WO2019100294A1 - 一种电致发光电源导线 - Google Patents

一种电致发光电源导线 Download PDF

Info

Publication number
WO2019100294A1
WO2019100294A1 PCT/CN2017/112689 CN2017112689W WO2019100294A1 WO 2019100294 A1 WO2019100294 A1 WO 2019100294A1 CN 2017112689 W CN2017112689 W CN 2017112689W WO 2019100294 A1 WO2019100294 A1 WO 2019100294A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
wire
wires
electroluminescent
insulated
Prior art date
Application number
PCT/CN2017/112689
Other languages
English (en)
French (fr)
Inventor
殷峥凯
殷永江
Original Assignee
殷峥凯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 殷峥凯 filed Critical 殷峥凯
Priority to CN201780096393.2A priority Critical patent/CN111316383A/zh
Priority to PCT/CN2017/112689 priority patent/WO2019100294A1/zh
Publication of WO2019100294A1 publication Critical patent/WO2019100294A1/zh
Priority to US16/882,394 priority patent/US11477863B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/36Insulated conductors or cables characterised by their form with distinguishing or length marks
    • H01B7/361Insulated conductors or cables characterised by their form with distinguishing or length marks being the colour of the insulation or conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/36Insulated conductors or cables characterised by their form with distinguishing or length marks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/28Coupling parts carrying pins, blades or analogous contacts and secured only to wire or cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of power supply wires, and in particular to an electroluminescent power supply wire.
  • the principle of electroluminescence is that the luminescent powder with zinc sulfide as the main luminescent material emits soft light in the alternating electromagnetic field of a certain frequency and voltage. According to this principle, two main products, illuminating sheet and illuminating line, are produced.
  • the structure is that the luminescent powder is sandwiched between the two layers of conductive electrodes or sheets, wherein one layer of the conductive layer or sheet is a transparent conductive layer or sheet; the structure of the existing electroluminescent line is the same as that of the illuminating sheet, and the structure is similar, only One of the two parallel electrodes is crimped into a center electrode, and the other transparent electrode layer is naturally wrapped in the outer layer of the center electrode in parallel, the luminescent powder layer is located in the intermediate layer, and the transparent conductive layer is wound through the surface thereof.
  • the bare metal wire and the center electrode wire of the smaller wire diameter are used as the live wire and the neutral wire, and at the same time, the alternating current of a certain frequency and voltage is turned on, and the luminescent powder layer is excited to emit light, whether it is an electroluminescent sheet or a light-emitting line.
  • the luminescent powders all emit light in a closed electric field between the electrodes.
  • the conventional electroluminescent wire of the prior structure is only a decorative wire capable of emitting light, has a complicated structure, is high in manufacturing cost, and is not resistant to bending. In particular, it cannot be directly applied as an AC power supply wire, and the outer layer of the ordinary luminous wire is transparent. The conductive layer easily penetrates into the pores of the luminescent layer. After repeated bending, the insulating dielectric layer on the outer wall of the bare conductor of the metal substrate is destroyed, which is easy to cause short circuit, and the short circuit is also difficult to detect and recognize, so that the entire illuminating line is scrapped and difficult to reuse. ,a waste of resource.
  • the power cables of various existing household appliances are connected to the power supply line, and the power supply wires have no electricity. It is necessary to use other instruments, for example, to measure with a multimeter device. If only the power supply wires are visually judged to have electricity, it is not seen. from. The existing ordinary current power supply wires are electrically invisible.
  • the present invention provides a structure in which the luminescent powder can only emit light in a closed electric field, and can emit light in an open electric field.
  • the present invention provides a simple structure and can be directly As an AC power supply lead, it is resistant to bending and is not easily short-circuited.
  • an electroluminescent power supply wire comprising a wire and a light-emitting layer, the light-emitting layer covering or wrapping the wire, the wire comprising at least two groups, each group comprising at least one wire; Wherein at least one set of wires is insulated from at least one other set of wires, and when it is connected to the alternating current power source and turned on, an open electromagnetic field is generated around the two sets of wires to excite the outer luminescent layer to electroluminescence.
  • the outer wall of at least one of the at least two sets of wires is covered or wrapped with a layer of insulating material to form an insulated wire.
  • the outer wall of the luminescent layer is coated with a transparent or transparent plastic layer.
  • At least two of the electroluminescent power supply stranded cables, or at least one of the conductors of the electroluminescent power supply conductor comprise at least three groups, wherein any two of the wires are insulated, and the wires are twisted
  • the composite cable, or at least two sets of the wires are at least another set of the wires as an axis, and are spirally wound in the same direction along the axis.
  • the at least one set of wires is further parallel to the at least one other set of wires, or twisted into a composite cable, or entangled with each other.
  • the insulating material layer is a dielectric insulating material layer, which is mainly composed of barium titanate, barium carbonate or titanium dioxide and a polymer binder, or is mixed with a polyurethane paint or a polyester imide paint and then coated and baked. Dry formation; or directly coated with polyurethane paint or polyester imide paint; or directly wrapped polymer plastic layer.
  • the light-emitting layer is mainly formed by mixing an electroluminescent powder composed of zinc sulfide, copper and silicon dioxide with a polymer binder, or by mixing with a polyurethane paint or a polyester imide paint.
  • the polymer binder is mainly composed of terpineol, a silicone resin compound, diethylene glycol monoethyl acetate, methyl methacrylate or ethyl acrylate copolymer, and a fluorinated polymer.
  • At least one set of wires is used as an axis group, and at least another group is guided
  • the wire is a winding group, and the winding group is axially wound with the axis group and spirally wound along the axis group.
  • the winding group includes a plurality of sets of the wires, and any one or groups of the winding groups are used for connection with one of the alternating current power sources.
  • At least two sets of the wires in the winding group are spirally wound forward and reverse along the axis group to form a mesh braid layer.
  • one end of the electroluminescent power supply wire is used for indirect access or direct access to a single-phase or three-phase AC power supply through a multi-channel AC output driver or a frequency converter, and the other end is used for connecting a power device.
  • the wires comprise three groups, and any two of the three groups of wires are insulated to form a three-phase three-wire electroluminescent power supply wire; or the wires comprise four groups, the four groups of wires Insulating between any two of the two groups to form a three-phase four-wire electroluminescent power supply conductor; or the conductor includes five groups, and any two of the five sets of conductors are insulated to form a three-phase five-wire Electroluminescent power supply leads.
  • the AC power source is a three-phase AC power source, and one end of the electroluminescence power supply wire is used to communicate with the AC power source directly or through a frequency converter, and the other end is used for connecting a power device.
  • a charging data line simulating a visible current flow comprising a first connector, a multi-channel AC driver built in the first plug, a second connector, a transparent or transparent plastic layer, a light-emitting line, a signal line, and a charging line, And a shielding layer, wherein the first connector is connected to the second connector through the signal line and the charging line, wherein the illuminating line is the electroluminescent power supply wire, the electroluminescent power supply wire One end is respectively connected to each output end of the multi-channel AC driver, and the other end is vacant; in use, the multi-channel AC driver is connected to the power source through the first connector, and the multi-channel AC driver is at a certain frequency and period The wires are sequentially controlled to be in communication with and disconnected from the power source.
  • the light emitting layer of the electroluminescent power supply wire is wrapped or coated on the signal line and the shielding layer, or the signal line and the shielding layer are located outside the electroluminescent power supply wire, and It is substantially parallel to the electroluminescent power supply lead.
  • the driver when the signal line conducts the transmission signal, the driver synchronously starts and drives the At least one of the two sets of said wires of at least one of said electroluminescent power wires.
  • the first connector is a USB plug or a Type-C plug
  • the second connector is at least one of a Micro USB plug, a Lightning plug, and a USB Type-C plug.
  • An electroluminescent power supply lead device for simulating current flow comprising a power connector, further comprising a multi-channel AC output driver and the electroluminescent power supply conductor described above, one end of the electroluminescent power supply wire being used to pass the plurality a circuit AC output driver and the power connector are connected to the AC power source, and sequentially control communication and disconnection with the AC power source through the multi-channel AC output driver at a certain frequency and cycle, and the other end is used for The electrical device is turned on.
  • one end of the at least another set of the wires is used for constant conduction with the alternating current power source through the multi-channel AC output driver and the power connector, and one end of the at least two sets of the wires And connecting, by the multi-channel AC output driver and the power connector, the AC power source, and sequentially controlling communication and disconnection with the AC power source by the multi-channel AC output driver at a certain frequency and cycle.
  • the other end of at least one other set of said wires and the other end of said at least two sets of said wires are used to be electrically connected by an electrical device.
  • the electroluminescent power supply wire of the present invention can be used as a power supply wire or as a section of a power supply wire when one end is connected to an alternating current power source and the other end is connected to a power device; when one end is connected to an alternating current power source and the other end is vacant, Can be used as an electroluminescent wire.
  • the invention has the beneficial effects that there is no transparent conductive layer and the auxiliary electrode bare wire which is in close contact with the transparent conductive layer, and there is no problem of short circuit caused by leakage of the transparent conductive layer, the structure is simple and reliable, the production is easy, the cost is reduced, and the light-emitting line is facilitated.
  • the illuminating effect is more diverse, and more importantly, the present invention also has an indication effect, for example, when used as a power supply wire or a power supply wire of various electric devices, the change according to the electroluminescence brightness is in the alternating electric field.
  • the power supply wire not only has the effect of having electricity and no electricity, but also can be based on the brightness of the power supply wire under the condition of constant voltage and frequency.
