupling material has a structural formula of AB x O y .
  • A is one or more of Bi, Pb, Sb, Sn or rare earth metal elements
  • B is one of transition metal elements Fe, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Cu Or a variety.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material constitutes a hexagonal crystal structure.
  • the value of x is 4-6.5
  • the value of y is 7.5-10.5.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material has both ferroelectricity and ferrimagneticity. Moreover, the novel neodymium iron room temperature multiferromagnetic coupling material can realize magnetoelectric coupling effect at room temperature and high temperature.
  • the present application also provides a novel preparation method of a neodymium iron oxide room temperature multiferromagnetic coupling material. The present application successfully prepares a single-phase novel neodymium iron room temperature multiferromagnetic coupling material that satisfies the above requirements.
  • the single-phase novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe x O y has a ferroelectric Curie temperature higher than 750K, and a ferrimagnetic transition temperature of up to 600K.
  • the magnetic polarization is as high as 0.5 Bohr magnets per iron, which is much higher than other room temperature multi-iron materials.
  • the magnetic polarization of BiFeO 3 is only about 0.02 Bohr magnets per iron.
  • the excellent ferroelectric and magnetic properties of the new room temperature multi-iron material have broad application prospects.
  • FIG. 1 is a flow chart of a method for preparing the novel neodymium iron room temperature multiferromagnetic coupling material according to an embodiment of the present application
  • 2a is a test fitting data of the Rutherford backscattering spectrum measurement of the novel neodymium iron room temperature multiferromagnetic electrocoupling material according to an embodiment of the present application;
  • 2b is a data of X-ray energy spectrum measurement of the novel neodymium iron room temperature multiferromagnetic electrocoupling material according to an embodiment of the present application;
  • 4a is a reciprocal space X-ray diffraction pattern of the novel neodymium iron room temperature multiferromagnetic electrocoupling material according to an embodiment of the present application;
  • 4b is a reciprocal space X-ray diffraction pattern of the novel neodymium iron oxide room temperature multiferromagnetic electrocoupling material in another direction perpendicular to one direction shown in FIG. 4a according to an embodiment of the present application;
  • 5a is a ⁇ scan spectrum of XRD of one surface of the novel neodymium iron room temperature multiferromagnetic coupling material provided by the embodiment of the present application;
  • 5b is a ⁇ scan spectrum of XRD of one surface of the novel neodymium iron room temperature multiferromagnetic electrocoupling material according to an embodiment of the present application;
  • 6a is an optical band gap measurement data of the novel neodymium iron room temperature multiferromagnetic coupling material according to an embodiment of the present application
  • 6b is a graph showing electrical conductivity versus temperature of the novel neodymium iron room temperature multiferromagnetic coupling material according to an embodiment of the present application;
  • 7A is an X-ray absorption spectrum of the novel neodymium iron room temperature multiferromagnetic coupling material provided by an embodiment of the present application and an absorption spectrum of other oxides of Fe element associated therewith;
  • 7b is an X-ray magnetic circular dichroism of the novel neodymium iron room temperature multiferromagnetic coupling material at room temperature according to an embodiment of the present application;
  • 8b is a magnetic moment temperature dependence curve and an X-ray magnetic circular dichroism temperature dependence curve of the novel neodymium iron room temperature multiferromagnetic coupling material according to an embodiment of the present application;
  • 9a is a signal curve of the X-ray linear two-chromatography of the novel neodymium iron room temperature multiferromagnetic electrocoupling material at 350K according to an embodiment of the present application;
  • FIG. 9b is a temperature variation curve of the absorption peak with an asterisk in FIG. 9a of the novel neodymium iron room temperature multiferromagnetic coupling material according to an embodiment of the present application;
  • 10a-10c are ferroelectric domain structures formed by the external electric field control of the novel neodymium iron room temperature multiferromagnetic electrocoupling material provided at an embodiment of the present invention.
  • the present application provides a novel neodymium iron room temperature multiferromagnetic electrocoupling material having a structural formula of AB x O y .
  • A is one or more of Bi, Pb, Sb, Sn or rare earth metal elements
  • B is one of transition metal elements Fe, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Cu Or a variety.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material constitutes a hexagonal crystal structure.
  • the value of x is 4-6.5
  • the value of y is 7.5-10.5.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material simultaneously has ferroelectricity and ferrimagnetism with a transition temperature higher than room temperature.
  • the novel neodymium iron room temperature multiferromagnetic coupling material can achieve a magnetoelectric coupling effect at room temperature.
  • Multiferroics is a material that has two or more of the three iron characteristics of ferromagnetic (or ferrimagnetic, antiferromagnetic), ferroelectric, and iron bombs.
  • ferroelectric and ferromagnetic (or ferrimagnetic, antiferromagnetic) two order parameters are coupled to each other, a multiferromagnetic magnetoelectric coupling material is formed, and the magnetic state or magnetic field of the material can be controlled by an electric field to control the material.
  • Iron electrode state Iron electrode state. The magnetoelectric coupling effect provides a new way of device design.
  • the magnetic field can control the low energy consumption and fast memory of the electronic write magnetic read;
  • the multi-state memory can be designed by using the polarization and magnetic polarization respectively;
  • Sensitive (electromagnetic) sensor; can design spintronic devices such as electric field-controlled spin valves.
  • the novel neodymium iron room temperature multiferromagnetic coupling material can be designed as a tunnel junction, a transmitter, a receiver, a transmitter-receiver module, a phase array system or a resonator.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material described in the present application has a structural formula of AB x O y and has a hexagonal crystal structure.
  • A is one or more of Bi, Pb, Sb, Sn or rare earth metal elements
  • B is one of transition metal elements Fe, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Cu Or a variety
  • O is oxygen.
  • x and y are the composition ratios of B and O in the novel neodymium iron oxide room temperature multiferromagnetic coupling material, respectively.
