WO2019100702A1 - 一种可调谐激光器和激光发射机 - Google Patents

一种可调谐激光器和激光发射机 Download PDF

Info

Publication number
WO2019100702A1
WO2019100702A1 PCT/CN2018/091820 CN2018091820W WO2019100702A1 WO 2019100702 A1 WO2019100702 A1 WO 2019100702A1 CN 2018091820 W CN2018091820 W CN 2018091820W WO 2019100702 A1 WO2019100702 A1 WO 2019100702A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
grating
reflective
straight
coupler
Prior art date
Application number
PCT/CN2018/091820
Other languages
English (en)
French (fr)
Inventor
赵家霖
陈微
曾理
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18881612.8A priority Critical patent/EP3703202B1/en
Publication of WO2019100702A1 publication Critical patent/WO2019100702A1/zh
Priority to US16/877,707 priority patent/US11522341B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • G02B6/29341Loop resonators operating in a whispering gallery mode evanescently coupled to a light guide, e.g. sphere or disk or cylinder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • H01S3/0623Antireflective [AR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06821Stabilising other output parameters than intensity or frequency, e.g. phase, polarisation or far-fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1007Branched waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • H01S5/1035Forward coupled structures [DFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates

Definitions

  • the present application relates to the field of optical technologies, and in particular, to a tunable laser and a laser transmitter.
  • a tunable laser is a laser that continuously changes the laser output wavelength within a certain range.
  • wavelength tuning is typically accomplished using a vernier tuning mechanism.
  • FSR free spectral range
  • the over-current injection effect, thermal effect, or calendering effect is used to change the refractive index of the filter to adjust the filter line of a certain filter, the output wavelength of the laser will jump, thereby achieving laser tuning.
  • the SOA 11 is a dual micro-ring tunable laser disclosed in the prior art, which includes a Semiconductor Optical Amplifier (SOA) 11 and a silicon waveguide.
  • the silicon waveguide includes a thermally tuned microring resonator 12 and a microring resonator 13, each microring resonator including two parallel straight waveguides and one annular waveguide.
  • the SOA11 provides optical gain, and the microring resonator 13 is connected to the ring mirror 14 to form a cavity end face of the laser; the SOA11 and the silicon waveguide are coupled at one end with an anti-reflection film to form another cavity end face of the laser; and the other end face of the SOA is plated low.
  • the laser is mainly output from the low-reflection end face.
  • Wavelength tuning can be performed by a thermal tuning unit coupled to the microring resonators 12, 13 or ring mirror 14.
  • the wavelength is required to be calibrated, and the wavelength calibration is difficult.
  • the wavelength of the two microring resonators needs to be controlled during the tuning process of the cursor, and the silicon waveguide is thermally sensitive, and the drift of the filter spectrum is affected by the temperature, so it is difficult to accurately control the wavelength. It can be seen that the existing tunable laser manufacturing process requires high requirements and the tuning control is difficult.
  • the present application provides a tunable laser and a laser transmitter that can perform wavelength tuning more easily, and the wavelength tuning speed is faster, which can reduce the cost of the wavelength testing process.
  • the first aspect provides a tunable laser comprising: a reflective SOA, a grating omnidirectional coupler and a reflective microring resonator; a reflective SOA having an anti-reflection film on the first end surface; and a second grating in the same direction coupler
  • the waveguide is coupled to the first waveguide, the first waveguide is provided with a first grating, the second waveguide is provided with a second grating disposed opposite to the first grating, the first grating and the second grating constitute a narrow band filter; the second waveguide and the reflective micro
  • the ring resonator is connected.
  • both the grating isotropic coupler and the reflective microring resonator are formed on the silicon base, and the first end face refers to the end face of the reflective SOA coupled to the first waveguide of the grating isotropic coupler.
  • the reflective SOA, the grating isotropic coupler, and the reflective microring resonator form a resonant cavity.
  • the narrowband filter has a single bandpass filter spectrum in a specified band (such as the C band).
  • the microring resonator has a comb filter spectrum. When the light passes through the narrowband filter and the microring resonator, it can form a single longitudinal mode laser. The cavity is oscillated to output a laser.
  • the narrow-band filter has only one peak in the filter spectrum of the specified band, and the filter spectrum of the reflective micro-ring resonator is comb-like, so that it is not necessary to control different center wavelengths for alignment, and only the narrow-band filter needs to be controlled.
  • a central wavelength is aligned with a certain center wavelength of the reflective microring resonator, making wavelength tuning easier and wavelength tuning faster.
  • the second end surface of the reflective SOA is provided with a high reflective film, and the second end surface refers to an end surface opposite to the first end surface.
  • the second end surface of the reflective SOA is provided with a low reflective film, and the second end surface refers to an end surface opposite to the first end surface.
  • the second end surface of the reflective SOA is a cleavage surface, and the second end surface is an end surface opposite to the first end surface.
  • the cleavage plane refers to a crystal plane formed by the occurrence of transgranular fracture under the action of an external force. Its light reflectivity is approximately 33%. After the laser oscillates in the cavity, it can be output from the second end face.
  • the reflective microring resonator comprises a first straight waveguide, a second straight waveguide and a ring waveguide, the annular waveguide is located between the first straight waveguide and the second straight waveguide, and the first straight waveguide, the first The two straight waveguides have a light field coupling with the ring waveguide; the second waveguide is connected to the first ends of the first straight waveguides and the first ends of the second straight waveguides through the Y-type optical waveguides, respectively.
  • This provides a way to connect the grating omnidirectional coupler to the reflective microring resonator.
  • the reflective microring resonator comprises a first straight waveguide, a second straight waveguide and a ring waveguide, the annular waveguide is located between the first straight waveguide and the second straight waveguide, and the first straight waveguide, the first The two straight waveguides have a light field coupling with the ring waveguide; the second waveguide is respectively connected to the first ends of the first straight waveguide and the first end of the second straight waveguide by a multimode interferometer. This provides a way to connect another grating omnidirectional coupler and a reflective microring resonator.
  • the grating periods of the first grating and the second grating are the same, and the projection of the first grating on the second waveguide overlaps with the second grating in whole or in part.
  • the projection of the first grating on the second waveguide and the length of the second grating offset portion are also referred to as relative position differences.
  • the phase difference between the phases and the passband bandwidth of the narrowband filter have a corresponding relationship.
  • the bandwidth of the narrow band filter formed by the first grating and the second grating is determined by setting the relative positional difference between the first grating and the second grating.
  • a grating adjustment element and/or a reflective microring resonator are provided with a phase adjustment unit for adjusting the phase of the light.
  • the filter spectrum of the narrowband filter can be tuned by the phase adjustment unit on the grating isotropic coupler.
  • the phase adjustment unit on the reflective microring resonator can be used to tune the filter spectrum of the reflective microring resonator.
  • the narrow-band filter has only one peak in the filter spectrum of the specified band, and the filter spectrum of the reflective micro-ring resonator is comb-like, so that it is not necessary to control different center wavelengths for alignment, and only the narrow-band filter needs to be controlled.
  • a central wavelength is aligned with a certain center wavelength of the reflective microring resonator, making wavelength tuning easier and wavelength tuning faster.
  • the non-grating region of the grating isotropic coupler is provided with a first phase adjusting unit
  • the grating region of the grating isotropic coupler is provided with a second phase adjusting unit
  • the ring waveguide is provided with a third phase Adjustment unit.
  • the first phase adjustment unit can finely adjust the output wavelength
  • the second phase adjustment unit and the third phase adjustment unit can coarsely adjust the output wavelength.
  • the second end of the first straight waveguide and the second end of the second straight waveguide are respectively connected to the Y-type optical waveguide or the multi-mode interferometer.
  • the second waveguide is connected to the first end of the first straight waveguide and the first end of the second straight waveguide through the Y-type optical waveguide or the multimode interferometer, respectively, the second end and the second end of the first straight waveguide
  • the second ends of the straight waveguides are respectively connected to a Y-type optical waveguide or a multimode interferometer.
  • the light passing through the first straight waveguide and the second straight waveguide, respectively is output through a Y-type optical waveguide or a multimode interferometer.
  • the first straight waveguide is provided with a fourth phase adjustment unit.
  • the phase difference of the optical field between the first straight waveguide and the second straight waveguide in the reflective microring resonator can be adjusted to maximize the optical power output and minimize the coupling loss.
  • the phase adjustment unit may be a thermal tuning unit, a current tuning unit, or a calendering tuning unit.
  • a second aspect provides a laser transmitter comprising: a tunable laser and a signal modulating device; the tunable laser comprising a reflective semiconductor optical amplifier SOA, a grating omnidirectional coupler and a reflective microring resonator; and a first end face of the reflective SOA An anti-reflection film is disposed on the second end surface of the reflective SOA; the second waveguide of the grating isotropic coupler is coupled to the first waveguide, the first waveguide is provided with a first grating, and the second waveguide is provided with a second waveguide a second grating disposed opposite to the first grating, the first grating and the second grating forming a narrow band filter, the second waveguide being coupled to the reflective microring resonator; the reflective microring resonator comprising a first straight waveguide, a second straight waveguide, and a ring waveguide, the ring waveguide is located between the first straight waveguide and the second straight waveguide, and the first straight waveguide, the