  • the change of the electric current is judged; when used together with the inverter or the multi-channel AC drive, it also has the effect of simply determining the magnitude of the motor speed by the brightness or the speed change of the flow of the surface of the wire, and in addition, when used Can decorate and beautify the power supply environment.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • Figure 2 is a transverse cross-sectional view showing a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a state of use according to another embodiment of the present invention.
  • Embodiment 2 of the present invention is a schematic structural view of Embodiment 2 of the present invention.
  • Figure 5 is a transverse cross-sectional view showing a second embodiment of the present invention.
  • Figure 6 is a schematic structural view of a third embodiment of the present invention.
  • Figure 7 is a transverse cross-sectional view showing a third embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 4 of the present invention.
  • Figure 9 is a transverse cross-sectional view showing a fourth embodiment of the present invention.
  • Figure 10 is a transverse cross-sectional view showing another embodiment of the fourth embodiment of the present invention.
  • Figure 11 is a schematic structural view of Embodiment 5 of the present invention.
  • Figure 12 is a transverse cross-sectional view showing a fifth embodiment of the present invention.
  • Figure 13 is a schematic structural view of Embodiment 6 of the present invention.
  • Figure 14 is a transverse cross-sectional view showing a first embodiment of a light-emitting line according to an embodiment of the present invention
  • Figure 15 is a transverse cross-sectional view showing a second embodiment of a light-emitting line according to an embodiment of the present invention.
  • Figure 16 is a transverse cross-sectional view showing a third embodiment of the light-emitting line according to the embodiment of the present invention.
  • Figure 17 is a schematic view showing the state of use according to Embodiment 7 of the present invention.
  • Figure 18 is a transverse cross-sectional view showing the electroluminescent power supply lead of the seventh embodiment of the present invention.
  • FIG. 19 is a transverse cross-sectional view showing another embodiment of an electroluminescent power supply lead according to Embodiment 7 of the present invention.
  • Figure 20 is a schematic view showing the state of use of the eighth embodiment of the present invention.
  • the reference numerals in the drawings correspond to the following, insulated wire 1, conductive core 101, insulating layer 102, insulated wire 2, conductive core 21, insulating layer 22, insulated wire 3, conductive core 30, insulating layer 31, insulated wire 4, conductive core 41. , insulating layer 42, luminescent layer 6, plastic layer 7, wire 8, wire 9, wire 10, wire 11, USB plug 12, AC driver 13, charging data plug 14, light line 15, signal line 16, charging line 17, The shielding layer 18, the power plug 19, the electric device 20, the multi-channel AC output driver 23, the motor 24, the insulated wire 111, the insulated wire 112, the insulated wire 201, the insulated wire 202, the insulated wire 301, and the insulated wire 302.
  • An electroluminescent power supply lead as shown in FIG. 1-3, comprises a plastic layer 7 and a light-emitting layer 6.
  • the light-emitting layer 6 wraps or covers the insulated wires 1, 2, and the insulated wires 1 and 2 are insulated enameled wires, and the insulated wires 1
  • the conductive core 101 and the insulating layer 102 are covered, and the insulating layer 102 covers the outer wall of the conductive core 101.
  • the insulated wire 2 includes a conductive core 21 and an insulating layer 22, and the insulating layer 22 covers the outer wall of the conductive core 21.
  • the insulated wire 1 and the insulated wire 2 are helically stranded, and the spiral direction of rotation can be implemented in the same direction, or can be implemented in a positive and negative different directions of rotation.
  • the conductive core 101 and the conductive core 12 are connected and connected with an alternating current power source. After the electric field is generated, the light-emitting layer 6 is excited to emit light.
  • the illuminating layer 6 and the plastic layer 7 may be pre-formed into a hollow wire sleeve, and then the spirally stranded insulated wires 1 and 2 are inserted into the hollow wire ferrule.
  • the light-emitting layer 6 is covered with the insulated wires 1 and 2, the light-emitting layer 6 can be directly coated on the outer portions of the spiral-wound insulated wires 1 and 2.
  • the conductive core 101 and the conductive core 21 of the present embodiment are both one. In the specific implementation, a plurality of conductive cores 101 may be used.
  • the metal conductors such as copper core wires and aluminum core wires are preferably used.
  • the insulated wires 1, 2 of this embodiment may also be implemented in parallel with each other, or twisted into a composite cable, or intertwined, as shown in Fig. 3, in parallel with each other.
  • the process is simple and the production is convenient and easy.
  • the insulating layer 102, 22 is a layer of dielectric insulating material. In specific implementation, it may be mainly composed of barium titanate, barium carbonate or titanium dioxide mixed with a polymer binder, or mixed with a polyurethane paint or a polyester imide paint. Dry formation; or directly coated with polyurethane paint or polyester imide paint; or directly wrapped polymer plastic layer.
  • the luminescent layer 6 is mainly formed by electroluminescent powder composed of zinc sulfide, copper and silicon dioxide and a polymer binder, or mixed with a polyurethane lacquer or a polyester imiamine varnish and then coated and dried.
  • the above polymer binder is mainly composed of terpineol, a silicone resin compound, diethylene glycol monoethyl acetate, methyl methacrylate or ethyl acrylate copolymer, and a fluorinated polymer.
  • the plastic layer 7 is preferably a transparent or light transmissive plastic layer.
  • the plastic layer 7 can be implemented in a fluorescent colored transparent plastic. In a specific implementation, it may also be implemented in a manner that does not include the plastic layer 7.
  • the multi-channel AC driver can be connected to achieve a lighting effect like a running water by sequentially turning on a certain frequency and a cycle, or accessing the frequency converter to realize more samples. Luminous effect, or use directly to single-phase or three-phase AC power.
  • the insulated wires may be three groups, and any two of them are insulated to form a three-phase three-wire electroluminescence power supply wire, and the structure can be well applied to three-phase electricity.
  • the insulated wires may also be four groups, wherein any two groups are insulated to form a three-phase four-wire electroluminescent power supply wire; or the insulated wires include five groups, wherein any two groups are insulated to form a three-phase Five-wire electroluminescent power supply wire. This structure expands the range of application of the electroluminescent power supply lead.
  • the insulation between each set of wires in the electroluminescent power supply wire of this embodiment can be changed to other insulation methods in addition to the above insulation method.
  • An electroluminescent power supply lead on the basis of the embodiment 1, as shown in FIG. 4-5, comprises a plastic layer 7 and a light-emitting layer 6, and the light-emitting layer 6 is covered with insulated wires 1, 2, 3, 4, and insulated wires.
  • the insulated wire 1 includes a conductive core 101 and an insulating layer 102, the insulating layer 102 covers the outer wall of the conductive core 101, and the insulated wire 2 includes conductive The core 21 and the insulating layer 22, the insulating layer 22 covers the outer wall of the conductive core 21, the insulated wire 3 comprises a conductive core 31 and an insulating layer 32, the insulating layer 32 covers the outer wall of the conductive core 31, and the insulated wire 4 comprises a conductive core 41 and insulation The layer 42 and the insulating layer 42 cover the outer wall of the conductive core 41.
  • the insulated wires 1, 3, 2, and 4 are spirally wound in sequence, and the spiral directions may be implemented in the same direction, or may be implemented in a forward and reverse directions.
  • the insulated wires 1, 2, 3, and 4 can be arbitrarily combined into 2 groups, 3 groups, or 4 groups.
  • Each group of insulated wires can be connected to an AC power source or connected to a multi-channel AC driver to pass an electric field between the insulated wires.
  • the luminescent layer is illuminated by a change in the range.
  • the frequency and period of the sequential conduction between the groups can be controlled by the multi-channel AC driver to realize a luminous effect similar to the marquee type.
  • the electroluminescent power supply wire of the structure has a simple structure, has no transparent conductive layer, is easy to produce, reduces the cost, and makes the luminous effect of the electroluminescence power supply wire more diverse, further expanding the applicable range of the electroluminescent power supply wire.
  • An electroluminescent power supply lead on the basis of the embodiment 1, as shown in FIG. 6-7, comprises a plastic layer 7 and a light-emitting layer 6, and the light-emitting layer 6 covers the insulated wires 1, 2, wherein the insulated wires 2 are horizontal Placed at a substantially central axis of the electroluminescent power supply conductor, the insulated conductor 1 is centered on the insulated conductor 2, and the insulated conductor 1 is spirally wound around the insulated conductor 2 on the outer wall of the insulated conductor 2.
  • the spirally wound intervals may be equally spaced to achieve a uniform illuminating effect, or unequally entangled to achieve different illuminating effects.
  • An electroluminescent power supply lead which is based on Embodiments 1 and 3, as shown in FIGS. 8-9, includes a plastic layer 7 and a light-emitting layer 6, and the light-emitting layer 6 is covered with insulated wires 1, 2, and 3, wherein
  • the insulated wire 2 is horizontally placed at a substantially central axis of the electroluminescent power supply wire, the insulated wires 1, 3 are centered on the insulated wire 2, and the insulated wires 1, 3 are spirally wound around the insulated wire 2 on the outer wall of the insulated wire 2 while insulating
  • the wire 1 and the insulated wire 3 are spirally wound in a positive or negative direction to form a mesh
  • the braided layer can be spirally rotated in the same manner as the spiral direction.
  • an insulated wire 2 can be connected as a group to the ground wire.
  • the insulated wire 1 and the insulated wire 3 are respectively connected to the live wire and the neutral wire, and are connected to the AC power source or connected to the multi-channel AC driver. After the passage, the luminescent layer 6 is excited to emit light.
  • the spiral winding method can also be converted into a twisted composite cable.
  • the insulated wires 1, 2, and 3 are twisted and twisted into a cable, and the light-emitting layer 6 is covered with the insulated wires 1, 2, and 3.
  • the insulated wires 1, 2, the insulated wires 2, 3, and the insulated wires 3, 1 can be turned on in turn, so that different parts of the electroluminescence power supply wire can chase the light-emitting effect in sequence, which can simulate the internal current flow and The role of the indication is to achieve different lighting effects.
  • a transparent or transparent plastic layer 7 is wrapped around the light-emitting line, the signal line 16, the charging line 17, and the shielding layer 18 , comprising a plastic layer 7 and a light-emitting layer 6 , wherein the light-emitting layer 6 covers the insulated wire 1 and the wires 8 , 9 , 10 , 11 , and the insulated wire 1 is horizontally placed at a substantially central axis of the electroluminescent power supply wire, and the wire 8 9, 10, 11 is woven on the outer wall of the insulating layer 102 of the insulated wire 1, and the wires 8, 9, 10, 11 are spirally wound in turn, and the spiral directions can be implemented in the same direction, or can be reversed in positive and negative directions.
  • the crosswise manner is implemented to form a woven mesh, and the diameter of the wires 8, 9, 10, 11 is much smaller than the diameter of the insulated wire 1.
  • the insulated wires 1 may be formed as a group as an electrode, and the wires 8, 9, 10, 11 may be formed as a group to form another electrode.