  • x and y are not limited, the value of x is 4-6.5, and the value of y is 7.5-10.5, as long as the formula AB x O y can form the electrical neutrality.
  • a new type of ferrocene-oxygen room temperature multiferromagnetic coupling material can be used for the hexagonal crystal structure.
  • novel neodymium iron room temperature multiferromagnetic coupling material having the structural formula AB x O y described in the present application is a novel room temperature novel neodymium iron room temperature multiferromagnetic coupling material, the novel neodymium ferrite Room temperature multiferromagnetic coupling materials have good properties at room temperature.
  • the rare earth metal element is one of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc or A variety.
  • the transition metal element is one or more of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and Cu.
  • A may also be an alloy composed of one or more elements of Bi, Pb, Sb, Sn and rare earth metal elements, such as: Bi m Lu n , wherein m and n are respectively Bi and Lu in the alloy. The content, the sum of m and n is 1.
  • B may also be an alloy of one or more of the transition metal elements, such as an alloy of Fe o Mn p Cu q .
  • o, p, and q are the contents of Fe, Mn, and Cu in the alloy, respectively, and the sum of o, p, and q is 1. Due to the different elements of A and B, the properties of the novel neodymium iron room temperature multiferromagnetic coupling material will be slightly different.
  • a in the novel neodymium iron room temperature multiferromagnetic coupling material AB x O y is a Bi element.
  • B may be one or more of the transition metal elements: Co, Cr, Fe, Mn, Ni, Cu, Ti, Zn, Sc, and V.
  • the ratio of x and y is not limited.
  • the novel neodymium iron room temperature multiferromagnetic coupling material AB x O y may be BiCo x O y , Bi(CoFe) x O y or the like.
  • B is a Fe element in the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiB x O y .
  • the ratio of x and y is not limited.
  • the novel neodymium iron room temperature multiferromagnetic coupling material AB x O y may be BiFe x O y .
  • the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe x O y has a value of 5-5.5 and a y of 9-10.
  • x has a value of 32/6 and y has a value of 19/2.
  • the novel neodymium iron room temperature multiferromagnetic coupling material in the embodiment may be BiFe 32/6 O 19/2 , LuFe 32/6 O 19/2 , BiMn 32/6 O 19/2 and the like.
  • a novel room temperature neodymium iron oxide room temperature multiferromagnetic coupling material BiFe x O y is provided .
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material is a ferroelectric material at room temperature and is also a ferrimagnetic material at room temperature.
  • the present application provides a method for preparing a novel neodymium iron room temperature multi-ferromagnetic electrocoupling material, comprising the following steps:
  • A is one or more of Bi, Pb, Sb, Sn or a rare earth metal element.
  • B is one or more of transition metal elements Fe, Sc, Ti, V, Cr, Mn, Co, and Ni. Heating causes the material containing the ABO component to produce a molecular beam, atomic beam or plasma.
  • the substrate may be a single crystal material having a close packed hexagonal structure such as alumina (Al 2 O 3 ).
  • the substrate is not limited to Al 2 O 3 , and may be a substrate such as ZnO or GaAs.
  • the material containing the ABO component may be any combination of A, B, and O elements.
  • the material containing the ABO component, BiFeO 3 is used .
  • the material PbFeO 3 containing the ABO component is used.
  • the heating process can be understood as exciting the molecules, atoms or plasma in the material containing the ABO component.
  • a molecule, atom or plasma in the ABO component-containing material that is excited is deposited onto the substrate to form the novel neodymium iron room temperature multiferromagnetic coupling material.
  • the heating causes the ABO component-containing material to generate a molecular beam, an atomic beam, or a plasma, comprising: heating the ABO component-containing material by laser irradiation, the laser
  • the energy density of the irradiation was 0.3 J/cm 2 -3 J/cm 2
  • the frequency of laser irradiation was 1 to 50 Hz.
  • the step of depositing the molecular beam or atomic beam onto the substrate comprises providing an oxygen pressure of 0.01 Pa to 20 Pa during the deposition process and maintaining the substrate temperature between 500 ° C and 750 ° C.
  • the molecular beam, atomic beam or plasma can be deposited onto the surface of the substrate to have the required stoichiometry by adjusting the relative position and distance of the substrate and the ABO component-containing material.
  • the substrate may be placed in opposition to the ABO component-containing material and spaced from 3 cm to 8 cm apart.
  • the preparation method of the novel neodymium iron room temperature multiferromagnetic coupling material is not limited.
  • the novel ferrocene-oxygen room temperature multiferromagnetic coupling material can also be prepared by ion sputtering, pulsed laser deposition, magnetron sputtering, molecular beam epitaxy, chemical vapor deposition, and sol-gel.
  • the substrate is not limited. As long as the novel neodymium iron room temperature multiferromagnetic coupling material can be formed by epitaxy.
  • the substrate is selected from aluminum oxide (Al 2 O 3 ).
  • the novel neodymium iron oxide room temperature multiferromagnetic coupling material Bi x Fe y O z is prepared by the preparation method of the novel neodymium iron room temperature multiferromagnetic coupling material provided by the present application.
  • Figures 2 to 10 below illustrate the structure and properties of the novel neodymium iron oxide room temperature multiferromagnetic electrocoupling material Bi x Fe y O z described above.
  • composition of the novel ferrocene-oxygen room temperature multiferromagnetic coupling material can be calibrated by Rutherford backscattering spectroscopy (RBS) and X-ray spectroscopy (EDS).
  • RBS Rutherford backscattering spectroscopy
  • EDS X-ray spectroscopy
  • Figure 2b is a test data of X-ray energy spectrum of the novel neodymium iron room temperature multiferromagnetic coupling material.
  • Bi:Fe is about 1:5.
