WO2019098166A1 - Motor unit - Google Patents

Motor unit Download PDF

Info

Publication number
WO2019098166A1
WO2019098166A1 PCT/JP2018/041917 JP2018041917W WO2019098166A1 WO 2019098166 A1 WO2019098166 A1 WO 2019098166A1 JP 2018041917 W JP2018041917 W JP 2018041917W WO 2019098166 A1 WO2019098166 A1 WO 2019098166A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gear
shaft
motor
receiving portion
Prior art date
Application number
PCT/JP2018/041917
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
勇樹 石川
慶介 福永
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202311000204.0A priority Critical patent/CN117028539A/en
Priority to CN201880070916.0A priority patent/CN111295535B/en
Publication of WO2019098166A1 publication Critical patent/WO2019098166A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0476Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor unit.
  • Patent Document 1 describes a structure in which oil accumulated in the bottom of a case is scraped up by the rotation of a gear.
  • the motor unit preferably picks up the oil and distributes the oil to the gears regardless of the direction of rotation of the motor.
  • oil can be distributed to the gears not only when the vehicle moves forward but also when the vehicle moves backward.
  • the degree of freedom of the arrangement of the motor unit with respect to the vehicle can be increased, and the common motor unit can be mounted on various vehicles.
  • one aspect of the present invention aims to provide a motor unit capable of scraping oil in a gear chamber regardless of the rotation direction of an axle and distributing the oil to each gear.
  • One aspect of the motor unit according to the present invention includes a motor having a shaft rotating about a motor shaft, a reduction gear having an intermediate gear connected to the shaft and rotating about an intermediate shaft, and the reduction gear
  • a differential gear having a ring gear that rotates about a differential shaft, a housing provided with the reduction gear and a gear chamber for accommodating the differential gear, and oil accumulated in a lower region of the gear chamber.
  • the motor shaft, the intermediate shaft and the differential shaft extend in parallel in the horizontal direction.
  • the intermediate shaft and the differential shaft are located below the motor shaft.
  • At least a portion of the ring gear is immersed in the oil collected in the lower region of the gear chamber.
  • the housing has a first oil receiver located below the intermediate gear and extending along a tip circle of the intermediate gear. The oil scooped up from the lower region of the gear chamber by the rotation of the ring gear is accumulated in the first oil receiving portion.
  • the oil accumulated in the first oil receiving portion is scooped up by the intermediate gear.
  • a motor unit capable of scraping oil in a gear chamber regardless of the rotational direction of an axle.
  • FIG. 1 is a conceptual view of a motor unit according to the first embodiment.
  • FIG. 2 is a side view of the motor unit of the first embodiment.
  • FIG. 3 is a conceptual view showing a part of a motor unit of a modification.
  • FIG. 4 is a side view of the motor unit of the second embodiment.
  • FIG. 5 is a cross-sectional view of the motor unit taken along the line VV of FIG.
  • an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction)
  • the + Z direction is the upper side (opposite the gravity direction)
  • the -Z direction is the lower side (gravity direction).
  • the X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle on which the motor unit 1 is mounted.
  • the + X direction is the vehicle front
  • the ⁇ X direction is the vehicle rear.
  • the + X direction may be the rear of the vehicle and the ⁇ X direction may be the front of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the width direction (left-right direction) of the vehicle.
  • the direction (Z-axis direction) parallel to the motor axis J2 of the motor 2 is simply referred to as “axial direction”, and the radial direction centered on the motor axis J2 is simply referred to as “radial direction”.
  • the circumferential direction around the motor axis J2, that is, around the axis of the motor axis J2, is simply referred to as “circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • parallel direction also includes a substantially parallel direction.
  • the above-mentioned “orthogonal direction” also includes a substantially orthogonal direction.
  • FIG. 1 is a conceptual view of a motor unit 1 according to an embodiment.
  • FIG. 2 is a side view of the motor unit 1.
  • the motor unit 1 is mounted on a vehicle having a motor as a power source such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and used as the power source.
  • a motor as a power source
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • EV electric vehicle
  • the motor unit 1 includes a motor (main motor) 2, a reduction gear 4, a differential device 5, a housing 6 and an oil O.
  • An interior of the housing 6 is provided with a housing space 80 for housing the motor 2, the reduction gear 4 and the differential gear 5.
  • the housing space 80 is divided into a motor chamber 81 housing the motor 2 and a gear chamber 82 housing the reduction gear 4 and the differential gear 5.
  • the motor 2 is accommodated in a motor chamber 81 of the housing 6.
  • the motor 2 includes a rotor 20 and a stator 30 located radially outward of the rotor 20.
  • the motor 2 is an inner rotor type motor including a stator 30 and a rotor 20 rotatably disposed inside the stator 30.
  • the rotor 20 rotates by supplying power to the stator 30 from a battery (not shown).
  • the rotor 20 has a shaft (motor shaft) 21, a rotor core 24, and a rotor magnet (not shown). That is, the motor 2 has a shaft 21, a rotor core 24, and a rotor magnet.
  • the rotor 20 rotates about a motor axis J2 extending in the horizontal direction. The torque of the rotor 20 is transmitted to the differential 5 via the reduction gear 4.
  • the shaft 21 extends around a motor axis J2 extending in the horizontal direction and the width direction of the vehicle.
  • the shaft 21 rotates about the motor axis J2.
  • the shaft 21 is a hollow shaft provided with a hollow portion 22 having an inner circumferential surface extending along the motor axis J2.
  • the shaft 21 extends across the motor chamber 81 and the gear chamber 82 of the housing 6. One end of the shaft 21 protrudes toward the gear chamber 82. A pinion gear 41 is fixed to an end of the shaft 21 protruding into the gear chamber 82.
  • the rotor core 24 is configured by laminating silicon steel plates.
  • the rotor core 24 is a cylindrical body extending along the axial direction.
  • a plurality of rotor magnets (not shown) are fixed to the rotor core 24.
  • the plurality of rotor magnets are arranged along the circumferential direction with the magnetic poles alternately.
  • the stator 30 surrounds the rotor 20 from the radially outer side.
  • the stator 30 has a stator core 32, a coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator 30 is held by the housing 6.
  • the stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner circumferential surface of the annular yoke.
  • a coil wire is wound around the pole teeth.
  • the coil wire wound around the pole teeth constitutes a coil 31.
  • the coil 31 has a coil end 31 a protruding from the axial end surface of the stator core 32.
  • the coil end 31 a protrudes in the axial direction more than the end of the rotor core 24 of the rotor 20.
  • the coil end 31 a protrudes on both sides in the axial direction with respect to the rotor core 24.
  • the reduction gear 4 has a function of reducing the rotational speed of the motor 2 and increasing the torque output from the motor 2 according to the reduction ratio.
  • the reduction gear 4 is connected to the shaft 21 of the motor 2.
  • the reduction gear 4 transmits the torque output from the motor 2 to the differential 5.
  • the reduction gear 4 has a pinion gear 41, an intermediate shaft 45, and a pair of intermediate gears 42 and 43 fixed to the intermediate shaft 45.
  • the torque output from the motor 2 is transmitted to the ring gear 51 of the differential 5 through the shaft 21 of the motor 2, the pinion gear 41, and the pair of intermediate gears 42 and 43.
  • the gear ratio of each gear, the number of gears, etc. can be variously changed according to the required reduction ratio.
  • the reduction gear 4 is a reduction gear of a parallel axis gear type in which axes of the respective gears are arranged in parallel.
  • the pinion gear 41 is fixed to the outer peripheral surface of the shaft 21 of the motor 2.
  • the pinion gear 41 rotates around the motor shaft J2 together with the shaft 21.
  • the intermediate shaft 45 extends along an intermediate axis J4 parallel to the motor axis J2.
  • the middle shaft 45 rotates around the middle axis J4.
  • the intermediate gears 42 and 43 have a large diameter gear (intermediate gear) 42 and a small diameter gear (intermediate gear) 43 aligned in the axial direction.
  • the large diameter gear 42 and the small diameter gear 43 are provided on the outer peripheral surface of the intermediate shaft 45.
  • the large diameter gear 42 and the small diameter gear 43 are connected via an intermediate shaft 45.
  • the large diameter gear 42 and the small diameter gear 43 rotate about the intermediate shaft J4.
  • At least two of the large diameter gear 42, the small diameter gear 43 and the intermediate shaft 45 may be composed of a single member.
  • the large diameter gear 42 meshes with the pinion gear 41.
  • the small diameter gear 43 meshes with the ring gear 51 of the differential device 5.
  • the differential device 5 is connected to the motor 2 via the reduction gear 4.
  • the differential 5 is a device for transmitting the torque output from the motor 2 to the wheels of the vehicle.
  • the differential device 5 has a function of transmitting the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
  • the differential 5 has a ring gear 51, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 51 rotates about a differential axis J5 parallel to the motor axis J2.
  • the torque output from the motor 2 is transmitted to the ring gear 51 via the reduction gear 4.
  • the housing 6 holds the motor 2, the reduction gear 4 and the differential 5 in the housing space 80.
  • the housing 6 has a partition wall 61c.
  • the partition wall 61 c divides the housing space 80 of the housing 6 into a motor chamber 81 and a gear chamber 82. That is, the motor chamber 81 and the gear chamber 82 are provided in the housing 6.
  • the motor 2 is accommodated in the motor chamber 81.
  • the gear chamber 82 the reduction gear 4 and the differential 5 are accommodated.
  • the partition wall 61c is provided with a shaft passage hole 61f and a partition opening 68.
  • the shaft passage hole 61 f and the partition opening 68 communicate the motor chamber 81 with the gear chamber 82.
  • the shaft 21 passes through the shaft passage hole 61 f.
  • the partition opening 68 is located below the shaft passage hole 61 f.
  • the partition wall opening 68 is provided in the vicinity of the bottom 81 a of the motor chamber 81.
  • the bottom 81 a of the motor chamber 81 is located above the bottom 82 a of the gear chamber 82. Therefore, the oil O which has cooled the motor 2 moves from the motor chamber 81 to the gear chamber 82 through the partition opening 68.
  • an oil reservoir P in which the oil O is accumulated is provided in the lower region of the gear chamber 82.
  • the lower region in the gear chamber 82 is referred to as an oil reservoir P.
  • a part of the differential device 5 is immersed in the oil reservoir P. That is, at least a part of the ring gear 51 is immersed in the oil O accumulated in the oil reservoir P.
  • the oil O accumulated in the oil reservoir P is scooped up by the operation of the reduction gear 4 and the differential device 5 and a part is supplied to the first oil passage 91 and a part is diffused in the gear chamber 82.
  • the oil O diffused to the gear chamber 82 is supplied to the gears of the reduction gear 4 and the differential gear 5 in the gear chamber 82 and spreads the oil O on the tooth surfaces of the gears.
  • the oil O supplied to the reduction gear 4 and the differential device 5 and used for lubrication is dropped and collected in an oil reservoir P located below the gear chamber 82.
  • the capacity of the oil O in the housing space 80 is set to such an extent that a part of the bearing of the differential 5 is immersed in the oil O when the motor unit 1 is stopped.
  • the housing 6 has a first oil receiving portion 69, a second oil receiving portion 93, and an oil introduction passage 94.
  • the first oil receiving portion 69, the second oil receiving portion 93, and the oil introduction path 94 are disposed in the gear chamber 82 of the gear housing portion 62.
  • the first oil receptacle 69 and the second oil receptacle 93 open upward.
  • the first oil receiving portion 69 and the second oil receiving portion 93 function as a reservoir for temporarily storing oil.
  • the oil introduction path 94 connects the second oil receiving portion 93 and the inside of the shaft 21.
  • the first oil receiving portion 69 is located below the intermediate gears 42, 43.
  • the first oil receiving portion 69 extends along the tip circle of the intermediate gears 42, 43. More specifically, the first oil receiving portion 69 is located below the large diameter gear 42 of the pair of intermediate gears 42 and 73 and extends along the tip circle of the large diameter gear 42.
  • the oil O picked up by the differential device 5 is accumulated in the first oil receiving portion 69.
  • the oil O accumulated in the first oil receiving portion 69 is scooped up by the rotation of the large diameter gear 42. Since the first oil receiving portion 69 extends along the tip circle of the large diameter gear 42, the oil O accumulated in the first oil receiving portion 69 is efficiently scraped up to the upper side.
  • the first oil receiving portion 69 is provided on the lower side of the intermediate gears 42 and 43 in the range of an angle ⁇ centered on the intermediate shaft J4 when viewed in the axial direction of the motor shaft J2.
  • the angle ⁇ is preferably 120 ° or more and 140 ° or less.
  • the first oil receiving portion 69 extends along a tip circle of the large diameter gear 42 of the pair of intermediate gears 42 and 43.
  • the first oil receiving portion 69 may extend along the tip circle of the small diameter gear 43.
  • the small diameter gear 43 meshes with the ring gear 51 disposed adjacent in the horizontal direction. Therefore, when the first oil receiving portion 69 is provided along the tip circle of the small diameter gear 43, the first oil receiving portion 69 is made large to prevent interference between the first oil receiving portion 69 and the ring gear 51. It is difficult to do.
  • the first oil receiving portion 69 is provided along the tip circle of the large diameter gear 42, interference is facilitated by axially shifting the first oil receiving portion 69 and the ring gear 51.
  • the large diameter gear 42 is larger in diameter than the small diameter gear 43. Therefore, the oil O accumulated in the first oil receiving portion 69 can be efficiently scraped up. From the above reasons, it is preferable that the first oil receiving portion 69 extend along the tip circle of the large diameter gear 42.
  • the second oil receiver 93 is located above the intermediate shaft J4 and the differential shaft J5 in the vertical direction.
  • the second oil receiver 93 is located between the intermediate shaft J4 and the differential shaft J5 in the vehicle front-rear direction (that is, the horizontal direction).
  • the second oil receiver 93 is disposed on the horizontal side of the pinion gear 41. That is, the second oil receiving portion 93 and the shaft 21 are arranged in the horizontal direction.
  • the second oil receiver 93 opens upward.
  • the oil O picked up by the ring gear 51 from the oil reservoir P is collected in the second oil receiving portion 93.
  • the oil O picked up by the large diameter gear (intermediate gear) 42 from the first oil receiving portion 69 is accumulated in the second oil receiving portion 93.
  • the opening of the second oil receiving portion 93 overlaps the ring gear 51, the large diameter gear 42 and the small diameter gear 43 when viewed from the vertical direction. Most of the oil scooped up by the gear splashes directly above the scooped gear.
  • the second oil receiving portion 93 has a bottom 93a, a first side wall 93b, and a second side wall 93c.
  • the first side wall 93 b and the second side wall 93 c extend upward from the bottom 93 a.
  • the first side wall portion 93 b constitutes a wall surface of the second oil receiving portion 93 on the differential device 5 side.
  • the second side wall portion 93 c constitutes a wall surface of the second oil receiving portion 93 on the reduction gear 4 side. That is, the first side wall 93b extends upward from the end of the bottom 93a on the differential shaft J5 side, and the second side wall 93c extends upward from the end of the bottom 93a on the motor shaft J2 side.
  • the second oil receiver 93 is surrounded by the bottom 93a, the first side wall 93b, the second side wall 93c, and the wall of the gear housing 62 and the projecting plate 61d of the motor housing. Temporarily store oil O in the area.
  • the height of the upper end portion of the first side wall portion 93b is located below the upper end portion of the second side wall portion 93c.
  • the oil O is scooped up by the differential device 5 and scattered from the opposite side of the reduction gear 4 toward the second oil receiving portion 93.
  • the oil O scraped up by the differential device 5 can be efficiently stored in the second oil receiving portion 93.
  • the oil O exceeding the first side wall 93b among the oil O scraped up and scattered by the ring gear 51 and the large diameter gear 42 is applied to the second side wall 93c and is guided to the second oil receiving part 93 it can.
  • the second side wall 93 c extends obliquely upward along the circumferential direction of the pinion gear 41. That is, the second side wall 93c inclines toward the motor shaft J2 as it goes upward.
  • the second side wall 93 c can receive the oil O scraped up by the differential device 5 in a wide range.
  • the second side wall 93 c can receive a droplet of oil O which travels along the ceiling of the accommodation space 80 in a wide range.
  • An oil introduction passage 94 opens toward the inside of the second oil receiving portion 93 at the boundary between the bottom portion 93 a and the second side wall portion 93 c.
  • the bottom 93 a is slightly inclined downward as it goes to the motor axis J 2 in plan view. That is, the bottom 93a is slightly inclined to be the lower end on the second side wall 93c side. Therefore, the oil O in the second oil receiving portion 93 can be efficiently supplied to the oil introduction passage 94 by providing the opening of the oil introduction passage 94 between the bottom 93 a and the second side wall 93 c.
  • the oil introduction passage 94 extends from the bottom of the second oil receiver 93 toward the shaft 21.
  • the oil introduction passage 94 guides the oil O accumulated in the second oil receiving portion 93 from the end of the shaft 21 to the hollow portion 22.
  • the oil introduction passage 94 extends in a straight line.
  • the oil introduction passage 94 inclines downward from the second oil receiving portion 93 toward the end of the shaft 21.
  • the oil introduction path 94 is formed by processing a linearly extending hole on the wall surface to which the second oil receiving portion 93 of the housing 6 is connected.
  • the housing 6 has a gear chamber ceiling portion (ceiling portion) 64 that constitutes the upper wall of the gear chamber 82.
  • the gear chamber ceiling 64 is located above the reduction gear 4 and the differential 5.
  • an imaginary line (third line segment to be described later) L3 is defined which virtually connects the motor axis J2 and the differential axis J5.
  • the gear chamber ceiling 64 is substantially parallel to the virtual line L3.
  • the oil O can be efficiently applied to the pinion gear 41 rotating about the motor axis J2. Further, by making the gear chamber ceiling portion 64 substantially parallel to the virtual line L3, it is possible to suppress the housing 6 from being enlarged in the vertical direction.
  • the gear room ceiling part 64 and the virtual line L3 make an angle of the gear room ceiling part 64 and the virtual line L3 to be within 10 degrees as "substantially parallel" here.
  • the gear chamber ceiling portion 64 is curved, the angle between the tangent line and the imaginary line L3 at all points of the curved line is within 10 °. In the range of 10 ° or less, the gear chamber ceiling portion 64 preferably approaches the virtual line L3 as it goes from the differential shaft J5 side to the motor shaft J2 side. Thereby, the housing 6 can be miniaturized.
  • the gear chamber ceiling portion 64 is a curved surface which is slightly curved in a direction approaching the virtual line L3 as it goes from the differential axis J5 side to the motor axis J2 side.
  • the curved shape of the gear chamber ceiling portion 64 is substantially the same as a parabola drawn by the oil O picked up by the ring gear 51 or a curved surface slightly away from the ring gear 51.
  • a portion of the oil O scraped up by the ring gear 51 directly reaches the second oil receiving portion 93.
  • another part of the oil O scraped up by the ring gear 51 travels along the gear chamber ceiling 64 of the housing 6 and reaches the second oil receiver 93. That is, the gear chamber ceiling portion 64 plays a role of guiding the oil O to the second oil receiving portion 93.
  • the gear chamber ceiling portion 64 has a convex portion 65 projecting downward.
  • the convex portion 65 is located on the upper side of the second oil receiving portion 93.
  • the oil O transmitted to the gear chamber ceiling portion 64 is a large droplet at the lower end of the convex portion 65 and falls downward and is collected in the second oil receiving portion 93. That is, the convex portion 65 guides the oil O transmitted along the gear chamber ceiling portion 64 to the second oil receiving portion 93.
  • the motor housing 61 and the gear housing 62 are fixed to each other by bolts 67.
  • the convex portion 65 is provided in the gear chamber ceiling portion 64 using a thick portion around a screw hole into which the bolt 67 is inserted. In FIG. 2, illustration of other bolts for fixing the motor housing 61 and the gear housing 62 and other thick parts around the screw holes is omitted.
  • the gear chamber ceiling 64 has a plate-like flange 66 extending along the axial direction.
  • the collar 66 projects downward.
  • the lower end of the collar 66 is located above the second oil receiver 93.
  • a part of the oil O scraped up and scattered by the ring gear 51 strikes the ridge 66 and travels along the surface of the ridge 66.
  • the oil O scraped up and scattered by the large diameter gear 42 is received by the flange 66 and travels along the surface of the flange 66.
  • the oil O becomes a large droplet at the lower end of the collar portion 66 and drops downward and accumulates in the second oil receiving portion 93. That is, the collar portion 66 guides the scraped oil O to the second oil receiving portion 93.
  • the flange portion 66 is inclined from the differential shaft J5 side to the motor shaft J2 side as it goes from the upper side to the lower side.
  • the ring gear 51 has a large diameter as compared with the large diameter gear 42 and the small diameter gear 43, so the scattering angle of the oil O that is scattered is close to horizontal.
  • the motor axis J2, the intermediate axis J4 and the differential axis J5 extend parallel to one another along the horizontal direction.
  • the intermediate shaft J4 and the differential shaft J5 are located below the motor shaft J2. Therefore, the reduction gear 4 and the differential 5 are located below the motor 2.
  • a line segment virtually connecting the motor axis J2 and the intermediate axis J4 is a first line segment L1 when viewed from the axial direction of the motor axis J2, and a line segment virtually connecting the intermediate axis J4 and the differential axis J5 Is a second line segment L2, and a line segment that virtually connects the motor axis J2 and the differential axis J5 is a third line segment L3.
  • the second line segment L2 extends along the substantially horizontal direction. That is, the intermediate shaft J4 and the differential shaft J5 are aligned substantially in the horizontal direction. Therefore, the reduction gear 4 and the differential device 5 can be arranged in the horizontal direction, and the size of the motor unit 1 in the vertical direction can be reduced. Further, the oil O scraped up by the differential device 5 can be efficiently applied to the reduction gear 4. Thereby, oil O can be supplied to the tooth surface of the gear which comprises the reduction gear 4, and the transmission efficiency of a gear can be raised.
  • the diameter of the gears (the large diameter gear 42 and the small diameter gear 43) rotating about the intermediate shaft J4 is smaller than the diameter of the ring gear 51 rotating about the differential shaft J5.
  • the substantially horizontal direction of the second line segment L2 is a direction within ⁇ 10 ° with respect to the horizontal direction.
  • an angle ⁇ between the second line segment L2 and the third line segment L3 is 30 ° ⁇ 5 °.
  • the transmission efficiency between the pinion gear 41 and the large diameter gear 42 of the oil O scraped up by the differential device 5 can be enhanced, and a desired gear ratio can be realized.
  • the angle ⁇ exceeds 35 °, it becomes difficult to supply the oil scraped up by the differential device to the gear (pinion gear) that rotates about the motor shaft. As a result, the transmission efficiency between the pinion gear and the large diameter gear may be reduced.
  • the angle ⁇ is less than 25 °, the output side gear in the transmission process can not be made sufficiently large, and the desired gear ratio is achieved in three axes (motor shaft, intermediate shaft and differential shaft) It becomes difficult.
  • the first line segment L1 extends along the substantially vertical direction. That is, the motor shaft J2 and the intermediate shaft J4 are aligned along the substantially vertical direction. Therefore, the motor 2 and the reduction gear 4 can be arranged along the vertical direction, and the horizontal dimension of the motor unit 1 can be reduced. Further, by setting the first line segment L1 in the substantially vertical direction, the motor shaft J2 can be disposed close to the differential shaft J5, and the pinion gear 41 that rotates about the motor shaft J2 is a differential gear. It is possible to supply the oil O scraped up with 5. Thereby, the transmission efficiency between the pinion gear 41 and the large diameter gear 42 can be enhanced.
  • the substantially vertical direction of the first line segment L1 is a direction within ⁇ 10 ° with respect to the vertical direction.
  • the length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
  • L1: L2: L3 1: 1.4 to 1.7: 1.8 to 2.0
  • the reduction ratio in the reduction mechanism from the motor 2 to the differential 5 is 8 or more and 11 or less.
  • a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship between the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.