  • the wires 8, 9, 10, 11 of the embodiment may be bare wires, and It can be converted into an insulated wire, and when it is implemented as an insulated wire, the wires 8, 9, 10, 11 can also each be used as the other electrode.
  • the electroluminescent power supply wire of this structure facilitates a more diverse illumination effect.
  • Embodiment 1 includes a USB plug 12, an AC driver 13 built in the USB plug 12, a charging data plug 14, a light emitting line 15, and a signal line.
  • a USB plug 12 an AC driver 13 built in the USB plug 12
  • a charging data plug 14 a light emitting line 15, and a signal line.
  • 16 charge
  • the wire 17, and the shielding layer 18, the transparent or transparent plastic layer 7 is located at the outermost side of the data line and is wrapped outside the light-emitting layer 6, and the shielding layer 18 is wrapped outside the signal line 16.
  • the light-emitting line 15 is based on the embodiment 1.
  • the insulated wire 111 and the insulated wire 112 are a pair
  • the insulated wire 201 and the insulated wire 202 are a pair
  • the insulated wire 301 and the insulated wire 302 are a pair.
  • the three pairs of insulated wires are spirally wound in the same direction.
  • One end of each pair of insulated wires is respectively connected to the AC driver 13.
  • one end of the insulated wire 111, the insulated wire 201 and the insulated wire 301 is connected to the output terminal of the AC driver 13, and one end of the insulated wire 112 is connected to the AC.
  • the output terminal of the driver 13 is connected to the output terminal, the insulated wire 202 is connected to the output terminal of the AC driver 13, and one end of the insulated wire 302 is connected to the output terminal of the AC driver 13. The other end of the three pairs of insulated wires is connected to the charging data plug 14 and is vacant.
  • the shielding layer 18 can shield the influence of the electric field generated by the shielding layer 18 on the signal line 16, and the AC driver 13 is turned on synchronously when the signal line 16 conducts the transmission signal, and the AC driver
  • the output terminal of A at 13 is constantly conducting with the power source, and under the control of the AC driver 13, the output terminal at B, the output terminal at C, and the output terminal at D are respectively connected to the power source at a certain frequency, and the other end passes the charging data.
  • the plug 14 and the electric device are turned on, so that the illuminating layer 6 can be illuminated, and the effect of simulating the internal current flow and sequentially chasing the illuminating as the flowing water can be realized, and the indication effect of signal transmission and charging can be achieved.
  • the USB plug 12 can also be converted into a Type-C plug, and the charging data plug is preferably at least one of a Micro USB plug, a Lightning plug, and a USB Type-C plug.
  • a charging data line for simulating a visible current flow is the illuminating line described in Embodiment 1, and is converted into three, wherein The insulated wire 111 and the insulated wire 112 are covered with an elliptical light-emitting layer 6 to form a first electroluminescent power supply wire, and the insulated wire 201 and the insulating guide The wire 202 is covered with an elliptical light-emitting layer 6 to form a second electroluminescent power supply wire.
  • the insulated wire 301 and the insulated wire 302 are covered with an elliptical light-emitting layer 6 to form a third electroluminescent power supply wire.
  • the light-emitting power wires are independent of each other, and are spirally wound in the same direction along the extending direction of the data line, and are twisted together with the charging wire 17, and the transparent or transparent plastic layer 7 is wrapped on the outermost side of the data line.
  • the radial cross-sectional area of the charging data line of the structure is small, and the specific circuit connection manner thereof can be referred to FIG. 13 together, that is, one end of the insulated wire 111, the insulated wire 201 and the insulated wire 301 and the output terminal of the AC driver 13A.
  • One end of the insulated wire 112 is connected to the output terminal of the AC driver 13, and the insulated wire 202 is connected to the output terminal of the AC driver 13, and one end of the insulated wire 302 is connected to the output terminal of the AC driver 13.
  • the other end of the insulated wire is connected to the charging data plug 14 and is vacant; in use, one end of at least two sets of wires of the at least one electroluminescent power supply wire is connected to the power source through the USB plug 12 and the AC driver 13, and the other end thereof passes the charging data.
  • the plug 14 and the electrical device are turned on.
  • the shape of the light-emitting layer 6 can also be changed into a shape such as a circle.
  • the charging line 17 is located outside the shielding layer and is located outside the electroluminescent power supply wire. The structure has more luminous effects, and the various shapes of the luminous line are convenient for production and material saving.
  • a charging data line for simulating a visible current flow is the illuminating line described in Embodiment 1, and is converted into one, wherein The insulated wires 1, 2, and 3 are twisted and twisted in sequence, and the outer layer of the light-emitting layer 6 and the plastic-coated layer 7 are sequentially coated.
  • the signal line 16 and the charging line 17 are located between the electroluminescent power supply wire and the plastic layer, and the shielding layer 18 is wrapped around Outside the signal line 16, the electroluminescent power supply lead is preferably located in the middle of the charging data line and substantially parallel to the direction in which the charging data line extends.
  • the insulated wires 1, 2, the insulated wires 2, 3, and the insulated wires 3 may be sequentially turned on. 1, and the different parts of the electroluminescence power supply lead are sequentially illuminated, which can realize the effect of simulating the internal current flow, chasing the illumination in sequence, such as running water, and can indicate the effect of signal transmission and charging.
  • An electroluminescent power supply lead device for simulating current flow which can be used with a consumer electric appliance or a patch panel, as shown in FIGS. 17 and 18, which includes a power supply connector and the electroluminescent power supply conductor described in the above embodiment 1.
  • the electroluminescent power supply wire comprises four sets of insulated wires 1, 2, 3, 4.
  • the power connector of the embodiment is a power plug 19, and the multi-channel AC output driver 23 is disposed in the power plug 19; One end of the wire 1 is connected to the power source through the power plug 19 and the multi-channel AC output driver 23, that is, constant conduction, and one end of the other three sets of insulated wires 2, 3, 4 is connected to the power source through the power plug 19 and the multi-channel AC output driver 23.
  • the multi-channel AC output driver 23 controls the other three sets of insulated wires 2, 3, 4 and the power supply to be sequentially connected and disconnected at a certain frequency, and the other end of one set of insulated wires 1 and the other three sets of insulated wires 2, 3, 4 One end is turned on by the electric device, for example, by the electric device 20, and the luminescent layer 6 emits light.
  • one output terminal of the multi-channel AC output driver 23 is connected to one end of the insulated wire 1 and is constantly turned on as a neutral line; the other three output terminals are respectively connected to one end of the insulated wires 2, 3, and 4 as parallel phases. Fire line, and cycle power supply according to a certain frequency.
  • the insulated wire 1 is taken as the central axis, and the insulated wires 2, 3, and 4 are sequentially spirally wound along the insulated wire 1 in the same direction of rotation and pitch, and the outer layer is sequentially wrapped with the luminescent powder.
  • the center axis of the neutral line and the insulated wires 2, 3, and 4 which are the parallel-fired wires are respectively respectively.
  • the sequence is turned on, no matter which side view, the light-emitting parts on the electroluminescence power supply line are chasing and illuminating in sequence, and the analog current flows from the power source to the consumer.
  • the multi-channel AC output driver can also be converted into a frequency converter implementation.
  • the electrophoretic power supply lead device of the present embodiment can also be implemented by the following embodiments: as shown in FIG. 19, six sets of insulated wires 111, 112, 201 of the electroluminescence power supply lead. , 202, 301, 302, according to the first to sixth extension sequence twisted cable, the light-emitting layer 6, the plastic layer 7 is sequentially wrapped outside the insulated wire; wherein, between any two sets of wires insulated, second, fourth And the sixth set of wires is used as a ground wire or a phase fire wire, and the second, fourth, and sixth sets of wire ends are used for constant conduction with the power source through the power connector and the multi-channel AC output driver, first, third, and Five sets of wires are connected to the three outputs of the multi-channel AC output driver, one end of the first, third and fifth sets of wires
  • the multi-channel AC output driver is used to control the continuous connection and disconnection of the power source at a certain frequency, and the other ends of the second, fourth and sixth sets of wires and the other
  • the entire power line of the simulated visible current flows, and the light-emitting point flows in sequence, such as flowing light, and has the effect of simulating the internal current flow of the power supply wire.
  • the wire of the structure preferably includes at least six groups, which can achieve uniformity.
  • a three-phase four-wire electroluminescence power supply lead wire is used as an industrial line.
  • the insulated wire 1 serves as a central axis, and the insulated wires 2, 3, and 4 are sequentially insulated along the order.
  • the wire 1 is spirally wound, and the outer layer of the light-emitting powder layer 6 and the plastic layer 7 are sequentially coated, wherein the insulated wire 1 serves as a neutral wire, the insulated wire 2 serves as an x-phase, the insulated wire 3 serves as a y phase, and the insulated wire 4 serves as a z-phase.
  • One end is used for directly connecting the three-phase four-wire power supply, or indirectly connected to the three-phase four-wire power supply through the frequency converter, and the other end is connected with an electric appliance, such as a three-phase four-wire motor 24, and when used, the light-emitting layer 6 emits light.
  • an electric appliance such as a three-phase four-wire motor 24, and when used, the light-emitting layer 6 emits light.
  • the three-phase four-wire power supply is connected indirectly through the frequency converter, the brightness of the light will change with the frequency of the frequency converter. The higher the frequency, the higher the brightness, and the change of the speed of the motor 24 can be judged by the change of the brightness.
  • the three-phase four-wire electroluminescent power supply wire of the embodiment can also be converted into three-phase three-wire or three-phase five-wire, and the three-phase four-wire power can also be converted into three-phase three-wire electric or three-phase five-wire electric three-phase electric .
  • the form of the motor 24 is not limited to a star motor, but is also applicable to a delta motor.
  • the present invention can be applied to all or a part of a power supply line as various electrical devices, devices, and devices for observation and indication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电致发光电源导线,包括导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302)和发光层(6),发光层(6)包覆或包裹导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302),导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302)包括至少两组,每组包括至少一根导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302);其中,至少一组导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302)与至少另一组导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302)之间绝缘,当其与交流电源连接并导通时,发光层(6)可电致发光。电致发光电源导线没有透明导电层和紧贴透明导电层的辅助电极裸导线,结构简单,容易生产,降低了成本,利于使电致发光线的发光效果更加多样,导线(1,2,3,4,8,9,10,11,111,112,201,202,301,302)设置在发光层(6)内部,增强了其耐弯折性能,结构可靠,利于环保,还具有指示效果,例如用于作为各种用电设备的电源导线时,与供电线路连接后,使电源导线具有有电没电看得见的效果。

