WO2019098232A1 - 検査システム、制御方法、および記憶媒体 - Google Patents

検査システム、制御方法、および記憶媒体 Download PDF

Info

Publication number
WO2019098232A1
WO2019098232A1 PCT/JP2018/042113 JP2018042113W WO2019098232A1 WO 2019098232 A1 WO2019098232 A1 WO 2019098232A1 JP 2018042113 W JP2018042113 W JP 2018042113W WO 2019098232 A1 WO2019098232 A1 WO 2019098232A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
angle
around
control unit
weld
Prior art date
Application number
PCT/JP2018/042113
Other languages
English (en)
French (fr)
Inventor
彰 牛島
真拡 齊藤
千葉 康徳
松本 真
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to KR1020207004927A priority Critical patent/KR102330478B1/ko
Priority to KR1020217037496A priority patent/KR20210144911A/ko
Priority to CN202210543255.7A priority patent/CN114965715A/zh
Priority to KR1020237012376A priority patent/KR20230054497A/ko
Priority to DE112018000827.4T priority patent/DE112018000827B4/de
Priority to CN201880017850.9A priority patent/CN110402388B/zh
Priority to CA3072737A priority patent/CA3072737C/en
Priority to EP18878645.3A priority patent/EP3712608A4/en
Publication of WO2019098232A1 publication Critical patent/WO2019098232A1/ja
Priority to US16/567,004 priority patent/US11131652B2/en
Priority to US17/446,548 priority patent/US11852611B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2672Spot welding

Definitions

  • Embodiments of the present invention relate to an inspection system, a control method, and a storage medium.
  • welds parts of two or more parts are melted and joined to make one member.
  • the members produced by welding are inspected whether the welded parts (hereinafter referred to as welds) are properly joined.
  • a probe including an ultrasonic sensor is brought into contact with the weld. Then, ultrasonic waves are transmitted toward the welds, and the presence or absence of bonding is checked based on the reflected waves.
  • the angle of the probe with respect to the part influences the inspection result. For example, if the inspection is performed at an inappropriate angle, it may be determined as unjoined although it is actually properly joined. For this reason, it is desirable that the angle of the probe be set to an appropriate value.
  • development of a technique capable of adjusting the angle of the probe to a more appropriate value is desired.
  • the problem to be solved by the present invention is to provide an inspection system, a control method, and a storage medium capable of adjusting the angle of the probe to a more appropriate value.
  • An inspection system includes a probe and a controller.
  • the probe includes a plurality of ultrasonic sensors arranged in a first direction.
  • the probe moves in a second direction intersecting the first direction to contact the weld.
  • Each of the plurality of ultrasonic sensors transmits an ultrasonic wave toward the weld and receives a reflected wave.
  • the control unit detects joining and non-joining at a plurality of points along the first direction of the weld based on the plurality of reflected waves, and joining or non-joining is detected at the plurality of points Adjusting the angle of the probe around a third direction perpendicular to the first direction and intersecting the second direction based on a number.
  • FIG. 1 is a schematic view showing an inspection system according to the embodiment.
  • Drawing 2 is a perspective view showing a part of inspection system concerning an embodiment.
  • the inspection system 100 according to the embodiment is for nondestructive inspection of a weld where two or more parts are integrated.
  • an inspection system 100 includes an inspection apparatus 1 and a control unit 2.
  • the inspection apparatus 1 includes a probe 10, an imaging unit 20, an application unit 30, and a robot arm (hereinafter referred to as an arm) 40.
  • the probe 10 includes a plurality of ultrasonic sensors used for inspection of welds.
  • the imaging unit 20 captures the welded member and acquires an image.
  • the imaging unit 20 extracts weld marks from the image and detects the position of the welds.
  • the application unit 30 applies the couplant to the upper surface of the weld.
  • the couplant is used to acoustically match the ultrasound between the probe 10 and the test object.
  • the couplant may be liquid or gel-like.
  • the probe 10, the imaging unit 20, and the application unit 30 are provided at the tip of the arm 40, for example, as shown in FIG.
  • the arm 40 is, for example, an articulated robot. By driving the arm 40, the positions of the probe 10, the imaging unit 20, and the application unit 30 can be changed.
  • the control unit 2 controls the operation of these components included in the inspection apparatus 1.
  • the inspection apparatus 1 is connected to an apparatus including the control unit 2 by wired communication or wireless communication, for example. Or the control part 2 is provided in the test
  • FIG. 3 is a schematic view showing the internal structure of the probe tip of the inspection system according to the embodiment.
  • the matrix sensor 11 includes a plurality of ultrasonic sensors 12.
  • the ultrasonic sensor 12 is, for example, a transducer.
  • the plurality of ultrasonic sensors 12 are arranged in a first direction D1 and a third direction D3 orthogonal to each other.
  • the probe 10 moves in a second direction D2 intersecting with a plane including the first direction D1 and the third direction D3 and contacts the inspection target.
  • the second direction D2 is perpendicular to the plane including the first direction D1 and the third direction D3.
  • FIG. 3 shows a state in which the member 5 is inspected.
  • the member 5 is manufactured by spot-welding the metal plate 51 and the metal plate 52 in the welding portion 53.
  • a solidified portion 54 is formed in which a part of the metal plate 51 and a part of the metal plate 52 are melted, mixed and solidified.
  • Each ultrasonic sensor 12 transmits the ultrasonic wave US toward the member 5 coated with the couplant 55 and receives the reflected wave RW from the member 5.
  • one ultrasonic sensor 12 transmits ultrasonic waves US toward the welding portion 53.
  • a part of the ultrasonic wave US is reflected by the surface or the bottom of the member 5 or the like.
  • Each of the plurality of ultrasonic sensors 12 receives and detects the reflected wave RW.
  • Each ultrasonic sensor 12 sequentially transmits ultrasonic waves US, and each reflected wave RW is received by a plurality of ultrasonic sensors 12 to two-dimensionally inspect the vicinity of the weld portion 53 of the member 5.
  • FIG. 4 is a flowchart showing an outline of the operation of the inspection system according to the embodiment.
  • the imaging unit 20 captures an image of the member 5 and detects the position of the welding portion 53 from the acquired image (step S1).
  • the arm 40 moves the application unit 30 to a position facing the welding unit 53 in the second direction D2.
  • the application unit 30 applies the couplant to the weld (step S2).
  • the arm 40 moves the probe 10 in the second direction D2 to contact the welding portion 53 (step S3).
  • the plurality of ultrasonic sensors 12 transmit the ultrasonic wave US toward the member 5 including the welding portion 53 and receive the reflected wave RW.
  • the control unit 2 adjusts the angle of the probe 10 based on the plurality of reflected waves RW (step S4).
  • the plurality of ultrasonic sensors 12 inspect the welded portion 53 (step S5).
  • the control unit 2 determines whether there is a weld portion 53 not inspected yet (step S6).
  • step S7 If there are no untested welds 53, the test ends.
  • the control unit 2 drives the arm 40 to move the probe 10, the imaging unit 20, and the application unit 30 toward another weld portion 53 (step S7). Thereafter, steps S1 to S6 are executed again.
  • FIG. 5 is a schematic view for explaining an inspection method by the inspection system according to the embodiment.
  • a part of the ultrasonic wave US is reflected by the upper surface 5 a of the metal plate 51 or the upper surface 5 b of the welding portion 53.
  • Another part of the ultrasonic wave US is incident on the member 5 and is reflected by the bottom surface 5 c of the metal plate 51 or the bottom surface 5 d of the welding portion 53.
  • the positions of the upper surface 5a, the upper surface 5b, the bottom surface 5c, and the bottom surface 5d in the second direction D2 are different from each other. That is, the distances in the second direction D2 between these surfaces and the ultrasonic sensor 12 are different from each other.
  • the ultrasonic sensor 12 receives the reflected waves from these surfaces, the peak of the reflected wave intensity is detected. By calculating the time until each peak is detected after transmitting the ultrasonic wave US, it can be checked on which surface the ultrasonic wave US is reflected.
  • 5 (b) and 5 (c) are graphs illustrating the relationship between the time after transmission of the ultrasonic wave US and the intensity of the reflected wave RW.
  • the graph of FIG. 5B illustrates the reception result of the reflected wave RW from the top surface 5 a and the bottom surface 5 c of the metal plate 51.
  • the graph of FIG. 5C illustrates the reception result of the reflected wave RW from the top surface 5 b and the bottom surface 5 d of the weld 53.
  • the first peak Pe1 is based on the reflected wave RW from the upper surface 5a.
  • the second peak Pe2 is based on the reflected wave RW from the bottom surface 5c.
  • the times at which the peak Pe1 and the peak Pe2 are detected correspond to the positions of the top surface 5a and the bottom surface 5c of the metal plate 51 in the second direction D2, respectively.
  • the time difference TD1 between the time when the peak Pe1 is detected and the time when the peak Pe2 is detected corresponds to the distance Di1 in the second direction D2 between the top surface 5a and the bottom surface 5c.
  • the first peak Pe3 is based on the reflected wave RW from the upper surface 5b.
  • the second peak Pe4 is based on the reflected wave RW from the bottom surface 5d.
  • the times at which the peak Pe3 and the peak Pe4 are detected correspond to the positions of the top surface 5b and the bottom surface 5d of the weld 53 in the second direction D2, respectively.
  • the time difference TD2 between the time when the peak Pe3 is detected and the time when the peak Pe4 is detected corresponds to the distance Di2 in the second direction D2 between the top surface 5b and the bottom surface 5d.
  • the ultrasonic wave US can be detected by detecting the time until the first peak (first peak) and the second peak (second peak) of the reflected wave RW are detected.
  • the position of the reflected surface in the second direction D2 can be detected. From the difference between the time when the first peak is detected and the time when the second peak is detected, the distance in the second direction D2 between the surfaces on which the ultrasonic waves US are reflected can be detected.
  • FIG. 6 is a flowchart showing a method of adjusting the probe angle by the inspection system according to the embodiment.
  • FIG. 7 is a diagram for explaining an inspection system according to the embodiment.
  • the ultrasonic waves US are transmitted from the plurality of ultrasonic sensors 12 and the reflected waves RW are received (step S401).
  • each ultrasonic sensor 12 sequentially transmits an ultrasonic wave US, and each reflected wave RW is received by a plurality of ultrasonic sensors 12.
  • FIG. 7A and FIG. 7D are plan views showing the vicinity of the welding portion 53 of the member 5.
  • step S401 for example, the structure in the detection area DA shown in FIG. 7A is detected. That is, bonding or non-bonding is detected at each point of the detection area DA.
  • the control unit 2 adjusts the angle around the third direction D3 of the probe 10 based on the detection result on the line segment L1 along the first direction D1 among the detection results.
  • the line segment L1 is located, for example, near the center of the detection area DA in the third direction D3.
  • FIG. 7B is an example of the detection result at each point on the line segment L1.
  • the vertical axis represents the position in the second direction D2.
  • the horizontal axis represents the position in the first direction D1.
  • a circle (white circle) indicates the position of the first reflection surface (first reflection surface) of the member 5 in the second direction D2. That is, ⁇ represents the position of the upper surface 5a or the position of the upper surface 5b.
  • ( ⁇ ) indicates the position of the second reflection surface (second reflection surface) of the member 5 in the second direction D2. That is, ⁇ represents the position of the bottom surface 5c or the position of the bottom surface 5d.
  • these positions are calculated based on the time until the peak of the reflected wave RW is detected after transmitting the ultrasonic wave US.
  • represents the detection result of bonding and non-bonding described later.
  • the control unit 2 calculates the distance between the first reflection surface and the second reflection surface. For example, when the distance is equal to or greater than a predetermined threshold value, the control unit 2 determines that the point is joined. When the distance is less than the threshold, the control unit 2 determines that the point is not joined. In the graph shown in FIG. 7B, the point determined to be joined is represented by a value of 1, and the point determined to be unjoined is represented by a value of 0.
  • the control unit 2 detects bonding and non-bonding at a plurality of points along the first direction D1 of the member 5 by the above-described method.
  • the control unit 2 extracts the number of junctions detected (hereinafter, referred to as the number of detections) (step S402).
  • the control unit 2 determines whether the number of detections is equal to or greater than a preset threshold (step S403).
  • the threshold is set based on the dimension of the weld 53 in the first direction D1, the density of the ultrasonic sensor 12 in the first direction D1, and the like.
  • step S5 shown in FIG. 4 may be omitted. This is because a sufficient number of detections have already been detected, and the welds 53 can be considered to be properly joined. If the number of detections is less than the threshold value, the control unit 2 compares the number m1 of steps S401 and S402 executed so far with the preset value n1 (step S404).
  • step S405 If the number of times m1 is less than the value n1, the control unit 2 changes the angle around the third direction D3 of the probe 10 (step S405). Then, step S401 is executed again. Thus, steps S401 and S402 are repeatedly performed while changing the angle around the third direction D3.
  • the control unit 2 derives an appropriate first angle around the third direction D3 of the probe 10 from the detection result up to that point (step S406).
  • FIG. 7C shows an example of the detection result obtained by repeating steps S401 to S405.
  • the horizontal axis represents the angle around the third direction D3
  • the vertical axis represents the number of detections at each angle.
  • the control unit 2 sets the angle ⁇ 1 at which the number of detections is the largest as the first angle.
  • the control unit 2 may generate a quadratic function QF representing the relationship between the angle and the number of detections, and set the angle ⁇ 2 as the inflection point of the quadratic function QF as the first angle.
  • the control unit 2 sets the angle around the third direction D3 of the probe 10 to the first angle (step S407).
  • the ultrasonic waves US are transmitted from the plurality of ultrasonic sensors 12 and the reflected waves RW are received (step S408).
  • each ultrasonic sensor 12 sequentially transmits an ultrasonic wave US, and each reflected wave RW is received by a plurality of ultrasonic sensors 12.
  • step S408 the structure in the detection area DA is detected.
  • the control unit 2 adjusts the angle of the probe 10 in the third direction D3 based on the detection result on the line segment L2 along the third direction D3 shown in FIG. 7D.
  • the line segment L2 is located, for example, near the center of the detection area DA in the first direction D1.
  • the control unit 2 extracts the number of detections at a plurality of points along the third direction D3 of the member 5 as in step S402 (step S409).
  • the control unit 2 determines whether the number of detections is equal to or greater than a preset threshold (step S410).
  • the threshold is set based on the dimension of the weld 53 in the third direction D3, the density of the ultrasonic sensor 12 in the third direction D3, and the like.
  • control unit 2 If the number of detections is equal to or greater than the threshold value, the control unit 2 maintains the angle of the probe 10 around the first direction D1 and ends the angle adjustment. If the number of detections is less than the threshold, the control unit 2 compares the number m2 of steps S408 and S409 executed so far with the value n2 set in advance (step S411).
  • control unit 2 changes the angle of the probe 10 around the first direction D1 (step S412). Then, steps S408 to S410 are performed again.
  • control unit 2 derives an appropriate second angle around the first direction D1 of the probe 10 from the detection result up to that point (step S413). Derivation of the second angle is performed in the same manner as the method of step S406. The control unit 2 sets the angle around the first direction D1 of the probe 10 to the second angle (step S414).
  • the angle of the probe 10 is appropriately adjusted, and then the inspection of the welded portion 53 by the probe 10 is performed.
  • step S411 The case where the number of times m2 is equal to or more than the value n2 in step S411 indicates that the welding portion 53 has many unjoined points. This is because, although the detection is performed while changing the angle of the probe 10 in the previous steps, a sufficient number of detections has not been obtained. Therefore, in step S411, when the number of times m2 is equal to or more than the value n2, the welded portion 53 may be determined to be unjoined. In this case, the angle adjustment is completed, and step S5 shown in FIG. 4 is omitted.
  • the angle of the probe 10 was adjusted using.
  • the control method of angle adjustment in inspection system 100 concerning an embodiment is not limited to this.
  • bonding and non-bonding detection at a plurality of points along the first direction D1 of the member 5 may be performed using only a part of the plurality of ultrasonic sensors 12 along the first direction D1.
  • detection of bonding and non-bonding at a plurality of points along the third direction D3 of the member 5 may be performed using only a part of the plurality of ultrasonic sensors 12 along the third direction D3. If detection results of bonding and non-bonding at a plurality of points along a specific direction can be obtained, the specific detection method in the inspection system 100 according to the embodiment can be appropriately changed. The same applies to the control method of angle adjustment described below.
  • FIG. 8 is a diagram for explaining the effect of the inspection system according to the embodiment. 8, the two horizontal axes respectively represent the angle theta D1 and the third direction D3 around the angle theta D3 around the first direction D1.
  • the vertical axis represents the number of detections.
  • Points P1 to P5 in FIG. 8 illustrate trajectories of changes in the number of detections when the angle ⁇ D1 and the angle ⁇ D3 are changed.
  • Adjustment method of the above-mentioned angle while changing the angle theta D3 angle theta D1 and around the third direction D3 around the first direction D1, thereby achieving an increase in the number of detections.
  • This method corresponds to climbing a peak of the number of detections toward a higher position, as represented by points P1 to P5 in FIG. The larger the number of detections, the more the angle of the member 5 can be inspected.
  • the angles around the first direction D1 or the third direction D3 are adjusted based on the number of junctions detected at multiple points along the first direction D1 or the third direction D3 of the member 5 did.
  • the inspection system 100 and the control method according to the embodiment are not limited to this example.
  • the angles around the first direction D1 or the third direction D3 may be adjusted based on the number of unjoined detected at a plurality of points along the first direction D1 or the third direction D3 of the member 5 . In this case, the angle around the first direction D1 or the third direction D3 is adjusted so that the number of unjoined states is reduced.
  • the angle of the probe 10 may be adjusted using the number of unjoined detections instead of the number of junctions detected.
  • the angle of the probe 10 around the third direction D3 is adjusted based on the number of junctions or non junctions detected at these plurality of points.
  • the inventors have found that the angle of the probe 10 around the third direction D3 can be adjusted to a more appropriate value by using this method. That is, according to the present embodiment, with respect to a probe in which a plurality of ultrasonic sensors are arranged, the angle of the probe can be adjusted to a more appropriate value.
  • the control unit 2 extracts the number of detections at each angle. Then, the control unit 2 sets a first angle at which the number of detections exceeds a preset threshold as an angle around the third direction D3 of the probe 10. According to this method, it is possible to narrow the range of the angle for checking the number of detections, and to detect the more appropriate angle around the third direction D3 in a shorter time.
  • the control unit 2 may change the angle around the third direction D3 of the probe 10 within the first range, and may detect the first angle at which the number of detections is largest. It may be set as an angle around the third direction D3 of ten. Alternatively, the control unit 2 may generate a quadratic function representing the relationship between the angle and the number of detections while changing the angle around the third direction D3 of the probe 10 within the first range. The control unit 2 sets a first angle, which is an inflection point of a quadratic function, as an angle around the third direction D3 of the probe 10. The first range is set in accordance with the accuracy required for the inspection of the weld portion 53.
  • the wider the first range the easier it is to set to a more appropriate angle. According to these methods, it is possible to detect a more appropriate angle around the third direction D3. Alternatively, even when the number of detections in the first range is small, by generating an approximate curve of a quadratic function, the first angle at which the value of the number of detections is estimated to be large is efficiently estimated based on the quadratic function. It can be asked.
  • the angle around the first direction D1 of the probe 10 is set.
  • the control unit 2 extracts the number of detections at each angle while changing the angle around the first direction D1 of the probe 10 as in the case of the angle around the third direction D3.
  • the control unit 2 sets an angle at which the number of detections exceeds a preset threshold as an angle around the third direction D3 of the probe 10.
  • control unit 2 may set the angle at which the number of detections is the largest as the angle around the third direction D3 of the probe 10.
  • control unit 2 generates a quadratic function representing the relationship between the angle and the number of detections, and sets the angle that is the inflection point of the quadratic function as the angle around the third direction D3 of the probe 10 good.
  • the angle around the first direction D1 of the probe 10 and the angle around the third direction D3 are adjusted to more appropriate values.
  • the angle adjustment may be performed by the following method.
  • FIG. 9 is a flowchart showing another adjustment method of the probe angle by the inspection system according to the embodiment.
  • FIG. 10 is a graph illustrating data detected in the inspection system according to the embodiment.
  • step S401 ultrasonic waves US are sequentially transmitted from each of the ultrasonic sensors 12, and each reflected wave RW is received by the plurality of ultrasonic sensors 12 (step S421).
  • FIG. 10 illustrates data detected by the plurality of ultrasonic sensors 12 arranged in the first direction D1 in step S421.
  • the vertical axis represents the position in the second direction D2.
  • the horizontal axis represents the position of each ultrasonic sensor 12 in the first direction D1.
  • the control unit 2 calculates the first inclination around the third direction D3 of the top surface 5b or the bottom surface 5d from the detection result (step S422). For example, the control unit 2 generates a linear function LF as illustrated in FIG. 10 using only the result determined to be a bond.
  • the linear function LF represents the relationship between the position in the first direction D1 and the position in the second direction D2.
  • the linear function LF is generated based on the reflected wave RW on the top surface 5 b or the bottom surface 5 d. More preferably, as shown in FIG. 10, the linear function LF is generated based on the reflected wave RW on the bottom surface 5d.
  • the slope of this linear function LF is taken as a first slope.
  • the larger the first inclination the larger the inclination of the matrix sensor 11 about the third direction D3 with respect to the upper surface 5b or the bottom surface 5d.
  • the control unit 2 detects the direction of the first tilt and the magnitude of the first tilt, and changes the angle around the third direction D3 of the probe 10 so as to correct the first tilt (step S423). For example, the control unit 2 increases the angle to be changed as the first inclination is larger.
  • the correction of the inclination means that the inclination is 0 and the linear function LF is substantially parallel to the horizontal axis. Thereby, the inclination of the matrix sensor 11 with respect to the top surface 5 b and the bottom surface 5 d can be reduced.
  • step S408 ultrasonic waves US are sequentially transmitted from each of the plurality of ultrasonic sensors 12 arranged in the third direction D3, and each reflected wave RW is received by the plurality of ultrasonic sensors 12 (see FIG. Step S424).
  • the control unit 2 calculates the second inclination around the first direction D1 of the top surface 5b or the bottom surface 5d as in step S422 (step S425).
  • the larger the second inclination the larger the inclination around the first direction D1 of the matrix sensor 11 with respect to the top surface 5b or the bottom surface 5d.
  • the control unit 2 changes the second angle around the first direction D1 of the probe 10 so as to correct the second inclination as in step S423 (step S426).
  • steps S425 and S426 may be executed in parallel with steps S422 and S423 based on the detection result obtained in step S421. According to this method, since step S424 mentioned above can be omitted, the time required to adjust the angle of the probe 10 can be shortened.
  • At least one of the angle around the first direction D1 and the angle around the third direction D3 of the probe 10 can be adjusted to more appropriate values based on one detection result. Therefore, the number of times of detection for adjusting the angle of the probe 10 can be reduced, and the time required for the angle adjustment can be shortened.
  • FIG. 11 is a flowchart showing another method of adjusting the probe angle by the inspection system according to the embodiment.
  • step S401 ultrasonic waves US are sequentially transmitted from each of the plurality of ultrasonic sensors 12, and each reflected wave RW is received by the plurality of ultrasonic sensors 12 (step S441).
  • the control unit 2 extracts the number of detections at a plurality of points along the first direction D1 of the member 5 (step S442).
  • the control unit 2 determines whether the number of detections is equal to or greater than a preset first threshold (step S443).
  • the first threshold value for example, a value of the number of detections sufficient to determine that the entire weld portion 53 is sufficiently joined is set. If the number of detections is equal to or greater than the first threshold, the angle of the probe 10 is determined to be appropriate, and the angle adjustment of the probe 10 is completed. When the number of detections is less than the first threshold, the control unit 2 determines whether the number of detections is equal to or more than the second threshold set in advance (step S444).
  • the second threshold is smaller than the first threshold.
  • a value of the number of detections sufficient to calculate the first slope is set as the second threshold. If the number of detections is equal to or greater than the second threshold, the first inclination is calculated (step S445) and the angle around the third direction D3 of the probe 10 is corrected to correct the first inclination, as in the flowchart shown in FIG. Adjust (step S446).
  • step S447 the number m1 of steps S441 to S444 is compared with a preset value n1 (step S447). If the number of times m1 is less than the value n1, the control unit 2 changes the angle of the probe 10 around the third direction D3 (step S448). Then, step S441 is performed again. If the number of times m1 is equal to or greater than the value n1, the control unit 2 derives an appropriate first angle around the third direction D3 of the probe 10 from the detection results up to that point (step S449). The control unit 2 sets the angle around the third direction D3 of the probe 10 to the first angle (step S450).
  • ultrasonic waves US are sequentially transmitted from each of the plurality of ultrasonic sensors 12, and each reflected wave RW is received by the plurality of ultrasonic sensors 12 (step S451).
  • the control unit 2 extracts the number of detections at a plurality of points along the third direction D3 of the member 5 (step S452).
  • the control unit 2 determines whether the number of detections is equal to or greater than a preset third threshold (step S453).
  • the third threshold similarly to the first threshold, for example, a value of the number of detections sufficient for determining that the entire weld portion 53 is sufficiently joined is set. If the number of detections is equal to or greater than the third threshold, the angle of the probe 10 is determined to be appropriate, and the angle adjustment of the probe 10 is completed. If the number of detections is less than the third threshold, the control unit 2 determines whether the number of detections is equal to or greater than a preset fourth threshold (step S454).
  • the fourth threshold is smaller than the third threshold.
  • a value of the number of detections sufficient to calculate the second slope is set as the fourth threshold. If the number of detections is equal to or greater than the fourth threshold, the second inclination is calculated (step S455) and the angle around the first direction D1 of the probe 10 is corrected to correct the second inclination, as in the flowchart shown in FIG. Adjust (step S456).
  • step S457 If the number of detections is less than the fourth threshold, the number m2 of steps S451 to S454 is compared with a preset value n2 (step S457). If the number of times m2 is less than the value n2, the control unit 2 changes the angle of the probe 10 around the first direction D1 (step S458). Then, step S451 is executed again. If the number of times m2 is equal to or greater than the value n2, the control unit 2 derives an appropriate second angle around the first direction D1 of the probe 10 from the detection result up to that point (step S459). The control unit 2 sets the angle around the third direction D3 of the probe 10 to the second angle (step S460).
  • step S451 may be omitted.
  • step S452 is executed based on the detection result acquired in step S441. According to this method, the time required to adjust the angle of the probe 10 can be shortened.
  • An embodiment of the present invention includes the following program.
  • the program comprising: In the control unit The position of each of the plurality of points in the second direction is detected based on the plurality of reflected waves at a plurality of points along the first direction of the first surface of the welding portion, The first inclination of the first surface around a third direction perpendicular to the first direction and intersecting the second direction is calculated from detection results of at least a part of the plurality of positions;
  • a program for adjusting the angle of the probe around the third direction so as to correct the first inclination.
  • the angle of the probe 10 can be adjusted to a more appropriate value.
  • the angle of the probe 10 can be adjusted to a more appropriate value by using a program that causes the control unit 2 to execute the control method described above or a storage medium that stores the program.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Debugging And Monitoring (AREA)

Abstract

実施形態に係る検査システムは、プローブおよび制御部を含む。前記プローブは、第1方向に配列された複数の超音波センサを含む。前記プローブは、前記第1方向と交差する第2方向に移動して溶接部に接触する。前記複数の超音波センサのそれぞれは、前記溶接部に向けて超音波を送信して反射波を受信する。前記制御部は、前記複数の反射波に基づいて、前記溶接部の前記第1方向に沿った複数の点における接合および未接合を検出し、前記複数の点において接合または未接合が検出された数に基づいて、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記プローブの角度を調整する。

Description

検査システム、制御方法、および記憶媒体
 本発明の実施形態は、検査システム、制御方法、および記憶媒体に関する。
 溶接では、2つ以上の部品の一部同士を溶融して接合させ、1つの部材が作製される。溶接により作製された部材は、溶接された部分(以下、溶接部という)が、適切に接合されているか検査される。例えば、非破壊の検査では、超音波センサを含むプローブを溶接部に接触させる。そして、溶接部に向けて超音波を送信し、その反射波に基づいて接合の有無を調べる。
 検査において、部材に対するプローブの角度は、検査結果に影響を及ぼす。例えば、不適切な角度で検査が行われると、実際は適切に接合されているにも拘わらず、未接合と判定される可能性がある。このため、プローブの角度は、適切な値に設定されることが望ましい。特に、複数の超音波センサが配列された検査装置について、プローブの角度をより適切な値に調整できる技術の開発が望まれている。
特許第5618529号公報
 本発明が解決しようとする課題は、プローブの角度をより適切な値に調整できる検査システム、制御方法、および記憶媒体を提供することである。
 実施形態に係る検査システムは、プローブおよび制御部を含む。前記プローブは、第1方向に配列された複数の超音波センサを含む。前記プローブは、前記第1方向と交差する第2方向に移動して溶接部に接触する。前記複数の超音波センサのそれぞれは、前記溶接部に向けて超音波を送信して反射波を受信する。前記制御部は、前記複数の反射波に基づいて、前記溶接部の前記第1方向に沿った複数の点における接合および未接合を検出し、前記複数の点において接合または未接合が検出された数に基づいて、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記プローブの角度を調整する。
実施形態に係る検査システムを表す模式図である。 実施形態に係る検査システムの一部を表す斜視図である。 実施形態に係る検査システムのプローブ先端の内部構造を表す模式図である。 実施形態に係る検査システムの動作の概要を表すフローチャートである。 実施形態に係る検査システムによる検査方法を説明するための模式図である。 実施形態に係る検査システムによるプローブ角度の調整方法を表すフローチャートである。 実施形態に係る検査システムを説明するための図である。 実施形態に係る検査システムの効果を説明するための図である。 実施形態に係る検査システムによるプローブ角度の別の調整方法を表すフローチャートである。 実施形態に係る検査システムにおいて検出されたデータを例示するグラフである。 実施形態に係る検査システムによるプローブ角度の別の調整方法を表すフローチャートである。
 以下に、本発明の各実施形態について図面を参照しつつ説明する。
 図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
 本願明細書と各図において、既に説明したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
 図1は、実施形態に係る検査システムを表す模式図である。
 図2は、実施形態に係る検査システムの一部を表す斜視図である。
 実施形態に係る検査システム100は、2つ以上の部品が一体化された溶接部を非破壊検査するためのものである。
 図1に表したように、実施形態に係る検査システム100は、検査装置1および制御部2を含む。図2に表したように、検査装置1は、プローブ10、撮像部20、塗布部30、およびロボットアーム(以下、アームという)40を含む。
 プローブ10は、溶接部の検査に用いられる複数の超音波センサを含む。撮像部20は、溶接された部材を撮影し、画像を取得する。撮像部20は、画像から溶接痕を抽出し、溶接部の位置を検出する。塗布部30は、カプラントを溶接部の上面に塗布する。カプラントは、プローブ10と検査対象との間で超音波の音響的整合をとるために用いられる。カプラントは、液体でも良いし、ゲル状でも良い。
 プローブ10、撮像部20、および塗布部30は、例えば図2に表したように、アーム40の先端に設けられている。アーム40は、例えば、多関節ロボットである。アーム40の駆動により、プローブ10、撮像部20、および塗布部30の位置を変化させることができる。制御部2は、検査装置1に含まれるこれらの構成要素の動作を制御する。
 検査装置1は、例えば、制御部2を含む装置と、有線通信または無線通信で接続される。または、検査装置1に制御部2が設けられ、実施形態に係る検査システム100が実現されても良い。
 図3は、実施形態に係る検査システムのプローブ先端の内部構造を表す模式図である。
 プローブ10先端の内部には、図3に表したマトリクスセンサ11が設けられている。マトリクスセンサ11は、複数の超音波センサ12を含む。超音波センサ12は、例えば、トランスデューサである。複数の超音波センサ12は、互いに直交する第1方向D1および第3方向D3に配列されている。プローブ10は、第1方向D1および第3方向D3を含む面と交差する第2方向D2に移動し、検査対象に接触する。図3の例では、第2方向D2は、第1方向D1及び第3方向D3を含む面に対して垂直である。
 図3は、部材5を検査する様子を表している。部材5は、金属板51と金属板52が、溶接部53においてスポット溶接されて作製されている。溶接部53では、金属板51の一部と金属板52の一部が溶融し、混ざり合って凝固した凝固部54が形成されている。それぞれの超音波センサ12は、カプラント55が塗布された部材5に向けて超音波USを送信し、部材5からの反射波RWを受信する。
 より具体的な一例として、図3に表したように、1つの超音波センサ12が溶接部53に向けて超音波USを送信する。超音波USの一部は、部材5の表面または底面などで反射される。複数の超音波センサ12のそれぞれは、この反射波RWを受信して検出する。それぞれの超音波センサ12が順次超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信することで、部材5の溶接部53近傍を、2次元的に検査する。
 図4は、実施形態に係る検査システムの動作の概要を表すフローチャートである。
 まず、撮像部20が部材5を撮影し、取得した画像から溶接部53の位置を検出する(ステップS1)。アーム40は、塗布部30を、溶接部53と第2方向D2において対向する位置へ移動させる。塗布部30は、カプラントを溶接部に塗布する(ステップS2)。アーム40は、プローブ10を第2方向D2に移動させ、溶接部53に接触させる(ステップS3)。
 プローブ10が溶接部53に接触した状態で、複数の超音波センサ12が、溶接部53を含む部材5に向けて超音波USを送信し、反射波RWを受信する。制御部2は、複数の反射波RWに基づいて、プローブ10の角度を調整する(ステップS4)。プローブ10の角度が調整されると、複数の超音波センサ12により溶接部53を検査する(ステップS5)。制御部2は、未検査の溶接部53があるか、判定する(ステップS6)。
 未検査の溶接部53が無い場合、検査を終了する。未検査の溶接部53がある場合、制御部2は、アーム40を駆動させ、プローブ10、撮像部20、および塗布部30を別の溶接部53に向けて移動させる(ステップS7)。その後、再度ステップS1~S6が実行される。
 図5は、実施形態に係る検査システムによる検査方法を説明するための模式図である。
 図5(a)に表したように、超音波USの一部は、金属板51の上面5aまたは溶接部53の上面5bで反射される。超音波USの別の一部は、部材5に入射し、金属板51の底面5cまたは溶接部53の底面5dで反射する。
 上面5a、上面5b、底面5c、および底面5dの第2方向D2における位置は、互いに異なる。すなわち、これらの面と超音波センサ12との間の第2方向D2における距離が、互いに異なる。超音波センサ12が、これらの面からの反射波を受信すると、反射波の強度のピークが検出される。超音波USを送信した後、各ピークが検出されるまでの時間を算出することで、どの面で超音波USが反射されているか調べることができる。
 図5(b)および図5(c)は、超音波USを送信した後の時間と、反射波RWの強度と、の関係を例示するグラフである。図5(b)のグラフは、金属板51の上面5aおよび底面5cからの反射波RWの受信結果を例示している。図5(c)のグラフは、溶接部53の上面5bおよび底面5dからの反射波RWの受信結果を例示している。
 図5(b)のグラフにおいて、1回目のピークPe1は、上面5aからの反射波RWに基づく。2回目のピークPe2は、底面5cからの反射波RWに基づく。ピークPe1およびピークPe2が検出された時間は、それぞれ、金属板51の上面5aおよび底面5cの第2方向D2における位置に対応する。ピークPe1が検出された時間とピークPe2が検出された時間との時間差TD1は、上面5aと底面5cとの間の第2方向D2における距離Di1に対応する。
 同様に、図5(c)のグラフにおいて、1回目のピークPe3は、上面5bからの反射波RWに基づく。2回目のピークPe4は、底面5dからの反射波RWに基づく。ピークPe3およびピークPe4が検出された時間は、それぞれ、溶接部53の上面5bおよび底面5dの第2方向D2における位置に対応する。ピークPe3が検出された時間とピークPe4が検出された時間との時間差TD2は、上面5bと底面5dとの間の第2方向D2における距離Di2に対応する。
 従って、超音波USを送信した後、反射波RWの1回目のピーク(第1ピーク)および2回目のピーク(第2ピーク)が検出されるまでの時間を検出することで、超音波USが反射された面の第2方向D2における位置を検出できる。1回目のピークが検出された時間と2回目のピークが検出された時間との差から、超音波USが反射された面同士の間の第2方向D2における距離を検出できる。
 ステップS4で実行される角度の調整方法について、具体的に説明する。
 図6は、実施形態に係る検査システムによるプローブ角度の調整方法を表すフローチャートである。
 図7は、実施形態に係る検査システムを説明するための図である。
