WO2019100221A1 - Monitoring system and fault diagnosis apparatus thereof - Google Patents

Monitoring system and fault diagnosis apparatus thereof Download PDF

Info

Publication number
WO2019100221A1
WO2019100221A1 PCT/CN2017/112205 CN2017112205W WO2019100221A1 WO 2019100221 A1 WO2019100221 A1 WO 2019100221A1 CN 2017112205 W CN2017112205 W CN 2017112205W WO 2019100221 A1 WO2019100221 A1 WO 2019100221A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
gas turbine
unit
parameter
actual operating
Prior art date
Application number
PCT/CN2017/112205
Other languages
French (fr)
Chinese (zh)
Inventor
王志强
曹晶
Original Assignee
贵州智慧能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州智慧能源科技有限公司 filed Critical 贵州智慧能源科技有限公司
Priority to PCT/CN2017/112205 priority Critical patent/WO2019100221A1/en
Publication of WO2019100221A1 publication Critical patent/WO2019100221A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices

Definitions

  • the present invention relates to a monitoring system, and more particularly to a fault diagnosis apparatus for a monitoring system.
  • the monitoring system used by most gas turbines can directly detect the parameters of each node of the operating system and give a real-time running curve.
  • an abnormality occurs in the body, only the alarm code can be given, and the cause of the fault cannot be diagnosed in real time. This increases the complexity of the overall maintenance of the gas turbine and the technical requirements for the duty personnel.
  • the present invention provides a monitoring system that is easier to maintain.
  • a monitoring system includes a gas turbine and a transmitter, the gas turbine including a compressor, a combustion chamber, a turbine, a generator, and a data acquisition unit; the data acquisition unit is configured to monitor an actual operation of the gas turbine
  • the monitoring system further includes a fault diagnosis device, and the transmitter converts the actual operating parameter of the gas turbine collected by the data collecting unit into an actual operating parameter that can be recognized by the fault diagnostic device and will actually operate Parameter 0 is sent to the fault detecting device; the fault diagnostic device outputs a virtual operating parameter of the gas turbine by virtually operating the gas turbine system.
  • the fault diagnostic device is further configured to use the virtual operating parameter and the monitored actual operation of the gas turbine
  • the parameter (3 is compared, and then the fault database is retrieved according to the virtual running parameter 1 ⁇ and the monitored entity operating parameter (the difference of 3), and the retrieved gas turbine fault cause and fault handling measure are outputted so that the user can know and process the gas turbine A failure has occurred.
  • the fault diagnosis system includes a storage unit, an analog unit, a diagnosis unit, a query unit, and an output unit;
  • the storage unit is configured to store a fault database, where the fault database includes fault data, a fault cause, and a fault handling measure; ⁇ 0 2019/100221 ⁇ (:17 ⁇ 2017/112205
  • the simulation unit establishes an equal-size virtual model according to the gas turbine inherent size parameter; the simulation unit performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of actual operating parameters (3 phases) Corresponding virtual gas turbine operating parameters
  • the diagnostic unit compares the actual operating parameter sent by the transmitter with the virtual operating parameter calculated by the analog unit to determine whether the working condition of the gas turbine is normal and stable;
  • the comparison result is that the difference between the actual operating parameter (3 and the virtual operating parameter 1 ⁇ is greater than or equal to the predetermined value, the diagnostic unit considers that the gas turbine operation is faulty, generates fault data, and transmits the fault data to the query unit;
  • the query unit retrieves the fault database in the storage unit according to the fault data sent by the diagnostic unit, and sends the fault cause and fault handling measure corresponding to the fault data in the queryed database to the output unit. ;
  • the output unit outputs a fault cause and a fault handling measure sent by the query unit so that the user can know and handle the fault that occurs in the gas turbine.
  • the monitoring system further includes a console provided with a display unit, and the query unit can synchronously output data to the display unit of the console, and the display unit of the console The cause of the fault and the fault handling measures sent by the query unit are displayed.
  • the present invention also provides a fault diagnosis apparatus that is easier to maintain.
  • a fault diagnosis apparatus for use in a monitoring system, the monitoring system including a gas turbine and a transmitter, the gas turbine including a compressor, a combustion chamber, a turbine, a generator, and a data acquisition unit;
  • the collecting unit is configured to monitor actual operating parameters of the gas turbine during operation, and the transmitter converts actual operating parameters of the gas turbine collected by the data collecting unit into actual operating parameters that can be recognized by the fault diagnostic device and
  • the actual operating parameter (3 is sent to the fault detecting device; the fault diagnostic device outputs a virtual operating parameter of the gas turbine by virtually operating the gas turbine system.
  • the fault diagnostic device is further configured to use the virtual operating parameter and the monitored device
  • the actual operating parameters of the gas turbine (3 relative ratio, and then according to the virtual operating parameters 1 and the monitored physical operating parameters (3 differences retrieve the fault database and will retrieve the gas turbine fault cause and fault handling measures for the user to know and handle a fault that occurs in the gas turbine; wherein the fault
  • the diagnostic system includes a storage unit, an analog unit, a diagnosis unit, a query unit, and an output unit; ⁇ 0 2019/100221 ⁇ (:17 ⁇ 2017/112205
  • the storage unit is configured to store a fault database, where the fault database includes fault data, a fault cause, and a fault handling measure;
  • the simulation unit establishes an equal-size virtual model according to the gas turbine inherent size parameter; the simulation unit performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of actual operating parameters (3 phases) Corresponding virtual gas turbine operating parameters
  • the diagnostic unit compares the actual operating parameters sent by the transmitter with the virtual operating parameters calculated by the analog unit to determine whether the working condition of the gas turbine is normal and stable; The comparison result is that the difference between the actual operating parameter (3 and the virtual operating parameter 1 ⁇ is greater than or equal to the predetermined value, the diagnostic unit considers that the gas turbine operation is faulty, generates fault data, and transmits the fault data to the query unit;
  • the query unit retrieves the fault database in the storage unit according to the fault data sent by the diagnostic unit, and sends the fault cause and fault handling measure corresponding to the fault data in the queryed database to the output unit. ;
  • the output unit outputs a fault cause and a fault handling measure sent by the query unit so that the user can know and handle the fault that occurs in the gas turbine.
  • the simulation operation includes thermal calculations and hydrodynamic calculations.
  • the actual operating parameter is at least one of an environmental parameter, a gas turbine starting parameter 6 and a gas turbine performance indicating parameter (:, generator parameter 0, oil indicating parameter £, and vibration indicating parameter). .
  • the environmental parameter eight includes atmospheric temperature, pressure, humidity, air quality;
  • the gas turbine starting parameter 6 includes a starting machine speed and power;
  • the gas turbine performance indicating parameter (including a rotating speed, Air flow, fuel composition, fuel flow, fuel temperature, temperature and pressure of each node, total compressor work, exhaust gas composition;
  • said generator parameter ⁇ includes generator load, generated power, voltage, current, and frequency;
  • the oil indicating parameters include oil pressure, oil temperature, tank level and oil flow rate;
  • the vibration indicating parameters include displacement, speed, amplitude and frequency.
  • the basic data includes ambient pressure, ambient temperature, ambient relative humidity, rotational speed, fuel type, fuel calorific value, and fuel pressure.
  • the virtual operating parameter 1 ⁇ includes the pressure after the compressor, the temperature after the compressor, and the pressure ⁇ 0 2019/100221 ⁇ (:17 ⁇ 2017/112205 air flow air consumption fuel consumption, gas turbine inlet temperature, gas turbine inlet pressure, power turbine inlet temperature, power turbine inlet pressure, exhaust temperature, Exhaust pressure, compressor input power, power turbine output power, power generation and power generation efficiency.
  • the transmitter is integrated within the fault diagnostic system.
  • the monitoring system provided by the present invention can monitor and analyze the working condition of the gas turbine.
  • the above monitoring system can directly provide the cause of the failure and the troubleshooting measures when the gas turbine fails.
  • On-duty personnel can quickly handle gas turbine faults based on information provided by the monitoring system, which reduces the complexity of gas turbine maintenance and greatly reduces the technical requirements of the duty personnel.
  • FIG. 1 is a functional block diagram of a monitoring system according to an embodiment of the present invention.
  • 2 is a basic data table of an embodiment.
  • FIG. 3 is a comparison table of actual operating parameters ( ⁇ and virtual operating parameters 11 of an embodiment).
  • the present invention provides a gas turbine monitoring system 99 that outputs a virtual operating parameter of a gas turbine by virtually operating a gas turbine system and then the virtual operating parameters and the actual gas turbines that are monitored.
  • the operating parameters (3 are compared to monitor the operation of the gas turbine.
  • the monitoring system 99 can also be based on the virtual operating parameters 1 and the actual operation of the monitored gas turbine ⁇ 0 2019/100221 ⁇ (:17 ⁇ 2017/112205 The difference between the parameters ⁇ retrieves the fault database, and the gas turbine is diagnosed online in real time and the fault handling measures are given.
  • the monitoring system 99 includes a gas turbine 10, a fault diagnostic device 50, a transmitter 60, and a console 70.