  • the grating isotropic coupler and the reflective microring resonator are formed on a silicon base, and the first end face refers to an end face of the reflective SOA coupled to the first waveguide of the grating isotropic coupler, and the second end face refers to the first An opposite end face.
  • the laser transmitter can modulate the laser from the tunable laser into a polarization-multiplexed high-order modulated signal and then output a polarization-multiplexed high-order modulated signal. Also, the output signal can be adjusted by tuning the laser wavelength.
  • the signal modulating device comprises at least two signal modulators, and a polarization beam splitting rotator; the signal modulator is a Mach-Zehnder modulator. This provides a concrete and feasible laser transmitter.
  • the second waveguide is respectively connected to the first end of the first straight waveguide and the first end of the second straight waveguide through the Y-type optical waveguide.
  • the second waveguide is respectively connected to the first end of the first straight waveguide and the first end of the second straight waveguide by a multimode interferometer.
  • the grating periods of the first grating and the second grating are the same, and the projection of the first grating on the second waveguide overlaps with the second grating in whole or in part.
  • a grating adjustment element and/or a reflective microring resonator are provided with a phase adjustment unit for adjusting the phase of the light.
  • the non-grating region of the grating isotropic coupler is provided with a first phase adjusting unit
  • the grating region of the grating isotropic coupler is provided with a second phase adjusting unit
  • the ring waveguide is provided with a third phase Adjustment unit.
  • the phase adjustment unit is a thermal tuning unit, a current tuning unit or a calendering tuning unit.
  • a tunable laser includes a reflective SOA, a grating omnidirectional coupler, and a reflective microring resonator.
  • An anti-reflection film is disposed on the first end surface of the reflective SOA, and the second waveguide of the grating isotropic coupler is coupled to the first waveguide, the first waveguide is provided with a first grating, and the second waveguide is disposed opposite to the first grating
  • the second grating, the first grating and the second grating form a narrow band filter; the second waveguide is coupled to the reflective microring resonator.
  • the narrow-band filter has only one peak on the filter spectrum of the specified band, and the filter spectrum of the reflective micro-ring resonator is comb-like, so that it is not necessary to control different center wavelengths for alignment, and only the narrow-band filter needs to be controlled.
  • a central wavelength is aligned with a certain center wavelength of the reflective microring resonator, so the tunable laser of the present application is more susceptible to wavelength tuning and wavelength tuning is faster.
  • FIG. 1 is a schematic diagram of a tunable laser in the prior art
  • FIG. 2 is a side view of a tunable laser in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a tunable laser in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first grating and a second grating in the embodiment of the present application;
  • FIG. 5 is a schematic diagram of a filter spectrum of a grating omnidirectional coupler in an embodiment of the present application
  • FIG. 6 is another schematic structural diagram of a tunable laser in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a filter spectrum of a tunable laser in an embodiment of the present application.
  • FIG. 8 is still another schematic structural diagram of a tunable laser in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a composition of a laser transmitter in an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a laser transmitter in an embodiment of the present application.
  • the present application uses a narrowband filter and a reflective microring resonator for filtering. Since the narrowband filter can form a bandpass on a specified band, it is easier to The narrowband filter performs wavelength calibration, making it easier to align the center wavelength of the narrowband filter with the center wavelength of the reflective microring resonator.
  • FIG. 2 is a side view of the tunable laser in the embodiment of the present application.
  • an embodiment of the tunable laser provided by the present application includes:
  • the reflective SOA 21, the grating isotropic coupler 22, and the reflective microring resonator 23, the grating isotropic coupler 22 and the reflective microring resonator 23 are all formed on a silicon substrate.
  • the coupling mode of the reflective SOA 21 and the grating isotropic coupler 22 adopts a butt coupling or a wafer bonding method.
  • a phase adjustment unit 24 for adjusting the phase of the light is provided on the grating isotropic coupler 22.
  • the phase adjustment unit 24 can be a thermal tuning unit, a current tuning unit, or a calendering tuning unit.
  • the silicon substrate includes a silicon substrate 25 and a silicon dioxide SiO 2 layer 26 disposed on the silicon substrate 25.
  • a cover layer 27 is disposed above the grating isotropic coupler 22, and when the phase adjustment unit 24 is a thermal tuning unit, it is embedded in the cover layer 27, and the thermal tuner unit 24 and the grating isotropic coupler 22 pass through the cover layer 27. Separated.
  • the material of the cover layer 27 may be silicon dioxide.
  • phase adjustment units 24 may be one or more.
  • the phase adjustment unit 24 may also be disposed only on the reflective microring resonator 23, or the phase adjustment unit 24 may be simultaneously disposed on the grating isotropic coupler 22 and the reflective microring resonator 23. It will be appreciated that the phase adjustment unit 24 may also be disposed in other directions around the grating isotropic coupler 22 and/or the reflective microring resonator 23, such as with the grating isotropic coupler 22 and/or the reflective microring resonator 23 Arranged in parallel, or disposed below the grating omnidirectional coupler 22 and/or the reflective microring resonator 23.
  • the reflective SOA 21, the grating isotropic coupler 22, and the reflective microring resonator 23 constitute a resonant cavity.
  • the center wavelength of the grating isotropic coupler 22 is aligned with the center wavelength of the reflective microring resonator 23, the light generated by the reflective SOA 21 is resonated by the cavity and can be output from the reflective microring resonator 23 or the reflective SOA 21
  • the laser, the wavelength of the output laser is near the above center wavelength.
  • FIG. 3 is a cross-sectional plan view of a tunable laser in the embodiment of the present application.
  • another embodiment of the tunable laser provided by the present application includes:
  • Reflective SOA 21 Reflective SOA 21, grating isotropic coupler 22, reflective microring resonator 23, and phase adjustment unit 24.
  • the reflective SOA 21 includes a reflective SOA body 211.
  • the first end surface of the reflective SOA 21 is provided with an anti-reflection film 212, and the second end surface is provided with a high reflective film 213.
  • the first end face refers to an end face of the reflective SOA 21 coupled to the first waveguide 221 of the grating isotropic coupler 22, and the second end face refers to an end face opposite to the first end face.
  • the second waveguide 222 of the grating isotropic coupler 22 is coupled to the first waveguide 221, the first waveguide 221 is provided with a first grating 223, and the second waveguide 222 is provided with a second grating 224 disposed opposite to the first grating 223, first The grating 223 and the second grating 224 constitute a narrow band filter.
  • the second waveguide 222 is connected to the reflective microring resonator 23.
  • the reflective microring resonator 23 includes a first straight waveguide 231, a second straight waveguide 232, and a ring waveguide 233, and the ring waveguide 233 is located between the first straight waveguide 231 and the second straight waveguide 232, and the first straight waveguide 231, the second The straight waveguide 232 and the ring waveguide 233 have a light field coupling; the second waveguide 222 is connected to the first end of the first straight waveguide 231 and the first end of the second straight waveguide 232 through the Y-type optical waveguide, respectively.
  • the second waveguide 222 may also be connected to the first end of the first straight waveguide 231 and the first end of the second straight waveguide 222 by a multimode interferometer (MMI), and the MMI is 1 ⁇ .
  • MMI multimode interferometer
  • the structure of 2 divides the input optical signal into two optical signals.
  • the second waveguide 222, the Y-type optical waveguide, the first straight waveguide 231, and the second straight waveguide 232 may be integrally formed.
  • a non-grating region of the grating isotropic coupler 22 is provided with a first phase adjusting unit 241, a grating region of the grating isotropic coupler 22 is provided with a second phase adjusting unit 242, and a third phase adjusting unit 243 is disposed on the ring waveguide 233.
  • the first straight waveguide 231 is provided with a fourth phase adjustment unit 244.
  • the first phase adjustment unit 241 may be disposed in the non-grating region of the first waveguide 221 or the non-grating region of the second waveguide 222.
  • the first phase adjustment unit 241 is for fine tuning the wavelength of the laser output light.
  • the second phase adjustment unit 242 is configured to adjust the filter spectrum of the narrowband filter to achieve coarse wavelength adjustment.
  • the third phase adjustment unit 243 is configured to adjust the filter spectrum of the reflective microring resonator to achieve coarse wavelength adjustment.
  • the wavelength is stepwise when coarsely adjusted according to the tunable laser principle.
  • the fourth phase adjustment unit 244 is for changing the refractive index of the first straight waveguide 231 such that the laser light output from the first straight waveguide 231 and the laser light output from the second straight waveguide 232 form a desired phase difference.
  • phase adjustment units may be set according to phase tuning requirements.
  • a phase adjustment unit may also be disposed on the second straight waveguide 232 for changing the refractive index of the second straight waveguide 232 to achieve the effect of changing the phase of the light.
  • a phase adjustment unit is provided on both the first straight waveguide 231 and the second straight waveguide 232.
  • the high reflective film of the reflective SOA 21 constitutes a resonant cavity end face
  • the reflective microring resonator 23 constitutes another resonant cavity end face.
  • the light After the light is generated from the reflective SOA 21, it resonates in the resonant cavity, and then respectively from the first
  • the second end of the straight waveguide 231 and the second end of the second straight waveguide 232 are output.
  • the peak of the filter spectrum of the narrowband filter is unique in the specified band.