Description

一种电致发光电源导线 技术领域
本发明涉及电源导线领域,具体涉及一种电致发光电源导线。
背景技术
电致发光的原理是以硫化锌为主体发光材料的发光粉在一定频率和电压的交流电磁场中会发出柔和的光线,根据这一原理先后诞生出发光片和发光线两种主要产品,发光片的结构是发光粉夹在两层导电电极层或片之间,其中一层导电层或片为透明导电层或片;现有的电致发光线的结构与发光片原理相同,结构类似,仅将两个平行的电极中的一个不透光电极卷缩成中心电极,另一层透明电极层就自然平行包裹在中心电极外层,发光粉层位于中间层,透明导电层通过其表面缠绕接触较小线径的金属裸导线与中心电极导线作为火线和零线,其同时导通一定频率和电压的交流电,发光粉层就会被激发而发光,不论是电致发光片,还是发光线中的发光粉,均是在电极之间的封闭电场中发光。
现有该结构的普通电致发光线,只是一种能发光的装饰线,结构复杂,制造成本高,不耐弯折,尤其是不能作为交流电源导线直接应用,普通发光线其外层的透明导电层容易渗入发光层的孔隙,经多次折弯会破坏金属基体裸导线外壁的绝缘介质层,极易造成短路,而且其短路处也难以察觉识别,使整根发光线报废,难以重复利用,浪费资源。
现有的各种家用电器的电源导线,与供电线路连接后,电源导线有没有电,需借助其它仪器,例如借助万用表设备进行测量,若仅仅对电源导线用视觉判断有没有电,是看不出来的。现有的普通电流电源导线有电没电看不见。
因此,有必要对以上不足加以改进。
发明内容
为克服现有技术存在的上述不足,本发明一改现有技术中,发光粉只能在封闭电场中发光的结构,为可在开放电场中发光,本发明提供了一种结构简单、可直接作为交流电源导线、耐弯折不易短路的电致发光电源导线。本发明通过以下技术方案实现:一种电致发光电源导线,包括导线和发光层,所述发光层包覆或包裹所述导线,所述导线包括至少两组,每组包括至少一根导线;其中,至少一组导线与至少另一组导线之间绝缘,当其与交流电源连接并导通时,两组导线周围产生开放电磁场,激发外层发光层电致发光。
进一步的,所述的至少两组导线中的至少一组导线的外壁包覆或包裹有绝缘材料层,以形成绝缘导线。
进一步的,所述发光层的外壁包裹有透明或透光的塑胶层。
进一步的,至少两条该电致发光电源导线绞合成缆,或至少一条该电致发光电源导线的所述导线包括至少三组,其中,任意两组所述导线之间绝缘,所述导线绞合成缆,或至少两组所述导线以至少另一组所述导线为轴线,并沿所述轴线依次同旋向螺旋缠绕。
进一步的,所述的至少一组导线还与所述的至少另一组导线相互平行,或绞合成缆,或相互缠绕。
进一步的,所述的绝缘材料层为介电绝缘材料层,其主要由钛酸钡、碳酸钡或钛白粉与高分子粘合剂,或与聚氨酯漆或聚酯亚胺漆混合后涂覆烘干形成;或直接采用聚氨酯漆或聚酯亚胺漆涂敷烘干形成;或直接包裹高分子塑胶层。
进一步的,所述发光层主要由包括硫化锌、铜及二氧化硅组成的电致发光粉与高分子粘合剂,或与聚氨酯漆或聚酯亚胺漆混合后涂覆烘干形成。
进一步的,所述的高分子粘合剂主要由松油醇、硅树脂化合物、乙酸二甘醇单乙醚、甲基丙烯酸甲脂或丙烯酸乙酯共聚物,以及氟化聚合物组成。
进一步的,在所述的至少两组导线中,以至少一组导线作为轴线组,以至少另一组导 线作为缠绕组,所述缠绕组以所述轴线组为轴线,并沿所述轴线组螺旋缠绕。
进一步的,所述缠绕组包括若干组所述导线,所述缠绕组中的任意一组或几组用于与所述交流电源的一相连接。
进一步的,所述缠绕组中的至少两组所述导线分别沿所述轴线组正、反螺旋缠绕,以形成网状编织层。
进一步的,所述电致发光电源导线的一端用于通过多路交流输出驱动器或变频器间接接入或直接接入单相或三相交流电源,其另一端用于连接用电装置。
进一步的,所述导线包括三组,所述的三组导线中的任意两组之间绝缘,以形成三相三线电致发光电源导线;或所述导线包括四组,所述的四组导线中的任意两组之间绝缘,以形成三相四线电致发光电源导线;或所述导线包括五组,所述的五组导线中的任意两组之间绝缘,以形成三相五线电致发光电源导线。
进一步的,所述交流电源为三相交流电源,所述电致发光电源导线的一端用于直接或通过变频器间接与所述交流电源连通,其另一端用于连接用电装置。
一种模拟可視电流流动的充电数据线,包括第一接头、内置于所述第一插头的多路交流驱动器、第二接头、透明或透光的塑胶层、发光线、信号线、充电线,以及屏蔽层,所述第一接头通过所述信号线和所述充电线与所述第二接头连接,所述发光线为上述所述的电致发光电源导线,所述电致发光电源导线的一端分别与所述多路交流驱动器的各输出端连接,其另一端空置;使用时,所述多路交流驱动器通过所述第一接头与电源连接,所述多路交流驱动器按一定频率和周期依次控制所述导线与所述电源连通和断开。
进一步的,所述电致发光电源导线的发光层包裹或包覆在所述信号线和所述屏蔽层外,或所述信号线和所述屏蔽层位于所述电致发光电源导线外,并与所述电致发光电源导线大致平行。
进一步的,使用时,当所述信号线导通传输信号时,所述驱动器同步启动并驱动所述 的至少一条所述电致发光电源导线的至少两组所述导线。
进一步的,所述第一接头为USB插头或Type-C插头,所述第二接头为Micro USB插头、Lightning插头和USB Type-C插头中的至少一种。
一种模拟电流流动的电致发光电源导线装置,包括电源接头,还包括多路交流输出驱动器和上述所述的电致发光电源导线,所述电致发光电源导线的一端用于通过所述多路交流输出驱动器和所述电源接头与所述交流电源连接,并通过所述多路交流输出驱动器按一定频率和周期依次控制与所述交流电源的连通和断开,其另一端用于通过用电装置导通。
进一步的,所述的至少另一组所述导线的一端用于通过所述多路交流输出驱动器和所述电源接头与所述交流电源恒导通,所述的至少二组所述导线的一端用于通过所述多路交流输出驱动器和所述电源接头与所述交流电源连接,并通过所述多路交流输出驱动器按一定频率和周期依次控制与所述交流电源的连通和断开,所述的至少另一组所述导线的另一端与所述的至少二组所述导线的另一端用于通过用电装置导通。
本发明的电致发光电源导线,当其一端连接交流电源,另一端连接用电装置时,可作为电源导线或作为电源导线中的一段使用;当其一端连接交流电源,另一端空置时,还可以作为电致发光线使用。
本发明的有益效果是没有透明导电层和紧贴透明导电层的辅助电极裸导线,不存在因透明导电层渗漏导致短路的问题,结构简单可靠,容易生产,降低了成本,利于使发光线的发光效果更加多样,更重要的是本发明还具有指示效果,例如用于作为各种用电设备的电源导线或电源导线中的一段时,根据电致发光亮度的变化是随着交流电场中电压、电流和频率的改变而改变的原理,与供电线路连接后,使电源导线不仅具有有电没电看得见的效果,在电压和频率不变的情况下,还能根据电源导线发光亮度的变化,判断用电电流的大小;当与变频器或多路交流驱动器一起使用时,还具有通过其亮度或导线表面流动发光的速度变化来简单判断电机转速大小的效果,此外,使用时还能装饰和美化供电环境。
附图说明
下面结合附图和具体实施例对本发明作进一步详细说明。
图1为本发明实施例一的一种实施方式结构示意图;
图2为本发明实施例一的横向剖视图;
图3为本发明实施例一的另一种实施方式使用状态示意图;
图4为本发明实施例二的结构示意图;
图5为本发明实施例二的横向剖视图;
图6为本发明实施例三的结构示意图;
图7为本发明实施例三的横向剖视图;
图8为本发明实施例四的结构示意图;
图9为本发明实施例四的横向剖视图;
图10为本发明实施例四的另一种实施方式横向剖视图;
图11为本发明实施例五的结构示意图;
图12为本发明实施例五的横向剖视图;