  • the gas turbine 10 includes a compressor 110, a combustion chamber 130, a turbine 150, a generator 170, and a data acquisition unit 190.
  • the three components of compressor 110, combustion chamber 130 and turbine 150 make up the gas turbine cycle.
  • the compressor 110 draws in air from the outside atmospheric environment, and is pressurized by the compressor 110 stepwise to increase the temperature, and the air temperature is also increased accordingly.
  • the compressed air is sent to the combustion chamber 130 to be mixed with the injected fuel to generate a high-temperature and high-pressure gas; and then enters into the turbine 150 to expand work, and the turbine is driven to drive the compressor 11 ⁇ and the external load rotor to rotate at a high speed.
  • the chemical energy of the gas or liquid fuel is partially converted into mechanical energy and outputs electrical energy.
  • the exhaust gas discharged from the turbine 150 is naturally radiated to the atmosphere.
  • the gas turbine 10 converts the chemical energy of the fuel into heat energy and converts part of the heat energy into mechanical energy.
  • the compressor 110 is driven by the expansion of the gas turbine 150, which is the load of the turbine 150.
  • the mechanical energy from the turbine 150 is used to partially drive the compressor 110, with some mechanical work to drive the generator 170.
  • the starter (not shown) drives the compressor 110 until the mechanical energy emitted by the gas turbine 150 is greater than the mechanical energy consumed by the compressor 110, and the external starter trips, the gas turbine 10 can work independently.
  • the data acquisition unit 190 can be a sensor that is capable of monitoring a series of parameters of the gas turbine 10 in actual operation. (hereinafter referred to as the actual operating parameters ?).
  • the actual operating parameters include environmental parameters, gas turbine starting parameters 6 and gas turbine performance indicating parameters (:, generator parameter 0, oil indicating parameter £ and vibration indicating parameters.
  • the above environmental parameters eight can be atmospheric temperature, pressure, humidity Air quality
  • the above gas turbine starting parameter 6 may be the starter speed and power.
  • the above gas turbine performance indication parameters (: can be speed, air flow, fuel composition, fuel flow, fuel temperature, temperature and pressure of each node, total compressor work)
  • the exhaust gas component can be the generator load, the generated power, the voltage, the current, and the frequency.
  • the above-mentioned oil indicating parameters include oil pressure, oil temperature, tank level and oil flow. Parameters? Includes displacement, velocity, amplitude, and frequency.
  • the fault diagnosis apparatus 50 includes a storage unit 520, an analog unit 530, a diagnosis unit 550, and a query unit 570. ⁇ 0 2019/100221 ⁇ (: 17 ⁇ 2017/112205 and output unit 590.
  • the transmitter 60 converts the actual operating parameters of the gas turbine 10 collected by the data acquisition unit 190 into an analog unit 530 that can be used by the fault diagnostic device 50.
  • the identified actual operating parameters and the actual operating parameters of the gas turbine 10 are sent to the analog unit 530.
  • the fault diagnostic device 50 is a computer, and the transmitter 60 is independent of the fault diagnostic device 50. In the manner, the transmitter 60 can also be integrated into the fault diagnostic device 50.
  • the storage unit 520 is configured to store a fault database, where the fault database includes fault data, a fault cause, and a fault handling measure.
  • the database system is programmed based on the symptoms or phenomena of the gas turbine failure and their corresponding locations, causes, effects, and treatments.
  • the database system can also store fault information (time, phenomenon, cause, operation, etc.) to form a log for maintenance.
  • the operating parameter value can be stored as needed to facilitate routine maintenance of the gas turbine. It is also possible to judge the maintenance period of the gas turbine. For example: When there is a large difference in pressure after the compressor, the intake pressure and temperature, and the amount of air intake can be combined.
  • the possible causes are air intake filter blockage, gas seal wear leak, compressor wheel impeller, etc.
  • the measures are to clean or replace the air intake filter, check the air seal and the impeller.
  • the possible causes are: bearing wear, rotor deformation or crack, oil problem, loose support, etc., and other parameters need to be combined to confirm the fault location and cause.
  • the simulation unit 530 establishes an equal-sized virtual model based on the inherent size parameters of the gas turbine 10.
  • the simulation unit 530 performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of virtual gas turbine operating parameters corresponding to the actual operating parameters (3).
  • the above simulation operations include but are not limited to thermal calculations. And fluid aerodynamic calculations.
  • the basic data includes ambient pressure, ambient temperature, ambient relative humidity, rotational speed, fuel type, fuel calorific value, and fuel pressure.
  • the above basic data may be stored in the storage unit 520 in advance and then accessed by the analog unit 530 as needed, or may be directly input to the analog unit 530 by the user. Please refer to the table in Figure 2 for specific basic data.
  • the virtual operating parameter 1 ⁇ includes the post-compressor pressure, the post-compressor temperature, the compressor air flow fuel consumption, the gas turbine inlet temperature, the gas turbine inlet pressure, the power turbine inlet Temperature, power turbine inlet pressure, exhaust temperature, exhaust pressure, compressor input power, power turbine output power, power generation and power generation efficiency.
  • Specific actual operating parameters and virtual operating parameters 1 ⁇ please ⁇ 0 2019/100221 ⁇ (: 17 ⁇ 2017/112205 The table in Figure 3.
  • the diagnostic unit 550 compares the actual operating parameters transmitted by the transmitter 60 with the virtual operating parameters calculated by the analog unit 53 to determine whether the operating conditions of the gas turbine 10 are normally stable. When the comparison result of the diagnosis unit 550 is that the difference between the actual operation parameter (3 and the virtual operation parameter 1 ⁇ is greater than or equal to the predetermined value, the diagnosis unit 550 considers that the gas turbine 10 is malfunctioning, generates failure data, and transmits the failure data to the inquiry unit. 570.
  • the query unit 570 retrieves the fault data database in the storage unit 520 according to the fault data sent by the diagnostic unit 550, and sends the fault cause and fault handling measures corresponding to the fault data in the queried database to the output unit 590.
  • the output unit 590 outputs the cause of the fault and the fault handling measures sent by the query unit 570.
  • the output unit 590 is provided with a display function to display the cause of the malfunction and the fault handling measures to facilitate the on-duty personnel to understand the operating conditions of the gas turbine 10 and to treat the malfunction of the gas turbine 10.
  • the query unit 570 can also synchronously output the data to the display unit 710 of the console 70, and display the fault cause and fault handling measures sent by the query unit 570 by the display unit 710, so that the on-duty personnel can see on the console 70. View the cause of the failure of the gas turbine 10 and the troubleshooting measures to save time on duty.
  • the above monitoring system 99 can remotely control the operation of the gas turbine 10 in addition to monitoring and displaying operating parameters.
  • the control flow of the traditional gas turbine 10 control system is to collect data, feedback, and display.
  • the system uses the computer as the carrier of the virtual gas turbine and the database.
  • the control process also increases the simulation, comparison and judgment of the data, and on the basis of the fault diagnosis. Therefore, the monitoring system 99 of the gas turbine 10 provided by the present invention can simplify the operation of the gas turbine, reduce the difficulty of maintenance and overhaul, comprehensively monitor and control the operation state of the gas turbine, and realize the automation of gas turbine fault detection.
  • the monitoring system 99 can monitor and control online, and automatically analyze the working state of the gas turbine 10 in real time; when the body is in normal operation, the system records the operation information and infers the maintenance time according to the recorded data; When the operating conditions of the machine are abnormal, the system can directly analyze the fault point and feed it back to the on-duty personnel. At the same time, the fault information is collected in the database for easy maintenance. In this way, use ⁇ 0 2019/100221 ⁇ (:17 ⁇ 2017/112205
  • the control system 99 in the first time of failure, analyzes the possible fault points and incentives and the corresponding treatment measures. This can reduce the gas turbine 10
  • the complexity of operation and maintenance greatly reduces the technical requirements of the on-duty personnel.
  • the monitoring system 99 of the gas turbine 10 of the present invention enables the on-duty personnel to remotely monitor through the online monitoring system to understand the working conditions of the aircraft in real time.
  • the operation monitoring and maintenance of the gas turbine is simple, fast and real-time, and the automatic fault analysis of the monitoring and monitoring system 99 is also realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Provided is a monitoring system. The monitoring system comprises a gas turbine (10), a transmitter (60) and a fault diagnosis apparatus (50). The gas turbine (10) comprises a data acquisition unit (190) monitoring an actual operating parameter P when the gas turbine is operating; the transmitter (60) converts the actual operating parameter P to an actual operating parameter Q recognizable to the fault diagnosis apparatus (50); the fault diagnosis apparatus (50) outputs a virtual operating parameter R of the gas turbine by means of virtually operating the gas turbine system; and the fault diagnosis apparatus (50) further searches a fault database according to a difference between the virtual operating parameter R and the monitored actual operating parameter Q, and outputs a searched fault reason for the gas turbine (10) and a fault processing measure, so as to facilitate a user in acquiring and processing a fault occurring in the gas turbine (10). Thus, an operator on duty can quickly process the fault of the gas turbine according to information provided by the monitoring system, and the complexity of gas turbine maintenance can be reduced. A fault diagnosis apparatus is further provided.