  • the above measurement results are basically equivalent to the composition of the material with the simplest formula of BiFe 32/6 O 19/2 , wherein the Bi element and the Fe element have a valence of +3, which satisfies the electrical neutral demand in the material.
  • the iron cation radius is smaller than the oxygen negative ion radius, the crystal tends to form iron ion vacancies rather than generating oxygen vacancies in order to maintain electrical neutrality and structural continuity when forming iron oxide. Therefore, BiFe 32/6 O 19/2 can be understood as a Bi 2 Fe 11 O 19 structure having iron vacancies, and the iron vacancies here are 1/3 in order to maintain electrical neutrality.
  • FIG. 3 is an out-of-plane X-ray diffraction pattern of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 .
  • the novel ferrocene-oxygen room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 film sample exhibits a single oriented pure phase.
  • the out-of-plane lattice constant of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 can also be obtained from FIG. 3 .
  • (A) The inset in Fig.
  • FIG. 4a and 4b show the reciprocal space map (RSM) of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 along two mutually perpendicular principal axes.
  • RSM reciprocal space map
  • Figure 5a and Figure 5b show the XRD of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 Scan map (Phi-Scan).
  • Figures 6a and 6b illustrate the insulating properties of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 .
  • Figure 6a shows the optical band gap measurement of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 .
  • the direct band gap and indirect band gap of the new neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 can be fitted to be 2.61 eV and 1.56 eV, respectively.
  • the novel neodymium iron room temperature multiferromagnetic electrocoupling material BiFe 32/6 O 19/2 has good insulating properties.
  • FIG. 6b is a graph showing the resistivity versus temperature of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 .
  • the activation energy of the new ferrocene-oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 can be 0.60 eV. From the two tests of Fig. 6a and Fig. 6b, it is concluded that the new neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 is a good insulating material, which is consistent with the assumption of electrical neutrality.
  • Figure 7a shows the X-ray absorption spectrum of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 and the absorption spectra of other iron oxides associated therewith. It can be seen from Fig. 7a that the Fe element of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 has a valence of 3 + and does not contain 2 + Fe elements.
  • Figure 7b shows the out-of-plane X-ray magnetic circular dichroism (XMCD) of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 at room temperature. From Fig.
  • XMCD out-of-plane X-ray magnetic circular dichroism
  • Fig. 8a shows the in-plane and out-of-plane hysteresis loops of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 at different temperatures. It can be seen from Fig. 8a that the novel neodymium iron oxide room temperature multiferromagnetic coupling material has ferromagnetic properties on the outer surface of the BiFe 32/6 O 19/2 surface.
  • the outer magnetic moment of the new neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 is about 0.35 ⁇ B /Fe (Bohr magnetron per iron), and
  • the out-of-plane magnetic moment of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 measured by XMCD in 7b is consistent.
  • Fig. 8b shows the magnetic moment temperature dependence curve and the XMCD temperature dependence curve of the novel neodymium iron room temperature multiferromagnetic electrocoupling material BiFe 32/6 O 19/2 . It can be seen from Fig.
  • the out-of-plane magnetic moment of the new neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 can reach 0.5 ⁇ B /Fe, which is much larger than the current Know the magnetic moment of other multi-iron materials.
  • the ferromagnetic Curie temperature of the novel neodymium iron room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 is about 600K, which is much higher than room temperature 300K.
  • Figures 9a and 9b characterize the ferroelectric properties of the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 .
  • Shown in Figure 9a is the signal curve of the new neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 at 350K X-ray linear dichroism (XLD) (out-of-plane). It can be seen that at the temperature of 350K, the absorption of the linearly polarized X-rays of the novel neodymium iron room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 has an in-plane difference, that is, a line is displayed. Polarized dichroism XLD.
  • XLD can be derived from magnetic order and structural distortion (iron electrode).
  • Figure 9b shows the temperature profile of the peak with an asterisk in Figure 9a. It can be seen from Figure 9b that the XLD signal has a significant transition from the magnetic transition at 600K and is not zero at 750K. The measurement indicates that the novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 still has lattice distortion at a transition temperature higher than 750 K, and iron polarization may be formed.
  • Figures 10a - 10c show the PFM (pressure power microscope) out-of-plane signal image of the sample
  • Figure 10a shows the PFM map without electric field polarization
  • Figure 10b shows the selected region in Figure 10a, polarizing the sample with a voltage of +15V
  • the polarization state that is, the formation of a single-polarized ferroelectric domain in the opposite direction on the basis of the original domain structure.
  • Fig. 10c shows that in the region of the single ferroelectric domain formed in Fig. 10b, the ferroelectric domain is inverted with a voltage of -15 V to form a ferroelectric domain having the same polarization state as the outermost (initial state), thereby realizing Reversible flipping of ferroelectric domains.
  • This measurement further demonstrates the existence of ferroelectric properties of the novel neodymium iron oxide room temperature multiferromagnetic coupling material.
  • the Bi element in the above-mentioned novel neodymium iron oxide room temperature multiferromagnetic coupling material BiFe 32/6 O 19/2 , the Bi element may be partially replaced by one of Sb, Pb, Sn or rare earth metal elements. Or a plurality of elements, the Fe element may be partially replaced with one or more of Sc, Ti, V, Cr, Mn, Co, and Ni. Due to the similarity between the elements of the same group, the novel neodymium iron room temperature multiferromagnetic coupling material formed can also have a magnetoelectric coupling effect at room temperature.
  • the novel neodymium iron room temperature multiferromagnetic coupling material comprises a powder, a film, a block, a nanostructure, and a composite structure thereof formed with other materials. It can be understood that the form of the novel neodymium iron room temperature multiferromagnetic electrocoupling material is not limited. When the novel neodymium iron room temperature multiferromagnetic coupling material is powder, film, ceramic, polycrystalline or single crystal bulk, nanostructure and composite structure, the multi-iron property and magnetoelectric coupling effect at room temperature can be realized. .