 複数の超音波センサ12から超音波USを送信し、反射波RWを受信する(ステップS401)。例えば、図3を参照して説明したように、それぞれの超音波センサ12が、順次、超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信する。
 図7(a)および図7(d)は、部材5の溶接部53近傍を表す平面図である。ステップS401により、例えば図7(a)に表した検出エリアDAにおける構造が検出される。すなわち、この検出エリアDAの各点について、接合または未接合が検出される。制御部2は、この検出結果のうち、第1方向D1に沿う線分L1上の検出結果に基づいて、プローブ10の第3方向D3まわりの角度を調整する。線分L1は、例えば、検出エリアDAの第3方向D3における中央付近に位置している。
 図7(b)は、線分L1上の各点における検出結果の一例である。図7(b)において、縦軸は、第2方向D2における位置を表す。横軸は、第1方向D1における位置を表す。図7(b)において、○(白丸)は、部材5の1つ目の反射面(第1反射面)の第2方向D2における位置を表す。すなわち、〇は、上面5aの位置または上面5bの位置を表す。●(黒丸)は、部材5の2つ目の反射面(第2反射面)の第2方向D2における位置を表す。すなわち、〇は、底面5cの位置または底面5dの位置を表す。これらの位置は、上述したように、超音波USを送信した後、反射波RWのピークが検出されるまでの時間に基づいて算出される。◆は、後述する、接合および未接合の検出結果を表す。
 図7(b)の結果において、線分L1の第1方向D1の端付近における検出結果では、第1反射面と第2反射面との間の距離が短い。これは、超音波USが、上面5aおよび底面5cで反射されていることを示す。第1方向D1の中央側における検出結果では、第1反射面と第2反射面との間の距離が長い。これは、超音波USが、上面5bおよび底面5dで反射されていることを示す。
 制御部2は、第1反射面と第2反射面との間の距離を算出する。制御部2は、例えば、当該距離が予め設定された閾値以上である場合、その点が接合されていると判定する。制御部2は、当該距離が当該閾値未満である場合、その点が未接合と判定する。図7(b)に表したグラフにおいて、接合されていると判定された点は、1の値で表され、未接合と判定された点は、0の値で表されている。
 上述の方法により、制御部2は、部材5の第1方向D1に沿った複数の点について、接合および未接合を検出する。制御部2は、接合が検出された数(以下、検出数という)を抽出する(ステップS402)。制御部2は、検出数が、予め設定された閾値以上であるか判定する(ステップS403)。この閾値は、溶接部53の第1方向D1における寸法、第1方向D1における超音波センサ12の密度などに基づいて設定される。
 検出数が閾値以上である場合、制御部2は、プローブ10の第3方向D3まわりの角度を維持し、角度調整を終了する。この場合、図4に表したステップS5を省略しても良い。既に十分な数の検出数が検出されており、溶接部53は、適切に接合されているとみなせるためである。検出数が閾値未満である場合、制御部2は、それまでにステップS401およびS402を実行した回数m1を、予め設定された値n1と比較する(ステップS404)。
 回数m1が値n1未満である場合、制御部2は、プローブ10の第3方向D3まわりの角度を変化させる(ステップS405)。そして、ステップS401が再度実行される。これにより、ステップS401およびステップS402が、第3方向D3のまわりにおける角度を変えながら、繰り返し実行される。回数m1が、値n1以上である場合、制御部2は、それまでの検出結果から、プローブ10の第3方向D3まわりの適切な第1角度を導出する(ステップS406)。
 図7(c)は、ステップS401~S405の繰り返しにより得られた検出結果の一例を表す。図7(c)において、横軸は第3方向D3まわりの角度を表し、縦軸はそれぞれの角度における検出数を表す。例えば、制御部2は、最も検出数が多かった角度θ1を、第1角度とする。または、制御部2は、角度と検出数との関係を表す二次関数QFを生成し、この二次関数QFの変曲点となる角度θ2を第1角度としても良い。制御部2は、プローブ10の第3方向D3まわりの角度を、第1角度に設定する(ステップS407)。
 次に、複数の超音波センサ12から超音波USを送信し、反射波RWを受信する(ステップS408)。例えば、ステップS401と同様に、それぞれの超音波センサ12が、順次、超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信する。
 ステップS408により、検出エリアDAにおける構造が検出される。制御部2は、図7(d)に表した、第3方向D3に沿う線分L2上の検出結果に基づいて、プローブ10の第3方向D3まわりの角度を調整する。線分L2は、例えば、検出エリアDAの第1方向D1における中央付近に位置している。
 制御部2は、ステップS402と同様に、部材5の第3方向D3に沿った複数の点における検出数を抽出する(ステップS409)。制御部2は、検出数が、予め設定された閾値以上であるか判定する(ステップS410)。この閾値は、溶接部53の第3方向D3における寸法、第3方向D3における超音波センサ12の密度などに基づいて設定される。
 検出数が閾値以上である場合、制御部2は、プローブ10の第1方向D1まわりの角度を維持し、角度調整を終了する。検出数が閾値未満である場合、制御部2は、それまでにステップS408およびS409を実行した回数m2を、予め設定された値n2と比較する(ステップS411)。
 回数m2が値n2未満である場合、制御部2は、プローブ10の第1方向D1まわりの角度を変化させる(ステップS412)。そして、ステップS408~S410が再度実行される。
 回数m2が、値n2以上である場合、制御部2は、それまでの検出結果から、プローブ10の第1方向D1まわりの適切な第2角度を導出する(ステップS413)。第2角度の導出は、ステップS406の方法と同様にして実行される。制御部2は、プローブ10の第1方向D1まわりの角度を、第2角度に設定する(ステップS414)。
 以上の方法により、プローブ10の角度が適切に調整され、その後、プローブ10による溶接部53の検査が行われる。
 ステップS411において回数m2が値n2以上となるケースは、溶接部53に未接合の点が多く存在していることを示している。それまでのステップにおいてプローブ10の角度を変化させながら検出を行ったにも拘わらず、十分な検出数が得られていないためである。従って、ステップS411において、回数m2が値n2以上の場合、溶接部53は未接合と判定されても良い。この場合、角度調整は終了し、図4に表したステップS5は省略される。
 上述した方法では、マトリクスセンサ11に含まれる全ての超音波センサ12による検出結果のうち、第1方向D1に沿う線分L1上における検出結果および第3方向D3に沿う線分L3上における検出結果を用いて、プローブ10の角度を調整した。
 実施形態に係る検査システム100における角度調整の制御方法は、これに限定されない。例えば、部材5の第1方向D1に沿った複数の点における接合および未接合の検出は、第1方向D1に沿った複数の超音波センサ12の一部のみを用いて行っても良い。同様に、部材5の第3方向D3に沿った複数の点における接合および未接合の検出は、第3方向D3に沿った複数の超音波センサ12の一部のみを用いて行っても良い。特定の方向に沿った複数の点における接合および未接合の検出結果が得られれば、実施形態に係る検査システム100における具体的な検出方法は、適宜変更可能である。これは、以降で説明する角度調整の制御方法についても同様である。
 図8は、実施形態に係る検査システムの効果を説明するための図である。
 図8において、2つの横軸は、それぞれ、第1方向D1まわりの角度θD1および第3方向D3まわりの角度θD3を表している。縦軸は、検出数を表している。図8における点P1~点P5は、角度θD1および角度θD3を変化させたときの検出数の変化の軌跡を例示している。
 上述した角度の調整方法は、第1方向D1まわりの角度θD1および第3方向D3まわりの角度θD3を変化させながら、検出数の増加を図っている。この方法は、図8の点P1~点P5に表されるように、検出数の山を、より高い位置を目指して登ることに相当する。検出数が大きいほど、より適切な角度で部材5を検査できることを示す。
 上述した例では、部材5の第1方向D1または第3方向D3に沿った複数の点において、接合が検出された数に基づいて、第1方向D1まわりまたは第3方向D3まわりの角度を調整した。実施形態に係る検査システム100および制御方法は、この例に限定されない。部材5の第1方向D1または第3方向D3に沿った複数の点において、未接合が検出された数に基づいて、第1方向D1まわりまたは第3方向D3まわりの角度を調整しても良い。この場合、未接合が検出された数が少なくなるように、第1方向D1まわりまたは第3方向D3まわりの角度が調整される。以降で説明する別の方法においても同様に、接合が検出された数に代えて、未接合が検出された数を用いて、プローブ10の角度が調整されても良い。
 実施形態の効果を説明する。
 上述した通り、実施形態に係る検査システム100では、溶接部53の第1方向D1に沿った複数の点における接合および未接合が検出される。そして、これらの複数の点において接合または未接合が検出された数に基づいて、第3方向D3まわりにおけるプローブ10の角度が調整される。発明者らは、この方法を用いることで、プローブ10の第3方向D3まわりにおける角度をより適切な値に調整できることを発見した。すなわち、本実施形態によれば、複数の超音波センサが配列されたプローブについて、当該プローブの角度をより適切な値に調整できる。
 例えば、制御部2は、プローブ10の第3方向D3まわりの角度を変化させながら、それぞれの角度における検出数を抽出する。そして、制御部2は、検出数が予め設定された閾値を超えた第1角度を、プローブ10の第3方向D3まわりにおける角度として設定する。この方法によれば、検出数を調べる角度の範囲を狭くし、より短い時間で、より適切な第3方向D3まわりの角度を検出できる。
 または、制御部2は、図7(c)に表したように、プローブ10の第3方向D3まわりの角度を第1範囲内で変化させながら、検出数が最も多かった第1角度を、プローブ10の第3方向D3まわりにおける角度として設定しても良い。あるいは、制御部2は、プローブ10の第3方向D3まわりの角度を第1範囲内で変化させながら、角度と検出数との関係を表す二次関数を生成しても良い。制御部2は、二次関数の変曲点である第1角度を、プローブ10の第3方向D3まわりにおける角度として設定する。
 第1範囲は、溶接部53の検査に求められる精度に応じて設定される。典型的には、第1範囲が広いほど、より適切な角度に設定され易くなる。これらの方法によれば、さらに適切な第3方向D3まわりの角度を検出できる。
 または、第1範囲内における検出回数が少ない場合でも、二次関数の近似曲線を生成することで、その二次関数に基づいて検出数の値が大きいと推定される第1角度を効率的に求めることができる。
 これらのいずれかの方法によりプローブ10の第3方向D3まわりの角度が設定された後、好ましくは、プローブ10の第1方向D1まわりの角度が設定される。例えば、制御部2は、第3方向D3まわりの角度と同様に、プローブ10の第1方向D1まわりの角度を変化させながら、それぞれの角度における検出数を抽出する。制御部2は、検出数が予め設定された閾値を超えた角度を、プローブ10の第3方向D3まわりにおける角度として設定する。
 または、制御部2は、検出数が最も多かった角度を、プローブ10の第3方向D3まわりにおける角度として設定しても良い。あるいは、制御部2は、角度と検出数との関係を表す二次関数を生成し、二次関数の変曲点である角度を、プローブ10の第3方向D3まわりにおける角度として設定しても良い。
 これにより、プローブ10の第1方向D1まわりの角度および第3方向D3まわりの角度が、より適切な値に調整される。プローブ10の角度を調整した状態で、溶接部53を検査することで、より正確に溶接部53を検査することが可能となる。
 実施形態に係る検査システムにおいて、以下の方法により角度調整が実行されても良い。
 図9は、実施形態に係る検査システムによるプローブ角度の別の調整方法を表すフローチャートである。
 図10は、実施形態に係る検査システムにおいて検出されたデータを例示するグラフである。
 図9(a)に表したフローチャートについて説明する。
 まず、ステップS401と同様、超音波センサ12のそれぞれから順次超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信する(ステップS421)。
 図10は、ステップS421において、第1方向D1に配列された複数の超音波センサ12で検出されたデータを例示している。図10において、縦軸は、第2方向D2における位置を表す。横軸は、それぞれの超音波センサ12の第1方向D1における位置を表す。
 制御部2は、この検出結果から、上面5bまたは底面5dの第3方向D3まわりの第1傾斜を算出する(ステップS422)。例えば、制御部2は、接合と判定された結果のみを用いて、図10に表したように、一次関数LFを生成する。一次関数LFは、第1方向D1における位置と第2方向D2における位置との関係を表す。一次関数LFは、上面5bまたは底面5dの反射波RWに基づいて生成される。より好ましくは、一次関数LFは、図10に表したように、底面5dの反射波RWに基づいて生成される。
 この一次関数LFの傾きを、第1傾斜とする。第1傾斜が大きいほど、上面5bまたは底面5dに対するマトリクスセンサ11の第3方向D3まわりの傾きが大きいことを表す。制御部2は、第1傾斜の方向および第1傾斜の大きさを検出し、第1傾斜を補正するよう、プローブ10の第3方向D3まわりの角度を変化させる(ステップS423)。例えば、制御部2は、第1傾斜が大きいほど、変化させる角度を大きくする。傾斜の補正とは、傾斜を0とし、一次関数LFを横軸と実質的に平行にすることを意味する。これにより、上面5bおよび底面5dに対するマトリクスセンサ11の傾きを小さくできる。
 次に、ステップS408と同様に、第3方向D3に配列された複数の超音波センサ12のそれぞれから順次超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信する(ステップS424)。制御部2は、ステップS422と同様に、上面5bまたは底面5dの第1方向D1まわりの第2傾斜を算出する(ステップS425)。第2傾斜が大きいほど、上面5bまたは底面5dに対するマトリクスセンサ11の第1方向D1まわりの傾きが大きいこと表す。制御部2は、ステップS423と同様に、第2傾斜を補正するよう、プローブ10の第1方向D1まわりの第2角度を変化させる(ステップS426)。
 または、図9(b)に表したように、ステップS421で得られた検出結果に基づいて、ステップS425およびS426は、ステップS422およびS423と、並行して実行されても良い。この方法によれば、上述したステップS424を省略できるため、プローブ10の角度調整に要する時間を短縮できる。
 この調整方法によれば、1回の検出結果を基に、プローブ10の第1方向D1まわりの角度および第3方向D3まわりの角度の少なくともいずれかを、より適切な値に調整できる。このため、プローブ10の角度調整のために検出を行う回数を減らすことができ、角度調整に要する時間を短縮できる。
 または、図6のフローチャートに表した方法と、図9のフローチャートに表した方法と、を組み合わせて実行しても良い。
 図11は、実施形態に係る検査システムによるプローブ角度の別の調整方法を表すフローチャートである。
 まず、ステップS401と同様に、複数の超音波センサ12のそれぞれから順次超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信する(ステップS441)。制御部2は、部材5の第1方向D1に沿った複数の点における検出数を抽出する(ステップS442)。制御部2は、検出数が、予め設定された第1閾値以上であるか判定する(ステップS443)。
 第1閾値として、例えば、溶接部53全体が十分に接合されていると判定されるのに十分な検出数の値が設定される。検出数が第1閾値以上である場合、プローブ10の角度は適切と判定され、プローブ10の角度調整が終了する。検出数が第1閾値未満である場合、制御部2は、検出数が、予め設定された第2閾値以上であるか判定する(ステップS444)。
 第2閾値は、第1閾値よりも小さい。第2閾値として、第1傾斜を算出するのに十分な検出数の値が設定される。検出数が第2閾値以上である場合、図9に表したフローチャートと同様に、第1傾斜を算出し(ステップS445)、第1傾斜を補正するようプローブ10の第3方向D3まわりの角度を調整する(ステップS446)。
 検出数が第2閾値未満である場合、ステップS441~S444が実行された回数m1を、予め設定された値n1と比較する(ステップS447)。回数m1が値n1未満である場合、制御部2は、プローブ10の第3方向D3まわりの角度を変化させる(ステップS448)。そして、ステップS441が再度実行される。回数m1が、値n1以上である場合、制御部2は、それまでの検出結果から、プローブ10の第3方向D3まわりの適切な第1角度を導出する(ステップS449)。制御部2は、プローブ10の第3方向D3まわりの角度を、第1角度に設定する(ステップS450)。
 次に、複数の超音波センサ12のそれぞれから順次超音波USを送信し、それぞれの反射波RWを複数の超音波センサ12で受信する(ステップS451)。制御部2は、部材5の第3方向D3に沿った複数の点における検出数を抽出する(ステップS452)。制御部2は、検出数が、予め設定された第3閾値以上であるか判定する(ステップS453)。
 第3閾値として、第1閾値と同様に、例えば、溶接部53全体が十分に接合されていると判定されるのに十分な検出数の値が設定される。検出数が第3閾値以上である場合、プローブ10の角度は適切と判定され、プローブ10の角度調整が終了する。検出数が第3閾値未満である場合、制御部2は、検出数が、予め設定された第4閾値以上であるか判定する(ステップS454)。
 第4閾値は、第3閾値よりも小さい。第4閾値として、第2傾斜を算出するのに十分な検出数の値が設定される。検出数が第4閾値以上である場合、図9に表したフローチャートと同様に、第2傾斜を算出し(ステップS455)、第2傾斜を補正するようプローブ10の第1方向D1まわりの角度を調整する(ステップS456)。
 検出数が第4閾値未満である場合、ステップS451~S454が実行された回数m2を、予め設定された値n2と比較する(ステップS457)。回数m2が値n2未満である場合、制御部2は、プローブ10の第1方向D1まわりの角度を変化させる(ステップS458)。そして、ステップS451が再度実行される。回数m2が、値n2以上である場合、制御部2は、それまでの検出結果から、プローブ10の第1方向D1まわりの適切な第2角度を導出する(ステップS459)。制御部2は、プローブ10の第3方向D3まわりの角度を、第2角度に設定する(ステップS460)。
 この方法によれば、プローブ10の角度を、図6および図9に表した方法に比べて、さらに適切な値に設定することが可能である。
 図11に表したフローチャートにおいて、ステップS451が省略されても良い。この場合、ステップS441で取得された検出結果に基づいて、ステップS452が実行される。この方法によれば、プローブ10の角度調整に要する時間を短縮できる。
 本発明の実施形態は、以下のプログラムを含む。
 第1方向に配列された複数の超音波センサを含み、前記第1方向と交差する第2方向に移動して溶接部に接触するプローブの角度を調整するためのプログラムであって、
 制御部に、
  前記複数の超音波センサのそれぞれから前記溶接部に向けて超音波を送信して受信した複数の反射波に基づいて、前記溶接部の前記第1方向に沿った複数の点における接合および未接合を検出させ、
  前記複数の点において接合または未接合が検出された数に基づいて、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記プローブの角度を調整させる
 プログラム。
 第1方向に配列された複数の超音波センサを含み、前記第1方向と交差する第2方向に移動して溶接部に接触するプローブの角度を調整するためのプログラムであって、
 制御部に、
  前記溶接部が有する第1面の前記第1方向に沿った複数の点について、前記複数の反射波に基づき、前記複数の点のそれぞれの前記第2方向における位置を検出させ、
  前記複数の位置の少なくとも一部の検出結果から、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記第1面の第1傾斜を算出させ、
  前記第1傾斜を補正するように前記第3方向まわりにおける前記プローブの角度を調整させる
 プログラム。
 以上で説明した実施形態に係る検査システム100または制御方法によれば、プローブ10の角度をより適切な値に調整できる。同様に、制御部2に上述した制御方法を実行させるプログラムまたは当該プログラムを記憶した記憶媒体を用いることで、プローブ10の角度をより適切な値に調整できる。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。前述の各実施形態は、相互に組み合わせて実施することができる。

Claims (15)

  1.  第1方向に配列された複数の超音波センサを含み、前記第1方向と交差する第2方向に移動して溶接部に接触するプローブであって、前記複数の超音波センサのそれぞれは、前記溶接部に向けて超音波を送信して反射波を受信する、前記プローブと、
      前記複数の反射波に基づいて、前記溶接部の前記第1方向に沿った複数の点における接合および未接合を検出し、
      前記複数の点において接合または未接合が検出された数に基づいて、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記プローブの角度を調整する
     制御部と、
     を備えた検査システム。
  2.  前記制御部は、前記プローブの前記第3方向まわりの角度を変化させながら、それぞれの角度において前記複数の点における前記数を検出し、検出された結果に基づいて、前記プローブの前記第3方向まわりにおける前記角度を設定する請求項1記載の検査システム。
  3.  前記制御部は、前記数が予め設定された閾値を超えた第1角度を、前記プローブの前記第3方向まわりにおける前記角度として設定する請求項2記載の検査システム。
  4.  前記制御部は、前記プローブの前記第3方向まわりの角度を第1範囲内で変化させ、前記数が最も多かった第1角度を、前記プローブの前記第3方向まわりにおける前記角度として設定する請求項2記載の検査システム。
  5.  前記制御部は、
      前記プローブの前記第3方向まわりの角度を第1範囲内で変化させ、
      前記角度と前記数との関係を表す二次関数を生成し、
      前記二次関数の変曲点である第1角度を、前記プローブの前記第3方向まわりにおける前記角度として設定する
     請求項2記載の検査システム。
  6.  前記超音波センサは、前記第3方向において複数配列され、
     前記制御部は、さらに、
      前記複数の反射波に基づいて前記溶接部の前記第3方向に沿った複数の点における接合および未接合を検出し、
      前記第3方向に沿った前記複数の点における接合または未接合が検出された数に基づいて、前記第1方向まわりにおける前記プローブの角度を調整する
     請求項1~5のいずれか1つに記載の検査システム。
  7.  第1方向に配列された複数の超音波センサを含み、前記第1方向と交差する第2方向に移動して溶接部に接触するプローブであって、前記複数の超音波センサのそれぞれは、前記溶接部に向けて超音波を送信して反射波を受信する、前記プローブと、
      前記溶接部が有する第1面の前記第1方向に沿った複数の点について、前記複数の反射波に基づき、前記複数の点のそれぞれの前記第2方向における位置を検出し、
      前記複数の位置の少なくとも一部の検出結果から、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記第1面の第1傾斜を算出し、
      前記第1傾斜を補正するように前記第3方向まわりにおける前記プローブの角度を調整する
     制御部と、
     を備えた検査システム。
  8.  前記制御部は、接合が検出された前記複数の位置の前記少なくとも一部を用いて、前記第1傾斜を算出する請求項7記載の検査システム。
  9.  前記超音波センサは、前記第3方向において複数配列され、
     前記制御部は、さらに、
      前記複数の反射波に基づき、前記第1面の前記第3方向に沿った複数の点のそれぞれの前記第2方向における位置を検出し、
      前記第3方向に沿った前記複数の位置の少なくとも一部の検出結果から、前記第1方向まわりにおける前記第1面の第2傾斜を算出し、
      前記第2傾斜を補正するように前記第1方向まわりにおける前記プローブの角度を調整する
     請求項7または8に記載の検査システム。
  10.  前記制御部は、前記プローブの角度を調整した後、前記溶接部に向けて前記複数の超音波センサから超音波を送信して前記溶接部を検査する請求項1~9のいずれか1つに記載の検査システム。
  11.  前記溶接部にカプラントを塗布する塗布部をさらに備え、
     前記プローブは、前記カプラントが塗布された前記溶接部に接触する請求項1~10のいずれか1つに記載の検査システム。
  12.  第1方向に配列された複数の超音波センサを含むプローブを、前記第1方向と交差する第2方向において溶接部と接触させ、
     前記複数の超音波センサのそれぞれから、前記溶接部に向けて超音波を送信して反射波を受信し、
     前記複数の反射波に基づいて、前記溶接部の前記第1方向に沿った複数の点における接合および未接合を検出し、
     前記複数の点において接合または未接合が検出された数に基づいて、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記プローブの角度を調整する制御方法。
  13.  第1方向に配列された複数の超音波センサを含むプローブを、前記第1方向と交差する第2方向において溶接部と接触させ、
     前記複数の超音波センサのそれぞれから、前記溶接部に向けて超音波を送信して反射波を受信し、
     前記溶接部が有する第1面の前記第1方向に沿った複数の点について、前記複数の反射波に基づき、前記複数の点のそれぞれの前記第2方向における位置を検出し、
     前記複数の位置の少なくとも一部の検出結果から、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記第1面の第1傾斜を算出し、
     前記第1傾斜を補正するように前記第3方向まわりにおける前記プローブの角度を調整する制御方法。
  14.  第1方向に配列された複数の超音波センサを含み、前記第1方向と交差する第2方向に移動して溶接部に接触するプローブの角度を調整するためのプログラムであって、
     制御部に、
      前記複数の超音波センサのそれぞれから前記溶接部に向けて超音波を送信して受信した複数の反射波に基づいて、前記溶接部の前記第1方向に沿った複数の点における接合および未接合を検出させ、
      前記複数の点において接合または未接合が検出された数に基づいて、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記プローブの角度を調整させる
     プログラムを記憶した記憶媒体。
  15.  第1方向に配列された複数の超音波センサを含み、前記第1方向と交差する第2方向に移動して溶接部に接触するプローブの角度を調整するためのプログラムであって、
     制御部に、
      前記溶接部が有する第1面の前記第1方向に沿った複数の点について、前記複数の反射波に基づき、前記複数の点のそれぞれの前記第2方向における位置を検出させ、
      前記複数の位置の少なくとも一部の検出結果から、前記第1方向に対して垂直であり前記第2方向と交差する第3方向まわりにおける前記第1面の第1傾斜を算出させ、
      前記第1傾斜を補正するように前記第3方向まわりにおける前記プローブの角度を調整させる
     プログラムを記憶した記憶媒体。
PCT/JP2018/042113 2017-11-15 2018-11-14 検査システム、制御方法、および記憶媒体 WO2019098232A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020207004927A KR102330478B1 (ko) 2017-11-15 2018-11-14 검사 시스템, 제어 방법, 및 기억 매체
KR1020217037496A KR20210144911A (ko) 2017-11-15 2018-11-14 검사 시스템, 제어 방법, 및 기억 매체
CN202210543255.7A CN114965715A (zh) 2017-11-15 2018-11-14 检查系统、控制装置、控制方法及存储介质
KR1020237012376A KR20230054497A (ko) 2017-11-15 2018-11-14 검사 시스템, 제어 방법, 및 기억 매체
DE112018000827.4T DE112018000827B4 (de) 2017-11-15 2018-11-14 Inspektionssystem, Steuerungsverfahren und Speichermedium
CN201880017850.9A CN110402388B (zh) 2017-11-15 2018-11-14 检查系统、控制方法及存储介质
CA3072737A CA3072737C (en) 2017-11-15 2018-11-14 Inspection system, control method, and storage medium
EP18878645.3A EP3712608A4 (en) 2017-11-15 2018-11-14 INSPECTION SYSTEM, ORDERING PROCESS AND INFORMATION SUPPORT
US16/567,004 US11131652B2 (en) 2017-11-15 2019-09-11 Inspection system, control unit, control method, and storage medium
US17/446,548 US11852611B2 (en) 2017-11-15 2021-08-31 Inspection system, control unit, control method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220461A JP6570600B2 (ja) 2017-11-15 2017-11-15 検査システム、制御装置、角度調整方法、プログラム、および記憶媒体
JP2017-220461 2017-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/567,004 Continuation US11131652B2 (en) 2017-11-15 2019-09-11 Inspection system, control unit, control method, and storage medium

Publications (1)

Publication Number Publication Date
WO2019098232A1 true WO2019098232A1 (ja) 2019-05-23

Family

ID=66539514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042113 WO2019098232A1 (ja) 2017-11-15 2018-11-14 検査システム、制御方法、および記憶媒体

Country Status (8)

Country Link
US (2) US11131652B2 (ja)
EP (1) EP3712608A4 (ja)
JP (1) JP6570600B2 (ja)
KR (3) KR102330478B1 (ja)
CN (2) CN114965715A (ja)
CA (2) CA3169429A1 (ja)
DE (1) DE112018000827B4 (ja)
WO (1) WO2019098232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786633A1 (en) * 2019-08-28 2021-03-03 Kabushiki Kaisha Toshiba Display control system, inspection control system, display control method, and storage medium
EP4119301A4 (en) * 2020-03-09 2024-03-27 Toshiba Kk ROBOT SYSTEM, PARALLEL LINK MECHANISM, CONTROL METHOD, CONTROL DEVICE, PROGRAM, AND STORAGE MEDIUM

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570600B2 (ja) 2017-11-15 2019-09-04 株式会社東芝 検査システム、制御装置、角度調整方法、プログラム、および記憶媒体
JP6629393B1 (ja) 2018-07-10 2020-01-15 株式会社東芝 制御方法、検査システム、プログラム、及び記憶媒体
DE202020100206U1 (de) * 2020-01-16 2021-04-19 Battenberg Robotic Gmbh & Co. Kg Ultraschallprüfkopfanordnung
MX2020002026A (es) 2019-02-25 2020-08-26 Battenberg Robotic Gmbh & Co Kg Metodo para prueba de soldadura y disposicion de sonda ultrasonica.
JP6805289B2 (ja) 2019-05-14 2020-12-23 株式会社東芝 推定装置、検査システム、推定方法、角度調整方法、検査方法、プログラム、及び記憶媒体
JP7214589B2 (ja) * 2019-07-30 2023-01-30 株式会社東芝 検査システム、角度調整方法、プログラム、および記憶媒体
JP6982666B2 (ja) * 2019-08-28 2021-12-17 株式会社東芝 表示制御システム、検査管理システム、表示制御方法、プログラム、及び記憶媒体
EP3798629A1 (en) 2019-09-24 2021-03-31 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium
JP6982667B2 (ja) * 2019-09-24 2021-12-17 株式会社東芝 処理システム、処理方法、プログラム、及び記憶媒体
JP6972080B2 (ja) 2019-10-24 2021-11-24 株式会社東芝 処理システム、処理装置、処理方法、プログラム、及び記憶媒体
JP6972082B2 (ja) * 2019-10-30 2021-11-24 株式会社東芝 処理システム、処理装置、処理方法、プログラム、及び記憶媒体
JP2021146437A (ja) 2020-03-18 2021-09-27 株式会社東芝 制御装置、検査システム、制御方法、プログラム、及び記憶媒体
JP7035116B2 (ja) 2020-06-08 2022-03-14 株式会社東芝 処理システム、処理方法、プログラム、及び記憶媒体
DE102020209587A1 (de) 2020-07-30 2022-02-03 Volkswagen Aktiengesellschaft Vorrichtung zur Ultraschallprüfung von Schweißstellen
JP7438886B2 (ja) 2020-08-07 2024-02-27 株式会社東芝 検出システム、制御方法、及び検出装置
USD1002014S1 (en) * 2020-08-31 2023-10-17 MAQUET CARDIOPULMONARY GmbH Universal holder system
CN113252781B (zh) * 2021-04-25 2023-10-10 杭州电子科技大学 一种超声波自动检测装置及线缆内部损伤检测方法
WO2023182503A1 (ja) * 2022-03-24 2023-09-28 株式会社 東芝 処理システム、処理装置、処理方法、プログラム、及び記憶媒体
CN117347499B (zh) * 2023-12-06 2024-02-09 苏州好捷生智能机电设备有限公司 一种用于管材探伤的超声波探伤设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678736A (en) * 1970-08-03 1972-07-25 Gen Electric Machine with improved operating head traversing workpieces with curved surfaces
JPS5618529B2 (ja) 1978-10-13 1981-04-30
US20040245315A1 (en) * 2003-06-04 2004-12-09 Maev Roman Gr. Method and apparatus for assessing the quality of spot welds
JP2006220608A (ja) * 2005-02-14 2006-08-24 Exedy Corp 自動超音波検査装置、その検査方法及びその検査方法を用いた製造方法
JP2007278809A (ja) * 2006-04-05 2007-10-25 Kawasaki Heavy Ind Ltd スポット溶接部の検査方法及び装置
JP2008051645A (ja) * 2006-08-24 2008-03-06 Toshiba Corp 超音波探傷装置
US20100031750A1 (en) * 2008-08-05 2010-02-11 Roger Spencer Ut method of identifying a stuck joint
JP2012247262A (ja) * 2011-05-26 2012-12-13 Hitachi-Ge Nuclear Energy Ltd 超音波探傷方法及び超音波探傷装置
JP3189500U (ja) * 2005-09-07 2014-03-20 ロールス・ロイス・ピーエルシー 物体の肉厚を測定する方法および装置
WO2016164457A1 (en) * 2015-04-07 2016-10-13 Edison Welding Institute, Inc. Phased array system for inspection of laser welds

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170891A (en) * 1977-06-10 1979-10-16 Westinghouse Electric Corp. Positioning calibration apparatus for transducers employed in nuclear reactor vessel inspection apparatus
JPH08122312A (ja) * 1994-10-21 1996-05-17 Tokyo Gas Co Ltd アレイ型探傷器におけるアレイ探触子及びこの入射角制御装置
US7021143B2 (en) * 2003-12-11 2006-04-04 General Motors Corporation Cylindrically-rotating ultrasonic phased array inspection method for resistance spot welds
WO2005103675A1 (ja) 2004-04-26 2005-11-03 Kabushiki Kaisha Toshiba 3次元超音波検査装置
JP2006153710A (ja) * 2004-11-30 2006-06-15 Daihen Corp 溶接検査用プローブ及びそれを用いた溶接検査システム
GB0518153D0 (en) 2005-09-07 2005-10-12 Rolls Royce Plc Apparatus for measuring wall thicknesses of objects
JP2008203082A (ja) * 2007-02-20 2008-09-04 Mazda Motor Corp スポット溶接部の超音波検査方法、超音波検査装置、検査プローブの角度調整方法および位置調整方法。
JP5155692B2 (ja) 2008-02-26 2013-03-06 東芝プラントシステム株式会社 超音波検査装置
JP2010014626A (ja) 2008-07-04 2010-01-21 Toshiba Corp 三次元超音波検査装置
JP5618529B2 (ja) 2009-12-04 2014-11-05 株式会社東芝 三次元超音波検査装置
US9733219B2 (en) * 2011-05-10 2017-08-15 Cumberland & Western Resources, Llc Automated weld inspection system with weld acceptability pass or fail indications
JP5840910B2 (ja) * 2011-10-17 2016-01-06 日立Geニュークリア・エナジー株式会社 超音波探傷方法
CN204086222U (zh) * 2014-10-22 2015-01-07 燕山大学 一种四探头超声波探伤多自由度探头架
US10036731B2 (en) * 2016-03-31 2018-07-31 Honda Motor Co., Ltd. Weld testing system and method for a welding assembly
US10684261B2 (en) * 2016-04-01 2020-06-16 General Electric Company Ultrasonic bar and tube end testing with linear axis robot
CN106841398B (zh) * 2017-02-15 2017-12-26 吉林大学 曲面焊接件的定位超声检测装置及方法
JP6570600B2 (ja) 2017-11-15 2019-09-04 株式会社東芝 検査システム、制御装置、角度調整方法、プログラム、および記憶媒体
JP6805289B2 (ja) * 2019-05-14 2020-12-23 株式会社東芝 推定装置、検査システム、推定方法、角度調整方法、検査方法、プログラム、及び記憶媒体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678736A (en) * 1970-08-03 1972-07-25 Gen Electric Machine with improved operating head traversing workpieces with curved surfaces
JPS5618529B2 (ja) 1978-10-13 1981-04-30
US20040245315A1 (en) * 2003-06-04 2004-12-09 Maev Roman Gr. Method and apparatus for assessing the quality of spot welds
JP2006220608A (ja) * 2005-02-14 2006-08-24 Exedy Corp 自動超音波検査装置、その検査方法及びその検査方法を用いた製造方法
JP3189500U (ja) * 2005-09-07 2014-03-20 ロールス・ロイス・ピーエルシー 物体の肉厚を測定する方法および装置
JP2007278809A (ja) * 2006-04-05 2007-10-25 Kawasaki Heavy Ind Ltd スポット溶接部の検査方法及び装置
JP2008051645A (ja) * 2006-08-24 2008-03-06 Toshiba Corp 超音波探傷装置
US20100031750A1 (en) * 2008-08-05 2010-02-11 Roger Spencer Ut method of identifying a stuck joint
JP2012247262A (ja) * 2011-05-26 2012-12-13 Hitachi-Ge Nuclear Energy Ltd 超音波探傷方法及び超音波探傷装置
WO2016164457A1 (en) * 2015-04-07 2016-10-13 Edison Welding Institute, Inc. Phased array system for inspection of laser welds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786633A1 (en) * 2019-08-28 2021-03-03 Kabushiki Kaisha Toshiba Display control system, inspection control system, display control method, and storage medium
CN112444565A (zh) * 2019-08-28 2021-03-05 株式会社东芝 显示控制系统、检查管理系统、显示控制方法及存储介质
US11561204B2 (en) 2019-08-28 2023-01-24 Kabushiki Kaisha Toshiba Display control system, inspection control system, display control method, and storage medium
EP4119301A4 (en) * 2020-03-09 2024-03-27 Toshiba Kk ROBOT SYSTEM, PARALLEL LINK MECHANISM, CONTROL METHOD, CONTROL DEVICE, PROGRAM, AND STORAGE MEDIUM

Also Published As

Publication number Publication date
KR20200027019A (ko) 2020-03-11
DE112018000827T5 (de) 2019-10-31
EP3712608A1 (en) 2020-09-23
CN110402388A (zh) 2019-11-01
US20210389279A1 (en) 2021-12-16
US11131652B2 (en) 2021-09-28
KR20230054497A (ko) 2023-04-24
CA3169429A1 (en) 2019-05-23
US20200003735A1 (en) 2020-01-02
EP3712608A4 (en) 2021-08-18
JP6570600B2 (ja) 2019-09-04
DE112018000827B4 (de) 2023-09-07
KR20210144911A (ko) 2021-11-30
KR102330478B1 (ko) 2021-11-24
JP2019090727A (ja) 2019-06-13
US11852611B2 (en) 2023-12-26
CN114965715A (zh) 2022-08-30
CA3072737A1 (en) 2019-05-23
CA3072737C (en) 2022-10-18
CN110402388B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2019098232A1 (ja) 検査システム、制御方法、および記憶媒体
US20150273604A1 (en) Material joining inspection and repair
JP4837425B2 (ja) スポット溶接部の検査方法及び装置
US20170225275A1 (en) Device and method for measuring quality of ultrasonic welding
WO2020012694A1 (ja) 制御方法、検査システム、プログラム、及び記憶媒体
US20170266754A1 (en) Joint part determination method and joint material manufacturing method
JP7214589B2 (ja) 検査システム、角度調整方法、プログラム、および記憶媒体
CN104936429A (zh) 销插入装置和销插入不良判定方法
CN111610251A (zh) 用于检验焊接处的方法和超声波检验头装置
US20150185468A1 (en) Driving calibration apparatus of electrostatic mems scanning mirror and driving calibration method therefof
US10427243B2 (en) Method for producing a laser weld seam between components by use of a spherical or sphere-like element, and corresponding component connection
KR101719338B1 (ko) 레이저 융착 시스템 및 그 제어방법
JP2019184620A5 (ja)
JP6231894B2 (ja) スポット溶接の検査方法及びその装置
KR20140003797A (ko) 레이저 용접 장치
WO2023002968A1 (ja) 処理装置、検出システム、処理方法、プログラム、及び記憶媒体
KR101412336B1 (ko) 아크 용접 장치
KR102500543B1 (ko) 마찰교반 용접장치
EP3654031B1 (en) Ultrasonic inspection system
JP2016114465A (ja) 横割れ探傷装置
JP2016205914A (ja) スポット溶接部の検査方法およびその検査装置
JPH04239738A (ja) ボンディング装置
JPH0642926A (ja) 被溶接物のギャップ検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3072737

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20207004927

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018878645

Country of ref document: EP

Effective date: 20200615