  • the oil O is used to lubricate the reduction gear 4 and the differential gear 5.
  • the oil O is also used for cooling the motor 2.
  • the oil O accumulates in the lower region (i.e., oil reservoir P) in the gear chamber 82. It is preferable to use an oil O equivalent to a low viscosity lubricating oil for automatic transmission (ATF: Automatic Transmission Fluid) in order to perform the functions of a lubricating oil and a cooling oil.
  • ATF Automatic Transmission Fluid
  • the oil path 90 is a path of oil O which supplies the oil O from the oil reservoir P to the motor 2.
  • the “oil passage” means a passage of oil O circulating in the storage space 80. Therefore, the “oil path” is not only a “flow path” that forms a steady flow of oil in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and dripping oil It is a concept that also includes the route.
  • the oil passage 90 is located inside the housing 6, that is, in the storage space 80.
  • the oil passage 90 is configured to straddle the motor chamber 81 and the gear chamber 82 of the accommodation space 80.
  • the oil path 90 is a path of the oil O which leads the oil O from the oil reservoir P through the motor 2 to the oil reservoir P again.
  • the oil passage 90 has a first oil passage (oil passage) 91 passing through the inside of the motor 2 and a second oil passage (oil passage) 92 passing through the outside of the motor 2.
  • the oil O cools the motor 2 from the inside and the outside in the first oil passage 91 and the second oil passage 92.
  • the first oil passage 91 and the second oil passage 92 are paths for supplying the oil O from the oil reservoir P to the motor 2 and recovering the oil O in the oil reservoir P again.
  • the oil O drips from the motor 2 and accumulates in the lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the lower region (i.e., the oil reservoir P) in the gear chamber 82 through the partition opening 68.
  • a cooler 97 for cooling the oil O is provided in the path of the first oil passage 91.
  • the oil O passing through the first oil passage 91 and cooled by the cooler 97 merges with the oil O passing through the second oil passage 92 in the oil reservoir P.
  • the oils O which have passed through the first oil passage 91 and the second oil passage 92 are mixed with each other to perform heat exchange. Therefore, the oil O which is disposed in the path of the first oil passage 91 and cools the cooler 97 can be exerted also on the oil O passing through the second oil passage 92.
  • one cooler 97 provided in one of the first oil passage 91 and the second oil passage 92 is used to cool the oil O in both oil passages. .
  • the cooler is disposed in the flow path in which the liquid constantly flows.
  • a configuration is conceivable in which a cooler is disposed in each of the flow passages included in the two oil passages.
  • the structure of the flow path in the oil path needs to be complicated, resulting in an increase in cost.
  • the cooler is provided only in the first oil passage 91, and the oil O passing through the first oil passage 91 and the second oil passage 92 is mixed in the oil reservoir P, whereby the second The oil passage 92 can be indirectly cooled.
  • the oil O in the first oil passage 91 and the second oil passage 92 can be cooled by one cooler 97 without complicating the configuration of the flow passage in the oil passage 90.
  • such an effect has the cooler 97 which cools the oil O in any one of the 1st oil path 91 and the 2nd oil path 92, and the 1st oil path 91 and the 2nd oil This is an effect that can be achieved when the oil O flowing through the passage 92 joins at the oil reservoir P.
  • the heat of the oil O is dissipated mainly through the cooler 97. Further, part of the heat of the oil O is also dissipated through the housing 6 because the oil O contacts the inner surface of the housing 6.
  • the uneven heat sink part 6b may be provided in the outer surface of the housing 6. As shown in FIG. The heat sink portion 6 b promotes cooling of the motor 2 via the housing 6.
  • first oil path In the first oil passage 91, the oil O is scooped up from the oil reservoir P by the differential device 5 and guided to the inside of the rotor 20. The oil O is given a centrifugal force associated with the rotation of the rotor 20 inside the rotor 20. Thus, the oil O is uniformly diffused toward the stator 30 surrounding the rotor 20 from the radial outer side, and cools the stator 30.
  • the first oil passage 91 has a scraping passage 91a, an oil supply passage 91b, an in-shaft passage 91c, and an in-rotor passage 91d.
  • a second oil receiving portion 93 is provided in the path of the first oil passage 91.
  • the second oil receiving portion 93 is provided in the housing space 80 (in particular, the gear chamber 82).
  • the scraping path 91a is a path for scraping the oil O from the oil reservoir P by the rotation of the ring gear 51 and the large diameter gear 42 and receiving the oil O at the second oil receiving portion 93 (see FIG. 2).
  • the scraping path 91a has a first scraping path 91aa and a second scraping path 91ab. Whether the oil O passes through the first raking path 91 aa or the second raking path 91 ab is determined depending on the rotational direction of the motor 2.
  • the motor 2 rotates in a first rotation direction T1 and a second rotation direction T2.
  • the solid line indicates the rotational direction of each gear when the motor 2 rotates in the first rotational direction T1
  • the rotational direction of each gear when the motor 2 rotates in the second rotational direction T2 It shows with a dashed dotted line.
  • the motor unit 1 causes the vehicle to move forward when the motor 2 rotates in the first rotation direction T1 and causes the motor 2 to reverse the vehicle in the second rotation direction T2 will be described.
  • the motor unit 1 may cause the vehicle to move backward, and the motor 2 may move the vehicle forward in the second rotation direction T2.
  • the differential shaft J5 which is the rotation center of the ring gear 51, is disposed on the vehicle rear side with respect to the reduction gear 4.
  • the ring gear 51 rotates upward in a region opposite to the reduction gear 4 when the motor 2 rotates in the first rotation direction T1.
  • the ring gear 51 scoops the oil O accumulated on the lower side of the gear chamber 82 upward in the vertical direction.
  • the oil O scraped up from the oil reservoir P by the rotation of the ring gear 51 falls from the upper side of each gear (the pinion gear 41, the large diameter gear 42 and the small diameter gear 43) in the gear chamber 82 and is supplied to the tooth surface of each gear. . Thereby, the transmission efficiency of the power of each gear can be improved.
  • the oil O scraped up by the rotation of the ring gear 51 falls on the upper side of the second oil receiver 93 around the opposite side of the reduction gear 4 and is collected in the second oil receiver 93. That is, when the motor 2 rotates in the first rotation direction T1, the second oil receiving portion 93 receives the oil O scraped up by the rotation of the ring gear 51 from the oil reservoir P. When the liquid level of the oil reservoir P is high immediately after the motor 2 is driven, the pair of intermediate gears (large diameter gear 42 and small diameter gear 43) contact the oil O of the oil reservoir P and scoop the oil O. In such a case, the second oil receiving portion 93 receives not only the ring gear 51 but also the oil O scraped up by the large diameter gear 42 and the small diameter gear 43.
  • the ring gear 51 of the differential device 5 rotates upward in a region on the side of the reduction gear 4 when the motor 2 rotates in the second rotation direction T2.
  • the ring gear 51 scrapes the oil O accumulated in the oil reservoir P upward in the vertical direction.
  • the oil O scraped up by the rotation of the ring gear 51 is collected in the first oil receiving portion 69 located below the intermediate gears 42, 43.
  • the intermediate gears 42 and 43 of the reduction gear 4 rotate upward in the region on the differential device 5 side when the motor 2 rotates in the second rotation direction T2.
  • the large diameter gear 42 which is one of the pair of intermediate gears 42 and 43 scoops the oil O accumulated in the first oil receiving portion 69 upward in the vertical direction.
  • the oil O scraped up by the rotation of the large diameter gear 42 passes between the reduction gear 4 and the differential device 5 and falls on the upper side of the second oil receiving portion 93 and accumulates in the second oil receiving portion 93. . That is, when the motor 2 is rotated in the second rotation direction T2, the second oil receiver 93 receives the oil O picked up by the large diameter gear 42 from the first oil receiver 69.
  • the oil O can be scooped up by the gear even when the motor 2 rotates in any direction. Therefore, the oil O can be spread over the tooth surfaces of the gears whether the vehicle is moving forward or backward. Further, the oil O can be spread over the tooth surface of each gear regardless of whether the rotation direction of the motor 2 for advancing the vehicle is the first rotation direction T1 or the second rotation direction T2. . Therefore, the degree of freedom of the attitude of the motor unit 1 with respect to the vehicle can be enhanced. Further, according to the present embodiment, even when the motor 2 rotates in any direction, the oil O can be accumulated in the second oil receiving portion 93 by scraping the oil O with the gear. As described later, the oil O stored in the second oil receiving portion 93 is supplied to the motor 2 to cool the motor 2. That is, regardless of the rotation direction of the motor 2, the motor 2 can be cooled efficiently.
  • the second oil receiving portion 93 and the shaft 21 are arranged in the horizontal direction. Therefore, the second oil receiving portion 93 and the pinion gear 41 are disposed at the same height. Therefore, the scraping height of the oil O for storing the oil O in the second oil receiving portion 93 and the scraping height of the oil O for supplying the oil O to the tooth surface of the pinion gear 41 substantially coincide with each other. . Therefore, the oil O can be supplied to the second oil receiving portion 93 and the oil O can be efficiently supplied to the tooth surface of the pinion gear 41 by scraping the oil O by the gears.
  • the second oil receiving portion 93 of the present embodiment is located between the intermediate shaft J4 and the differential shaft J5 in the horizontal direction. That is, the second oil receiving portion 93 is disposed at a position where the oil O is susceptible to being scooped up against the oil O of both the large diameter gear 42 and the ring gear 51. Therefore, the oil O can be efficiently received by the second oil receiving portion 93 against the scraping of the oil O by the large diameter gear 42 and the ring gear 51.
  • the oil supply flow passage 91 b guides the oil O to the motor 2 from the second oil receiving portion 93.
  • the oil supply passage 91 b is constituted by the oil introduction passage 94.
  • the shaft inner path 91 c is a path through which the oil O passes in the hollow portion 22 of the shaft 21.
  • the rotor inner path 91 d is a path which passes through the inside of the rotor core 24 from the communication hole 23 of the shaft 21 and scatters to the stator 30.
  • the oil O that has reached the stator 30 removes heat from the stator 30.
  • the oil O which has cooled the stator 30 is dropped downward, and is accumulated in the lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition 61 c.
  • the first oil passage 91 includes the scraping path 91a and the rotor inner path 91d.
  • the scraping path 91 a moves the oil O from the gear chamber 82 to the motor chamber 81 by scraping the oil O by the differential device 5.
  • the amount of oil O picked up by the differential 5 depends on the number of revolutions of the differential 5. Therefore, the scraping path 91a increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed.
  • the rotor inner path 91 d sucks the oil O from the gear chamber 82 side to the motor chamber 81 side by the centrifugal force of the rotor 20. The centrifugal force depends on the rotational speed of the rotor 20.
  • the rotor inner path 91d increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed. That is, in the first oil passage 91, the amount of movement of the oil O to the motor chamber 81 increases or decreases depending on the vehicle speed.
  • the oil O is pulled up from the oil reservoir P to the upper side of the motor 2 in the second oil passage 92 and supplied to the motor 2.
  • the oil O supplied to the motor 2 takes heat from the stator 30 while cooling along the outer peripheral surface of the stator 30 to cool the motor 2.
  • the oil O transmitted along the outer peripheral surface of the stator 30 drips downward and accumulates in the lower region in the motor chamber 81.
  • the oil O of the second oil passage 92 merges with the oil O of the first oil passage 91 in the lower region of the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the lower region (i.e., the oil reservoir P) in the gear chamber 82 through the partition opening 68.
  • the second oil passage 92 has a first flow passage 92a, a second flow passage 92b, and a third flow passage 92c.
  • a pump 96, a cooler 97, and a reservoir 98 are provided in the path of the second oil passage 92.
  • the oil O passes through each portion in the order of the first passage 92a, the pump 96, the second passage 92b, the cooler 97, the third passage 92c, and the reservoir 98, It is supplied to the motor 2.
  • the first flow passage 92 a, the second flow passage 92 b and the third flow passage 92 c pass through the inside of the wall 6 a of the housing 6 surrounding the accommodation space 80.
  • the first flow path 92 a connects the oil reservoir P and the pump 96.
  • the second flow path 92 b connects the pump 96 and the cooler 97.
  • the third flow path 92 c connects the cooler 97 and the storage space 80.
  • the pump 96 is an electric pump driven by electricity.
  • the pump 96 sucks up the oil O from the oil reservoir P via the first flow passage 92a and supplies it to the motor 2 via the second flow passage 92b, the cooler 97, the third flow passage 92c and the reservoir 98. .
  • the amount of oil O supplied to the motor 2 by the pump 96 is appropriately controlled in accordance with the driving state of the motor 2. Therefore, when the temperature of the motor 2 is increased, for example, when a long time drive or a high output is required, the drive output of the pump 96 is increased and the amount of oil O supplied to the motor 2 is increased.
  • the cooler 97 is connected to a first flow passage 92 a and a second flow passage 92 b.
  • the first flow path 92 a and the second flow path 92 b are connected via the internal flow path of the cooler 97.
  • a cooling water pipe (not shown) through which the cooling water supplied from the radiator passes is provided inside the cooler 97.
  • the oil O passing through the inside of the cooler 97 is cooled by heat exchange with the cooling water.
  • the reservoir 98 is located in the motor chamber 81 of the accommodation space 80.
  • the reservoir 98 is located above the motor.
  • the reservoir 98 stores oil O supplied to the motor chamber 81 via the third flow path 92c.
  • the reservoir 98 has a plurality of outlets 98a.
  • the oil O accumulated in the reservoir 98 is supplied to the motor 2 from each outlet 98 a.
  • the oil O flowing out from the outlet 98 a of the reservoir 98 flows from the upper side to the lower side along the outer peripheral surface of the motor 2 to remove the heat of the motor 2. Thereby, the whole motor 2 can be cooled.
  • the reservoir 98 extends along the axial direction.
  • the outlets 98 a of the reservoir 98 are provided at both axial ends of the reservoir 98.
  • the outlet 98a is located above the coil end 31a.
  • the oil O which has cooled the coil 31 is dropped downward, and is accumulated in the lower region in the motor chamber 81.
  • the oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition 61 c.
  • the second oil passage 92 moves the oil O from the gear chamber 82 to the motor chamber 81 by the pump (electric pump) 96.
  • the amount of oil O supplied to the pump 96 is controlled based on, for example, the temperature measurement result of the motor 2. Therefore, in the second oil passage 92, the amount of movement of the oil O to the motor chamber 81 increases or decreases regardless of the vehicle speed.
  • the second oil passage 92 stops the supply of oil O to the motor 2 when the motor 2 is at rest.
  • the second oil passage 92 starts the movement of the oil O to the motor chamber 81 when the motor 2 is started. Therefore, the liquid level of the oil reservoir P in the gear chamber 82 can be raised at the time of stop.
  • the large diameter gear 42, the small diameter gear 43 and the ring gear 51 can be rotated in the oil reservoir P by the rotation of the motor 2 immediately after start-up, so that the oil O can spread over the tooth surface.
  • FIG. 3 is a conceptual view showing the tip of the shaft 121 and the second oil receiver 193 in the motor unit of the modification.
  • symbol is attached
  • the oil O is supplied to the second oil receiver 193 through the first scraping path 91 aa and the second scraping path 91 ab. More specifically, the second oil receiving portion 193 is scooped up by the rotation of the large diameter gear 42 from the oil O scraped up by the rotation of the ring gear 51 from the oil reservoir P and the first oil receiving portion 69. Oil accumulates (see Figure 1).
  • the shaft 121 rotating around the motor axis J2 is a hollow shaft. That is, the shaft 121 is provided with a hollow portion 122 extending along the motor axis J2.
  • the tip of the shaft 121 is closed. Further, the tip of the shaft 121 is accommodated in the second oil receiver 193. That is, at least a part of the second oil receiver 193 surrounds a part of the outer periphery of the shaft 121.
  • the shaft 121 is provided with a through hole 121 a connecting the outside of the shaft 121 and the hollow portion 122 in a region surrounded by the second oil receiving portion 193.
  • the through holes 121a extend in the radial direction.
  • the through hole 121 a introduces the oil O accumulated in the second oil receiving portion 193 into the inside (hollow portion 122) of the shaft 121.
  • FIG. 4 is a side view of the motor unit 201.
  • FIG. 5 is a cross-sectional view of the motor unit 201 taken along the line VV of FIG.
  • the motor unit 201 according to the second embodiment mainly differs in the configuration of the housing 206 from the above-described embodiment.
  • symbol is attached
  • the motor unit 201 includes the motor 2 (omitted in FIGS. 4 and 5), the reduction gear 204, the differential device 5, the housing 206, and the oil O, as in the above-described embodiment. Also, the motor unit 201 of the present embodiment has an inverter 203.
  • the reduction gear 204 has a pinion gear 41, an intermediate shaft 45, and a pair of intermediate gears 42 and 43 fixed to the intermediate shaft 45, as in the above-described embodiment.
  • the pair of intermediate gears 42 and 43 are classified into the large diameter gear 42 and the small diameter gear 43.
  • the torque output from the motor 2 is transmitted to the ring gear 51 of the differential 5 through the shaft 21 of the motor 2, the pinion gear 41, and the pair of intermediate gears 42 and 43.
  • a housing space 80 for housing the motor 2, the reduction gear 204 and the differential 5 is provided inside the housing 206.
  • the housing space 80 is divided into a motor chamber 81 (not shown in FIGS. 4 and 5) for housing the motor 2 and a gear chamber 82 for housing the reduction gear 204 and the differential device 5.
  • an oil reservoir P in which the oil O is accumulated is provided in the lower region of the gear chamber 82.
  • a part of the differential device 5 is immersed in the oil reservoir P. That is, at least a part of the ring gear 51 is immersed in the oil O accumulated in the oil reservoir P.
  • the housing 206 has a first member 206A and a second member 206B.
  • the first member 206A and the second member 206B are aligned along the axial direction.
  • the first member 206A has a concave shape that opens in the axial direction toward the second member 206B.
  • the second member 206B has a concave shape that opens in the axial direction toward the first member 206A.
  • the first member 206A and the second member 206B face each other to form a gear chamber 82. That is, the first member 206A and the second member 206B surround the gear chamber 82.
  • the first member 206A has a first facing surface (facing surface) 206Aa that constitutes an inner wall surface facing in the axial direction of the gear chamber 82.
  • the second member 206B has a second facing surface (facing surface) 206Ba that constitutes an inner wall surface facing the axial direction of the gear chamber 82.
  • the first facing surface 206Aa and the second facing surface 206Ba face each other in the axial direction.
  • the housing 206 includes a first oil receiving portion 269, a second oil receiving portion 293, a first oil guiding portion 265, a second oil guiding portion 266, and an oil introducing passage. And 94.
  • the first oil receiving portion 269, the second oil receiving portion 293, the first oil guiding portion 265, the second oil guiding portion 266, and the oil introducing passage 94 are disposed in the gear chamber 82.
  • the first oil receiver 269 and the second oil receiver 293 open upward.
  • the first oil receiver 269 and the second oil receiver 293 function as a reservoir for temporarily storing oil.
  • the first oil guiding portion 265 and the second oil guiding portion 266 induce the oil O in the gear chamber 82.
  • the oil introduction path 94 connects the second oil receiving portion 293 and the inside of the shaft 21.
  • the first oil receiving portion 269 is located below the large diameter gear 42 and extends in an arc along the tip circle of the large diameter gear 42.
  • the oil O picked up by the ring gear 51 is accumulated in the first oil receiving portion 269.
  • the first oil receiving portion 269 overlaps the large diameter gear 42 in the axial direction. A part of the large diameter gear 42 is immersed in the oil O accumulated in the first oil receiving portion 269. The oil O accumulated in the first oil receiving portion 269 is scooped up by the rotation of the large diameter gear 42. Since the first oil receiving portion 269 extends along the tip circle of the large diameter gear 42, the oil O accumulated in the first oil receiving portion 269 is efficiently scraped upward.
  • the first oil receiving portion 269 is composed of a first rib 269a and a second rib 269b.
  • the first rib 269a is provided on the first member 206A
  • the second rib 269b is provided on the second member 206B. That is, the first member 206A has a first rib 269a, and the second member 206B has a second rib 269b.
  • the first rib 269a protrudes from the first opposing surface 206Aa of the first member 206A in a substantially uniform cross-sectional shape in the axial direction.
  • the second rib 269b axially protrudes from the second opposing surface 206Ba of the second member 206B.
  • the first rib 269a and the second rib 269b abut each other.
  • the first rib 269a and the second rib 269b constitute a first oil receiving portion 269.
  • the first oil receiving portion 269 is composed of the first rib 269a and the second rib 269b.
  • the first oil receiving portion 269 is surrounded from both sides in the axial direction by the first opposing surface 206Aa of the first member 206A and the second opposing surface 206Ba of the second member 206B.
  • the oil O can be reliably stored in the first oil receiving portion 269.
  • the first oil receiving portion 269 extends in the axial direction from the first facing surface 206Aa to the second facing surface 206Ba. That is, the first oil receiving portion 269 is disposed over the entire length of the gear chamber 82 in the axial direction. Therefore, the first oil receiving portion 269 overlaps not only the large diameter gear 42 but also the ring gear 51 in the axial direction. Therefore, the first oil receiving portion 269 can efficiently receive the oil O scraped up by the ring gear 51.
  • the first oil receiver 269 is configured as a part of the first member 206A and the second member 206B.
  • the first oil receiver 269 may be a separate member fixed to the first member 206A or the second member 206B.
  • the first oil guiding portion 265 extends in the shape of a rib along the vertical direction.
  • the first oil guiding portion 265 extends in an arc along the tip of the small diameter gear 43.
  • the first oil guiding portion 265 axially protrudes from the first opposing surface 206Aa of the first member 206A.
  • the first oil guiding portion 265 is located immediately above the first oil receiving portion 269. That is, the first oil guiding portion 265 is located on the upper side of the first oil receiving portion 269, and at least a part thereof overlaps the first oil receiving portion 269 when viewed in the vertical direction.
  • the first oil guiding portion 265 overlaps the ring gear 51 in the axial direction. Therefore, the oil O scraped up by the ring gear 51 hits the first oil guiding portion 265. Since the first oil guiding portion 265 is positioned immediately above the first oil receiving portion 269, the oil O that has hit the first oil guiding portion 265 is dropped to the first oil receiving portion 269.
  • the second oil guiding portion 266 extends in the shape of a rib along the vertical direction.
  • the second oil guiding portion 266 extends in an arc along the tip circle of the large diameter gear 42.
  • the second oil guiding portion 266 is located on the side of the differential shaft J5 in the horizontal direction with respect to the large diameter gear 42.
  • the second oil guiding portion 266 overlaps the large diameter gear 42 in the axial direction. Further, the second oil guiding portion 266 overlaps with a second oil receiving portion 293 described later in the axial direction.
  • the second oil guiding portion 266 overlaps the large diameter gear 42 in the axial direction. For this reason, the oil O scraped up by the large diameter gear 42 hits the second oil guiding portion 266.
  • the second oil guiding portion 266 guides the oil O scraped up by the large diameter gear 42 to the second oil receiving portion 293.
  • the second oil guiding portion 266 axially protrudes from the second opposing surface 206Ba of the second member 206B.
  • the second oil guiding portion 266 does not overlap with the ring gear 51 in the axial direction. For this reason, the second oil guiding portion 266 does not disturb the path of the oil O which is scooped up by the ring gear 51 and received by the first oil receiving portion 269.
  • the second oil receiving portion 293 is located above the intermediate axis J4 and the differential axis J5 in the vertical direction.
  • the second oil receiver 293 is located between the intermediate shaft J4 and the differential shaft J5 in the longitudinal direction of the vehicle (ie, in the horizontal direction).
  • the second oil receiver 293 is disposed on the horizontal side of the pinion gear 41. That is, the second oil receiving portion 293 and the shaft 21 are arranged in the horizontal direction.
  • the second oil receiver 293 opens upward.
  • the oil O scraped up by the ring gear 51 from the oil reservoir P is collected.