  • the novel neodymium iron room temperature multiferromagnetic coupling material in the present application can be applied to more electronic devices, and thus the electronic devices herein include but are not limited to the various electronic devices described above. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hall/Mr Elements (AREA)
  • Compounds Of Iron (AREA)

Abstract

提供一种新型铋铁氧室温多铁磁电耦合材料。该材料的结构式为ABxOy,其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种,该材料为六角晶体结构,且同时具有转变温度高于室温的铁电性和亚铁磁性。还提供了一种新型铋铁氧室温多铁磁电耦合材料的制备方法以及采用该新型铋铁氧室温多铁磁电耦合材料制成的电子器件。

Description

新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件
相关申请
本申请要求2017年11月22日申请的,申请号为201711172802.0,名称为“新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及材料科学领域,尤其涉及一种新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件。
背景技术
多铁材料(Multiferroics)是同时具有(反)铁磁、(反)铁电和铁弹三种铁性特征中的两种或两种以上的材料。而磁电耦合材料是指材料在外界磁场或电场的作用下,材料的铁电极化状态或磁性状态发生改变,即可以实现电场控制材料的磁性状态或者可以实现外界磁场控制材料铁电极化状态的一类材料。单相多铁材料中可以实现磁电耦合效应的少之又少,尤其是在室温(300K)及以上能够实现磁电耦合效应更是屈指可数。迄今为止,单相多铁材料局限在于:一般的铁电材料大都是反铁磁性质,而反铁磁体宏观上不表现或者只表现为弱磁性,不能实现有效的磁极化特性的电场调控;而另外一些磁性材料中,经由特殊的磁序、结构序或者电荷序而产生铁电性质,虽其磁电耦合特性相对较强,但转变温度通常远低于室温,很大程度上制约其实际应用的前景。因此寻找一种室温下同时具有铁电和显著磁性并且能够实现有效磁电耦合的多铁材料是业界近几十年的研究夙愿。
发明内容
基于此,有必要针对当前室温强铁电、磁性单相多铁材料以及显著室温磁电耦合效应的缺失,提供一种新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件。
一种新型铋铁氧室温多铁磁电耦合材料,所述新型铋铁氧室温多铁磁电耦合材料的结构式为AB xO y,其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种,所述新型铋铁氧室温多铁磁电耦合材料具有六角晶体结构。x的取值为4-6.5,y的取值为7.5-10.5。
在其中一个实施例中,所述稀土金属元素为La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y和Sc中的一种或多种。
在其中一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料为BiFe xO y,x的取值范围4-6.5,y的取值范围为7.5-10.5。
在其中一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料在小于等于800K时具有铁电性,在小于等于600K时具有铁磁性或亚铁磁性。
在其中一个实施例中,在低于600K的温度范围内,所述新型铋铁氧室温多铁磁电耦合材料的铁电性和铁磁性或者亚铁磁性共存。
在其中一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料为BiFe 32/6O 19/2
一种新型铋铁氧室温多铁磁电耦合材料的制备方法,包括以下步骤:
提供基底和含有ABO组分的材料,其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种,加热使所述含有ABO组分的材料产生分子束、原子束或等离子体;
将所述分子束、原子束或等离子体沉积到所述基底,以形成所述新型铋铁氧室温多铁磁电耦合材料。
在其中一个实施例中,所述加热所述含有ABO组分的材料产生分子束、原子束或等离子体的步骤,包括:
采用脉冲激光轰击的方式对所述含有ABO组分的材料进行加热,激光的能量密度为0.3J/cm 2-3J/cm 2,激光脉冲频率为1-50Hz。
在其中一个实施例中,在将所述分子束、原子束或等离子体沉积到所述基底的过程中,提供氧压0.01Pa-20Pa,保持基底温度500℃-750℃。
一种电子器件,采用上述任一项所述的新型铋铁氧室温多铁磁电耦合材料制成,所述电子器件包括:存储器、磁头、超敏电磁传感器、低能耗逻辑器或自旋电子器。
本申请提供了一种新型铋铁氧室温多铁磁电耦合材料。所述新型铋铁氧室温多铁磁电耦合材料的结构式为AB xO y。其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种。所述新型铋铁氧室温多铁磁电耦合材料构成六角晶体结构。x的取值为4-6.5,y的取值为7.5-10.5。所述新型铋铁氧室温多铁磁电耦合材料同时具有铁电性和亚铁磁性。并且,所述新型铋铁氧室温多铁磁电耦合材料能够在室温以及高温下实现磁电耦合效应。另外本申请还提供了一种新型铋铁氧室温多铁磁电耦合材料的制备方法。本申请成功地制备出了满足上述要求的单相新型铋铁氧室温多铁磁电耦合材料。根据本申请中的设计思路,制备出的所述单相 新型铋铁氧室温多铁磁电耦合材料BiFe xO y具备高于750K的铁电居里温度,以及亚铁磁转变温度高达600K,磁极化强度高达0.5玻尔磁子每铁,远远高于其他室温多铁材料。如BiFeO 3的磁极化强度仅仅约为0.02玻尔磁子每铁。该新型室温多铁材料的优异铁电、磁学特性蕴含着广阔的应用前景。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料制备方法流程图;
图2a为本申请实施例提供的对所述新型铋铁氧室温多铁磁电耦合材料进行卢瑟福背散射谱测量的测试拟合数据;
图2b为本申请实施例提供的对所述新型铋铁氧室温多铁磁电耦合材料进行X射线能谱测量的数据;
图3为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的面外X射线衍射图谱;
图4a为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的一个方向的倒易空间X射线衍射图谱;
图4b为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的与图4a中所述一个方向相垂直的另一个方向的倒易空间X射线衍射图谱;
图5a为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的一个面的XRD的φ扫描图谱;
图5b为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的一个面的XRD的φ扫描图谱;
图6a为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的光学带隙测量数据;
图6b为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的电导率随温度变化曲线;