  • the filter spectrum of the reflective microring resonator is comb-like, so that it is not necessary to control the alignment of different center wavelengths, and only one center wavelength of the narrowband filter needs to be controlled.
  • the center wavelength of the reflective microring resonator is aligned, so the tunable laser of the present embodiment is easier to perform wavelength tuning and the wavelength tuning speed is faster.
  • the grating periods of the first grating 221 and the second grating 222 are the same, and the projection of the first grating 221 on the second waveguide 222 and the second grating 224 are all or partially overlapped.
  • the first grating 221 may be formed by periodic etching on the first waveguide 221
  • the second grating 224 may be formed by periodic etching on the second waveguide 222.
  • the equivalent coupling coefficient k of the grating isotropic coupler is calculated as follows:
  • k1 is the coupling coefficient of the first grating
  • k2 is the coupling coefficient of the second grating
  • is the grating period
  • ds is the relative position difference between the first grating and the second grating.
  • the relative position difference refers to the length of the projection of the first grating 221 on the second waveguide and the second grating 224 being staggered.
  • the width of the first grating is w1 and the width of the second grating is w2.
  • the relative positional difference between the first grating and the second grating in the present application may be set to any one of 0 to ⁇ /2. It can be understood that, according to the periodic characteristic of the cos function, the relative position difference exceeding ⁇ /2 can be equivalent to a case between 0 and ⁇ /2.
  • the first grating and the second grating are in the same phase.
  • the first grating and the second grating have a phase difference.
  • the bandwidth of the narrowband filter is the largest, and the bandwidth is approximately 1520 to 1580 nm.
  • the bandwidth is approximately 1530 ⁇ 1570nm.
  • the bandwidth of the narrowband filter is the smallest, and the bandwidth is about 1545 to 1555 nm.
  • n eff1 is the effective refractive index of the symmetric mode of the grating isotropic coupler
  • n eff2 is the effective refractive index of the antisymmetric mode of the grating isotropic coupler
  • is the grating period.
  • the difference between n eff1 and n eff2 can be adjusted to change the center wavelength of the narrow band filter.
  • the second end of the first straight waveguide 231 and the second end of the second straight waveguide 232 are respectively connected to the Y-type optical waveguide 28.
  • the coupling ratio of the first straight waveguide 231 to the ring waveguide 233 is k3
  • the coupling ratio of the second straight waveguide 232 to the ring waveguide 233 is k4.
  • k3 and k4 can be set to be unequal.
  • the laser light passing through the first straight waveguide and the second straight waveguide is output from the Y-type optical waveguide 28.
  • the second end of the first straight waveguide 231 and the second end of the second straight waveguide 232 are respectively connected to a multimode interferometer, and the multimode interferometer has a structure of 2 ⁇ 1.
  • the laser light passing through the first straight waveguide and the second straight waveguide is output from the multimode interferometer.
  • a fourth phase adjustment unit 244 is disposed on the first straight waveguide. By tuning the fourth phase adjustment unit to change the phase of the light transmitted on the first straight waveguide, the light passing through the first straight waveguide and the second straight waveguide can be coupled through the Y-type optical waveguide or the MMI, so that the output optical power is maximized and coupled. The loss is minimal.
  • a grating isotropic coupler is also referred to as a dual grating assisted isotropic coupler.
  • the relative position difference between the first grating and the second grating is ⁇ /2.
  • the filter spectrum of the narrowband filter is a filter spectrum corresponding to the double grating auxiliary isotropic coupler
  • the filter spectrum of the reflective microring resonator is a comb filter spectrum, which is filtered after the narrowband filter and the reflective microring resonator.
  • the spectrum is the total filter line.
  • the composite light generated from the reflective SOA 21 enters the first waveguide 221, passes through the narrow-band filter composed of the first grating 223 and the second grating 224, and the filtering bandwidth is exemplified by 1547 to 1557 nm, and the center wavelength is taken as an example of 1552 nm.
  • the light output by the narrowband filter passes through the reflective microring resonator 23 to form a single longitudinal mode laser having a laser wavelength of around 1552 nm, oscillates within the cavity, passes through the first straight waveguide and the second straight waveguide, and finally passes through the Y-shaped optical waveguide 28. Converged output. It can be seen from Fig. 7 that there is only one peak having the largest transmittance in the total filter line, and the other peaks are suppressed, so that a single longitudinal mode laser is easily formed.
  • the laser wavelength is around 1552 nm. If it is necessary to adjust the wavelength of the laser to the next comb filter peak of the microring, 1558 nm, take thermal tuning as an example.
  • the second phase adjustment unit 242 is first adjusted to move the filter spectrum of the grating coupler to the long wavelength direction to be aligned with the next filter peak of the microring, and then the wavelength of the laser is fine tuned to 1558 nm by the first phase adjustment unit.
  • the wavelength of the laser is fine tuned to 1555 nm.
  • the fourth phase adjustment unit 244 When the fourth phase adjustment unit 244 is adjusted, the phase of the light output from the first straight waveguide 231 can be adjusted so that the phases of the two paths of light entering the Y-type optical waveguide 28 are uniform, so that the maximum coupling efficiency can be obtained.
  • the coupling efficiency can be optimized by adjusting the relative phases of the two paths of light to maximize the optical output power.
  • a tunable laser that outputs an optical signal from a reflective SOA is described below.
  • another embodiment of the tunable laser provided by the present application includes:
  • Reflective SOA 21 Reflective SOA 21, grating isotropic coupler 22, reflective microring resonator 23, and phase adjustment unit 24.
  • the second end surface of the reflective SOA is provided with a low reflection film 214, and the second end surface is an end surface opposite to the first end surface.
  • the specific composition, structure and connection manner of the reflective SOA body 211, the anti-reflection film 212, the grating isotropic coupler 22, the reflective microring resonator 23, and the phase adjustment unit 24 are shown in the embodiment of FIG. 2 or FIG. , will not repeat them here.
  • the second end surface of the reflective SOA 21 is a cleavage surface
  • a low reflection film may not be provided on the second end surface.
  • the reflectivity of the cleavage plane is approximately 33%. After the light generated by the reflective SOA 21 resonates through the cavity, it can be emitted from the cleavage plane.
  • a laser transmitter 900 includes:
  • the laser 901 and the signal modulation device 902 are tunable.
  • the tunable laser 901 comprises: a reflective semiconductor optical amplifier SOA, a grating omnidirectional coupler and a reflective microring resonator, the grating collocated coupler and the reflective microring resonator are both formed on a silicon base; the first of the reflective SOA An anti-reflection film is disposed on the end surface, and the first end surface refers to an end surface of the reflective SOA coupled to the first waveguide of the grating isotropic coupler, and the second end surface of the reflective SOA is provided with a high reflective film, and the second end surface refers to An opposite end face of the first end face; the second waveguide of the grating isotropic coupler is coupled to the first waveguide, the first waveguide is provided with a first grating, and the second waveguide is provided with a second grating disposed opposite to the first grating, the first grating And the second grating forms a narrow band filter, the second waveguide is connected with the reflective microring resonator; the reflective
  • the signal modulation device 902 is configured to modulate the optical signals output from the first straight waveguide and the second straight waveguide into polarization-multiplexed high-order modulated signals.
  • the signal modulation device 902 includes a plurality of signal modulators 1001, and a Polarization Beam Splitter and Rotator (PBSR) 1002.
  • PBSR Polarization Beam Splitter and Rotator
  • the first continuous waveguide 231 is coupled to a set of signal modulators 1001 via one or more Y-type optical waveguides.
  • the second straight waveguide 232 is coupled to another set of signal modulators 1001 via one or more Y-type optical waveguides.
  • the above two sets of signal modulators are connected to the PBSR 1002 through a plurality of Y-type optical waveguides.
  • the signal modulator 1001 is a Mach Zehnder Modulator (MZM) modulator. It should be noted that each signal modulator 1001 may be provided with a corresponding phase adjuster to adjust the phase of the signal output from the signal modulator 1001. After the light is emitted from the first straight waveguide 231 and the second straight waveguide 232, modulated by the signal modulator 1001, the polarization-multiplexed high-order modulation signal is output from the PBSR 1002.
  • MZM Mach Zehnder Modulator
  • the second waveguide is respectively connected to the first end of the first straight waveguide and the first end of the second straight waveguide through the Y-type optical waveguide.
  • the second waveguide is respectively connected to the first end of the first straight waveguide and the first end of the second straight waveguide by a multimode interferometer.
  • the grating period of the first grating and the second grating are the same, and the projection of the first grating on the second waveguide overlaps with the second grating in whole or in part.
  • a grating adjustment element and/or a reflective microring resonator are provided with a phase adjustment unit for adjusting the phase of the light.
  • the non-grating region of the grating isotropic coupler is provided with a first phase adjusting unit
  • the grating region of the grating isotropic coupler is provided with a second phase adjusting unit
  • the ring waveguide is provided with a third phase adjusting unit.
  • the phase adjustment unit is a thermal tuning unit, a current tuning unit, or a calendering tuning unit.
  • the components of the tunable laser 901 are similar to the corresponding components of the laser of the embodiment or alternative embodiment shown in FIG.
  • the units described above as separate components may or may not be physically separate.
  • the coupling can be direct coupling or indirect coupling through some interfaces.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种可调谐激光器,包括:反射式半导体光放大器SOA、光栅同向耦合器和反射式微环谐振器,光栅同向耦合器和反射式微环谐振器均是在硅基上形成;反射式SOA的第一端面上设有抗反膜,第一端面是指反射式SOA与光栅同向耦合器的第一波导耦合的端面;光栅同向耦合器的第二波导与第一波导耦合,第一波导设有第一光栅,第二波导设有与第一光栅相对设置的第二光栅,第一光栅和第二光栅构成窄带滤波器;第二波导与反射式微环谐振器连接。本申请的可调谐激光器具有更容易进行波长调谐和波长调谐速度更快的优点。