Description

\¥0 2019/100221 卩(:17 \2017/112205  \¥0 2019/100221 卩(:17 \2017/112205
监控系统及其故障诊断装置 Monitoring system and its fault diagnosis device
技术领域  Technical field
[0001] 本发明涉及一种监控系统, 特别涉及一种监控系统的故障诊断装置。  [0001] The present invention relates to a monitoring system, and more particularly to a fault diagnosis apparatus for a monitoring system.
背景技术  Background technique
[0002] 目前大多数燃气轮机所使用的监控系统, 能直接检测机体运行各节点参数, 给 出实时运行曲线, 在出现机体运行异常时, 只能给出报警代码, 并不能实时诊 断分析故障原因。 这使得燃气轮机的整体维护起来的复杂性有所增加, 对值班 人员的技术要求比较高。  [0002] At present, the monitoring system used by most gas turbines can directly detect the parameters of each node of the operating system and give a real-time running curve. When an abnormality occurs in the body, only the alarm code can be given, and the cause of the fault cannot be diagnosed in real time. This increases the complexity of the overall maintenance of the gas turbine and the technical requirements for the duty personnel.
技术问题  technical problem
[0003] 有鉴于此, 本发明提供一种较容易维护的监控系统。  In view of this, the present invention provides a monitoring system that is easier to maintain.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0004] 一种监控系统, 包括燃气轮机和变送器, 所述燃气轮机包括压气机, 燃烧室, 透平, 发电机和数据采集单元; 所述数据采集单元用于监测所述燃气轮机运行 时的实际运行参数 所述监控系统还包括故障诊断装置, 所述变送器将所述数 据采集单元采集到的燃气轮机的实际运行参数 ?转变成可被所述故障诊断装置识 别的实际运行参数 并将实际运行参数 0发送给所述故障检测装置; 所述故障 诊断装置通过虚拟运行燃气轮机系统来输出燃气轮机的虚拟运行参数 所述故 障诊断装置还用于将上述虚拟运行参数 与监测到的所述燃气轮机的实际运行参 数(3相对比, 然后根据虚拟运行参数1^和监测到的实体运行参数(3的差异检索故 障数据库, 并将检索出的燃气轮机的故障原因及故障处理措施输出以便用户获 知并处理所述燃气轮机出现的故障。  [0004] A monitoring system includes a gas turbine and a transmitter, the gas turbine including a compressor, a combustion chamber, a turbine, a generator, and a data acquisition unit; the data acquisition unit is configured to monitor an actual operation of the gas turbine The monitoring system further includes a fault diagnosis device, and the transmitter converts the actual operating parameter of the gas turbine collected by the data collecting unit into an actual operating parameter that can be recognized by the fault diagnostic device and will actually operate Parameter 0 is sent to the fault detecting device; the fault diagnostic device outputs a virtual operating parameter of the gas turbine by virtually operating the gas turbine system. The fault diagnostic device is further configured to use the virtual operating parameter and the monitored actual operation of the gas turbine The parameter (3 is compared, and then the fault database is retrieved according to the virtual running parameter 1^ and the monitored entity operating parameter (the difference of 3), and the retrieved gas turbine fault cause and fault handling measure are outputted so that the user can know and process the gas turbine A failure has occurred.
[0005] 在一实施例中, 所述故障诊断系统包括存储单元, 模拟单元, 诊断单元, 查询 单元和输出单元;  [0005] In an embodiment, the fault diagnosis system includes a storage unit, an analog unit, a diagnosis unit, a query unit, and an output unit;
[0006] 所述存储单元用于存放故障数据库, 该故障数据库包括故障数据, 故障原因及 故障处理措施; \¥0 2019/100221 卩(:17 \2017/112205 [0006] the storage unit is configured to store a fault database, where the fault database includes fault data, a fault cause, and a fault handling measure; \¥0 2019/100221 卩(:17 \2017/112205
[0007] 所述模拟单元根据所述燃气轮机固有尺寸参数建立等尺寸虚拟模型; 所述模拟 单元根据上述实际运行参数 虚拟模型和基础数据进行各项模拟运算得出一系 列与实际运行参数(3相对应的虚拟燃气轮机运行参数 [0007] The simulation unit establishes an equal-size virtual model according to the gas turbine inherent size parameter; the simulation unit performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of actual operating parameters (3 phases) Corresponding virtual gas turbine operating parameters
[0008] 所述诊断单元将所述变送器发送的实际运行参数 与所述模拟单元运算的出的 虚拟运行参数 做比较以判断所述燃气轮机的工作状况是否正常稳定; 当所述诊 断单元的比较结果是实际运行参数(3和虚拟运行参数1^的差值大于或者等于预定 值, 则所述诊断单元认为燃气轮机运行出现故障, 产生故障数据并将故障数据 发送给所述查询单元;  [0008] the diagnostic unit compares the actual operating parameter sent by the transmitter with the virtual operating parameter calculated by the analog unit to determine whether the working condition of the gas turbine is normal and stable; The comparison result is that the difference between the actual operating parameter (3 and the virtual operating parameter 1^ is greater than or equal to the predetermined value, the diagnostic unit considers that the gas turbine operation is faulty, generates fault data, and transmits the fault data to the query unit;
[0009] 所述查询单元根据所述诊断单元发出的故障数据检索所述存储单元内的故障数 据库, 并将查询出的数据库中与故障数据对应的故障原因及故障处理措施发送 给所述输出单元;  [0009] the query unit retrieves the fault database in the storage unit according to the fault data sent by the diagnostic unit, and sends the fault cause and fault handling measure corresponding to the fault data in the queryed database to the output unit. ;
[0010] 所述输出单元输出所述查询单元发送的故障原因及故障处理措施以便用户获知 并处理燃气轮机出现的故障。  [0010] The output unit outputs a fault cause and a fault handling measure sent by the query unit so that the user can know and handle the fault that occurs in the gas turbine.
[0011] 在一实施例中, 所述监控系统还包括设置有显示单元的操控台, 所述查询单元 可同步将数据输出到所述操控台的显示单元, 由所述操控台的显示单元将所述 查询单元发送的故障原因及故障处理措施显示出来。  [0011] In an embodiment, the monitoring system further includes a console provided with a display unit, and the query unit can synchronously output data to the display unit of the console, and the display unit of the console The cause of the fault and the fault handling measures sent by the query unit are displayed.
[0012] 另外, 本发明还提供一种较容易维护的故障诊断装置。  [0012] In addition, the present invention also provides a fault diagnosis apparatus that is easier to maintain.
[0013] 一种故障诊断装置, 用于一个监控系统内, 所述监控系统包括燃气轮机和变送 器, 所述燃气轮机包括压气机, 燃烧室, 透平, 发电机和数据采集单元; 所述 数据采集单元用于监测所述燃气轮机运行时的实际运行参数 所述变送器将所 述数据采集单元采集到的燃气轮机的实际运行参数?转变成可被所述故障诊断装 置识别的实际运行参数 并将实际运行参数(3发送给所述故障检测装置; 所述 故障诊断装置通过虚拟运行燃气轮机系统来输出燃气轮机的虚拟运行参数 所 述故障诊断装置还用于将上述虚拟运行参数1^与监测到的所述燃气轮机的实际运 行参数(3相对比, 然后根据虚拟运行参数1^和监测到的实体运行参数(3的差异检 索故障数据库并将检索出燃气轮机的故障原因及故障处理措施输出以便用户获 知并处理所述燃气轮机出现的故障; 其中所述故障诊断系统包括存储单元, 模 拟单元, 诊断单元, 查询单元和输出单元; \¥0 2019/100221 卩(:17 \2017/112205 [0013] A fault diagnosis apparatus for use in a monitoring system, the monitoring system including a gas turbine and a transmitter, the gas turbine including a compressor, a combustion chamber, a turbine, a generator, and a data acquisition unit; The collecting unit is configured to monitor actual operating parameters of the gas turbine during operation, and the transmitter converts actual operating parameters of the gas turbine collected by the data collecting unit into actual operating parameters that can be recognized by the fault diagnostic device and The actual operating parameter (3 is sent to the fault detecting device; the fault diagnostic device outputs a virtual operating parameter of the gas turbine by virtually operating the gas turbine system. The fault diagnostic device is further configured to use the virtual operating parameter and the monitored device The actual operating parameters of the gas turbine (3 relative ratio, and then according to the virtual operating parameters 1 and the monitored physical operating parameters (3 differences retrieve the fault database and will retrieve the gas turbine fault cause and fault handling measures for the user to know and handle a fault that occurs in the gas turbine; wherein the fault The diagnostic system includes a storage unit, an analog unit, a diagnosis unit, a query unit, and an output unit; \¥0 2019/100221 卩(:17 \2017/112205
[0014] 所述存储单元用于存放故障数据库, 该故障数据库包括故障数据, 故障原因及 故障处理措施; [0014] the storage unit is configured to store a fault database, where the fault database includes fault data, a fault cause, and a fault handling measure;
[0015] 所述模拟单元根据所述燃气轮机固有尺寸参数建立等尺寸虚拟模型; 所述模拟 单元根据上述实际运行参数 虚拟模型和基础数据进行各项模拟运算得出一系 列与实际运行参数(3相对应的虚拟燃气轮机运行参数  [0015] the simulation unit establishes an equal-size virtual model according to the gas turbine inherent size parameter; the simulation unit performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of actual operating parameters (3 phases) Corresponding virtual gas turbine operating parameters
[0016] 所述诊断单元将所述变送器发送的实际运行参数 与所述模拟单元运算的出的 虚拟运行参数 做比较以判断所述燃气轮机的工作状况是否正常稳定; 当所述诊 断单元的比较结果是实际运行参数(3和虚拟运行参数1^的差值大于或者等于预定 值, 则所述诊断单元认为燃气轮机运行出现故障, 产生故障数据并将故障数据 发送给所述查询单元;  [0016] the diagnostic unit compares the actual operating parameters sent by the transmitter with the virtual operating parameters calculated by the analog unit to determine whether the working condition of the gas turbine is normal and stable; The comparison result is that the difference between the actual operating parameter (3 and the virtual operating parameter 1^ is greater than or equal to the predetermined value, the diagnostic unit considers that the gas turbine operation is faulty, generates fault data, and transmits the fault data to the query unit;
[0017] 所述查询单元根据所述诊断单元发出的故障数据检索所述存储单元内的故障数 据库, 并将查询出的数据库中与故障数据对应的故障原因及故障处理措施发送 给所述输出单元;  [0017] the query unit retrieves the fault database in the storage unit according to the fault data sent by the diagnostic unit, and sends the fault cause and fault handling measure corresponding to the fault data in the queryed database to the output unit. ;
[0018] 所述输出单元输出所述查询单元发送的故障原因及故障处理措施以便用户获知 并处理燃气轮机出现的故障。  [0018] The output unit outputs a fault cause and a fault handling measure sent by the query unit so that the user can know and handle the fault that occurs in the gas turbine.
[0019] 在一实施例中, 所述模拟运算包括热力计算和流体气动计算。  [0019] In an embodiment, the simulation operation includes thermal calculations and hydrodynamic calculations.
[0020] 在一实施例中, 所述实际运行参数 ?为环境参数 , 燃气轮机起动参数 6和燃气 轮机性能指示参数(:, 发电机参数 0, 滑油指示参数 £和振动指示参数?至少其中 之一。  [0020] In an embodiment, the actual operating parameter is at least one of an environmental parameter, a gas turbine starting parameter 6 and a gas turbine performance indicating parameter (:, generator parameter 0, oil indicating parameter £, and vibration indicating parameter). .
[0021] 在一实施例中, 所述环境参数八包括大气温度、 压力、 湿度、 空气质量; 所述 燃气轮机起动参数 6包括起动机转速和功率; 所述燃气轮机性能指示参数(:包括 转速、 空气流量、 燃料成分、 燃料流量、 燃料温度、 各节点温度和压力、 压气 机总功、 排放尾气成分; 所述发电机参数〇包括发电机负载、 发电功率、 电压、 电流和频率; 所述滑油指示参数 £包括油压、 油温、 油箱液位和滑油流量; 所述 振动指示参数 ?包括位移、 速度、 振幅和频率。  [0021] In an embodiment, the environmental parameter eight includes atmospheric temperature, pressure, humidity, air quality; the gas turbine starting parameter 6 includes a starting machine speed and power; the gas turbine performance indicating parameter (including a rotating speed, Air flow, fuel composition, fuel flow, fuel temperature, temperature and pressure of each node, total compressor work, exhaust gas composition; said generator parameter 发电机 includes generator load, generated power, voltage, current, and frequency; The oil indicating parameters include oil pressure, oil temperature, tank level and oil flow rate; the vibration indicating parameters include displacement, speed, amplitude and frequency.
[0022] 在一实施例中, 所述基础数据包括环境压力, 环境温度, 环境相对湿度, 转速 , 燃料种类, 燃料热值和燃料压力。  [0022] In an embodiment, the basic data includes ambient pressure, ambient temperature, ambient relative humidity, rotational speed, fuel type, fuel calorific value, and fuel pressure.
[0023] 在一实施例中, 所述虚拟运行参数1^包括该压气机后压力, 压气机后温度, 压 \¥0 2019/100221 卩(:17 \2017/112205 气机空气流量燃料消耗量, 燃气渦轮入口温度, 燃气渦轮入口压力, 动力渦轮 入口温度, 动力渦轮入口压力, 排气温度, 排气压力, 压气机输入功率, 动力 渦轮输出功率, 发电功率及发电效率。 [0023] In an embodiment, the virtual operating parameter 1^ includes the pressure after the compressor, the temperature after the compressor, and the pressure \¥0 2019/100221 卩(:17 \2017/112205 air flow air consumption fuel consumption, gas turbine inlet temperature, gas turbine inlet pressure, power turbine inlet temperature, power turbine inlet pressure, exhaust temperature, Exhaust pressure, compressor input power, power turbine output power, power generation and power generation efficiency.
[0024] 在一实施例中, 所述变送器集成在所述故障诊断系统内。  [0024] In an embodiment, the transmitter is integrated within the fault diagnostic system.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0025] 综上所述, 本发明提供的监控系统可监控并分析燃气轮机的工作状况。 上述监 控系统在燃气轮机运行出现故障时能够直接提供出故障原因及故障处理措施。 值班人员可以迅速根据监控系统提供的信息处理燃气轮机的故障, 这样能够降 低燃气轮机维护的复杂性, 对值班人员的技术要求大大降低。  [0025] In summary, the monitoring system provided by the present invention can monitor and analyze the working condition of the gas turbine. The above monitoring system can directly provide the cause of the failure and the troubleshooting measures when the gas turbine fails. On-duty personnel can quickly handle gas turbine faults based on information provided by the monitoring system, which reduces the complexity of gas turbine maintenance and greatly reduces the technical requirements of the duty personnel.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0026] 图 1为本发明一种实施方式的监控系统的功能模块图。  1 is a functional block diagram of a monitoring system according to an embodiment of the present invention.
[0027] 图 2为一实施例的基础数据表。  2 is a basic data table of an embodiment.
[0028] 图 3为一实施例的实际运行参数(^和虚拟运行参数11的对照表。  [0028] FIG. 3 is a comparison table of actual operating parameters (^ and virtual operating parameters 11 of an embodiment).
发明实施例  Invention embodiment
本发明的实施方式  Embodiments of the invention
[0029] 在详细描述实施例之前, 应该理解的是, 本发明不限于本申请中下文或附图中 所描述的详细结构或元件排布。 本发明可为其它方式实现的实施例。 而且, 应 当理解, 本文所使用的措辞及术语仅仅用作描述用途, 不应作限定性解释。 本 文所使用的“包括”、 “包含”、 “具有”等类似措辞意为包含其后所列出之事项、 其 等同物及其它附加事项。 特别是, 当描述“一个某元件”时, 本发明并不限定该元 件的数量为一个, 也可以包括多个。  [0029] Before the embodiments are described in detail, it is understood that the invention is not limited to the details The invention may be embodied in other ways. Further, it should be understood that the phraseology and terminology used herein are for the purpose of description The words "including", "comprising", "having", and the like, as used herein, are meant to include the items listed thereafter, their equivalents, and other additional items. In particular, when describing "a certain element", the present invention does not limit the number of the elements to one, and may include a plurality.
[0030] 如图 1所示, 本发明提出一种燃气轮机的监控系统 99 , 该监控系统 99通过虚拟 运行燃气轮机系统来输出燃气轮机的虚拟运行参数1 然后将上述虚拟运行参数 与监测到的燃气轮机的实际运行参数(3相对比来对燃气轮机的运行进行监测。 进一步地, 监控系统 99还可根据虚拟运行参数1^和监测到的燃气轮机的实际运行 \¥0 2019/100221 卩(:17 \2017/112205 参数〇之间的差异检索故障数据库, 对燃气轮机进行实时在线诊断出故障原因并 给出故障处理措施。 [0030] As shown in FIG. 1, the present invention provides a gas turbine monitoring system 99 that outputs a virtual operating parameter of a gas turbine by virtually operating a gas turbine system and then the virtual operating parameters and the actual gas turbines that are monitored. The operating parameters (3 are compared to monitor the operation of the gas turbine. Further, the monitoring system 99 can also be based on the virtual operating parameters 1 and the actual operation of the monitored gas turbine \¥0 2019/100221 卩(:17 \2017/112205 The difference between the parameters 检索 retrieves the fault database, and the gas turbine is diagnosed online in real time and the fault handling measures are given.
[0031] 监控系统 99包括燃气轮机 10, 故障诊断装置 50,变送器 60, 和操作台 70。 在本 实施方式中, 燃气轮机 10包括压气机 110, 燃烧室 130, 透平 150, 发电机 170和 数据采集单元 190。 压气机 110、 燃烧室 130和透平 150这三个部件组成燃气轮机 循环。  [0031] The monitoring system 99 includes a gas turbine 10, a fault diagnostic device 50, a transmitter 60, and a console 70. In the present embodiment, the gas turbine 10 includes a compressor 110, a combustion chamber 130, a turbine 150, a generator 170, and a data acquisition unit 190. The three components of compressor 110, combustion chamber 130 and turbine 150 make up the gas turbine cycle.
[0032] 压气机 110从外界大气环境吸入空气, 并经过压气机 110逐级压缩使之增压, 同 时空气温度也相应提高。 压缩空气被压送到燃烧室 130与喷入的燃料混合燃烧生 成高温高压的气体; 然后再进入到透平 150中膨胀做功, 推动透平带动压气机 11 〇和外负荷转子一起高速旋转, 实现了气体或液体燃料的化学能部分转化为机械 能并输出电能。 从透平 150中排出的废气排至大气自然放热。  [0032] The compressor 110 draws in air from the outside atmospheric environment, and is pressurized by the compressor 110 stepwise to increase the temperature, and the air temperature is also increased accordingly. The compressed air is sent to the combustion chamber 130 to be mixed with the injected fuel to generate a high-temperature and high-pressure gas; and then enters into the turbine 150 to expand work, and the turbine is driven to drive the compressor 11 〇 and the external load rotor to rotate at a high speed. The chemical energy of the gas or liquid fuel is partially converted into mechanical energy and outputs electrical energy. The exhaust gas discharged from the turbine 150 is naturally radiated to the atmosphere.
[0033] 这样, 燃气轮机 10就把燃料的化学能转化为热能, 又把部分热能转变成机械能 。 通常在燃气轮机 10中, 压气机 110是由燃气透平 150膨胀做功来带动的, 它是 透平 150的负载。 在燃气轮机循环中, 透平 150发出的机械能有部分用来带动压 气机 110, 有部分的机械功用来驱动发电机 170。 在燃气轮机 10起动的时候, 首 先需要外界动力, 一般是起动机 (图未示) 带动压气机 110, 直到燃气透平 150 发出的机械能大于压气机 110消耗的机械能时, 外界起动机脱扣, 燃气轮机 10才 能自身独立工作。  [0033] Thus, the gas turbine 10 converts the chemical energy of the fuel into heat energy and converts part of the heat energy into mechanical energy. Typically in the gas turbine 10, the compressor 110 is driven by the expansion of the gas turbine 150, which is the load of the turbine 150. In the gas turbine cycle, the mechanical energy from the turbine 150 is used to partially drive the compressor 110, with some mechanical work to drive the generator 170. When the gas turbine 10 is started, external power is first required. Generally, the starter (not shown) drives the compressor 110 until the mechanical energy emitted by the gas turbine 150 is greater than the mechanical energy consumed by the compressor 110, and the external starter trips, the gas turbine 10 can work independently.
[0034] 数据采集单元 190可以为传感器, 其能够监测燃气轮机 10实际运行时的一系列 参数? (以下简称实际运行参数 ?) 。 该实际运行参数?包括环境参数 , 燃气轮 机起动参数 6和燃气轮机性能指示参数(:, 发电机参数 0, 滑油指示参数 £和振动 指示参数?。 上述环境参数八可以为大气温度、 压力、 湿度、 空气质量。 上述燃 气轮机起动参数6可以为起动机转速和功率。 上述燃气轮机性能指示参数(:可以 为转速、 空气流量、 燃料成分、 燃料流量、 燃料温度、 各节点温度和压力、 压 气机总功、 排放尾气成分。 上述发电机参数〇可以为发电机负载、 发电功率、 电 压、 电流、 频率。 上述滑油指示参数 £包括油压、 油温、 油箱液位和滑油流量。 上述振动指示参数 ?包括位移、 速度、 振幅和频率。  [0034] The data acquisition unit 190 can be a sensor that is capable of monitoring a series of parameters of the gas turbine 10 in actual operation. (hereinafter referred to as the actual operating parameters ?). The actual operating parameters include environmental parameters, gas turbine starting parameters 6 and gas turbine performance indicating parameters (:, generator parameter 0, oil indicating parameter £ and vibration indicating parameters. The above environmental parameters eight can be atmospheric temperature, pressure, humidity Air quality The above gas turbine starting parameter 6 may be the starter speed and power. The above gas turbine performance indication parameters (: can be speed, air flow, fuel composition, fuel flow, fuel temperature, temperature and pressure of each node, total compressor work) The exhaust gas component can be the generator load, the generated power, the voltage, the current, and the frequency. The above-mentioned oil indicating parameters include oil pressure, oil temperature, tank level and oil flow. Parameters? Includes displacement, velocity, amplitude, and frequency.
[0035] 故障诊断装置 50包括存储单元 520, 模拟单元 530, 诊断单元 550, 查询单元 570 \¥0 2019/100221 卩(:17 \2017/112205 和输出单元 590。 变送器 60将数据采集单元 190采集到的燃气轮机 10的实际运行 参数 ?转变成可被故障诊断装置 50中模拟单元 530识别的实际运行参数 并将燃 气轮机 10的实际运行参数〇发送给模拟单元 530。 在本实施方式中, 故障诊断装 置 50为计算机, 变送器 60独立于故障诊断装置 50之外。 在其他实施方式中, 变 送器 60也可以集成在故障诊断装置 50内。 [0035] The fault diagnosis apparatus 50 includes a storage unit 520, an analog unit 530, a diagnosis unit 550, and a query unit 570. \¥0 2019/100221 卩 (: 17 \2017/112205 and output unit 590. The transmitter 60 converts the actual operating parameters of the gas turbine 10 collected by the data acquisition unit 190 into an analog unit 530 that can be used by the fault diagnostic device 50. The identified actual operating parameters and the actual operating parameters of the gas turbine 10 are sent to the analog unit 530. In the present embodiment, the fault diagnostic device 50 is a computer, and the transmitter 60 is independent of the fault diagnostic device 50. In the manner, the transmitter 60 can also be integrated into the fault diagnostic device 50.
[0036] 存储单元 520用于存放故障数据库, 该故障数据库包括故障数据, 故障原因及 故障处理措施。 该数据库系统是根据燃机故障征兆或现象和其对应的部位、 原 因、 影响以及处理措施来编程建立的。 数据库系统除了能够检索故障原因, 还 能够存储故障信息 (时间、 现象、 原因、 操作等) 形成日志以便维护; 在没有 发生故障时, 也能够根据需要来存储运行参数值, 便于燃气轮机的日常维护, 还能以此判断燃气轮机的检修期。 例如: 当压气机后压力出现较大差异时, 可 以联合进气压力和温度、 空气进气量进行判断, 可能的原因有进气滤清堵塞, 气封磨损泄漏、 压气机叶轮故障等, 对应的措施有清洗或更换进气滤清、 检查 气封和叶轮等。 当燃气轮机出现振动超出标准时, 可能的原因有: 轴承磨损、 转子变形或裂纹、 滑油问题、 支撑松动等, 需要联合其他参数来确认故障部位 和原因。  [0036] The storage unit 520 is configured to store a fault database, where the fault database includes fault data, a fault cause, and a fault handling measure. The database system is programmed based on the symptoms or phenomena of the gas turbine failure and their corresponding locations, causes, effects, and treatments. In addition to being able to retrieve the cause of the fault, the database system can also store fault information (time, phenomenon, cause, operation, etc.) to form a log for maintenance. When there is no fault, the operating parameter value can be stored as needed to facilitate routine maintenance of the gas turbine. It is also possible to judge the maintenance period of the gas turbine. For example: When there is a large difference in pressure after the compressor, the intake pressure and temperature, and the amount of air intake can be combined. The possible causes are air intake filter blockage, gas seal wear leak, compressor wheel impeller, etc. The measures are to clean or replace the air intake filter, check the air seal and the impeller. When the vibration of the gas turbine exceeds the standard, the possible causes are: bearing wear, rotor deformation or crack, oil problem, loose support, etc., and other parameters need to be combined to confirm the fault location and cause.
[0037] 模拟单元 530根据燃气轮机 10固有尺寸参数建立等尺寸虚拟模型。 模拟单元 530 根据上述实际运行参数 虚拟模型和基础数据进行各项模拟运算得出一系列与 实际运行参数(3相对应的虚拟燃气轮机运行参数 在本实施方式中, 上述模拟 运算包括但不限于热力计算和流体气动计算。  [0037] The simulation unit 530 establishes an equal-sized virtual model based on the inherent size parameters of the gas turbine 10. The simulation unit 530 performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of virtual gas turbine operating parameters corresponding to the actual operating parameters (3). In the present embodiment, the above simulation operations include but are not limited to thermal calculations. And fluid aerodynamic calculations.
[0038] 在本实施方式中, 该基础数据包括环境压力, 环境温度, 环境相对湿度, 转速 , 燃料种类, 燃料热值和燃料压力。 上述基础数据可以预先存储在存储单元 520 内再由模拟单元 530根据需要存取, 也可以由用户直接输入给模拟单元 530。 具 体基础数据请参图 2的表格。  [0038] In the present embodiment, the basic data includes ambient pressure, ambient temperature, ambient relative humidity, rotational speed, fuel type, fuel calorific value, and fuel pressure. The above basic data may be stored in the storage unit 520 in advance and then accessed by the analog unit 530 as needed, or may be directly input to the analog unit 530 by the user. Please refer to the table in Figure 2 for specific basic data.
[0039] 在本实施方式中, 虚拟运行参数1^包括该压气机后压力, 压气机后温度, 压气 机空气流量燃料消耗量, 燃气渦轮入口温度, 燃气渦轮入口压力, 动力渦轮入 口温度, 动力渦轮入口压力, 排气温度, 排气压力, 压气机输入功率, 动力渦 轮输出功率, 发电功率及发电效率。 具体实际运行参数 和虚拟运行参数1^请参 \¥0 2019/100221 卩(:17 \2017/112205 考图 3的表格。 [0039] In the present embodiment, the virtual operating parameter 1^ includes the post-compressor pressure, the post-compressor temperature, the compressor air flow fuel consumption, the gas turbine inlet temperature, the gas turbine inlet pressure, the power turbine inlet Temperature, power turbine inlet pressure, exhaust temperature, exhaust pressure, compressor input power, power turbine output power, power generation and power generation efficiency. Specific actual operating parameters and virtual operating parameters 1 ^ please \¥0 2019/100221 卩 (: 17 \2017/112205 The table in Figure 3.
[0040] 诊断单元 550将变送器 60发送的实际运行参数 与模拟单元 53运算的出的虚拟运 行参数 故比较以判断燃气轮机 10的工作状况是否正常稳定。 当诊断单元 550的 比较结果是实际运行参数(3和虚拟运行参数1^的差值大于或者等于预定值, 则诊 断单元 550认为燃气轮机 10运行出现故障, 产生故障数据并将故障数据发送给查 询单元 570。  [0040] The diagnostic unit 550 compares the actual operating parameters transmitted by the transmitter 60 with the virtual operating parameters calculated by the analog unit 53 to determine whether the operating conditions of the gas turbine 10 are normally stable. When the comparison result of the diagnosis unit 550 is that the difference between the actual operation parameter (3 and the virtual operation parameter 1^ is greater than or equal to the predetermined value, the diagnosis unit 550 considers that the gas turbine 10 is malfunctioning, generates failure data, and transmits the failure data to the inquiry unit. 570.
[0041] 查询单元 570根据诊断单元 550发出的故障数据检索存储单元 520内的故障数据 库, 并将查询出的数据库中与故障数据对应的故障原因及故障处理措施发送给 输出单元 590。  The query unit 570 retrieves the fault data database in the storage unit 520 according to the fault data sent by the diagnostic unit 550, and sends the fault cause and fault handling measures corresponding to the fault data in the queried database to the output unit 590.
[0042] 输出单元 590输出查询单元 570发送的故障原因及故障处理措施。 在本实施方式 中, 该输出单元 590具备显示功能, 将故障原因及故障处理措施显示出来, 以方 便值班人员了解燃气轮机 10的运行状况并对燃气轮机 10出现的故障进行处理。  [0042] The output unit 590 outputs the cause of the fault and the fault handling measures sent by the query unit 570. In the present embodiment, the output unit 590 is provided with a display function to display the cause of the malfunction and the fault handling measures to facilitate the on-duty personnel to understand the operating conditions of the gas turbine 10 and to treat the malfunction of the gas turbine 10.
[0043] 查询单元 570也可同步将数据输出到操控台 70的显示单元 710, 由显示单元 710 将查询单元 570发送的故障原因及故障处理措施显示出来, 使得值班人员在操作 台 70上即看查看燃气轮机 10的故障原因及故障处理措施, 以节省值班人员的时 间。  [0043] The query unit 570 can also synchronously output the data to the display unit 710 of the console 70, and display the fault cause and fault handling measures sent by the query unit 570 by the display unit 710, so that the on-duty personnel can see on the console 70. View the cause of the failure of the gas turbine 10 and the troubleshooting measures to save time on duty.
[0044] 综上所述, 上述监控系统 99除了能监控和显示运行参数, 还能够远程控制燃气 轮机 10的运行。 当燃气轮机 10运行出现故障时, 值班人员得到电脑反馈的故障 信息后, 能够快速地处理问题, 以防出现安全事故。 传统的燃气轮机 10控制系 统的控制流程是采集数据、 反馈、 显示。 而本系统使用计算机作为虚拟燃机和 数据库的载体, 控制流程除了数据的采集、 反馈、 显示, 还增加了数据的模拟 、 对比和判断, 在此基础上进行故障的诊断。 故, 本发明提供的燃气轮机 10的 监控系统 99能够简化燃气轮机的操作、 降低维护检修难度, 全面地监测和控制 燃气轮机的运行状况, 同时实现了燃气轮机故障检测自动化。  [0044] In summary, the above monitoring system 99 can remotely control the operation of the gas turbine 10 in addition to monitoring and displaying operating parameters. When the operation of the gas turbine 10 fails, the on-duty personnel can quickly solve the problem after receiving the fault information fed back by the computer to prevent a safety accident. The control flow of the traditional gas turbine 10 control system is to collect data, feedback, and display. The system uses the computer as the carrier of the virtual gas turbine and the database. In addition to the data collection, feedback and display, the control process also increases the simulation, comparison and judgment of the data, and on the basis of the fault diagnosis. Therefore, the monitoring system 99 of the gas turbine 10 provided by the present invention can simplify the operation of the gas turbine, reduce the difficulty of maintenance and overhaul, comprehensively monitor and control the operation state of the gas turbine, and realize the automation of gas turbine fault detection.
[0045] 由上可知, 本发明提供的监控系统 99可在线监测和调控, 实时自动分析燃气 轮机 10的工作状况; 当机体正常运行时, 系统会记录运行信息, 并且按照记录 数据推测维护时间; 在出现机体工况异常时, 系统能够直接分析故障点并反馈 至值班人员, 同时将故障信息收集于数据库内, 便于维护处理。 这样, 使用上 \¥0 2019/100221 卩(:17 \2017/112205 述控制系统 99 , 在出现故障的第一时间内, 即分析得出可能的故障点和诱因以 及相应的处理措施。 这能够降低燃气轮机 10的运行和维护的复杂性, 对值班人 员的技术要求大大降低。 另外, 本发明燃气轮机 10的监控系统 99能够让值班人 员通过在线监控系统进行远程监控, 实时了解机体工况。 本监控系统 99整体提 高了燃气轮机的运行监控和维护的简易性、 快速实时性, 同时也实现了监测监 控系统 99的自动化故障分析。 [0045] It can be seen from the above that the monitoring system 99 provided by the present invention can monitor and control online, and automatically analyze the working state of the gas turbine 10 in real time; when the body is in normal operation, the system records the operation information and infers the maintenance time according to the recorded data; When the operating conditions of the machine are abnormal, the system can directly analyze the fault point and feed it back to the on-duty personnel. At the same time, the fault information is collected in the database for easy maintenance. In this way, use \¥0 2019/100221 卩(:17 \2017/112205 The control system 99, in the first time of failure, analyzes the possible fault points and incentives and the corresponding treatment measures. This can reduce the gas turbine 10 The complexity of operation and maintenance greatly reduces the technical requirements of the on-duty personnel. In addition, the monitoring system 99 of the gas turbine 10 of the present invention enables the on-duty personnel to remotely monitor through the online monitoring system to understand the working conditions of the aircraft in real time. The operation monitoring and maintenance of the gas turbine is simple, fast and real-time, and the automatic fault analysis of the monitoring and monitoring system 99 is also realized.
[0046] 本文所描述的概念在不偏离其精神和特性的情况下可以实施成其它形式。 所公 开的具体实施例应被视为例示性而不是限制性的。 因此, 本发明的范围是由所 附的权利要求, 而不是根据之前的这些描述进行确定。 在权利要求的字面意义 及等同范围内的任何改变都应属于这些权利要求的范围。  [0046] The concepts described herein may be embodied in other forms without departing from the spirit and scope of the invention. The specific embodiments disclosed are to be considered as illustrative and not restrictive. Therefore, the scope of the invention is to be determined by the appended claims rather Any changes which come within the meaning and range of the claims are intended to be within the scope of the claims.

Claims

\¥0 2019/100221 卩(:17 \2017/112205 权利要求书 \¥0 2019/100221 卩(:17 \2017/112205 Claims
[权利要求 1] 一种监控系统, 包括燃气轮机和变送器, 所述燃气轮机包括压气机, 燃烧室, 透平, 发电机和数据采集单元; 所述数据采集单元用于监测 所述燃气轮机运行时的实际运行参数?; 其特征在于: 所述监控系统 还包括故障诊断装置, 所述变送器将所述数据采集单元采集到的燃气 轮机的实际运行参数 ?转变成可被所述故障诊断装置识别的实际运行 参数 并将实际运行参数 0发送给所述故障检测装置; 所述故障诊 断装置通过虚拟运行燃气轮机系统来输出燃气轮机的虚拟运行参数 ; 所述故障诊断装置还用于将上述虚拟运行参数 1^与监测到的所述燃 气轮机的实际运行参数(3相对比, 然后根据虚拟运行参数1^和监测到 的实体运行参数(3的差异检索故障数据库, 并将检索出的燃气轮机的 故障原因及故障处理措施输出以便用户获知并处理所述燃气轮机出现 的故障。  [Claim 1] A monitoring system includes a gas turbine and a transmitter, the gas turbine including a compressor, a combustion chamber, a turbine, a generator, and a data acquisition unit; the data acquisition unit is configured to monitor the gas turbine operation time Actual operating parameters? The monitoring system further includes a fault diagnosis device, wherein the transmitter converts the actual operating parameter of the gas turbine collected by the data acquisition unit into an actual operating parameter that can be recognized by the fault diagnosis device. Transmitting the actual operating parameter 0 to the fault detecting device; the fault diagnostic device outputs a virtual operating parameter of the gas turbine by virtual running the gas turbine system; the fault diagnostic device is further configured to use the virtual operating parameter and the monitored The actual operating parameters of the gas turbine (3 relative ratio, and then according to the virtual operating parameters 1 and the monitored physical operating parameters (3 differences in the retrieval of the fault database, and the retrieved gas turbine fault causes and fault handling measures for the user The failure of the gas turbine is known and handled.
[权利要求 2] 如权利要求 1所述的监控系统, 其特征在于: 所述故障诊断系统包括 存储单元, 模拟单元, 诊断单元, 查询单元和输出单元;  [Claim 2] The monitoring system according to claim 1, wherein: the fault diagnosis system comprises a storage unit, an analog unit, a diagnosis unit, a query unit, and an output unit;
所述存储单元用于存放故障数据库, 该故障数据库包括故障数据, 故 障原因及故障处理措施;  The storage unit is configured to store a fault database, where the fault database includes fault data, a cause of the fault, and a fault handling measure;
所述模拟单元根据所述燃气轮机固有尺寸参数建立等尺寸虚拟模型; 所述模拟单元根据上述实际运行参数 虚拟模型和基础数据进行各 项模拟运算得出一系列与实际运行参数(3相对应的虚拟燃气轮机运行 参数 II;  The simulation unit establishes an equal-size virtual model according to the gas turbine inherent size parameter; the simulation unit performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of virtual corresponding to the actual operating parameters (3) Gas turbine operating parameter II;
所述诊断单元将所述变送器发送的实际运行参数(3与所述模拟单元运 算的出的虚拟运行参数 故比较以判断所述燃气轮机的工作状况是否 正常稳定; 当所述诊断单元的比较结果是实际运行参数(3和虚拟运行 参数 1^的差值大于或者等于预定值, 则所述诊断单元认为燃气轮机运 行出现故障, 产生故障数据并将故障数据发送给所述查询单元; 所述查询单元根据所述诊断单元发出的故障数据检索所述存储单元内 的故障数据库, 并将查询出的数据库中与故障数据对应的故障原因及 \¥0 2019/100221 卩(:17 \2017/112205 故障处理措施发送给所述输出单元; The diagnostic unit compares the actual operating parameters sent by the transmitter (3 with the virtual operating parameters calculated by the analog unit to determine whether the operating condition of the gas turbine is normally stable; when comparing the diagnostic units The result is that the difference between the actual operating parameter (3 and the virtual operating parameter 1^ is greater than or equal to the predetermined value, the diagnostic unit considers that the gas turbine operation is faulty, generates fault data, and transmits the fault data to the query unit; The unit retrieves the fault database in the storage unit according to the fault data sent by the diagnostic unit, and the fault reason corresponding to the fault data in the queried database and \¥0 2019/100221 卩 (: 17 \2017/112205 troubleshooting measures are sent to the output unit;
所述输出单元输出所述查询单元发送的故障原因及故障处理措施以便 用户获知并处理燃气轮机出现的故障。  The output unit outputs a fault cause and a fault handling measure sent by the query unit so that the user can know and handle the fault that occurs in the gas turbine.
[权利要求 3] 如权利要求 1所述的监控系统, 其特征在于: 所述监控系统还包括设 置有显示单元的操控台, 所述查询单元可同步将数据输出到所述操控 台的显示单元, 由所述操控台的显示单元将所述查询单元发送的故障 原因及故障处理措施显示出来。  [Claim 3] The monitoring system according to claim 1, wherein: the monitoring system further includes a console provided with a display unit, and the query unit can synchronously output data to the display unit of the console The cause of the fault and the fault handling measure sent by the query unit are displayed by the display unit of the console.
[权利要求 4] 一种故障诊断装置, 用于一个监控系统内, 所述监控系统包括燃气轮 机和变送器, 所述燃气轮机包括压气机, 燃烧室, 透平, 发电机和数 据采集单元; 所述数据采集单元用于监测所述燃气轮机运行时的实际 运行参数 其特征在于: 所述变送器将所述数据采集单元采集到的 燃气轮机的实际运行参数 ?转变成可被所述故障诊断装置识别的实际 运行参数 并将实际运行参数〇发送给所述故障检测装置; 所述故 障诊断装置通过虚拟运行燃气轮机系统来输出燃气轮机的虚拟运行参 数 所述故障诊断装置还用于将上述虚拟运行参数 与监测到的所 述燃气轮机的实际运行参数(3相对比, 然后根据虚拟运行参数1^和监 测到的实体运行参数〇的差异检索故障数据库并将检索出燃气轮机的 故障原因及故障处理措施输出以便用户获知并处理所述燃气轮机出现 的故障; 其中所述故障诊断系统包括存储单元, 模拟单元, 诊断单元 , 查询单元和输出单元;  [Claim 4] A fault diagnosis apparatus for use in a monitoring system, the monitoring system including a gas turbine and a transmitter, the gas turbine including a compressor, a combustion chamber, a turbine, a generator, and a data acquisition unit; The data collecting unit is configured to monitor actual operating parameters of the gas turbine during operation, wherein: the transmitter converts an actual operating parameter of the gas turbine collected by the data collecting unit into being identifiable by the fault diagnosis device Actual operating parameters and the actual operating parameters are sent to the fault detecting device; the fault diagnostic device outputs virtual operating parameters of the gas turbine by virtually operating the gas turbine system. The fault diagnostic device is further configured to use the virtual operating parameters and Detecting the actual operating parameters of the gas turbine (3 relative ratio, and then retrieving the fault database according to the difference between the virtual operating parameter 1 and the monitored physical operating parameter 〇 and retrieving the gas turbine fault cause and fault handling measures for The user knows and processes the gas wheel The fault that occurs in the machine includes: a storage unit, an analog unit, a diagnosis unit, a query unit, and an output unit;
所述存储单元用于存放故障数据库, 该故障数据库包括故障数据, 故 障原因及故障处理措施;  The storage unit is configured to store a fault database, where the fault database includes fault data, a cause of the fault, and a fault handling measure;
所述模拟单元根据所述燃气轮机固有尺寸参数建立等尺寸虚拟模型; 所述模拟单元根据上述实际运行参数 虚拟模型和基础数据进行各 项模拟运算得出一系列与实际运行参数(3相对应的虚拟燃气轮机运行 参数 II;  The simulation unit establishes an equal-size virtual model according to the gas turbine inherent size parameter; the simulation unit performs various simulation operations according to the actual operating parameter virtual model and the basic data to obtain a series of virtual corresponding to the actual operating parameters (3) Gas turbine operating parameter II;
所述诊断单元将所述变送器发送的实际运行参数(3与所述模拟单元运 算的出的虚拟运行参数 故比较以判断所述燃气轮机的工作状况是否 \¥0 2019/100221 卩(:17 \2017/112205 正常稳定; 当所述诊断单元的比较结果是实际运行参数(3和虚拟运行 参数 1^的差值大于或者等于预定值, 则所述诊断单元认为燃气轮机运 行出现故障, 产生故障数据并将故障数据发送给所述查询单元; 所述查询单元根据所述诊断单元发出的故障数据检索所述存储单元内 的故障数据库, 并将查询出的数据库中与故障数据对应的故障原因及 故障处理措施发送给所述输出单元; The diagnostic unit compares the actual operating parameters sent by the transmitter (3 with the virtual operating parameters calculated by the analog unit to determine whether the working condition of the gas turbine is \¥0 2019/100221 卩(:17 \2017/112205 Normally stable; when the comparison result of the diagnostic unit is the actual operating parameter (3 and the difference between the virtual operating parameter 1^ is greater than or equal to the predetermined value, the diagnosis The unit considers that the gas turbine operation is faulty, generates fault data and sends the fault data to the query unit; the query unit retrieves the fault database in the storage unit according to the fault data sent by the diagnostic unit, and queries the database. The fault cause corresponding to the fault data and the fault handling measure are sent to the output unit;
所述输出单元输出所述查询单元发送的故障原因及故障处理措施以便 用户获知并处理燃气轮机出现的故障。  The output unit outputs a fault cause and a fault handling measure sent by the query unit so that the user can know and handle the fault that occurs in the gas turbine.
[权利要求 5] 如权利要求 4所述的故障诊断装置, 其特征在于: 所述模拟运算包括 热力计算和流体气动计算。  [Claim 5] The fault diagnosis apparatus according to claim 4, wherein: the simulation operation includes thermal calculation and fluid aerodynamic calculation.
[权利要求 6] 如权利要求 4所述的故障诊断装置, 其特征在于: 所述实际运行参数? 为环境参数 , 燃气轮机起动参数 6和燃气轮机性能指示参数(:, 发电 机参数〇, 滑油指示参数 £和振动指示参数?至少其中之一。 [Claim 6] The fault diagnosis apparatus according to claim 4, wherein: the actual operating parameter? At least one of the environmental parameters, the gas turbine starting parameter 6 and the gas turbine performance indicating parameter (:, generator parameter 〇, oil indicating parameter £ and vibration indicating parameter).
[权利要求 7] 如权利要求 6所述的故障诊断装置, 其特征在于: 所述环境参数八包 括大气温度、 压力、 湿度、 空气质量; 所述燃气轮机起动参数6包括 起动机转速和功率; 所述燃气轮机性能指示参数(:包括转速、 空气流 量、 燃料成分、 燃料流量、 燃料温度、 各节点温度和压力、 压气机总 功、 排放尾气成分; 所述发电机参数〇包括发电机负载、 发电功率、 电压、 电流和频率; 所述滑油指示参数 £包括油压、 油温、 油箱液位 和滑油流量; 所述振动指示参数 ?包括位移、 速度、 振幅和频率。  [Claim 7] The fault diagnosis apparatus according to claim 6, wherein: the environmental parameter eight includes atmospheric temperature, pressure, humidity, and air quality; and the gas turbine starting parameter 6 includes a starter speed and power; The gas turbine performance indication parameter (including speed, air flow, fuel composition, fuel flow, fuel temperature, temperature and pressure of each node, total compressor work, exhaust gas composition; the generator parameter 〇 includes generator load, Generating power, voltage, current, and frequency; the oil indicating parameter includes oil pressure, oil temperature, tank level, and oil flow rate; the vibration indicating parameter includes displacement, speed, amplitude, and frequency.
[权利要求 8] 如权利要求 4所述的故障诊断装置, 其特征在于: 所述基础数据包括 环境压力, 环境温度, 环境相对湿度, 转速, 燃料种类, 燃料热值和 燃料压力。  [Claim 8] The fault diagnosis apparatus according to claim 4, wherein: the basic data includes ambient pressure, ambient temperature, ambient relative humidity, rotational speed, fuel type, fuel calorific value, and fuel pressure.
[权利要求 9] 如权利要求 4所述的故障诊断装置, 其特征在于: 所述虚拟运行参数  [Claim 9] The fault diagnosis apparatus according to claim 4, wherein: the virtual operation parameter
1^包括该压气机后压力, 压气机后温度, 压气机空气流量燃料消耗量 , 燃气渦轮入口温度, 燃气渦轮入口压力, 动力渦轮入口温度, 动力 渦轮入口压力, 排气温度, 排气压力, 压气机输入功率, 动力渦轮输 出功率, 发电功率及发电效率。 \¥0 2019/100221 卩(:17 \2017/112205 1^ includes the post-compressor pressure, compressor post-temperature, compressor air flow fuel consumption, gas turbine inlet temperature, gas turbine inlet pressure, power turbine inlet temperature, power turbine inlet pressure, exhaust gas temperature, Exhaust pressure, compressor input power, power turbine output power, power generation and power generation efficiency. \¥0 2019/100221 卩(:17 \2017/112205
[权利要求 10] 如权利要求 4所述的故障诊断装置, 其特征在于: 所述变送器集成在 所述故障诊断系统内。 [Claim 10] The fault diagnosis apparatus according to claim 4, wherein: the transmitter is integrated in the fault diagnosis system.
PCT/CN2017/112205 2017-11-21 2017-11-21 Monitoring system and fault diagnosis apparatus thereof WO2019100221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112205 WO2019100221A1 (en) 2017-11-21 2017-11-21 Monitoring system and fault diagnosis apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112205 WO2019100221A1 (en) 2017-11-21 2017-11-21 Monitoring system and fault diagnosis apparatus thereof