图7a为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的X射线吸收谱和与之相关的Fe元素的其它氧化物的吸收谱;
图7b为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料在室温下的面外的X射线磁圆二色谱;
图8a为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的不同温度下的面内、面外磁滞回线;
图8b为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的磁矩温度依赖曲线和X射线磁圆二色谱温度依赖曲线;
图9a为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料在350K的X射线线性二色谱的信号曲线;
图9b为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料的图9a中带星号吸收峰的温度变化曲线;
图10a-图10c为本申请实施例提供的所述新型铋铁氧室温多铁磁电耦合材料在室温下经过外加电场调控后形成的铁电畴结构。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种新型铋铁氧室温多铁磁电耦合材料,所述新型铋铁氧室温多铁磁电耦合材料的结构式为AB xO y。其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种。所述新型铋铁氧室温多铁磁电耦合材料构成六角晶体结构。x的取值为4-6.5,y的取值为7.5-10.5。所述新型铋铁氧室温多铁磁电耦合材料同时具有转变温度高于室温的铁电性和亚铁磁性。并且,所述新型铋铁氧室温多铁磁电耦合材料能够在室温下实现磁电耦合效应。
多铁材料(Multiferroics)是同时具有铁磁(或者亚铁磁、反铁磁)、铁电和铁弹三种铁性特征中两种或两种以上的材料。当铁电和铁磁(或者亚铁磁、反铁磁)两种序参量相互耦合时就形成了多铁性磁电耦合材料,并可以通过电场控制该材料的磁性状态或者磁场控制该材料的铁电极化状态。磁电耦合效应提供一种新型的器件设计途径,比如通过电场对磁性的控制可以设计电写磁读的低能耗、快速存储器;可以同时分别利用电极化和磁极化设计多态存储器;可以设计超敏(电磁)传感器;可以设计电场调控的自旋阀等自旋电子学器件等。可以理解,所述新型铋铁氧室温多铁磁电耦合材料可以设计成隧道结,发射机, 接收机,发射机-接收机模块,相位阵列系统或谐振器等。
本申请中所述新型铋铁氧室温多铁磁电耦合材料结构式为AB xO y,具有六角晶体结构。其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种,O为氧元素。x和y分别为所述新型铋铁氧室温多铁磁电耦合材料中B和O的成分比例。可以理解,所述x和y的取值并不限定,x的取值为4-6.5,y的取值为7.5-10.5,只要该分子式AB xO y能够形成具有电中性的所述具有的六角晶体结构的新型铋铁氧室温多铁磁电耦合材料即可。
可以理解,本申请所述的结构式为AB xO y的新型铋铁氧室温多铁磁电耦合材料是一种新型的室温新型铋铁氧室温多铁磁电耦合材料,所述新型铋铁氧室温多铁磁电耦合材料在室温下具有很好的性质。
在一个实施例中,所述稀土金属元素为La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y和Sc中的一种或多种。所述过渡金属元素为Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Cu中的一种或多种。可以理解,A还可以是Bi、Pb、Sb、Sn和稀土金属元素中一种或多种元素组成的合金,如:Bi mLu n,其中,m、n分别为所述合金中Bi、Lu的含量,m与n的和为1。同样可以理解,B还可以是所述过渡族金属元素中一种或多种元素组成的合金,如:Fe oMn pCu q的合金。其中,o、p、q分别为所述合金中Fe、Mn、Cu的含量,o、p与q的和为1。由于A、B的元素不同,所述新型铋铁氧室温多铁磁电耦合材料的性质也会略有不同。
在一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料AB xO y中A为Bi元素。B可以为所述过渡族金属元素:Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc和V中的一种或多种。x、y的比例并不限定。比如,本实施例中,所述新型铋铁氧室温多铁磁电耦合材料AB xO y可以为BiCo xO y,Bi(CoFe) xO y等。
在一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料BiB xO y中B为Fe元素。x、y的比例并不限定。比如,本实施例中,所述新型铋铁氧室温多铁磁电耦合材料AB xO y可以为BiFe xO y
在一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料BiFe xO y中x为5-5.5,y为9-10。
在一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料AB xO y中,x的取值为32/6,y的取值为19/2。可以理解,本实施例中所述新型铋铁氧室温多铁磁电耦合材料可以是BiFe 32/6O 19/2、LuFe 32/6O 19/2、BiMn 32/6O 19/2等。
在一个实施例中提供一种新型室温新型铋铁氧室温多铁磁电耦合材料BiFe xO y。所述 新型铋铁氧室温多铁磁电耦合材料在室温下是铁电材料,在室温下也是亚铁磁材料。
请参阅图1,本申请提供一种新型铋铁氧室温多铁磁电耦合材料的制备方法,包括以下步骤:
S112,提供基底和含有ABO组分的材料。其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种。B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni中的一种或多种。加热使所述含有ABO组分的材料产生分子束、原子束或等离子体。
所述基底可以是氧化铝(Al 2O 3)等具有密排六方结构的单晶材料。所述基底并不限定于Al 2O 3,还可以是ZnO,GaAs等基底。所述含有ABO组分的材料,可以是A、B、O元素的任意组合。比如,用所述含有ABO组分的材料BiFeO 3。再比如,用所述含有ABO组分的材料PbFeO 3
所述加热过程可以理解为使所述含有ABO组分的材料中的分子、原子或者等离子体被激发。被激发后的所述含有ABO组分的材料中的分子、原子或者等离子体沉积到所述基底,形成所述新型铋铁氧室温多铁磁电耦合材料。
在一个实施例中,所述加热使所述含有ABO组分的材料产生分子束、原子束或者等离子体的步骤,包括:采用激光照射的方式对所述含有ABO组分的材料进行加热,激光照射的能量密度为0.3J/cm 2-3J/cm 2,激光照射的频率为1-50Hz。
在一个实施例中,所述将所述分子束或原子束沉积到所述基底的步骤,包括:在沉积过程中,提供氧压0.01Pa-20Pa,保持基底温度500℃-750℃。
S114,将所述分子束、原子束或等离子体沉积到所述基底,以形成所述新型铋铁氧室温多铁磁电耦合材料。
在一个实施例中,可以通过调整所述基底与所述含有ABO组分的材料的相对位置及距离,使所述分子束、原子束或者等离子体沉积到所述基底表面具有所要求的化学计量比,以形成所述新型铋铁氧室温多铁磁电耦合材料。在一个实施例中,可以设置所述基底与所述含有ABO组分的材料处于相向放置,并且相距3cm-8cm。
在一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料的制备方法并不限制。还可以采用离子溅射、脉冲激光沉积、磁控溅射、分子束外延、化学气相沉积以及溶胶-凝胶制备所述新型铋铁氧室温多铁磁电耦合材料。所述衬底并不限制。只要可以通过外延能够形成所述新型铋铁氧室温多铁磁电耦合材料即可。