  • the oil O scraped up by the large diameter gear (intermediate gear) 42 from the first oil receiving portion 269 is collected.
  • the second oil receiving portion 293 is configured by abutting a pair of ribs 293c and 293d axially protruding from the first opposing surface 206Aa and the second opposing surface 206Ba. Therefore, the second oil receiver 293 is disposed along the entire axial length of the gear chamber 82. The second oil receiver 293 overlaps the large diameter gear 42 and the ring gear 51 in the axial direction. Therefore, the second oil receiving portion 293 can efficiently receive the oil O scraped up by the large diameter gear 42 and the ring gear 51.
  • the second oil receiver 293 has a bottom 293a and a side wall 293b extending upward from the bottom 293a. Second oil receiving portion 293 temporarily stores oil O in a region surrounded by bottom portion 293a and side wall portion 293b.
  • Side wall portion 293 b includes a first wall portion 293 ba and a second wall portion 293 bb.
  • the first wall portion 293ba and the second wall portion 293bb extend upward from the bottom portion 293a, respectively.
  • the first wall portion 293 ba constitutes a wall surface of the second oil receiving portion 293 on the differential device 5 side.
  • the second wall portion 293bb constitutes a wall surface of the second oil receiving portion 293 on the side of the reduction gear 204. That is, the first wall portion 293ba extends upward from the end portion of the bottom portion 293a on the differential shaft J5 side, and the second wall portion 293bb extends upward from the end portion of the bottom portion 293a on the motor axis J2 side.
  • the upper end of the first wall 293ba is located below the upper end of the second wall 293bb.
  • the first wall portion 293ba faces the second oil guiding portion 266 in the horizontal direction. Further, the upper end of the first wall 293 ba is located below the upper end of the second oil guiding portion 266. That is, the upper end of the second oil guiding portion 266 extends above the first wall portion 293ba. For this reason, the oil O which is scooped up by the large diameter gear 42 and hits the second oil guiding portion 266 is smoothly guided to the second oil receiving portion 293.
  • the second wall portion 293bb extends obliquely upward along the circumferential direction of the pinion gear 41. That is, the second wall portion 293bb inclines toward the motor axis J2 as it goes upward. Thereby, the second wall portion 293bb can receive the oil O scraped up by the ring gear 51 and the large diameter gear 42 in a wide range.
  • the pinion gear 41 (i.e., the motor 2) is rotatable in a first rotation direction T1 and a second rotation direction T2.
  • the motor unit 201 can be considered to drive the front wheels of the vehicle and drive the rear wheels of the vehicle.
  • Motor unit 201 is arranged with inverter 203 directed to the inside of the vehicle from the viewpoint of protection of inverter 203. Therefore, in the motor unit 201, when the vehicle moves forward, the case where the pinion gear 41 rotates in the first rotation direction T1 and the case where the pinion gear 41 rotates in the second rotation direction T2 are assumed.
  • the ring gear 51 rotates upward in a region opposite to the reduction gear 204.
  • the ring gear 51 scoops the oil O accumulated on the lower side of the gear chamber 82 upward in the vertical direction.
  • the oil O scraped up from the oil reservoir P by the rotation of the ring gear 51 falls from the upper side of each gear (the pinion gear 41, the large diameter gear 42 and the small diameter gear 43) in the gear chamber 82 and is supplied to the tooth surface of each gear. . Thereby, the transmission efficiency of the power of each gear can be improved.
  • the oil O scraped up by the rotation of the ring gear 51 falls on the upper side of the second oil receiving portion 293 around the opposite side of the reduction gear 204 and is collected in the second oil receiving portion 293. That is, when the pinion gear 41 is rotated in the first rotation direction T1, the second oil receiver 293 receives the oil O scraped up by the rotation of the ring gear 51 from the oil reservoir P.
  • the large diameter gear 42 rotates upward in the region on the differential device 5 side when the pinion gear 41 rotates in the second rotation direction T2.
  • the large diameter gear 42 scrapes the oil O accumulated in the first oil receiving portion 269 upward in the vertical direction.
  • the oil O scraped up by the rotation of the large diameter gear 42 is guided to the second oil guiding portion 266, falls on the upper side of the second oil receiving portion 293, and is accumulated in the second oil receiving portion 293. That is, the second oil receiver 293 receives the oil O picked up by the large diameter gear 42 from the first oil receiver 269 when the pinion gear 41 rotates in the second rotation direction T2.
  • the oil O can be scooped up by the gear. Therefore, the oil O can be spread over the tooth surfaces of the gears whether the vehicle is moving forward or backward. Further, the oil O can be spread over the tooth surface of each gear regardless of whether the rotation direction of the pinion gear 41 for advancing the vehicle is the first rotation direction T1 or the second rotation direction T2. . Therefore, the degree of freedom of the attitude of the motor unit 201 with respect to the vehicle can be enhanced. That is, even if it is a front wheel drive vehicle or a rear wheel drive vehicle, the common motor unit 201 can be adopted.
  • the oil O can be accumulated in the second oil receiving portion 293 by scraping the oil O with the gear.
  • the oil O accumulated in the second oil receiver 293 is supplied to the motor 2 to cool the motor 2. That is, regardless of the rotation direction of the motor 2, the motor 2 can be cooled efficiently.
  • the motor axis J2, the intermediate axis J4 and the differential axis J5 extend parallel to one another along the horizontal direction.
  • the intermediate shaft J4 and the differential shaft J5 are located below the motor shaft J2. Therefore, the reduction gear 204 and the differential 5 are located below the motor 2.
  • a line segment virtually connecting the motor axis J2 and the intermediate axis J4 is defined as a first line segment L1
  • the intermediate axis J4 and the differential axis J5 Is a second line segment L2
  • a line segment virtually connecting the motor axis J2 and the differential axis J5 is a third line segment L3.
  • the second line segment L2 extends in the range of ⁇ 30 ° or less with respect to the substantially horizontal direction.
  • the reduction gear 204 and the differential device 5 can be arranged in the horizontal direction, and the size of the motor unit 201 in the vertical direction can be reduced. Further, according to the present embodiment, the oil O scraped up by the differential device 5 can be efficiently applied to the reduction gear 204. Thereby, oil O can be supplied to the tooth surface of the gear which comprises the reduction gear 204, and the transmission efficiency of a gear can be raised.
  • the first line segment L1 extends in a direction within ⁇ 30 ° with respect to the vertical direction.
  • the motor 2 and the reduction gear 204 can be arranged along the vertical direction, and the dimension of the motor unit 201 in the horizontal direction can be reduced.
  • the motor shaft J2 can be disposed close to the differential shaft J5, and the oil O picked up by the differential device 5 is held in the pinion gear 41 rotating about the motor shaft J2. It can be supplied. Thereby, the transmission efficiency between the pinion gear 41 and the large diameter gear 42 can be enhanced.
  • the length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
  • L1: L2: L3 1: 1.4 to 1.7: 1.8 to 2.0
  • the reduction ratio in the reduction mechanism from the motor 2 to the differential 5 is 8 or more and 11 or less.
  • a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship between the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

This motor unit is provided with: a motor having a shaft that rotates about a motor axis; a speed reduction device being connected to the shaft and having an intermediate gear that rotates about an intermediate axis; a differential device being connected to the speed reduction device and having a ring gear that rotates about a differential axis; a housing that is provided with a gear chamber for accommodating the speed reduction device and the differential device; and oil that is pooled in the gear chamber. The motor axis, the intermediate axis, and the differential axis extend in parallel with each other in the horizontal direction. The intermediate axis and the differential axis are located below the motor axis. The ring gear is at least partially soaked in the oil that is pooled in the lower area of the gear chamber. The housing has a first oil receiving part that is located below the intermediate gear and that extends along the tooth top circle of the intermediate gear. In the first oil receiving part, oil scooped up from the lower area in the gear chamber by rotation of the ring gear is pooled. The oil pooled in the first oil receiving part is scooped up by the intermediate gear.

Description

モータユニットMotor unit
 本発明は、モータユニットに関する。 The present invention relates to a motor unit.
 特許文献1には、ケースの底部に溜められたオイルをギヤの回転によってかき上げる構造が記載されている。 Patent Document 1 describes a structure in which oil accumulated in the bottom of a case is scraped up by the rotation of a gear.
日本国公開公報:特開2014-20450号公報Japanese Published Gazette: Japanese Patent Laid-Open No. 2014-20450
 モータユニットは、モータの回転方向に関わらず、オイルをかき上げて、各ギヤにオイルを行き渡らせることが好ましい。モータユニットをこのような構成とすることで、車両が前進する場合のみならず後進する場合においても、各ギヤにオイルを行き渡らせることができる。また、車両を前進させる際のモータの回転方向に制約がなくなるため、車両に対するモータユニットの配置の自由度を高め、共通のモータユニットを様々な車両に搭載できる。一方で、安全性やギヤ比設定などの観点から、モータユニット内の各ギヤの配置には様々な制約がある。このため、従来のモータユニットは、モータが逆方向に回転する場合に、ギヤによるかき上げによって各ギヤにオイルを行き渡らせることができなかった。 The motor unit preferably picks up the oil and distributes the oil to the gears regardless of the direction of rotation of the motor. With such a configuration of the motor unit, oil can be distributed to the gears not only when the vehicle moves forward but also when the vehicle moves backward. Further, since there is no restriction on the rotational direction of the motor when moving the vehicle forward, the degree of freedom of the arrangement of the motor unit with respect to the vehicle can be increased, and the common motor unit can be mounted on various vehicles. On the other hand, there are various restrictions on the arrangement of each gear in the motor unit from the viewpoint of safety and gear ratio setting. Therefore, in the conventional motor unit, when the motor rotates in the reverse direction, the oil can not be distributed to the gears by the scraping by the gears.
 本発明の一つの態様は、上記問題点に鑑みて、車軸の回転方向に関わらずギヤ室内においてオイルをかき上げて、各ギヤに行き渡らせることができるモータユニットの提供を目的の一つとする。 SUMMARY OF THE INVENTION In view of the above-described problems, one aspect of the present invention aims to provide a motor unit capable of scraping oil in a gear chamber regardless of the rotation direction of an axle and distributing the oil to each gear.
 本発明のモータユニットの一つの態様は、モータ軸を中心として回転するシャフトを有するモータと、前記シャフトに接続され中間軸を中心として回転する中間ギヤを有する減速装置と、前記減速装置に接続され差動軸を中心として回転するリングギヤを有する差動装置と、前記減速装置および前記差動装置を収容するギヤ室が設けられたハウジングと、前記ギヤ室の下部領域に溜るオイルと、を備える。前記モータ軸、前記中間軸および前記差動軸は、水平方向に互いに平行に延びる。前記モータ軸に対し前記中間軸および前記差動軸は、下側に位置する。前記リングギヤの少なくとも一部は、前記ギヤ室内の下部領域に溜る前記オイルに浸かる。前記ハウジングは、前記中間ギヤの下側に位置し前記中間ギヤの歯先円に沿って延びる第1のオイル受け部を有する。前記第1のオイル受け部には、前記ギヤ室内の下部領域から前記リングギヤの回転によってかき上げられた前記オイルが溜る。前記第1のオイル受け部に溜った前記オイルは、前記中間ギヤによってかき上げられる。 One aspect of the motor unit according to the present invention includes a motor having a shaft rotating about a motor shaft, a reduction gear having an intermediate gear connected to the shaft and rotating about an intermediate shaft, and the reduction gear A differential gear having a ring gear that rotates about a differential shaft, a housing provided with the reduction gear and a gear chamber for accommodating the differential gear, and oil accumulated in a lower region of the gear chamber. The motor shaft, the intermediate shaft and the differential shaft extend in parallel in the horizontal direction. The intermediate shaft and the differential shaft are located below the motor shaft. At least a portion of the ring gear is immersed in the oil collected in the lower region of the gear chamber. The housing has a first oil receiver located below the intermediate gear and extending along a tip circle of the intermediate gear. The oil scooped up from the lower region of the gear chamber by the rotation of the ring gear is accumulated in the first oil receiving portion. The oil accumulated in the first oil receiving portion is scooped up by the intermediate gear.
 本発明の一つの態様によれば、例えば、車軸の回転方向に関わらずギヤ室内においてオイルをかき上げることができるモータユニットが提供される。 According to one aspect of the present invention, there is provided, for example, a motor unit capable of scraping oil in a gear chamber regardless of the rotational direction of an axle.
図1は、第1実施形態のモータユニットの概念図である。FIG. 1 is a conceptual view of a motor unit according to the first embodiment. 図2は、第1実施形態のモータユニットの側面図である。FIG. 2 is a side view of the motor unit of the first embodiment. 図3は、変形例のモータユニットの一部を示す概念図である。FIG. 3 is a conceptual view showing a part of a motor unit of a modification. 図4は、第2実施形態のモータユニットの側面図である。FIG. 4 is a side view of the motor unit of the second embodiment. 図5は、図4のV-V線に沿うモータユニットの断面図である。FIG. 5 is a cross-sectional view of the motor unit taken along the line VV of FIG.
 以下、図面を参照しながら、本発明の実施形態に係るモータについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, a motor according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure intelligible, a scale, the number, etc. in an actual structure and each structure may be varied.
 以下の説明では、モータユニット1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であってモータユニット1が搭載される車両の前後方向を示し、+X方向が車両前方であり、-X方向が車両後方である。ただし、+X方向が車両後方であり、-X方向が車両前方となることもありうる。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)である。 In the following description, the direction of gravity is defined and described based on the positional relationship when the motor unit 1 is mounted on a vehicle located on a horizontal road surface. In the drawings, an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction indicates the vertical direction (that is, the vertical direction), the + Z direction is the upper side (opposite the gravity direction), and the -Z direction is the lower side (gravity direction). The X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle on which the motor unit 1 is mounted. The + X direction is the vehicle front, and the −X direction is the vehicle rear. However, the + X direction may be the rear of the vehicle and the −X direction may be the front of the vehicle. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the width direction (left-right direction) of the vehicle.
 以下の説明において特に断りのない限り、モータ2のモータ軸J2に平行な方向(Z軸方向)を単に「軸方向」と呼び、モータ軸J2を中心とする径方向を単に「径方向」と呼び、モータ軸J2を中心とする周方向、すなわち、モータ軸J2の軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。ただし、上記の「平行な方向」は、略平行な方向も含む。また、上記の「直交する方向」は略直交する方向も含む。 Unless otherwise noted in the following description, the direction (Z-axis direction) parallel to the motor axis J2 of the motor 2 is simply referred to as “axial direction”, and the radial direction centered on the motor axis J2 is simply referred to as “radial direction”. The circumferential direction around the motor axis J2, that is, around the axis of the motor axis J2, is simply referred to as "circumferential direction". Furthermore, in the following description, “plan view” means a state viewed from the axial direction. However, the above-mentioned "parallel direction" also includes a substantially parallel direction. Further, the above-mentioned "orthogonal direction" also includes a substantially orthogonal direction.
 (第1実施形態)
 以下、図面を基に本発明の例示的な第1実施形態に係るモータユニット(電動駆動装置)1について説明する。図1は、一実施形態のモータユニット1の概念図である。図2は、モータユニット1の側面図である。
First Embodiment
Hereinafter, a motor unit (electric drive apparatus) 1 according to an exemplary first embodiment of the present invention will be described based on the drawings. FIG. 1 is a conceptual view of a motor unit 1 according to an embodiment. FIG. 2 is a side view of the motor unit 1.
 モータユニット1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。 The motor unit 1 is mounted on a vehicle having a motor as a power source such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and used as the power source.
 図1に示すように、モータユニット1は、モータ(メインモータ)2と、減速装置4と、差動装置5と、ハウジング6と、オイルOとを備える。ハウジング6の内部は、モータ2、減速装置4および差動装置5を収容する収容空間80が設けられる。収容空間80は、モータ2を収容するモータ室81と、減速装置4および差動装置5を収容するギヤ室82と、に区画される。 As shown in FIG. 1, the motor unit 1 includes a motor (main motor) 2, a reduction gear 4, a differential device 5, a housing 6 and an oil O. An interior of the housing 6 is provided with a housing space 80 for housing the motor 2, the reduction gear 4 and the differential gear 5. The housing space 80 is divided into a motor chamber 81 housing the motor 2 and a gear chamber 82 housing the reduction gear 4 and the differential gear 5.
 <モータ>
 モータ2は、ハウジング6のモータ室81に収容される。モータ2は、ロータ20と、ロータ20の径方向外側に位置するステータ30と、を備える。モータ2は、ステータ30と、ステータ30の内側に回転自在に配置されるロータ20と、を備えるインナーロータ型モータである。
<Motor>
The motor 2 is accommodated in a motor chamber 81 of the housing 6. The motor 2 includes a rotor 20 and a stator 30 located radially outward of the rotor 20. The motor 2 is an inner rotor type motor including a stator 30 and a rotor 20 rotatably disposed inside the stator 30.
 ロータ20は、図示略のバッテリからステータ30に電力が供給されることで回転する。ロータ20は、シャフト(モータシャフト)21と、ロータコア24と、ロータマグネット(図示略)と、を有する。すなわち、モータ2は、シャフト21と、ロータコア24と、ロータマグネットと、を有する。ロータ20は、水平方向に延びるモータ軸J2を中心として回転する。ロータ20のトルクは、減速装置4を介し差動装置5に伝達される。 The rotor 20 rotates by supplying power to the stator 30 from a battery (not shown). The rotor 20 has a shaft (motor shaft) 21, a rotor core 24, and a rotor magnet (not shown). That is, the motor 2 has a shaft 21, a rotor core 24, and a rotor magnet. The rotor 20 rotates about a motor axis J2 extending in the horizontal direction. The torque of the rotor 20 is transmitted to the differential 5 via the reduction gear 4.
 シャフト21は、水平方向かつ車両の幅方向に延びるモータ軸J2を中心として延びる。シャフト21は、モータ軸J2を中心として回転する。シャフト21は、内部にモータ軸J2に沿って延びる内周面を有する中空部22が設けられた中空シャフトである。 The shaft 21 extends around a motor axis J2 extending in the horizontal direction and the width direction of the vehicle. The shaft 21 rotates about the motor axis J2. The shaft 21 is a hollow shaft provided with a hollow portion 22 having an inner circumferential surface extending along the motor axis J2.
 シャフト21は、ハウジング6のモータ室81とギヤ室82とを跨いで延びる。シャフト21の一方の端部は、ギヤ室82側に突出する。ギヤ室82に突出するシャフト21の端部には、ピニオンギヤ41が固定されている。 The shaft 21 extends across the motor chamber 81 and the gear chamber 82 of the housing 6. One end of the shaft 21 protrudes toward the gear chamber 82. A pinion gear 41 is fixed to an end of the shaft 21 protruding into the gear chamber 82.
 ロータコア24は、珪素鋼板を積層して構成される。ロータコア24は、軸方向に沿って延びる円柱体である。ロータコア24には、図示略の複数のロータマグネットが固定される。複数のロータマグネットは、磁極を交互にして周方向に沿って並ぶ。 The rotor core 24 is configured by laminating silicon steel plates. The rotor core 24 is a cylindrical body extending along the axial direction. A plurality of rotor magnets (not shown) are fixed to the rotor core 24. The plurality of rotor magnets are arranged along the circumferential direction with the magnetic poles alternately.
 ステータ30は、ロータ20を径方向外側から囲む。ステータ30は、ステータコア32と、コイル31と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。ステータ30は、ハウジング6に保持される。ステータコア32は、円環状のヨークの内周面から径方向内方に複数の磁極歯(図示略)を有する。磁極歯の間には、コイル線が掛けまわされる。磁極歯に掛けまわされたコイル線は、コイル31を構成する。コイル31は、ステータコア32の軸方向端面から突出するコイルエンド31aを有する。コイルエンド31aは、ロータ20のロータコア24の端部よりも軸方向に突出する。コイルエンド31aは、ロータコア24に対し軸方向両側に突出する。 The stator 30 surrounds the rotor 20 from the radially outer side. The stator 30 has a stator core 32, a coil 31, and an insulator (not shown) interposed between the stator core 32 and the coil 31. The stator 30 is held by the housing 6. The stator core 32 has a plurality of magnetic pole teeth (not shown) radially inward from the inner circumferential surface of the annular yoke. A coil wire is wound around the pole teeth. The coil wire wound around the pole teeth constitutes a coil 31. The coil 31 has a coil end 31 a protruding from the axial end surface of the stator core 32. The coil end 31 a protrudes in the axial direction more than the end of the rotor core 24 of the rotor 20. The coil end 31 a protrudes on both sides in the axial direction with respect to the rotor core 24.
 <減速装置>
 減速装置4は、モータ2の回転速度を減じて、モータ2から出力されるトルクを減速比に応じて増大させる機能を有する。減速装置4は、モータ2のシャフト21に接続される。減速装置4は、モータ2から出力されるトルクを差動装置5へ伝達する。
<Reduction gear>
The reduction gear 4 has a function of reducing the rotational speed of the motor 2 and increasing the torque output from the motor 2 according to the reduction ratio. The reduction gear 4 is connected to the shaft 21 of the motor 2. The reduction gear 4 transmits the torque output from the motor 2 to the differential 5.
 減速装置4は、ピニオンギヤ41と、中間シャフト45と、中間シャフト45に固定された一対の中間ギヤ42、43と、を有する。モータ2から出力されるトルクは、モータ2のシャフト21、ピニオンギヤ41、一対の中間ギヤ42、43を介して差動装置5のリングギヤ51へ伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。減速装置4は、各ギヤの軸芯が平行に配置される平行軸歯車タイプの減速機である。 The reduction gear 4 has a pinion gear 41, an intermediate shaft 45, and a pair of intermediate gears 42 and 43 fixed to the intermediate shaft 45. The torque output from the motor 2 is transmitted to the ring gear 51 of the differential 5 through the shaft 21 of the motor 2, the pinion gear 41, and the pair of intermediate gears 42 and 43. The gear ratio of each gear, the number of gears, etc. can be variously changed according to the required reduction ratio. The reduction gear 4 is a reduction gear of a parallel axis gear type in which axes of the respective gears are arranged in parallel.
 ピニオンギヤ41は、モータ2のシャフト21の外周面に固定される。ピニオンギヤ41は、シャフト21とともにモータ軸J2を中心に回転する。 The pinion gear 41 is fixed to the outer peripheral surface of the shaft 21 of the motor 2. The pinion gear 41 rotates around the motor shaft J2 together with the shaft 21.
 中間シャフト45は、モータ軸J2と平行な中間軸J4に沿って延びる。中間シャフト45は、中間軸J4を中心として回転する。 The intermediate shaft 45 extends along an intermediate axis J4 parallel to the motor axis J2. The middle shaft 45 rotates around the middle axis J4.
 中間ギヤ42、43は、軸方向に沿って並ぶ大径ギヤ(中間ギヤ)42と小径ギヤ(中間ギヤ)43と、を有する。大径ギヤ42および小径ギヤ43は、中間シャフト45の外周面に設けられる。大径ギヤ42および小径ギヤ43は、中間シャフト45を介して接続される。大径ギヤ42および小径ギヤ43は、中間軸J4を中心として回転する。大径ギヤ42、小径ギヤ43および中間シャフト45のうち少なくとも2つは、単一の部材から構成されていてもよい。大径ギヤ42は、ピニオンギヤ41と噛み合う。小径ギヤ43は、差動装置5のリングギヤ51と噛み合う。 The intermediate gears 42 and 43 have a large diameter gear (intermediate gear) 42 and a small diameter gear (intermediate gear) 43 aligned in the axial direction. The large diameter gear 42 and the small diameter gear 43 are provided on the outer peripheral surface of the intermediate shaft 45. The large diameter gear 42 and the small diameter gear 43 are connected via an intermediate shaft 45. The large diameter gear 42 and the small diameter gear 43 rotate about the intermediate shaft J4. At least two of the large diameter gear 42, the small diameter gear 43 and the intermediate shaft 45 may be composed of a single member. The large diameter gear 42 meshes with the pinion gear 41. The small diameter gear 43 meshes with the ring gear 51 of the differential device 5.