图13为本发明实施例六的结构示意图;
图14为本发明实施例六发光线实施方式一的横向剖视图;
图15为本发明实施例六发光线实施方式二的横向剖视图;
图16为本发明实施例六发光线实施方式三的横向剖视图;
图17为本发明实施例七的使用状态示意图;
图18为本发明实施例七电致发光电源导线的横向剖视图;
图19为本发明实施例七电致发光电源导线的另一种实施方式横向剖视图;
图20为本发明实施例八的使用状态示意图。
图中各标号对应如下,绝缘导线1,导电芯101,绝缘层102,绝缘导线2,导电芯21,绝缘层22,绝缘导线3,导电芯30,绝缘层31,绝缘导线4,导电芯41,绝缘层42,发光层6,塑胶层7,导线8,导线9,导线10,导线11,USB插头12,交流驱动器13,充电数据插头14,发光线15,信号线16,充电线17,屏蔽层18,电源插头19,用电设备20,多路交流输出驱动器23,电机24,绝缘导线111,绝缘导线112,绝缘导线201,绝缘导线202,绝缘导线301,绝缘导线302。
具体实施方式
下面结合附图以及实施方式对本发明进行进一步的描述:
实施例1
一种电致发光电源导线,如图1-3所示,包括塑胶层7和发光层6,发光层6包裹或包覆绝缘导线1、2,绝缘导线1、2为绝缘漆包线,绝缘导线1包括导电芯101和绝缘层102,绝缘层102包覆导电芯101的外壁,绝缘导线2包括导电芯21和绝缘层22,绝缘层22包覆导电芯21的外壁。绝缘导线1与绝缘导线2螺旋绞合,其螺旋旋向可以同向实施,也可以以正、反不同旋向交叉方式实施,使用时,导电芯101与导电芯12通过与交流电源连接并导通产生电场后,发光层6被激发而发光。
发光层6包裹绝缘导线1、2具体实施时,可以通过将发光层6与塑胶层7一起预先制作成空心线套,然后将螺旋绞合的绝缘导线1、2经穿插置入空心线套内;发光层6包覆绝缘导线1、2具体实施时,可以直接在螺旋绞合的绝缘导线1、2外涂覆形成发光层6。
本实施例的导电芯101与导电芯21均为一根,具体实施时,也可以为多根,其优选为铜芯线、铝芯线等金属导线。
本实施例的绝缘导线1、2还可以以相互平行,或绞合成缆,或相互缠绕的方式实施,如图3所示,为以相互平行方式实施。工艺简单,生产方便容易。
绝缘层102、22即介电绝缘材料层,具体实施时,可主要由钛酸钡、碳酸钡或钛白粉与高分子粘合剂,或与聚氨酯漆或聚酯亚胺漆混合后涂覆烘干形成;或直接采用聚氨酯漆或聚酯亚胺漆涂敷烘干形成;或直接包裹高分子塑胶层。发光层6主要由包括硫化锌、铜及二氧化硅组成的电致发光粉与高分子粘合剂,或与聚氨酯漆或聚酯亚胺漆混合后涂覆烘干形成。上述的高分子粘合剂主要由松油醇、硅树脂化合物、乙酸二甘醇单乙醚、甲基丙烯酸甲脂或丙烯酸乙酯共聚物,以及氟化聚合物组成。
塑胶层7优选为透明或透光塑胶层。塑胶层7可以荧光彩色透明塑料实施。具体实施时,还可以以不包括塑胶层7的方式实施。
本实施例的绝缘导线以至少三组方式实施时,其可以通过接入多路交流驱动器实现按一定频率和周期依次导通实现如流水般追逐发光效果,或接入变频器实现更多样的发光效果,或以直接接入单相或三相交流电源方式使用。
本实施例的电致发光电源导线使用时,绝缘导线可以为3组,其中任意两组之间绝缘,以形成三相三线电致发光电源导线,该结构能够很好地适用于三相电,相应的,绝缘导线还可以为4组,其中任意两组之间绝缘,以形成三相四线电致发光电源导线;或绝缘导线包括五组,其中任意两组之间绝缘,以形成三相五线电致发光电源导线。该结构扩大了电致发光电源导线的可应用范围。
本实施例的电致发光电源导线中每组导线之间的绝缘方式,除了上述绝缘方式外,也可以变换为其它绝缘方式。
实施例2
一种电致发光电源导线,于实施例1的基础上,如图4-5所示,包括塑胶层7和发光层6,发光层6包覆绝缘导线1、2、3、4,绝缘导线1、2、3、4为绝缘漆包线,绝缘导线1包括导电芯101和绝缘层102,绝缘层102包覆导电芯101的外壁,绝缘导线2包括导电 芯21和绝缘层22,绝缘层22包覆导电芯21的外壁,绝缘导线3包括导电芯31和绝缘层32,绝缘层32包覆导电芯31的外壁,绝缘导线4包括导电芯41和绝缘层42,绝缘层42包覆导电芯41的外壁。绝缘导线1、3、2、4依次螺旋缠绕,其螺旋旋向可以同向实施,也可以以正、反不同旋向交叉方式实施。
具体使用时,可将绝缘导线1、2、3、4任意组合成2组、3组或4组,每组绝缘导线通过接入交流电源或接入多路交流驱动器,可通过绝缘导线间电场范围的变化而使发光层发光。当绝缘导线为3组以上接入多路交流驱动器,导通后,能够通过多路交流驱动器控制各组之间的依次导通的频率和周期,实现类似跑马灯式的发光效果。该结构的电致发光电源导线结构简单,没有透明导电层,容易生产,降低了成本,使电致发光电源导线的发光效果更加多样,进一步扩大了电致发光电源导线的可应用范围。
实施例3
一种电致发光电源导线,于实施例1的基础上,如图6-7所示,包括塑胶层7和发光层6,发光层6包覆绝缘导线1、2,其中,绝缘导线2水平置于电致发光电源导线的大致中心轴线处,绝缘导线1以绝缘导线2为中心轴线,绝缘导线1沿绝缘导线2螺旋缠绕在绝缘导线2的外壁。具体实施时,螺旋缠绕的间隔可以是等间隔缠绕以实现均一的发光效果,或不等间隔缠绕以实现不同的发光效果。
实施例4
一种电致发光电源导线,于实施例1与3的基础上,如图8-9所示,包括塑胶层7和发光层6,发光层6包覆绝缘导线1、2、3,其中,绝缘导线2水平置于电致发光电源导线的大致中心轴线处,绝缘导线1、3以绝缘导线2为中心轴线,绝缘导线1、3沿绝缘导线2螺旋缠绕在绝缘导线2的外壁,同时绝缘导线1与绝缘导线3正、反螺旋缠绕,形成网状 编织层,其螺旋旋向还可以同旋向方式实施。具体使用时,可将一根绝缘导线2作为一组与地线连接,绝缘导线1和绝缘导线3作为两组分别与火线和零线连接,通过接入交流电源或接入多路交流驱动器导通后,发光层6被激发而发光。
上述螺旋缠绕方式也可以变换为以绞合成缆的方式实施,如图10所示,绝缘导线1、2、3依次绞合成缆,发光层6包覆绝缘导线1、2、3,使用时,可依次导通绝缘导线1、2,绝缘导线2、3,绝缘导线3、1,而使电致发光电源导线的不同部位依次如流水般追逐发光的效果,可起到模拟显示内部电流流动及指示的作用,利于实现不同的发光效果。
实施例5
一种电致发光电源导线,于实施例4的基础上,如图11-12所示,透明或透光的塑胶层7包裹在发光线、信号线16、充电线17,以及屏蔽层18外,包括塑胶层7和发光层6,其中,发光层6包覆绝缘导线1与导线8、9、10、11,绝缘导线1水平置于电致发光电源导线的大致中心轴线处,导线8、9、10、11编织缠绕在绝缘导线1的绝缘层102外壁上,同时导线8、9、10、11依次螺旋交叉缠绕,其螺旋旋向可以同向实施,也可以以正、反不同旋向交叉方式实施,以形成编织网状,导线8、9、10、11的直径远小于绝缘导线1的直径。具体使用时,可将绝缘导线1作为一组形成一电极,导线8、9、10、11作为一组形成另一电极,本实施例的导线8、9、10、11可以为裸导线,也可以变换为绝缘导线,当以绝缘导线实施时,也可将导线8、9、10、11各自分别作为另一电极。该结构的电致发光电源导线利于实现更加多样的发光效果。
实施例6
一种模拟可視电流流动的充电数据线,实施方式一,如图13-14所示,包括USB插头12、内置于USB插头12内的交流驱动器13、充电数据插头14、发光线15、信号线16、充 电线17,以及屏蔽层18,透明或透光的塑胶层7位于数据线的最外侧并包覆在发光层6外,屏蔽层18包裹在信号线16外,发光线15于实施例1的基础上,包括发光层6及三对相互之间绝缘的绝缘导线,发光层6包裹或包覆在屏蔽层18与发光线的导线外,在三对绝缘导线中,每对有2组相互之间绝缘的绝缘导线。