在一个实施例中,所述基底选用氧化铝(Al 2O 3)。采用本申请提供的新型铋铁氧室温多铁磁电耦合材料的制备方法制备所述新型铋铁氧室温多铁磁电耦合材料Bi xFe yO z。以下的图2-图10为对上述的所述新型铋铁氧室温多铁磁电耦合材料Bi xFe yO z的结构及性能进 行表征。
所述新型铋铁氧室温多铁磁电耦合材料的组分可以通过卢瑟福背散射谱(RBS)和X射线能谱(EDS)来标定。图2a是对所述新型铋铁氧室温多铁磁电耦合材料进行卢瑟福背散射谱的测试数据及与实验数据相对应的拟合结果。从中可以得到所述新型铋铁氧室温多铁磁电耦合材料中Bi:Fe=1:4.9。图2b是对所述新型铋铁氧室温多铁磁电耦合材料进行X射线能谱的测试数据。从中可以得到所述新型铋铁氧室温多铁磁电耦合材料中Bi、Fe的元素比例Bi:Fe约为1:5。以上测量结果与所述材料最简分子式为BiFe 32/6O 19/2的组分基本相当,其中Bi元素和Fe元素价态均为+3价,满足材料中的电中性需求。另外,由于铁阳离子半径小于氧负离子半径,在形成铁氧化物时,晶体为保持电中性和结构的连续性而倾向于形成铁离子空位而不是产生氧空位。所以BiFe 32/6O 19/2可以理解为具有铁空位的Bi 2Fe 11O 19结构,为了保持电中性,这里的铁空位为1/3。
图3为所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外X射线衍射图谱。由图3可以看出,所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2薄膜样品表现为单一取向的纯相。从图3中还可以得到所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外晶格常数为
Figure PCTCN2018093186-appb-000001
(埃)。图3中的插图为所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2(008)的ω扫描峰,其半高宽(FWHM)为0.09°,表明所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的结晶性很好。
图4a和图4b为所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2沿两个相互垂直的主轴方向的倒易空间图谱(RSM)。从图4a和图4b中的Z的值,可以得到所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外的晶格常数
Figure PCTCN2018093186-appb-000002
(埃),与图3中的XRD图谱得出的结论一致。从4a和图4b中的X值可以计算出所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面内的晶格常数
Figure PCTCN2018093186-appb-000003
(埃)。
图5a和图5b为所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的XRD的
Figure PCTCN2018093186-appb-000004
扫描图谱(Phi-Scan)。选择图4a中样品(22 18)峰和衬底Al 2O 3(119)峰;图4b中样品(3018)峰和衬底Al 2O 3(1010)峰,进行XRD的
Figure PCTCN2018093186-appb-000005
扫描,从图5中可以观察到所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2具有六重对称性。
图6a和图6b,表征所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的绝缘性质。图6a为所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的光学带隙测量。利用半导体光学带隙经验公式,可以拟合得到所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的直接带隙和间接带隙分别为2.61eV和1.56eV,表明所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2具有很好的绝缘特性。图6b为所述新型铋铁氧室温多铁磁电耦合材料 BiFe 32/6O 19/2电阻率随温度变化曲线。利用经验公式,可以拟合得到所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的激活能为0.60eV。从图6a、图6b两项测试,得出所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2是一个很好的绝缘材料,与电中性的假设相符。
图7a表示所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的X射线吸收谱和与之相关的其它铁氧化物的吸收谱对比。从图7a中可以看出,所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2中Fe元素的价态为3 +,不含有2 +的Fe元素。图7b表示室温下所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外的X射线磁圆二色谱(XMCD)。由图7b可以计算出室温下所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外磁矩大小为0.33μ B/Fe(玻尔磁子每铁)。
图8a表示不同温度下所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面内、面外磁滞回线。从图8a中可以看到所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2面外面内均具有铁磁性。其中室温300K时,所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2面外磁矩的大小约为0.35μ B/Fe(玻尔磁子每铁),与图7b中通过XMCD测到的所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外磁矩大小相一致。图8b表示所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的磁矩温度依赖曲线和XMCD温度依赖曲线。从图8b中可以看出:在低温下,所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的面外磁矩可达到0.5μ B/Fe,远大于目前已知的其他多铁材料的磁矩。同时根据XMCD温度依赖曲线可以判断出所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的铁磁居里温度约为600K,远高于室温300K。
在一个实施例中,图9a和图9b表征所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的铁电性质。图9a中显示的是所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2在350K的X射线线性二色谱(XLD)(面外-面内)的信号曲线。从中可以看出,在350K温度下,所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的对线形极化的X射线的吸收存在面外面内差异,即显示出线偏振二色性XLD。已知XLD可以来源于磁有序和结构畸变(铁电极化)。图9b表示的是图9a中带星号吸收峰的温度变化曲线,从图9b中可以看出XLD信号在600K存在源于磁转变的明显跳变,而在750K时仍不为零。该测量说明所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的在转变温度高于750K时候依然存在晶格畸变,可能形成铁电极化。由于测试手段的限制,目前可以确定所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2的铁电居里温度高于750K,但其确切的数值有待进一步确认。