Description

一种可调谐激光器和激光发射机
本申请要求于2017年11月21日提交中国专利局、申请号为201711165899.2、发明名称为“一种可调谐激光器和激光发射机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光技术领域,尤其涉及一种可调谐激光器和激光发射机。
背景技术
可调谐激光器是在一定范围内可以连续改变激光输出波长的激光器。为了实现宽带(如覆盖C波段)的波长调谐范围,通常利用游标调谐机制实现波长调谐。在激光器中设有两个波长可调的滤波器结构,两个滤波器均有梳状的滤波谱线,两个滤波谱线的自由光谱范围(Free Spectrum Range,FSR)不同。当两个滤波器的滤波曲线中某一对中心波长对准时,其他对滤波峰会错开,这样对准处滤波谱线具有最大值,从而输出激光。当利用过电流注入效应、热效应或压光效应改变滤波器的折射率来调节某个滤波器的滤波谱线时,激光器的输出波长会跳变,从而实现激光调谐。
图1为现有技术公开的一种双微环的可调谐激光器,该可调谐激光器包括半导体光放大器(Semiconductor Optical Amplifier,SOA)11和硅波导。硅波导包括热调谐的微环谐振器12和微环谐振器13,每个微环谐振器包括两个平行的直波导和一个环形波导。SOA11提供光增益,微环谐振器13连接环镜14,构成激光器的一个谐振腔端面;SOA11与硅波导耦合的一端镀抗反膜,构成激光器的另一个谐振腔端面;SOA另一个端面镀低反膜,激光主要从低反膜端面输出。通过与微环谐振器12、13或环镜14连接的热调谐单元可以进行对波长调谐。
但是,在游标调谐机制要求对波长进行标定,波长标定难度大。另外游标调谐过程中需要对两个微环谐振器的波长进行控制,而硅波导具有热敏感性,受温度影响滤波谱漂移明显,因此难以对波长进行准确控制。由此可见,现有的可调谐激光器制作工艺要求高,调谐控制难度大。
发明内容
有鉴于此,本申请提供一种可调谐激光器和激光发射机,能够更容易进行波长调谐,波长调谐速度更快,可以降低波长测试过程的成本。
第一方面提供一种可调谐激光器,包括:反射式SOA、光栅同向耦合器和反射式微环谐振器;反射式SOA的第一端面上设有抗反膜;光栅同向耦合器的第二波导与第一波导耦合,第一波导设有第一光栅,第二波导设有与第一光栅相对设置的第二光栅,第一光栅和第二光栅构成窄带滤波器;第二波导与反射式微环谐振器连接。其中,光栅同向耦合器和反射式微环谐振器均是在硅基上形成的,第一端面是指反射式SOA与光栅同向耦合器的第一波导耦合的端面。依此实施,反射式SOA、光栅同向耦合器和反射式微环谐振器构成谐 振腔。窄带滤波器在指定波段(如C波段)具有一个单带通的滤波谱,微环谐振器具有梳状滤波谱,当光经过窄带滤波器和微环谐振器后,能够形成单纵模激光在谐振腔内振荡,从而输出激光。在一般情况下,窄带滤波器在指定波段的滤波谱中只有一个波峰,反射式微环谐振器的滤波谱是梳状的,这样不需要控制不同的中心波长进行对准,只需要控制窄带滤波器的一个中心波长和反射式微环谐振器的某个中心波长对准,因此更容易进行波长调谐,波长调谐速度更快。
一种可能的实现方式中,反射式SOA的第二端面上设有高反膜,第二端面是指与第一端面相反的端面。这样,激光在反射式SOA中经过高反膜反射后,主要光能量从反射式微环谐振器输出。
另一种可能的实现方式中,反射式SOA的第二端面上设有低反膜,第二端面是指与第一端面相反的端面。这样,激光在谐振腔振荡后,主要光能量从反射式SOA的低反膜输出。
另一种可能的实现方式中,反射式SOA的第二端面为解理面,第二端面是指与第一端面相反的端面。解理面是指在外力作用下产生穿晶断裂形成的一种晶面。其光反射率大约为33%。激光在谐振腔振荡后,可以从第二端面输出。
另一种可能的实现方式中,反射式微环谐振器包括第一直波导、第二直波导和环形波导,环形波导位于第一直波导和第二直波导之间,且第一直波导、第二直波导与环形波导存在光场耦合;第二波导通过Y型光波导分别与第一直波导的第一端及第二直波导的第一端连接。这样提供了一种光栅同向耦合器和反射式微环谐振器连接的方式。
另一种可能的实现方式中,反射式微环谐振器包括第一直波导、第二直波导和环形波导,环形波导位于第一直波导和第二直波导之间,且第一直波导、第二直波导与环形波导存在光场耦合;第二波导通过多模干涉仪分别与第一直波导的第一端及第二直波导的第一端连接。这样提供了另一种光栅同向耦合器和反射式微环谐振器连接的方式。
另一种可能的实现方式中,第一光栅和第二光栅的光栅周期相同,且第一光栅在第二波导上的投影和第二光栅全部或部分重叠。第一光栅在第二波导上的投影和第二光栅错开部分的长度也称作相对位置差。相位位置差和窄带滤波器的通带带宽具有对应关系。这样,通过设置第一光栅和第二光栅的相对位置差,确定第一光栅和第二光栅构成的窄带滤波器的带宽。
另一种可能的实现方式中,光栅同向耦合器和/或反射式微环谐振器上设有用于调节光相位的相位调节单元。在调谐激光时,利用光栅同向耦合器上的相位调节单元可以对窄带滤波器的滤波谱进行调谐,利用反射式微环谐振器上的相位调节单元可以对反射式微环谐振器的滤波谱进行调谐。在一般情况下,窄带滤波器在指定波段的滤波谱中只有一个波峰,反射式微环谐振器的滤波谱是梳状的,这样不需要控制不同的中心波长进行对准,只需要控制窄带滤波器的一个中心波长和反射式微环谐振器的某个中心波长对准,因此更容易进行波长调谐,波长调谐速度更快。
另一种可能的实现方式中,光栅同向耦合器的非光栅区设有第一相位调节单元,光栅同向耦合器的光栅区设有第二相位调节单元,环形波导上设有第三相位调节单元。这样, 第一相位调节单元可以对输出波长进行微调,第二相位调节单元和第三相位调节单元可以对输出波长进行粗调。
另一种可能的实现方式中,第一直波导的第二端、第二直波导的第二端分别与Y型光波导或多模干涉仪连接。在第二波导通过Y型光波导或者多模干涉仪,分别与第一直波导的第一端和第二直波导的第一端连接的情况下,第一直波导的第二端、第二直波导的第二端分别与Y型光波导或多模干涉仪连接。这样将分别经过第一直波导和第二直波导的光通过Y型光波导或多模干涉仪输出。
进一步的,第一直波导设有第四相位调节单元。通过调谐第四相位调节单元,可以调整在反射式微环谐振器中第一直波导与第二直波导之间的光场相位差使输出的光功率最大,耦合损耗最小。
以上实现方式中,相位调节单元可以为热调谐单元、电流调谐单元或压光调谐单元。
第二方面提供一种激光发射机,包括:可调谐激光器和信号调制装置;可调谐激光器包括反射式半导体光放大器SOA、光栅同向耦合器和反射式微环谐振器;反射式SOA的第一端面上设有抗反膜,反射式SOA的第二端面上设有高反膜;光栅同向耦合器的第二波导与第一波导耦合,第一波导设有第一光栅,第二波导设有与第一光栅相对设置的第二光栅,第一光栅和第二光栅构成窄带滤波器,第二波导与反射式微环谐振器连接;反射式微环谐振器包括第一直波导、第二直波导和环形波导,环形波导位于第一直波导和第二直波导之间,且第一直波导、第二直波导与环形波导存在光场耦合;信号调制装置可以将从第一直波导和第二直波导输出的光信号调制为偏振复用高阶调制信号。其中,光栅同向耦合器和反射式微环谐振器均是在硅基上形成,第一端面是指反射式SOA与光栅同向耦合器的第一波导耦合的端面,第二端面是指与第一端面相反的端面。依此实施,激光发射机可以将来自可调谐激光器的激光调制为偏振复用高阶调制信号,然后输出偏振复用高阶调制信号。并且,通过调谐激光波长可以对输出信号进行调整。