Publications (1)

Publication Number Publication Date
WO2019100221A1 true WO2019100221A1 (en) 2019-05-31

Family

ID=66631305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112205 WO2019100221A1 (en) 2017-11-21 2017-11-21 Monitoring system and fault diagnosis apparatus thereof

Country Status (1)

Country Link
WO (1) WO2019100221A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763106A (en) * 2010-01-27 2010-06-30 浙江国华浙能发电有限公司 Operation optimum management control system and method of thermal generator set
CN205876493U (en) * 2016-07-04 2017-01-11 重庆重客汽车电子有限公司 Gas turbine generator organizes remote monitering system
CN205899369U (en) * 2016-03-18 2017-01-18 华电国际电力股份有限公司技术服务中心 Long -range monitoring and diagnosis system of coal -fired power unit equipment
CN107315405A (en) * 2017-08-28 2017-11-03 山东中实易通集团有限公司 A kind of unit booting-self controller process remote diagnosis system and method based on internet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763106A (en) * 2010-01-27 2010-06-30 浙江国华浙能发电有限公司 Operation optimum management control system and method of thermal generator set
CN205899369U (en) * 2016-03-18 2017-01-18 华电国际电力股份有限公司技术服务中心 Long -range monitoring and diagnosis system of coal -fired power unit equipment
CN205876493U (en) * 2016-07-04 2017-01-11 重庆重客汽车电子有限公司 Gas turbine generator organizes remote monitering system
CN107315405A (en) * 2017-08-28 2017-11-03 山东中实易通集团有限公司 A kind of unit booting-self controller process remote diagnosis system and method based on internet

Similar Documents

Publication Publication Date Title
CN107702924A (en) Monitoring system and its trouble-shooter
US8509935B2 (en) Systems for monitoring machinery
JP6055188B2 (en) Turbomachine analysis method and system
CN102539162B (en) The method and system of compressor health monitoring
US20160178464A1 (en) Torque sensor monitoring for gas turbine engine
CN104019000A (en) Load spectrum determination and proactive maintenance system of wind generating set
CA2956999C (en) Automated system and method for generating engine test cell analytics and diagnostics
JP2016070272A (en) Systems and methods for fault analysis
JP2011220333A (en) System and method for monitoring compressor
CN106641045B (en) The safety monitoring system and method for combined-cycle power plant's timing clutch
JP2012075308A (en) Monitoring and diagnosing method for generator operation
JP5358275B2 (en) Remote monitoring system for power generation facilities
CN205138794U (en) Simulation gas turbine compressor import adjustable guide vane hydraulic pressure governing system device
WO2019100221A1 (en) Monitoring system and fault diagnosis apparatus thereof
JP5653786B2 (en) Anomaly detection device
CN102777273A (en) Intelligent comprehensive monitoring and controlling system for moving components of diesel generator set
JPH06313734A (en) Method and apparatus for diagnosing equipment of plant
CN107630755A (en) Predict the system and method for the physical parameter of burning fuel system
US9371811B2 (en) Methods and systems for operating a gas turbine engine
CN201955232U (en) Measurement and control device for test bed of transmission case
CN112834699A (en) Supercritical carbon dioxide compression circulation test bench
JPS5857008A (en) Diagnosis of anomaly of water feeding pump and driving turbine thereof
CN220084339U (en) Turbocharger test bed safety protection system
Niculescu et al. Data Recorder System for Maintenance to Rotary Blade Machines–“HolderPPS”
CN216926044U (en) High-low rotating speed integrated blade prediction maintenance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17933175

Country of ref document: EP

Kind code of ref document: A1