具体地,绝缘导线111与绝缘导线112为一对,绝缘导线201与绝缘导线202为一对,绝缘导线301与绝缘导线302为一对,该三对绝缘导线依次同旋向螺旋缠绕,在三对绝缘导线中的每对的一端分别与交流驱动器13连接,优选地,绝缘导线111、绝缘导线201及绝缘导线301的一端与交流驱动器13的A处输出端子连接,绝缘导线112的一端与交流驱动器13的B处输出端子连接,绝缘导线202与交流驱动器13的C处输出端子连接,绝缘导线302的一端与交流驱动器13的D处输出端子连接。三对绝缘导线的另一端与充电数据插头14连接并空置。
使用时,由于屏蔽层18包裹在信号线16外,屏蔽层18可屏蔽其产生的电场对信号线16的影响,在信号线16导通传输信号时使交流驱动器13导通同步启动,交流驱动器13的A处输出端子与电源恒导通,并在交流驱动器13的控制下按一定频率依次分别将B处输出端子、C处输出端子和D处输出端子与电源连接,其另一端通过充电数据插头14和用电装置导通,进而可使发光层6发光,并可实现模拟显示内部电流流动、如流水般依次追逐发光的效果,可起到信号传输及可充电与否的指示效果。
具体实施时,上述USB插头12还可以变换为Type-C插头,充电数据插头优选为Micro USB插头、Lightning插头和USB Type-C插头中的至少一种。
实施方式二
一种模拟可視电流流动的充电数据线,在本实施例实施方式一的基础上,如图15所示,发光线为实施例1所述的电致发光电源导线,并变换为三条,其中,绝缘导线111与绝缘导线112外包覆椭圆形的发光层6形成第一条电致发光电源导线,绝缘导线201与绝缘导 线202外包覆椭圆形的发光层6形成第二条电致发光电源导线,绝缘导线301与绝缘导线302外包覆椭圆形的发光层6形成第三条电致发光电源导线,该三条电致发光电源导线之间相互独立,并沿数据线延伸方向依次同旋向螺旋缠绕,并与充电线17一起绞合成缆,透明或透光的塑胶层7包覆在数据线的最外侧,该结构的充电数据线的径向横截面积较小,其具体电路连接方式,可一并参考图13,即绝缘导线111、绝缘导线201及绝缘导线301的一端与交流驱动器13的A处输出端子连接,绝缘导线112的一端与交流驱动器13的B处输出端子连接,绝缘导线202与交流驱动器13的C处输出端子连接,绝缘导线302的一端与交流驱动器13的D处输出端子连接。绝缘导线的另一端与充电数据插头14连接并空置;使用时,至少一条电致发光电源导线的至少两组导线的一端通过USB插头12和交流驱动器13与电源连接,并且其另一端通过充电数据插头14和用电装置导通。发光层6的形状也可以变换为圆形等形状。充电线17位于屏蔽层外,并位于电致发光电源导线外,该结构发光效果更多样,发光线形状的多样选择利于生产的方便和材料的节约。
实施方式三
一种模拟可視电流流动的充电数据线,在本实施例实施方式一的基础上,如图16所示,发光线为实施例1所述的电致发光电源导线,并变换为一条,其中,绝缘导线1、2、3依次绞合成缆,其外依次包覆发光层6、包裹塑胶层7,信号线16和充电线17位于电致发光电源导线与塑胶层之间,屏蔽层18包裹在信号线16外,电致发光电源导线优选位于充电数据线的中间,并与充电数据线延伸方向大致平行,使用时,可依次导通绝缘导线1、2,绝缘导线2、3,绝缘导线3、1,而使电致发光电源导线的不同部位依次发光,可实现模拟显示内部电流流动、如流水般依次追逐发光的效果,可起到信号传输及可充电与否的指示效果。
实施例7
一种模拟电流流动的电致发光电源导线装置,可与民用电器或插线板一起使用,如图17和图18所示,其包括电源接头和上述实施例1所述的电致发光电源导线,并且电致发光电源导线包括四组绝缘导线1、2、3、4,本实施例的电源接头为电源插头19,多路交流输出驱动器23设置于电源插头19内;使用时,一组绝缘导线1的一端通过电源插头19和多路交流输出驱动器23与电源连通,即恒导通,另三组绝缘导线2、3、4的一端通过电源插头19和多路交流输出驱动器23与电源连接,多路交流输出驱动器23控制另三组绝缘导线2、3、4与电源按一定频率依次连通和断开,一组绝缘导线1的另一端与另三组绝缘导线2、3、4的另一端通过用电装置导通,如通过用电设备20导通,发光层6发光。
具体实施时,多路交流输出驱动器23的一路输出端子与绝缘导线1的一端连接,恒导通,作为零线;另三路输出端子分别连接绝缘导线2、3、4的一端,作为并相火线,并按一定频率依次循环供电,作为优选,绝缘导线1作为中心轴线,绝缘导线2、3、4依序依次按同一旋向和螺距,沿绝缘导线1螺旋缠绕,外层依次包裹发光粉层6和透明透光绝缘的塑料层7。当电源插头19与市电连通,多路交流输出驱动器23开始工作并按一定频率和周期进行控制,作为零线的中心轴线与作为并相火线的绝缘导线2、3、4缠绕线分别依次依序导通,不论从哪个侧面观看,电致发光电源导线上的发光部位依次如流水般追逐发光,模拟电流从电源流向用电器。具体实施时,上述多路交流输出驱动器也可以变换为变频器实施。
本实施例的模拟电流流动的电致发光电源导线装置在上述实施方式的基础上,还可以通过以下方式实施:如图19所示,电致发光电源导线的六组绝缘导线111、112、201、202、301、302,依第一至第六的延伸次序绞合成缆,发光层6、塑胶层7依次包覆在绝缘导线外;其中,任意两组导线之间绝缘,第二、第四和第六组导线用于作为地线或一相火线,第二、第四和第六组导线一端用于通过电源接头和多路交流输出驱动器与电源恒导通,第一、第三和第五组导线与多路交流输出驱动器的三个输出端连接,第一、第三和第五组导线一端 通过多路交流输出驱动器控制按一定频率依次循环与电源的连通和断开,第二、第四和第六组导线的另一端与第一、第三和第五组导线另一端用于通过用电装置导通,优选依次与第一、第三和第五组导线组成供电回路。该结构在供电过程中,整条模拟可视电流流动的电源导线上,发光点依次如流光流动起来,具有模拟电源导线内部电流流动的效果,该结构的导线优选至少包括六组,可实现均匀流畅的追逐发光,形象模拟量电流流动的效果。
实施例8
一种三相四线电致发光电源导线,作为工业用线,于实施例1的基础上,如图20所示,绝缘导线1作为中心轴线,绝缘导线2、3、4依序依次沿绝缘导线1螺旋缠绕,其外依次包覆发光粉层6和塑胶层7,其中,绝缘导线1作为零线,绝缘导线2作为x相,绝缘导线3作为y相,绝缘导线4作为z相,其一端用于直接连接三相四线电源,或间接通过变频器连接三相四线电源,另一端连接用电器,如三相四线电机24,使用时,发光层6发光。当以间接通过变频器连接三相四线电源时,其发光亮度会随着变频器频率的变化而变化,频率越高,亮度也越高,人们可通过其亮度变化判断电机24转速的变化。本实施例的三相四线电致发光电源导线也可以变换为三相三线或三相五线,其三相四线电也可以变换为三相三线电或三相五线电等三相电。电机24的形式并不局限于星形电机,也适用于三角形电机。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
本发明可应用于作为各种用电装置、设备、器件的供电电源线的全部或其中的一段,以供观察及指示作用。
上面对本发明专利进行了示例性的描述,显然本发明专利的实现并不受上述方式的限制,只要采用了本发明专利的方法构思和技术方案进行的各种改进,或未经改进将本发明专利的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。