一种可能的实现方式中,信号调制装置包括至少两个信号调制器,以及偏振分束旋转器;信号调制器为马赫增德尔调制器。这样提供了具体可行的激光发射机。
另一种可能的实现方式中,第二波导通过Y型光波导分别与第一直波导的第一端及第二直波导的第一端连接。
另一种可能的实现方式中,第二波导通过多模干涉仪分别与第一直波导的第一端及第二直波导的第一端连接。
另一种可能的实现方式中,第一光栅和第二光栅的光栅周期相同,且第一光栅在第二波导上的投影和第二光栅全部或部分重叠。
另一种可能的实现方式中,光栅同向耦合器和/或反射式微环谐振器上设有用于调节光相位的相位调节单元。
另一种可能的实现方式中,光栅同向耦合器的非光栅区设有第一相位调节单元,光栅同向耦合器的光栅区设有第二相位调节单元,环形波导上设有第三相位调节单元。
另一种可能的实现方式中,相位调节单元为热调谐单元、电流调谐单元或压光调谐单元。
从以上可以看出,本申请具有以下优点:
一种可调谐激光器包括反射式SOA、光栅同向耦合器和反射式微环谐振器。反射式SOA的第一端面上设有抗反膜,光栅同向耦合器的第二波导与第一波导耦合,第一波导设有第一光栅,第二波导设有与第一光栅相对设置的第二光栅,第一光栅和第二光栅构成窄带滤波器;第二波导与反射式微环谐振器连接。在一般情况下,窄带滤波器在指定波段的滤波谱上只有一个波峰,反射式微环谐振器的滤波谱是梳状的,这样不需要控制不同的中心波长进行对准,只需要控制窄带滤波器的一个中心波长和反射式微环谐振器的某个中心波长对准,因此本申请的可调谐激光器更容易进行波长调谐,波长调谐速度更快。
附图说明
图1为现有技术中可调谐激光器的一个示意图;
图2为本申请实施例中可调谐激光器的一个侧视图;
图3为本申请实施例中可调谐激光器的一个结构示意图;
图4为本申请实施例中第一光栅和第二光栅的一个示意图;
图5为本申请实施例中光栅同向耦合器的滤波谱的示意图;
图6为本申请实施例中可调谐激光器的另一个结构示意图;
图7为本申请实施例中可调谐激光器的滤波谱的示意图;
图8为本申请实施例中可调谐激光器的又一个结构示意图;
图9为本申请实施例中激光发射机的一个组成示意图;
图10为本申请实施例中激光发射机的另一个结构示意图。
具体实施方式
为了解决游标效应带来的难以标定波长和难以控制波长的问题,本申请采用窄带滤波器和反射式微环谐振器进行滤波,由于窄带滤波器可以在指定波段上形成一个带通,这样更容易对窄带滤波器进行波长标定,将窄带滤波器的中心波长和反射式微环谐振器的中心波长进行波长对准更容易。
下面对本申请提供的可调谐激光器进行介绍,图2为本申请实施例中可调谐激光器的一个侧视图。参阅图2,本申请提供的可调谐激光器的一个实施例包括:
反射式SOA21、光栅同向耦合器22和反射式微环谐振器23,光栅同向耦合器22和反射式微环谐振器23均是在硅基上形成的。反射式SOA21和光栅同向耦合器22的耦合方式采用对接耦合(butt coupling)或晶圆键合(wafer bonding)的方式。
光栅同向耦合器22上设有用于调节光相位的相位调节单元24。相位调节单元24可以是热调谐单元、电流调谐单元或压光调谐单元。硅基包括硅衬底25和设置在硅衬底25上的二氧化硅SiO 2层26。在光栅同向耦合器22的上方设有覆盖层27,当相位调节单元24为热调谐单元时,其嵌设在覆盖层27中,热调谐单元24与光栅同向耦合器22通过覆盖层27隔开。覆盖层27的材料可以是二氧化硅。
需要说明的是,相位调节单元24的数量可以是一个或多个。相位调节单元24也可以 仅设置在反射式微环谐振器23上,或者,在光栅同向耦合器22和反射式微环谐振器23上同时设置相位调节单元24。可以理解的是,相位调节单元24还可以设置在光栅同向耦合器22和/或反射式微环谐振器23周围的其他方向,例如与光栅同向耦合器22和/或反射式微环谐振器23平行设置,或者设置在光栅同向耦合器22和/或反射式微环谐振器23的下方。
反射式SOA21、光栅同向耦合器22和反射式微环谐振器23构成谐振腔。当经过光栅同向耦合器22的中心波长和经过反射式微环谐振器23的中心波长对准时,反射式SOA21产生的光经谐振腔谐振后,可以从反射式微环谐振器23或反射式SOA21输出激光,输出激光的波长在上述中心波长附近。
首先对从微环谐振器23输出光信号的可调谐激光器进行介绍。图3为本申请实施例中可调谐激光器的一个剖面俯视图。参阅图3,本申请提供的可调谐激光器的另一个实施例包括:
反射式SOA21、光栅同向耦合器22、反射式微环谐振器23和相位调节单元24。
反射式SOA21包括反射式SOA本体211,反射式SOA21的第一端面上设有抗反膜212,第二端面设有高反膜213。第一端面是指反射式SOA21与光栅同向耦合器22的第一波导221耦合的端面,第二端面是指与第一端面相反的端面。
光栅同向耦合器22的第二波导222与第一波导221耦合,第一波导221设有第一光栅223,第二波导222设有与第一光栅223相对设置的第二光栅224,第一光栅223和第二光栅224构成窄带滤波器。第二波导222与反射式微环谐振器23连接。
反射式微环谐振器23包括第一直波导231、第二直波导232和环形波导233,环形波导233位于第一直波导231和第二直波导232之间,且第一直波导231、第二直波导232与环形波导233存在光场耦合;第二波导222通过Y型光波导分别与第一直波导231的第一端及第二直波导232的第一端连接。需要说明的是,第二波导222也可以通过多模干涉仪(Multimode Interferometer,MMI)分别与第一直波导231的第一端及第二直波导222的第一端连接,该MMI为1×2的结构,将输入光信号分为2个光信号。第二波导222、Y型光波导、第一直波导231及第二直波导232可以是一体成型的。
光栅同向耦合器22的非光栅区设有第一相位调节单元241,光栅同向耦合器22的光栅区设有第二相位调节单元242,环形波导233上设有第三相位调节单元243。第一直波导231设有第四相位调节单元244。
其中,第一相位调节单元241可以设置在第一波导221的非光栅区或第二波导222的非光栅区。第一相位调节单元241用于对激光器输出光的波长进行精调。
第二相位调节单元242用于对窄带滤波器的滤波谱进行调节,实现波长粗调。
第三相位调节单元243用于对反射式微环谐振器的滤波谱进行调节,实现波长粗调。根据可调谐激光器原理粗调时波长是台阶式变化的。
第四相位调节单元244用于改变第一直波导231的折射率,以使得从第一直波导231输出的激光与从第二直波导232输出的激光形成需要的相位差。
需要说明的是,在实际应用中,可以根据相位调谐需求设置一个或多个相位调节单元。 在第二直波导232上也可以设置相位调节单元,用于改变第二直波导232的折射率,达到改变光相位的作用。或者,在第一直波导231和第二直波导232上均设置相位调节单元。
本实施例中,反射式SOA21的高反膜构成一个谐振腔端面,反射式微环谐振器23构成另一个谐振腔端面,光从反射式SOA21产生后,在谐振腔内谐振,然后分别从第一直波导231的第二端以及第二直波导232的第二端输出。窄带滤波器在指定波段的滤波谱的波峰是唯一的,反射式微环谐振器的滤波谱是梳状的,这样不需要控制不同的中心波长进行对准,只需要控制窄带滤波器的一个中心波长和反射式微环谐振器的中心波长对准,因此本实施例的可调谐激光器更容易进行波长调谐,波长调谐速度更快。