 <差動装置>
 差動装置5は、減速装置4を介しモータ2に接続される。差動装置5は、モータ2から出力されるトルクを車両の車輪に伝達するための装置である。差動装置5は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の車軸55に同トルクを伝える機能を有する。
<Differential device>
The differential device 5 is connected to the motor 2 via the reduction gear 4. The differential 5 is a device for transmitting the torque output from the motor 2 to the wheels of the vehicle. The differential device 5 has a function of transmitting the same torque to the axles 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
 差動装置5は、リングギヤ51と、ギヤハウジング(不図示)と、一対のピニオンギヤ(不図示)と、ピニオンシャフト(不図示)と、一対のサイドギヤ(不図示)と、を有する。リングギヤ51は、モータ軸J2と平行な差動軸J5を中心として回転する。リングギヤ51には、モータ2から出力されるトルクが減速装置4を介して伝えられる。 The differential 5 has a ring gear 51, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown). The ring gear 51 rotates about a differential axis J5 parallel to the motor axis J2. The torque output from the motor 2 is transmitted to the ring gear 51 via the reduction gear 4.
 <ハウジング>
 ハウジング6は、収容空間80においてモータ2、減速装置4および差動装置5を保持する。ハウジング6は、隔壁61cを有する。隔壁61cは、ハウジング6の収容空間80をモータ室81とギヤ室82とに区画する。すなわち、ハウジング6には、モータ室81とギヤ室82とが設けられる。モータ室81には、モータ2が収容される。ギヤ室82には、減速装置4および差動装置5が収容される。
<Housing>
The housing 6 holds the motor 2, the reduction gear 4 and the differential 5 in the housing space 80. The housing 6 has a partition wall 61c. The partition wall 61 c divides the housing space 80 of the housing 6 into a motor chamber 81 and a gear chamber 82. That is, the motor chamber 81 and the gear chamber 82 are provided in the housing 6. The motor 2 is accommodated in the motor chamber 81. In the gear chamber 82, the reduction gear 4 and the differential 5 are accommodated.
 隔壁61cにはシャフト通過孔61fと隔壁開口68とが設けられる。シャフト通過孔61fおよび隔壁開口68は、モータ室81とギヤ室82とを連通させる。シャフト通過孔61fにはシャフト21が通過する。隔壁開口68はシャフト通過孔61fの下側に位置する。隔壁開口68は、モータ室81の底部81aの近傍に設けられる。モータ室81の底部81aは、ギヤ室82の底部82aより上側に位置する。したがって、モータ2を冷却したオイルOは、隔壁開口68を介しモータ室81からギヤ室82に移動する。 The partition wall 61c is provided with a shaft passage hole 61f and a partition opening 68. The shaft passage hole 61 f and the partition opening 68 communicate the motor chamber 81 with the gear chamber 82. The shaft 21 passes through the shaft passage hole 61 f. The partition opening 68 is located below the shaft passage hole 61 f. The partition wall opening 68 is provided in the vicinity of the bottom 81 a of the motor chamber 81. The bottom 81 a of the motor chamber 81 is located above the bottom 82 a of the gear chamber 82. Therefore, the oil O which has cooled the motor 2 moves from the motor chamber 81 to the gear chamber 82 through the partition opening 68.
 ギヤ室82内の下部領域には、オイルOが溜るオイル溜りPが設けられる。以下の説明において、ギヤ室82内の下部領域をオイル溜りPと呼ぶ。オイル溜りPには、差動装置5の一部が浸かる。すなわち、リングギヤ51の少なくとも一部は、オイル溜りPに溜るオイルOに浸かる。 In the lower region of the gear chamber 82, an oil reservoir P in which the oil O is accumulated is provided. In the following description, the lower region in the gear chamber 82 is referred to as an oil reservoir P. A part of the differential device 5 is immersed in the oil reservoir P. That is, at least a part of the ring gear 51 is immersed in the oil O accumulated in the oil reservoir P.
 オイル溜りPに溜るオイルOは、減速装置4および差動装置5の動作によってかき上げられて、一部が第1の油路91に供給され、一部がギヤ室82内に拡散される。ギヤ室82に拡散されたオイルOは、ギヤ室82内の減速装置4および差動装置5の各ギヤに供給されてギヤの歯面にオイルOを行き渡らせる。減速装置4および差動装置5に供給され潤滑に使用されたオイルOは、滴下してギヤ室82の下側に位置するオイル溜りPに回収される。収容空間80内のオイルOの容量は、モータユニット1の停止時に、差動装置5の軸受の一部がオイルOに浸かる程度に設定される。 The oil O accumulated in the oil reservoir P is scooped up by the operation of the reduction gear 4 and the differential device 5 and a part is supplied to the first oil passage 91 and a part is diffused in the gear chamber 82. The oil O diffused to the gear chamber 82 is supplied to the gears of the reduction gear 4 and the differential gear 5 in the gear chamber 82 and spreads the oil O on the tooth surfaces of the gears. The oil O supplied to the reduction gear 4 and the differential device 5 and used for lubrication is dropped and collected in an oil reservoir P located below the gear chamber 82. The capacity of the oil O in the housing space 80 is set to such an extent that a part of the bearing of the differential 5 is immersed in the oil O when the motor unit 1 is stopped.
 ハウジング6は、第1のオイル受け部69と、第2のオイル受け部93と、オイル導入路94と、を有する。第1のオイル受け部69、第2のオイル受け部93およびオイル導入路94は、ギヤ収容部62のギヤ室82内に配置される。第1のオイル受け部69および第2のオイル受け部93は、上側に開口する。第1のオイル受け部69および第2のオイル受け部93は、一時的にオイルを貯留するリザーバとして機能する。オイル導入路94は、第2のオイル受け部93とシャフト21の内部とを繋ぐ。 The housing 6 has a first oil receiving portion 69, a second oil receiving portion 93, and an oil introduction passage 94. The first oil receiving portion 69, the second oil receiving portion 93, and the oil introduction path 94 are disposed in the gear chamber 82 of the gear housing portion 62. The first oil receptacle 69 and the second oil receptacle 93 open upward. The first oil receiving portion 69 and the second oil receiving portion 93 function as a reservoir for temporarily storing oil. The oil introduction path 94 connects the second oil receiving portion 93 and the inside of the shaft 21.
 図2に示すように、第1のオイル受け部69は、中間ギヤ42、43の下側に位置する。第1のオイル受け部69は、中間ギヤ42、43の歯先円に沿って延びる。より具体的には、第1のオイル受け部69は、一対の中間ギヤ42、73のうち大径ギヤ42の下側に位置し、大径ギヤ42の歯先円に沿って延びる。第1のオイル受け部69には、差動装置5によってかき上げられたオイルOが溜る。 As shown in FIG. 2, the first oil receiving portion 69 is located below the intermediate gears 42, 43. The first oil receiving portion 69 extends along the tip circle of the intermediate gears 42, 43. More specifically, the first oil receiving portion 69 is located below the large diameter gear 42 of the pair of intermediate gears 42 and 73 and extends along the tip circle of the large diameter gear 42. The oil O picked up by the differential device 5 is accumulated in the first oil receiving portion 69.
 第1のオイル受け部69に溜ったオイルOは、大径ギヤ42の回転によって上側にかき上げられる。第1のオイル受け部69は、大径ギヤ42の歯先円に沿って延びるため、第1のオイル受け部69に溜ったオイルOは、上側に効率的にかき上げられる。 The oil O accumulated in the first oil receiving portion 69 is scooped up by the rotation of the large diameter gear 42. Since the first oil receiving portion 69 extends along the tip circle of the large diameter gear 42, the oil O accumulated in the first oil receiving portion 69 is efficiently scraped up to the upper side.
 第1のオイル受け部69は、モータ軸J2の軸方向から見て、中間ギヤ42、43の下側において、中間軸J4を中心とする角度θの範囲に設けられる。角度θは、120°以上140°以下とすることが好ましい。角度θを120°以上とすることで、中間ギヤ42、43の下側において、オイルOを十分に溜めることができる。また、角度θを140°以下とすることで、第1のオイル受け部69に溜るオイルOの貯留量が過剰となることがない。したがって、第1のオイル受け部69に溜ったオイルOによって、大径ギヤ42の回転効率が低下することを抑制できる。 The first oil receiving portion 69 is provided on the lower side of the intermediate gears 42 and 43 in the range of an angle θ centered on the intermediate shaft J4 when viewed in the axial direction of the motor shaft J2. The angle θ is preferably 120 ° or more and 140 ° or less. By setting the angle θ to 120 ° or more, the oil O can be sufficiently accumulated on the lower side of the intermediate gears 42 and 43. Further, by setting the angle θ to 140 ° or less, the storage amount of the oil O accumulated in the first oil receiving portion 69 does not become excessive. Therefore, the decrease in the rotation efficiency of the large diameter gear 42 can be suppressed by the oil O accumulated in the first oil receiving portion 69.
 なお、本実施形態において、第1のオイル受け部69は、一対の中間ギヤ42、43のうち大径ギヤ42の歯先円に沿って延びる。しかしながら、第1のオイル受け部69は、小径ギヤ43の歯先円に沿って延びていてもよい。小径ギヤ43は、水平方向に隣接して配置されるリングギヤ51に噛み合う。このため、第1のオイル受け部69を小径ギヤ43の歯先円に沿って設ける場合、第1のオイル受け部69とリングギヤ51との干渉を防ぐために、第1のオイル受け部69を大きくすることが困難である。これに対して、第1のオイル受け部69を大径ギヤ42の歯先円に沿って設ける場合、第1のオイル受け部69とリングギヤ51とを軸方向にずらすことで、干渉を容易に抑制できる。また、大径ギヤ42は、小径ギヤ43に対して直径が大きい。このため、第1のオイル受け部69に溜ったオイルOを効率的にかき上げることができる。以上の理由から、第1のオイル受け部69は、大径ギヤ42の歯先円に沿って延びることが好ましい。 In the present embodiment, the first oil receiving portion 69 extends along a tip circle of the large diameter gear 42 of the pair of intermediate gears 42 and 43. However, the first oil receiving portion 69 may extend along the tip circle of the small diameter gear 43. The small diameter gear 43 meshes with the ring gear 51 disposed adjacent in the horizontal direction. Therefore, when the first oil receiving portion 69 is provided along the tip circle of the small diameter gear 43, the first oil receiving portion 69 is made large to prevent interference between the first oil receiving portion 69 and the ring gear 51. It is difficult to do. On the other hand, in the case where the first oil receiving portion 69 is provided along the tip circle of the large diameter gear 42, interference is facilitated by axially shifting the first oil receiving portion 69 and the ring gear 51. It can be suppressed. The large diameter gear 42 is larger in diameter than the small diameter gear 43. Therefore, the oil O accumulated in the first oil receiving portion 69 can be efficiently scraped up. From the above reasons, it is preferable that the first oil receiving portion 69 extend along the tip circle of the large diameter gear 42.
 第2のオイル受け部93は、鉛直方向において中間軸J4および差動軸J5より上側に位置する。第2のオイル受け部93は、車両前後方向(すなわち水平方向)において中間軸J4および差動軸J5の間に位置する。第2のオイル受け部93は、ピニオンギヤ41の水平方向の側部に配置される。すなわち、第2のオイル受け部93とシャフト21とは、水平方向に並ぶ。第2のオイル受け部93は、上側に開口する。第2のオイル受け部93には、オイル溜りPからリングギヤ51によってかき上げられたオイルOが溜る。また、第2のオイル受け部93には、第1のオイル受け部69から大径ギヤ(中間ギヤ)42によってかき上げられたオイルOが溜る。 The second oil receiver 93 is located above the intermediate shaft J4 and the differential shaft J5 in the vertical direction. The second oil receiver 93 is located between the intermediate shaft J4 and the differential shaft J5 in the vehicle front-rear direction (that is, the horizontal direction). The second oil receiver 93 is disposed on the horizontal side of the pinion gear 41. That is, the second oil receiving portion 93 and the shaft 21 are arranged in the horizontal direction. The second oil receiver 93 opens upward. The oil O picked up by the ring gear 51 from the oil reservoir P is collected in the second oil receiving portion 93. The oil O picked up by the large diameter gear (intermediate gear) 42 from the first oil receiving portion 69 is accumulated in the second oil receiving portion 93.
 第2のオイル受け部93の開口は、鉛直方向から見てリングギヤ51、大径ギヤ42および小径ギヤ43と重なる。ギヤによってかき上げられるオイルの大部分は、かき上げるギヤの直上に飛散する。第2のオイル受け部93をリングギヤ51、大径ギヤ42および小径ギヤ43の直上に配置することで、各ギヤでかき上げたオイルOを効率的に受けることができる。 The opening of the second oil receiving portion 93 overlaps the ring gear 51, the large diameter gear 42 and the small diameter gear 43 when viewed from the vertical direction. Most of the oil scooped up by the gear splashes directly above the scooped gear. By arranging the second oil receiving portion 93 immediately above the ring gear 51, the large diameter gear 42 and the small diameter gear 43, the oil O picked up by each gear can be efficiently received.
 第2のオイル受け部93は、底部93aと第1の側壁部93bと第2の側壁部93cとを有する。第1の側壁部93bおよび第2の側壁部93cは、底部93aから上側に延びる。第1の側壁部93bは、第2のオイル受け部93の差動装置5側の壁面を構成する。第2の側壁部93cは、第2のオイル受け部93の減速装置4側の壁面を構成する。すなわち、第1の側壁部93bは、底部93aの差動軸J5側の端部から上側に延び、第2の側壁部93cは、底部93aのモータ軸J2側の端部から上側に延びる。第2のオイル受け部93は、底部93aと、第1の側壁部93bと、第2の側壁部93cと、ギヤ収容部62およびモータ収容部の突出板部61dの壁面と、に囲まれた領域において、オイルOを一時的に貯留する。 The second oil receiving portion 93 has a bottom 93a, a first side wall 93b, and a second side wall 93c. The first side wall 93 b and the second side wall 93 c extend upward from the bottom 93 a. The first side wall portion 93 b constitutes a wall surface of the second oil receiving portion 93 on the differential device 5 side. The second side wall portion 93 c constitutes a wall surface of the second oil receiving portion 93 on the reduction gear 4 side. That is, the first side wall 93b extends upward from the end of the bottom 93a on the differential shaft J5 side, and the second side wall 93c extends upward from the end of the bottom 93a on the motor shaft J2 side. The second oil receiver 93 is surrounded by the bottom 93a, the first side wall 93b, the second side wall 93c, and the wall of the gear housing 62 and the projecting plate 61d of the motor housing. Temporarily store oil O in the area.
 第1の側壁部93b上端部の高さは、第2の側壁部93cの上端部より下側に位置する。オイルOは、差動装置5によりかき上げられて、減速装置4の反対側から第2のオイル受け部93に向かって飛散する。第1の側壁部93bの上端部の高さを低くすることによって、差動装置5によりかき上げられたオイルOを効率的に第2のオイル受け部93に貯留できる。また、リングギヤ51および大径ギヤ42によってかき上げられて飛散するオイルOのうち第1の側壁部93bを超えたオイルOを第2の側壁部93cにあてて第2のオイル受け部93に誘導できる。 The height of the upper end portion of the first side wall portion 93b is located below the upper end portion of the second side wall portion 93c. The oil O is scooped up by the differential device 5 and scattered from the opposite side of the reduction gear 4 toward the second oil receiving portion 93. By lowering the height of the upper end portion of the first side wall portion 93b, the oil O scraped up by the differential device 5 can be efficiently stored in the second oil receiving portion 93. Further, the oil O exceeding the first side wall 93b among the oil O scraped up and scattered by the ring gear 51 and the large diameter gear 42 is applied to the second side wall 93c and is guided to the second oil receiving part 93 it can.
 第2の側壁部93cは、ピニオンギヤ41の周方向に沿って斜め上方に向かって延びる。すなわち、第2の側壁部93cは、上側に向かうに従いモータ軸J2に向かって傾斜する。これにより、第2の側壁部93cは、差動装置5にかき上げられたオイルOを幅広い範囲で受けることができる。加えて、第2の側壁部93cは、収容空間80の天井を伝うオイルOの液滴を幅広い範囲で受けることができる。 The second side wall 93 c extends obliquely upward along the circumferential direction of the pinion gear 41. That is, the second side wall 93c inclines toward the motor shaft J2 as it goes upward. Thus, the second side wall 93 c can receive the oil O scraped up by the differential device 5 in a wide range. In addition, the second side wall 93 c can receive a droplet of oil O which travels along the ceiling of the accommodation space 80 in a wide range.
 底部93aと第2の側壁部93cの境界部には、第2のオイル受け部93の内部に向かってオイル導入路94が開口する。底部93aは、平面視においてモータ軸J2側に向かうに従い下方に向かって若干傾斜する。すなわち、底部93aは、第2の側壁部93c側下端となる様に若干傾斜する。したがって、オイル導入路94の開口を底部93aと第2の側壁部93cとの間に設けることで、第2のオイル受け部93内のオイルOを効率的にオイル導入路94に供給できる。 An oil introduction passage 94 opens toward the inside of the second oil receiving portion 93 at the boundary between the bottom portion 93 a and the second side wall portion 93 c. The bottom 93 a is slightly inclined downward as it goes to the motor axis J 2 in plan view. That is, the bottom 93a is slightly inclined to be the lower end on the second side wall 93c side. Therefore, the oil O in the second oil receiving portion 93 can be efficiently supplied to the oil introduction passage 94 by providing the opening of the oil introduction passage 94 between the bottom 93 a and the second side wall 93 c.
 オイル導入路94は、第2のオイル受け部93の底部からシャフト21に向かって延びる。オイル導入路94は、第2のオイル受け部93に溜ったオイルOをシャフト21の端部から中空部22に誘導する。オイル導入路94は、直線状に延びる。オイル導入路94は、第2のオイル受け部93からシャフト21の端部に向かうに従い下側に向かって傾斜する。オイル導入路94は、ハウジング6の第2のオイル受け部93が接続された壁面に直線状に延びる孔を加工することで成形される。 The oil introduction passage 94 extends from the bottom of the second oil receiver 93 toward the shaft 21. The oil introduction passage 94 guides the oil O accumulated in the second oil receiving portion 93 from the end of the shaft 21 to the hollow portion 22. The oil introduction passage 94 extends in a straight line. The oil introduction passage 94 inclines downward from the second oil receiving portion 93 toward the end of the shaft 21. The oil introduction path 94 is formed by processing a linearly extending hole on the wall surface to which the second oil receiving portion 93 of the housing 6 is connected.
 ハウジング6は、ギヤ室82の上側の壁を構成するギヤ室天井部(天井部)64を有する。ギヤ室天井部64は、減速装置4および差動装置5の上側に位置する。ここで、モータ軸J2の軸方向から見て、モータ軸J2と差動軸J5とを仮想的に結ぶ仮想線(後段に説明する第3の線分)L3を定義する。ギヤ室天井部64は、仮想線L3と略平行である。ギヤ室天井部64を仮想線L3と略平行とすることで、リングギヤ51および大径ギヤ42でかき上げられて仮想線L3が延びる方向に飛散するオイルOが通過する領域を十分に確保して、オイルOを、モータ軸J2を中心に回転するピニオンギヤ41に効率的に当てることができる。また、ギヤ室天井部64を仮想線L3と略平行とすることで、ハウジング6が鉛直方向に大型化することを抑制できる。
 なお、ここでギヤ室天井部64と仮想線L3とが「略平行」とは、ギヤ室天井部64と仮想線L3とのなす角が10°以内であるとする。ギヤ室天井部64が湾曲する場合には、湾曲線の全ての点における接線と仮想線L3のなす角度が10°以内となる。
 また、10°以内の範囲であれば、ギヤ室天井部64は、差動軸J5側からモータ軸J2側に向かうに従い仮想線L3に近づくことが好ましい。これにより、ハウジング6を小型化することができる。
The housing 6 has a gear chamber ceiling portion (ceiling portion) 64 that constitutes the upper wall of the gear chamber 82. The gear chamber ceiling 64 is located above the reduction gear 4 and the differential 5. Here, when viewed in the axial direction of the motor axis J2, an imaginary line (third line segment to be described later) L3 is defined which virtually connects the motor axis J2 and the differential axis J5. The gear chamber ceiling 64 is substantially parallel to the virtual line L3. By making the gear chamber ceiling portion 64 substantially parallel to the virtual line L3, a region where oil O which is scraped up by the ring gear 51 and the large diameter gear 42 and scattered in the direction in which the virtual line L3 extends is sufficiently secured. The oil O can be efficiently applied to the pinion gear 41 rotating about the motor axis J2. Further, by making the gear chamber ceiling portion 64 substantially parallel to the virtual line L3, it is possible to suppress the housing 6 from being enlarged in the vertical direction.
In addition, the gear room ceiling part 64 and the virtual line L3 make an angle of the gear room ceiling part 64 and the virtual line L3 to be within 10 degrees as "substantially parallel" here. When the gear chamber ceiling portion 64 is curved, the angle between the tangent line and the imaginary line L3 at all points of the curved line is within 10 °.
In the range of 10 ° or less, the gear chamber ceiling portion 64 preferably approaches the virtual line L3 as it goes from the differential shaft J5 side to the motor shaft J2 side. Thereby, the housing 6 can be miniaturized.
 また、ギヤ室天井部64は、差動軸J5側からモータ軸J2側に向かうに従い、仮想線L3側に近づく方向にわずかに湾曲する曲面である。ギヤ室天井部64の湾曲形状は、リングギヤ51によってかき上げられるオイルOが描く放物線と略同じか、リングギヤ51から若干離れる曲面である。リングギヤ51でかき上げられたオイルOの一部は、第2のオイル受け部93に直接到達する。また、リングギヤ51でかき上げられたオイルOの他の一部は、ハウジング6のギヤ室天井部64を伝って第2のオイル受け部93に到達する。すなわち、ギヤ室天井部64は、第2のオイル受け部93にオイルOを誘導する役割を担っている。 Further, the gear chamber ceiling portion 64 is a curved surface which is slightly curved in a direction approaching the virtual line L3 as it goes from the differential axis J5 side to the motor axis J2 side. The curved shape of the gear chamber ceiling portion 64 is substantially the same as a parabola drawn by the oil O picked up by the ring gear 51 or a curved surface slightly away from the ring gear 51. A portion of the oil O scraped up by the ring gear 51 directly reaches the second oil receiving portion 93. Further, another part of the oil O scraped up by the ring gear 51 travels along the gear chamber ceiling 64 of the housing 6 and reaches the second oil receiver 93. That is, the gear chamber ceiling portion 64 plays a role of guiding the oil O to the second oil receiving portion 93.
 ギヤ室天井部64は、下側に突出する凸部65を有する。凸部65は、第2のオイル受け部93の上側に位置する。ギヤ室天井部64を伝うオイルOは、凸部65の下端において大きな液滴となり、下方に落下して第2のオイル受け部93に溜る。すなわち、凸部65は、ギヤ室天井部64を伝うオイルOを第2のオイル受け部93に誘導する。
 本実施形態において、モータ収容部61とギヤ収容部62とは、ボルト67により互いに固定されている。凸部65は、ギヤ室天井部64において、ボルト67が挿入されるネジ穴周りの肉厚部分を利用して設けられている。なお、図2において、モータ収容部61とギヤ収容部62とを固定する他のボルトおよびネジ穴周りの他の肉厚部分の図示が省略されている。
The gear chamber ceiling portion 64 has a convex portion 65 projecting downward. The convex portion 65 is located on the upper side of the second oil receiving portion 93. The oil O transmitted to the gear chamber ceiling portion 64 is a large droplet at the lower end of the convex portion 65 and falls downward and is collected in the second oil receiving portion 93. That is, the convex portion 65 guides the oil O transmitted along the gear chamber ceiling portion 64 to the second oil receiving portion 93.
