WO2019100461A1 - 单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法 - Google Patents

单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法 Download PDF

Info

Publication number
WO2019100461A1
WO2019100461A1 PCT/CN2017/116142 CN2017116142W WO2019100461A1 WO 2019100461 A1 WO2019100461 A1 WO 2019100461A1 CN 2017116142 W CN2017116142 W CN 2017116142W WO 2019100461 A1 WO2019100461 A1 WO 2019100461A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
polished
grinding
carrier
telescopic mechanism
Prior art date
Application number
PCT/CN2017/116142
Other languages
English (en)
French (fr)
Inventor
宋士佳
童翔
Original Assignee
北京创昱科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京创昱科技有限公司 filed Critical 北京创昱科技有限公司
Publication of WO2019100461A1 publication Critical patent/WO2019100461A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories

Definitions

  • the present invention relates to the field of wafer preparation technology, and in particular, to a multi-wafer thickness compensation device for single-side polishing, a chemical mechanical polishing device, and a polishing method.
  • CMP chemical mechanical polishing
  • the chemical mechanical polishing process is to contact the polishing pad of the device through a wafer or a substrate and to add a polishing liquid, and the relative motion is used to achieve the purpose of planarization and polishing by the combination of chemical corrosion and mechanical removal.
  • the polishing and polishing of a plurality of wafers 2 to be polished generally employs a carrier 1 to hold a plurality of wafers 2, and then the device applies a certain pressure to the carrier 1 to cause the wafer 2 to be ground. A pad (not shown) is contacted for grinding.
  • the carrier 1 is loaded on a polishing head of a polishing apparatus, and the carrier is driven by a polishing head for grinding (usually rotary grinding), and the polishing head generally has a plurality of (2 to 4), thus
  • the single-side grinding apparatus can load a plurality of carriers, and then the wafer 2 to be polished face down, in contact with the polishing pad on the lower grinding disc 5, applying a certain pressure 3, and performing polishing polishing by relative motion (such as rotation).
  • the thinner wafer is difficult to achieve good contact with the polishing pad, or there is a certain tilt in the larger pressure downloading device (such as Figure 1b), the wafer working surface is subjected to oblique grinding, so that the polishing rate and uniformity are deteriorated.
  • the prior art usually performs thickness sorting of the wafer before grinding and polishing, and sets the group thickness according to equipment and process requirements, such as a thickness difference of 20 um, a set of 10 um. Grouped by one group or more into groups of 2um. This requires additional equipment or manual special thickness sorting, and the finer the group thickness, the greater the workload and the more storage space required.
  • the upstream wafer thickness is 500-600um
  • the thickness difference is 10um for grinding and polishing. It needs to be divided into 10 groups. If it is divided into 2um, 50 groups are needed, which greatly increases the workload and manpower and material resources.
  • a carrier for a single-side polishing needs to be pasted with a wafer carrier pad 6'.
  • the wafer carrier pad 6' is opened according to the size, shape and number of the wafer.
  • the wafer receiving grooves 7' are individually supported to hold and fix the wafer 2. If the thickness of the incoming wafer is different, in order to ensure that the wafer has sufficient thickness to protrude beyond the wafer receiving groove during grinding, it is necessary to customize the wafer receiving grooves of different depths, that is, different types of wafer bearing pads, thus adding material resources. Cost and process complexity.
  • the present invention provides a multi-wafer thickness compensating device for single-side polishing, which solves the problem that the existing wafer grinding equipment is difficult to adjust the working surface of each wafer to be polished to the same horizontal surface, thereby solving the problem.
  • the existing wafer grinding equipment has high human and material cost and complicated process.
  • the invention also provides a chemical mechanical polishing device and a chemical mechanical polishing method, so that the adjustment of the working surface of the wafer to be polished is more intelligent and automated.
  • the present invention provides a multi-wafer thickness compensating device for single-side polishing, comprising a carrier having a plurality of wafer receiving grooves formed therein, and a wafer carrying pad disposed in the wafer receiving groove And a telescopic mechanism, the first surface of the wafer carrier pad is used for mounting a wafer to be polished, and the second surface of the wafer carrier pad is connected to the telescopic end of the telescopic mechanism, and the lower edge of the telescopic end can be driven Moving longitudinally back and forth, thereby driving the wafer carrier pad to move back and forth in the longitudinal direction to adjust the depth of the wafer to be polished embedded in the wafer receiving groove, so that the working surface of each wafer to be polished protrudes from the wafer receiving groove and The working faces of the respective wafers to be polished are placed on the same plane; the carrier is provided with a connector for connecting the carrier to the polishing head of the grinding apparatus.
  • the carrier can be mounted to the polishing head through the connector
  • the wafer carrying mat is pad-shaped, the two planes (the first side and the second side) of the wafer carrying mat are oppositely disposed.
  • first surface and the second surface of the wafer carrier pad are both horizontal surfaces, and the telescopic end of the telescopic mechanism is disposed perpendicular to the second surface of the wafer carrier pad.
  • the telescopic mechanism is a cylinder, and the telescopic end of the telescopic mechanism is a piston rod; or the telescopic mechanism is a servo motor with a lead screw, and the telescopic end of the telescopic mechanism is the lead screw.
  • the first side of the wafer carrier pad is coated with a wax layer or the liquid to be polished is mounted by liquid interfacial tension.
  • the present invention also provides a chemical mechanical polishing apparatus comprising a polishing apparatus body, a polishing head provided on the polishing apparatus body, and the above-described single-sided polishing multi-wafer thickness compensation apparatus.
  • the working surface of the wafer to be polished on the multi-wafer thickness compensating device for single-sided polishing is upward or downward; that is, “the working surface of the wafer to be polished is facing upward” means that the grinding disc is located above the wafer to be polished. "The working face of the wafer to be ground down” means that the grinding disk is located below the wafer to be polished.
  • the grinding apparatus body is provided with a telescopic mechanism control unit, an information storage unit, a data processing unit and a grinding control unit for issuing a grinding instruction;
  • the information storage unit is configured to store spare information, including: number data of each wafer to be polished, thickness data, and number data of the carrier and the wafer receiving slot;
  • the data processing unit is communicatively coupled to the information storage unit to acquire the standby information, and performs data processing on the thickness data of each of the to-be-polished wafers, and determines, according to the data processing result, that each of the to-be-polished wafers needs to be embedded into the corresponding wafer to accommodate Depth in the slot;
  • the telescopic mechanism control unit is communicatively coupled to the data processing unit to obtain depth data that is required to be embedded in the wafer receiving slot of each wafer to be polished, and is communicably connected with the telescopic mechanism to control the expansion and contraction of the telescopic mechanism according to the acquired depth data.
  • the ends are moved back and forth in a longitudinal direction to adjust the depth at which each of the wafers to be polished is embedded in the wafer receiving groove;
  • the carrier is in communication with the grinding control unit to inform the grinding control unit when the grinding preparation is completed.
  • the chemical mechanical polishing apparatus further includes a cable through which the telescopic mechanism passes The cable is communicatively coupled to the telescoping mechanism control unit, the carrier being communicatively coupled to the lapping device body via the cable.
  • the cable is disposed in the connector.
  • the invention also provides a chemical mechanical polishing method based on the above chemical mechanical polishing apparatus, which comprises the following steps:
  • S1 acquiring the number of each wafer to be polished, measuring the thickness of each of the wafers to be polished, and then uploading the number and thickness data of the wafer to be polished to the information storage unit;
  • S3 recording, by the information storage unit, the number of the carrier and the wafer receiving slot where each wafer is located;
  • S4 communicating the data processing unit with the information storage unit to obtain number data of each to-be-polished wafer, thickness data, and number data of the carrier and the wafer receiving slot, and perform thickness data of the wafer to be polished. Data processing, determining the depth to be embedded in the wafer receiving groove of each wafer to be polished according to the data processing result;
  • the end of the telescopic mechanism control unit is communicatively coupled to the data processing unit to obtain the determined depth data embedded in the wafer receiving slot of each of the to-be-polished wafers, and the other end is communicatively coupled with the telescopic mechanism to obtain the acquired location.
  • the working faces of the wafers to be polished on the carrier are on the same plane;
  • step S4 the data processing is specifically calculating the depth of each wafer to be polished to be embedded in the wafer receiving groove according to the thickness values of all the wafers to be polished and the height values of the protruding carriers to be polished;
  • the set value may be 0.2 mm. , or smaller (such as 0.1mm and The following), or larger (such as 0.3mm and above).
  • the grinding preparation work refers to an adjustment work of the depth of each wafer to be polished embedded in the wafer receiving groove.
  • the step S7 is: repeating the above steps S1 to S6 to realize continuous production.
  • the model of each of the wafers to be polished is obtained by a code reader.
  • the thickness compensating device of the present invention is provided with a telescopic mechanism, and the telescopic mechanism drives the wafer carrier pad to move back and forth in the longitudinal direction, thereby driving the wafer to be polished to move back and forth in the longitudinal direction to the depth of the wafer to be embedded into the wafer receiving groove.
  • the adjustment process can make the working surface of each wafer to be polished protrude from the wafer receiving groove and the working surfaces of the wafers to be polished are located on the same plane, and the carrier can be polished by the grinding head, and the polishing is performed. The process ensures that the wafer maintains good planar contact with the polishing pad, improves the process uniformity of chemical mechanical polishing, and optimizes the quality of wafer polishing.
  • the carrier in the thickness compensating device of the present invention is provided with a plurality of wafer accommodating grooves, each of which accommodates a wafer to be polished, so that the wafer can be polished and polished in batches, thereby further increasing the productivity.
  • the present invention also provides a chemical mechanical polishing apparatus provided with a telescopic mechanism control unit, an information storage unit, a data processing unit, and a polishing control unit, wherein the information storage unit stores thickness data of the wafer to be polished; and the data processing unit is utilized.
  • the above-mentioned chemical mechanical polishing method provided by the present invention is obtained based on the above-mentioned grinding equipment, and the sorting work before the CMP process is omitted, and only one step of thickness measurement is required, and the above-mentioned thickness compensation device can be used to embed the wafer to be embedded.
  • the depth to the wafer receiving tank is automatically adjusted to meet the process requirements, and the entire adjustment process is automated, eliminating unnecessary process steps and a large amount of manpower and material resources, facilitating productivity increase and production cost reduction.
  • Figure 1a is a schematic structural view (side view) of a conventional wafer polishing apparatus
  • FIG. 1b is a schematic structural view of a carrier in a conventional wafer grinding apparatus when the force is inclined;
  • FIG. 2 is a bottom plan view of a wafer carrier pad and a wafer receiving groove in a conventional wafer grinding apparatus
  • FIG. 3 is a side view of a wafer carrier pad and a wafer receiving groove in a conventional wafer grinding apparatus
  • FIG. 4 is a schematic structural view (side view) of a multi-wafer thickness compensation device for single-side polishing according to an embodiment of the present invention
  • a plurality means two or more unless otherwise stated.
  • the orientation or positional relationship of the terms “upper”, “lower”, “left”, “right”, “inside”, “outside”, “front end”, “back end”, “head”, “tail”, etc. is The orientation and the positional relationship shown in the drawings are merely for the convenience of the description of the invention and the simplification of the description, and are not intended to indicate or imply that the device or component referred to has a specific orientation, is constructed and operated in a specific orientation, and therefore cannot be understood. To limit the invention. Moreover, the terms “first”, “second”, “third”, and the like are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • installation should be understood broadly.
  • it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; Connected, they can also be connected indirectly through an intermediary.
  • the specific meanings of the above terms in the present invention can be understood by those skilled in the art as the case may be.
  • the embodiment provides a multi-wafer thickness compensating device for single-side polishing, which comprises a carrier 1 on which a plurality of wafer receiving slots 7 are opened, and a wafer is disposed in the wafer receiving slot 7.
  • the carrier pad 6 and the telescopic mechanism 8 are used to mount the first surface 6-1 of the wafer carrier pad for mounting the wafer 2 to be polished, and the second surface 6-2 of the wafer carrier pad 6 opposite to the first surface 6-1 and the telescopic mechanism 8
  • the telescopic ends are connected and can be moved back and forth in the longitudinal direction by the telescopic end, thereby driving the wafer carrier pad 6 to move back and forth in the longitudinal direction to adjust the depth of the wafer 2 to be embedded in the wafer receiving groove 7, thereby
  • the working surface 2-1 of the wafer to be polished protrudes from the wafer receiving groove 7 and the working faces 2-1 of the respective wafers to be polished are located on the same plane; the carrier 1 is provided for connecting the carrier 1 with the grinding head of the
  • the wafer carrier pad 6 has a pad shape, the two planes (the first surface 6-1 and the second surface 6-2) of the wafer carrier pad 6 are oppositely disposed.
  • the first side 6-1 and the second side 6-2 of the wafer carrying mat are both horizontal planes, and the telescopic end of the telescopic mechanism 8 is disposed perpendicular to the second side 6-2 of the wafer carrying mat.
  • the first side 6-1 of the wafer carrier pad is coated with a layer of wax or the wafer 2 to be polished is mounted by liquid interfacial tension.
  • the telescopic mechanism 8 is a cylinder, and the telescopic end of the telescopic mechanism is a piston rod.
  • the telescopic mechanism 8 may also be a servo motor with a lead screw, and the lead screw corresponds to the telescopic end of the telescopic mechanism 8.
  • the present telescopic mechanism 8 can also be any other mechanical device capable of driving the wafer carrier pad 6 to move back and forth in the longitudinal direction.
  • the embodiment further provides a chemical mechanical polishing apparatus comprising a polishing apparatus body, a polishing head provided on the polishing apparatus body, and the above-described single-sided polishing multi-wafer thickness compensation apparatus.
  • Grinding equipment body including grinding disc and slurry system
  • the working surface 2-1 of the wafer to be polished on the multi-wafer thickness compensating device for single-side polishing may face upward or downward; “the working surface of the wafer to be polished upwards” means that the grinding disc 5 is located on the wafer to be polished. Above the 2, “the working face of the wafer to be ground down” means that the grinding disc 5 is located below the wafer 2 to be polished.
  • the work of the wafer to be polished The face 2-1 is upward, that is, the polishing pad and the grinding disk 5 (neither shown in Fig. 4) are sequentially located above the wafer working surface 2-1 to be polished.
  • the grinding apparatus body is further provided with a telescopic mechanism control unit, an information storage unit, a data processing unit and a grinding control unit (neither shown in FIG. 4), specifically:
  • the information storage unit is configured to store spare information including: number data of each wafer 2 to be polished, thickness data, and number data of the carrier 1 and the wafer receiving slot 7;
  • the data processing unit is communicatively coupled to the information storage unit to acquire the spare information, and performs data processing on the thickness data of each wafer 2 to be polished, and determines, according to the data processing result, that each of the wafers to be polished 2 needs to be embedded in the corresponding wafer receiving groove 7 Depth inside
  • the telescopic mechanism control unit is communicatively coupled to the data processing unit to obtain depth data to be embedded in the wafer receiving slot 7 of each of the wafers to be polished 2, and is communicatively coupled to the telescopic mechanism 8 to control the telescopic mechanism 8 according to the acquired depth data.
  • the telescopic end is longitudinally moved back and forth to adjust the depth of each of the wafers 2 to be polished embedded in the wafer receiving groove 7;
  • the grinding control unit can send instructions to the equipment-related grinding components to initiate grinding and grind in accordance with the steps and parameters set by the program.
  • the carrier 1 is in communication with the grinding control unit to inform the grinding control unit when the grinding preparation is completed.
  • the chemical mechanical polishing apparatus further includes a cable 10 disposed in the connector 9, and the telescopic mechanism 8 is communicatively coupled to the telescopic mechanism control unit via the cable 10, and the carrier 1 is communicably coupled to the polishing apparatus body via the cable 10.
  • the embodiment further provides a chemical mechanical polishing method based on the above chemical mechanical polishing apparatus, which comprises the following steps:
  • S1 obtaining the number of each wafer 2 to be polished by a code reader, measuring the thickness of each wafer 2 to be polished, and then uploading the number and thickness data of the wafer 2 to be polished to the information storage unit;
  • S3 recording, by the information storage unit, the number of the carrier and the wafer receiving slot 7 where each wafer is located;
  • one end of the telescopic mechanism control unit is communicatively coupled to the data processing unit to obtain the determined depth data to be embedded in the wafer receiving slot 7 of each of the wafers to be polished 2, and the other end is communicatively coupled with the telescopic mechanism 8 according to the acquired
  • the depth data is used to control the telescopic end of the telescopic mechanism 8 to move back and forth in the longitudinal direction to adjust the depth of each of the wafers 2 to be polished embedded in the wafer receiving groove 7 so that the working faces of the wafers to be polished are 2-1 convex.
  • Out of the wafer receiving groove 7 and the working faces 2-1 of the wafers to be polished on the same carrier are located on the same plane;
  • the thickness compensating device of the present embodiment is provided with a telescopic mechanism, and the telescopic mechanism drives the wafer carrier pad to move back and forth in the longitudinal direction, thereby driving the wafer to be polished to move back and forth in the longitudinal direction to embed the wafer to be embedded in the wafer receiving slot.
  • the inner depth is adjusted, and the working surface of each wafer to be polished protrudes from the wafer receiving groove and the working surfaces of the wafers to be polished are located on the same plane, and the grinding operation can be completed by the carrier under the action of the polishing head.
  • the grinding and polishing process ensures that the wafer maintains good planar contact with the polishing pad, improves the process uniformity of chemical mechanical polishing, and optimizes the quality of wafer polishing.
  • the carrier in the thickness compensating device is provided with a plurality of wafer accommodating grooves, each of which accommodates a wafer to be polished, so that the wafer can be polished and polished in batches, thereby further increasing the productivity.
  • the chemical mechanical polishing apparatus of this embodiment is provided with a telescopic mechanism control unit, an information storage unit, a data processing unit, and a polishing control unit, and the information storage unit is used to store the wafer to be polished. Thickness data; processing the thickness data of the wafer to be polished by the data processing unit to determine the depth of each wafer to be polished to be embedded in the wafer receiving groove; and then using the telescopic mechanism control unit to receive the determined embedded wafer to be polished
  • the wafer accommodates the depth data in the groove, and accordingly controls the telescopic end of the telescopic mechanism to move back and forth in the longitudinal direction to automatically adjust the depth of each of the wafers to be polished embedded in the wafer receiving groove, thereby making the working surface of each wafer to be polished Protruding the wafer receiving groove and automatically adjusting the working faces of the respective wafers to be polished to the same plane, that is, all the parts of the same carrier on which the wafer to be polished protrudes outside the wafer receiving groove are identical
  • the wafer position adjustment is automated, thereby eliminating the need for manual or specialized equipment for thickness sorting before the CMP process, which greatly reduces the workload and manpower and material costs, simplifies the process steps, and improves the work efficiency. , which greatly increased the production capacity.
  • the above chemical mechanical polishing method of the present embodiment is obtained based on the above-mentioned grinding apparatus, which eliminates the sorting work before the CMP process, and only one step of thickness measurement is required, and the above-mentioned thickness compensation device can be used to embed the wafer to be embedded.
  • the depth to the wafer receiving tank is automatically adjusted to meet the process requirements, and the entire adjustment process is automated, eliminating unnecessary process steps and a large amount of manpower and material resources, facilitating productivity increase and production cost reduction.
  • the existing grinding equipment needs to perform thickness sorting on the wafer before grinding, which requires special manpower and equipment to accomplish the task, and the process requirements are very fine, which will increase very much.
  • the large workload which consumes a lot of manpower and material resources, also requires a large workshop space for storing the sorted wafers, which is not conducive to capacity increase.
  • the above-mentioned chemical mechanical polishing method of the present embodiment is based on the thickness compensation device, eliminating the sorting work before the CMP process, and only one step of thickness measurement is required, and the above-mentioned thickness compensation device can be used to embed the wafer to be embedded in the wafer holding tank.
  • the internal depth is automatically adjusted to meet the process requirements, and the entire adjustment process is automated, eliminating unnecessary process steps and a large amount of manpower and material resources, facilitating productivity increase and production cost reduction.
  • the thickness compensating device of the embodiment can automatically adjust the thickness of the portion of the wafer protruding to the outside of the carrier (or the depth embedded in the wafer receiving groove) according to the thickness of the wafer, so that the wafer working surface on the same carrier Keep on the same plane.

Abstract

一种单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法。该装置包括载具(1),所述载具(1)上开设有多个晶片容纳槽(7),所述晶片容纳槽(7)内设有晶片承载垫(6)和伸缩机构(8),所述晶片承载垫的第一面(6-1)用于安装待研磨晶片(2),所述晶片承载垫的第二面(6-2)与所述伸缩机构(8)的伸缩端相连接,并可在所述伸缩端带动下沿纵向来回移动;所述载具(1)设有用于将所述载具(1)与研磨设备的研磨头相连接的连接器(9)。该研磨设备,其包括研磨设备本体、设于所述研磨设备本体上的研磨头,以及上述单面抛光用多晶片厚度补偿装置。该厚度补偿装置能够将各待研磨晶片的工作面(2-1)自动调整至位于同一水平面上,减少了人力物力成本,该研磨设备和研磨方法简化了工艺步骤。

Description

单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法
交叉引用
本申请引用于2017年11月23日提交的专利名称为“单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法”的第2017111830851号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及晶圆制备技术领域,尤其涉及一种单面抛光用多晶片厚度补偿装置及化学机械研磨设备和研磨方法。
背景技术
在半导体或晶圆生产制造领域,化学机械研磨(CMP)是实现晶圆或衬底的平坦化与抛光的主要工艺。一般而言,化学机械研磨工艺是通过晶圆或衬底与设备的研磨垫相接触并加入研磨液,利用相对运动,通过化学腐蚀与机械去除二者的共同作用达到平坦化与抛光的目的。
对于一些生产领域,特别是小尺寸(4~6寸)晶片的研磨抛光工艺中,为了提高产能,往往采用多片晶片同时研磨或抛光的方式。如图1a和图1b所示,多片待研磨晶片2的研磨抛光一般会采用一个载具1,将多片晶片2承载固定,然后设备对载具1施加一定压力3,使晶片2与研磨垫(图中未示出)接触进行研磨。通常的单面研磨设备是将载具1装载在研磨设备的研磨头上,由研磨头带动载具进行研磨(通常为旋转研磨),研磨头一般有多个(2~4个),因而一套单面研磨设备可装载多个载具,然后将晶片2的待研磨面朝下,与下方研磨盘5上的研磨垫接触,施加一定压力3,通过相对运动(如转动)进行研磨抛光。在同一个载具上装载多片晶片时,由于晶片厚度不一致,在实际研磨过程中,较薄的晶片则难以与研磨垫实现良好接触,或者在较大压力下载具会有一定的倾斜(如图1b所示),使晶片工作面受到倾斜研磨,因此其研磨速率和均匀性都会变差。
为避免上述问题,现有技术通常会在研磨抛光前进行晶片的厚度分选,根据设备及工艺要求,设置分组厚度,如厚度差20um分一组、10um 分一组或更精细的到2um分一组。这样就需要增加设备或人工进行专门的厚度分选,而且分组厚度越精细,工作量就越大,需要的存储空间也更多。比如上游来料晶片厚度在500~600um,研磨抛光时需要以厚度差10um为一组,则需要分成10组,若以2um分一组,则需要50组,大大增加了工作量和人力物力。
而且如图2和图3所示,通常用于单面抛光的载具上需要粘贴一层晶片承载垫6′,晶片承载垫6′上会根据晶片大小、形状和数量进行开孔,制作成一个个的晶片容纳槽7′来承载和固定晶片2。如果来料晶片厚度不同,为保证在研磨时晶片有足够的厚度凸出到晶片容纳槽之外,就需要定制不同深度的晶片容纳槽,即不同类型的晶片承载垫,这样就又增加了物力成本和工艺复杂性。
发明内容
(一)要解决的技术问题
针对现有技术的缺陷,本发明提供了一种单面抛光用多晶片厚度补偿装置,以解决现有晶片研磨设备难以将各待研磨晶片的工作面调整至位于同一水平面上的问题,进而解决现有晶片研磨设备人力物力成本较高和工艺较复杂的问题。
同时基于该厚度补偿装置,本发明还提供了一种化学机械研磨设备及化学机械研磨方法,以使待研磨晶片工作面的调整更加智能化、自动化。
(二)技术方案
为了解决上述技术问题,本发明提供了一种单面抛光用多晶片厚度补偿装置,包括载具,所述载具上开设有多个晶片容纳槽,所述晶片容纳槽内设有晶片承载垫和伸缩机构,所述晶片承载垫的第一面用于安装待研磨晶片,所述晶片承载垫的第二面与所述伸缩机构的伸缩端相连接,并可在所述伸缩端带动下沿纵向来回移动,进而带动所述晶片承载垫在纵向上来回移动,以对所述待研磨晶片嵌入到晶片容纳槽内的深度进行调整,进而使各个待研磨晶片的工作面凸出晶片容纳槽并使各个待研磨晶片的工作面位于同一平面上;所述载具设有用于将所述载具与研磨设备的研磨头相连接的连接器。所述载具可通过所述连接器安装到研磨头上,由研磨头带动该补偿装置的载具进行研磨。
需要说明的是,由于晶片承载垫呈垫状,因此所述晶片承载垫的两个平面(第一面与第二面)是相对设置的。
进一步地,所述晶片承载垫的第一面和第二面均为水平面,所述伸缩机构的伸缩端与晶片承载垫的第二面垂直设置。
进一步地,所述伸缩机构为气缸,所述伸缩机构的伸缩端为活塞杆;或,所述伸缩机构为带有丝杠的伺服电机,所述伸缩机构的伸缩端为所述丝杠。
进一步地,所述晶片承载垫的第一面涂敷有蜡层或利用液体界面张力安装固定所述待研磨晶片。
本发明还提供了一种化学机械研磨设备,其包括研磨设备本体、设于所述研磨设备本体上的研磨头,以及上述的单面抛光用多晶片厚度补偿装置。
进一步地,所述的单面抛光用多晶片厚度补偿装置上的待研磨晶片的工作面朝上或朝下;即:“待研磨晶片的工作面朝上”代表研磨盘位于待研磨晶片的上方,“待研磨晶片的工作面朝下”代表研磨盘位于待研磨晶片的下方。
进一步地,所述研磨设备本体上设有伸缩机构控制单元、信息存储单元、数据处理单元和用于发出研磨指令的研磨控制单元;
所述信息存储单元用于存储备用信息,所述备用信息包括:各个待研磨晶片的编号数据、厚度数据及其所在的载具和晶片容纳槽的编号数据;
所述数据处理单元与信息存储单元通信连接以获取所述备用信息,并对各个所述待研磨晶片的厚度数据进行数据处理,并根据数据处理结果确定各个待研磨晶片所需嵌入到对应晶片容纳槽内的深度;
所述伸缩机构控制单元与数据处理单元通信连接以获取各个待研磨晶片所需嵌入到晶片容纳槽内的深度数据,并与伸缩机构通信连接以根据所获取的所述深度数据控制伸缩机构的伸缩端作纵向来回移动,以对各个待研磨晶片嵌入到晶片容纳槽内的深度进行调整;
所述载具与研磨控制单元通信连接以在研磨准备工作完成时告知研磨控制单元。
进一步地,该化学机械研磨设备还包括电缆,所述伸缩机构通过所述 电缆与伸缩机构控制单元通信连接,所述载具通过所述电缆与研磨设备本体通信连接。
进一步地,所述电缆设于所述连接器内。
本发明还提供了一种基于上述化学机械研磨设备所进行的化学机械研磨方法,其包括如下步骤:
S1:获取各个待研磨晶片的编号,并对各个所述待研磨晶片的厚度进行测量,然后将所述待研磨晶片的编号及厚度数据上传至所述信息存储单元;
S2:将待研磨晶片安装至晶片承载垫上,并将所述载具通过所述连接器安装到研磨头上;
S3:通过所述信息存储单元分别记录每个晶片所在的载具和晶片容纳槽的编号;
S4:将所述数据处理单元与信息存储单元通信以获取各个待研磨晶片的编号数据、厚度数据及其所在的载具和晶片容纳槽的编号数据,并对所述待研磨晶片的厚度数据进行数据处理,根据数据处理结果确定出每个待研磨晶片所需嵌入到晶片容纳槽内的深度;
S5:通过所述伸缩机构控制单元一端与数据处理单元通信连接以获取所确定的各个待研磨晶片所需嵌入到晶片容纳槽内的深度数据,另一端与伸缩机构通信连接以根据所获取的所述深度数据,来控制伸缩机构的伸缩端作纵向上的来回移动以对各个待研磨晶片嵌入到晶片容纳槽内的深度进行调整,使各个待研磨晶片的工作面凸出晶片容纳槽并使同一载具上各个待研磨晶片的工作面位于同一平面上;
S6:将所述载具与研磨控制单元通信以告知研磨控制单元研磨准备工作已经完成,然后所述研磨控制单元发出研磨指令,以使所述研磨头带动所述载具进行常规的化学机械研磨。
进一步地,步骤S4中,所述数据处理具体为根据所有待研磨晶片的厚度值和待研磨晶片需要凸出载具的高度值计算出每一片待研磨晶片需要嵌入晶片容纳槽内的深度;当计算出的待研磨晶片嵌入晶片容纳槽内的深度低于设定值时,需要更换该待研磨晶片以避免该晶片滑出晶片容纳槽;需要说明的是,所述设定值可以为0.2mm,或者更小(比如0.1mm及 以下),或者更大(比如0.3mm及以上)。
进一步地,步骤S6中,所述研磨准备工作指对各个待研磨晶片嵌入到晶片容纳槽内深度的调整工作。进一步地,在所述步骤S6之后还设有步骤S7,所述步骤S7为:重复上述步骤S1~S6,以实现连续生产。
进一步地,所述步骤S1中,各个所述待研磨晶片的型号是通过读码器获取的。
(三)有益效果
本发明的上述技术方案具有以下有益效果:
1、本发明的厚度补偿装置通过设置伸缩机构,伸缩机构带动晶片承载垫作纵向上的来回移动,进而带动待研磨晶片作纵向上的来回移动,以对待研磨晶片嵌入到晶片容纳槽内的深度进行调整,调整过程中可使各个待研磨晶片的工作面凸出晶片容纳槽并使各个待研磨晶片的工作面位于同一平面上,载具在研磨头的带动下即可完成研磨操作,研磨抛光过程中保证了晶片与研磨垫保持良好的平面接触,提高了化学机械研磨的工艺均匀性,同时优化了晶片研磨抛光的质量。
2、本发明的厚度补偿装置中的载具上设置了多个晶片容纳槽,每个晶片容纳槽内均容纳一个待研磨晶片,因而可批量进行晶片的研磨抛光,从而进一步提高了产能。
3、本发明还提供了一种化学机械研磨设备,其设置了伸缩机构控制单元、信息存储单元、数据处理单元和研磨控制单元,利用信息存储单元存储待研磨晶片的厚度数据;利用数据处理单元对待研磨晶片的厚度数据进行处理进而确定各个待研磨晶片所需嵌入到晶片容纳槽内的深度;再利用伸缩机构控制单元接收所确定的各个待研磨晶片所需嵌入到晶片容纳槽内的深度数据,并据此控制伸缩机构的伸缩端作纵向上的来回移动以对各个待研磨晶片嵌入到晶片容纳槽内的深度进行自动调整,从而使各个待研磨晶片的工作面凸出晶片容纳槽并将各个待研磨晶片的工作面自动调整至同一平面上,即实现了同一载具上所有待研磨晶片凸出晶片容纳槽之外的部分都相同或控制在工艺允许的误差范围内,从而实现了晶片位置调整的自动化,进而免去了CMP工艺前的人工或专门设备进行厚度分选的操作,大大减少了工作量和人力物力成本,简化了工艺步骤,提高了工作 效率,进而大大提高了产能。
4、本发明提供的上述化学机械研磨方法是基于上述研磨设备得出的,省去了CMP工艺前的分选工作,只需一步厚度测量即可,可以利用上述的厚度补偿装置对待研磨晶片嵌入至晶片容纳槽内的深度进行自动调整,达到工艺要求,整个调整过程实现了自动化,省去了不必要的工艺步骤和大量人力物力,便于产能提升和生产成本的大幅降低。
附图说明
图1a为现有晶片研磨设备的结构示意图(侧视图);
图1b为现有晶片研磨设备中的载具在受力变倾斜时的结构示意图;
图2为现有晶片研磨设备中的晶片承载垫和晶片容纳槽的仰视图;
图3为现有晶片研磨设备中的晶片承载垫和晶片容纳槽的侧视图;
图4为本发明实施例所述单面抛光用多晶片厚度补偿装置的结构示意图(侧视图);
其中,1、载具;2、待研磨晶片;2-1、待研磨晶片的工作面;3、现有研磨设备中对载具施加的压力;5、研磨盘;6′、现有研磨设备中的晶片承载垫;6、晶片承载垫;6-1、晶片承载垫的第一面;6-2、晶片承载垫的第二面;7′、现有研磨设备中的晶片容纳槽;7、晶片容纳槽;8、伸缩机构;9、连接器;10、电缆。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术 语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以视具体情况理解上述术语在本发明中的具体含义。
如图4所示,本实施例提供了一种单面抛光用多晶片厚度补偿装置,其包括载具1,载具1上开设有多个晶片容纳槽7,晶片容纳槽7内设有晶片承载垫6和伸缩机构8,晶片承载垫的第一面6-1用于安装待研磨晶片2,晶片承载垫6中与第一面6-1相对的第二面6-2与伸缩机构8的伸缩端相连接,并可在伸缩端带动下沿纵向来回移动,进而带动晶片承载垫6在纵向上来回移动,以对待研磨晶片2嵌入到晶片容纳槽7内的深度进行调整,进而使各个待研磨晶片的工作面2-1凸出晶片容纳槽7并使各个待研磨晶片的工作面2-1位于同一平面上;载具1设有用于将载具1与研磨设备的研磨头相连接的连接器9。载具1可通过连接器9安装到研磨头上,由研磨头带动该补偿装置的载具1进行研磨。
需要说明的是,由于晶片承载垫6呈垫状,因此晶片承载垫6的两个平面(第一面6-1与第二面6-2)是相对设置的。晶片承载垫的第一面6-1和第二面6-2均为水平面,伸缩机构8的伸缩端与晶片承载垫的第二面6-2垂直设置。晶片承载垫的第一面6-1涂敷有蜡层或利用液体界面张力安装固定所述待研磨晶片2。
本实施例中,伸缩机构8为气缸,伸缩机构的伸缩端为活塞杆。当然,伸缩机构8也可以为带有丝杠的伺服电机,此时丝杠相当于伸缩机构8的伸缩端。另外,本伸缩机构8也可以为任何其他能够带动晶片承载垫6在纵向上来回移动的机械装置。
本实施例还提供了一种化学机械研磨设备,其包括研磨设备本体、设于研磨设备本体上的研磨头,以及上述的单面抛光用多晶片厚度补偿装置。研磨设备本体包括研磨盘和研磨液系统等
需要说明的是,单面抛光用多晶片厚度补偿装置上的待研磨晶片的工作面2-1可以朝上或者朝下;“待研磨晶片的工作面朝上”代表研磨盘5位于待研磨晶片2的上方,“待研磨晶片的工作面朝下”代表研磨盘5位于待研磨晶片2的下方。具体到本实施例中,参见图4,待研磨晶片的工 作面2-1朝上,即研磨垫和研磨盘5(图4中均未示出)依次位于待研磨晶片工作面2-1的上方。
此外,研磨设备本体上还设有伸缩机构控制单元、信息存储单元、数据处理单元和研磨控制单元(图4中均未示出),具体来说:
信息存储单元用于存储备用信息,该备用信息包括:各个待研磨晶片2的编号数据、厚度数据及其所在的载具1和晶片容纳槽7的编号数据;
数据处理单元与信息存储单元通信连接以获取所述备用信息,并对各个待研磨晶片2的厚度数据进行数据处理,并根据数据处理结果确定各个待研磨晶片2所需嵌入到对应晶片容纳槽7内的深度;
伸缩机构控制单元与数据处理单元通信连接以获取各个待研磨晶片2所需嵌入到晶片容纳槽7内的深度数据,并与伸缩机构8通信连接以根据所获取的所述深度数据控制伸缩机构8的伸缩端作纵向来回移动,以对各个待研磨晶片2嵌入到晶片容纳槽7内的深度进行调整;
研磨控制单元可以给设备相关研磨部件发送指令开始研磨,并且按照程序设置的步骤和参数进行研磨。载具1与研磨控制单元通信连接以在研磨准备工作完成时告知研磨控制单元。
进一步地,该化学机械研磨设备还包括设于连接器9内的电缆10,伸缩机构8通过电缆10与伸缩机构控制单元通信连接,载具1通过电缆10与研磨设备本体通信连接。
本实施例还提供了一种基于上述化学机械研磨设备所进行的化学机械研磨方法,其包括如下步骤:
S1:通过读码器获取各个待研磨晶片2的编号,并对各个待研磨晶片2的厚度进行测量,然后将待研磨晶片2的编号及厚度数据上传至信息存储单元;
S2:将待研磨晶片2安装至晶片承载垫6上,并将载具1通过连接器9安装到研磨头上;
S3:通过信息存储单元分别记录每个晶片所在的载具和晶片容纳槽7的编号;
S4:将数据处理单元与信息存储单元通信以获取各个待研磨晶片2的编号数据、厚度数据及其所在的载具和晶片容纳槽7的编号数据,并对待 研磨晶片2的厚度数据进行数据处理,根据数据处理结果确定出每个待研磨晶片2所需嵌入到晶片容纳槽7内的深度;所述数据处理具体为根据所有待研磨晶片2的厚度值和待研磨晶片2需要凸出载具1的高度值计算出每一片待研磨晶片2需要嵌入晶片容纳槽7内的深度;当计算出的待研磨晶片2嵌入晶片容纳槽7内的深度低于设定值0.2mm时,需要更换该待研磨晶片2以避免该晶片滑出晶片容纳槽7;需要说明的是,本实施例的设定值可以根据实际需要进行设定,比如可以在0.1mm及以下,也可以在0.3mm及以上;
S5:通过伸缩机构控制单元一端与数据处理单元通信连接以获取所确定的各个待研磨晶片2所需嵌入到晶片容纳槽7内的深度数据,另一端与伸缩机构8通信连接以根据所获取的所述深度数据,来控制伸缩机构8的伸缩端作纵向上的来回移动以对各个待研磨晶片2嵌入到晶片容纳槽7内的深度进行调整,使各个待研磨晶片的工作面2-1凸出晶片容纳槽7并使同一载具上各个待研磨晶片的工作面2-1位于同一平面上;
S6:将载具1与研磨控制单元通信以告知研磨控制单元研磨准备工作已经完成,然后研磨控制单元发出研磨指令,以使研磨头带动载具1进行常规的化学机械研磨;所述研磨准备工作指对各个待研磨晶片2嵌入到晶片容纳槽7内深度的调整工作;
S7:重复上述步骤S1~S6,以实现连续生产。
由上可知,本实施例的厚度补偿装置通过设置伸缩机构,伸缩机构带动晶片承载垫作纵向上的来回移动,进而带动待研磨晶片作纵向上的来回移动,以对待研磨晶片嵌入到晶片容纳槽内的深度进行调整,调整过程中可使各个待研磨晶片的工作面凸出晶片容纳槽并使各个待研磨晶片的工作面位于同一平面上,载具在研磨头的带动下即可完成研磨操作,研磨抛光过程中保证了晶片与研磨垫保持良好的平面接触,提高了化学机械研磨的工艺均匀性,同时优化了晶片研磨抛光的质量。而且,该厚度补偿装置中的载具上设置了多个晶片容纳槽,每个晶片容纳槽内均容纳一个待研磨晶片,因而可批量进行晶片的研磨抛光,从而进一步提高了产能。
本实施例的化学机械研磨设备设置了伸缩机构控制单元、信息存储单元、数据处理单元和研磨控制单元,利用信息存储单元存储待研磨晶片的 厚度数据;利用数据处理单元对待研磨晶片的厚度数据进行处理进而确定各个待研磨晶片所需嵌入到晶片容纳槽内的深度;再利用伸缩机构控制单元接收所确定的各个待研磨晶片所需嵌入到晶片容纳槽内的深度数据,并据此控制伸缩机构的伸缩端作纵向上的来回移动以对各个待研磨晶片嵌入到晶片容纳槽内的深度进行自动调整,从而使各个待研磨晶片的工作面凸出晶片容纳槽并将各个待研磨晶片的工作面自动调整至同一平面上,即实现了同一载具上所有待研磨晶片凸出晶片容纳槽之外的部分都相同或控制在工艺允许的误差范围内,从而实现了晶片位置调整的自动化,进而免去了CMP工艺前的人工或专门设备进行厚度分选的操作,大大减少了工作量和人力物力成本,简化了工艺步骤,提高了工作效率,进而大大提高了产能。
本实施例的上述化学机械研磨方法是基于上述研磨设备得出的,该方法省去了CMP工艺前的分选工作,只需一步厚度测量即可,可以利用上述的厚度补偿装置对待研磨晶片嵌入至晶片容纳槽内的深度进行自动调整,达到工艺要求,整个调整过程实现了自动化,省去了不必要的工艺步骤和大量人力物力,便于产能提升和生产成本的大幅降低。
现有的研磨设备为了满足不同厚度晶片的工艺均匀性,需要在研磨之前对晶片进行厚度分选,这就需要专门的人力和设备完成该任务,对于工艺要求十分精细的情况,将会增加非常大的工作量,耗费大量人力物力的同时也会需要很大的厂房空间用于存放分选好的晶片,不利于产能提升。而本实施例的上述化学机械研磨方法基于该厚度补偿装置,省去了CMP工艺前的分选工作,只需一步厚度测量即可,可以利用上述的厚度补偿装置对待研磨晶片嵌入至晶片容纳槽内的深度进行自动调整,达到工艺要求,整个调整过程实现了自动化,省去了不必要的工艺步骤和大量人力物力,便于产能提升和生产成本的大幅降低。
综上所示,本实施例的厚度补偿装置可根据晶片厚度,自动调整晶片凸出到载具之外部分的厚度(或嵌入晶片容纳槽中的深度),使得同一载具上的晶片工作面保持在同一平面上。
本发明的实施例是为了示例和描述而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员 而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (11)

  1. 一种单面抛光用多晶片厚度补偿装置,包括载具,其特征在于,所述载具上开设有多个晶片容纳槽,所述晶片容纳槽内设有晶片承载垫和伸缩机构,所述晶片承载垫的第一面用于安装待研磨晶片,所述晶片承载垫的第二面与所述伸缩机构的伸缩端相连接,并可在所述伸缩端带动下沿纵向来回移动;所述载具设有用于将所述载具与研磨设备的研磨头相连接的连接器。
  2. 根据权利要求1所述的单面抛光用多晶片厚度补偿装置,其特征在于,所述晶片承载垫的第一面和第二面均为水平面,所述伸缩机构的伸缩端与晶片承载垫的第二面垂直设置。
  3. 根据权利要求1所述的单面抛光用多晶片厚度补偿装置,其特征在于,所述伸缩机构为气缸,所述伸缩机构的伸缩端为活塞杆;
    或,所述伸缩机构为带有丝杠的伺服电机,所述伸缩机构的伸缩端为所述丝杠。
  4. 一种化学机械研磨设备,包括研磨设备本体、设于所述研磨设备本体上的研磨头,其特征在于,还包括权利要求1~4任一项所述的单面抛光用多晶片厚度补偿装置。
  5. 根据权利要求4所述的化学机械研磨设备,其特征在于,所述的单面抛光用多晶片厚度补偿装置上的待研磨晶片的工作面朝上或朝下。
  6. 根据权利要求4所述的化学机械研磨设备,其特征在于,所述研磨设备本体上设有伸缩机构控制单元、信息存储单元、数据处理单元和用于发出研磨指令的研磨控制单元;
    所述信息存储单元用于存储备用信息,所述备用信息包括:各个待研磨晶片的编号数据、厚度数据及其所在的载具和晶片容纳槽的编号数据;
    所述数据处理单元与信息存储单元通信连接以获取所述备用信息,并对各个所述待研磨晶片的厚度数据进行数据处理,并根据数据处理结果确定各个待研磨晶片所需嵌入到晶片容纳槽内的深度;
    所述伸缩机构控制单元与数据处理单元通信连接以获取各个待研磨晶片所需嵌入到晶片容纳槽内的深度数据,并与伸缩机构通信连接以根据所获取的所述深度数据控制伸缩机构的伸缩端作纵向来回移动,以对各个 待研磨晶片嵌入到晶片容纳槽内的深度进行调整;所述载具与研磨控制单元通信连接以在研磨准备工作完成时告知研磨控制单元。
  7. 根据权利要求6所述的化学机械研磨设备,其特征在于,还包括电缆,所述伸缩机构通过所述电缆与伸缩机构控制单元通信连接,所述载具通过所述电缆与研磨设备本体通信连接。
  8. 根据权利要求7所述的化学机械研磨设备,其特征在于,所述电缆设于所述连接器内。
  9. 一种基于权利要求6~8任一项所述化学机械研磨设备所进行的化学机械研磨方法,其特征在于,包括如下步骤:
    S1:获取各个待研磨晶片的编号,并对各个所述待研磨晶片的厚度进行测量,然后将所述待研磨晶片的编号及厚度数据上传至所述信息存储单元;
    S2:将待研磨晶片安装至晶片承载垫上,并将所述载具通过所述连接器安装到研磨头上;
    S3:通过所述信息存储单元分别记录每个晶片所在的载具和晶片容纳槽的编号;
    S4:将所述数据处理单元与信息存储单元通信以获取各个待研磨晶片的编号数据、厚度数据及其所在的载具和晶片容纳槽的编号数据,并对所述待研磨晶片的厚度数据进行数据处理,根据数据处理结果确定出每个待研磨晶片所需嵌入到晶片容纳槽内的深度;
    S5:通过所述伸缩机构控制单元一端与数据处理单元通信连接以获取所确定的各个待研磨晶片所需嵌入到晶片容纳槽内的深度数据,另一端与伸缩机构通信连接以根据所获取的所述深度数据,来控制伸缩机构的伸缩端作纵向上的来回移动以对各个待研磨晶片嵌入到晶片容纳槽内的深度进行调整,使各个待研磨晶片的工作面凸出晶片容纳槽并使同一载具上各个待研磨晶片的工作面位于同一平面上;
    S6:将所述载具与研磨控制单元通信以告知所述研磨控制单元研磨准备工作已经完成,然后所述研磨控制单元发出研磨指令,以使所述研磨头带动所述载具进行化学机械研磨。
  10. 根据权利要求9所述的化学机械研磨方法,其特征在于,步骤S4 中,所述数据处理具体为根据所有待研磨晶片的厚度值和待研磨晶片需要凸出载具的高度值计算出每一片待研磨晶片需要嵌入晶片容纳槽内的深度;当计算出的待研磨晶片嵌入晶片容纳槽内的深度低于设定值时,需要更换该待研磨晶片以避免该晶片滑出晶片容纳槽;
    和/或,步骤S6中,所述研磨准备工作指对各个待研磨晶片嵌入到晶片容纳槽内深度的调整工作。
  11. 根据权利要求8所述的化学机械研磨方法,其特征在于,在步骤S6之后还设有步骤S7,所述步骤S7为:重复上述步骤S1~S6,以实现连续生产。
PCT/CN2017/116142 2017-11-23 2017-12-14 单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法 WO2019100461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711183085.1A CN109822450A (zh) 2017-11-23 2017-11-23 单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法
CN201711183085.1 2017-11-23

Publications (1)

Publication Number Publication Date
WO2019100461A1 true WO2019100461A1 (zh) 2019-05-31

Family

ID=66630865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116142 WO2019100461A1 (zh) 2017-11-23 2017-12-14 单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法

Country Status (2)

Country Link
CN (1) CN109822450A (zh)
WO (1) WO2019100461A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110948294A (zh) * 2019-12-27 2020-04-03 苏州凯利昂光电科技有限公司 一种提高抛光效率的抛光方法
CN114473846B (zh) * 2020-11-11 2023-05-23 中国科学院微电子研究所 晶片研磨装置
CN116551559B (zh) * 2023-02-28 2023-12-12 名正(浙江)电子装备有限公司 一种带压力传感系统的晶圆研磨抛光机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160056A (ja) * 1982-03-17 1983-09-22 Nec Corp 研摩装置
CN103506927A (zh) * 2013-10-28 2014-01-15 中国科学院地球化学研究所 一种抛光机载料块
CN203817964U (zh) * 2014-05-09 2014-09-10 山东省科学院新材料研究所 一种晶片研磨抛光用的组合载样盘
CN104625940A (zh) * 2013-11-12 2015-05-20 昆山科尼电子器材有限公司 一种硅片研磨光学抛光系统及其加工工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160056A (ja) * 1982-03-17 1983-09-22 Nec Corp 研摩装置
CN103506927A (zh) * 2013-10-28 2014-01-15 中国科学院地球化学研究所 一种抛光机载料块
CN104625940A (zh) * 2013-11-12 2015-05-20 昆山科尼电子器材有限公司 一种硅片研磨光学抛光系统及其加工工艺
CN203817964U (zh) * 2014-05-09 2014-09-10 山东省科学院新材料研究所 一种晶片研磨抛光用的组合载样盘

Also Published As

Publication number Publication date
CN109822450A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN102554788B (zh) 一种抛光垫修整方法
WO2019100461A1 (zh) 单面抛光用多晶片厚度补偿装置及研磨设备和研磨方法
US6402588B1 (en) Polishing apparatus
KR101139054B1 (ko) 반도체 웨이퍼의 양면 폴리싱 가공 방법
JP6031560B2 (ja) 化学機械研磨装置
JPH10309662A (ja) ベルト式研磨パッドを用いた平坦面を有する物体の研磨装置及び研磨方法
KR20060020614A (ko) 언더-패드를 구비하는 연마기 및 미세형상 공작물의 기계적및/또는 화학-기계적 연마 방법
CN109352513B (zh) 一种晶圆抛光方法
CN1661780A (zh) 化学机械研磨装置以及研磨方法
US6969305B2 (en) Polishing apparatus
JP2011224680A (ja) 研磨方法及び研磨装置
US6113467A (en) Polishing machine and polishing method
CN104303272A (zh) 用于抛光模组的预化学机械平坦化的方法与设备
CN107431006A (zh) 半导体晶片的单片式单面研磨方法及半导体晶片的单片式单面研磨装置
CN110193775A (zh) 化学机械抛光方法以及化学抛光系统
KR20150121029A (ko) Cmp 장치 및 cmp 방법
US6572462B1 (en) Carrier assembly for chemical mechanical planarization systems and method
KR20020020692A (ko) 웨이퍼 연마 패드의 조절 방법
KR20080041408A (ko) 화학적 기계적 연마장치 및 방법
US6575818B2 (en) Apparatus and method for polishing multiple semiconductor wafers in parallel
JP4712555B2 (ja) 研磨装置
US7097545B2 (en) Polishing pad conditioner and chemical mechanical polishing apparatus having the same
JP2011194517A (ja) 両面研磨装置および加工方法
KR20160139619A (ko) 화학 기계적 기판 연마장치
CN207824658U (zh) 单面抛光用多晶片厚度补偿装置及研磨设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2020

122 Ep: pct application non-entry in european phase

Ref document number: 17932667

Country of ref document: EP

Kind code of ref document: A1