参阅图4,在一个可选的实施例中,第一光栅221和第二光栅222的光栅周期相同,且第一光栅221在第二波导222上的投影和第二光栅224全部或部分重叠。第一光栅221可以是在第一波导221上通过周期性刻蚀形成的,第二光栅224可以是在第二波导222上通过周期性刻蚀形成。
下面对两个光栅构成的窄带滤波器的滤波谱进行介绍:
光栅同向耦合器的等效耦合系数k的计算公式如下:
其中,k1为第一光栅的耦合系数,k2为第二光栅的耦合系数,Λ为光栅周期,ds为第一光栅和第二光栅的相对位置差。相对位置差是指第一光栅221在第二波导上的投影和第二光栅224错开的长度。第一光栅的宽度为w1,第二光栅的宽度为w2。
由公式可知,ds的值越大,耦合系数越小,窄带滤波器的带宽越小。本申请中的第一光栅和第二光栅的相对位置差可以设为0至Λ/2中的任意一个值。可以理解的是,根据cos函数的周期特性,相对位置差超过Λ/2都可以等效为0至Λ/2之间的情况。当第一光栅和第二光栅的ds等于0或光栅周期的整数倍时,第一光栅和第二光栅相位相同。当第一光栅和第二光栅的ds不等于0时,第一光栅和第二光栅存在相位差。
如图5所示,当ds等于0或者光栅周期的整数倍时,窄带滤波器的带宽最大,带宽大约为1520~1580nm。当ds=Λ/4时,带宽大约为1530~1570nm。当ds=Λ/2时,窄带滤波器的带宽最小,带宽大约为1545~1555nm。
对于该窄带滤波器,其中心波长λp的计算公式为:
λ p=2|n eff1-n eff2|Λ。
n eff1为光栅同向耦合器的对称模的有效折射率,n eff2为光栅同向耦合器的反对称模的有效折射率,Λ为光栅周期。
这样通过调节第二相位调节器242,可以对n eff1和n eff2的差值进行调整,从而改变窄带滤波器的中心波长。
参阅图6,基于以上实施例,在一个可选的实施例中,第一直波导231的第二端、第二直波导232的第二端分别与Y型光波导28连接。具体的,第一直波导231与环形波导233的耦合率为k3,第二直波导232与环形波导233的耦合率为k4。为了增加微环谐振器 的透过率,k3和k4可以设置为不相等。这样,经过第一直波导和第二直波导的激光从Y型光波导28输出。
在一个可选的实施例中,第一直波导231的第二端、第二直波导232的第二端分别与多模干涉仪连接,该多模干涉仪的结构为2×1的结构。这样,经过第一直波导和第二直波导的激光从多模干涉仪输出。
进一步的,在第一直波导上设有第四相位调节单元244。通过调谐第四相位调节单元改变第一直波导上传输的光的相位,可以使经过第一直波导和第二直波导的光通过Y型光波导或MMI时耦合,使输出光功率最大,耦合损失最小。
为便于理解,下面对本申请的可调谐激光器的光输出过程进行详细介绍:
在本申请中,光栅同向耦合器也称作双光栅辅助同向耦合器。以图6所示的可调谐激光器为例,第一光栅和第二光栅的相对位置差为Λ/2。参阅图7,窄带滤波器的滤波谱为双光栅辅助同向耦合器对应的滤波谱,反射式微环谐振器的滤波谱为梳状滤波谱,经过窄带滤波器和反射式微环谐振器之后的滤波谱为总滤波谱线。
从反射式SOA21产生的复合光进入第一波导221,经过由第一光栅223和第二光栅224构成的窄带滤波器后,其滤波带宽以1547~1557nm为例,中心波长以1552nm为例,从窄带滤波器输出的光经过反射式微环谐振器23,形成激光波长在1552nm附近的单纵模激光,在谐振腔内振荡,经过第一直波导和第二直波导,最后在Y形光波导28汇聚输出。从图7可以看出,在总滤波谱线中只存在一个透过率最大的波峰,其他波峰被抑制,这样容易形成单纵模激光。
目前激光器波长在1552nm附近,如果需要调节激光器的波长至微环的下一个梳状滤波峰值1558nm,以热调谐为例。首先调节第二相位调节单元242,使光栅耦合器的滤波谱向长波长方向移动至与微环的下一个滤波峰对齐,然后利用第一相位调节单元微调激光器的波长至1558nm。
如果需要调节激光器的波长至1552nm与1558nm之间的1555nm,则需要同时调节第二相位调节单元242与第三相位调节单元243,使两个滤波谱的峰值均调节至1555nm附近,然后调节第一相位区,微调激光器的波长至1555nm。
在第一直波导与第二直波导的长度和宽度不完全相同的情况下,当第一直波导与第二直波导中光场强度一样时,两路光通过Y型光波导28耦合时会出现由于光场相位不匹配导致的耦合损耗。当调节第四相位调节单元244时,可以对第一直波导231输出的光的相位进行调节,使两路光进入Y型光波导28的相位一致,这样可以获得最大的耦合效率。当第一波导和第二波导中光场强度不等时,也可以通过调节两路光的相对相位的方式来优化耦合效率,使光输出功率最大。
下面对从反射式SOA输出光信号的可调谐激光器进行介绍。参阅图8,本申请提供的可调谐激光器的另一个实施例包括:
反射式SOA21、光栅同向耦合器22、反射式微环谐振器23和相位调节单元24。
其中,反射式SOA的第二端面设有低反膜214,第二端面是指与第一端面相反的端面。
本实施例中,反射式SOA本体211、抗反膜212、光栅同向耦合器22、反射式微环谐 振器23、相位调节单元24的具体组成、结构和连接方式参见图2或图3实施例,此处不再赘述。
需要说明的是,在反射式SOA21的第二端面为解理面时,在第二端面上可以不设置低反膜。解理面的反射率大约为33%。反射式SOA21产生的光经谐振腔谐振后,可以从解理面射出。
以上对本申请的可调谐激光器进行了介绍,下面对包括上述可调谐激光器的激光发射机进行介绍。参阅图9,本申请提供的激光发射机900的一个实施例包括:
可调谐激光器901和信号调制装置902。
可调谐激光器901包括:反射式半导体光放大器SOA、光栅同向耦合器和反射式微环谐振器,光栅同向耦合器和反射式微环谐振器均是在硅基上形成;反射式SOA的第一端面上设有抗反膜,第一端面是指反射式SOA与光栅同向耦合器的第一波导耦合的端面,反射式SOA的第二端面上设有高反膜,第二端面是指与第一端面相反的端面;光栅同向耦合器的第二波导与第一波导耦合,第一波导设有第一光栅,第二波导设有与第一光栅相对设置的第二光栅,第一光栅和第二光栅构成窄带滤波器,第二波导与反射式微环谐振器连接;反射式微环谐振器包括第一直波导、第二直波导和环形波导,环形波导位于第一直波导和第二直波导之间,且第一直波导、第二直波导与环形波导存在光场耦合;
信号调制装置902,用于将从第一直波导和第二直波导输出的光信号调制为偏振复用高阶调制信号。参阅图10,信号调制装置902包括多个信号调制器1001,以及偏振分束旋转器(Polarization Beam Splitter and Rotator,PBSR)1002。
第一直波导231通过一个或多个Y型光波导与一组信号调制器1001连接。第二直波导232通过一个或多个Y型光波导与另一组信号调制器1001连接。上述两组信号调制器通过多个Y型光波导与PBSR1002连接。
信号调制器1001为马赫增德尔(Mach Zehnder Modulator,MZM)调制器。需要说明的是,每个信号调制器1001可以设置一个对应的相位调节器,以调节从信号调制器1001输出的信号的相位。光从第一直波导231和第二直波导232射出后,经信号调制器1001调制后,从PBSR1002输出偏振复用高阶调制信号。
可选的,第二波导通过Y型光波导分别与第一直波导的第一端及第二直波导的第一端连接。
可选的,第二波导通过多模干涉仪分别与第一直波导的第一端及第二直波导的第一端连接。
可选的,第一光栅和第二光栅的光栅周期相同,且第一光栅在第二波导上的投影和第二光栅全部或部分重叠。
可选的,光栅同向耦合器和/或反射式微环谐振器上设有用于调节光相位的相位调节单元。
可选的,光栅同向耦合器的非光栅区设有第一相位调节单元,光栅同向耦合器的光栅区设有第二相位调节单元,环形波导上设有第三相位调节单元。
可选的,相位调节单元为热调谐单元、电流调谐单元或压光调谐单元。
其中,可调谐激光器901的部件,与图3所示实施例或可选实施例中的激光器的对应部件相似。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的。耦合可以是直接耦合,或者通过一些接口的间接耦合。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种可调谐激光器,其特征在于,包括:
    反射式半导体光放大器SOA、光栅同向耦合器和反射式微环谐振器,所述光栅同向耦合器和所述反射式微环谐振器均是在硅基上形成;
    所述反射式SOA的第一端面上设有抗反膜,所述第一端面是指所述反射式SOA与所述光栅同向耦合器的第一波导耦合的端面;
    所述光栅同向耦合器的第二波导与所述第一波导耦合,所述第一波导设有第一光栅,所述第二波导设有与所述第一光栅相对设置的第二光栅,所述第一光栅和所述第二光栅构成窄带滤波器,所述第二波导与所述反射式微环谐振器连接。
  2. 根据权利要求1所述的可调谐激光器,其特征在于,所述反射式SOA的第二端面上设有高反膜,所述第二端面是指与所述第一端面相反的端面。
  3. 根据权利要求1所述的可调谐激光器,其特征在于,所述反射式SOA的第二端面上设有低反膜,所述第二端面是指与所述第一端面相反的端面。
  4. 根据权利要求1所述的可调谐激光器,其特征在于,所述反射式SOA的第二端面为解理面,所述第二端面是指与所述第一端面相反的端面。
  5. 根据权利要求1至4中任一项所述的可调谐激光器,其特征在于,
    所述反射式微环谐振器包括第一直波导、第二直波导和环形波导,所述环形波导位于所述第一直波导和所述第二直波导之间,且所述第一直波导、所述第二直波导与所述环形波导存在光场耦合;
    所述第二波导通过Y型光波导分别与所述第一直波导的第一端及所述第二直波导的第一端连接。
  6. 根据权利要求1至4中任一项所述的可调谐激光器,其特征在于,
    所述反射式微环谐振器包括第一直波导、第二直波导和环形波导,所述环形波导位于所述第一直波导和所述第二直波导之间,且所述第一直波导、所述第二直波导与所述环形波导存在光场耦合;
    所述第二波导通过多模干涉仪分别与所述第一直波导的第一端及所述第二直波导的第一端连接。
  7. 根据权利要求1至4中任一项所述的可调谐激光器,其特征在于,所述第一光栅和所述第二光栅的光栅周期相同,且所述第一光栅在所述第二波导上的投影和所述第二光栅全部或部分重叠。
  8. 根据权利要求1至4中任一项所述的可调谐激光器,其特征在于,
    所述光栅同向耦合器和/或所述反射式微环谐振器上设有用于调节光相位的相位调节单元。
  9. 根据权利要求8所述的可调谐激光器,其特征在于,所述光栅同向耦合器的非光栅区设有第一相位调节单元,所述光栅同向耦合器的光栅区设有第二相位调节单元,所述环形波导上设有第三相位调节单元。
  10. 根据权利要求8所述的可调谐激光器,其特征在于,所述相位调节单元为热调谐 单元、电流调谐单元或压光调谐单元。
  11. 根据权利要求5所述的可调谐激光器,其特征在于,所述第一直波导的第二端、所述第二直波导的第二端分别与Y型光波导或多模干涉仪连接。
  12. 根据权利要求11所述的可调谐激光器,其特征在于,所述第一直波导设有第四相位调节单元。
  13. 一种激光发射机,其特征在于,包括:
    可调谐激光器和信号调制装置;
    所述可调谐激光器包括:反射式半导体光放大器SOA、光栅同向耦合器和反射式微环谐振器,所述光栅同向耦合器和所述反射式微环谐振器均是在硅基上形成;所述反射式SOA的第一端面上设有抗反膜,所述第一端面是指所述反射式SOA与所述光栅同向耦合器的第一波导耦合的端面,所述反射式SOA的第二端面上设有高反膜,所述第二端面是指与所述第一端面相反的端面;所述光栅同向耦合器的第二波导与所述第一波导耦合,所述第一波导设有第一光栅,所述第二波导设有与所述第一光栅相对设置的第二光栅,所述第一光栅和所述第二光栅构成窄带滤波器,所述第二波导与所述反射式微环谐振器连接;所述反射式微环谐振器包括第一直波导、第二直波导和环形波导,所述环形波导位于所述第一直波导和所述第二直波导之间,且所述第一直波导、所述第二直波导与所述环形波导存在光场耦合;
    所述信号调制装置,用于将从所述第一直波导和所述第二直波导输出的光信号调制为偏振复用高阶调制信号。
  14. 根据权利要求13所述的激光发射机,其特征在于,
    所述信号调制装置包括至少两个信号调制器,以及偏振分束旋转器;
    所述信号调制器为马赫增德尔调制器。
  15. 根据权利要求13或14所述的激光发射机,其特征在于,所述第二波导通过Y型光波导分别与所述第一直波导的第一端及所述第二直波导的第一端连接。
  16. 根据权利要求13或14所述的激光发射机,其特征在于,所述第二波导通过多模干涉仪分别与所述第一直波导的第一端及所述第二直波导的第一端连接。
  17. 根据权利要求13或14所述的激光发射机,其特征在于,所述第一光栅和所述第二光栅的光栅周期相同,且所述第一光栅在所述第二波导上的投影和所述第二光栅全部或部分重叠。
  18. 根据权利要求13或14所述的激光发射机,其特征在于,
    所述光栅同向耦合器和/或所述反射式微环谐振器上设有用于调节光相位的相位调节单元。
  19. 根据权利要求18所述的激光发射机,其特征在于,所述光栅同向耦合器的非光栅区设有第一相位调节单元,所述光栅同向耦合器的光栅区设有第二相位调节单元,所述环形波导上设有第三相位调节单元。
  20. 根据权利要求18所述的激光发射机,其特征在于,所述相位调节单元为热调谐单元、电流调谐单元或压光调谐单元。
PCT/CN2018/091820 2017-11-21 2018-06-19 一种可调谐激光器和激光发射机 WO2019100702A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18881612.8A EP3703202B1 (en) 2017-11-21 2018-06-19 Tunable laser device and laser transmitter
US16/877,707 US11522341B2 (en) 2017-11-21 2020-05-19 Tunable laser and laser transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711165899.2A CN109818258B (zh) 2017-11-21 2017-11-21 一种可调谐激光器和激光发射机
CN201711165899.2 2017-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/877,707 Continuation US11522341B2 (en) 2017-11-21 2020-05-19 Tunable laser and laser transmitter

Publications (1)

Publication Number Publication Date
WO2019100702A1 true WO2019100702A1 (zh) 2019-05-31

Family

ID=66600335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091820 WO2019100702A1 (zh) 2017-11-21 2018-06-19 一种可调谐激光器和激光发射机

Country Status (4)

Country Link
US (1) US11522341B2 (zh)
EP (1) EP3703202B1 (zh)
CN (1) CN109818258B (zh)
WO (1) WO2019100702A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195988A1 (zh) * 2018-04-09 2019-10-17 华为技术有限公司 波长可调谐激光器
EP3869710A4 (en) * 2018-11-24 2021-11-03 Huawei Technologies Co., Ltd. POLARIZATION PROCESSING DEVICE, OPTICAL TRANSCEIVER, AND OPTICAL POLARIZATION PROCESSING METHOD
CN110911961B (zh) * 2019-12-06 2021-05-04 中国科学院长春光学精密机械与物理研究所 一种可调谐窄线宽激光器
US11243350B2 (en) 2020-03-12 2022-02-08 Globalfoundries U.S. Inc. Photonic devices integrated with reflectors
CN113900312A (zh) * 2020-06-22 2022-01-07 苏州旭创科技有限公司 硅基可调滤波器、激光器及光模块
CN114397261A (zh) * 2021-12-16 2022-04-26 光子集成(温州)创新研究院 一种傅里叶红外光谱仪及其应用
CN115220151B (zh) * 2022-07-19 2023-11-14 欧梯恩智能科技(苏州)有限公司 基于微环谐振腔游标效应硅基光波导解调器件及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141809A1 (en) * 2003-12-31 2005-06-30 Gardner Donald S. Microring and microdisk resonators for lasers fabricated on silicon wafers
CN103592776A (zh) * 2013-11-29 2014-02-19 苏州大学 二维角度选择激光滤波器
CN102349013B (zh) * 2009-01-09 2014-04-16 惠普开发有限公司 用于点对点通信的光学引擎
CN105322438A (zh) * 2015-12-11 2016-02-10 武汉邮电科学研究院 一种基于硅基的窄线宽可调外腔激光器
CN103904555B (zh) * 2012-12-28 2017-03-15 上海贝尔股份有限公司 光学器件、可调激光器以及实现可调激光器的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871742A (en) * 1973-10-18 1975-03-18 Bell Telephone Labor Inc Composite thin film optical device
US6940878B2 (en) * 2002-05-14 2005-09-06 Lambda Crossing Ltd. Tunable laser using microring resonator
JP2006278769A (ja) 2005-03-29 2006-10-12 Nec Corp 波長可変レーザ
WO2007107186A1 (en) * 2006-03-23 2007-09-27 Pirelli & C. S.P.A. Integrated laser optical source
GB2448162A (en) * 2007-04-03 2008-10-08 Bookham Technology Plc Tunable semiconductor laser
US8467122B2 (en) * 2011-07-13 2013-06-18 Oracle America, Inc. Hybrid laser source with ring-resonator reflector
CN104104011A (zh) * 2014-08-08 2014-10-15 武汉光迅科技股份有限公司 一种宽带可调谐激光器
US9312662B1 (en) * 2014-09-30 2016-04-12 Lumentum Operations Llc Tunable laser source
US9435961B2 (en) * 2014-10-15 2016-09-06 Huawei Technologies Co., Ltd. Stacked photonic chip coupler for SOI chip-fiber coupling
JP6589273B2 (ja) 2014-11-28 2019-10-16 富士通株式会社 波長可変レーザ及び波長可変レーザモジュール
CN104966989B (zh) * 2015-06-29 2018-12-25 武汉光迅科技股份有限公司 波长可调谐外腔激光器及可调光发射模块
CN106785882B (zh) * 2016-11-30 2020-07-28 武汉光迅科技股份有限公司 一种高功率双端口输出的硅基可调谐外腔激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141809A1 (en) * 2003-12-31 2005-06-30 Gardner Donald S. Microring and microdisk resonators for lasers fabricated on silicon wafers
CN102349013B (zh) * 2009-01-09 2014-04-16 惠普开发有限公司 用于点对点通信的光学引擎
CN103904555B (zh) * 2012-12-28 2017-03-15 上海贝尔股份有限公司 光学器件、可调激光器以及实现可调激光器的方法
CN103592776A (zh) * 2013-11-29 2014-02-19 苏州大学 二维角度选择激光滤波器
CN105322438A (zh) * 2015-12-11 2016-02-10 武汉邮电科学研究院 一种基于硅基的窄线宽可调外腔激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703202A4

Also Published As

Publication number Publication date
EP3703202A4 (en) 2020-12-30
US11522341B2 (en) 2022-12-06
CN109818258A (zh) 2019-05-28
EP3703202B1 (en) 2021-12-08
CN109818258B (zh) 2020-08-25
US20200280172A1 (en) 2020-09-03
EP3703202A1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
WO2019100702A1 (zh) 一种可调谐激光器和激光发射机
US9075251B2 (en) Integrated photonic devices with reduced sensitivity to external influences
US8837548B2 (en) Semiconductor optical element
JP5155447B2 (ja) 広帯域干渉計型偏波合成分離器
US7085438B2 (en) Optical multi/demultiplexing circuit equipped with phase generating device
US9829630B2 (en) Tunable reflectors based on multi-cavity interference
WO2013114577A1 (ja) レーザ素子
JP5082560B2 (ja) 光変調器、光源装置及び前記光変調器の駆動方法
JPH0219805A (ja) 光波長分割マルチプレクシング装置
JP5212475B2 (ja) 波長可変光送信機
US20030012250A1 (en) Tunable filter for laser wavelength selection
CN107407776B (zh) 高折射率对比度光子器件及其应用
US20140254617A1 (en) Tunable laser diode device with amzi-fp filter
WO2007107187A1 (en) Integrated laser optical source with active and passive sections formed in distinct substrates
JP6778526B2 (ja) 光素子
US20120163751A1 (en) Reflection type optical delay interferometer apparatus based on planar waveguide
Zheng et al. LAN wavelength division multiplexer on silicon-lithium niobate hybrid integration platform
WO2007107186A1 (en) Integrated laser optical source
Roeloffzen et al. Design and realization of optical filters on an integrated Si 3 N 4 PIC platform
JP6994220B2 (ja) 波長合波器
Tabti et al. Polarization insensitive Bragg gratings in Si3N4 waveguides
Magden et al. Mode-evolution-based, broadband 1× 2 port high-pass/low-pass filter for silicon photonics
WO2020162451A1 (ja) 光機能素子およびレーザ素子
Cheben et al. Subwavelength Silicon Photonic Metamaterial Waveguide Devices
CN114583541A (zh) 混合集成激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881612

Country of ref document: EP

Effective date: 20200529