In the present embodiment, the motor housing 61 and the gear housing 62 are fixed to each other by bolts 67. The convex portion 65 is provided in the gear chamber ceiling portion 64 using a thick portion around a screw hole into which the bolt 67 is inserted. In FIG. 2, illustration of other bolts for fixing the motor housing 61 and the gear housing 62 and other thick parts around the screw holes is omitted.
 ギヤ室天井部64は、軸方向に沿って延びる板状の庇部66を有する。庇部66は下側に突出する。庇部66の下端は、第2のオイル受け部93の上側に位置する。リングギヤ51によりかき上げられて飛散するオイルOの一部は、庇部66に当たって庇部66の表面を伝う。同様に、大径ギヤ42によりかき上げられて飛散するオイルOは、庇部66に受け止められて庇部66の表面を伝う。オイルOは、庇部66の下端において大きな液滴となり下方に落下し第2のオイル受け部93に溜る。すなわち、庇部66は、かき上げられたオイルOを第2のオイル受け部93に誘導する。
 庇部66は、上側から下側に向かうに従い差動軸J5側からモータ軸J2側に向かって傾斜する。リングギヤ51は、大径ギヤ42および小径ギヤ43と比較して大径であるため、飛散するオイルOの飛散角度が水平に近い。庇部66を上述の方向に傾斜させて配置することで、リングギヤ51から飛散するオイルOを庇部66の表面に円滑に付着させて下側に落下させることができる。
The gear chamber ceiling 64 has a plate-like flange 66 extending along the axial direction. The collar 66 projects downward. The lower end of the collar 66 is located above the second oil receiver 93. A part of the oil O scraped up and scattered by the ring gear 51 strikes the ridge 66 and travels along the surface of the ridge 66. Similarly, the oil O scraped up and scattered by the large diameter gear 42 is received by the flange 66 and travels along the surface of the flange 66. The oil O becomes a large droplet at the lower end of the collar portion 66 and drops downward and accumulates in the second oil receiving portion 93. That is, the collar portion 66 guides the scraped oil O to the second oil receiving portion 93.
The flange portion 66 is inclined from the differential shaft J5 side to the motor shaft J2 side as it goes from the upper side to the lower side. The ring gear 51 has a large diameter as compared with the large diameter gear 42 and the small diameter gear 43, so the scattering angle of the oil O that is scattered is close to horizontal. By disposing the flange 66 in an inclined manner in the above direction, the oil O scattered from the ring gear 51 can be smoothly attached to the surface of the flange 66 and dropped downward.
 (各軸の配置)
 モータ軸J2、中間軸J4および差動軸J5は、水平方向に沿って互いに平行に延びる。モータ軸J2に対し中間軸J4および差動軸J5は、下側に位置する。したがって、減速装置4および差動装置5は、モータ2より下側に位置する。
(Arrangement of each axis)
The motor axis J2, the intermediate axis J4 and the differential axis J5 extend parallel to one another along the horizontal direction. The intermediate shaft J4 and the differential shaft J5 are located below the motor shaft J2. Therefore, the reduction gear 4 and the differential 5 are located below the motor 2.
 モータ軸J2の軸方向から見て、モータ軸J2と中間軸J4とを仮想的に結ぶ線分を第1の線分L1とし、中間軸J4と差動軸J5とを仮想的に結ぶ線分を第2の線分L2とし、モータ軸J2と差動軸J5とを仮想的に結ぶ線分を第3の線分L3とする。 A line segment virtually connecting the motor axis J2 and the intermediate axis J4 is a first line segment L1 when viewed from the axial direction of the motor axis J2, and a line segment virtually connecting the intermediate axis J4 and the differential axis J5 Is a second line segment L2, and a line segment that virtually connects the motor axis J2 and the differential axis J5 is a third line segment L3.
 本実施形態によれば、第2の線分L2は、略水平方向に沿って延びる。すなわち、中間軸J4と差動軸J5は、略水平方向に並んでいる。したがって減速装置4と差動装置5とを水平方向に沿って並べることができ、モータユニット1の上下方向の寸法を小さくすることができる。また、差動装置5によりかき上げられたオイルOを、効率的に減速装置4に当てることができる。これにより、減速装置4を構成するギヤの歯面にオイルOを供給して、ギヤの伝達効率を高めることができる。なお、中間軸J4を中心として回転するギヤ(大径ギヤ42および小径ギヤ43)の直径は、差動軸J5を中心として回転するリングギヤ51の直径より小さい。本実施形態によれば、第2の線分L2が略水平方向に沿って延びるため、中間軸J4と差動軸J5とが略水平方向に沿って配置される。したがって、オイル溜りPの液面の高さによっては、リングギヤ51のみがオイル溜りPに浸かり、大径ギヤ42および小径ギヤ43がオイル溜りPに浸らない状態となる。したがって、リングギヤ51によりオイル溜りPのオイルOをかき上げつつ、大径ギヤ42および小径ギヤ43の回転効率の低下を抑制することができる。
 なお、本実施形態において、第2の線分L2が略水平方向とは、水平方向に対して±10°以内の方向である。
According to the present embodiment, the second line segment L2 extends along the substantially horizontal direction. That is, the intermediate shaft J4 and the differential shaft J5 are aligned substantially in the horizontal direction. Therefore, the reduction gear 4 and the differential device 5 can be arranged in the horizontal direction, and the size of the motor unit 1 in the vertical direction can be reduced. Further, the oil O scraped up by the differential device 5 can be efficiently applied to the reduction gear 4. Thereby, oil O can be supplied to the tooth surface of the gear which comprises the reduction gear 4, and the transmission efficiency of a gear can be raised. The diameter of the gears (the large diameter gear 42 and the small diameter gear 43) rotating about the intermediate shaft J4 is smaller than the diameter of the ring gear 51 rotating about the differential shaft J5. According to this embodiment, since the second line segment L2 extends along the substantially horizontal direction, the intermediate axis J4 and the differential axis J5 are disposed along the substantially horizontal direction. Therefore, depending on the liquid level of the oil reservoir P, only the ring gear 51 is immersed in the oil reservoir P, and the large diameter gear 42 and the small diameter gear 43 are not immersed in the oil reservoir P. Therefore, while the oil O of the oil reservoir P is scooped up by the ring gear 51, it is possible to suppress the decrease in the rotational efficiency of the large diameter gear 42 and the small diameter gear 43.
In the present embodiment, the substantially horizontal direction of the second line segment L2 is a direction within ± 10 ° with respect to the horizontal direction.
 本実施形態によれば、第2の線分L2と第3の線分L3とのなす角αは、30°±5°である。これにより、差動装置5によりかき上げたオイルOをピニオンギヤ41と大径ギヤ42との伝達効率を高めることができるとともに、所望のギヤ比を実現できる。
 角αが、35°を超えると、差動装置によりかき上げられたオイルを、モータ軸を中心として回転するギヤ(ピニオンギヤ)に供給し難くなる。これにより、ピニオンギヤと大径ギヤとの間の伝達効率が低下する虞がある。一方で、角αを25°未満とすると、伝達過程における出力側のギヤを十分に大きくすることができず、3軸(モータ軸、中間軸および差動軸)において所望のギヤ比を達成することが困難となる。
According to the present embodiment, an angle α between the second line segment L2 and the third line segment L3 is 30 ° ± 5 °. As a result, the transmission efficiency between the pinion gear 41 and the large diameter gear 42 of the oil O scraped up by the differential device 5 can be enhanced, and a desired gear ratio can be realized.
If the angle α exceeds 35 °, it becomes difficult to supply the oil scraped up by the differential device to the gear (pinion gear) that rotates about the motor shaft. As a result, the transmission efficiency between the pinion gear and the large diameter gear may be reduced. On the other hand, if the angle α is less than 25 °, the output side gear in the transmission process can not be made sufficiently large, and the desired gear ratio is achieved in three axes (motor shaft, intermediate shaft and differential shaft) It becomes difficult.
 本実施形態によれば、第1の線分L1は、略鉛直方向に沿って延びる。すなわち、モータ軸J2と中間軸J4は、略鉛直方向に沿って並んでいる。したがって、モータ2と減速装置4とを鉛直方向に沿って並べることができ、モータユニット1の水平方向の寸法を小さくすることができる。また、第1の線分L1を略鉛直方向とすることで、差動軸J5に対しモータ軸J2を近づけて配置することができ、モータ軸J2を中心として回転するピニオンギヤ41に、差動装置5でかき上げたオイルOを供給できる。これにより、ピニオンギヤ41と大径ギヤ42との伝達効率を高めることができる。
 なお、本実施形態において、第1の線分L1が略鉛直方向とは、鉛直方向に対して±10°以内の方向である。
According to the present embodiment, the first line segment L1 extends along the substantially vertical direction. That is, the motor shaft J2 and the intermediate shaft J4 are aligned along the substantially vertical direction. Therefore, the motor 2 and the reduction gear 4 can be arranged along the vertical direction, and the horizontal dimension of the motor unit 1 can be reduced. Further, by setting the first line segment L1 in the substantially vertical direction, the motor shaft J2 can be disposed close to the differential shaft J5, and the pinion gear 41 that rotates about the motor shaft J2 is a differential gear. It is possible to supply the oil O scraped up with 5. Thereby, the transmission efficiency between the pinion gear 41 and the large diameter gear 42 can be enhanced.
In the present embodiment, the substantially vertical direction of the first line segment L1 is a direction within ± 10 ° with respect to the vertical direction.
 第1の線分の長さL1と、第2の線分の長さL2と、第3の線分の長さL3は、以下の関係を満たす。
 L1:L2:L3=1:1.4~1.7:1.8~2.0
 また、モータ2から差動装置5に至る減速機構における減速比が8以上11以下である。
 本実施形態によれば、上述したようなモータ軸J2、中間軸J4および差動軸J5の位置関係を維持しながら、所望のギヤ比(8以上11以下)を実現できる。
The length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
L1: L2: L3 = 1: 1.4 to 1.7: 1.8 to 2.0
Further, the reduction ratio in the reduction mechanism from the motor 2 to the differential 5 is 8 or more and 11 or less.
According to this embodiment, a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship between the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.
 <オイル>
 オイルOは、減速装置4および差動装置5の潤滑用として使用される。また、オイルOは、モータ2の冷却用として使用される。オイルOは、ギヤ室82内の下部領域(すなわちオイル溜りP)に溜る。オイルOは、潤滑油および冷却油の機能を奏するため、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のものを用いることが好ましい。
<Oil>
The oil O is used to lubricate the reduction gear 4 and the differential gear 5. The oil O is also used for cooling the motor 2. The oil O accumulates in the lower region (i.e., oil reservoir P) in the gear chamber 82. It is preferable to use an oil O equivalent to a low viscosity lubricating oil for automatic transmission (ATF: Automatic Transmission Fluid) in order to perform the functions of a lubricating oil and a cooling oil.
 図1に示すように、オイルOは、モータユニット1内で、油路90内を循環する。油路90は、オイル溜りPからオイルOをモータ2に供給するオイルOの経路である。 As shown in FIG. 1, the oil O circulates in the oil passage 90 in the motor unit 1. The oil path 90 is a path of oil O which supplies the oil O from the oil reservoir P to the motor 2.
 なお、本明細書において、「油路」とは、収容空間80を循環するオイルOの経路を意味する。したがって、「油路」とは、定常的に一方向に向かう定常的なオイルの流動を形成する「流路」のみならず、オイルを一時的に滞留させる経路(例えばリザーバ)およびオイルが滴り落ちる経路をも含む概念である。 In the present specification, the “oil passage” means a passage of oil O circulating in the storage space 80. Therefore, the "oil path" is not only a "flow path" that forms a steady flow of oil in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and dripping oil It is a concept that also includes the route.
 油路90は、ハウジング6の内部、すなわち収容空間80に位置する。油路90は、収容空間80のモータ室81とギヤ室82とに跨って構成される。油路90は、オイルOをオイル溜りPからモータ2を経て、再びオイル溜りPに導くオイルOの経路である。油路90は、モータ2の内部を通る第1の油路(油路)91と、モータ2の外部を通る第2の油路(油路)92と、を有する。オイルOは、第1の油路91および第2の油路92において、モータ2を内部および外部から冷却する。 The oil passage 90 is located inside the housing 6, that is, in the storage space 80. The oil passage 90 is configured to straddle the motor chamber 81 and the gear chamber 82 of the accommodation space 80. The oil path 90 is a path of the oil O which leads the oil O from the oil reservoir P through the motor 2 to the oil reservoir P again. The oil passage 90 has a first oil passage (oil passage) 91 passing through the inside of the motor 2 and a second oil passage (oil passage) 92 passing through the outside of the motor 2. The oil O cools the motor 2 from the inside and the outside in the first oil passage 91 and the second oil passage 92.
 第1の油路91および第2の油路92は、ともにオイル溜りPからオイルOをモータ2に供給して、再びオイル溜りPに回収する経路である。第1の油路91および第2の油路92において、オイルOは、モータ2から滴下して、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82内の下部領域(すなわち、オイル溜りP)に移動する。 The first oil passage 91 and the second oil passage 92 are paths for supplying the oil O from the oil reservoir P to the motor 2 and recovering the oil O in the oil reservoir P again. In the first oil passage 91 and the second oil passage 92, the oil O drips from the motor 2 and accumulates in the lower region in the motor chamber 81. The oil O accumulated in the lower region in the motor chamber 81 moves to the lower region (i.e., the oil reservoir P) in the gear chamber 82 through the partition opening 68.
 第1の油路91の経路中には、オイルOを冷却するクーラー97が設けられる。第1の油路91を通過しクーラー97により冷却されたオイルOは、オイル溜りPにおいて第2の油路92を通過したオイルOと合流する。オイル溜りPにおいて、第1の油路91および第2の油路92を通過したオイルOは、互いに混ざりあって熱交換が行われる。このため、第1の油路91の経路中に配置されてクーラー97の冷却の効果を第2の油路92を通過するオイルOにも及ぼすことができる。本実施形態によれば、第1の油路91および第2の油路92のうち一方の油路中に設けられた1つのクーラー97を用いて、両方の油路中のオイルOを冷却する。 In the path of the first oil passage 91, a cooler 97 for cooling the oil O is provided. The oil O passing through the first oil passage 91 and cooled by the cooler 97 merges with the oil O passing through the second oil passage 92 in the oil reservoir P. In the oil reservoir P, the oils O which have passed through the first oil passage 91 and the second oil passage 92 are mixed with each other to perform heat exchange. Therefore, the oil O which is disposed in the path of the first oil passage 91 and cools the cooler 97 can be exerted also on the oil O passing through the second oil passage 92. According to this embodiment, one cooler 97 provided in one of the first oil passage 91 and the second oil passage 92 is used to cool the oil O in both oil passages. .
 一般的にクーラーは、液体が定常的に流れる流路中に配置される。2つの油路を冷却させるために、2つの油路に含まれる流路中にそれぞれクーラーを配置する構成が考えられる。この場合は、2つのクーラーを用いる必要がありコストが高くなる。また、2つの油路を冷却するために、2つの油路を合流させた領域に流路を設け、この流路中にクーラーを設置する構成が考えられる。この場合は、交流した領域に流路を設ける必要があるため、油路中の流路の構成を複雑化する必要があり、結果としてコスト高となる。
 本実施形態によれば、第1の油路91にのみクーラーを設け、第1の油路91および第2の油路92を通過するオイルOをオイル溜りPにおいて混合することで、第2の油路92を間接的に冷却できる。これにより、油路90中の流路の構成を複雑化することなく、1つのクーラー97により第1の油路91および第2の油路92のオイルOを冷却できる。
 なお、このような効果は、第1の油路91および第2の油路92のうち何れか一方に、オイルOを冷却するクーラー97を有し、第1の油路91および第2の油路92を流れるオイルOがオイル溜りPで合流する場合に奏することができる効果である。
Generally, the cooler is disposed in the flow path in which the liquid constantly flows. In order to cool the two oil passages, a configuration is conceivable in which a cooler is disposed in each of the flow passages included in the two oil passages. In this case, it is necessary to use two coolers, which increases the cost. Further, in order to cool the two oil passages, it is conceivable to provide a flow passage in a region where the two oil passages are joined and install a cooler in the flow passage. In this case, since it is necessary to provide a flow path in the alternating current area, the structure of the flow path in the oil path needs to be complicated, resulting in an increase in cost.
According to the present embodiment, the cooler is provided only in the first oil passage 91, and the oil O passing through the first oil passage 91 and the second oil passage 92 is mixed in the oil reservoir P, whereby the second The oil passage 92 can be indirectly cooled. Thus, the oil O in the first oil passage 91 and the second oil passage 92 can be cooled by one cooler 97 without complicating the configuration of the flow passage in the oil passage 90.
In addition, such an effect has the cooler 97 which cools the oil O in any one of the 1st oil path 91 and the 2nd oil path 92, and the 1st oil path 91 and the 2nd oil This is an effect that can be achieved when the oil O flowing through the passage 92 joins at the oil reservoir P.
 オイルOの熱は、主としてクーラー97を通じて放熱される。また、オイルOの熱の一部は、オイルOがハウジング6の内面に接触するため、ハウジング6を通じても放熱される。なお、図1に示すように、ハウジング6の外側面には、凹凸状のヒートシンク部6bが設けられていてもよい。ヒートシンク部6bは、ハウジング6を介したモータ2の冷却を促進する。 The heat of the oil O is dissipated mainly through the cooler 97. Further, part of the heat of the oil O is also dissipated through the housing 6 because the oil O contacts the inner surface of the housing 6. In addition, as shown in FIG. 1, the uneven heat sink part 6b may be provided in the outer surface of the housing 6. As shown in FIG. The heat sink portion 6 b promotes cooling of the motor 2 via the housing 6.
 (第1の油路)
 第1の油路91において、オイルOは、オイル溜りPから差動装置5によりかき上げられてロータ20の内部に導かれる。オイルOには、ロータ20の内部で、ロータ20の回転に伴う遠心力が付与される。これにより、オイルOは、ロータ20を径方向外側から囲むステータ30に向かって均等に拡散されステータ30を冷却する。
(First oil path)
In the first oil passage 91, the oil O is scooped up from the oil reservoir P by the differential device 5 and guided to the inside of the rotor 20. The oil O is given a centrifugal force associated with the rotation of the rotor 20 inside the rotor 20. Thus, the oil O is uniformly diffused toward the stator 30 surrounding the rotor 20 from the radial outer side, and cools the stator 30.
 第1の油路91は、かき上げ経路91aと、オイル供給流路91bと、シャフト内経路91cと、ロータ内経路91dと、を有する。また、第1の油路91の経路中には、第2のオイル受け部93が設けられる。第2のオイル受け部93は、収容空間80(特にギヤ室82)に設けられている。 The first oil passage 91 has a scraping passage 91a, an oil supply passage 91b, an in-shaft passage 91c, and an in-rotor passage 91d. In addition, in the path of the first oil passage 91, a second oil receiving portion 93 is provided. The second oil receiving portion 93 is provided in the housing space 80 (in particular, the gear chamber 82).
 かき上げ経路91aは、リングギヤ51および大径ギヤ42の回転によってオイル溜りPからオイルOをかき上げて、第2のオイル受け部93(図2参照)でオイルOを受ける経路である。かき上げ経路91aは、第1かき上げ経路91aaと、第2かき上げ経路91abと、を有する。オイルOが、第1かき上げ経路91aaおよび第2かき上げ経路91abのうち何れの経路を経るかは、モータ2の回転方向に依存して決まる。 The scraping path 91a is a path for scraping the oil O from the oil reservoir P by the rotation of the ring gear 51 and the large diameter gear 42 and receiving the oil O at the second oil receiving portion 93 (see FIG. 2). The scraping path 91a has a first scraping path 91aa and a second scraping path 91ab. Whether the oil O passes through the first raking path 91 aa or the second raking path 91 ab is determined depending on the rotational direction of the motor 2.
 図2に示すように、モータ2は、第1の回転方向T1と、第2の回転方向T2と、に回転する。なお、図2において、モータ2が第1の回転方向T1に回転する場合の各ギヤの回転方向を実線で示し、モータ2が第2の回転方向T2に回転する場合の各ギヤの回転方向を一点鎖線で示す。 As shown in FIG. 2, the motor 2 rotates in a first rotation direction T1 and a second rotation direction T2. In FIG. 2, the solid line indicates the rotational direction of each gear when the motor 2 rotates in the first rotational direction T1, and the rotational direction of each gear when the motor 2 rotates in the second rotational direction T2 It shows with a dashed dotted line.
 本実施形態において、モータユニット1は、モータ2が第1の回転方向T1に回転した場合に車両を前進させ、モータ2が第2の回転方向T2に車両を後進させる場合について説明する。しかしながら、モータユニット1は、モータ2が第1の回転方向T1に回転した場合に車両を後進させ、モータ2が第2の回転方向T2に車両を前進させてもよい。 In the present embodiment, a case where the motor unit 1 causes the vehicle to move forward when the motor 2 rotates in the first rotation direction T1 and causes the motor 2 to reverse the vehicle in the second rotation direction T2 will be described. However, when the motor 2 rotates in the first rotation direction T1, the motor unit 1 may cause the vehicle to move backward, and the motor 2 may move the vehicle forward in the second rotation direction T2.
 モータ2が第1の回転方向T1に回転した場合、オイルOは、第1かき上げ経路91aaを経て第2のオイル受け部93に供給される。また、モータ2が第2の回転方向T2に回転した場合、オイルOは、第2かき上げ経路91abを経て第2のオイル受け部93に供給される。 When the motor 2 rotates in the first rotation direction T1, the oil O is supplied to the second oil receiving portion 93 through the first scraping path 91aa. Further, when the motor 2 is rotated in the second rotational direction T2, the oil O is supplied to the second oil receiving portion 93 through the second scraping path 91ab.
 まずモータ2が第1の回転方向T1に回転し、オイルOが第1かき上げ経路91aaを経て第2のオイル受け部93に供給される場合について説明する。 First, the case where the motor 2 is rotated in the first rotation direction T1 and the oil O is supplied to the second oil receiving portion 93 through the first scraping path 91aa will be described.
 本実施形態において、リングギヤ51の回転中心である差動軸J5は、減速装置4に対して車両後方側に配置される。リングギヤ51は、モータ2が第1の回転方向T1に回転する場合、減速装置4と逆側の領域で上側に向かって回転する。リングギヤ51は、ギヤ室82の下側に溜ったオイルOを鉛直方向上側にかき上げる。 In the present embodiment, the differential shaft J5, which is the rotation center of the ring gear 51, is disposed on the vehicle rear side with respect to the reduction gear 4. The ring gear 51 rotates upward in a region opposite to the reduction gear 4 when the motor 2 rotates in the first rotation direction T1. The ring gear 51 scoops the oil O accumulated on the lower side of the gear chamber 82 upward in the vertical direction.
 リングギヤ51の回転によってオイル溜りPからかき上げられたオイルOは、ギヤ室82内の各ギヤ(ピニオンギヤ41、大径ギヤ42および小径ギヤ43)の上側から降り注ぎ各ギヤの歯面に供給される。これにより、各ギヤの動力の伝達効率を高めることができる。 The oil O scraped up from the oil reservoir P by the rotation of the ring gear 51 falls from the upper side of each gear (the pinion gear 41, the large diameter gear 42 and the small diameter gear 43) in the gear chamber 82 and is supplied to the tooth surface of each gear. . Thereby, the transmission efficiency of the power of each gear can be improved.
