WO2019100579A1 - 一种快速消减有机固体废物中抗生素及抗性基因的方法 - Google Patents

一种快速消减有机固体废物中抗生素及抗性基因的方法 Download PDF

Info

Publication number
WO2019100579A1
WO2019100579A1 PCT/CN2018/073424 CN2018073424W WO2019100579A1 WO 2019100579 A1 WO2019100579 A1 WO 2019100579A1 CN 2018073424 W CN2018073424 W CN 2018073424W WO 2019100579 A1 WO2019100579 A1 WO 2019100579A1
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
ultra
fermentation
solid waste
organic solid
Prior art date
Application number
PCT/CN2018/073424
Other languages
English (en)
French (fr)
Inventor
周顺桂
廖汉鹏
陈志�
Original Assignee
福建农林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建农林大学 filed Critical 福建农林大学
Publication of WO2019100579A1 publication Critical patent/WO2019100579A1/zh
Priority to US16/826,250 priority Critical patent/US20200222952A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/20Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the invention belongs to the field of organic solid waste treatment, and particularly relates to a method for rapidly reducing antibiotics and resistance genes in sludge.
  • ARGs The content of ARGs is increasing, and the resistance genes can spread through the genetic and horizontal gene transfer between the parental and other strains, causing harm to human health and ecological balance.
  • Pruden et al. proposed ARGs as a new type of environmental pollutant, reports on the pollution and spread of ARGs in the environment are increasing.
  • the World Health Organization has identified ARGs as one of the major challenges to human health in the 21st century. Studies have shown that antibiotic resistance genes are detected in different ecological environments, such as the application of municipal sludge soil, urban rivers, application of pig manure paddy soil, and even urban tap water.
  • Sludge is a product of sewage treatment and is an extremely complex heterogeneous body composed of organic residues, bacterial cells, inorganic particles, colloids and the like.
  • the main characteristics of the sludge are high water content (up to 99%), high organic content, easy to rot and odor, and a gelatinous liquid state. It is a thick material between liquid and solid that can be transported by pump, but it is difficult to separate solid and liquid.
  • the annual production of sludge in China is about 35 million tons, and it is increasing at a rate of 10%-15% per year. Dewatered sludge often contains high levels of antibiotic residues and resistance gene abundance, which has led to an increasingly prominent environmental pollution problem.
  • the current research shows that the existing various types of sewage treatment plant processes have a certain removal effect on the resistance genes in the sewage.
  • the Chinese patent No. 201510116821.6 discloses a coagulation method for removing antibiotic resistance genes in sewage.
  • the removal of ARGs in sewage is mainly carried out by coagulation, and the removal of ARGs in the sludge obtained after sedimentation by sewage is not mentioned.
  • the treatment process of the sewage treatment plant is only responsible for treating the sewage, and lacks the matching of the harmless treatment process of the remaining sludge. Since sludge and sewage are two completely different pollutants, the prior art ARG removal technology for sewage cannot be applied to the treatment of sludge ARGs.
  • the shape of the sludge is between liquid and solid, which is similar to the soil, but because the sludge is difficult to separate from solid and liquid, and the content and soil contained in it are completely different, the removal technology of ARGs in the relevant soil. Cannot be used for the treatment of sludge ARGs. Because the nature of the sludge is special, the sludge is a solid waste that is more difficult to handle than sewage and soil. Therefore, it is necessary to study the prevention and control of sludge resistance gene pollution in a targeted manner, and combine the existing sludge resource treatment process to propose a suitable control technology.
  • organic solid waste also includes various livestock manure and manure, and all antibiotic resistance genes are detected.
  • ARGs in livestock manure is particularly high, reaching 10 8 / g, so the development of antibiotic resistance gene reduction technology suitable for the above organic solid waste is of great significance.
  • High-temperature aerobic composting belongs to the category of high-temperature aerobic fermentation. It is the main means of resource utilization of organic solid waste.
  • the traditional high-temperature composting technology generally maintains a fermentation temperature of 55-65 ° C, mainly used to remove feces. Weed seeds, E. coli, etc. in the sludge.
  • ARGs are carried on the DNA or plasmid of the host bacteria. The pathway for abolishing ARGs directly degrades its DNA sequence and, more importantly, prevents its spread through gene transfer to other non-host microorganisms.
  • the object of the present invention is to provide an application of ultra-high temperature aerobic fermentation to reduce antibiotics and resistance genes in organic solid waste;
  • Another object of the present invention is to provide a method for rapidly reducing antibiotics and resistance genes in organic solid waste
  • Ultra-high temperature aerobic fermentation is used to reduce the application of antibiotics and resistance genes in organic solid waste.
  • the ultra-high temperature aerobic fermentation is to add an appropriate amount of aerobic microorganisms capable of withstanding at least 80 ° C to the organic solid waste.
  • the fermenting agent is subjected to ultra-high temperature aerobic fermentation, and the temperature of the controlled material is not lower than 80 ° C for at least 5 to 7 days.
  • the aerobic microorganism capable of withstanding at least 80 ° C comprises a hyperthermophilic strain Calditerricola yamamurae, Thermus thermophilus, Geobacillus sp., Bacillus methylotrophicus At least one of Bacillus sp.
  • the ultra-high temperature aerobic fermenting agent capable of withstanding aerobic microorganisms at least 80 ° C is a hyperthermophilic Calditerricola yamamurae UTM801 with the preservation number CGMCC No. 6185, and the preservation number is CGMCC No. 14654 Thermus thermophilus FAFU013, Bacillus thermophilus Geobacillus sp. UTM801 with the accession number CGMCC No.5641, Bacillus methylotrophicus UTM401 with the accession number CGMCC No.5927, and the accession number CGMCC Mixture of one or more of Bacillus sp. UTM03 of No. 5643. The strains have all been deposited and are disclosed in related patents.
  • the ultra-high temperature aerobic fermentation agent resistant to at least 80 ° C is a hyperthermophilic Calditerricola yamamurae UTM801, Thermus thermophilus FAFU013, Geobacillus sp. UTM801, Methyl Bacillus methylotrophicus UTM401 and Bacillus sp. UTM03 were obtained by mixing in a mass ratio of 1:1:1:1:1.
  • the organic solid waste includes sludge, poultry manure, kitchen waste, and the like.
  • the antibiotic comprises tetracycline, sulfadiazine, oxytetracycline; the resistance genes include tetA, tetG, strA, strB, aacA4, aadE, ermT, mefA and ereA.
  • High-temperature aerobic composting in the category of high-temperature aerobic fermentation, a specific application of aerobic fermentation refers to the process of degrading or converting organic matter in organic solid waste into stable humus by relying on the metabolism of obligate and facultative aerobic microorganisms.