Claims (20)

  1. 一种电致发光电源导线,包括导线和发光层,其特征在于,所述发光层包覆或包裹所述导线,所述导线包括至少两组,每组包括至少一根导线;其中,至少一组导线与至少另一组导线之间绝缘,当其与交流电源连接并导通时,所述发光层可电致发光。
  2. 根据权利要求1所述的一种电致发光电源导线,其特征在于,所述的至少两组导线中的至少一组导线的外壁包覆或包裹有绝缘材料层,以形成绝缘导线。
  3. 根据权利要求1所述的一种电致发光电源导线,其特征在于,所述发光层的外壁包裹有透明或透光的塑胶层。
  4. 根据权利要求1或3所述的一种电致发光电源导线,其特征在于,至少两条该电致发光电源导线绞合成缆,或至少一条该电致发光电源导线的所述导线包括至少三组,其中,任意两组所述导线之间绝缘,所述导线绞合成缆,或至少两组所述导线以至少另一组所述导线为轴线,并沿所述轴线依次同旋向螺旋缠绕。
  5. 根据权利要求3所述的一种电致发光电源导线,其特征在于,所述的至少一组导线还与所述的至少另一组导线相互平行,或绞合成缆,或相互缠绕。
  6. 根据权利要求2所述的一种电致发光电源导线,其特征在于,所述的绝缘材料层为介电绝缘材料层,其主要由钛酸钡、碳酸钡或钛白粉与高分子粘合剂,或与聚氨酯漆或聚酯亚胺漆混合后涂覆烘干形成;或直接采用聚氨酯漆或聚酯亚胺漆涂敷烘干形成;或直接包裹高分子塑胶层。
  7. 根据权利要求1所述的一种电致发光电源导线,其特征在于,所述发光层主要由包括硫化锌、铜及二氧化硅组成的电致发光粉与高分子粘合剂,或与聚氨酯漆或聚酯亚胺漆混合后涂覆烘干形成。
  8. 根据权利要求6或7所述的一种电致发光电源导线,其特征在于,所述的高分子粘合剂主要由松油醇、硅树脂化合物、乙酸二甘醇单乙醚、甲基丙烯酸甲脂或丙烯酸乙酯共聚物,以及氟化聚合物组成。
  9. 根据权利要求5所述的一种电致发光电源导线,其特征在于,在所述的至少两组导线中,以至少一组导线作为轴线组,以至少另一组导线作为缠绕组,所述缠绕组以所述轴线组为轴线,并沿所述轴线组螺旋缠绕。
  10. 根据权利要求9所述的一种电致发光电源导线,其特征在于,所述缠绕组包括若干组所述导线,所述缠绕组中的任意一组或几组用于与所述交流电源的一相连接。
  11. 根据权利要求10所述的一种电致发光电源导线,其特征在于,所述缠绕组中的至少两组所述导线分别沿所述轴线组正、反螺旋缠绕,以形成网状编织层。
  12. 根据权利要求1或5所述的一种电致发光电源导线,其特征在于,所述电致发光电源导线的一端用于通过多路交流输出驱动器或变频器间接接入或直接接入单相或三相交流电源,其另一端用于连接用电装置。
  13. 根据权利要求3所述的一种电致发光电源导线,其特征在于,所述导线包括三组,所述的三组导线中的任意两组之间绝缘,以形成三相三线电致发光电源导线;或所述导线包括四组,所述的四组导线中的任意两组之间绝缘,以形成三相四线电致发光电源导线;或所述导线包括五组,所述的五组导线中的任意两组之间绝缘,以形成三相五线电致发光电源导线。
  14. 根据权利要求13所述的一种电致发光电源导线,其特征在于,所述交流电源为三相交流电源,所述电致发光电源导线的一端用于直接或通过变频器间接与所述交流电源连通,其另一端用于连接用电装置。
  15. 一种模拟可視电流流动的充电数据线,包括第一接头、内置于所述第一插头的多路交流驱动器、第二接头、透明或透光的塑胶层、发光线、信号线、充电线,以及屏蔽层,所述第一接头通过所述信号线和所述充电线与所述第二接头连接,其特征在于,所述发光线为权利要求4所述的电致发光电源导线,所述电致发光电源导线的一端分别与所述多路交流驱动器的各输出端连接,其另一端空置;使用时,所述多路交流驱动器通过所述第一 接头与电源连接,所述多路交流驱动器按一定频率和周期依次控制所述导线与所述电源连通和断开。
  16. 根据权利要求15所述的一种模拟可視电流流动的充电数据线,其特征在于,所述电致发光电源导线的发光层包裹或包覆在所述信号线和所述屏蔽层外,或所述信号线和所述屏蔽层位于所述电致发光电源导线外,并与所述电致发光电源导线大致平行。
  17. 根据权利要求15所述的一种模拟可視电流流动的充电数据线,其特征在于,使用时,当所述信号线导通传输信号时,所述驱动器同步启动并驱动所述的至少一条所述电致发光电源导线的至少两组所述导线。
  18. 根据权利要求15所述的一种模拟可視电流流动的充电数据线,其特征在于,所述第一接头为USB插头或Type-C插头,所述第二接头为Micro USB插头、Lightning插头和USB Type-C插头中的至少一种。
  19. 一种模拟电流流动的电致发光电源导线装置,包括电源接头,其特征在于,还包括多路交流输出驱动器和权利要求4所述的电致发光电源导线,所述电致发光电源导线的一端用于通过所述多路交流输出驱动器和所述电源接头与所述交流电源连接,并通过所述多路交流输出驱动器按一定频率和周期依次控制与所述交流电源的连通和断开,其另一端用于通过用电装置导通。
  20. 根据权利要求19所述的一种模拟可視电流流动的充电数据线,其特征在于,所述的至少另一组所述导线的一端用于通过所述多路交流输出驱动器和所述电源接头与所述交流电源恒导通,所述的至少二组所述导线的一端用于通过所述多路交流输出驱动器和所述电源接头与所述交流电源连接,并通过所述多路交流输出驱动器按一定频率和周期依次控制与所述交流电源的连通和断开,所述的至少另一组所述导线的另一端与所述的至少二组所述导线的另一端用于通过用电装置导通。
PCT/CN2017/112689 2017-11-23 2017-11-23 一种电致发光电源导线 WO2019100294A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780096393.2A CN111316383A (zh) 2017-11-23 2017-11-23 一种电致发光电源导线
PCT/CN2017/112689 WO2019100294A1 (zh) 2017-11-23 2017-11-23 一种电致发光电源导线
US16/882,394 US11477863B2 (en) 2017-11-23 2020-05-22 AC electroluminescent power cord and device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112689 WO2019100294A1 (zh) 2017-11-23 2017-11-23 一种电致发光电源导线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/882,394 Continuation US11477863B2 (en) 2017-11-23 2020-05-22 AC electroluminescent power cord and device comprising same