 リングギヤ51の回転によってかき上げられたオイルOは、減速装置4と反対側を回って第2のオイル受け部93の上側に降り注ぎ第2のオイル受け部93に溜る。すなわち、第2のオイル受け部93は、モータ2が第1の回転方向T1に回転した場合に、オイル溜りPからリングギヤ51の回転によってかき上げたオイルOを受ける。また、モータ2の駆動直後などオイル溜りPの液面が高い場合、一対の中間ギヤ(大径ギヤ42および小径ギヤ43)は、オイル溜りPのオイルOに接触してオイルOをかき上げる。このような場合、第2のオイル受け部93は、リングギヤ51に加えて大径ギヤ42および小径ギヤ43によってかき上げられたオイルOも受ける。 The oil O scraped up by the rotation of the ring gear 51 falls on the upper side of the second oil receiver 93 around the opposite side of the reduction gear 4 and is collected in the second oil receiver 93. That is, when the motor 2 rotates in the first rotation direction T1, the second oil receiving portion 93 receives the oil O scraped up by the rotation of the ring gear 51 from the oil reservoir P. When the liquid level of the oil reservoir P is high immediately after the motor 2 is driven, the pair of intermediate gears (large diameter gear 42 and small diameter gear 43) contact the oil O of the oil reservoir P and scoop the oil O. In such a case, the second oil receiving portion 93 receives not only the ring gear 51 but also the oil O scraped up by the large diameter gear 42 and the small diameter gear 43.
 次にモータ2が第2の回転方向T2に回転し、オイルOが第2かき上げ経路91abを経て第2のオイル受け部93に供給される場合について説明する。 Next, the case where the motor 2 rotates in the second rotation direction T2 and the oil O is supplied to the second oil receiving portion 93 through the second scraping path 91ab will be described.
 差動装置5のリングギヤ51は、モータ2が第2の回転方向T2に回転する場合に減速装置4側の領域で上側に向かって回転する。リングギヤ51は、オイル溜りPに溜ったオイルOを鉛直方向上側にかき上げる。リングギヤ51の回転によってかき上げられたオイルOは、中間ギヤ42、43の下側に位置する第1のオイル受け部69に溜る。 The ring gear 51 of the differential device 5 rotates upward in a region on the side of the reduction gear 4 when the motor 2 rotates in the second rotation direction T2. The ring gear 51 scrapes the oil O accumulated in the oil reservoir P upward in the vertical direction. The oil O scraped up by the rotation of the ring gear 51 is collected in the first oil receiving portion 69 located below the intermediate gears 42, 43.
 減速装置4の中間ギヤ42、43は、モータ2が第2の回転方向T2に回転する場合に差動装置5側の領域で上側に向かって回転する。一対の中間ギヤ42、43の一方である大径ギヤ42は、第1のオイル受け部69に溜ったオイルOを鉛直方向上側にかき上げる。 The intermediate gears 42 and 43 of the reduction gear 4 rotate upward in the region on the differential device 5 side when the motor 2 rotates in the second rotation direction T2. The large diameter gear 42 which is one of the pair of intermediate gears 42 and 43 scoops the oil O accumulated in the first oil receiving portion 69 upward in the vertical direction.
 大径ギヤ42の回転によってかき上げられたオイルOは、ギヤ室82内の各ギヤ(ピニオンギヤ41および小径ギヤ43)の上側から降り注ぎ各ギヤの歯面に供給される。これにより、各ギヤの動力の伝達効率を高めることができる。 The oil O scraped up by the rotation of the large diameter gear 42 descends from the upper side of each gear (the pinion gear 41 and the small diameter gear 43) in the gear chamber 82 and is supplied to the tooth surface of each gear. Thereby, the transmission efficiency of the power of each gear can be improved.
 また、大径ギヤ42の回転によってかき上げられたオイルOは、減速装置4と差動装置5の間を通って第2のオイル受け部93の上側に降り注ぎ第2のオイル受け部93に溜る。すなわち、第2のオイル受け部93は、モータ2が第2の回転方向T2に回転した場合に、大径ギヤ42が第1のオイル受け部69からかき上げたオイルOを受ける。 Further, the oil O scraped up by the rotation of the large diameter gear 42 passes between the reduction gear 4 and the differential device 5 and falls on the upper side of the second oil receiving portion 93 and accumulates in the second oil receiving portion 93. . That is, when the motor 2 is rotated in the second rotation direction T2, the second oil receiver 93 receives the oil O picked up by the large diameter gear 42 from the first oil receiver 69.
 本実施形態によれば、モータ2が何れの方向に回転する場合であっても、オイルOをギヤによってかき上げることができる。このため、車両が前進する場合であっても後進する場合であっても、各ギヤの歯面にオイルOを行き渡らせることができる。また、車両を前進させるためのモータ2の回転方向が、第1の回転方向T1であっても第2の回転方向T2であっても、各ギヤの歯面にオイルOを行き渡らせることができる。このため、車両に対するモータユニット1の姿勢の自由度を高めることができる。また、本実施形態によれば、モータ2が何れの方向に回転する場合であっても、オイルOをギヤによってかき上げて、第2のオイル受け部93にオイルOを溜めることができる。後述するように、第2のオイル受け部93に溜められたオイルOは、モータ2に供給されモータ2を冷却する。すなわち、モータ2の回転方向に関わらず、モータ2を効率的に冷却することができる。 According to this embodiment, the oil O can be scooped up by the gear even when the motor 2 rotates in any direction. Therefore, the oil O can be spread over the tooth surfaces of the gears whether the vehicle is moving forward or backward. Further, the oil O can be spread over the tooth surface of each gear regardless of whether the rotation direction of the motor 2 for advancing the vehicle is the first rotation direction T1 or the second rotation direction T2. . Therefore, the degree of freedom of the attitude of the motor unit 1 with respect to the vehicle can be enhanced. Further, according to the present embodiment, even when the motor 2 rotates in any direction, the oil O can be accumulated in the second oil receiving portion 93 by scraping the oil O with the gear. As described later, the oil O stored in the second oil receiving portion 93 is supplied to the motor 2 to cool the motor 2. That is, regardless of the rotation direction of the motor 2, the motor 2 can be cooled efficiently.
 本実施形態において、第2のオイル受け部93とシャフト21とは、水平方向に並ぶ。したがって、第2のオイル受け部93およびピニオンギヤ41は、同程度の高さに配置される。このため、第2のオイル受け部93にオイルOを溜めるためのオイルOのかき上げ高さと、ピニオンギヤ41の歯面にオイルOを供給するためのオイルOのかき上げ高さと、は略一致する。このため、各ギヤによるオイルOのかき上げによって、第2のオイル受け部93にオイルOを供給するとともに、ピニオンギヤ41の歯面に効率的にオイルOを供給できる。 In the present embodiment, the second oil receiving portion 93 and the shaft 21 are arranged in the horizontal direction. Therefore, the second oil receiving portion 93 and the pinion gear 41 are disposed at the same height. Therefore, the scraping height of the oil O for storing the oil O in the second oil receiving portion 93 and the scraping height of the oil O for supplying the oil O to the tooth surface of the pinion gear 41 substantially coincide with each other. . Therefore, the oil O can be supplied to the second oil receiving portion 93 and the oil O can be efficiently supplied to the tooth surface of the pinion gear 41 by scraping the oil O by the gears.
 また、本実施形態の第2のオイル受け部93は、水平方向において、中間軸J4と差動軸J5との間に位置する。すなわち、第2のオイル受け部93は、大径ギヤ42およびリングギヤ51の両方のオイルOのかき上げに対して、オイルOを受けやすい位置に配置される。このため、大径ギヤ42およびリングギヤ51によるオイルOのかき上げに対して、第2のオイル受け部93においてオイルOを効率的に受けることができる。 Further, the second oil receiving portion 93 of the present embodiment is located between the intermediate shaft J4 and the differential shaft J5 in the horizontal direction. That is, the second oil receiving portion 93 is disposed at a position where the oil O is susceptible to being scooped up against the oil O of both the large diameter gear 42 and the ring gear 51. Therefore, the oil O can be efficiently received by the second oil receiving portion 93 against the scraping of the oil O by the large diameter gear 42 and the ring gear 51.
 図1に示すように、オイル供給流路91bは、第2のオイル受け部93からモータ2にオイルOを誘導する。オイル供給流路91bは、オイル導入路94により構成される。 As shown in FIG. 1, the oil supply flow passage 91 b guides the oil O to the motor 2 from the second oil receiving portion 93. The oil supply passage 91 b is constituted by the oil introduction passage 94.
 シャフト内経路91cは、シャフト21の中空部22内をオイルOが通過する経路である。また、ロータ内経路91dは、シャフト21の連通孔23からロータコア24の内部を通過して、ステータ30に飛散する経路である。 The shaft inner path 91 c is a path through which the oil O passes in the hollow portion 22 of the shaft 21. Further, the rotor inner path 91 d is a path which passes through the inside of the rotor core 24 from the communication hole 23 of the shaft 21 and scatters to the stator 30.
 シャフト内経路91cにおいて、ロータ20の内部のオイルOには、ロータ20の回転に伴い遠心力が付与される。これにより、オイルOは、エンドプレート26から径方向外側に連続的に飛散する。また、オイルOの飛散に伴い、ロータ20内部の経路中が負圧となり、第2のオイル受け部93に溜るオイルOが、ロータ20の内部に吸引され、ロータ20内部の経路にオイルOが満たされる。 In the shaft inner path 91 c, centrifugal force is applied to the oil O inside the rotor 20 as the rotor 20 rotates. Thus, the oil O continuously splashes radially outward from the end plate 26. In addition, as the oil O is scattered, the pressure in the path inside the rotor 20 becomes negative pressure, and the oil O accumulated in the second oil receiving portion 93 is sucked into the rotor 20 and the oil O flows in the path inside the rotor 20 It is filled.
 ステータ30に到達したオイルOは、ステータ30から熱を奪う。ステータ30を冷却したオイルOは、下側に滴下され、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82に移動する。 The oil O that has reached the stator 30 removes heat from the stator 30. The oil O which has cooled the stator 30 is dropped downward, and is accumulated in the lower region in the motor chamber 81. The oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition 61 c.
 本実施形態によれば、第1の油路91は、かき上げ経路91aとロータ内経路91dとを含む。かき上げ経路91aは、差動装置5によるオイルOのかき上げによってギヤ室82からモータ室81へオイルOを移動させる。差動装置5によってかき上げられるオイルOの量は、差動装置5の回転数に依存する。このため、かき上げ経路91aは、車速に依ってモータ室81へのオイルOの移動量を増減させる。また、ロータ内経路91dは、ロータ20の遠心力によってオイルOをギヤ室82側からモータ室81側にオイルOを吸い込む。遠心力は、ロータ20の回転数に依存する。したがって、ロータ内経路91dは、車速に依ってモータ室81へのオイルOの移動量を増減させる。すなわち、第1の油路91は、車速に依ってモータ室81へのオイルOの移動量が増減する。 According to the present embodiment, the first oil passage 91 includes the scraping path 91a and the rotor inner path 91d. The scraping path 91 a moves the oil O from the gear chamber 82 to the motor chamber 81 by scraping the oil O by the differential device 5. The amount of oil O picked up by the differential 5 depends on the number of revolutions of the differential 5. Therefore, the scraping path 91a increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed. Further, the rotor inner path 91 d sucks the oil O from the gear chamber 82 side to the motor chamber 81 side by the centrifugal force of the rotor 20. The centrifugal force depends on the rotational speed of the rotor 20. Therefore, the rotor inner path 91d increases or decreases the amount of movement of the oil O to the motor chamber 81 depending on the vehicle speed. That is, in the first oil passage 91, the amount of movement of the oil O to the motor chamber 81 increases or decreases depending on the vehicle speed.
 (第2の油路)
 図1に示すように、第2の油路92においてオイルOは、オイル溜りPからモータ2の上側まで引き上げられてモータ2に供給される。モータ2に供給されたオイルOは、ステータ30の外周面を伝いながら、ステータ30から熱を奪い、モータ2を冷却する。ステータ30の外周面を伝ったオイルOは、下方に滴下してモータ室81内の下部領域に溜る。第2の油路92のオイルOは、第1の油路91のオイルOとモータ室81内の下部領域で合流する。モータ室81内の下部領域に溜ったオイルOは、隔壁開口68を介して、ギヤ室82内の下部領域(すなわち、オイル溜りP)に移動する。
(Second oil path)
As shown in FIG. 1, the oil O is pulled up from the oil reservoir P to the upper side of the motor 2 in the second oil passage 92 and supplied to the motor 2. The oil O supplied to the motor 2 takes heat from the stator 30 while cooling along the outer peripheral surface of the stator 30 to cool the motor 2. The oil O transmitted along the outer peripheral surface of the stator 30 drips downward and accumulates in the lower region in the motor chamber 81. The oil O of the second oil passage 92 merges with the oil O of the first oil passage 91 in the lower region of the motor chamber 81. The oil O accumulated in the lower region in the motor chamber 81 moves to the lower region (i.e., the oil reservoir P) in the gear chamber 82 through the partition opening 68.
 第2の油路92は、第1の流路92aと第2の流路92bと第3の流路92cとを有する。第2の油路92の経路中には、ポンプ96と、クーラー97と、リザーバ98と、が設けられる。第2の油路92において、オイルOは、第1の流路92a、ポンプ96、第2の流路92b、クーラー97、第3の流路92c、リザーバ98の順で各部を通過して、モータ2に供給される。 The second oil passage 92 has a first flow passage 92a, a second flow passage 92b, and a third flow passage 92c. In the path of the second oil passage 92, a pump 96, a cooler 97, and a reservoir 98 are provided. In the second oil passage 92, the oil O passes through each portion in the order of the first passage 92a, the pump 96, the second passage 92b, the cooler 97, the third passage 92c, and the reservoir 98, It is supplied to the motor 2.
 第1の流路92a、第2の流路92bおよび第3の流路92cは、収容空間80を囲むハウジング6の壁部6aの内部を通過する。第1の流路92aは、オイル溜りPとポンプ96とを繋ぐ。第2の流路92bは、ポンプ96とクーラー97とを繋ぐ。第3の流路92cは、クーラー97と収容空間80とを繋ぐ。 The first flow passage 92 a, the second flow passage 92 b and the third flow passage 92 c pass through the inside of the wall 6 a of the housing 6 surrounding the accommodation space 80. The first flow path 92 a connects the oil reservoir P and the pump 96. The second flow path 92 b connects the pump 96 and the cooler 97. The third flow path 92 c connects the cooler 97 and the storage space 80.
 ポンプ96は、電気により駆動する電動ポンプである。ポンプ96は、第1の流路92aを介してオイル溜りPからオイルOを吸い上げて、第2の流路92b、クーラー97、第3の流路92cおよびリザーバ98を介してモータ2に供給する。 The pump 96 is an electric pump driven by electricity. The pump 96 sucks up the oil O from the oil reservoir P via the first flow passage 92a and supplies it to the motor 2 via the second flow passage 92b, the cooler 97, the third flow passage 92c and the reservoir 98. .
 ポンプ96によるモータ2へのオイルOの供給量は、モータ2の駆動状態に応じて適宜制御される。したがって、長時間の駆動や高い出力が必要な場合などモータ2の温度が高まることで、ポンプ96の駆動出力が高められてモータ2へのオイルOの供給量が増加される。 The amount of oil O supplied to the motor 2 by the pump 96 is appropriately controlled in accordance with the driving state of the motor 2. Therefore, when the temperature of the motor 2 is increased, for example, when a long time drive or a high output is required, the drive output of the pump 96 is increased and the amount of oil O supplied to the motor 2 is increased.
 クーラー97には、第1の流路92aおよび第2の流路92bが接続される。第1の流路92aおよび第2の流路92bは、クーラー97の内部流路を介して繋がる。クーラー97の内部には、ラジエータから供給された冷却水が通過する冷却水用配管(図示略)が設けられる。クーラー97の内部を通過するオイルOは、冷却水との間で熱交換されて冷却される。 The cooler 97 is connected to a first flow passage 92 a and a second flow passage 92 b. The first flow path 92 a and the second flow path 92 b are connected via the internal flow path of the cooler 97. Inside the cooler 97, a cooling water pipe (not shown) through which the cooling water supplied from the radiator passes is provided. The oil O passing through the inside of the cooler 97 is cooled by heat exchange with the cooling water.
 リザーバ98は、収容空間80のモータ室81に位置する。リザーバ98は、モータの上側に位置する。リザーバ98は、第3の流路92cを介してモータ室81に供給されたオイルOを貯留する。リザーバ98は、複数の流出口98aを有する。リザーバ98内に溜ったオイルOは、各流出口98aからモータ2に供給される。リザーバ98の流出口98aから流出したオイルOは、上側から下側に向かってモータ2の外周面を伝って流れてモータ2の熱を奪う。これにより、モータ2全体を冷却することができる。 The reservoir 98 is located in the motor chamber 81 of the accommodation space 80. The reservoir 98 is located above the motor. The reservoir 98 stores oil O supplied to the motor chamber 81 via the third flow path 92c. The reservoir 98 has a plurality of outlets 98a. The oil O accumulated in the reservoir 98 is supplied to the motor 2 from each outlet 98 a. The oil O flowing out from the outlet 98 a of the reservoir 98 flows from the upper side to the lower side along the outer peripheral surface of the motor 2 to remove the heat of the motor 2. Thereby, the whole motor 2 can be cooled.
 リザーバ98は、軸方向に沿って延びる。また、リザーバ98の流出口98aは、リザーバ98の軸方向の両端部に設けられる。流出口98aは、コイルエンド31aの上側に位置する。これにより、ステータ30の軸方向両端に位置するコイルエンド31aにオイルOをかけてコイル31を直接的に冷却できる。 The reservoir 98 extends along the axial direction. The outlets 98 a of the reservoir 98 are provided at both axial ends of the reservoir 98. The outlet 98a is located above the coil end 31a. As a result, oil O can be applied to the coil ends 31a located at both axial ends of the stator 30 to directly cool the coils 31.
 コイル31を冷却したオイルOは、下側に滴下され、モータ室81内の下部領域に溜る。モータ室81内の下部領域に溜ったオイルOは、隔壁61cに設けられた隔壁開口68を介してギヤ室82に移動する。 The oil O which has cooled the coil 31 is dropped downward, and is accumulated in the lower region in the motor chamber 81. The oil O accumulated in the lower region in the motor chamber 81 moves to the gear chamber 82 through the partition opening 68 provided in the partition 61 c.
 本実施形態によれば、第2の油路92は、ポンプ(電動ポンプ)96によってギヤ室82からモータ室81にオイルOを移動させる。ポンプ96にオイルOの供給量は、例えばモータ2の温度測定結果に基づいて制御される。したがって、第2の油路92は、車速に依らないでモータ室81へのオイルOの移動量が増減する。また、第2の油路92は、モータ2が静止時において、モータ2へのオイルOの供給を停止する。第2の油路92は、モータ2の起動時にモータ室81へのオイルOの移動を開始させる。このため停止時において、ギヤ室82のオイル溜りPの液面を高めることができる。結果として、起動直後のモータ2の回転によって、大径ギヤ42、小径ギヤ43およびリングギヤ51をオイル溜りP内で回転させて、歯面にオイルOを行き渡らせることができる。 According to this embodiment, the second oil passage 92 moves the oil O from the gear chamber 82 to the motor chamber 81 by the pump (electric pump) 96. The amount of oil O supplied to the pump 96 is controlled based on, for example, the temperature measurement result of the motor 2. Therefore, in the second oil passage 92, the amount of movement of the oil O to the motor chamber 81 increases or decreases regardless of the vehicle speed. The second oil passage 92 stops the supply of oil O to the motor 2 when the motor 2 is at rest. The second oil passage 92 starts the movement of the oil O to the motor chamber 81 when the motor 2 is started. Therefore, the liquid level of the oil reservoir P in the gear chamber 82 can be raised at the time of stop. As a result, the large diameter gear 42, the small diameter gear 43 and the ring gear 51 can be rotated in the oil reservoir P by the rotation of the motor 2 immediately after start-up, so that the oil O can spread over the tooth surface.
 (変形例)
 上述の実施形態に採用可能な、オイルOのシャフト121の内部への導入構造について変形例として説明する。図3は、変形例のモータユニットにおいて、シャフト121の先端および第2のオイル受け部193を示す概念図である。
 なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
(Modification)
The introduction structure of the oil O into the shaft 121 which can be adopted in the above embodiment will be described as a modification. FIG. 3 is a conceptual view showing the tip of the shaft 121 and the second oil receiver 193 in the motor unit of the modification.
In addition, about the component of the aspect same as the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 上述の実施形態と同様に、第2のオイル受け部193には、第1かき上げ経路91aaおよび第2かき上げ経路91abを経てオイルOが供給される。より具体的には、第2のオイル受け部193には、オイル溜りPからリングギヤ51の回転によってかき上げられたオイルOおよび第1のオイル受け部69から大径ギヤ42の回転によってかき上げられたオイルが溜る(図1参照)。 As in the above-described embodiment, the oil O is supplied to the second oil receiver 193 through the first scraping path 91 aa and the second scraping path 91 ab. More specifically, the second oil receiving portion 193 is scooped up by the rotation of the large diameter gear 42 from the oil O scraped up by the rotation of the ring gear 51 from the oil reservoir P and the first oil receiving portion 69. Oil accumulates (see Figure 1).
 モータ軸J2周りに回転するシャフト121は、中空シャフトである。すなわち、シャフト121には、モータ軸J2に沿って延びる中空部122が設けられる。シャフト121の先端は、閉塞している。また、シャフト121の先端は、第2のオイル受け部193に収容される。すなわち、第2のオイル受け部193は、少なくとも一部がシャフト121の外周の一部を囲む。 The shaft 121 rotating around the motor axis J2 is a hollow shaft. That is, the shaft 121 is provided with a hollow portion 122 extending along the motor axis J2. The tip of the shaft 121 is closed. Further, the tip of the shaft 121 is accommodated in the second oil receiver 193. That is, at least a part of the second oil receiver 193 surrounds a part of the outer periphery of the shaft 121.
 シャフト121には、第2のオイル受け部193に囲まれた領域において、シャフト121の外部と中空部122とを繋ぐ貫通孔121aが設けられる。貫通孔121aは、径方向に延びる。貫通孔121aは、第2のオイル受け部193に溜ったオイルOをシャフト121の内部(中空部122)に導入する。 The shaft 121 is provided with a through hole 121 a connecting the outside of the shaft 121 and the hollow portion 122 in a region surrounded by the second oil receiving portion 193. The through holes 121a extend in the radial direction. The through hole 121 a introduces the oil O accumulated in the second oil receiving portion 193 into the inside (hollow portion 122) of the shaft 121.
 本変形例によれば、ハウジングに第2のオイル受け部193とシャフト121の内部とを繋ぐ流路(図1に示すオイル導入路94に相当)が設けられていない場合であっても、シャフト121の内部にオイルOを導入できる。 According to this modification, even if the housing is not provided with the flow passage (corresponding to the oil introduction passage 94 shown in FIG. 1) connecting the second oil receiving portion 193 and the inside of the shaft 121 in the housing, the shaft Oil O can be introduced into the inside of 121.
 (第2実施形態)
 次に、第2実施形態のモータユニット201について説明する。
 図4は、モータユニット201の側面図である。図5は、図4のV-V線に沿うモータユニット201の断面図である。第2実施形態のモータユニット201は、上述の実施形態と比較して主にハウジング206の構成が異なる。
 なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
Second Embodiment
Next, a motor unit 201 of the second embodiment will be described.
FIG. 4 is a side view of the motor unit 201. As shown in FIG. FIG. 5 is a cross-sectional view of the motor unit 201 taken along the line VV of FIG. The motor unit 201 according to the second embodiment mainly differs in the configuration of the housing 206 from the above-described embodiment.
In addition, about the component of the aspect same as the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 モータユニット201は、上述の実施形態と同様に、モータ2(図4および図5において省略)と、減速装置204と、差動装置5と、ハウジング206と、オイルOと、を備える。また、本実施形態のモータユニット201は、インバータ203を有する。 The motor unit 201 includes the motor 2 (omitted in FIGS. 4 and 5), the reduction gear 204, the differential device 5, the housing 206, and the oil O, as in the above-described embodiment. Also, the motor unit 201 of the present embodiment has an inverter 203.