  • the organic solid waste and the auxiliary materials are mixed in a certain ratio, and under suitable water and ventilation conditions, the microorganisms are propagated and the organic matter is degraded, thereby generating high temperature, killing pathogenic bacteria and weed seeds, and stabilizing the organic matter.
  • the existing conventional aerobic composting technology treats organic solid waste, mainly used to remove weed seeds, Escherichia coli and other pathogenic bacteria of organic solid waste, so as to achieve stable and harmless indicators; Resistance genes are linked. Moreover, the temperature of the heap in the normal aerobic composting process does not exceed 65 °C, which may cause the content of some heat-resistant ARGs to increase.
  • the present invention has found that by using a hyperthermophilic agent capable of withstanding at least 80 ° C and controlling the temperature of the heap to be fermented at 80 ° C or above for at least 5 to 7 days, it is possible to rapidly reduce the antibiotics in the organic solid waste and The effect of the resistance gene.
  • the ultra-high temperature aerobic compost can not only rapidly reduce antibiotics and ARGs, but also change the entire microbial community structure in the heap, kill 90% of microorganisms carrying ARGs, reduce the diversity of non-host microbial organisms and reduce the risk of gene transfer of ARGs. Controlling the diffusion from the source ensures that ARGs will not rebound, and traditional high-temperature composting cannot control the diffusion of ARGs from the source.
  • the main technical conditions of composting are: organic content, moisture content adjustment, suitable ventilation system, auxiliary material adjustment C/N ratio, C/P ratio, suitable pH value, etc., can be adapted according to the prior art and common knowledge. Adjustment.
  • thermophilic microorganisms The inventor Zhou Shungui and others conducted research on the isolation and screening of extreme thermophilic microorganisms, and collected samples from a variety of extreme high temperature environments, and isolated more than 50 strains of thermophilic microorganisms. Through the substrate utilization and strain compounding experiments, the main functions and interrelationships of most extreme thermophilic strains were basically clarified, and a number of strains with strong organic material degradation ability were screened out.
  • the aerobic fermentation bacteria used in the examples of the present invention are extremely thermophilic microorganisms.
  • the above thermophilic microorganisms are not heated by an external heat source, and only by utilizing the biothermal energy released by the organic matter in the organic solid waste by metabolism, an extremely high temperature (not lower than 80 ° C) can be generated. Such high temperature can not only directly degrade ARGs, but also change the microbial community structure in the composting process and reduce the abundance of bacteria (including ARGs carrying host and non-host), thus preventing the path of its massive
  • the aerobic microorganism capable of withstanding at least 80 ° C comprises a hyperthermophilic strain Calditerricola yamamurae, Thermus thermophilus, Geobacillus sp., Bacillus methylotrophicus At least one of Bacillus sp.
  • the ultra-high temperature aerobic fermenting agent capable of withstanding aerobic microorganisms at least 80 ° C is a hyperthermophilic Calditerricola yamamurae UTM801 with the preservation number CGMCC No. 6185, and the preservation number is CGMCC No. 14654 Thermus thermophilus FAFU013, Bacillus thermophilus Geobacillus sp. UTM801 with the accession number CGMCC No.5641, Bacillus methylotrophicus UTM401 with the accession number CGMCC No.5927, and the accession number CGMCC Mixture of one or more of Bacillus sp. UTM03 of No. 5643.
  • the ultra-high temperature aerobic fermentation agent resistant to at least 80 ° C is a hyperthermophilic Calditerricola yamamurae UTM801, Thermus thermophilus FAFU013, Geobacillus sp. UTM801, Methyl Bacillus methylotrophicus UTM401 and Bacillus sp. UTM03 were obtained by mixing in a mass ratio of 1:1:1:1:1.
  • the organic solid waste includes sludge, livestock manure, crop straw, and the like.
  • the antibiotic comprises tetracycline, sulfadiazine, oxytetracycline; the resistance genes include tetA, tetG, strA, strB, aacA4, aadE, ermT, mefA and ereA.
  • adjusting the amount of aeration and controlling the number of turns include:
  • the initial aeration amount is controlled to be 20 ⁇ 40m 3 ⁇ t -1 ⁇ h -1 ;
  • the aeration amount is adjusted to 45 to 75% of the initial amount, and the high temperature is maintained for 5 to 7 days, and no turning is performed in the process;
  • the organic solid waste is added with an appropriate amount of ultra-high temperature aerobic fermentation bacteria for ultra-high temperature aerobic fermentation, the water content is adjusted, and the moisture content of the organic solid waste is adjusted by adding an appropriate amount of backmix or auxiliary material to 50 ⁇ 65%.
  • the auxiliary materials include rice husks, straws, fermented and decomposed materials, and the like.
  • the organic solid waste does not require adjustment of the C/N ratio prior to the ultra-high temperature aerobic fermentation.
  • the ultra-high temperature aerobic fermenting agent is added in an amount of 0.05 to 0.1% by mass of the mixture.
  • the initial aeration amount is 20 to 30 m 3 ⁇ t -1 ⁇ h -1 .
  • the temperature of the material to be reached reaches 80 ° C or above, and the amount of aeration is adjusted to be 50 to 70% of the initial amount.
  • the ultra-high temperature fermentation is adjusted to adjust the aeration amount to 35 to 45% of the initial amount, and the mixture is turned over once a week.
  • the method of the invention is preferably used for treating a batch of organic solid waste of more than 100 tons.
  • An ultra-high temperature aerobic fermentation microbial agent calculated by mass percentage, comprises: hyperthermophilic Calditerricola yamamurae and Thermus thermophilus FAFU013, Geobacillus sp., methylotrophic spore Bacillus methylotrophicus, Bacillus sp.
  • the ultra-high temperature aerobic fermentation bacteria agent comprises a hyperthermophilic strain Calditerricola yamamurae, Thermus thermophilus, Geobacillus sp., Bacillus methylotrophicus, Bacillus At least one of Bacillus sp.
  • the ultra-high temperature aerobic fermentation bacteria agent is a hyperthermophilic strain Calditerricola yamamurae UTM801 with the preservation number CGMCC No. 6185, Thermus thermophilus FAFU013 with the preservation number CGMCC No. 14654, and the preservation number is CGMCC No. .5641 of Bacillus thuringiensis Geobacillus sp. UTM801, Bacillus methylotrophicus UTM401 with the accession number CGMCC No. 5927, Bacillus sp. UTM03 with the accession number CGMCC No.5643 Mix of species or several.
  • the ultra-high temperature aerobic fermentation bacteria agent is a hyperthermophilic strain Calditerricola yamamurae UTM801, Thermus thermophilus FAFU013, Geobacillus sp. UTM801, Bacillus methylotrophicus UTM401 and Bacillus sp. UTM03 were obtained by mixing in a mass ratio of 1:1:1:1:1.
  • the invention utilizes aerobic fermentation bacteria capable of withstanding at least 80 ° C, and controls the temperature of the heap to be super-high temperature aerobic compost for at least 5 to 7 days of fermentation at not lower than 80 ° C, which can quickly and stably reduce organic Antibiotics and their resistance genes in solid waste.
  • the ultra-high temperature aerobic compost can not only rapidly degrade antibiotics and ARGs, but also change the entire microbial community structure in the compost, kill 90% of microorganisms carrying ARGs, reduce the risk of gene transfer of ARGs, and control its spread from the source. Guaranteed that ARGs will not rebound.
  • We found through analysis that the removal of ARGs is mainly due to the change of microbial community structure, which reduces the risk of spread and spread, especially the diversity index of ARGs carrying host bacteria in the heap.
  • the method of the invention not only requires external heating, but also relies on the metabolic capacity of the thermophilic microorganism to reach the high temperature of fermentation, low energy consumption and environmental friendliness.
  • the invention has obvious effect on treating antibiotics and ARGs in organic solid waste than conventional high temperature composting, has small equipment investment and simple operation, and is very suitable for large-scale factory operation.
  • the invention not only realizes the removal effect of the antibiotic residue and the resistance gene pollution in the organic solid waste, and the organic solid waste is highly decomposed at the end of the fermentation, and can be used for producing the organic fertilizer.
  • the municipal sewage treatment plant sludge used has a water content of about 80%.
  • the present example and the control treatment test were carried out in Zhengzhou Wangxinzhuang sewage treatment and composting plant, and the three main antibiotics of tetracycline, sulfadiazine and oxytetracycline were detected, and 9 kinds of tetA, tetG, strA, strB, aacA4, aadE, and The main ARGs resistance genes of ermT, mefA and ereA.
  • Material preparation the sludge (water content 80%) and the auxiliary rice husk (water content 15%) are mixed according to the volume ratio (1:4). At this time, the moisture content of the mixture is about 55%, and 0.05% is added. Ultra-high temperature aerobic fermentation bacteria, crushing some of the agglomerates with a diameter larger than 10cm, and stirring evenly.
  • Ultra-high temperature aerobic compost the mixture is mixed into the fermentation tank for high-temperature aerobic composting, and the fan is turned on to supply oxygen to the material.
  • the initial aeration is 25m 3 ⁇ t -1 ⁇ h -1 .
  • the temperature of the reactor reached the highest fermentation temperature on the second day, which was about 80 °C.
  • the aeration of the fan was half of the initial amount to maintain the temperature of the reactor at 80 °C for 5 days. During the period, the temperature did not change much and no need to turn over. .
  • Post-high temperature stage fermentation After the end of the ultra-high temperature stage, the aeration amount is kept at 40% of the initial amount, and the pile is turned over once every 5-7 days. After 27 days of fermentation, the temperature dropped back to room temperature, the fermentation was over, and ARGs and antibiotic levels were analyzed periodically.
  • the sludge (water content 80%) and the auxiliary rice husk (water content 15%) are mixed according to a certain volume ratio (1:4). At this time, the moisture content of the mixed material is about 55%, and 0.05 is added. % tap water replaces the ultra-high temperature fermentation microbial agent, and some of the agglomerates with a diameter larger than 10 cm are chopped and stirred evenly.
  • the mixture is mixed into a fermentation tank for high-temperature aerobic fermentation, and the aeration and aeration are carried out according to the conventional high-temperature composting process. The mixture is turned over every 2-4 days before the fermentation, and the pile is once every 5-7 days.
  • the highest fermentation temperature of the body was about 65 ° C, which lasted for 5 days, and then began to fall back. After 33 days of fermentation, the temperature dropped back to room temperature, and the fermentation basically ended.
  • Natural stacking treatment the sludge (water content 80%) and the auxiliary rice husk (water content 15%) are mixed according to a certain volume ratio (1:4). At this time, the moisture content of the mixture is about 55%, and 0.05 is added. % tap water replaces the ultra-high temperature fermentation microbial agent, and some of the agglomerates with a diameter larger than 10 cm are chopped and stirred evenly.
  • the mixture is naturally stacked in a cool place, and the maximum fermentation temperature of the heap can only reach about 50 °C. After one day, it starts to fall back. After 33 days of fermentation, the temperature falls back to room temperature, and the fermentation is basically finished.
  • Table 1 compares the removal effects of ARGs in different process sludges
  • Embodiment 1 adopts the ultra-high temperature aerobic composting of the invention, and the temperature of the stack reaches the highest fermentation temperature of about 80 ° C on the second day, and the high temperature of 80 ° C is maintained for at least 5 days by adjusting the aeration amount, so that the sludge can be sufficiently removed. Pollution of residual resistance genes. It can be seen from Table 1 that all the ARGs in the sludge can be quickly and efficiently removed by the method of the first embodiment, and the removal rate is more than 90% on the fourth day, and the removal effect is significantly higher than the other two treatments. . Although the temperature of the heap has dropped to normal temperature at the end of the fermentation, the abundance of ARGs has not rebounded, indicating that the method of the present invention can stably and effectively reduce the pollution of the resistance gene in the sludge.
  • the 16S high-throughput sequencing method was used to compare the structural composition of ARGs-related microbial communities at the end of fermentation of conventional high-temperature compost and ultra-high temperature compost. The results are shown in Table 3.
  • Table 3 compares the microbial content of different treated ARGs
  • the ultra-high temperature aerobic compost of the present invention can not only rapidly degrade antibiotics and ARGs, but also change the entire microbial community structure in the compost, kill 90% of microorganisms carrying ARGs, and reduce the risk of gene transfer of ARGs from the source. Controlling its spread ensures that ARGs will not rebound.
  • Example 2 The same as in Example 1, except that the initial aeration amount was 5 m 3 ⁇ t -1 ⁇ h -1 .
  • the initial aeration amount is too small, causing the temperature of the stack to rise slowly. After 6 days, it reaches about 70 °C, and the aeration amount of the fan is adjusted to 80% of the initial amount, resulting in the maximum temperature being maintained for only 4 days.
  • the final removal rate of ARGs is less than 76%.
  • Example 2 Same as Example 1, except that the initial aeration amount was 30 m 3 ⁇ t -1 ⁇ h -1 . After the example stack temperature reached 80 ° C on the third day, the high temperature holding time was shortened to 3-4 days without adjusting the aeration amount. After the end of the high temperature phase, no aeration is provided and only a weekly turnaround is performed. The results showed that the entire fermentation cycle was extended by 5-7 days, and the removal rate of ARGs after 27 days was 81%, which was significantly lower than 96% of Example 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开了一种快速消减有机固体废物中抗生素及抗性基因的方法,属于有机固体废物处理领域。本发明利用能耐受至少80℃的好氧发酵菌,并控制堆体温度不低于80℃发酵至少5~7天对有机固体废物进行超高温好氧发酵,可以获得快速、稳定的消减有机固体废物中抗生素及其抗性基因的效果。所述超高温好氧发酵不仅可以快速降解抗生素和ARGs,还可以改变堆体中整个微生物群落结构,杀灭90%的携带ARGs的微生物(主要是Proteobacteria和Bacteroidetes),减少ARGs发生基因转移的风险,从源头上控制其扩散,保证了ARGs不会出现反弹。不仅实现有机固体废物的处理,同时能高效去除抗生素残留以及抗性基因污染的双重功效。本发明方法无需外源加热,仅依靠嗜热微生物自身代谢产能达到发酵高温,能耗低,环境友好。

Description

一种快速消减有机固体废物中抗生素及抗性基因的方法 技术领域
本发明属于有机固体废物处理领域,具体涉及一种快速消减污泥中抗生素及抗性基因的方法。
背景技术
我国是世界上抗生素最大的生产和消费国,2013年我国抗生素使用总量达到16.2万吨,其中一半用于畜禽养殖业。养殖户为了防止畜禽生病传染,往往会喂养大剂量的抗生素,而这些抗生素大部分没有被吸收,大约30-90%的以原药或者代谢产物的形式随粪尿排出体外,造成畜禽粪便抗生素残留超标。抗生素的不合理使用和长期滥用造成环境抗生素残留超标,造成环境中耐药性微生物产生的选择压力增强,导致环境中抗生素抗性细菌(antibiotic resistance bacteria,ARB)和抗性基因(antibiotic resistance genes,ARGs)含量不断增加,且抗性基因可以通过遗传和水平基因转移在亲代和其他菌种间传播扩散,对人类健康和生态平衡造成危害。2006年自Pruden等将ARGs作为一种新型环境污染物提出后,有关ARGs在环境中污染与扩散的报道日益增多。世界卫生组织已将ARGs作为21世纪威胁人类健康的重大挑战之一。有研究表明,在不同生态环境中,例如施用城市污泥土壤、城市河流、施用猪粪水稻土,甚至城市自来水都有抗生素抗性基因检出。
污泥是污水处理后的产物,是一种由有机残片、细菌菌体、无机颗粒、胶体等组成的极其复杂的非均质体。污泥的主要特性是含水率高(可高达99%以上),有机物含量高,容易腐化发臭,呈胶状液态。它是介于液体和固体之间的浓稠物,可以用泵运输,但它很难固液分离。目前,我国污泥年产生量约3500万吨,并且以每年10%-15%的速度递增。脱水污泥中往往含有较高的抗生素残留与抗性基因丰度,由此带来环境污染问题日益突出。目前的研究表明,现有的各类污水处理厂工艺对污水中的抗性基因有一定的去除效果,例如申请号为201510116821.6的中国专利公开了一种去除污水中抗生素抗性基因的混凝方法,主要是通过混凝的方法去除污水中的ARGs,而对于污水经过沉淀分离后得到的污泥中ARGs的去除并未提及。事实上现有技术中,污水处理厂的处理工艺只负责处理污水,缺乏对剩下污泥的无害化处理工艺的配套。由于污泥与污水是两种性质完全不同的污染物,所以现有技术中对于污水中ARG的去除技术不能适用于污泥ARGs的处理。
此外,污泥的形态介于液体和固体之间,与土壤有些许相似,但是由于污泥很难固液分 离,而且其所包含的内容物和土壤截然不同,所以相关土壤中ARGs的去除技术不能用于污泥ARGs的处理。因为污泥的性质较为特殊,所以污泥是一种比污水、土壤更难处理的固体废弃物。故需要有针对性地研究污泥抗性基因污染防控的问题,结合现有的污泥资源化处理工艺,提出合适的阻控技术。
除了污泥,有机固体废物还包括各种禽畜粪便和粪污水,都有抗生素抗性基因检出。特别是畜禽粪便中的ARGs丰度特别高,达到10 8个/g,所以研发出适合上述有机固体废物的抗生素抗性基因消减技术,具有重大意义。
高温好氧堆肥属于高温好氧发酵的范畴,它是有机固体废弃物资源化利用的主要手段,而传统的高温堆肥技术产生的发酵温度一般维持在55-65℃,主要是用来去除粪便、污泥中杂草种子、大肠杆菌等。近年也有大量研究表明,常规高温堆肥不能有效去除抗性基因,反而造成部分ARGs含量增加。ARGs是携带在宿主细菌的DNA或质粒上,消减ARGs的途径有直接将其DNA序列降解,更重要的是防止其通过基因转移传播扩散到其他非宿主微生物上。ARGs通过可移动元件发生基因转移是ARGs到处扩散的主要原因。Xie等人研究报道,长期施用传统污泥堆肥制作的有机肥后,农田土壤中ARGs含量显著增加,存在扩大污染和传播的风险。迄今为止,仍然缺乏高效经济的处理技术,既能够解决有机固体废物中ARGs和抗生素污染,又能将废弃物资源化利用的技术。
因此,亟需开发一种高效经济的技术手段:同时解决有机固体废物中ARGs和抗生素的污染和传播带来潜在的健康风险,又可将有机固体废物资源化处理。
发明内容
本发明的目的在于提供超高温好氧发酵在消减有机固体废物中抗生素及抗性基因的应用;
本发明的另一目的在于提供一种快速消减有机固体废物中抗生素及抗性基因的方法;
本发明的再一目的在于提供一种超高温好氧发酵菌剂及其应用。
本发明所采取的技术方案是:
超高温好氧发酵在消减有机固体废物中抗生素及抗性基因的应用,所述超高温好氧发酵是在有机固体废物中添加适量能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂进行超高温好氧发酵,控制物料温度不低于80℃发酵至少5~7天。
优选的,所述能耐受至少80℃的好氧微生物包括超嗜热菌Calditerricola yamamurae,嗜热栖热菌Thermus thermophilus,嗜热溶胞土芽孢杆菌Geobacillus sp.,甲基营养型芽孢杆菌Bacillus methylotrophicus,芽孢杆菌Bacillus sp.中的至少一种。
优选的,所述能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂为保藏编号是 CGMCC No.6185的超嗜热菌Calditerricola yamamurae UTM801、保藏编号为CGMCC No.14654的嗜热栖热菌Thermus thermophilus FAFU013、保藏编号为CGMCC No.5641的嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、保藏编号为CGMCC No.5927的甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、保藏编号为CGMCC No.5643的芽孢杆菌Bacillus sp.UTM03中的一种或几种的混合。所述菌株均已保藏,并在相关专利中公开。
优选的,所述耐受至少80℃的超高温好氧发酵菌剂是超嗜热菌Calditerricola yamamurae UTM801、嗜热栖热菌Thermus thermophilus FAFU013、嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、芽孢杆菌Bacillus sp.UTM03按照质量比1∶1∶1∶1∶1混合得到。
优选的,所述有机固体废物包括污泥、禽畜粪便、餐厨垃圾等。
优选的,所述抗生素包括四环素、磺胺嘧啶、土霉素;所述抗性基因包括tetA、tetG、strA、strB、aacA4、aadE、ermT、mefA和ereA。
高温好氧堆肥(属于高温好氧发酵的范畴,是好氧发酵的具体应用)是指依靠专性和兼性好氧微生物的新陈代谢作用,使有机固体废物中有机物降解或转化成稳定腐殖质的过程,将有机固体废物与辅料按一定的比例混合,在合适的水分、通气条件下,使微生物繁殖并降解有机质,从而产生高温,杀死病原菌及杂草种子,使有机物达到稳定化。
现有的常规好氧堆肥技术处理有机固体废物,主要是用来去除有机固体废物的杂草种子、大肠杆菌等病原菌,以达到稳定化,无害化指标;而未将其与消除抗生素及其抗性基因联系起来。而且普通好氧堆肥过程中堆体温度最高不超过65℃,反而有可能造成部分耐热的ARGs含量增加。
本发明通过研究发现,利用能耐受至少80℃的超嗜热菌剂,并控制堆体温度在80℃或80℃以上发酵至少5~7天,可以获得快速消减有机固体废物中抗生素及其抗性基因的效果。所述超高温好氧堆肥不仅可以快速消减抗生素和ARGs,还可以改变堆体中整个微生物群落结构,杀灭90%携带ARGs的微生物,降低了非宿主微生物多样性从而减少ARGs发生基因转移的风险,从源头上控制其扩散,保证了ARGs不会出现反弹,而传统高温堆肥不能从源头上控制ARGs扩散传播。此外,堆肥的主要技术条件有:有机物含量、含水率的调整、合适的通风系统、辅料调整C/N比及C/P比、适宜pH值等,可以根据现有技术和公知常识进行适应性调整。
发明人周顺桂等人开展极端嗜热微生物分离筛选及其功能的研究,从多种极端高温环境中采集样品,分离了50余株嗜热微生物菌株。通过底物利用和菌株复配试验,基本明确了大 部分极端嗜热菌株的主要功能和相互关系,并筛选出多株具有较强有机物料降解能力的菌种。本发明实施例中所用到的好氧发酵菌为极端嗜热微生物。上述嗜热微生物不依靠外源热源加热,仅利用其代谢分解有机固体废弃物中有机物释放的生物热能,便可以产生极端高温(不低于80℃)。如此高的温度不仅可以直接降解ARGs,而且可以改变堆肥进程中微生物群落结构,降低细菌(包括ARGs携带宿主与非宿主)的丰度,从而阻止了其大量传播扩散的路径。
一种快速消减有机固体废物中抗生素及抗性基因的方法,在有机固体废物中加入适量的能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂进行超高温好氧发酵,控制物料温度不低于80℃发酵至少5~7天。
优选的,所述能耐受至少80℃的好氧微生物包括超嗜热菌Calditerricola yamamurae,嗜热栖热菌Thermus thermophilus,嗜热溶胞土芽孢杆菌Geobacillus sp.,甲基营养型芽孢杆菌Bacillus methylotrophicus,芽孢杆菌Bacillus sp.中的至少一种。
优选的,所述能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂为保藏编号是CGMCC No.6185的超嗜热菌Calditerricola yamamurae UTM801、保藏编号为CGMCC No.14654的嗜热栖热菌Thermus thermophilus FAFU013、保藏编号为CGMCC No.5641的嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、保藏编号为CGMCC No.5927的甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、保藏编号为CGMCC No.5643的芽孢杆菌Bacillus sp.UTM03中的一种或几种的混合。
优选的,所述耐受至少80℃的超高温好氧发酵菌剂是超嗜热菌Calditerricola yamamurae UTM801、嗜热栖热菌Thermus thermophilus FAFU013、嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、芽孢杆菌Bacillus sp.UTM03按照质量比1∶1∶1∶1∶1混合得到。
优选的,有机固体废物包括污泥、禽畜粪便、作物秸秆等。
优选的,所述抗生素包括四环素、磺胺嘧啶、土霉素;所述抗性基因包括tetA、tetG、strA、strB、aacA4、aadE、ermT、mefA和ereA。
优选的,进行超高温好氧发酵时,需要调节曝气量和控制翻堆次数。
优选的,调节曝气量和控制翻堆次数包括:
(1)控制初始曝气量为20~40m 3·t -1·h -1
(2)待物料达到80℃或者80℃以上的最高温度后,调节曝气量为初始量的45~75%,高温保持5~7天,且此过程中不进行翻堆;
(3)80℃或者80℃以上超高温发酵结束后,调节曝气量为初始量的35~50%,5-7天翻 堆一次,待温度回落至室温,结束发酵。
优选的,有机固体废物加入适量的超高温好氧发酵菌剂进行超高温好氧发酵前,需进行含水量的调节,通过添加适量返混料或辅料来调节有机固体废物的含水率为50~65%。
优选的,辅料包括稻壳、秸秆、发酵腐熟物料等。
优选的,有机固体废物在进行超高温好氧发酵前无需要调节C/N比。
优选的,超高温好氧发酵菌剂的加入量为混合物料质量的0.05~0.1%。
优选的,初始曝气量为20~30m 3·t -1·h -1
优选的,待物料温度达到80℃或者80℃以上,调节曝气量为初始量的50~70%。
优选的,80℃或者80℃以上超高温发酵结束后调节曝气量为初始量的35~45%,每周翻堆一次。
本发明方法用于一批次处理100吨以上有机固体废物为佳。
一种超高温好氧发酵菌剂,按质量百分比计算,有效成分包括超嗜热菌Calditerricola yamamurae和嗜热栖热菌Thermus thermophilus FAFU013,嗜热溶胞土芽孢杆菌Geobacillus sp.、甲基营养型芽孢杆菌Bacillus methylotrophicus、芽孢杆菌Bacillus sp.。
优选的,所述超高温好氧发酵菌剂包括超嗜热菌Calditerricola yamamurae,嗜热栖热菌Thermus thermophilus,嗜热溶胞土芽孢杆菌Geobacillus sp.,甲基营养型芽孢杆菌Bacillus methylotrophicus,芽孢杆菌Bacillus sp.中的至少一种。
优选的,所述超高温好氧发酵菌剂为保藏编号是CGMCC No.6185的超嗜热菌Calditerricola yamamuraeUTM801、保藏编号为CGMCC No.14654的嗜热栖热菌Thermus thermophilus FAFU013、保藏编号为CGMCC No.5641的嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、保藏编号为CGMCC No.5927的甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、保藏编号为CGMCC No.5643的芽孢杆菌Bacillus sp.UTM03中的一种或几种的混合。
优选的,所述超高温好氧发酵菌剂为超嗜热菌Calditerricola yamamurae UTM801、嗜热栖热菌Thermus thermophilus FAFU013、嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、芽孢杆菌Bacillus sp.UTM03按照质量比为1∶1∶1∶1∶1混合得到。
上述任一项所述的超高温好氧发酵菌剂在消减有机固体废物中抗生素及抗性基因中的应用。
本发明的有益效果是:
本发明利用能耐受至少80℃的好氧发酵菌,并控制堆体温度在不低于80℃发酵至少5~7天对有机固体废物进行超高温好氧堆肥,可以快速、稳定的消减有机固体废物中抗生素及其抗性基因。所述超高温好氧堆肥不仅可以快速降解抗生素和ARGs,还可以改变堆肥中整个微生物群落结构,杀灭90%的携带ARGs的微生物,减少ARGs发生基因转移的风险,从源头上控制其扩散,保证了ARGs不会出现反弹。我们通过分析发现,ARGs的去除主要是由于改变微生物群落结构减少了传播扩散风险,特别是降低了堆体中ARGs携带宿主细菌的多样性指数。
本发明方法对无需外源加热,仅依靠嗜热微生物自身代谢产能达到发酵高温,能耗低,环境友好。
本发明用于处理有机固废中抗生素和ARGs效果明显强于常规高温堆肥,设备投资小,操作简单,非常适合大规模工厂化操作。
本发明不仅实现有机固废中抗生素残留以及抗性基因污染的去除功效,发酵结束时有机固体废弃物高度腐熟,可以用来生产有机肥。
具体实施方式
下面结合实施例对本发明作进一步说明,但并不局限于此。
以下实施例中,使用的城市污水处理厂污泥,其含水率为80%左右。本实施例和对照处理试验均在郑州王新庄污水处理堆肥厂进行,检测了四环素、磺胺嘧啶、土霉素三种主要抗生素,同时检测了9种tetA、tetG、strA、strB、aacA4、aadE、ermT、mefA和ereA主要的ARGs抗性基因。
实施例1
1)超高温发酵液体菌剂的配置:将超嗜热菌Calditerricola yamamurae UTM801、嗜热栖热菌Thermus thermophilus FAFU013、嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、芽孢杆菌Bacillus sp.UTM03分别活化培养至于对数生长期,将菌体按照质量比1∶1∶1∶1∶1的比例混合均匀备用。
2)物料调配:将污泥(含水率80%)与辅料稻壳(含水率15%)按照体积比(1∶4)混合,此时混合物料的含水率约为55%左右,加入0.05%的超高温好氧发酵菌剂,捣碎部分直径大于10cm的团块,搅拌均匀。
3)超高温好氧堆肥:将混合物料堆入发酵槽中进行高温好氧堆肥,打开风机给物料曝气供氧,初始曝气量为25m 3·t -1·h -1。堆体温度在第2天就达到最高发酵温度,为80℃左右,调节风机曝气量为初始量的一半,以保持堆体温度在80℃发酵5天,期间温度变化不大,无需 翻堆。
4)后高温阶段发酵:超高温阶段结束以后,保持曝气量为初始量的40%,5-7天翻堆一次。经过27天的发酵,温度回落到室温,发酵结束,定时取样分析ARGs和抗生素含量。
设置2个对照处理。
常规高温堆肥处理:将污泥(含水率80%)与辅料稻壳(含水率15%)按照一定体积比(1∶4)混合,此时混合物料的含水率约为55%左右,加入0.05%的自来水代替超高温发酵菌剂,捣碎部分直径大于10cm的团块,搅拌均匀。将混合物料堆入发酵槽中进行高温好氧发酵,按照常规高温堆肥工艺进行翻堆曝气,发酵前15天时每隔2-4天翻堆一次,后期是5-7天翻堆一次,堆体的最高发酵温度约为65℃,维持5天,后开始回落,经过33天的发酵,温度回落到室温,发酵基本结束。
自然堆置处理:将污泥(含水率80%)与辅料稻壳(含水率15%)按照一定体积比(1∶4)混合,此时混合物料的含水率约为55%左右,加入0.05%的自来水代替超高温发酵菌剂,捣碎部分直径大于10cm的团块,搅拌均匀。将混合物料放在阴凉处自然堆置,堆体的最高发酵温度只能达到50℃左右,维持1天后开始回落,经过33天的发酵,温度回落到室温,发酵基本结束。
堆肥处理过程中定时取样分析ARGs和抗生素含量。
实施例1和对照方法均设置3个平行试验,检测结果见表1和表2。
表1比较不同工艺处理污泥的ARGs去除效果比较
Figure PCTCN2018073424-appb-000001
Figure PCTCN2018073424-appb-000002
实施例1采用本发明超高温好氧堆肥,堆体温度在第2天就达到最高发酵温度80℃左右,通过调节曝气量,将80℃的高温维持至少5天,这样可以充分去除污泥中残留抗性基因的污染。从表1可知,采用实施例1的方法处理,可以快速高效地去除污泥中所有的检测ARGs,去除率在第4天的时候就达到90%以上,去除效果显著高于其他2个对照处理。尽管发酵结束时,堆体温度已经下降到常温,但是ARGs的丰度依然没有反弹,表明本发明方法能够稳定有效降低污泥中抗性基因的污染。
常规高温堆肥处理,尽管15天后达到最高温度65℃左右,并维持5天左右,但是ARGs的去除效果显著低于超高温堆肥处理。随着发酵结束,堆体温度的降低,大量的ARGs出现反弹,特别是strB和mefA抗性基因反而出现增加趋势,表明常规高温堆肥不能快速、稳定的去除ARGs。自然堆置处理的堆体最高发酵温度只能达到50℃左右,并且只维持1天,ARGs去除效果与常规高温堆肥的一样,效果均较差。
表2比较不同处理的抗生素去除效果
不同处理 四环素 磺胺嘧啶 土霉素
本方法 99% 98% 99%
常规高温堆肥 56% 43% 45%
自然堆置处理 5% 20 22%
从表2可知,采用本发明方法的处理可以快速高效的去除污泥中三种抗生素,去除率达到98%以上,去除效果显著高于其他2个对照处理。结果表明本发明方法能够有效去除污泥中抗生素的残留。
采用16S高通量测序方法比较研究了常规高温堆肥和超高温堆肥的发酵结束时ARGs相关微生物群落结构组成,结果见表3。
表3比较不同处理的ARGs携带微生物含量
Figure PCTCN2018073424-appb-000003
Figure PCTCN2018073424-appb-000004
表3结果显示:添加超嗜热菌剂能够显著增加非ARGs宿主极端嗜热菌群(Thermi)的比例,显著降低了ARGs携带宿主细菌群(Proteobacteria和Bacteroidetes)的比例,从而加强ARGs的去除效果,确保发酵结束时抗性基因丰度不反弹。相反,常规高温堆肥和自然堆置处理结束时,尽管温度上升到50℃以上,但是污泥中原有微生物群落的ARGs携带宿主的丰度仍然较高,是去除效果不佳的主要原因。
综上述所,本发明的超高温好氧堆肥不仅可以快速降解抗生素和ARGs,还可以改变堆肥中整个微生物群落结构,杀灭90%的携带ARGs的微生物,减少ARGs发生基因转移的风险,从源头上控制其扩散,保证了ARGs不会出现反弹。
对比例1
同实施例1,不同之处在于:初始曝气量为5m 3·t -1·h -1。该实例由于初始曝气量过小,导致堆体温度上升较慢,在6天以后才达到70℃左右,调节风机曝气量为初始量的80%,导致最高温度仅保持4天,该处理的ARGs最终去除率低于76%。
对比例2
同实施例1,不同之处在于:初始曝气量为30m 3·t -1·h -1。该实例堆体温度在第3天达到80℃后,不调节曝气量导致高温保持时间较原来缩短为3-4天。高温阶段结束以后,不再提供曝气,仅进行每周一次的翻堆。结果显示整个发酵周期延长5-7天,ARGs在27天后的去除率为81%,显著低于实施例1的96%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 超高温好氧发酵在消减有机固体废物中抗生素及抗性基因的应用,其特征在于:所述超高温好氧发酵是在有机固体废物中添加适量能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂进行超高温好氧发酵,控制物料温度不低于80℃发酵至少5~7天。
  2. 根据权利要求1所述的应用,其特征在于:所述能耐受至少80℃的好氧微生物包括超嗜热菌Calditerricola yamamurae,嗜热栖热菌Thermus thermophilus,嗜热溶胞土芽孢杆菌Geobacillus sp.,甲基营养型芽孢杆菌Bacillus methylotrophicus,芽孢杆菌Bacillus sp.中的至少一种。
  3. 根据权利要求2所述的应用,其特征在于:所述能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂为保藏编号是CGMCC No.6185的超嗜热菌Calditerricola yamamurae UTM801、保藏编号为CGMCC No.14654的嗜热栖热菌Thermus thermophilus FAFU013、保藏编号为CGMCC No.5641的嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、保藏编号为CGMCC No.5927的甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、保藏编号为CGMCC No.5643的芽孢杆菌Bacillus sp.UTM03中的一种或几种的混合。
  4. 根据权利要求1~3任一项所述的应用,其特征在于:有机固体废物包括污泥、禽畜粪便、餐厨垃圾。
  5. 根据权利要求1~3任一项所述的应用,其特征在于:所述抗生素包括四环素、磺胺嘧啶、土霉素;所述抗性基因包括tetA、tetG、strA、strB、aacA4、aadE、ermT、mefA和ereA。
  6. 一种快速消减有机固体废物中抗生素及抗性基因的方法,其特征在于,在有机固体废物中加入适量的能耐受至少80℃的好氧微生物组成的超高温好氧发酵菌剂进行超高温好氧发酵,控制物料温度不低于80℃发酵至少5~7天。
  7. 根据权利要求6所述的方法,其特征在于:进行超高温好氧发酵时,需要调节曝气量和控制翻堆次数;调节曝气量和控制翻堆次数包括:
    控制初始曝气量为20~40m 3·t -1·h -1;待物料达到80℃或者80℃以上的最高温度后,调节曝气量为初始量的45~75%,并保持80℃或者80℃以上以上5~7天,且此过程中不进行翻堆;80℃以上超高温发酵结束后,调节曝气量为初始量的35~50%,5-7天翻堆一次,待温度回落至室温,结束发酵。
  8. 一种超高温好氧发酵菌剂,其特征在于:所述超高温好氧发酵菌剂包括超嗜热菌Calditerricola yamamurae,嗜热栖热菌Thermus thermophilus,嗜热溶胞土芽孢杆菌Geobacillus sp.,甲基营养型芽孢杆菌Bacillus methylotrophicus,芽孢杆菌Bacillus sp.中的至少一种。
  9. 根据权利要求8所述的超高温好氧发酵菌剂,其特征在于:所述超高温好氧发酵菌剂为保藏编号是CGMCC No.6185的超嗜热菌Calditerricola yamamurae UTM801、保藏编号为CGMCC No.14654的嗜热栖热菌Thermus thermophilus FAFU013、保藏编号为CGMCC No.5641的嗜热溶胞土芽孢杆菌Geobacillus sp.UTM801、保藏编号为CGMCC No.5927的甲基营养型芽孢杆菌Bacillus methylotrophicus UTM401、保藏编号为CGMCC No.5643的芽孢杆菌Bacillus sp.UTM03中的一种或几种的混合。
  10. 权利要求8-9任一项所述的超高温好氧发酵菌剂在消减有机固体废物中抗生素及抗性基因中的应用。
PCT/CN2018/073424 2017-11-27 2018-01-19 一种快速消减有机固体废物中抗生素及抗性基因的方法 WO2019100579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/826,250 US20200222952A1 (en) 2017-11-27 2020-03-22 Method for rapidly reducing antibiotics and antibiotic resistance genes in organic solid waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711205616.2A CN108033817B (zh) 2017-11-27 2017-11-27 一种快速消减有机固体废物中抗生素及抗性基因的方法
CN201711205616.2 2017-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/826,250 Continuation US20200222952A1 (en) 2017-11-27 2020-03-22 Method for rapidly reducing antibiotics and antibiotic resistance genes in organic solid waste

Publications (1)

Publication Number Publication Date
WO2019100579A1 true WO2019100579A1 (zh) 2019-05-31

Family

ID=62093515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073424 WO2019100579A1 (zh) 2017-11-27 2018-01-19 一种快速消减有机固体废物中抗生素及抗性基因的方法

Country Status (3)

Country Link
US (1) US20200222952A1 (zh)
CN (1) CN108033817B (zh)
WO (1) WO2019100579A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641984B (zh) * 2018-05-18 2020-08-04 北京农业生物技术研究中心 一株尿素芽胞杆菌sc-7及其在堆肥中的应用
CN108929162B (zh) * 2018-08-06 2021-06-01 上海玖钬环保科技有限公司 城市生活垃圾降解及去除重金属处理方法
CN109574243A (zh) * 2018-11-14 2019-04-05 天津大学 克劳氏芽孢杆菌移除头孢类抗生素的方法
CN110550973A (zh) * 2019-10-14 2019-12-10 福建师范大学 一种污泥基生物炭掺和猪粪堆肥料制备方法
EP3944906A1 (en) * 2020-07-28 2022-02-02 Eco-Habitat B.V. On-site waste processing
CN112159262A (zh) * 2020-09-28 2021-01-01 福建农林大学 一种削减抗性基因的堆肥方法
CN112725229B (zh) * 2020-12-31 2022-05-17 福建农林大学 一种减少氧化亚氮排放的复合菌剂及其应用
CN113416097A (zh) * 2021-07-22 2021-09-21 东北大学 一种基于超高温好氧发酵技术高效去除畜禽粪便中抗生素和抗性基因以及稳定重金属的方法
CN113636875A (zh) * 2021-08-02 2021-11-12 山东省科学院新材料研究所 一种降低污泥堆肥过程中抗生素抗性基因丰度的方法
CN113480343A (zh) * 2021-08-05 2021-10-08 西吉县吉泰现代农业有限公司 一种有机肥的生产方法
CN113846029A (zh) * 2021-09-07 2021-12-28 陕西环保产业研究院有限公司 一种以农业固体废弃物为基质的高温好氧发酵生物菌剂应用方法
CN114105689A (zh) * 2021-12-02 2022-03-01 启迪环境科技发展股份有限公司 一种餐厨固渣的高温好氧发酵方法
CN114195564B (zh) * 2021-12-17 2022-06-21 北京农业生物技术研究中心 一种高效去除双孢菇培养废料中抗生素抗性基因污染的方法
CN114477459B (zh) * 2022-01-17 2023-02-07 哈尔滨工业大学 一种削减养殖废水中抗生素抗性基因的方法
CN114315441B (zh) * 2022-01-18 2022-10-11 哈尔滨工业大学 一种好氧堆肥中抗生素抗性基因强化去除方法
CN114433621A (zh) * 2022-01-27 2022-05-06 北京市农林科学院 一种利用食用菌消减土壤中抗生素抗性基因丰度的方法
CN114436685A (zh) * 2022-02-24 2022-05-06 上海众择生物科技有限公司 降低湿垃圾生物转化过程中抗生素抗性基因丰度的方法
CN115386507A (zh) * 2022-06-22 2022-11-25 东北大学 一种用于污泥堆肥的复合微生物菌剂及其制备方法和应用
CN115181572B (zh) * 2022-07-22 2023-10-20 浙江大学 茶黄素及其组合物在消减土壤中抗生素抗性基因的应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660486A (zh) * 2012-01-21 2012-09-12 大地绿源环保科技(北京)有限公司 一株嗜热地芽孢杆菌utm01及其应用
CN102703363A (zh) * 2012-05-14 2012-10-03 大地绿源环保科技(北京)有限公司 一株甲基营养性芽孢杆菌utm401及其应用
CN102703351A (zh) * 2012-01-21 2012-10-03 大地绿源环保科技(北京)有限公司 一株芽孢杆菌utm03及其应用
CN102851247A (zh) * 2012-09-14 2013-01-02 大地绿源环保科技(北京)有限公司 一种极端嗜热菌utm801及其应用
CN102851246A (zh) * 2012-09-14 2013-01-02 大地绿源环保科技(北京)有限公司 一种嗜热栖热菌utm802及其应用
CN103694010A (zh) * 2012-12-26 2014-04-02 大地绿源环保科技(北京)有限公司 一种污泥超高温好氧发酵方法及其应用
CN103695337A (zh) * 2013-12-06 2014-04-02 大地绿源环保科技(北京)有限公司 采用嗜热微生物菌剂处理抗菌素菌渣的方法
CN103695338A (zh) * 2012-12-26 2014-04-02 大地绿源环保科技(北京)有限公司 一种复合微生物激活剂及其制备方法与应用
CN103725627A (zh) * 2013-11-28 2014-04-16 大地绿源环保科技(北京)有限公司 采用好氧堆肥发酵技术无害化处理死淘鸡的方法
CN105695354A (zh) * 2016-02-19 2016-06-22 大地绿源环保科技(北京)有限公司 超高温好氧堆肥发酵处理城市生活污泥的工艺及应用
CN107603908A (zh) * 2017-09-29 2018-01-19 福建农林大学 一种利用城市污泥制备的超高温好氧发酵菌剂及其制备方法
CN107937303A (zh) * 2017-11-10 2018-04-20 福建农林大学 一种极端嗜热菌协同发酵生产复合超高温堆肥菌剂的方法
CN107937299A (zh) * 2017-11-06 2018-04-20 福建农林大学 一种嗜热Pb成矿菌及其在污泥高温堆肥中钝化Pb的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703351A (zh) * 2012-01-21 2012-10-03 大地绿源环保科技(北京)有限公司 一株芽孢杆菌utm03及其应用
CN102660486A (zh) * 2012-01-21 2012-09-12 大地绿源环保科技(北京)有限公司 一株嗜热地芽孢杆菌utm01及其应用
CN102703363A (zh) * 2012-05-14 2012-10-03 大地绿源环保科技(北京)有限公司 一株甲基营养性芽孢杆菌utm401及其应用
CN102851247A (zh) * 2012-09-14 2013-01-02 大地绿源环保科技(北京)有限公司 一种极端嗜热菌utm801及其应用
CN102851246A (zh) * 2012-09-14 2013-01-02 大地绿源环保科技(北京)有限公司 一种嗜热栖热菌utm802及其应用
CN103694010A (zh) * 2012-12-26 2014-04-02 大地绿源环保科技(北京)有限公司 一种污泥超高温好氧发酵方法及其应用
CN103695338A (zh) * 2012-12-26 2014-04-02 大地绿源环保科技(北京)有限公司 一种复合微生物激活剂及其制备方法与应用
CN103725627A (zh) * 2013-11-28 2014-04-16 大地绿源环保科技(北京)有限公司 采用好氧堆肥发酵技术无害化处理死淘鸡的方法
CN103695337A (zh) * 2013-12-06 2014-04-02 大地绿源环保科技(北京)有限公司 采用嗜热微生物菌剂处理抗菌素菌渣的方法
CN105695354A (zh) * 2016-02-19 2016-06-22 大地绿源环保科技(北京)有限公司 超高温好氧堆肥发酵处理城市生活污泥的工艺及应用
CN107603908A (zh) * 2017-09-29 2018-01-19 福建农林大学 一种利用城市污泥制备的超高温好氧发酵菌剂及其制备方法
CN107937299A (zh) * 2017-11-06 2018-04-20 福建农林大学 一种嗜热Pb成矿菌及其在污泥高温堆肥中钝化Pb的方法
CN107937303A (zh) * 2017-11-10 2018-04-20 福建农林大学 一种极端嗜热菌协同发酵生产复合超高温堆肥菌剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAO HANPENG ET AL: "Development of hperthermophinic aerobic composting and its engineering applications in organic solid wastes", JOURNAL OF FUJIAN AGRICULTURE AND FORESTRY UNIVERSITY, vol. 46, no. 4, July 2017 (2017-07-01), pages 439 - 444, ISSN: 1671-5470 *

Also Published As

Publication number Publication date
CN108033817A (zh) 2018-05-15
CN108033817B (zh) 2019-11-26
US20200222952A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US20200222952A1 (en) Method for rapidly reducing antibiotics and antibiotic resistance genes in organic solid waste
Wang et al. Solid digestate biochar amendment on pig manure composting: nitrogen cycle and balance
Cui et al. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes
CN106754461B (zh) 一种生物絮团及其制备方法和应用
JP5819442B2 (ja) 難分解性廃水の生物学的処理方法および廃水処理剤
Xu et al. Cattle manure compost humification process by inoculation ammonia-oxidizing bacteria
CN107162656A (zh) 一种畜禽粪便超高温堆肥方法
CN102336508B (zh) 城镇生活污泥的快速脱水及资源化处理方法及系统
CN104370582B (zh) 一种有机垃圾无臭好氧堆肥方法
CN1974492A (zh) 用垃圾和污泥混合二次发酵生产微生物菌肥的方法
Li et al. Impact of pine leaf biochar amendment on bacterial dynamics and correlation of environmental factors during pig manure composting
CN105950507A (zh) 枯草芽孢杆菌和菌剂及其在禽畜养殖废水处理方面的应用和处理方法
CN113402317B (zh) 一种水热碳化协同有机固废高温发酵减少碳排放的方法
CN101618934A (zh) 一种污泥干粉及其制备方法
He et al. Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: focusing on biogas residue combined with biochar amendments
CN103881929A (zh) 净化用复合菌和净化用复合益生菌制剂及制备方法
Wu et al. Insight into the microbial mechanisms for the improvement of composting efficiency driven by Aneurinibacillus sp. LD3
Qu et al. Effect of EM microbial agent on aerobic composting for dairy cattle manure
Chen et al. Strategy to strengthen rural domestic waste composting at low temperature: choice of ventilation condition
Bhat et al. Challenges and opportunities associated with wastewater treatment systems
Li et al. Comparative study on aerobic compost performance, microbial communities and metabolic functions between human feces and cattle manure composting
CN107460148A (zh) 一种枯草芽孢杆菌菌粉的制备方法及应用
Li et al. Bacterial dynamics and functions driven by biomass wastes to promote rural toilet blackwater absorption and recycling in an ectopic fermentation system
Liu et al. Effects of microbial agents on nitrogen conversion and bacterial succession during pig manure composting
CN105820976A (zh) 一种污泥堆肥噬热微生物菌剂及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880719

Country of ref document: EP

Kind code of ref document: A1