Publications (1)

Publication Number Publication Date
WO2019100294A1 true WO2019100294A1 (zh) 2019-05-31

Family

ID=66631342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112689 WO2019100294A1 (zh) 2017-11-23 2017-11-23 一种电致发光电源导线

Country Status (3)

Country Link
US (1) US11477863B2 (zh)
CN (1) CN111316383A (zh)
WO (1) WO2019100294A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11942241B2 (en) 2021-05-20 2024-03-26 Lubomir Dostal Electric cable

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021002A1 (de) * 2004-04-19 2005-11-03 Kabel Wächter GmbH & Co. KG Kabel und Verfahren zur Herstellung eines Kabels
CN1933035A (zh) * 2005-09-15 2007-03-21 殷永江 可视电流电源线
CN102956290A (zh) * 2012-09-25 2013-03-06 蔡祥轩 一种可视电流电源线
CN103021535A (zh) * 2013-01-06 2013-04-03 上海科润光电技术有限公司 一种高稳定性发光数据传输线
CN104282381A (zh) * 2014-09-26 2015-01-14 东莞市日新传导科技股份有限公司 一种发光线缆及电源插板
CN204303384U (zh) * 2014-03-20 2015-04-29 殷永江 一种通过发光模拟数据及电流流动的数据电源线和一种手机数据电源线
CN205069216U (zh) * 2015-11-06 2016-03-02 上海科润光电技术有限公司 一种带有螺旋电致发光线的电缆线
CN106982488A (zh) * 2016-01-18 2017-07-25 北京大学深圳研究生院 一种螺旋电致发光线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169492A (ja) * 2000-12-02 2002-06-14 Jakkuinku:Kk 視認性及び誘目性に優れる表示具
CN1427652A (zh) * 2001-12-19 2003-07-02 长春科润光电子材料科技有限公司 电致发光线的制备方法
CN100384302C (zh) * 2003-01-09 2008-04-23 殷峥凯 电致发光管发光线及其生产方法
AU2003246129A1 (en) * 2003-01-09 2004-08-10 Zhengkai Yin A electroluminescent wire and the method of manufacturing the same
US7671279B2 (en) * 2005-11-10 2010-03-02 Yongjiang Yin Current-seen cable
US10487987B2 (en) * 2015-08-17 2019-11-26 Zhejiang Super Lighting Electric Appliance Co., Ltd. LED filament
CN103971612B (zh) * 2014-05-16 2017-02-08 殷峥凯 安全引导装置
CN105513709B (zh) * 2016-01-21 2017-12-01 殷峥凯 一种声光音频信号线
CN109041354A (zh) * 2017-06-11 2018-12-18 肖斌 集合绝缘、导电、透明性能为一体的电致发光系统
CN207183711U (zh) * 2017-09-18 2018-04-03 陈柏玮 发光电源线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021002A1 (de) * 2004-04-19 2005-11-03 Kabel Wächter GmbH & Co. KG Kabel und Verfahren zur Herstellung eines Kabels
CN1933035A (zh) * 2005-09-15 2007-03-21 殷永江 可视电流电源线
CN102956290A (zh) * 2012-09-25 2013-03-06 蔡祥轩 一种可视电流电源线
CN103021535A (zh) * 2013-01-06 2013-04-03 上海科润光电技术有限公司 一种高稳定性发光数据传输线
CN204303384U (zh) * 2014-03-20 2015-04-29 殷永江 一种通过发光模拟数据及电流流动的数据电源线和一种手机数据电源线
CN104282381A (zh) * 2014-09-26 2015-01-14 东莞市日新传导科技股份有限公司 一种发光线缆及电源插板
CN205069216U (zh) * 2015-11-06 2016-03-02 上海科润光电技术有限公司 一种带有螺旋电致发光线的电缆线
CN106982488A (zh) * 2016-01-18 2017-07-25 北京大学深圳研究生院 一种螺旋电致发光线

Also Published As

Publication number Publication date
US11477863B2 (en) 2022-10-18
US20200323052A1 (en) 2020-10-08
CN111316383A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
US7671279B2 (en) Current-seen cable
CN103630807A (zh) 10kV电缆中间接头应力锥错位局部放电模型
CN202084326U (zh) 一种硅橡胶绝缘电机引接线
WO2019100294A1 (zh) 一种电致发光电源导线
CN209401351U (zh) 一种双层聚氯乙烯绝缘电线
CN104282381A (zh) 一种发光线缆及电源插板
CN212907207U (zh) 一种交流电致发光电源线及装置
CN105513707A (zh) Usb流水状发光线缆
CN1959863A (zh) 依次逐段发光电源线
CN205069216U (zh) 一种带有螺旋电致发光线的电缆线
CN1933035A (zh) 可视电流电源线
CN102695311A (zh) 一种多芯电致发光线的制备方法
CN102510597B (zh) 一种移动渐亮高压电致发光线
CN204303384U (zh) 一种通过发光模拟数据及电流流动的数据电源线和一种手机数据电源线
CN102769954B (zh) 一种亮度渐变的动态电致发光线
CN207704914U (zh) 高压岸电连接系统专用电缆
CN203085242U (zh) 氟塑料绝缘耐高温控制电缆
CN205004058U (zh) 同心式电力通讯复合型入户电缆
CN202696942U (zh) 一种亮度渐变的动态电致发光线
RU162851U1 (ru) Провод с кремнийорганической резиной и защитной оболочкой
RU160994U1 (ru) Провод с кремнийорганической резиной
RU77099U1 (ru) Кабель управления
CN207800180U (zh) 一种小截面绞合型双层绝缘高阻燃柔性电线
CN202695870U (zh) 电可视电源线插头
CN207743519U (zh) 一种led通电显示电线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932635

Country of ref document: EP

Kind code of ref document: A1