 減速装置204は、上述の実施形態と同様に、ピニオンギヤ41と、中間シャフト45と、中間シャフト45に固定された一対の中間ギヤ42、43と、を有する。一対の中間ギヤ42、43は、大径ギヤ42と小径ギヤ43とに分類される。モータ2から出力されるトルクは、モータ2のシャフト21、ピニオンギヤ41、一対の中間ギヤ42、43を介して差動装置5のリングギヤ51へ伝達される。 The reduction gear 204 has a pinion gear 41, an intermediate shaft 45, and a pair of intermediate gears 42 and 43 fixed to the intermediate shaft 45, as in the above-described embodiment. The pair of intermediate gears 42 and 43 are classified into the large diameter gear 42 and the small diameter gear 43. The torque output from the motor 2 is transmitted to the ring gear 51 of the differential 5 through the shaft 21 of the motor 2, the pinion gear 41, and the pair of intermediate gears 42 and 43.
 ハウジング206の内部は、モータ2、減速装置204および差動装置5を収容する収容空間80が設けられる。収容空間80は、モータ2を収容するモータ室81(図4および図5において省略)と、減速装置204および差動装置5を収容するギヤ室82と、に区画される。 Inside the housing 206, a housing space 80 for housing the motor 2, the reduction gear 204 and the differential 5 is provided. The housing space 80 is divided into a motor chamber 81 (not shown in FIGS. 4 and 5) for housing the motor 2 and a gear chamber 82 for housing the reduction gear 204 and the differential device 5.
 ギヤ室82内の下部領域には、オイルOが溜るオイル溜りPが設けられる。オイル溜りPには、差動装置5の一部が浸かる。すなわち、リングギヤ51の少なくとも一部は、オイル溜りPに溜るオイルOに浸かる。 In the lower region of the gear chamber 82, an oil reservoir P in which the oil O is accumulated is provided. A part of the differential device 5 is immersed in the oil reservoir P. That is, at least a part of the ring gear 51 is immersed in the oil O accumulated in the oil reservoir P.
 図5に示すように、ハウジング206は、第1部材206Aと、第2部材206Bと、を有する。第1部材206Aと第2部材206Bとは、軸方向に沿って並ぶ。第1部材206Aは、軸方向において第2部材206B側に開口する凹形状を有する。同様に、第2部材206Bは、軸方向において第1部材206A側に開口する凹形状を有する。第1部材206Aと第2部材206Bとは、互いに向かい合ってギヤ室82を構成する。すなわち、第1部材206Aと第2部材206Bとは、ギヤ室82を囲む。第1部材206Aは、ギヤ室82の軸方向を向く内壁面を構成する第1の対向面(対向面)206Aaを有する。同様に、第2部材206Bは、ギヤ室82の軸方向を向く内壁面を構成する第2の対向面(対向面)206Baを有する。第1の対向面206Aaと第2の対向面206Baとは、軸方向において互いに対向する。 As shown in FIG. 5, the housing 206 has a first member 206A and a second member 206B. The first member 206A and the second member 206B are aligned along the axial direction. The first member 206A has a concave shape that opens in the axial direction toward the second member 206B. Similarly, the second member 206B has a concave shape that opens in the axial direction toward the first member 206A. The first member 206A and the second member 206B face each other to form a gear chamber 82. That is, the first member 206A and the second member 206B surround the gear chamber 82. The first member 206A has a first facing surface (facing surface) 206Aa that constitutes an inner wall surface facing in the axial direction of the gear chamber 82. Similarly, the second member 206B has a second facing surface (facing surface) 206Ba that constitutes an inner wall surface facing the axial direction of the gear chamber 82. The first facing surface 206Aa and the second facing surface 206Ba face each other in the axial direction.
 図4に示すように、ハウジング206は、第1のオイル受け部269と、第2のオイル受け部293と、第1のオイル誘導部265と、第2のオイル誘導部266と、オイル導入路94と、を有する。第1のオイル受け部269、第2のオイル受け部293、第1のオイル誘導部265、第2のオイル誘導部266およびオイル導入路94は、ギヤ室82内に配置される。第1のオイル受け部269および第2のオイル受け部293は、上側に開口する。第1のオイル受け部269および第2のオイル受け部293は、一時的にオイルを貯留するリザーバとして機能する。第1のオイル誘導部265および第2のオイル誘導部266は、ギヤ室82内のオイルOを誘導する。オイル導入路94は、第2のオイル受け部293とシャフト21の内部とを繋ぐ。 As shown in FIG. 4, the housing 206 includes a first oil receiving portion 269, a second oil receiving portion 293, a first oil guiding portion 265, a second oil guiding portion 266, and an oil introducing passage. And 94. The first oil receiving portion 269, the second oil receiving portion 293, the first oil guiding portion 265, the second oil guiding portion 266, and the oil introducing passage 94 are disposed in the gear chamber 82. The first oil receiver 269 and the second oil receiver 293 open upward. The first oil receiver 269 and the second oil receiver 293 function as a reservoir for temporarily storing oil. The first oil guiding portion 265 and the second oil guiding portion 266 induce the oil O in the gear chamber 82. The oil introduction path 94 connects the second oil receiving portion 293 and the inside of the shaft 21.
 第1のオイル受け部269は、大径ギヤ42の下側に位置し、大径ギヤ42の歯先円に沿って円弧状に延びる。第1のオイル受け部269には、リングギヤ51によってかき上げられたオイルOが溜る。 The first oil receiving portion 269 is located below the large diameter gear 42 and extends in an arc along the tip circle of the large diameter gear 42. The oil O picked up by the ring gear 51 is accumulated in the first oil receiving portion 269.
 第1のオイル受け部269は、軸方向において大径ギヤ42と重なる。大径ギヤ42の一部は、第1のオイル受け部269に溜ったオイルOに浸かる。第1のオイル受け部269に溜ったオイルOは、大径ギヤ42の回転によって上側にかき上げられる。第1のオイル受け部269は、大径ギヤ42の歯先円に沿って延びるため、第1のオイル受け部269に溜ったオイルOは、上側に効率的にかき上げられる。 The first oil receiving portion 269 overlaps the large diameter gear 42 in the axial direction. A part of the large diameter gear 42 is immersed in the oil O accumulated in the first oil receiving portion 269. The oil O accumulated in the first oil receiving portion 269 is scooped up by the rotation of the large diameter gear 42. Since the first oil receiving portion 269 extends along the tip circle of the large diameter gear 42, the oil O accumulated in the first oil receiving portion 269 is efficiently scraped upward.
 図5に示すように、第1のオイル受け部269は、第1のリブ(リブ)269aと第2のリブ(リブ)269bとから構成される。第1のリブ269aは第1部材206Aに設けられ、第2のリブ269bは第2部材206Bに設けられる。すなわち、第1部材206Aは第1のリブ269aを有し、第2部材206Bは第2のリブ269bを有する。 As shown in FIG. 5, the first oil receiving portion 269 is composed of a first rib 269a and a second rib 269b. The first rib 269a is provided on the first member 206A, and the second rib 269b is provided on the second member 206B. That is, the first member 206A has a first rib 269a, and the second member 206B has a second rib 269b.
 第1のリブ269aは、第1部材206Aの第1の対向面206Aaから軸方向に略一様な断面形状で突出する。第2のリブ269bは、第2部材206Bの第2の対向面206Baから軸方向に突出する。第1のリブ269aと第2のリブ269bとは、互いに突き合わされる。これによって、第1のリブ269aおよび第2のリブ269bは、第1のオイル受け部269を構成する。 The first rib 269a protrudes from the first opposing surface 206Aa of the first member 206A in a substantially uniform cross-sectional shape in the axial direction. The second rib 269b axially protrudes from the second opposing surface 206Ba of the second member 206B. The first rib 269a and the second rib 269b abut each other. Thus, the first rib 269a and the second rib 269b constitute a first oil receiving portion 269.
 本実施形態によれば、第1のオイル受け部269は、第1のリブ269aおよび第2のリブ269bから構成される。第1のオイル受け部269は、第1部材206Aの第1の対向面206Aaと第2部材206Bの第2の対向面206Baとによって軸方向両側から囲まれる。結果的に第1のオイル受け部269にオイルOを確実に溜めることができる。 According to the present embodiment, the first oil receiving portion 269 is composed of the first rib 269a and the second rib 269b. The first oil receiving portion 269 is surrounded from both sides in the axial direction by the first opposing surface 206Aa of the first member 206A and the second opposing surface 206Ba of the second member 206B. As a result, the oil O can be reliably stored in the first oil receiving portion 269.
 本実施形態によれば、第1のオイル受け部269は、軸方向において第1の対向面206Aaから第2の対向面206Baまで延びる。すなわち、第1のオイル受け部269は、ギヤ室82の軸方向の全長に亘って配置される。このため、第1のオイル受け部269は、軸方向において、大径ギヤ42のみならずリングギヤ51と重なる。このため、第1のオイル受け部269は、リングギヤ51によってかき上げられたオイルOを効率的に受けることができる。 According to the present embodiment, the first oil receiving portion 269 extends in the axial direction from the first facing surface 206Aa to the second facing surface 206Ba. That is, the first oil receiving portion 269 is disposed over the entire length of the gear chamber 82 in the axial direction. Therefore, the first oil receiving portion 269 overlaps not only the large diameter gear 42 but also the ring gear 51 in the axial direction. Therefore, the first oil receiving portion 269 can efficiently receive the oil O scraped up by the ring gear 51.
 なお、本実施形態では、第1のオイル受け部269は、第1部材206Aおよび第2部材206Bの一部として構成されている。しかしながら、第1のオイル受け部269は、第1部材206A又は第2部材206Bに固定される別部材であってもよい。 In the present embodiment, the first oil receiver 269 is configured as a part of the first member 206A and the second member 206B. However, the first oil receiver 269 may be a separate member fixed to the first member 206A or the second member 206B.
 図4に示すように、第1のオイル誘導部265は、上下方向に沿ってリブ状に延びる。第1のオイル誘導部265は、小径ギヤ43の歯先に沿って円弧状に延びる。図5に示すように、第1のオイル誘導部265は、第1部材206Aの第1の対向面206Aaから軸方向に突出する。第1のオイル誘導部265は、第1のオイル受け部269の直上に位置する。すなわち、第1のオイル誘導部265は、第1のオイル受け部269の上側に位置し、上下方向からみて少なくとも一部が第1のオイル受け部269に重なる。 As shown in FIG. 4, the first oil guiding portion 265 extends in the shape of a rib along the vertical direction. The first oil guiding portion 265 extends in an arc along the tip of the small diameter gear 43. As shown in FIG. 5, the first oil guiding portion 265 axially protrudes from the first opposing surface 206Aa of the first member 206A. The first oil guiding portion 265 is located immediately above the first oil receiving portion 269. That is, the first oil guiding portion 265 is located on the upper side of the first oil receiving portion 269, and at least a part thereof overlaps the first oil receiving portion 269 when viewed in the vertical direction.
 本実施形態によれば、第1のオイル誘導部265は、軸方向においてリングギヤ51と重なる。このため、リングギヤ51でかき上げられたオイルOは、第1のオイル誘導部265に当たる。第1のオイル誘導部265は、第1のオイル受け部269の直上に位置するため、第1のオイル誘導部265に当たったオイルOは、第1のオイル受け部269に滴下される。 According to the present embodiment, the first oil guiding portion 265 overlaps the ring gear 51 in the axial direction. Therefore, the oil O scraped up by the ring gear 51 hits the first oil guiding portion 265. Since the first oil guiding portion 265 is positioned immediately above the first oil receiving portion 269, the oil O that has hit the first oil guiding portion 265 is dropped to the first oil receiving portion 269.
 図4に示すように、第2のオイル誘導部266は、上下方向に沿ってリブ状に延びる。第2のオイル誘導部266は、大径ギヤ42の歯先円に沿って円弧状に延びる。第2のオイル誘導部266は、大径ギヤ42に対して水平方向において差動軸J5側に位置する。第2のオイル誘導部266は、軸方向において大径ギヤ42に重なる。また、第2のオイル誘導部266は、軸方向において、後述する第2のオイル受け部293に重なる。 As shown in FIG. 4, the second oil guiding portion 266 extends in the shape of a rib along the vertical direction. The second oil guiding portion 266 extends in an arc along the tip circle of the large diameter gear 42. The second oil guiding portion 266 is located on the side of the differential shaft J5 in the horizontal direction with respect to the large diameter gear 42. The second oil guiding portion 266 overlaps the large diameter gear 42 in the axial direction. Further, the second oil guiding portion 266 overlaps with a second oil receiving portion 293 described later in the axial direction.
 本実施形態によれば、第2のオイル誘導部266は、軸方向において大径ギヤ42と重なる。このため、第2のオイル誘導部266には、大径ギヤ42でかき上げられたオイルOが当たる。第2のオイル誘導部266は、大径ギヤ42によってかき上げられたオイルOを第2のオイル受け部293に誘導する。 According to the present embodiment, the second oil guiding portion 266 overlaps the large diameter gear 42 in the axial direction. For this reason, the oil O scraped up by the large diameter gear 42 hits the second oil guiding portion 266. The second oil guiding portion 266 guides the oil O scraped up by the large diameter gear 42 to the second oil receiving portion 293.
 図5に示すように、第2のオイル誘導部266は、第2部材206Bの第2の対向面206Baから軸方向に突出する。第2のオイル誘導部266は、軸方向においてリングギヤ51と重ならない。このため、第2のオイル誘導部266は、リングギヤ51によってかき上げられて第1のオイル受け部269によって受けられるオイルOの経路を阻害しない。 As shown in FIG. 5, the second oil guiding portion 266 axially protrudes from the second opposing surface 206Ba of the second member 206B. The second oil guiding portion 266 does not overlap with the ring gear 51 in the axial direction. For this reason, the second oil guiding portion 266 does not disturb the path of the oil O which is scooped up by the ring gear 51 and received by the first oil receiving portion 269.
 図4に示すように、第2のオイル受け部293は、鉛直方向において中間軸J4および差動軸J5より上側に位置する。第2のオイル受け部293は、車両前後方向(すなわち水平方向)において中間軸J4および差動軸J5の間に位置する。第2のオイル受け部293は、ピニオンギヤ41の水平方向の側部に配置される。すなわち、第2のオイル受け部293とシャフト21とは、水平方向に並ぶ。第2のオイル受け部293は、上側に開口する。 As shown in FIG. 4, the second oil receiving portion 293 is located above the intermediate axis J4 and the differential axis J5 in the vertical direction. The second oil receiver 293 is located between the intermediate shaft J4 and the differential shaft J5 in the longitudinal direction of the vehicle (ie, in the horizontal direction). The second oil receiver 293 is disposed on the horizontal side of the pinion gear 41. That is, the second oil receiving portion 293 and the shaft 21 are arranged in the horizontal direction. The second oil receiver 293 opens upward.
 第2のオイル受け部293には、オイル溜りPからリングギヤ51によってかき上げられたオイルOが溜る。また、第2のオイル受け部293には、第1のオイル受け部269から大径ギヤ(中間ギヤ)42によってかき上げられたオイルOが溜る。 In the second oil receiving portion 293, the oil O scraped up by the ring gear 51 from the oil reservoir P is collected. In the second oil receiving portion 293, the oil O scraped up by the large diameter gear (intermediate gear) 42 from the first oil receiving portion 269 is collected.
 図5に示すように、第2のオイル受け部293は、第1の対向面206Aaおよび第2の対向面206Baからそれぞれ軸方向に突出する一対のリブ293c、293dが突き合わされて構成される。したがって、第2のオイル受け部293は、ギヤ室82の軸方向の全長に亘って配置される。第2のオイル受け部293は、軸方向において、大径ギヤ42およびリングギヤ51と重なる。このため、第2のオイル受け部293は、大径ギヤ42およびリングギヤ51によってかき上げられたオイルOを効率的に受けることができる。 As shown in FIG. 5, the second oil receiving portion 293 is configured by abutting a pair of ribs 293c and 293d axially protruding from the first opposing surface 206Aa and the second opposing surface 206Ba. Therefore, the second oil receiver 293 is disposed along the entire axial length of the gear chamber 82. The second oil receiver 293 overlaps the large diameter gear 42 and the ring gear 51 in the axial direction. Therefore, the second oil receiving portion 293 can efficiently receive the oil O scraped up by the large diameter gear 42 and the ring gear 51.
 図4に示すように、第2のオイル受け部293は、底部293aと、底部293aから上側に延びる側壁部293bを有する。第2のオイル受け部293は、底部293aと側壁部293bとで囲まれた領域において、オイルOを一時的に貯留する。 As shown in FIG. 4, the second oil receiver 293 has a bottom 293a and a side wall 293b extending upward from the bottom 293a. Second oil receiving portion 293 temporarily stores oil O in a region surrounded by bottom portion 293a and side wall portion 293b.
 側壁部293bは、第1の壁部293baと第2の壁部293bbとを含む。第1の壁部293baおよび第2の壁部293bbは、それぞれ底部293aから上側に延びる。第1の壁部293baは、第2のオイル受け部293の差動装置5側の壁面を構成する。第2の壁部293bbは、第2のオイル受け部293の減速装置204側の壁面を構成する。すなわち、第1の壁部293baは、底部293aの差動軸J5側の端部から上側に延び、第2の壁部293bbは、底部293aのモータ軸J2側の端部から上側に延びる。第1の壁部293baの上端は、第2の壁部293bbの上端より下側に位置する。 Side wall portion 293 b includes a first wall portion 293 ba and a second wall portion 293 bb. The first wall portion 293ba and the second wall portion 293bb extend upward from the bottom portion 293a, respectively. The first wall portion 293 ba constitutes a wall surface of the second oil receiving portion 293 on the differential device 5 side. The second wall portion 293bb constitutes a wall surface of the second oil receiving portion 293 on the side of the reduction gear 204. That is, the first wall portion 293ba extends upward from the end portion of the bottom portion 293a on the differential shaft J5 side, and the second wall portion 293bb extends upward from the end portion of the bottom portion 293a on the motor axis J2 side. The upper end of the first wall 293ba is located below the upper end of the second wall 293bb.
 第1の壁部293baは、水平方向において第2のオイル誘導部266と対向する。また、第1の壁部293baの上端は、第2のオイル誘導部266の上端より下側に位置する。すなわち、第2のオイル誘導部266の上端は、第1の壁部293baより上側に延びる。このため、大径ギヤ42によってかき上げられ、第2のオイル誘導部266に当たるオイルOは、第2のオイル受け部293にスムーズに誘導される。 The first wall portion 293ba faces the second oil guiding portion 266 in the horizontal direction. Further, the upper end of the first wall 293 ba is located below the upper end of the second oil guiding portion 266. That is, the upper end of the second oil guiding portion 266 extends above the first wall portion 293ba. For this reason, the oil O which is scooped up by the large diameter gear 42 and hits the second oil guiding portion 266 is smoothly guided to the second oil receiving portion 293.
 第2の壁部293bbは、ピニオンギヤ41の周方向に沿って斜め上方に向かって延びる。すなわち、第2の壁部293bbは、上側に向かうに従いモータ軸J2に向かって傾斜する。これにより、第2の壁部293bbは、リングギヤ51および大径ギヤ42にかき上げられたオイルOを幅広い範囲で受けることができる。 The second wall portion 293bb extends obliquely upward along the circumferential direction of the pinion gear 41. That is, the second wall portion 293bb inclines toward the motor axis J2 as it goes upward. Thereby, the second wall portion 293bb can receive the oil O scraped up by the ring gear 51 and the large diameter gear 42 in a wide range.
 図2に示すように、ピニオンギヤ41(すなわちモータ2)は、第1の回転方向T1と、第2の回転方向T2と、に回転可能である。モータユニット201は、車両の前輪を駆動する場合と、車両の後輪を駆動する場合と、が考えられる。また、モータユニット201は、インバータ203の保護の観点から、インバータ203を車両の内側に向けて配置される。したがって、モータユニット201は、車両が前進する際に、ピニオンギヤ41が第1の回転方向T1に回転する場合と、ピニオンギヤ41が第2の回転方向T2に回転する場合と、が想定される。 As shown in FIG. 2, the pinion gear 41 (i.e., the motor 2) is rotatable in a first rotation direction T1 and a second rotation direction T2. The motor unit 201 can be considered to drive the front wheels of the vehicle and drive the rear wheels of the vehicle. Motor unit 201 is arranged with inverter 203 directed to the inside of the vehicle from the viewpoint of protection of inverter 203. Therefore, in the motor unit 201, when the vehicle moves forward, the case where the pinion gear 41 rotates in the first rotation direction T1 and the case where the pinion gear 41 rotates in the second rotation direction T2 are assumed.
 ピニオンギヤ41が第1の回転方向T1に回転する場合、リングギヤ51は、減速装置204と逆側の領域で上側に向かって回転する。リングギヤ51は、ギヤ室82の下側に溜ったオイルOを鉛直方向上側にかき上げる。 When the pinion gear 41 rotates in the first rotation direction T1, the ring gear 51 rotates upward in a region opposite to the reduction gear 204. The ring gear 51 scoops the oil O accumulated on the lower side of the gear chamber 82 upward in the vertical direction.
 リングギヤ51の回転によってオイル溜りPからかき上げられたオイルOは、ギヤ室82内の各ギヤ(ピニオンギヤ41、大径ギヤ42および小径ギヤ43)の上側から降り注ぎ各ギヤの歯面に供給される。これにより、各ギヤの動力の伝達効率を高めることができる。 The oil O scraped up from the oil reservoir P by the rotation of the ring gear 51 falls from the upper side of each gear (the pinion gear 41, the large diameter gear 42 and the small diameter gear 43) in the gear chamber 82 and is supplied to the tooth surface of each gear. . Thereby, the transmission efficiency of the power of each gear can be improved.
 また、リングギヤ51の回転によってかき上げられたオイルOは、減速装置204と反対側を回って第2のオイル受け部293の上側に降り注ぎ第2のオイル受け部293に溜る。すなわち、第2のオイル受け部293は、ピニオンギヤ41が第1の回転方向T1に回転した場合に、オイル溜りPからリングギヤ51の回転によってかき上げたオイルOを受ける。 Further, the oil O scraped up by the rotation of the ring gear 51 falls on the upper side of the second oil receiving portion 293 around the opposite side of the reduction gear 204 and is collected in the second oil receiving portion 293. That is, when the pinion gear 41 is rotated in the first rotation direction T1, the second oil receiver 293 receives the oil O scraped up by the rotation of the ring gear 51 from the oil reservoir P.
 ピニオンギヤ41が第2の回転方向T2に回転する場合、リングギヤ51は、減速装置204側の領域で上側に向かって回転する。リングギヤ51は、オイル溜りPに溜ったオイルOを鉛直方向上側にかき上げる。リングギヤ51の回転によってかき上げられたオイルOは、第1のオイル誘導部265に当たって滴下し大径ギヤ42の下側に位置する第1のオイル受け部269に溜る。 When the pinion gear 41 rotates in the second rotation direction T2, the ring gear 51 rotates upward in a region on the reduction gear 204 side. The ring gear 51 scrapes the oil O accumulated in the oil reservoir P upward in the vertical direction. The oil O scraped up by the rotation of the ring gear 51 drops on the first oil guiding portion 265 and drops in a first oil receiving portion 269 located below the large diameter gear 42.
 大径ギヤ42は、ピニオンギヤ41が第2の回転方向T2に回転する場合に差動装置5側の領域で上側に向かって回転する。大径ギヤ42は、第1のオイル受け部269に溜ったオイルOを鉛直方向上側にかき上げる。 The large diameter gear 42 rotates upward in the region on the differential device 5 side when the pinion gear 41 rotates in the second rotation direction T2. The large diameter gear 42 scrapes the oil O accumulated in the first oil receiving portion 269 upward in the vertical direction.
 大径ギヤ42の回転によってかき上げられたオイルOは、ギヤ室82内の各ギヤ(ピニオンギヤ41および小径ギヤ43)の上側から降り注ぎ各ギヤの歯面に供給される。これにより、各ギヤの動力の伝達効率を高めることができる。 The oil O scraped up by the rotation of the large diameter gear 42 descends from the upper side of each gear (the pinion gear 41 and the small diameter gear 43) in the gear chamber 82 and is supplied to the tooth surface of each gear. Thereby, the transmission efficiency of the power of each gear can be improved.