图10a-图10c表示样品的PFM(压电力显微镜)面外信号图像,图10a表示未经电场 极化的PFM图,图10b表示在图10a中选中的区域,利用+15V的电压极化样品的极化状态,即在原畴结构的基础上形成一个反方向的单一极化的铁电畴。图10c表示的是在图10b中形成的单一铁电畴的区域内,利用-15V的电压反转铁电畴,形成一个与最外围(初始状态)极化状态相同的铁电畴,从而实现了铁电畴的可逆翻转。该测量进一步证明所述新型铋铁氧室温多铁磁电耦合材料铁电特性的存在。
在一个实施例中,上述的所述新型铋铁氧室温多铁磁电耦合材料BiFe 32/6O 19/2中,Bi元素可以部分替换为Sb、Pb、Sn或稀土金属元素中的一种或多种元素,Fe元素可以部分替换为Sc、Ti、V、Cr、Mn、Co、Ni中的一种或多种元素。由于同族元素之间性质相似,形成的所述新型铋铁氧室温多铁磁电耦合材料也能在室温具有磁电耦合效应。比如:(BiLu) 2Fe 32/6O 19、(BiLa) 2Fe 32/6O 19、Bi(FeCo) 32/6O 19、Bi(FeMn) 32/6O 19、Bi(FeCr) 32/6O 19等。
在一个实施例中,所述新型铋铁氧室温多铁磁电耦合材料包括粉末、薄膜、块材、纳米结构以及其与其它材料形成的复合结构。可以理解,所述新型铋铁氧室温多铁磁电耦合材料的形态并不限制。当所述新型铋铁氧室温多铁磁电耦合材料为粉末、薄膜、陶瓷、多晶或单晶块材、纳米结构以及复合结构时,都能够实现室温下的多铁特性及磁电耦合效应。
一种电子器件,采用上述任一项所述的新型铋铁氧室温多铁磁电耦合材料制成,所述电子器件包括:存储器、磁头、超敏电磁传感器、低能耗逻辑器或自旋电子器等。可以理解,随着科技的发展本申请中的新型铋铁氧室温多铁磁电耦合材料可以应用在更多的电子器件中,因此这里的电子器件包括但不仅限于以上所述的各种电子器件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,随其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种新型铋铁氧室温多铁磁电耦合材料,其特征在于,所述新型铋铁氧室温多铁磁电耦合材料的结构式为AB xO y,其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种,所述新型铋铁氧室温多铁磁电耦合材料具有六角晶体结构,其中,x的取值为4-6.5,y的取值为7.5-10.5。
  2. 如权利要求1所述的新型铋铁氧室温多铁磁电耦合材料,其特征在于,所述稀土金属元素为La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y和Sc中的一种或多种。
  3. 如权利要求1所述的新型铋铁氧室温多铁磁电耦合材料,其特征在于,所述新型铋铁氧室温多铁磁电耦合材料为BiFe xO y,x的取值范围4-6.5,y的取值范围为7.5-10.5。
  4. 如权利要求3所述的新型铋铁氧室温多铁磁电耦合材料,其特征在于,所述新型铋铁氧室温多铁磁电耦合材料在小于等于800K时具有铁电性,在小于等于600K时具有铁磁性或亚铁磁性。
  5. 如权利要求4所述的新型铋铁氧室温多铁磁电耦合材料,其特征在于,在低于600K的温度范围内,所述新型铋铁氧室温多铁磁电耦合材料的铁电性和铁磁性或者亚铁磁性共存。
  6. 如权利要求3所述的新型铋铁氧室温多铁磁电耦合材料,其特征在于,所述新型铋铁氧室温多铁磁电耦合材料为BiFe 32/6O 19/2
  7. 一种新型铋铁氧室温多铁磁电耦合材料的制备方法,其特征在于,包括以下步骤:
    提供基底和含有ABO组分的材料,其中A为Bi、Pb、Sb、Sn或稀土金属元素中的一种或多种,B为过渡金属元素Fe、Sc、Ti、V、Cr、Mn、Co、Ni、Zn、Cu中的一种或多种,加热使所述含有ABO组分的材料产生分子束、原子束或等离子体;
    将所述分子束、原子束或等离子体沉积到所述基底,以形成所述新型铋铁氧室温多铁磁电耦合材料。
  8. 如权利要求7所述的新型铋铁氧室温多铁磁电耦合材料的制备方法,其特征在于,所述加热所述含有ABO组分的材料产生分子束、原子束或等离子体的步骤,包括:
    采用脉冲激光轰击的方式对所述含有ABO组分的材料进行加热,激光的能量密度为0.3J/cm 2-3J/cm 2,激光脉冲频率为1-50Hz。
  9. 如权利要求7所述的新型铋铁氧室温多铁磁电耦合材料的制备方法,其特征在于,在将所述分子束、原子束或等离子体沉积到所述基底的过程中,提供氧压0.01Pa-20Pa,保持基底温度500℃-750℃。
  10. 一种电子器件,其特征在于,采用如权利要求1-6中任一项所述的新型铋铁氧室温多铁磁电耦合材料制成,所述电子器件包括:存储器、磁头、超敏电磁传感器、低能耗逻辑器或自旋电子器。
PCT/CN2018/093186 2017-11-22 2018-06-27 新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件 WO2019100715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711172802.0A CN109809493B (zh) 2017-11-22 2017-11-22 铋铁氧室温多铁磁电耦合材料及制备方法、电子器件
CN201711172802.0 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019100715A1 true WO2019100715A1 (zh) 2019-05-31

Family

ID=66601147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093186 WO2019100715A1 (zh) 2017-11-22 2018-06-27 新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件

Country Status (2)

Country Link
CN (1) CN109809493B (zh)
WO (1) WO2019100715A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203613A (ja) * 2004-01-16 2005-07-28 Ulvac Japan Ltd コンデンサ及びキャパシタ膜の成膜方法
CN102157682A (zh) * 2010-11-25 2011-08-17 南京理工大学 一种单相铁电薄膜、制备方法及有效电阻调控方式
CN103121836A (zh) * 2012-11-28 2013-05-29 陕西科技大学 一种溶胶-凝胶法制备BiFe1‐xCrxO3 铁电薄膜的方法
CN103160911A (zh) * 2013-03-03 2013-06-19 北京工业大学 一种生长BiFe1-xCoxO3系列晶体的方法
CN103343315A (zh) * 2013-06-04 2013-10-09 南京理工大学 一种掺杂铁酸铋半导体薄膜材料及其制备方法
CN104671755A (zh) * 2015-02-10 2015-06-03 中国科学院物理研究所 一种新型磁电耦合多铁性材料BiMn3Cr4O12的制备方法
CN105967673A (zh) * 2016-05-09 2016-09-28 武汉理工大学 单相多铁性铁酸铅镧陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783174A (zh) * 2016-12-20 2017-05-31 上海集成电路研发中心有限公司 一种用于铁电存储器的铁电薄膜电容及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203613A (ja) * 2004-01-16 2005-07-28 Ulvac Japan Ltd コンデンサ及びキャパシタ膜の成膜方法
CN102157682A (zh) * 2010-11-25 2011-08-17 南京理工大学 一种单相铁电薄膜、制备方法及有效电阻调控方式
CN103121836A (zh) * 2012-11-28 2013-05-29 陕西科技大学 一种溶胶-凝胶法制备BiFe1‐xCrxO3 铁电薄膜的方法
CN103160911A (zh) * 2013-03-03 2013-06-19 北京工业大学 一种生长BiFe1-xCoxO3系列晶体的方法
CN103343315A (zh) * 2013-06-04 2013-10-09 南京理工大学 一种掺杂铁酸铋半导体薄膜材料及其制备方法
CN104671755A (zh) * 2015-02-10 2015-06-03 中国科学院物理研究所 一种新型磁电耦合多铁性材料BiMn3Cr4O12的制备方法
CN105967673A (zh) * 2016-05-09 2016-09-28 武汉理工大学 单相多铁性铁酸铅镧陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN109809493B (zh) 2020-08-04
CN109809493A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
Pradhan et al. Effect of holmium substitution for the improvement of multiferroic properties of BiFeO3
Sen et al. Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic
Mao et al. Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3
Islam et al. Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics
Matteppanavar et al. Evidence for magneto-electric and spin–lattice coupling in PbFe 0.5 Nb 0.5 O 3 through structural and magneto-electric studies
Bebenin et al. Colossal magnetoresistance manganites
Abdel-Latif Rare earth manganites and their applications
Islam et al. Correlation of charge defects and morphology with magnetic and electrical properties of Sr and Ta codoped BiFeO3
Kadam et al. Sol-gel auto-combustion synthesis of Li3xMnFe2− xO4 and their characterizations
Bai et al. Enhanced ferroelectricity and magnetism of quenched (1− x) BiFeO 3-x BaTiO 3 ceramics
Naik et al. Electrical, magnetic, magnetodielectric, and magnetoabsorption studies in multiferroic GaFeO3
Katayama et al. Chemical tuning of room-temperature ferrimagnetism and ferroelectricity in ε-Fe 2 O 3-type multiferroic oxide thin films
Guo et al. Thermal generation of spin current in epitaxial CoFe2O4 thin films
Vijayasundaram et al. Composition-driven enhanced magnetic properties and magnetoelectric coupling in Gd substituted BiFeO3 nanoparticles
Sahoo et al. Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1− xGd)(Ti1− xFex) O3 (0.2≤ x≤ 0.5)
Kaixin et al. Multiferroic and in-plane magnetoelectric coupling properties of BiFeO3 nano-films with substitution of rare earth ions La3+ and Nd3+
Pradhan et al. Studies on dielectric, optical, magnetic, magnetic domain structure, and resistance switching characteristics of highly c-axis oriented NZFO thin films
Hemeda et al. DC conductivity and magnetic properties of piezoelectric–piezomagnetic composite system
Okasha et al. Comparative study on the influence of rare earth ions doping in Bi0. 6Sr0. 4FeO3 nanomultiferroics
Kim et al. Multiferroic property and crystal structural transition of BiFeO 3-SrTiO 3 ceramics
Singh et al. Enhanced electrical and magnetic properties in BZT/NFO multiferroic composites derived by MARH
Rajesh et al. Studies on multiferroic properties of single phasic Bi0. 85Ho0. 05Sm0. 1FeO3 ceramics
Singh et al. Magneto-dielectric and multiferroic properties in Bi0. 95Yb0. 05Fe0. 95Co0. 05O3
Jun et al. Dielectric and magnetic properties in Ta-substituted BiFeO 3 ceramics
WO2019100715A1 (zh) 新型铋铁氧室温多铁磁电耦合材料及制备方法、电子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881343

Country of ref document: EP

Kind code of ref document: A1