 また、大径ギヤ42の回転によってかき上げられたオイルOは、第2のオイル誘導部266に誘導されて第2のオイル受け部293の上側に降り注ぎ第2のオイル受け部293に溜る。すなわち、第2のオイル受け部293は、ピニオンギヤ41が第2の回転方向T2に回転した場合に、大径ギヤ42が第1のオイル受け部269からかき上げたオイルOを受ける。 Further, the oil O scraped up by the rotation of the large diameter gear 42 is guided to the second oil guiding portion 266, falls on the upper side of the second oil receiving portion 293, and is accumulated in the second oil receiving portion 293. That is, the second oil receiver 293 receives the oil O picked up by the large diameter gear 42 from the first oil receiver 269 when the pinion gear 41 rotates in the second rotation direction T2.
 本実施形態によれば、ピニオンギヤ41が何れの方向に回転する場合であっても、オイルOをギヤによってかき上げることができる。このため、車両が前進する場合であっても後進する場合であっても、各ギヤの歯面にオイルOを行き渡らせることができる。また、車両を前進させるためのピニオンギヤ41の回転方向が、第1の回転方向T1であっても第2の回転方向T2であっても、各ギヤの歯面にオイルOを行き渡らせることができる。このため、車両に対するモータユニット201の姿勢の自由度を高めることができる。すなわち、前輪駆動の車両であっても、後輪駆動の車両であっても、共通のモータユニット201を採用することができる。 According to the present embodiment, even when the pinion gear 41 rotates in any direction, the oil O can be scooped up by the gear. Therefore, the oil O can be spread over the tooth surfaces of the gears whether the vehicle is moving forward or backward. Further, the oil O can be spread over the tooth surface of each gear regardless of whether the rotation direction of the pinion gear 41 for advancing the vehicle is the first rotation direction T1 or the second rotation direction T2. . Therefore, the degree of freedom of the attitude of the motor unit 201 with respect to the vehicle can be enhanced. That is, even if it is a front wheel drive vehicle or a rear wheel drive vehicle, the common motor unit 201 can be adopted.
 また、本実施形態によれば、ピニオンギヤ41が何れの方向に回転する場合であっても、オイルOをギヤによってかき上げて、第2のオイル受け部293にオイルOを溜めることができる。第2のオイル受け部293に溜められたオイルOは、モータ2に供給されモータ2を冷却する。すなわち、モータ2の回転方向に関わらず、モータ2を効率的に冷却することができる。 Further, according to the present embodiment, even when the pinion gear 41 rotates in any direction, the oil O can be accumulated in the second oil receiving portion 293 by scraping the oil O with the gear. The oil O accumulated in the second oil receiver 293 is supplied to the motor 2 to cool the motor 2. That is, regardless of the rotation direction of the motor 2, the motor 2 can be cooled efficiently.
 モータ軸J2、中間軸J4および差動軸J5は、水平方向に沿って互いに平行に延びる。モータ軸J2に対し中間軸J4および差動軸J5は、下側に位置する。したがって、減速装置204および差動装置5は、モータ2より下側に位置する。 The motor axis J2, the intermediate axis J4 and the differential axis J5 extend parallel to one another along the horizontal direction. The intermediate shaft J4 and the differential shaft J5 are located below the motor shaft J2. Therefore, the reduction gear 204 and the differential 5 are located below the motor 2.
 図4に示すように、モータ軸J2の軸方向から見て、モータ軸J2と中間軸J4とを仮想的に結ぶ線分を第1の線分L1とし、中間軸J4と差動軸J5とを仮想的に結ぶ線分を第2の線分L2とし、モータ軸J2と差動軸J5とを仮想的に結ぶ線分を第3の線分L3とする。 As shown in FIG. 4, when viewed in the axial direction of the motor axis J2, a line segment virtually connecting the motor axis J2 and the intermediate axis J4 is defined as a first line segment L1, and the intermediate axis J4 and the differential axis J5 Is a second line segment L2, and a line segment virtually connecting the motor axis J2 and the differential axis J5 is a third line segment L3.
 第2の線分L2は、略水平方向に対して±30°以内の範囲の方向に延びる。本実施形態によれば、減速装置204と差動装置5とを水平方向に沿って並べることができ、モータユニット201の上下方向の寸法を小さくすることができる。また、本実施形態によれば、差動装置5によりかき上げられたオイルOを、効率的に減速装置204に当てることができる。これにより、減速装置204を構成するギヤの歯面にオイルOを供給して、ギヤの伝達効率を高めることができる。 The second line segment L2 extends in the range of ± 30 ° or less with respect to the substantially horizontal direction. According to the present embodiment, the reduction gear 204 and the differential device 5 can be arranged in the horizontal direction, and the size of the motor unit 201 in the vertical direction can be reduced. Further, according to the present embodiment, the oil O scraped up by the differential device 5 can be efficiently applied to the reduction gear 204. Thereby, oil O can be supplied to the tooth surface of the gear which comprises the reduction gear 204, and the transmission efficiency of a gear can be raised.
 第1の線分L1は、鉛直方向に対して±30°以内の範囲の方向に延びる。本実施形態によれば、モータ2と減速装置204とを鉛直方向に沿って並べることができ、モータユニット201の水平方向の寸法を小さくすることができる。また、本実施形態によれば、差動軸J5に対しモータ軸J2を近づけて配置することができ、モータ軸J2を中心として回転するピニオンギヤ41に、差動装置5でかき上げたオイルOを供給できる。これにより、ピニオンギヤ41と大径ギヤ42との伝達効率を高めることができる。 The first line segment L1 extends in a direction within ± 30 ° with respect to the vertical direction. According to this embodiment, the motor 2 and the reduction gear 204 can be arranged along the vertical direction, and the dimension of the motor unit 201 in the horizontal direction can be reduced. Further, according to the present embodiment, the motor shaft J2 can be disposed close to the differential shaft J5, and the oil O picked up by the differential device 5 is held in the pinion gear 41 rotating about the motor shaft J2. It can be supplied. Thereby, the transmission efficiency between the pinion gear 41 and the large diameter gear 42 can be enhanced.
 本実施形態において、第1の線分の長さL1と、第2の線分の長さL2と、第3の線分の長さL3は、以下の関係を満たす。
 L1:L2:L3=1:1.4~1.7:1.8~2.0
 また、モータ2から差動装置5に至る減速機構における減速比が8以上11以下である。
 本実施形態によれば、上述したようなモータ軸J2、中間軸J4および差動軸J5の位置関係を維持しながら、所望のギヤ比(8以上11以下)を実現できる。
In the present embodiment, the length L1 of the first line segment, the length L2 of the second line segment, and the length L3 of the third line segment satisfy the following relationship.
L1: L2: L3 = 1: 1.4 to 1.7: 1.8 to 2.0
Further, the reduction ratio in the reduction mechanism from the motor 2 to the differential 5 is 8 or more and 11 or less.
According to this embodiment, a desired gear ratio (8 or more and 11 or less) can be realized while maintaining the positional relationship between the motor shaft J2, the intermediate shaft J4, and the differential shaft J5 as described above.
 以上に、本発明の実施形態および変形例を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments and modifications of the present invention have been described above, the respective configurations and combinations thereof in the embodiments are merely examples, and additions, omissions, replacements, and configurations of the configurations are possible within the scope of the present invention. Other modifications are possible. Further, the present invention is not limited by the embodiments.
1,201…モータユニット、2…モータ、4,204…減速装置、5…差動装置、6,206…ハウジング、21,121…シャフト、41…ピニオンギヤ、42…大径ギヤ(中間ギヤ)、43…小径ギヤ(中間ギヤ)、51…リングギヤ、69,269…第1のオイル受け部、80…収容空間、81…モータ室、82…ギヤ室、93,193,293…第2のオイル受け部、94…オイル導入路、121a…貫通孔、206A…第1部材、206Aa…第1の対向面(対向面)、206B…第2部材、206Ba…第2の対向面(対向面)、265…第1のオイル誘導部、266…第2のオイル誘導部、293a…底部、293b…側壁部、293ba…第1の壁部、293bb…第2の壁部、296a…第1のリブ(リブ)、296b…第2のリブ(リブ)、J2…モータ軸、J4…中間軸、J5…差動軸、L1…第1の線分、L2…第2の線分、L3…第3の線分、O…オイル、P…オイル溜り 1, 201: motor unit, 2: motor, 4, 204: reduction gear, 5: differential device, 6, 206: housing, 21, 121: shaft, 41: pinion gear, 42: large diameter gear (intermediate gear), 43 small diameter gear (intermediate gear) 51 ring gear 69, 269 first oil receiving portion 80 housing space 81 motor chamber 82 gear chamber 93, 193, 293 second oil receiver Part: 94 Oil introduction path 121a Through hole 206A first member 206Aa first opposing surface (opposite surface) 206B second member 206Ba second opposing surface (opposite surface) 265 ... 1st oil induction part, 266 ... 2nd oil induction part, 293a ... bottom part, 293b ... side wall part, 293ba ... 1st wall part, 293bb ... 2nd wall part, 296a ... 1st rib (rib) ), 296b Second rib (rib), J2 ... Motor axis, J4 ... Intermediate axis, J5 ... Differential axis, L1 ... First segment, L2 ... Second segment, L3 ... Third segment, O ... Oil, P: Oil reservoir

Claims (11)

  1.  モータ軸を中心として回転するシャフトを有するモータと、
     前記シャフトに接続され中間軸を中心として回転する中間ギヤを有する減速装置と、
     前記減速装置に接続され差動軸を中心として回転するリングギヤを有する差動装置と、
     前記減速装置および前記差動装置を収容するギヤ室が設けられたハウジングと、
     前記ギヤ室内の下部領域に溜るオイルと、を備え、
     前記モータ軸、前記中間軸および前記差動軸は、水平方向に互いに平行に延び、
     前記モータ軸に対し前記中間軸および前記差動軸は、下側に位置し、
     前記リングギヤの少なくとも一部は、前記ギヤ室内の下部領域に溜る前記オイルに浸かり、
     前記ハウジングは、前記中間ギヤの下側に位置し前記中間ギヤの歯先円に沿って延びる第1のオイル受け部を有し、
     前記第1のオイル受け部には、前記ギヤ室内の下部領域から前記リングギヤの回転によってかき上げられた前記オイルが溜り、
     前記第1のオイル受け部に溜った前記オイルは、前記中間ギヤによってかき上げられる、
    モータユニット。
    A motor having a shaft that rotates about a motor axis;
    A reduction gear having an intermediate gear connected to the shaft and rotating about an intermediate shaft;
    A differential gear having a ring gear connected to the reduction gear and rotating about a differential shaft;
    A housing provided with a gear chamber for accommodating the reduction gear and the differential device;
    And oil accumulated in a lower region of the gear chamber,
    The motor shaft, the intermediate shaft and the differential shaft extend horizontally in parallel with one another,
    The intermediate shaft and the differential shaft are located below the motor shaft,
    At least a portion of the ring gear is immersed in the oil collected in the lower region of the gear chamber,
    The housing has a first oil receiver located below the intermediate gear and extending along a tip circle of the intermediate gear.
    In the first oil receiving portion, the oil scraped up by the rotation of the ring gear from the lower region of the gear chamber is accumulated,
    The oil accumulated in the first oil receiving portion is scooped up by the intermediate gear.
    Motor unit.
  2.  前記ハウジングは、軸方向に沿って並び前記ギヤ室を囲む第1部材と第2部材とを有し、
     前記第1部材および前記第2部材は、軸方向において互いに対向する対向面と、前記対向面から軸方向に沿って突出するリブと、をそれぞれ有し、
     前記第1部材の前記リブと前記第2部材の前記リブとは、互いに突き合わされて前記第1のオイル受け部を構成する、
    請求項1に記載のモータユニット。
    The housing has a first member and a second member arranged along the axial direction and surrounding the gear chamber,
    The first member and the second member each have an opposing surface opposed to each other in the axial direction, and a rib projecting along the axial direction from the opposing surface,
    The rib of the first member and the rib of the second member are abutted against each other to constitute the first oil receiver.
    The motor unit according to claim 1.
  3.  前記第1のオイル受け部は、軸方向において前記リングギヤと重なる、
    請求項1又は2に記載のモータユニット。
    The first oil receiver overlaps with the ring gear in the axial direction.
    A motor unit according to claim 1 or 2.
  4.  前記ハウジングは、前記第1のオイル受け部の直上に位置し、上下方向に沿って延びる第1のオイル誘導部を有し、
     前記第1のオイル誘導部は、軸方向において前記リングギヤと重なる、
    請求項1~3の何れか一項に記載のモータユニット。
    The housing has a first oil guiding portion located immediately above the first oil receiving portion and extending in the vertical direction.
    The first oil guiding portion overlaps the ring gear in the axial direction.
    The motor unit according to any one of claims 1 to 3.
  5.  前記シャフトが中空シャフトであり、
     前記ハウジングは、
      鉛直方向において前記中間軸および前記差動軸より上側に位置し水平方向において前記中間軸および前記差動軸の間に位置する第2のオイル受け部と、
      前記第2のオイル受け部と前記シャフトの内部とを繋ぐオイル導入路と、を有し、
     前記第2のオイル受け部には、前記ギヤ室内の下部領域から前記リングギヤの回転によってかき上げられた前記オイルおよび前記第1のオイル受け部から前記中間ギヤの回転によってかき上げられた前記オイルの少なくとも一方が溜る、
    請求項1~4の何れか一項に記載のモータユニット。
    The shaft is a hollow shaft,
    The housing is
    A second oil receiver located above the intermediate shaft and the differential shaft in the vertical direction and located between the intermediate shaft and the differential shaft in the horizontal direction;
    An oil introduction passage connecting the second oil receiving portion and the inside of the shaft;
    In the second oil receiving portion, the oil scraped up by the rotation of the ring gear from the lower region of the gear chamber and the oil scraped out by the rotation of the intermediate gear from the first oil receiving portion At least one will accumulate,
    The motor unit according to any one of claims 1 to 4.
  6.  前記シャフトが中空シャフトであり、
     前記ハウジングは、
      前記中間軸および前記差動軸より上側において水平方向において前記中間軸および前記差動軸の間に位置する第2のオイル受け部を有し、
     前記第2のオイル受け部は、少なくとも一部が前記シャフトの外周の一部を囲み、
     前記シャフトには、前記第2のオイル受け部に溜った前記オイルを前記シャフトの内部に導入する貫通孔が設けられ、
     前記第2のオイル受け部には、前記ギヤ室内の下部領域から前記リングギヤの回転によってかき上げられた前記オイルおよび前記第1のオイル受け部から前記中間ギヤの回転によってかき上げられた前記オイルの少なくとも一方が溜る、
    請求項1~4の何れか一項に記載のモータユニット。
    The shaft is a hollow shaft,
    The housing is
    And a second oil receiver located between the intermediate shaft and the differential shaft in the horizontal direction above the intermediate shaft and the differential shaft,
    The second oil receiver at least partially surrounds a portion of the outer periphery of the shaft,
    The shaft is provided with a through hole through which the oil accumulated in the second oil receiving portion is introduced into the shaft.
    In the second oil receiving portion, the oil scraped up by the rotation of the ring gear from the lower region of the gear chamber and the oil scraped out by the rotation of the intermediate gear from the first oil receiving portion At least one will accumulate,
    The motor unit according to any one of claims 1 to 4.
  7.  前記ハウジングは、前記中間ギヤに対して水平方向において前記差動軸側に位置し前記中間ギヤの歯先円に沿って上下方向に延びる第2のオイル誘導部を有し、
     前記第2のオイル受け部は、底部と前記底部から上側に延びる側壁部とを有し、
     前記側壁部は、水平方向において前記第2のオイル誘導部と対向する第1の壁部を含み、
     前記第2のオイル誘導部の上端は、前記第1の壁部より上側に延びる、
    請求項5又は6に記載のモータユニット。
    The housing has a second oil guiding portion which is located on the differential shaft side in the horizontal direction with respect to the intermediate gear and extends in the vertical direction along a tip circle of the intermediate gear.
    The second oil receiver has a bottom and a side wall extending upward from the bottom.
    The side wall portion includes a first wall portion facing the second oil guiding portion in the horizontal direction,
    The upper end of the second oil guiding portion extends upward from the first wall portion,
    A motor unit according to claim 5 or 6.
  8.  前記第2のオイル受け部と前記シャフトとが水平方向に並ぶ、
    請求項5~7の何れか一項に記載のモータユニット。
    The second oil receiving portion and the shaft are horizontally aligned;
    A motor unit according to any one of claims 5 to 7.
  9.  前記第1のオイル受け部は、前記モータ軸の軸方向から見て、前記中間ギヤの下側において、前記中間軸を中心とする120°以上140°以下の範囲に設けられる、
    請求項1~8の何れか一項に記載のモータユニット。
    The first oil receiving portion is provided in a range of 120 ° or more and 140 ° or less centering on the intermediate shaft on the lower side of the intermediate gear when viewed from the axial direction of the motor shaft.
    A motor unit according to any one of claims 1 to 8.
  10.  前記中間ギヤは、軸方向に沿って並ぶ大径ギヤと小径ギヤと、を有し、
     前記大径ギヤは、前記シャフトに固定されたピニオンギヤと噛み合い、
     前記小径ギヤは、前記リングギヤと噛み合い、
     前記第1のオイル受け部は、前記大径ギヤの歯先円に沿って延びる、
    請求項1~9の何れか一項に記載のモータユニット。
    The intermediate gear has a large diameter gear and a small diameter gear aligned along an axial direction,
    The large diameter gear meshes with a pinion gear fixed to the shaft,
    The small diameter gear meshes with the ring gear,
    The first oil receiving portion extends along a tip circle of the large diameter gear.
    The motor unit according to any one of claims 1 to 9.
  11.  前記モータ軸の軸方向から見て、
      前記モータ軸と前記中間軸とを仮想的に結ぶ線分を第1の線分とし、
      前記中間軸と前記差動軸とを仮想的に結ぶ線分を第2の線分とし、
      前記モータ軸と前記差動軸とを仮想的に結ぶ線分を第3の線分としたとき、
      前記第1の線分は、略鉛直方向に沿って延び、
      前記第2の線分は、略水平方向に沿って延びる、
    請求項1~10の何れか一項に記載のモータユニット。
    Seen from the axial direction of the motor shaft,
    A line segment virtually connecting the motor shaft and the intermediate shaft is a first line segment,
    A line segment virtually connecting the intermediate axis and the differential axis is a second line segment,
    When a line segment virtually connecting the motor shaft and the differential axis is a third line segment:
    The first line segment extends substantially in the vertical direction,
    The second line segment extends substantially horizontally.
    The motor unit according to any one of claims 1 to 10.
PCT/JP2018/041917 2017-11-14 2018-11-13 Motor unit WO2019098166A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311000204.0A CN117028539A (en) 2017-11-14 2018-11-13 Motor unit
CN201880070916.0A CN111295535B (en) 2017-11-14 2018-11-13 motor unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-219281 2017-11-14
JP2017219281 2017-11-14
JP2018-107708 2018-06-05
JP2018107708 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019098166A1 true WO2019098166A1 (en) 2019-05-23

Family

ID=66540211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041917 WO2019098166A1 (en) 2017-11-14 2018-11-13 Motor unit

Country Status (2)

Country Link
CN (2) CN117028539A (en)
WO (1) WO2019098166A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205685A (en) * 2019-06-15 2020-12-24 ジヤトコ株式会社 Power transmission device
WO2021100257A1 (en) * 2019-11-20 2021-05-27 三菱電機株式会社 Rotating electric machine
US20220305892A1 (en) * 2021-03-25 2022-09-29 Nidec Corporation Drive device and vehicle
JP2022547280A (en) * 2019-09-03 2022-11-11 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Oil-water double cooling electric drive assembly and new energy vehicle
WO2023054351A1 (en) * 2021-09-28 2023-04-06 株式会社アイシン Drive device for vehicle
WO2023188618A1 (en) * 2022-03-31 2023-10-05 ニデック株式会社 Drive device
WO2024024777A1 (en) * 2022-07-29 2024-02-01 株式会社アイシン Vehicular driving device
US11906034B2 (en) 2021-09-15 2024-02-20 Nidec Corporation Drive apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022057929A (en) * 2020-09-30 2022-04-11 日本電産株式会社 Power transmission device and motor unit
DE102022202447A1 (en) 2022-03-11 2023-09-14 Zf Friedrichshafen Ag Transmission device for a motor vehicle and vehicle with the transmission device
DE102022202448A1 (en) 2022-03-11 2023-09-14 Zf Friedrichshafen Ag Transmission device for a motor vehicle and vehicle with the transmission device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130190A (en) * 2001-10-26 2003-05-08 Honda Motor Co Ltd Lubricating structure of power transmission device
JP2017056841A (en) * 2015-09-16 2017-03-23 トヨタ自動車株式会社 Power transmission device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097894B2 (en) * 2006-09-05 2012-12-12 株式会社 神崎高級工機製作所 Work vehicle
JP6265096B2 (en) * 2014-09-29 2018-01-24 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
JP6076314B2 (en) * 2014-10-30 2017-02-08 アイシン精機株式会社 Reducer lubrication structure
US10309524B2 (en) * 2016-02-03 2019-06-04 Toyota Jidosha Kabushiki Kaisha Lubricating device of power transmission device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130190A (en) * 2001-10-26 2003-05-08 Honda Motor Co Ltd Lubricating structure of power transmission device
JP2017056841A (en) * 2015-09-16 2017-03-23 トヨタ自動車株式会社 Power transmission device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205685A (en) * 2019-06-15 2020-12-24 ジヤトコ株式会社 Power transmission device
JP7210115B2 (en) 2019-06-15 2023-01-23 ジヤトコ株式会社 power transmission device
JP2022547280A (en) * 2019-09-03 2022-11-11 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Oil-water double cooling electric drive assembly and new energy vehicle
JP7366245B2 (en) 2019-09-03 2023-10-20 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Oil-water dual cooling electric drive assembly and new energy vehicle
WO2021100257A1 (en) * 2019-11-20 2021-05-27 三菱電機株式会社 Rotating electric machine
JP6923101B1 (en) * 2019-11-20 2021-08-18 三菱電機株式会社 Rotating machine
US20220305892A1 (en) * 2021-03-25 2022-09-29 Nidec Corporation Drive device and vehicle
US11906034B2 (en) 2021-09-15 2024-02-20 Nidec Corporation Drive apparatus
WO2023054351A1 (en) * 2021-09-28 2023-04-06 株式会社アイシン Drive device for vehicle
JP7501485B2 (en) 2021-09-28 2024-06-18 株式会社アイシン Vehicle drive device
WO2023188618A1 (en) * 2022-03-31 2023-10-05 ニデック株式会社 Drive device
WO2024024777A1 (en) * 2022-07-29 2024-02-01 株式会社アイシン Vehicular driving device

Also Published As

Publication number Publication date
CN111295535B (en) 2023-08-29
CN117028539A (en) 2023-11-10
CN111295535A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2019098166A1 (en) Motor unit
WO2020179216A1 (en) Motor unit
WO2019131417A1 (en) Motor unit
WO2019131424A1 (en) Motor unit
WO2019131419A1 (en) Motor unit
WO2019131454A1 (en) Motor unit
JP7281639B2 (en) motor unit
CN113472137B (en) Driving device
US11598410B2 (en) Drive device
US11496023B2 (en) Drive apparatus
JP7351167B2 (en) drive device
JP7331501B2 (en) drive
US20230136544A1 (en) Drive apparatus
US20230067898A1 (en) Drive apparatus
JP7400291B2 (en) motor unit
CN113206578A (en) Drive device
JP7415617B2 (en) drive device
JP2022127301A (en) motor
WO2023188618A1 (en) Drive device
US20230137429A1 (en) Drive apparatus
JP7415616B2 (en) drive device
US20230139181A1 (en) Drive apparatus
JP2022170495A (en) motor
JP2023007675A (en) Drive unit
JP2023030839A (en) Driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP