WO2019098102A1 - Production method for semiconductor device - Google Patents

Production method for semiconductor device Download PDF

Info

Publication number
WO2019098102A1
WO2019098102A1 PCT/JP2018/041297 JP2018041297W WO2019098102A1 WO 2019098102 A1 WO2019098102 A1 WO 2019098102A1 JP 2018041297 W JP2018041297 W JP 2018041297W WO 2019098102 A1 WO2019098102 A1 WO 2019098102A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive sheet
adhesive layer
resin
Prior art date
Application number
PCT/JP2018/041297
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 直也
高志 阿久津
忠知 山田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020207006573A priority Critical patent/KR102515684B1/en
Priority to JP2019554182A priority patent/JP7185638B2/en
Priority to CN201880070728.8A priority patent/CN111295738A/en
Publication of WO2019098102A1 publication Critical patent/WO2019098102A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device.
  • CSP Chip Scale Package
  • WLP and PLP are classified into fan-in type and fan-out type.
  • the semiconductor chip is covered with a sealing material so as to be a region larger than the chip size and the semiconductor chip
  • the rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface area of the sealing material.
  • a plurality of semiconductor chips separated from a semiconductor wafer are left surrounding the circuit forming surface, and an expansion wafer is formed using a mold member to form an expanded wafer, and the semiconductor chip is formed outside the semiconductor chip.
  • a method of manufacturing a semiconductor package formed by extending a rewiring pattern is described.
  • a semiconductor wafer is subjected to a dicing step in which it is singulated in a state of being attached to a wafer mount tape for dicing (hereinafter, also referred to as "dicing tape").
  • the plurality of semiconductor chips obtained in the dicing step are transferred to a wafer mount tape for expansion (hereinafter also referred to as "expand tape”), and the expanded tape is expanded to expand the distance between the plurality of semiconductor chips.
  • An expanding process is performed.
  • the dicing tape is used when singulating a workpiece represented by a semiconductor wafer in the manufacturing process of a semiconductor device, and during dicing to prevent peeling of the workpiece, positional deviation, etc. While adhesive force is required, after dicing, separability that allows easy separation of singulated chips is required.
  • Patent Document 2 discloses a dicing tape having an improved separability after dicing, using a material that has a base material and an adhesive layer and is cured by irradiation with ultraviolet light to reduce the adhesive force as a material of the adhesive layer. A tape is disclosed.
  • the semiconductor chip obtained by dicing may be moved onto the expand tape.
  • a method of directly transferring a semiconductor chip from a dicing tape to an expanding tape and a method of transferring a semiconductor chip from a dicing tape to another adhesive sheet and transferring the other adhesive sheet to the expanding tape are conceivable.
  • the dicing tape described in Patent Document 2 if a certain degree of adhesive force remains even after irradiation with ultraviolet light, a certain external force is required to separate the dicing tape and the semiconductor chip. It requires complicated equipment for separation.
  • since a load is generated on the semiconductor chip at the time of separation there is a problem that positional deviation and chipping of the semiconductor chip are easily generated.
  • the present invention has been made in view of the above problems, and a plurality of chips obtained by dicing a workpiece can be easily transferred to another adhesive sheet, and the transfer is performed. It is an object of the present invention to provide a method of manufacturing a semiconductor device capable of effectively suppressing the occurrence of chipping in the process.
  • the present inventors are a method of manufacturing a semiconductor device using an expandable pressure-sensitive adhesive sheet, which has a base material and a pressure-sensitive adhesive layer, and which includes expandable particles in any of the layers, and the specific process (1) It discovered that the said subject could be solved by the manufacturing method which has (3). That is, the present invention relates to the following [1] to [11].
  • a method of manufacturing a semiconductor device using an expandable pressure-sensitive adhesive sheet (A), comprising a substrate (Y1) and a pressure-sensitive adhesive layer (X1), wherein any layer contains expandable particles A method of manufacturing a semiconductor device, comprising the following steps (1) to (3) in this order: Step (1): A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1) To get Step (2): using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
  • Step (3) a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
  • Step (4A) Stretching the adhesive sheet (B) to widen the gap between the plurality of chips attached to the adhesive sheet (B).
  • steps (4B-1) to (4B-3) are further performed using the expandable pressure-sensitive adhesive sheet (C) having the substrate (Y3) and the pressure-sensitive adhesive layer (X3), ] The manufacturing method of the semiconductor device as described in these.
  • Step (4B-1) The pressure-sensitive adhesive layer (X3) of the pressure-sensitive adhesive sheet (C) is attached to the surface of the plurality of chips on the pressure-sensitive adhesive sheet (B) opposite to the surface in contact with the pressure-sensitive adhesive layer (X2).
  • Step (4B-2) a step of separating the pressure-sensitive adhesive sheet (B) from the plurality of chips attached to the pressure-sensitive adhesive sheet (C).
  • Step (4B-3) Stretching the adhesive sheet (C) to widen the gap between the plurality of chips attached to the adhesive sheet (C).
  • the expandable particle is a thermally expandable particle having an expansion start temperature (t) of 60 to 270 ° C., and the step (3) heats the pressure-sensitive adhesive sheet (A) to obtain an adhesive sheet (
  • the present invention it is possible to easily transfer a plurality of chips obtained by dicing a workpiece to another adhesive sheet, and to effectively suppress the occurrence of chipping during transfer. It is possible to provide a method of manufacturing a semiconductor device that can
  • the "active ingredient” refers to the ingredient contained in the composition of interest excluding the diluent solvent.
  • mass mean molecular weight (Mw) is a value of standard polystyrene conversion measured by gel permeation chromatography (GPC) method, and is specifically a value measured based on the method as described in an Example.
  • (meth) acrylic acid indicates both “acrylic acid” and “methacrylic acid”, and the other similar terms are also the same.
  • the lower limit and upper limit which were described in steps can be combined independently, respectively about a preferable numerical range (for example, ranges, such as content etc.). For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferred lower limit (10)” and “more preferred upper limit (60)” are combined to obtain “10 to 60”. It can also be done.
  • transfer of chip means that the exposed side of the chip attached on one adhesive sheet is attached to the other adhesive sheet, and then the one adhesive sheet is separated from the chip. And the operation of moving the chip from one adhesive sheet to the other adhesive sheet.
  • the semiconductor device manufacturing method is a semiconductor using an expandable pressure-sensitive adhesive sheet (A) which has a base material (Y1) and an adhesive layer (X1) and which includes expandable particles in any of the layers.
  • a method of manufacturing an apparatus comprising the following steps (1) to (3) in this order: Step (1): A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1)
  • Step (2) using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
  • Step (3) a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
  • workpieces used in the present embodiment include manufacturing processes of semiconductor wafers, light emitting diodes (LEDs), micro electro mechanical systems (MEMS), ceramic devices, semiconductor packages, semiconductor devices having a plurality of devices, and the like. And those to be diced.
  • a "chip” means what was divided into pieces of the said to-be-processed object.
  • the pressure-sensitive adhesive sheet (A) used in the manufacturing method of the present embodiment will be described first, and then each manufacturing process including the steps (1) to (3) will be described.
  • the pressure-sensitive adhesive sheet (A) is an expandable pressure-sensitive adhesive sheet which has a substrate (Y1) and a pressure-sensitive adhesive layer (X1), and which includes expandable particles in any layer.
  • the pressure-sensitive adhesive sheet (A) since the workpiece can be firmly fixed by the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1) before expanding the expandable particles, in the dicing step of the workpiece Dicing can be performed with good workability by suppressing displacement of the workpiece.
  • the expandable particles are expanded to form asperities on the adhesive surface of the adhesive layer (X1).
  • the contact area between the adhesive surface of the pressure-sensitive adhesive layer (X1) and the chip can be reduced, and the adhesion can be made smaller than that of a conventional ultraviolet-curable dicing tape.
  • a plurality of chips obtained by dicing can be easily transferred at once to another adhesive sheet without the need for complicated manufacturing equipment, and the positional deviation of the chips and chip defects at that time. Occurrence can also be suppressed.
  • the pressure-sensitive adhesive sheet (A) and the chips are separated, it is not necessarily all the chips obtained by dicing by partially heating the pressure-sensitive adhesive sheet (A), but one of the obtained chips It is also possible to selectively separate parts of the chip. Specifically, a plurality of chips obtained by dicing may be divided into a plurality of units, and the units may be transferred to another adhesive sheet.
  • Fig.1 (a) and (b) are the cross-sectional schematic diagrams of the adhesive sheet 1a which is one aspect
  • the substrate (Y1) is preferably an expandable substrate (Y1-1) containing expandable particles.
  • the pressure-sensitive adhesive sheet 1a shown in FIG. 1 (a) has a pressure-sensitive adhesive layer (X1) on one surface of a substrate (Y1-1).
  • the pressure-sensitive adhesive sheet 1a is to be separated after attaching a workpiece on the pressure-sensitive adhesive layer (X1) and dicing the workpiece to obtain a plurality of chips.
  • the expandable particles in the base material (Y1-1) are expanded to generate unevenness on the surface of the pressure-sensitive adhesive layer (X1) in contact with the chip. The separation at the interface between the layer (X1) and the chip can be facilitated.
  • the pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b) has a pressure-sensitive adhesive layer (X1) on one side of a base (Y1-1) and a non-intumescent base (Y1 ') on the other side.
  • the adhesive sheet 1b is used similarly to the adhesive sheet 1a, when the expandable particle in a base material (Y1-1) is expanded, non-expandable base material (Y1 ') exists.
  • the generation of irregularities on the surface of the non-expandable substrate (Y1 ') of the substrate (Y1-1) can be suppressed, whereby the irregularities on the surface of the pressure-sensitive adhesive layer (X1) can be made more efficient. Can be formed.
  • the configuration of the pressure-sensitive adhesive sheet (A) is not limited to the configuration shown in FIGS. 1 (a) and 1 (b).
  • the substrate (Y1) ((Y1-1 in FIG. 1) and the pressure-sensitive adhesive Another layer may be provided between the layer (X1) and the layer (X1).
  • the structure which has another adhesive layer in the surface on the opposite side to the adhesive layer (X1) of a base material (Y1) may be sufficient.
  • the pressure-sensitive adhesive sheet (A) may have a release material on the pressure-sensitive adhesive layer (X1). The release material is appropriately peeled and removed when the pressure-sensitive adhesive sheet (A) is used in the manufacturing method according to the present embodiment.
  • the shape of the pressure-sensitive adhesive sheet (A) can be any shape such as a sheet, a tape, and a label.
  • the pressure-sensitive adhesive sheet (A) contains expansive particles in any of the base material (Y1) and the pressure-sensitive adhesive layer (X1). Expandable particles are not particularly limited as long as they can form asperities on the adhesive surface of the pressure-sensitive adhesive layer (X1) by expansion by themselves due to an external stimulus and reduce the adhesive force to the adherend. I will not. Examples of expandable particles include, for example, thermally expandable particles expanded by heating, energy ray expandable particles expanded by irradiation of energy rays, etc., but from the viewpoint of versatility and handleability, thermally expandable particles. Is preferred.
  • the expansion start temperature (t) of the thermally expandable particles is preferably 60 to 270 ° C., more preferably 70 to 260 ° C., and still more preferably 80 to 250 ° C.
  • the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method. [Method of measuring expansion start temperature (t) of thermally expandable particles] 0.5 mg of thermally expandable particles to be measured is added to an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, and an aluminum lid (diameter 5.6 mm, thickness 0. Prepare a sample with 1 mm).
  • a dynamic viscoelasticity measuring apparatus measure the height of the sample while applying a force of 0.01 N to the sample from the top of the aluminum lid with a press. And. Heating is performed from 20 ° C to 300 ° C at a temperature increase rate of 10 ° C / min while a force of 0.01 N is applied by a pressure element, and the amount of displacement of the pressure element in the vertical direction is measured. Let the temperature be the expansion start temperature (t).
  • the thermally expandable particle is a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an inclusion component which is contained in the outer shell and is vaporized when heated to a predetermined temperature.
  • a thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone and the like.
  • Examples of the encapsulated components contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane,
  • the maximum volumetric expansion coefficient of the thermally expandable particles when heated to a temperature above the thermal expansion start temperature (t) is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably 2.5 to It is 60 times, more preferably 3 to 40 times.
  • the average particle size of the expandable particles at 23 ° C. before expansion is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, still more preferably 10 to 50 ⁇ m.
  • the average particle size of the expandable particles before expansion is the volume median particle size (D 50 ), and a laser diffraction type particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern, Inc.)
  • D 50 volume median particle size
  • a laser diffraction type particle size distribution measuring apparatus for example, product name “Mastersizer 3000” manufactured by Malvern, Inc.
  • the particle distribution of the expandable particles before expansion which is measured using, it means the particle diameter corresponding to 50% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
  • the 90% particle size (D 90 ) of the expandable particles at 23 ° C. before expansion is preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, still more preferably 25 to 90 ⁇ m, still more preferably 30 to 80 ⁇ m. .
  • the 90% particle size (D 90 ) of the expandable particles before expansion was measured using a laser diffraction type particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern, Inc.) before expansion.
  • the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion means a particle diameter corresponding to 90%.
  • the content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 10 with respect to the total amount (100% by mass) of the active ingredients of the layer containing the expandable particles. It is up to 30% by mass, more preferably 15 to 25% by mass.
  • the substrate (Y1) of the pressure-sensitive adhesive sheet (A) is a non-adhesive substrate.
  • the judgment as to whether or not the substrate is a non-adhesive substrate is made as long as the probe tack value measured in accordance with JIS Z 0237: 1991 is less than 50 mN / 5 mm ⁇ with respect to the surface of the target substrate.
  • the substrate is considered as a "non-tacky substrate".
  • the probe tack value on the surface of the substrate (Y1) used in this embodiment is usually less than 50 mN / 5 mm ⁇ , preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ , still more preferably 5 mN It is less than 5 mm ⁇ .
  • the specific measuring method of the probe tack value in the surface of a base material (Y1) is based on the method as described in an Example.
  • the thickness of the substrate (Y1) is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m, still more preferably 25 to 400 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • the thickness of a base material means the value measured by the method as described in an Example.
  • the substrate (Y1) can be formed from the resin composition (y1).
  • each component contained in the resin composition (y1) which is a forming material of a base material (Y1) is demonstrated.
  • the resin contained in the resin composition (y1) is not particularly limited as long as the substrate (Y1) is a non-tacky resin, and it may be a non-tacky resin or even a tacky resin. Good. That is, even if the resin contained in the resin composition (y1) is a tacky resin, in the process of forming the substrate (Y1) from the resin composition (y1), the tacky resin is polymerized with the polymerizable compound The resin obtained may be a non-adhesive resin, and the substrate (Y1) containing the resin may be non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y1) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000.
  • the form of the copolymer is not particularly limited, and it may be any of a block copolymer, a random copolymer, and a graft copolymer. It is also good.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% with respect to the total amount (100% by mass) of the active ingredient of the resin composition (y1). % By mass, still more preferably 70 to 85% by mass.
  • the said resin contained in a resin composition (y1) contains 1 or more types chosen from acrylic urethane type resin and an olefin resin.
  • acrylic urethane resin an acrylic urethane resin (U1) formed by polymerizing a urethane prepolymer (UP) and a vinyl compound containing (meth) acrylic acid ester is preferable.
  • resin composition (y1) contains an expandable particle, these resin is suitable from the expansible viewpoint.
  • urethane prepolymer (UP) used as the principal chain of acrylic urethane type resin (U1), the reaction product of a polyol and polyhydric isocyanate is mentioned.
  • urethane prepolymer (UP) is further what was obtained by giving chain extension reaction using a chain extender.
  • an alkylene type polyol As a polyol used as a raw material of urethane prepolymer (UP), an alkylene type polyol, an ether type polyol, an ester type polyol, an ester amide type polyol, an ester ether type polyol, a carbonate type polyol etc. are mentioned, for example. These polyols may be used alone or in combination of two or more.
  • the polyol used in the present embodiment is preferably a diol, more preferably an ester type diol, an alkylene type diol and a carbonate type diol, and still more preferably an ester type diol and a carbonate type diol.
  • ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, etc .; ethylene glycol, propylene glycol, Alkylene glycols such as diethylene glycol and dipropylene glycol; one or more selected from diols such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, diphenylmethane- 4,4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, hetaic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1
  • alkylene type diol for example, alkanediol such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, etc .; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; and polyoxyalkylene glycols such as polytetramethylene glycol.
  • alkanediol such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, etc .
  • alkylene glycol such as 1,3-propanediol, 1,4-butaned
  • carbonate type diol for example, 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, 1,3-propylene carbonate diol 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
  • 1,4-tetramethylene carbonate diol 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, 1,3-propylene carbonate diol 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
  • polyvalent isocyanate which is a raw material of the urethane prepolymer (UP) include aromatic polyisocyanate, aliphatic polyisocyanate, and alicyclic polyisocyanate. These polyisocyanates may be used alone or in combination of two or more. Further, these polyvalent isocyanates may be trimethylolpropane adduct type modified bodies, Burret type modified bodies reacted with water, or isocyanurate type modified bodies containing an isocyanurate ring.
  • diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tridiisocyanate More preferred is one or more selected from diisocyanates (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanates.
  • MDI 4,4′-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6-tridiisocyanate More preferred is one or more selected from diisocyanates (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanates.
  • alicyclic diisocyanate for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentadiisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane Diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, etc. may be mentioned, and isophorone diisocyanate (IPDI) is preferred.
  • IPDI isophorone diisocyanate
  • the urethane prepolymer (UP) to be the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a linear urethane prepolymer having an ethylenically unsaturated group at both ends.
  • Polymers are preferred.
  • hydroxyalkyl (meth) acrylates examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxy Examples include butyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • the vinyl compound to be the side chain of the acrylic urethane resin (U1) contains at least (meth) acrylic acid ester.
  • a (meth) acrylic acid ester 1 or more types chosen from an alkyl (meth) acrylate and a hydroxyalkyl (meth) acrylate are preferable, and it is more preferable to use together an alkyl (meth) acrylate and a hydroxyalkyl (meth) acrylate.
  • the blending ratio of hydroxyalkyl (meth) acrylate is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of alkyl (meth) acrylate.
  • the amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
  • the carbon number of the alkyl group contained in the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
  • Examples of hydroxyalkyl (meth) acrylates include the same hydroxyalkyl (meth) acrylates used to introduce an ethylenically unsaturated group at both ends of the linear urethane prepolymer described above.
  • vinyl compounds other than (meth) acrylic acid esters for example, aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, vinyl toluene; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether; vinyl acetate, vinyl propionate And polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid and meta (acrylamide). These may be used alone or in combination of two or more.
  • aromatic hydrocarbon vinyl compounds such as styrene, ⁇ -methylstyrene, vinyl toluene
  • vinyl ethers such as methyl vinyl ether, ethyl vinyl ether
  • vinyl acetate vinyl propionate
  • polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid,
  • the content of (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, still more preferably, based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound.
  • the content is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the acrylic urethane resin (U1) used in the present embodiment is obtained by mixing the urethane prepolymer (UP) and the vinyl compound containing (meth) acrylic acid ester, and polymerizing the both. In the said superposition
  • olefin resin As an olefin resin suitable as resin contained in a resin composition (y1), it is a polymer which has a structural unit derived from an olefin monomer at least.
  • the above-mentioned olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specific examples thereof include ethylene, propylene, butylene, isobutylene and 1-hexene. Among these, ethylene and propylene are preferable.
  • VLDPE ultra low density polyethylene
  • LDPE low density polyethylene
  • MDPE Medium density polyethylene
  • HDPE high density polyethylene
  • PP linear low density polyethylene
  • PB polybutene resin
  • TPO ethylene-propylene copolymer
  • TPO olefin elastomer
  • PMP poly (4-methyl-1-pentene)
  • EVA ethylene-vinyl acetate copolymer
  • EVA ethylene -Vinyl alcohol copolymer
  • EVOH ethylene-propylene And olefin-based ternary copolymers
  • the olefin-based resin may be a modified olefin-based resin further subjected to one or more kinds of modification selected from acid modification, hydroxyl group modification, and acryl modification.
  • an acid-modified olefin-based resin obtained by acid-modifying an olefin-based resin a modified polymer obtained by graft polymerizing unsaturated carboxylic acid or its anhydride with the above-mentioned non-modified olefin-based resin can be mentioned.
  • unsaturated carboxylic acids or their anhydrides examples include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride And glutaconic anhydride, citraconic anhydride, aconitic acid anhydride, norbornene dicarboxylic acid anhydride, tetrahydrophthalic acid anhydride and the like.
  • unsaturated carboxylic acid or its anhydride may be used independently and may use 2 or more types together.
  • an acrylic modified olefin resin formed by subjecting an olefin resin to acrylic modification a modified polymer obtained by graft polymerizing alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin which is the main chain Polymers may be mentioned.
  • the number of carbon atoms of the alkyl group contained in the above alkyl (meth) acrylate is preferably 1 to 20, more preferably 1 to 16, and still more preferably 1 to 12.
  • alkyl (meth) acrylate the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft polymerizing a hydroxyl group-containing compound to the above-mentioned non-modified olefin resin which is the main chain.
  • hydroxyl group-containing compounds examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl
  • examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; and unsaturated alcohols such as vinyl alcohol and allyl alcohol.
  • the resin composition (y1) may contain a resin other than the acrylic urethane resin and the olefin resin as long as the effects of the present invention are not impaired.
  • resins examples include vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Cellulose: triacetate cellulose; polycarbonate; polyurethane not corresponding to acrylic urethane resin; polysulfone; polyetheretherketone; polyethersulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; A fluorine resin etc. are mentioned.
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate
  • polystyrene acrylonitrile-but
  • the content ratio of resins other than acrylic urethane resins and olefin resins is preferably less than 30 parts by mass, more preferably 20 parts by mass, with respect to 100 parts by mass of the total amount of resins contained in the resin composition (y1). It is less than 10 parts by weight, more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
  • the resin composition (y1) preferably contains expandable particles.
  • the pressure-sensitive adhesive sheet (A) is a pressure-sensitive adhesive layer (X1) on which a workpiece represented by a semiconductor wafer is placed by including the expandable particles in the base (Y1) having a high elastic modulus instead of the pressure-sensitive adhesive layer.
  • the degree of freedom in design such as the control of the thickness adjustment and the control of the adhesive strength and the viscoelastic modulus, is improved. The positional deviation of the chip obtained by this and the generation of chipping can be suppressed.
  • the chip is placed on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1), so that the base (Y1) containing the expandable particles does not come in direct contact with the chip. .
  • the residue derived from the expandable particles and a part of the greatly deformed pressure-sensitive adhesive layer adhere to the chip, and the uneven shape formed on the pressure-sensitive adhesive layer is inhibited from being transferred to the chip, maintaining cleanliness.
  • the chip can be subjected to the next step.
  • the preferred content of the expandable particles is as described above.
  • the resin composition (y1) may contain a base material additive as needed, as long as the effects of the present invention are not impaired.
  • the base material additive include ultraviolet light absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, coloring agents and the like. These base material additives may be used alone or in combination of two or more.
  • the content of each base material additive is preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin in the resin composition (y1). And more preferably 0.001 to 10 parts by mass.
  • solvent-free type resin composition (y1 ') As an aspect of the resin composition (y1) used in the present embodiment, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles are blended. Solvent-free resin composition (y1 ') which does not mix
  • Mw mass average molecular weight
  • the substrate (Y1) can be obtained by irradiating the coating film formed of the solventless resin composition (y1 ') with an energy ray.
  • the type, shape, and amount (content) of the expandable particles blended in the solventless resin composition (y1 ′) are as described above.
  • the mass average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y1 ') is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, still more preferably 3000 to 35000, Still more preferably, it is 4000 to 30000.
  • the resins contained in the above-mentioned resin composition (y1) as the above-mentioned oligomer, those having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less may be used. UP) is preferred.
  • the modified olefin resin etc. which have an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy ray polymerizable monomer in the solventless resin composition (y1 ′) is preferably based on the total amount (100% by mass) of the solventless resin composition (y1 ′). It is 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, still more preferably 70 to 85% by mass.
  • Examples of energy ray polymerizable monomers include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Alicyclic polymerizable compounds such as meta) acrylate and tricyclodecane acrylate; aromatic polymerizable compounds such as phenyl hydroxy propyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- Examples thereof include heterocyclic polymerizable compounds such as vinyl pyrrolidone and N-vinyl caprolactam. These energy beam polymerizable monomers may be used alone or in combination of two or more.
  • the content ratio of the oligomer to the energy beam polymerizable monomer (the oligomer / energy beam polymerizable monomer) in the solvent-free resin composition (y1 ′) is preferably 20/80 to 90 by mass ratio. It is preferably 10/10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
  • the solventless resin composition (y1 ') further contains a photopolymerization initiator.
  • a photopolymerization initiator By containing a photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with energy rays of relatively low energy.
  • photopolymerization initiator for example, 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the compounding amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, further preferably 100 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. Preferably, it is 0.02 to 3 parts by mass.
  • the surface treatment of the surface of the base material (Y1) by an oxidation method, a roughening method, etc., a primer treatment, an adhesion treatment You may Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet process), hot air treatment, ozone, ultraviolet irradiation treatment and the like, and examples of the surface roughening method include sand blast method, solvent treatment method, etc. Can be mentioned.
  • the storage elastic modulus E ′ (23) at 23 ° C. of the substrate (Y1) is preferably 1.0 ⁇ 10 6 Pa or more, more preferably 5.0 ⁇ 10 6 to 5.0 ⁇ 10 12 Pa, further preferably Is more preferably 1.0 ⁇ 10 7 to 1.0 ⁇ 10 12 Pa, still more preferably 5.0 ⁇ 10 7 to 1.0 ⁇ 10 11 Pa, still more preferably 1.0 ⁇ 10 8 to 1.0 ⁇ It is 10 10 Pa.
  • storage elastic modulus E ′ (23) of the base material (Y1) is within the above range, it is possible to suppress the occurrence of positional deviation of a workpiece during dicing and positional deviation when transferring a chip.
  • prescribed temperature means the value measured by the method as described in an Example.
  • the expandable substrate (at the expansion start temperature (t) of the thermally expandable particles)
  • the storage elastic modulus E ′ (t) of Y1-1) is preferably 1.0 ⁇ 10 7 Pa or less.
  • the storage elastic modulus E ′ (t) of the expandable base material (Y1-1) is more preferably 9.0 ⁇ 10 6 Pa or less, still more preferably 8.0 ⁇ 10 6 Pa or less, and further more Preferably it is 6.0 * 10 ⁇ 6 > Pa or less, More preferably, it is 4.0 * 10 ⁇ 6 > Pa or less.
  • the expandable substrate ( The storage elastic modulus E ′ (t) of Y1-1) is preferably 1.0 ⁇ 10 3 Pa or more, more preferably 1.0 ⁇ 10 4 Pa or more, still more preferably 1.0 ⁇ 10 5 Pa or more is there.
  • Non-intumescent base material (Y1 ') The pressure-sensitive adhesive sheet (A) has the pressure-sensitive adhesive layer (X1) on one side of the expandable base material (Y1-1) and has the non-expandable base (Y1 ′) on the other side. Good.
  • non-intumescent base material in the present specification means that the volume change rate calculated from the following formula is less than 5% by volume when treated under conditions where the expandable particles contained in the pressure-sensitive adhesive sheet (A) expand. It defines as a thing.
  • volume change rate (%) (volume of the layer after treatment ⁇ volume of the layer before treatment) / volume of the layer before treatment ⁇ 100
  • the volume change rate (%) of the non-intumescent substrate (Y1 ') calculated from the above equation is preferably less than 2% by volume, more preferably less than 1% by volume, still more preferably less than 0.1% by volume More preferably, it is less than 0.01% by volume.
  • the conditions under which the expandable particles expand are the conditions under which the heat treatment for 3 minutes is performed at the expansion start temperature (t) when the expandable particles are thermally expandable particles.
  • the non-intumescent substrate (Y1 ') may contain intumescent particles, but its content is preferably as low as possible, relative to the total mass (100% by mass) of the non-thermally-expandable substrate (Y1') Generally less than 3% by weight, preferably less than 1% by weight, more preferably less than 0.1% by weight, still more preferably less than 0.01% by weight, still more preferably less than 0.001% by weight, Most preferably, they do not contain sexual particles.
  • non-intumescent base material a paper material, resin, a metal etc. are mentioned, for example.
  • the paper material include thin paper, medium paper, high quality paper, impregnated paper, coated paper, art paper, sulfuric acid paper, glassine paper and the like.
  • the resin examples include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acryl-modified polyurethane; polymethylpentene; polysulfone; Polyether sulfone; Polyphenylene sulfide; Polyimide resin such as polyether imide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
  • polyolefin resins such as polyethylene and polypropylene
  • vinyl resins such
  • the metal examples include aluminum, tin, chromium, titanium and the like. These forming materials may be comprised by 1 type, and may use 2 or more types together.
  • a non-intumescent base material (Y1 ') using two or more kinds of forming materials in combination a paper material was laminated with a thermoplastic resin such as polyethylene, or a metal film was formed on the surface of a resin film or sheet containing resin. And the like.
  • a formation method of a metal layer the method of vapor-depositing said metal by PVD methods, such as vacuum evaporation, sputtering, and ion plating, for example, or sticking metal foil consisting of said metal using a general adhesive And the like.
  • the expandable sheet (Y1-1) and the non-intumescent substrate (Y1') are used before the intumescent particles are expanded.
  • the thickness ratio [(Y1-1) / (Y1 ')] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
  • the non-intumescent substrate (Y1 ') contains a resin
  • the surface treatment by the oxidation method, the surface roughening method or the like, the primer treatment or the easy adhesion treatment may be applied to the surface of the above.
  • the non-intumescent substrate (Y1 ') contains a resin
  • it may contain the above-mentioned additive for a substrate that can be contained in the resin composition (y1) together with the resin.
  • An adhesive layer (X1) is a layer which has adhesiveness.
  • the pressure-sensitive adhesive layer (X1) contains a pressure-sensitive adhesive resin, and may optionally contain an additive for pressure-sensitive adhesive such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator.
  • the adhesive strength of the adhesive surface of the adhesive layer (X1) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.2 to 8.0 N / 25 mm at 23 ° C. before the expandable particles expand. More preferably, it is 0.4 to 6.0 N / 25 mm, still more preferably 0.5 to 4.0 N / 25 mm.
  • a workpiece can be fully fixed as the said adhesive force is 0.1 N / 25 mm or more, and generation
  • the adhesive strength is 10.0 N / 25 mm or less, when separating from the chip, it can be easily separated with a slight force.
  • said adhesive force means the value measured by the method as described in an Example.
  • the storage shear modulus G ′ (23) of the pressure-sensitive adhesive layer (X1) is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 8 Pa, more preferably 5.0 ⁇ 10 4 to 5 at 23 ° C. .0 ⁇ 10 7 Pa, more preferably 1.0 ⁇ 10 5 ⁇ 1.0 ⁇ 10 7 Pa.
  • the storage shear elastic modulus G ′ (23) of the pressure-sensitive adhesive layer (X1) is 1.0 ⁇ 10 4 Pa or more, positional deviation of the chip can be prevented when separating from the chip.
  • the storage shear modulus G '(23) of the pressure-sensitive adhesive layer (X1) is 1.0 ⁇ 10 8 Pa or less, unevenness due to the expanded expandable particles is easily formed on the pressure-sensitive adhesive surface, with a slight force. It can be easily separated.
  • the pressure-sensitive adhesive sheet (A) is a pressure-sensitive adhesive sheet having a plurality of pressure-sensitive adhesive layers
  • the storage shear elastic modulus G ′ (23) of the pressure-sensitive adhesive layer to which the chip is attached be within the above range.
  • the storage shear elastic modulus G '(23) of all the pressure-sensitive adhesive layers on the side to which the chip is attached is more than the above-mentioned range than Y1).
  • storage shear elastic modulus G '(23) of an adhesive layer (X1) means the value measured by the method as described in an Example.
  • the thickness of the pressure-sensitive adhesive layer (X1) forms asperities on the surface of the pressure-sensitive adhesive layer to be formed by expansion of the expandable particles in the expandable base material by heat treatment, from the viewpoint of expressing excellent adhesion. From the viewpoint of facilitating operation, it is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the ratio of the thickness of the substrate (Y1) to the thickness of the pressure-sensitive adhesive layer (X1) (substrate (Y1) / pressure-sensitive adhesive layer (X1)) is 23 ° C. from the viewpoint of preventing positional deviation of the chip It is preferably 0.2 or more, more preferably 0.5 or more, more preferably 1.0 or more, still more preferably 5.0 or more, and can be easily separated by a slight force when it is separated. From the viewpoint of forming a pressure-sensitive adhesive sheet, it is preferably 1000 or less, more preferably 200 or less, further preferably 60 or less, and still more preferably 30 or less.
  • the thickness of the pressure-sensitive adhesive layer (X1) means a value measured by the method described in the examples.
  • the pressure-sensitive adhesive layer (X1) can be formed from a pressure-sensitive adhesive composition (x1) containing a pressure-sensitive adhesive resin.
  • a pressure-sensitive adhesive composition (x1) containing a pressure-sensitive adhesive resin containing a pressure-sensitive adhesive resin.
  • the adhesive resin which is a formation material of an adhesive layer (X1) has adhesiveness by this resin alone, and is a polymer whose mass average molecular weight (Mw) is 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is more preferably 10,000 to 2,000,000, further preferably 20,000 to 1,500,000 and still more preferably 30,000 to 1,000,000, from the viewpoint of improving the adhesive strength.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins and polyisobutylene resins, polyester resins, olefin resins, silicone resins, polyvinyl ether resins and the like. These tackifying resins may be used alone or in combination of two or more. Moreover, when these adhesive resins are copolymers which have 2 or more types of structural units, the form of this copolymer is not specifically limited, A block copolymer, a random copolymer, and a graft co It may be any of polymers.
  • the adhesive resin may be an energy ray-curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
  • the polymerizable functional group include (meth) acryloyl group and vinyl group.
  • an ultraviolet-ray, an electron beam, etc. are mentioned as an energy ray, an ultraviolet-ray is preferable.
  • the content of the adhesive resin is preferably 30 to 99.99% by mass, more preferably 40 to 99.95% by mass, with respect to the total amount (100% by mass) of the active components of the pressure-sensitive adhesive composition (x1). More preferably, it is 50 to 99.90% by mass, still more preferably 55 to 99.80% by mass, still more preferably 60 to 99.50% by mass.
  • “content of each component relative to the total amount of the active component of the pressure-sensitive adhesive composition” is “content of each component in the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition Is the same as
  • the tackifying resin is an acrylic resin from the viewpoint of expressing excellent tackiness and forming an unevenness due to expansion of the expansive particles on the tacky surface when separating to make the tackiness sheet having improved separability. It is preferred to contain a resin.
  • the content ratio of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50 based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x1). It is -100% by mass, more preferably 70-100% by mass, still more preferably 85-100% by mass.
  • an acrylic resin that can be used as a tacky resin for example, a polymer including a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, a (meth) acrylate having a cyclic structure And polymers containing structural units derived therefrom, and structural units (a1) derived from alkyl (meth) acrylates (a1 ′) (hereinafter also referred to as “monomers (a1 ′)”) and functional group-containing monomers (a2)
  • the acrylic copolymer (A1) having a structural unit (a2) derived from ') hereinafter also referred to as "monomer (a2')
  • the number of carbon atoms of the alkyl group of the monomer (a1 ′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and still more preferably 4 to 8 from the viewpoint of improving adhesion properties. It is.
  • the alkyl group which a monomer (a1 ') has may be a linear alkyl group, and a branched alkyl group may be sufficient.
  • the monomer (a1 ′) for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( Meta) acrylate, stearyl (meth) acrylate, etc. are mentioned.
  • These monomers (a1 ′) may be used alone or in combination of two or more.
  • butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
  • the content of the structural unit (a1) is preferably 50 to 99.9 mass%, more preferably 60 to 99.0 mass based on the total structural units (100 mass%) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, still more preferably 80 to 95.0% by mass.
  • a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. are mentioned, for example. That is, as a monomer (a2 '), a hydroxyl-containing monomer, a carboxy-group containing monomer, an amino-group containing monomer, an epoxy-group containing monomer etc. are mentioned, for example. These monomers (a2 ′) may be used alone or in combination of two or more. Among these, as the monomer (a2 ′), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable.
  • hydroxyl-containing monomer As a hydroxyl-containing monomer, the same thing as the above-mentioned hydroxyl-containing compound is mentioned, for example.
  • carboxy group-containing monomers include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; and ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof And 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
  • the content of the structural unit (a2) is preferably 0.1 to 40% by mass, more preferably 0.5 to 35% by mass, relative to the total constituent units (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, and still more preferably 3.0 to 25% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from another monomer (a3 ′) other than the monomers (a1 ′) and (a2 ′).
  • the content of the structural units (a1) and (a2) is preferably 70% of the total structural units (100 mass%) of the acrylic copolymer (A1). It is about -100% by mass, more preferably 80-100% by mass, still more preferably 90-100% by mass, still more preferably 95-100% by mass.
  • Examples of the monomer (a3 ′) include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene-based monomers such as butadiene, isoprene and chloroprene; cyclohexyl (meth) acrylate, Has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, imide (meth) acrylate (Meth) acrylate; styrene, ⁇ -methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (
  • the acrylic copolymer (A1) may be an energy ray-curable acrylic copolymer in which a polymerizable functional group is introduced into the side chain.
  • the polymerizable functional group and the energy ray are as described above.
  • the polymerizable functional group is a substituent capable of binding to the acrylic copolymer having the above-mentioned structural units (a1) and (a2) and the functional group possessed by the structural unit (a2) of the acrylic copolymer. It can introduce
  • the compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate and the like.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, further preferably 350,000 to 1,200,000, and still more preferably 500,000 to 1,100,000.
  • the pressure-sensitive adhesive composition (x1) contains a pressure-sensitive resin containing a functional group such as the above-mentioned acrylic copolymer (A1), it is preferable to further contain a crosslinking agent.
  • the crosslinking agent reacts with the adhesive resin having a functional group to crosslink the adhesive resins with the functional group as a crosslinking origin.
  • a crosslinking agent an isocyanate type crosslinking agent, an epoxy type crosslinking agent, an aziridine type crosslinking agent, a metal chelate type crosslinking agent etc. are mentioned, for example. These crosslinking agents may be used alone or in combination of two or more.
  • isocyanate-based crosslinking agents are preferable from the viewpoint of enhancing the cohesion and improving the adhesiveness, and from the viewpoint of availability and the like.
  • the content of the crosslinking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group.
  • the amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x1) may further contain a tackifier from the viewpoint of further improving the adhesion.
  • tackifier refers to a component that aids in improving the adhesive strength of the above-mentioned tacky resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000, It is to be distinguished from the sexing resin.
  • Mw mass average molecular weight
  • the mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
  • the tackifier is obtained, for example, by copolymerizing a rosin resin, a terpene resin, a styrene resin, a penten formed by thermal decomposition of petroleum naphtha, a C5 fraction such as isoprene, piperine, 1,3-pentadiene and the like.
  • the softening point of the tackifier is preferably 60 to 170 ° C., more preferably 65 to 160 ° C., still more preferably 70 to 150 ° C.
  • the "softening point" of the tackifier means a value measured in accordance with JIS K 2531.
  • the tackifier may be used alone or in combination of two or more different in softening point, structure and the like. When two or more types of tackifiers are used, it is preferable that the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.05 to 55% by mass, based on the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition (x1). More preferably, it is 0.1 to 50% by mass, still more preferably 0.5 to 45% by mass, and still more preferably 1.0 to 40% by mass.
  • the pressure-sensitive adhesive composition (x1) contains an energy ray-curable adhesive resin as the adhesive resin
  • a pressure-sensitive adhesive composition containing an energy ray-curable adhesive resin and a photopolymerization initiator By using a pressure-sensitive adhesive composition containing an energy ray-curable adhesive resin and a photopolymerization initiator, the curing reaction sufficiently proceeds even by irradiation of energy rays of relatively low energy, and adhesion is desired. It becomes possible to adjust to the range.
  • a photoinitiator the same thing as what is mix
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 0.1 parts by mass with respect to 100 parts by mass of the energy ray-curable adhesive resin. It is 05 to 2 parts by mass.
  • the pressure-sensitive adhesive composition (x1) which is a forming material of the pressure-sensitive adhesive layer (X1), is used in a general pressure-sensitive adhesive other than the above-mentioned additives as long as the effects of the present invention are not impaired.
  • an adhesive additive include an antioxidant, a softener (plasticizer), a rust inhibitor, a pigment, a dye, a retarder, a reaction accelerator (catalyst), an ultraviolet absorber, and the like.
  • These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
  • each adhesive additive is preferably 0.0001 to 20 parts by mass, and more preferably 0.001 to 100 parts by mass of the adhesive resin. 10 parts by mass.
  • the pressure-sensitive adhesive layer (X1) may contain expandable particles. The content is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, and most preferably not contained with respect to 100 parts by mass of the adhesive resin.
  • peeling material As the peeling material optionally used, a peeling sheet subjected to double-sided peeling treatment, a peeling sheet subjected to single-sided peeling treatment and the like are used, and a substrate obtained by applying a peeling agent on a substrate for a peeling material can be mentioned.
  • substrates for release materials include papers such as high-quality paper, glassine paper, kraft paper, etc .; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polypropylene resin, polyethylene resin, etc.
  • Plastic films, such as an olefin resin film ;; etc. are mentioned.
  • release agents include silicone resins, olefin resins, isoprene resins, rubber elastomers such as butadiene resins, long chain alkyl resins, alkyd resins, fluorine resins, and the like.
  • the thickness of the release material is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 25 to 170 ⁇ m, and still more preferably 35 to 80 ⁇ m.
  • the resin composition (y1) and the pressure-sensitive adhesive composition (x1) may be mixed with a diluting solvent to form a solution.
  • the coating method include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • the drying or UV irradiation in the production method (I) and the production method (II) is preferably carried out by appropriately selecting conditions under which the expandable particles do not expand.
  • the drying temperature is preferably lower than the expansion start temperature (t) of the thermally expandable particles .
  • the resin composition (y1) may be used in the steps (Ia) and (IIa). ) May be applied on a preformed non-intumescent substrate (Y1 ′).
  • the non-intumescent substrate (Y ') is formed, for example, using the resin composition which is a forming material of the non-intumescent substrate (Y') by the same operation as the steps (Ia) and (IIa). be able to.
  • the method of manufacturing a semiconductor device includes the following steps (1) to (3) in this order.
  • Step (1) A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1)
  • Step (2) using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
  • Step (3) a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
  • a cross-sectional view for explaining the step (1) of obtaining a plurality of singulated semiconductor chips CP is shown.
  • the semiconductor wafer W may be, for example, a silicon wafer, or a compound semiconductor wafer such as gallium or arsenic.
  • the semiconductor wafer W has a circuit W2 on its circuit surface W1. Examples of a method of forming the circuit W2 include an etching method, a lift-off method, and the like. In the present specification, the surface opposite to the circuit surface W1 may be referred to as "chip back surface".
  • the semiconductor wafer W is ground to a predetermined thickness in advance to expose the chip back surface and is attached to the adhesive sheet (A). Examples of the method for grinding the semiconductor wafer W include known methods using a grinder or the like.
  • a ring frame may be attached to the adhesive sheet (A) for the purpose of holding the semiconductor wafer W.
  • the ring frame and the semiconductor wafer W are placed on the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), and these are lightly pressed and fixed.
  • the semiconductor wafer W held by the adhesive sheet (A) is singulated by dicing to form a plurality of semiconductor chips CP.
  • cutting means such as dicing saw, laser, plasma dicing, stealth dicing and the like are used, for example.
  • the cutting depth in dicing may be set as appropriate in consideration of the thickness of the semiconductor wafer, but can be, for example, a depth of 2 ⁇ m or less from the upper surface of the pressure-sensitive adhesive layer (X1).
  • the step (1) may include a process of stretching the pressure-sensitive adhesive sheet (A) in order to widen the distance between the plurality of obtained semiconductor chips CP after dicing the semiconductor wafer W.
  • Step (2)> In FIG. 3, using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface on the opposite side to the surface in contact with the pressure-sensitive adhesive layer The cross section explaining the process (2) which affixes the adhesive layer (X2) of an adhesive sheet (B) is shown.
  • the mode of the pressure-sensitive adhesive sheet (B) may be determined appropriately according to the subsequent steps. For example, in the case where an expanding step of widening the intervals of a plurality of semiconductor chips CP is performed as a step subsequent to the first dicing step, a pressure-sensitive adhesive sheet for expansion (hereinafter also referred to as "expanding tape") as a pressure-sensitive adhesive sheet (B) You may use it. On the other hand, in consideration of the workability and the like in the subsequent steps, an inversion step is performed between the first dicing step and the expanding step to invert the front and back of the plurality of semiconductor chips CP (that is, the circuit surface W1 and the chip back).
  • a reverse pressure-sensitive adhesive sheet (hereinafter, also referred to as “reverse pressure-sensitive adhesive sheet”) may be used.
  • the example which uses the adhesive sheet for inversion as an adhesive sheet (B) is shown by FIG. Next, the aspect of the adhesive sheet (B) suitable as an adhesive sheet for inversion and an expand tape is demonstrated.
  • the reversing pressure-sensitive adhesive sheet has a base (Y2) and a pressure-sensitive adhesive layer (X2), and after transferring the plurality of semiconductor chips CP from the pressure-sensitive adhesive sheet (A), the plurality of semiconductor chips CP By transferring the adhesive sheet, the semiconductor chip CP is used to invert the surface in contact with the adhesive layer.
  • the pressure-sensitive adhesive sheet for reversal is not particularly limited as long as the above object can be achieved, but since it is necessary to be able to be attached and separated from the semiconductor chip, it is an adhesive containing expandable particles such as pressure-sensitive adhesive sheet (A)
  • Pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising a non-energy ray-curable pressure-sensitive adhesive having removability, such as an expanded tape to be described later, pressure-sensitive adhesive having a pressure-sensitive adhesive layer comprising an energy ray-curable pressure-sensitive adhesive A sheet or the like is suitable.
  • the base (Y2) of the reverse pressure-sensitive adhesive sheet can be formed using a material mentioned as a forming material of the base (Y1) of the pressure-sensitive adhesive sheet (A).
  • an adhesive layer (X2) of the adhesive sheet for inversion it can form using what is mentioned as a forming material of an adhesive layer (X1) or the adhesive layer (X2) of the expand tape mentioned later.
  • an adhesive sheet (A) as an adhesive sheet (B)
  • the aspect of the adhesive sheet (A) used at a process (1) and the aspect of the adhesive sheet (A) used at this process are the same. Or they may be different.
  • the thickness of the substrate (Y2) of the reverse pressure-sensitive adhesive sheet is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m, still more preferably 25 to 400 ⁇ m, and still more preferably 30 to 300 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (X2) of the reverse pressure-sensitive adhesive sheet is preferably 1 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • the expand tape has a substrate (Y2) and a pressure-sensitive adhesive layer (X2), and after transferring a plurality of semiconductor chips CP from the pressure-sensitive adhesive sheet (A) onto the pressure-sensitive adhesive layer (X2), the plurality of semiconductors The spacing between the chips CP is used to stretch the adhesive sheet (B).
  • the material of the base material (Y2) of the expand tape is, for example, polyvinyl chloride resin, polyester resin (polyethylene terephthalate etc.), acrylic resin, polycarbonate resin, polyethylene resin, polypropylene resin, acrylonitrile butadiene styrene resin, polyimide resin, Polyurethane resin, polystyrene resin and the like can be mentioned.
  • the base (Y2) of the expanded tape preferably contains a thermoplastic elastomer, a rubber-based material, and the like, and more preferably contains a thermoplastic elastomer.
  • thermoplastic elastomer examples include urethane elastomers, olefin elastomers, vinyl chloride elastomers, polyester elastomers, styrene elastomers, acrylic elastomers, and amide elastomers.
  • the base (Y2) of the expanded tape may be a laminate of a plurality of films made of the above material, or may be a film made of the above material and another film.
  • the base material (Y2) of the expanded tape contains various additives such as pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like in a film containing the above-mentioned resin material as a main material. May be
  • the pressure-sensitive adhesive layer (X2) of the expand tape may be composed of a non-energy ray curable pressure sensitive adhesive or may be composed of an energy ray curable pressure sensitive adhesive.
  • the non-energy ray curable adhesive those having desired adhesive strength and removability are preferable.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoint of effectively suppressing the detachment of the semiconductor chip or the like when the pressure-sensitive adhesive sheet (B) is stretched.
  • the energy ray-curable pressure-sensitive adhesive is cured by energy ray irradiation and the adhesive force is reduced. Therefore, when the semiconductor chip and the pressure-sensitive adhesive sheet (B) are separated, they can be easily separated by energy ray irradiation. .
  • the energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer (X2) of the expanded tape includes, for example, (a) a polymer having energy ray curability, and (b) at least one energy ray curable group. What contains 1 or more types chosen from a monomer and / or an oligomer is mentioned.
  • acrylic ester (co) polymer for example, alkyl (meth) acrylate having 1 to 18 carbon atoms in the alkyl group, a polymerizable double bond, a hydroxy group, a carboxy group, an amino group, a substituted one Those obtained by copolymerizing a monomer having a functional group such as an amino group and an epoxy group in the molecule with another and then reacting an unsaturated group-containing compound having a functional group to be bonded to the functional group Be (B)
  • the monomer and / or oligomer having at least one energy ray-curable group include esters of polyhydric alcohol and (meth) acrylic acid, and specifically, cyclohexyl (meth) acrylate, Monofunctional acrylic acid esters such as isobornyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol t
  • the thickness of the base (Y2) of the expanded tape is not particularly limited, but is preferably 20 to 250 ⁇ m, more preferably 40 to 200 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer (X2) of the expanded tape is not particularly limited, but preferably 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the elongation at break of the expand tape measured in the MD direction and the CD direction at 23 ° C. is preferably 100% or more.
  • breaking elongation is in the above-mentioned range, it is possible to stretch greatly. Therefore, it can be used suitably for the use which needs to fully separate semiconductor chips, such as manufacture of a fan-out type package.
  • the expandable particles contained in the pressure-sensitive adhesive sheet (A) are thermally expandable particles. Is preferred.
  • FIG. 4 is a cross-sectional view for explaining the step (3) of expanding the expandable particles to separate the plurality of semiconductor chips CP and the adhesive sheet (A).
  • the expandable particles are expanded by heat, energy rays and the like according to their types to form asperities on the adhesive surface (X1a) of the adhesive layer (X1).
  • the adhesion between the semiconductor chip CP and the plurality of semiconductor chips CP is reduced to separate the adhesive sheet (A) from the plurality of semiconductor chips CP.
  • the method of expanding the expandable particles may be appropriately selected according to the type of expandable particles, and when the expandable particles are thermally expandable particles, it may be heated to a temperature higher than the expansion start temperature (t) .
  • the “temperature at or above the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or more and “expansion start temperature (t) + 60 ° C.” or less, “expansion start temperature (t)). It is more preferable that it is t) + 15 ° C or more and "expansion start temperature (t) + 40 ° C" or less.
  • it may be expanded by heating to a range of 70 to 330.degree.
  • the expansion of the expandable particles is preferably carried out in a state in which the surface (Y1a) opposite to the pressure-sensitive adhesive layer (X1) of the substrate (Y1) is fixed.
  • the surface (Y1a) opposite to the pressure-sensitive adhesive layer (X1) of the substrate (Y1) is fixed.
  • the fixing may be any method, for example, a method of providing the non-intumescent base material (Y1 ′) described above on the surface (Y1a) side of the base material (Y1), a plurality of suction holes as a fixing jig Method of fixing the surface (Y1a) of the substrate (Y1) by using a suction table having a hard support on the surface (Y1a) of the substrate (Y1) via an optional pressure-sensitive adhesive layer, double-sided pressure-sensitive adhesive sheet, etc. And the like.
  • the suction table has a pressure reducing mechanism such as a vacuum pump, and the target pressure is fixed to the suction surface by sucking the object from a plurality of suction holes by the pressure reducing mechanism.
  • the material of the hard support may be appropriately determined in consideration of mechanical strength, heat resistance, etc.
  • metallic materials such as SUS
  • nonmetallic inorganic materials such as glass, silicon wafer
  • Resin materials such as engineering plastics, super engineering plastics, polyimides, and polyamideimides
  • composite materials such as glass epoxy resins; and the like.
  • SUS, glass, silicon wafers and the like are preferable.
  • engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET).
  • Super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
  • step (4B) an expanding step is performed to widen the distance between the plurality of semiconductor chips CP obtained above.
  • step (4A) or steps (4B-1) to (4B-3) (hereinafter also referred to as "step (4B)" Can be carried out.
  • Step (4A) a step in which the pressure-sensitive adhesive sheet (B) is a pressure-sensitive adhesive sheet for expand, and the space between the plurality of semiconductor chips attached to the pressure-sensitive adhesive sheet (B) is stretched to expand the pressure-sensitive adhesive sheet for expand.
  • Step (4B-1) The adhesive layer of the adhesive sheet (C), which is an expand tape, on the surface of the plurality of semiconductor chips on the adhesive sheet (B) opposite to the surface in contact with the adhesive layer Process of sticking X3).
  • Step (4B-2) A step of separating the pressure-sensitive adhesive sheet (B) from the plurality of semiconductor chips CP attached to the pressure-sensitive adhesive sheet (C).
  • Step (4B-3) a step of stretching and expanding the pressure-sensitive adhesive sheet for expansion, between the plurality of semiconductor chips attached to the pressure-sensitive adhesive sheet (C).
  • the step (4A) is a case where the pressure-sensitive adhesive sheet (B) used in the step (2) is an expand tape. In this case, the pressure-sensitive adhesive sheet (B) is stretched to widen the space between the plurality of semiconductor chips CP. Good.
  • the step (4B) is a case where the pressure-sensitive adhesive sheet (B) is a reversing pressure-sensitive adhesive sheet, and from the pressure-sensitive adhesive sheet (B) which is a reversing pressure-sensitive adhesive sheet to a plurality of pressure-sensitive adhesive sheets (C) which is a pressure-sensitive adhesive sheet for expanding.
  • This is a step of expanding after transferring the semiconductor chip CP.
  • the step (4B) will be described.
  • FIGS. 5 (a) and 5 (b) an expanded tape is formed on the surface of the plurality of semiconductor chips CP on the pressure-sensitive adhesive sheet (B), which is the reverse pressure-sensitive adhesive sheet, on the side opposite to the side in contact with the pressure-sensitive adhesive layer (X2).
  • the method for separating the pressure-sensitive adhesive sheet (B) from the plurality of semiconductor chips CP may be appropriately selected according to the type of the pressure-sensitive adhesive sheet (B), and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B) is a non-energy ray
  • the adhesive layer (X2) is composed of an energy ray curable adhesive, it is cured by energy ray irradiation.
  • the adhesion may be reduced before separation.
  • Preferred embodiments of the expandable tape are as described above.
  • FIGS. 6A and 6B explain the step (4B-3) of stretching the adhesive sheet (C) to widen the gap between the plurality of semiconductor chips CP attached to the expand adhesive sheet (C).
  • a cross-sectional view is shown.
  • the plurality of semiconductor chips CP are placed on the pressure-sensitive adhesive layer (X3) of the pressure-sensitive adhesive sheet (C).
  • the adhesive sheet (C) is stretched to increase the distance between the plurality of semiconductor chips CP to the distance D.
  • the distance D between the plurality of expanded semiconductor chips CP may be appropriately determined according to the form of the desired semiconductor device, but is preferably 50 to 6000 ⁇ m.
  • Step (5) A step of transferring the plurality of semiconductor chips CP whose intervals are expanded in the expanding step to the pressure-sensitive adhesive layer (X4) of the pressure-sensitive adhesive sheet (D).
  • Step (6) covering the plurality of semiconductor chips CP and the peripheral portion of the plurality of semiconductor chips CP in the adhesive surface of the pressure-sensitive adhesive layer (X4) with a sealing material, and curing the sealing material And a step of obtaining a cured sealing body in which the semiconductor chip is sealed in a curing sealing material.
  • Process (7) A process of separating an adhesive sheet (D) from the hardening sealing object.
  • an adhesive sheet (D) you may use the adhesive sheet (C) which is an expand tape, and in that case, it is not necessary to implement a process (5).
  • the pressure-sensitive adhesive sheet (D) described below shall mean the pressure-sensitive adhesive sheet (C).
  • the steps (5) to (8) will be described in order below.
  • the step (5) is a step of transferring the plurality of semiconductor chips CP whose intervals are expanded in the expanding step to the pressure-sensitive adhesive layer (X4) of the pressure-sensitive adhesive sheet (D).
  • the adhesive sheet (D) is A cross-sectional view showing a step of separating the pressure-sensitive adhesive sheet (C) from the plurality of semiconductor chips CP after sticking the pressure-sensitive adhesive layer (X4) is shown.
  • the pressure-sensitive adhesive sheet (D) is separated from the cured sealing body after sealing the plurality of semiconductor chips CP on the pressure-sensitive adhesive surface (X4a) to obtain a cured sealing body. . Therefore, in the pressure-sensitive adhesive sheet (D), positional deviation of the semiconductor chip does not occur during sealing with the sealing material, and the sealing material does not enter the adhesion interface between the semiconductor chip and the temporary fixing sheet A degree of adhesion is sought and separability which can be easily removed after sealing is sought.
  • the pressure-sensitive adhesive sheet (D) is not particularly limited as long as the above object can be achieved, but it is necessary that the pressure-sensitive adhesive sheet (D) can be attached to and separated from the semiconductor chip.
  • an adhesive sheet (A) as an adhesive sheet (D) the aspect of the adhesive sheet (A) used at a process (1) and the aspect of the adhesive sheet (A) used at this process are the same. Or they may be different.
  • the method of separating the pressure-sensitive adhesive sheet (C) and the plurality of semiconductor chips CP may be determined according to the mode of the pressure-sensitive adhesive sheet (C), as in the case of the pressure-sensitive adhesive sheet (B).
  • Step (6) 8A to 8C, a plurality of semiconductor chips CP and peripheral portions 45 of the plurality of semiconductor chips CP in the adhesive surface (X4a) of the pressure-sensitive adhesive layer (X4) Coating (hereinafter, the process is also referred to as “coating process”), and the sealing material 40 is cured (hereinafter, the process is also referred to as “curing process”), and a plurality of semiconductor chips CP are cured and sealed 41 Sectional drawing explaining the process (6) which obtains the hardening sealing body 50 sealed by this is shown.
  • the sealing material 40 has a function of protecting the plurality of semiconductor chips CP and the components attached thereto from the external environment.
  • Arbitrary things can be suitably selected and used from what is conventionally used as a semiconductor sealing material.
  • the sealing material 40 has curability from the viewpoint of mechanical strength, heat resistance, insulation and the like, and examples thereof include a thermosetting resin composition, an energy ray curable resin composition, and the like.
  • a thermosetting resin which the thermosetting resin composition which is the sealing material 40 contains, although an epoxy resin, a phenol resin, cyanate resin etc.
  • thermosetting resin composition is, in addition to the thermosetting resin, if necessary, a curing agent such as a phenol resin-based curing agent, an amine-based curing agent, a curing accelerator, an inorganic filler such as silica, You may contain additives, such as an elastomer.
  • the sealing material 40 may be solid or liquid at room temperature.
  • the form of the sealing material 40 which is solid at room temperature is not particularly limited, and may be, for example, granular form, sheet form or the like.
  • the covering step and the curing step using a sheet-like sealing material (hereinafter, also referred to as a “sheet-like sealing material”).
  • sheet-like sealing material In the method using the sheet-like sealing material, the sheet-like sealing material is placed so as to cover the plurality of semiconductor chips CP and the peripheral portion 45 thereof, whereby the plurality of semiconductor chips CP and the peripheral portion 45 thereof are sealed. Cover by 40.
  • any method may be appropriately selected and applied from the methods conventionally applied to the semiconductor sealing step.
  • a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, a compression molding method, etc. can be applied.
  • the sealing material 40 is usually heated at the time of coating to impart fluidity.
  • the temperature at which the thermosetting resin composition is heated in the coating step varies depending on the type of the sealing material 40, the type of the adhesive sheet (D), etc., but is, for example, 30 to 180 ° C and 50 to 170 ° C. Preferably, 70 to 150 ° C. is more preferable.
  • the heating time is, for example, 5 seconds to 60 minutes, preferably 10 seconds to 45 minutes, and more preferably 15 seconds to 30 minutes.
  • the sealing material 40 is filled in the gaps between the plurality of semiconductor chips CP while covering the entire exposed surface of the plurality of semiconductor chips CP.
  • the sealing material 40 is cured to form a cured sealing body in which a plurality of semiconductor chips CP are sealed in the curing sealing material 41.
  • Get 50 The temperature for curing the sealing material 40 in the curing step varies depending on the type of the sealing material 40, the type of the adhesive sheet (D), etc., but is, for example, 80 to 240 ° C., preferably 90 to 200 ° C. And 100 to 170 ° C. are more preferable.
  • the heating time is, for example, 10 to 180 minutes, preferably 20 to 150 minutes, and more preferably 30 to 120 minutes.
  • the pressure-sensitive adhesive sheet (D) is separated from the cured sealing body 50.
  • the method for separating the pressure-sensitive adhesive sheet (D) may be appropriately selected according to the type of the pressure-sensitive adhesive sheet (D).
  • an adhesive sheet (A) as an adhesive sheet (D)
  • the conditions for expanding the expandable particles are as described for the pressure-sensitive adhesive sheet (A).
  • the sealing process is performed in a state in which the circuit surface W1 of the plurality of semiconductor chips CP is in contact with the adhesive layer (X4) of the adhesive sheet (D) has been described.
  • the sealing step may be carried out in the exposed state (that is, the state in which the chip back surface is in contact with the pressure-sensitive adhesive layer (X4)).
  • the circuit surface W1 of the plurality of semiconductor chips CP is covered with the sealing resin, but after the sealing resin is cured, the curing sealing material is appropriately scraped off using a grinder or the like, and again The circuit surface W1 may be exposed.
  • Step (8)] 9 (a) to 9 (c) are cross-sectional views for explaining the step (8) of forming a rewiring layer on the cured sealing body 50 from which the pressure-sensitive adhesive sheet (D) is separated.
  • FIG. 9B is a cross-sectional view for explaining a process of forming the first insulating layer 61 on the circuit surface W1 of the semiconductor chip CP and the surface 50a of the cured sealing body 50.
  • a first insulating layer 61 containing an insulating resin is formed on the circuit surface W1 and the surface 50a so as to expose the internal terminal electrode W3 of the circuit W2 of the semiconductor chip CP or the circuit W2.
  • the material of the internal terminal electrode W3 is not limited as long as it is a conductive material, and metals such as gold, silver, copper and aluminum, alloys containing these metals, and the like can be mentioned.
  • FIG. 9C is a cross-sectional view for explaining the step of forming the rewiring 70 electrically connected to the semiconductor chip CP sealed in the cured sealing body 50.
  • the rewiring 70 is formed following the formation of the first insulating layer 61.
  • the material of the rewiring 70 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals.
  • the rewiring 70 can be formed by a known method such as a subtractive method or a semi-additive method.
  • FIG. 10A is a cross-sectional view for explaining the process of forming the second insulating layer 62 covering the rewiring 70.
  • the rewiring 70 has an external electrode pad 70A for an external terminal electrode. An opening or the like is provided in the second insulating layer 62 to expose the external electrode pad 70A for the external terminal electrode.
  • the external electrode pad 70A is in and out of the area (area corresponding to the circuit surface W1) of the semiconductor chip CP of the cured sealing body 50 (area corresponding to the surface 50a on the cured sealing body 50) Exposed to Further, the rewiring 70 is formed on the surface 50 a of the cured sealing body 50 such that the external electrode pads 70 A are arranged in an array. In the present embodiment, since the external electrode pad 70A is exposed outside the region of the semiconductor chip CP of the cured sealing body 50, FOWLP or FOPLP can be obtained.
  • FIG. 10B is a cross-sectional view for explaining the step of connecting the external terminal electrode 80 to the external electrode pad 70A.
  • An external terminal electrode 80 such as a solder ball is placed on the external electrode pad 70A exposed from the second insulating layer 62, and the external terminal electrode 80 and the external electrode pad 70A are electrically connected by solder bonding or the like.
  • the material of the solder ball is not particularly limited, and examples thereof include lead-containing solder and lead-free solder.
  • FIG. 10C shows a cross-sectional view for explaining a second dicing step of singulating the cured sealing body 50 to which the external terminal electrode 80 is connected.
  • the cured sealing body 50 is singulated in units of semiconductor chips CP.
  • the method of singulating the cured sealing body 50 is not particularly limited, and can be carried out by a cutting means such as a dicing saw.
  • the semiconductor device 100 of the semiconductor chip CP unit is manufactured.
  • the semiconductor device 100 in which the external terminal electrode 80 is connected to the external electrode pad 70A fanned out of the area of the semiconductor chip CP as described above is manufactured as FOWLP, FOPLP or the like.
  • ⁇ Measurement of thickness of each layer> The thickness was measured using a constant-pressure thickness measuring device (model number: “PG-02J”, standard: JIS K6783, Z1702, Z1709) manufactured by Teclock Co., Ltd.
  • the particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction type particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern Co., Ltd.). Then, the particle diameter corresponding to 50% and 90% of the cumulative volume frequency calculated from the smaller particle diameter of the particle distribution is respectively referred to as “average particle diameter (D 50 ) of thermally expandable particles” and “thermally expandable particles 90% particle diameter (D 90 ) of
  • the expandable base material has a size of 5 mm long ⁇ 30 mm wide ⁇ 200 ⁇ m thick, and the release material removed is used as a test sample.
  • Test start temperature 0 ° C
  • test end temperature 300 ° C
  • temperature rise rate 3 ° C / min frequency 1 Hz
  • amplitude 20 ⁇ m using a dynamic viscoelasticity measurement device (manufactured by TA Instruments, product name "DMAQ800")
  • the storage elastic modulus E ′ of the test sample was measured at a predetermined temperature under the following conditions.
  • ⁇ Storage shear modulus G ′ of pressure-sensitive adhesive layer> When the object to be measured is a pressure-sensitive adhesive layer having adhesiveness, the pressure-sensitive adhesive layer has a diameter of 8 mm and a thickness of 3 mm, and the release material is removed as a test sample.
  • a visco-elasticity measuring device manufactured by Anton Paar, device name “MCR 300”
  • torsional shear method under the conditions of test start temperature 0 ° C., test end temperature 300 ° C., temperature rising rate 3 ° C./min, frequency 1 Hz.
  • ⁇ Probe Tack Value> The expansive substrate or pressure-sensitive adhesive layer to be measured is cut into a square of 10 mm on a side, and then allowed to stand for 24 hours under an environment of 23 ° C and 50% RH (relative humidity) to remove light peeling film It was a test sample. Using the tacking tester (product name "NTS-4800" manufactured by Japan Special Instruments Co., Ltd.) under the environment of 23 ° C and 50% RH (relative humidity), the above-mentioned test sample was removed the light release film. The probe tack value on the surface of the test sample, which was exposed, was measured in accordance with JIS Z0237: 1991.
  • the probe is subjected to the test sample at a speed of 10 mm / sec. The force required to move away from the surface was measured. And the measured value was made into the probe tack value of the test sample.
  • ⁇ Adhesive resin> Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) 80.0 / 20.0 (mass ratio), A solution containing a 600,000 Mw acrylic copolymer. Dilution solvent: ethyl acetate, solid concentration: 40% by mass. ⁇ Additives> -Isocyanate crosslinking agent (i): Tosoh Co., Ltd.
  • Heavy release film product manufactured by Lintec Co., Ltd., product name “SP-PET 382150”, provided with a release agent layer formed from a silicone release agent on one side of a polyethylene terephthalate (PET) film, thickness: 38 ⁇ m.
  • Light release film manufactured by Lintec Co., Ltd., product name “SP-PET 381031”, provided with a release agent layer formed from a silicone release agent on one side of a PET film, thickness: 38 ⁇ m.
  • Production Example 1 (Formation of adhesive layer (X1)) 5.0 parts by mass (solid content ratio) of the isocyanate crosslinking agent (i) is blended with 100 parts by mass of the solid content of the solution of the acrylic copolymer (i) which is a tacky resin, and diluted with toluene The mixture was uniformly stirred to prepare a pressure-sensitive adhesive composition (x1) having a solid content concentration (active ingredient concentration) of 25% by mass. Then, the prepared pressure-sensitive adhesive composition (x1) is applied on the surface of the release agent layer of the heavy release film to form a coating, and the coating is dried at 100 ° C. for 60 seconds to have a thickness of 10 ⁇ m. The pressure-sensitive adhesive layer (X1) was formed. The storage shear modulus G ′ (23) of the pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 ⁇ 10 5 Pa.
  • Production Example 2 (Formation of intumescent base material (Y1-1)) A 2-hydroxyethyl acrylate is reacted with a terminal isocyanate urethane prepolymer obtained by reacting an ester type diol with isophorone diisocyanate (IPDI) to obtain a bifunctional acrylic urethane oligomer having a weight average molecular weight (Mw) of 5000. Obtained.
  • IPDI isophorone diisocyanate
  • thermally expandable particles (i) were blended in the energy ray-curable composition to prepare a solvent-free resin composition (y1) containing no solvent.
  • the content of the thermally expandable particles (i) was 20% by mass with respect to the total amount (100% by mass) of the resin composition (y1).
  • the prepared resin composition (y1) was applied onto the surface of the release agent layer of the light release film to form a coating film.
  • the coating film was irradiated with ultraviolet light under the conditions of cm 2 to cure the film, thereby forming an expandable substrate (Y1-1) having a thickness of 50 ⁇ m.
  • said illumination intensity and light quantity at the time of ultraviolet irradiation are the values measured using the illumination intensity and light quantity meter (The product made by EIT, product name "UV Power Puck II").
  • the storage elastic modulus E ′ at 23 ° C. of the expandable base material (Y1-1) obtained above is 5.0 ⁇ 10 8 Pa and the storage elastic modulus E ′ at 100 ° C. is 4.0 ⁇ 10
  • the storage elastic modulus E ′ at 6 Pa and 208 ° C. was 4.0 ⁇ 10 6 Pa.
  • the probe tack value of the expandable base material (Y1-1) was 2 mN / 5 mm ⁇ .
  • Production Example 3 (Preparation of adhesive sheet (A))
  • the surfaces of the pressure-sensitive adhesive layer (X1) formed in Production Example 1 and the expandable base material (Y1-1) formed in Production Example 2 were bonded to each other.
  • a pressure-sensitive adhesive sheet (A) was produced in which the light release film / expandable substrate (Y1-1) / pressure-sensitive adhesive layer (X1) / heavy release film were laminated in this order.
  • the surface of the release agent layer of a release film (product name “SP-PET 3811”, manufactured by Lintec Corporation, product name “SP-PET 3811”) having a silicone-based release agent layer formed on one side of a polyethylene terephthalate (PET) film is
  • the adhesive composition was applied and dried by heating to form an adhesive layer (X2) having a thickness of 10 ⁇ m on the release film.
  • a pressure-sensitive adhesive layer is attached to the exposed surface of the pressure-sensitive adhesive layer by bonding one side of a polyester-based polyurethane elastomer sheet (product name: Higres DUS 202, product name: 50 ⁇ m, product name by Shidam Co., Ltd.) as a substrate (Y2).
  • the adhesive sheet (B) (expand tape) was obtained in the state to which the peeling film was stuck.
  • Example 1 The semiconductor device was manufactured by the following method using the adhesive sheet (A) and the adhesive sheet (B) which were obtained above.
  • ⁇ Step (1)> The pressure-sensitive adhesive sheet (A) obtained in Production Example 3 was cut into a size of 230 mm ⁇ 230 mm. The heavy release film and the light release film are removed from the pressure-sensitive adhesive sheet (A) after cutting, and a ring frame and a semiconductor wafer (diameter: 150 mm, thickness: 350 ⁇ m) are attached to the surface of the exposed pressure-sensitive adhesive layer (X1) did. Next, using a dicer (product name “DFD-651” manufactured by Disco, Inc.), the semiconductor wafer was diced at full cut under the following conditions.
  • a dicer product name “DFD-651” manufactured by Disco, Inc.
  • the release sheet is released from the pressure-sensitive adhesive sheet (B), and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B) is formed on the surface of the plurality of semiconductor chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1).
  • a group of semiconductor chips was transferred so as to be located at the center of the adhesive sheet (B).
  • the dicing line when dividing a semiconductor wafer into pieces was transferred so that it might become parallel or perpendicular
  • the heat-expandable particles by heating at 240 ° C. for 3 minutes, which is equal to or higher than the expansion start temperature (208 ° C.) of the conductive particles, to expand the thermally expandable particles, and the plurality of semiconductor chips attached to the adhesive sheet (B) and the adhesive sheet (A) Separated.
  • the pressure-sensitive adhesive sheet (A) was separated, the pressure-sensitive adhesive sheet (A) was simultaneously separated from the plurality of semiconductor chips while being kept flat without being bent.
  • the expanding device has mutually orthogonal X-axis directions (positive direction as + X-axis direction and negative direction as -X-axis direction) and Y-axis direction (positive direction as + Y-axis direction)
  • the negative direction is the ⁇ Y axis direction
  • holding means for extending in each direction ie, the + X axis direction, the ⁇ X axis direction, the + Y axis direction, the ⁇ Y axis direction
  • the MD direction of the pressure-sensitive adhesive sheet (B) is aligned with the X-axis or Y-axis direction, and installed in the expanding device, and after holding each side of the pressure-sensitive adhesive sheet (B) by the holding means, Then, the pressure-sensitive adhesive sheet (B) was stretched to widen the intervals between the plurality of semiconductor chips attached on the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B).
  • -Number of holding means 5 per side-Stretching speed: 5 mm / sec Stretching distance: Each side was stretched by 60 mm.
  • Comparative Example 1 ⁇ Step (1)> A ring frame and a semiconductor wafer (on the surface of the pressure-sensitive adhesive layer of a dicing tape having a substrate and a pressure-sensitive adhesive layer (Lintec Co., Ltd., trade name "D-820") (hereinafter also referred to as "comparison dicing tape") Diameter: 150 mm, thickness: 350 ⁇ m) was attached. Thereafter, in the same manner as in step (1) of Example 1, a plurality of singulated semiconductor chips were obtained. ⁇ Step (2)> It carried out like Example 1.
  • the adhesive force at 23 ° C. at a tension rate of 300 mm / min. was measured.
  • the above test sample is heated on a hot plate at 240 ° C. for 3 minutes, which is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles, in a standard environment (23 ° C., 50% RH (relative humidity)
  • the adhesion after heating above the expansion start temperature was also measured under the same conditions as described above.
  • the adhesive sheet (A) used in the manufacturing method of the present embodiment has a smaller adhesive force after expansion than the conventional ultraviolet irradiation type adhesive sheet, and is thus obtained by dicing the semiconductor wafer. It can be seen that a plurality of chips can be easily transferred to another adhesive sheet, and the occurrence of chipping during transfer can be effectively suppressed.
  • Adhesive sheet (a) 1b Adhesive sheet (a) DESCRIPTION OF SYMBOLS 40 Sealing material 41 Hardening sealing material 45 Peripheral part of semiconductor chip CP 50 Hardening sealing body 50a surface 61 1st insulating layer 62 2nd insulating layer 70 Rewiring 70A External electrode pad 80 External terminal electrode 100 Semiconductor device 200 Expanding device 210 Holding means CP Semiconductor chip W1 Circuit surface W2 Circuit W3 Internal terminal electrode

Abstract

A semiconductor device production method whereby semiconductor devices are produced using an expandable adhesive sheet (A) that has a base material (Y1) and an adhesive layer (X1) and includes expandable particles in one of the layers. The production method includes steps (1)–(3), in order. Step (1): A step in which, after pasting a workpiece on to the adhesive layer (X1) of the adhesive sheet (A), the workpiece is diced and a plurality of chips, being individual pieces, are obtained on the adhesive layer (X1). Step (2): A step in which an adhesive layer (X2) of an adhesive sheet (B) having a base material (Y2) and an adhesive layer (X2) is pasted on to a surface of the plurality of chips that is on the opposite side to the adhesive layer (X1). Step (3): A step in which the expandable particles are expanded and the adhesive sheet (A) and the plurality of semiconductor chips pasted to the adhesive sheet (B) are separated.

Description

半導体装置の製造方法Semiconductor device manufacturing method
 本発明は半導体装置の製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor device.
 近年、電子機器の小型化、軽量化及び高機能化が進んでおり、これに伴って、電子機器に搭載される半導体装置にも、小型化、薄型化及び高密度化が求められている。
 半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、CSP(Chip Scale Package)と称されることもある。CSPとしては、ウエハサイズでパッケージ最終工程まで処理して完成させるWLP(Wafer Level Package)、ウエハサイズよりも大きいパネルサイズでパッケージ最終工程まで処理して完成させるPLP(Panel Level Package)等が挙げられる。
2. Description of the Related Art In recent years, miniaturization, weight reduction, and high functionality of electronic devices have progressed, and accordingly, semiconductor devices mounted on electronic devices are also required to be smaller, thinner, and higher in density.
Semiconductor chips may be packaged in packages close to their size. Such a package is sometimes referred to as a CSP (Chip Scale Package). As CSP, WLP (Wafer Level Package) completed by processing to the package final process with wafer size, PLP (Panel Level Package) completed by processing to the package final process with panel size larger than wafer size, etc. may be mentioned. .
 WLP及びPLPは、ファンイン(Fan-In)型とファンアウト(Fan-Out)型に分類される。ファンアウト型のWLP(以下、「FOWLP」ともいう)及びPLP(以下、「FOPLP」ともいう)においては、半導体チップを、チップサイズよりも大きな領域となるように封止材で覆って半導体チップの封止体を形成し、再配線層及び外部電極を、半導体チップの回路面だけでなく封止材の表面領域においても形成する。
 例えば、特許文献1には、半導体ウエハから個片化された複数の半導体チップを、その回路形成面を残し、モールド部材を用いて周りを囲んで拡張ウエハを形成し、半導体チップ外の領域に再配線パターンを延在させて形成する半導体パッケージの製造方法が記載されている。特許文献1に記載の製造方法において、半導体ウエハはダイシング用のウエハマウントテープ(以下、「ダイシングテープ」ともいう)に貼着された状態で個片化されるダイシング工程を施される。該ダイシング工程で得られた複数の半導体チップはエキスパンド用のウエハマウントテープ(以下、「エキスパンドテープ」ともいう)に転写され、該エキスパンドテープを展延して複数の半導体チップ同士の距離を拡大させるエキスパンド工程を施される。
WLP and PLP are classified into fan-in type and fan-out type. In the fan-out type WLP (hereinafter, also referred to as “FOWLP”) and PLP (hereinafter, also referred to as “FOPLP”), the semiconductor chip is covered with a sealing material so as to be a region larger than the chip size and the semiconductor chip The rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface area of the sealing material.
For example, in Patent Document 1, a plurality of semiconductor chips separated from a semiconductor wafer are left surrounding the circuit forming surface, and an expansion wafer is formed using a mold member to form an expanded wafer, and the semiconductor chip is formed outside the semiconductor chip. A method of manufacturing a semiconductor package formed by extending a rewiring pattern is described. In the manufacturing method described in Patent Document 1, a semiconductor wafer is subjected to a dicing step in which it is singulated in a state of being attached to a wafer mount tape for dicing (hereinafter, also referred to as "dicing tape"). The plurality of semiconductor chips obtained in the dicing step are transferred to a wafer mount tape for expansion (hereinafter also referred to as "expand tape"), and the expanded tape is expanded to expand the distance between the plurality of semiconductor chips. An expanding process is performed.
 ダイシングテープは、半導体装置の製造工程において、半導体ウエハに代表される被加工物を個片化する際に用いられ、ダイシング中には被加工物の剥離、位置ズレ等を抑制するために一定の粘着力が求められる一方で、ダイシング後には、個片化したチップを容易に分離できる分離性が求められる。
 ダイシング後における分離性を高めたダイシングテープとして、特許文献2には、基材と粘着層とを有し、粘着層の材料として、紫外線照射により硬化して粘着力が低下する材料を用いたダイシングテープが開示されている。
The dicing tape is used when singulating a workpiece represented by a semiconductor wafer in the manufacturing process of a semiconductor device, and during dicing to prevent peeling of the workpiece, positional deviation, etc. While adhesive force is required, after dicing, separability that allows easy separation of singulated chips is required.
Patent Document 2 discloses a dicing tape having an improved separability after dicing, using a material that has a base material and an adhesive layer and is cured by irradiation with ultraviolet light to reduce the adhesive force as a material of the adhesive layer. A tape is disclosed.
国際公開第2010/058646号International Publication No. 2010/058646 特開2016-167510号公報JP, 2016-167510, A
 しかしながら、特許文献2に記載のダイシングテープは、紫外線照射後においてもチップと粘着層とが接着面全体で接着しているため、ある程度の接着力が残存する。そのため、ダイシングして得たチップを次工程に供する際には、チップを1個ずつピックアップする等、工程が煩雑となる場合がある。 However, in the dicing tape described in Patent Document 2, since the chip and the adhesive layer adhere to each other on the entire adhesive surface even after the ultraviolet irradiation, a certain degree of adhesive force remains. Therefore, when the chips obtained by dicing are subjected to the next process, the process may be complicated such as picking up the chips one by one.
 また、ファンアウト型パッケージの製造工程においては、特許文献1に記載の製造方法のように、ダイシングして得た半導体チップを、エキスパンドテープ上に移動させることがある。
 前記移動は、半導体チップをダイシングテープからエキスパンドテープに直接転写する方法と、半導体チップをダイシングテープから他の粘着シートに転写し、該他の粘着シートからエキスパンドテープに転写する方法が想定されるが、いずれの場合も、生産性の観点から、複数の半導体チップを一括で転写することが望ましい。
 しかしながら、特許文献2に記載のダイシングテープのように、紫外線照射後もある程度の接着力が残存していると、ダイシングテープと半導体チップとを分離する際に、一定の外力が必要となるため、分離をするための複雑な装置が必要となる。
 また、分離する際に半導体チップに負荷が生ずるため、半導体チップに位置ズレ、チップ欠けが発生し易いという問題がある。
Further, in the manufacturing process of the fan-out type package, as in the manufacturing method described in Patent Document 1, the semiconductor chip obtained by dicing may be moved onto the expand tape.
As the movement, a method of directly transferring a semiconductor chip from a dicing tape to an expanding tape and a method of transferring a semiconductor chip from a dicing tape to another adhesive sheet and transferring the other adhesive sheet to the expanding tape are conceivable. In any case, it is desirable to simultaneously transfer a plurality of semiconductor chips from the viewpoint of productivity.
However, as in the case of the dicing tape described in Patent Document 2, if a certain degree of adhesive force remains even after irradiation with ultraviolet light, a certain external force is required to separate the dicing tape and the semiconductor chip. It requires complicated equipment for separation.
In addition, since a load is generated on the semiconductor chip at the time of separation, there is a problem that positional deviation and chipping of the semiconductor chip are easily generated.
 本発明は、上記問題点に鑑みてなされたものであって、被加工物をダイシングして得られた複数のチップを別の粘着シートに容易に転写することができ、かつ、前記転写をする際のチップ欠けの発生を効果的に抑制することができる半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and a plurality of chips obtained by dicing a workpiece can be easily transferred to another adhesive sheet, and the transfer is performed. It is an object of the present invention to provide a method of manufacturing a semiconductor device capable of effectively suppressing the occurrence of chipping in the process.
 本発明者らは、基材及び粘着剤層を有し、いずれかの層に膨張性粒子を含む、膨張性の粘着シートを用いる半導体装置の製造方法であって、特定の工程(1)~(3)を有する製造方法によって、上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記[1]~[11]に関する。
[1]基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に膨張性粒子を含む、膨張性の粘着シート(A)を用いる半導体装置の製造方法であって、
 下記工程(1)~(3)をこの順で有する、半導体装置の製造方法。
 工程(1):粘着シート(A)の粘着剤層(X1)に被加工物を貼付した後、該被加工物をダイシングし、粘着剤層(X1)の上に個片化した複数のチップを得る工程。
 工程(2):基材(Y2)及び粘着剤層(X2)を有する粘着シート(B)を用いて、前記複数のチップの粘着剤層(X1)と接する面とは反対側の面に、粘着シート(B)の粘着剤層(X2)を貼付する工程。
 工程(3):前記膨張性粒子を膨張させて、粘着シート(B)に貼付した前記複数のチップと粘着シート(A)とを分離する工程。
[2]粘着シート(B)がエキスパンド用の粘着シートであって、工程(3)の後に、さらに、下記工程(4A)を有する、上記[1]に記載の半導体装置の製造方法。
 工程(4A):粘着シート(B)に貼付された前記複数のチップ同士の間隔を、粘着シート(B)を引き伸ばして広げる工程。
[3]基材(Y3)及び粘着剤層(X3)を有するエキスパンド用の粘着シート(C)を用いて、さらに、下記工程(4B-1)~(4B-3)を行う、上記[1]に記載の半導体装置の製造方法。
 工程(4B-1):粘着シート(B)上の複数のチップの粘着剤層(X2)と接する面とは反対側の面に、粘着シート(C)の粘着剤層(X3)を貼付する工程。
 工程(4B-2):粘着シート(C)に貼付された複数のチップから粘着シート(B)を分離する工程。
 工程(4B-3):粘着シート(C)に貼付された前記複数のチップ同士の間隔を、粘着シート(C)を引き伸ばして広げる工程。
[4]前記エキスパンド用の粘着シートが、23℃におけるMD方向及びCD方向に測定される破断伸度が100%以上である、上記[2]又は[3]に記載の半導体装置の製造方法。
[5]前記膨張性粒子が、膨張開始温度(t)が60~270℃の熱膨張性粒子であり、前記工程(3)が、前記粘着シート(A)を加熱することにより、粘着シート(B)に貼付した前記複数のチップと、粘着シート(A)とを分離する工程である、上記[1]~[4]のいずれかに記載の半導体装置の製造方法。
[6]工程(1)が、前記被加工物をダイシングした後、粘着シート(A)を引き伸ばす処理を含む、上記[1]~[5]のいずれかに記載の半導体装置の製造方法。
[7]前記膨張性粒子が膨張する前の23℃における、粘着シート(A)の粘着剤層(X1)の粘着力が、0.1~10.0N/25mmである、上記[1]~[6]のいずれかに記載の半導体装置の製造方法。
[8]粘着シート(A)が有する基材(Y1)の表面におけるプローブタック値が、50mN/5mmφ未満である、上記[1]~[7]のいずれかに記載の半導体装置の製造方法。
[9]粘着シート(A)が有する基材(Y1)が、前記膨張性粒子を含む膨張性基材(Y1-1)である、上記[1]~[8]のいずれかに記載の半導体装置の製造方法。
[10]前記被加工物が、半導体ウエハである、上記[1]~[9]のいずれかに記載の半導体装置の製造方法。
[11]ファンアウト型の半導体装置の製造方法である、上記[10]に記載の半導体装置の製造方法。
The present inventors are a method of manufacturing a semiconductor device using an expandable pressure-sensitive adhesive sheet, which has a base material and a pressure-sensitive adhesive layer, and which includes expandable particles in any of the layers, and the specific process (1) It discovered that the said subject could be solved by the manufacturing method which has (3).
That is, the present invention relates to the following [1] to [11].
[1] A method of manufacturing a semiconductor device using an expandable pressure-sensitive adhesive sheet (A), comprising a substrate (Y1) and a pressure-sensitive adhesive layer (X1), wherein any layer contains expandable particles,
A method of manufacturing a semiconductor device, comprising the following steps (1) to (3) in this order:
Step (1): A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1) To get
Step (2): using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
Step (3): a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
[2] The method for producing a semiconductor device according to the above [1], wherein the pressure-sensitive adhesive sheet (B) is a pressure-sensitive adhesive sheet for expand, and further having the following step (4A) after the step (3).
Step (4A): Stretching the adhesive sheet (B) to widen the gap between the plurality of chips attached to the adhesive sheet (B).
[3] The following steps (4B-1) to (4B-3) are further performed using the expandable pressure-sensitive adhesive sheet (C) having the substrate (Y3) and the pressure-sensitive adhesive layer (X3), ] The manufacturing method of the semiconductor device as described in these.
Step (4B-1): The pressure-sensitive adhesive layer (X3) of the pressure-sensitive adhesive sheet (C) is attached to the surface of the plurality of chips on the pressure-sensitive adhesive sheet (B) opposite to the surface in contact with the pressure-sensitive adhesive layer (X2). Process.
Step (4B-2): a step of separating the pressure-sensitive adhesive sheet (B) from the plurality of chips attached to the pressure-sensitive adhesive sheet (C).
Step (4B-3): Stretching the adhesive sheet (C) to widen the gap between the plurality of chips attached to the adhesive sheet (C).
[4] The method of manufacturing a semiconductor device according to the above [2] or [3], wherein the adhesive sheet for expand has a breaking elongation of 100% or more measured in the MD direction and the CD direction at 23 ° C.
[5] The expandable particle is a thermally expandable particle having an expansion start temperature (t) of 60 to 270 ° C., and the step (3) heats the pressure-sensitive adhesive sheet (A) to obtain an adhesive sheet ( A method of manufacturing a semiconductor device according to any one of the above [1] to [4], which is a step of separating the plurality of chips attached to B) and the adhesive sheet (A).
[6] The method of manufacturing a semiconductor device according to any one of the above [1] to [5], wherein the step (1) includes a process of stretching the pressure-sensitive adhesive sheet (A) after dicing the workpiece.
[7] The above [1] to [1], wherein the adhesive strength of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A) is from 0.1 to 10.0 N / 25 mm at 23 ° C. before the expandable particles expand. The manufacturing method of the semiconductor device in any one of [6].
[8] The method of manufacturing a semiconductor device according to any one of the above [1] to [7], wherein the probe tack value on the surface of the substrate (Y1) of the pressure-sensitive adhesive sheet (A) is less than 50 mN / 5 mmφ.
[9] The semiconductor according to any one of the above [1] to [8], wherein the substrate (Y1) of the pressure-sensitive adhesive sheet (A) is an expandable substrate (Y1-1) containing the expandable particles. Device manufacturing method.
[10] The method of manufacturing a semiconductor device according to any one of the above [1] to [9], wherein the workpiece is a semiconductor wafer.
[11] The method for manufacturing a semiconductor device according to the above [10], which is a method for manufacturing a fan-out type semiconductor device.
 本発明によると、被加工物をダイシングして得られた複数のチップを別の粘着シートに容易に転写することができ、かつ、転写の際のチップ欠けの発生を効果的に抑制することができる半導体装置の製造方法を提供することができる。 According to the present invention, it is possible to easily transfer a plurality of chips obtained by dicing a workpiece to another adhesive sheet, and to effectively suppress the occurrence of chipping during transfer. It is possible to provide a method of manufacturing a semiconductor device that can
本実施形態に係る製造方法で用いる粘着シート(A)の構成の一例を示す、(a)粘着シートa1、(b)粘着シートb1の断面図である。It is sectional drawing of (a) adhesive sheet a1, (b) adhesive sheet b1 which shows an example of a structure of the adhesive sheet (A) used with the manufacturing method which concerns on this embodiment. 本実施形態に係る製造方法の一例を説明する、断面図である。It is a sectional view explaining an example of the manufacturing method concerning this embodiment. 図2に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図3に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図4に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図5に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図6に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図7に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図8に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 図9に続いて本実施形態に係る製造方法の一例を説明する、断面図である。It is sectional drawing explaining an example of the manufacturing method which concerns on this embodiment following FIG. 実施例で使用した2軸延伸エキスパンド装置を説明する平面図である。It is a top view explaining the biaxial stretching expansion device used in the example.
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、希釈溶媒を除いた成分を指す。
 また、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
In the present specification, the "active ingredient" refers to the ingredient contained in the composition of interest excluding the diluent solvent.
Moreover, mass mean molecular weight (Mw) is a value of standard polystyrene conversion measured by gel permeation chromatography (GPC) method, and is specifically a value measured based on the method as described in an Example.
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
In the present specification, for example, “(meth) acrylic acid” indicates both “acrylic acid” and “methacrylic acid”, and the other similar terms are also the same.
Moreover, the lower limit and upper limit which were described in steps can be combined independently, respectively about a preferable numerical range (for example, ranges, such as content etc.). For example, from the description “preferably 10 to 90, more preferably 30 to 60”, “preferred lower limit (10)” and “more preferred upper limit (60)” are combined to obtain “10 to 60”. It can also be done.
 本明細書において、「チップの転写」とは、一方の粘着シート上に貼付されているチップの表出している面を、他方の粘着シートに貼付した後、前記一方の粘着シートをチップから分離して、チップを一方の粘着シートから他方の粘着シートに移動させる操作をいう。 In the present specification, “transfer of chip” means that the exposed side of the chip attached on one adhesive sheet is attached to the other adhesive sheet, and then the one adhesive sheet is separated from the chip. And the operation of moving the chip from one adhesive sheet to the other adhesive sheet.
 本実施形態に係る半導体装置の製造方法は、基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に膨張性粒子を含む、膨張性の粘着シート(A)を用いる半導体装置の製造方法であって、下記工程(1)~(3)をこの順で有するものである。
 工程(1):粘着シート(A)の粘着剤層(X1)に被加工物を貼付した後、該被加工物をダイシングし、粘着剤層(X1)の上に個片化した複数のチップを得る工程。
 工程(2):基材(Y2)及び粘着剤層(X2)を有する粘着シート(B)を用いて、前記複数のチップの粘着剤層(X1)と接する面とは反対側の面に、粘着シート(B)の粘着剤層(X2)を貼付する工程。
 工程(3):前記膨張性粒子を膨張させて、粘着シート(B)に貼付した前記複数のチップと粘着シート(A)とを分離する工程。
 本実施形態に用いられる被加工物としては、例えば、半導体ウエハ、LED(Light Emitting Diode)、MEMS(Micro Electro Mechanical Systems)、セラミックデバイス、半導体パッケージ、複数のデバイスを有する半導体装置等、の製造工程においてダイシング加工されるものが挙げられる。
 また、本明細書中、「チップ」とは前記被加工物を個片化したものを意味する。
 以下、初めに本実施形態の製造方法に用いられる粘着シート(A)について説明し、その後、工程(1)~(3)を含む各製造工程について説明する。
The semiconductor device manufacturing method according to the present embodiment is a semiconductor using an expandable pressure-sensitive adhesive sheet (A) which has a base material (Y1) and an adhesive layer (X1) and which includes expandable particles in any of the layers. A method of manufacturing an apparatus, comprising the following steps (1) to (3) in this order:
Step (1): A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1) To get
Step (2): using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
Step (3): a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
Examples of workpieces used in the present embodiment include manufacturing processes of semiconductor wafers, light emitting diodes (LEDs), micro electro mechanical systems (MEMS), ceramic devices, semiconductor packages, semiconductor devices having a plurality of devices, and the like. And those to be diced.
Moreover, in this specification, a "chip" means what was divided into pieces of the said to-be-processed object.
Hereinafter, the pressure-sensitive adhesive sheet (A) used in the manufacturing method of the present embodiment will be described first, and then each manufacturing process including the steps (1) to (3) will be described.
[粘着シート(A)]
 粘着シート(A)は、基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に膨張性粒子を含む膨張性の粘着シートである。
 粘着シート(A)は、膨張性粒子を膨張させる前においては、粘着剤層(X1)の粘着表面によって被加工物を強固に固定することができるため、被加工物のダイシング工程においては、被加工物の位置ズレを抑制して作業性良くダイシングを実施することができる。
 一方、粘着シート(A)と被加工物をダイシングして得られたチップとを分離する際は、膨張性粒子を膨張させることにより粘着剤層(X1)の粘着表面に凹凸を形成させ、これにより粘着剤層(X1)の粘着表面とチップとの接触面積を減少させ、従来の紫外線硬化型のダイシングテープよりも接着力を小さくすることができる。その結果、ダイシングして得た複数のチップは、複雑な製造装置を必要とせずとも、容易に一括で別の粘着シートに転写することができ、かつその際のチップの位置ズレ及びチップ欠けの発生も抑制することができる。
 また、粘着シート(A)とチップとを分離する際、粘着シート(A)を部分的に加熱することによって、必ずしもダイシングして得られた全てのチップではなく、得られたチップのうち、一部のチップを選択的に分離することも可能である。具体的には、ダイシングして得られた複数のチップを、複数個単位に分割し、その単位ごとに別の粘着シートに転写する態様が挙げられる。
[Adhesive sheet (A)]
The pressure-sensitive adhesive sheet (A) is an expandable pressure-sensitive adhesive sheet which has a substrate (Y1) and a pressure-sensitive adhesive layer (X1), and which includes expandable particles in any layer.
In the pressure-sensitive adhesive sheet (A), since the workpiece can be firmly fixed by the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1) before expanding the expandable particles, in the dicing step of the workpiece Dicing can be performed with good workability by suppressing displacement of the workpiece.
On the other hand, when separating the adhesive sheet (A) and the chip obtained by dicing the workpiece, the expandable particles are expanded to form asperities on the adhesive surface of the adhesive layer (X1). Thus, the contact area between the adhesive surface of the pressure-sensitive adhesive layer (X1) and the chip can be reduced, and the adhesion can be made smaller than that of a conventional ultraviolet-curable dicing tape. As a result, a plurality of chips obtained by dicing can be easily transferred at once to another adhesive sheet without the need for complicated manufacturing equipment, and the positional deviation of the chips and chip defects at that time. Occurrence can also be suppressed.
In addition, when the pressure-sensitive adhesive sheet (A) and the chips are separated, it is not necessarily all the chips obtained by dicing by partially heating the pressure-sensitive adhesive sheet (A), but one of the obtained chips It is also possible to selectively separate parts of the chip. Specifically, a plurality of chips obtained by dicing may be divided into a plurality of units, and the units may be transferred to another adhesive sheet.
 図1(a)及び(b)は、粘着シート(A)の一態様である粘着シート1a、粘着シート1bの断面模式図である。
 本発明の一態様において、粘着シート1a、1bのように、基材(Y1)が、膨張性粒子を含む膨張性基材(Y1-1)であることが好ましい。
Fig.1 (a) and (b) are the cross-sectional schematic diagrams of the adhesive sheet 1a which is one aspect | mode of an adhesive sheet (A), and the adhesive sheet 1b.
In one aspect of the present invention, as in the pressure- sensitive adhesive sheets 1a and 1b, the substrate (Y1) is preferably an expandable substrate (Y1-1) containing expandable particles.
 図1(a)に示す粘着シート1aは、基材(Y1-1)の一方の面に粘着剤層(X1)を有する。粘着シート1aは、粘着剤層(X1)上に被加工物を貼付し、該被加工物をダイシングして複数のチップを得た後、分離されるものである。粘着シート1aとチップとを分離する際には、基材(Y1-1)中の膨張性粒子を膨張させることにより、粘着剤層(X1)のチップと接する表面に凹凸を発生させ、粘着剤層(X1)とチップとの界面における分離を容易にすることができる。 The pressure-sensitive adhesive sheet 1a shown in FIG. 1 (a) has a pressure-sensitive adhesive layer (X1) on one surface of a substrate (Y1-1). The pressure-sensitive adhesive sheet 1a is to be separated after attaching a workpiece on the pressure-sensitive adhesive layer (X1) and dicing the workpiece to obtain a plurality of chips. When separating the pressure-sensitive adhesive sheet 1a and the chip, the expandable particles in the base material (Y1-1) are expanded to generate unevenness on the surface of the pressure-sensitive adhesive layer (X1) in contact with the chip. The separation at the interface between the layer (X1) and the chip can be facilitated.
 図1(b)に示す粘着シート1bは、基材(Y1-1)の一方の面に粘着剤層(X1)を有し、他方の面に非膨張性基材(Y1’)を有する。粘着シート1bは、粘着シート1aと同様に使用されるものであるが、基材(Y1-1)中の膨張性粒子を膨張させた場合に、非膨張性基材(Y1’)が存在することで、基材(Y1-1)の非膨張性基材(Y1’)側の表面における凹凸の発生を抑制することができ、これによって粘着剤層(X1)側の表面における凹凸をより効率的に形成することができる。 The pressure-sensitive adhesive sheet 1b shown in FIG. 1 (b) has a pressure-sensitive adhesive layer (X1) on one side of a base (Y1-1) and a non-intumescent base (Y1 ') on the other side. Although the adhesive sheet 1b is used similarly to the adhesive sheet 1a, when the expandable particle in a base material (Y1-1) is expanded, non-expandable base material (Y1 ') exists. Thus, the generation of irregularities on the surface of the non-expandable substrate (Y1 ') of the substrate (Y1-1) can be suppressed, whereby the irregularities on the surface of the pressure-sensitive adhesive layer (X1) can be made more efficient. Can be formed.
 粘着シート(A)の構成は、図1(a)及び(b)に示した構成に限られるものではなく、例えば、基材(Y1)(図1中の(Y1-1))と粘着剤層(X1)との間に、他の層を有する構成であってもよい。ただし、わずかな力で分離可能な粘着シートとする観点から、基材(Y1)と粘着剤層(X1)とが直接積層した構成を有することが好ましい。また、基材(Y1)の粘着剤層(X1)とは反対側の面に他の粘着剤層を有する構成であってもよい。
 粘着シート(A)は、粘着剤層(X1)上に剥離材を有していてもよい。剥離材は、粘着シート(A)を本実施形態に係る製造方法に用いる際に適宜剥離除去される。
 粘着シート(A)の形状は、シート状、テープ状、ラベル状等、あらゆる形状を取り得る。
The configuration of the pressure-sensitive adhesive sheet (A) is not limited to the configuration shown in FIGS. 1 (a) and 1 (b). For example, the substrate (Y1) ((Y1-1 in FIG. 1) and the pressure-sensitive adhesive Another layer may be provided between the layer (X1) and the layer (X1). However, from the viewpoint of forming a pressure-sensitive adhesive sheet that can be separated by a slight force, it is preferable to have a configuration in which the base material (Y1) and the pressure-sensitive adhesive layer (X1) are directly laminated. Moreover, the structure which has another adhesive layer in the surface on the opposite side to the adhesive layer (X1) of a base material (Y1) may be sufficient.
The pressure-sensitive adhesive sheet (A) may have a release material on the pressure-sensitive adhesive layer (X1). The release material is appropriately peeled and removed when the pressure-sensitive adhesive sheet (A) is used in the manufacturing method according to the present embodiment.
The shape of the pressure-sensitive adhesive sheet (A) can be any shape such as a sheet, a tape, and a label.
(膨張性粒子)
 粘着シート(A)は、基材(Y1)及び粘着剤層(X1)のいずれかの層に膨張性粒子を含むものである。
 膨張性粒子は、外部刺激によって、それ自体が膨張することで粘着剤層(X1)の粘着表面に凹凸を形成し、被着体との接着力を低下させることができるものであれば特に限定されない。
 膨張性粒子としては、例えば、加熱によって膨張する熱膨張性粒子、エネルギー線の照射によって膨張するエネルギー線膨張性粒子等が挙げられるが、汎用性及び取り扱い性の観点から、熱膨張性粒子であることが好ましい。
(Expandable particles)
The pressure-sensitive adhesive sheet (A) contains expansive particles in any of the base material (Y1) and the pressure-sensitive adhesive layer (X1).
Expandable particles are not particularly limited as long as they can form asperities on the adhesive surface of the pressure-sensitive adhesive layer (X1) by expansion by themselves due to an external stimulus and reduce the adhesive force to the adherend. I will not.
Examples of expandable particles include, for example, thermally expandable particles expanded by heating, energy ray expandable particles expanded by irradiation of energy rays, etc., but from the viewpoint of versatility and handleability, thermally expandable particles. Is preferred.
 熱膨張性粒子の膨張開始温度(t)は、好ましくは60~270℃、より好ましくは70~260℃、さらに好ましくは80~250℃である。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
[熱膨張性粒子の膨張開始温度(t)の測定法]
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして。加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
The expansion start temperature (t) of the thermally expandable particles is preferably 60 to 270 ° C., more preferably 70 to 260 ° C., and still more preferably 80 to 250 ° C.
In the present specification, the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
[Method of measuring expansion start temperature (t) of thermally expandable particles]
0.5 mg of thermally expandable particles to be measured is added to an aluminum cup having a diameter of 6.0 mm (inner diameter 5.65 mm) and a depth of 4.8 mm, and an aluminum lid (diameter 5.6 mm, thickness 0. Prepare a sample with 1 mm).
Using a dynamic viscoelasticity measuring apparatus, measure the height of the sample while applying a force of 0.01 N to the sample from the top of the aluminum lid with a press. And. Heating is performed from 20 ° C to 300 ° C at a temperature increase rate of 10 ° C / min while a force of 0.01 N is applied by a pressure element, and the amount of displacement of the pressure element in the vertical direction is measured. Let the temperature be the expansion start temperature (t).
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。
The thermally expandable particle is a microencapsulated foaming agent composed of an outer shell made of a thermoplastic resin and an inclusion component which is contained in the outer shell and is vaporized when heated to a predetermined temperature. Is preferred.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone and the like.
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソブタン、イソペンタン、イソヘキサン、イソヘプタン、イソオクタン、イソノナン、イソデカン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ネオペンタン、ドデカン、イソドデカン、シクロトリデカン、ヘキシルシクロヘキサン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ナノデカン、イソトリデカン、4-メチルドデカン、イソテトラデカン、イソペンタデカン、イソヘキサデカン、2,2,4,4,6,8,8-ヘプタメチルノナン、イソヘプタデカン、イソオクタデカン、イソナノデカン、2,6,10,14-テトラメチルペンタデカン、シクロトリデカン、ヘプチルシクロヘキサン、n-オクチルシクロヘキサン、シクロペンタデカン、ノニルシクロヘキサン、デシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ヘプタデシルシクロヘキサン、オクタデシルシクロヘキサン等が挙げられる。これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
Examples of the encapsulated components contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, isobutane, isopentane, isohexane, isoheptane, isooctane, isononane, isodecane, cyclopropane, cyclobutane, cyclopentane Cyclohexane, cycloheptane, cyclooctane, neopentane, dodecane, isododecane, cyclotridecane, hexylcyclohexane, tridecane, tetradecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nanodecane, isotridecane, 4-methyldodecane, isotetradecane, isopentadecane, iso Hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, isoheptadecane, isooctadecane, isonanodecane, , 6, 10, 14-Tetramethylpentadecane, cyclotridecane, heptylcyclohexane, n-octylcyclohexane, cyclopentadecane, nonylcyclohexane, decylcyclohexane, pentadecylcyclohexane, hexadecylcyclohexane, heptadecylcyclohexane, octadecylcyclohexane, etc. . These contained components may be used alone or in combination of two or more.
The expansion start temperature (t) of the thermally expandable particles can be adjusted by appropriately selecting the type of the contained component.
 熱膨張性粒子の熱膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~100倍、より好ましくは2~80倍、更に好ましくは2.5~60倍、より更に好ましくは3~40倍である。 The maximum volumetric expansion coefficient of the thermally expandable particles when heated to a temperature above the thermal expansion start temperature (t) is preferably 1.5 to 100 times, more preferably 2 to 80 times, still more preferably 2.5 to It is 60 times, more preferably 3 to 40 times.
 膨張前の23℃における膨張性粒子の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の膨張性粒子の粒子分布において、膨張前の膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle size of the expandable particles at 23 ° C. before expansion is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, still more preferably 10 to 50 μm.
The average particle size of the expandable particles before expansion is the volume median particle size (D 50 ), and a laser diffraction type particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern, Inc.) In the particle distribution of the expandable particles before expansion, which is measured using, it means the particle diameter corresponding to 50% of the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion.
 膨張前の23℃における膨張性粒子の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは20~100μm、更に好ましくは25~90μm、より更に好ましくは30~80μmである。
 なお、膨張前の膨張性粒子の90%粒子径(D90)とは、レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の膨張性粒子の粒子分布において、膨張前の膨張性粒子の粒子径の粒径の小さい方から計算した累積体積頻度が90%に相当する粒径を意味する。
The 90% particle size (D 90 ) of the expandable particles at 23 ° C. before expansion is preferably 10 to 150 μm, more preferably 20 to 100 μm, still more preferably 25 to 90 μm, still more preferably 30 to 80 μm. .
The 90% particle size (D 90 ) of the expandable particles before expansion was measured using a laser diffraction type particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern, Inc.) before expansion. In the particle distribution of expandable particles, the cumulative volume frequency calculated from the smaller particle diameter of the expandable particles before expansion means a particle diameter corresponding to 90%.
 膨張性粒子の含有量は、膨張性粒子を含有する層の有効成分の全量(100質量%)に対して、好ましくは1~40質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%、より更に好ましくは15~25質量%である。 The content of the expandable particles is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, still more preferably 10 with respect to the total amount (100% by mass) of the active ingredients of the layer containing the expandable particles. It is up to 30% by mass, more preferably 15 to 25% by mass.
(基材(Y1))
 粘着シート(A)が有する基材(Y1)は、非粘着性の基材である。
 本発明において、非粘着性の基材か否かの判断は、対象となる基材の表面に対して、JIS Z0237:1991に準拠して測定したプローブタック値が50mN/5mmφ未満であれば、該基材を「非粘着性の基材」と判断する。
 ここで、本実施形態で用いる基材(Y1)の表面におけるプローブタック値は、通常は50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、基材(Y1)の表面におけるプローブタック値の具体的な測定方法は、実施例に記載の方法による。
(Base material (Y1))
The substrate (Y1) of the pressure-sensitive adhesive sheet (A) is a non-adhesive substrate.
In the present invention, the judgment as to whether or not the substrate is a non-adhesive substrate is made as long as the probe tack value measured in accordance with JIS Z 0237: 1991 is less than 50 mN / 5 mmφ with respect to the surface of the target substrate. The substrate is considered as a "non-tacky substrate".
Here, the probe tack value on the surface of the substrate (Y1) used in this embodiment is usually less than 50 mN / 5 mmφ, preferably less than 30 mN / 5 mmφ, more preferably less than 10 mN / 5 mmφ, still more preferably 5 mN It is less than 5 mmφ.
In addition, in this specification, the specific measuring method of the probe tack value in the surface of a base material (Y1) is based on the method as described in an Example.
 基材(Y1)の厚さは、好ましくは10~1000μm、より好ましくは20~500μm、更に好ましくは25~400μm、より更に好ましくは30~300μmである。
 なお、本明細書において、基材の厚さは、実施例に記載の方法により測定された値を意味する。
The thickness of the substrate (Y1) is preferably 10 to 1000 μm, more preferably 20 to 500 μm, still more preferably 25 to 400 μm, and still more preferably 30 to 300 μm.
In addition, in this specification, the thickness of a base material means the value measured by the method as described in an Example.
 基材(Y1)は、樹脂組成物(y1)から形成することができる。以下、基材(Y1)の形成材料である樹脂組成物(y1)に含まれる各成分について説明する。 The substrate (Y1) can be formed from the resin composition (y1). Hereinafter, each component contained in the resin composition (y1) which is a forming material of a base material (Y1) is demonstrated.
〔樹脂〕
 樹脂組成物(y1)に含まれる樹脂としては、基材(Y1)が非粘着性となる樹脂であれば特に限定されず、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。つまり、樹脂組成物(y1)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y1)から基材(Y1)を形成する過程において、該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、該樹脂を含む基材(Y1)が非粘着性となればよい。
〔resin〕
The resin contained in the resin composition (y1) is not particularly limited as long as the substrate (Y1) is a non-tacky resin, and it may be a non-tacky resin or even a tacky resin. Good. That is, even if the resin contained in the resin composition (y1) is a tacky resin, in the process of forming the substrate (Y1) from the resin composition (y1), the tacky resin is polymerized with the polymerizable compound The resin obtained may be a non-adhesive resin, and the substrate (Y1) containing the resin may be non-adhesive.
 樹脂組成物(y1)に含まれる前記樹脂の質量平均分子量(Mw)は、好ましくは1,000~100万、より好ましくは1,000~70万、更に好ましくは1,000~50万である。
 該樹脂が2種以上の構成単位を有する共重合体である場合、該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
The mass average molecular weight (Mw) of the resin contained in the resin composition (y1) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and still more preferably 1,000 to 500,000. .
When the resin is a copolymer having two or more structural units, the form of the copolymer is not particularly limited, and it may be any of a block copolymer, a random copolymer, and a graft copolymer. It is also good.
 前記樹脂の含有量は、樹脂組成物(y1)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% with respect to the total amount (100% by mass) of the active ingredient of the resin composition (y1). % By mass, still more preferably 70 to 85% by mass.
 樹脂組成物(y1)に含まれる前記樹脂は、アクリルウレタン系樹脂及びオレフィン系樹脂から選ばれる1種以上を含むことが好ましい。アクリルウレタン系樹脂としては、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)が好ましい。なお、これらの樹脂は、特に樹脂組成物(y1)が膨張性粒子を含有する場合において、その膨張性の観点から好適である。 It is preferable that the said resin contained in a resin composition (y1) contains 1 or more types chosen from acrylic urethane type resin and an olefin resin. As the acrylic urethane resin, an acrylic urethane resin (U1) formed by polymerizing a urethane prepolymer (UP) and a vinyl compound containing (meth) acrylic acid ester is preferable. In addition, especially when resin composition (y1) contains an expandable particle, these resin is suitable from the expansible viewpoint.
〔アクリルウレタン系樹脂(U1)〕
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
[Acryl Urethane Resin (U1)]
As a urethane prepolymer (UP) used as the principal chain of acrylic urethane type resin (U1), the reaction product of a polyol and polyhydric isocyanate is mentioned.
In addition, it is preferable that urethane prepolymer (UP) is further what was obtained by giving chain extension reaction using a chain extender.
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、単独で用いてもよく、2種以上を併用してもよい。
 本実施形態で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
As a polyol used as a raw material of urethane prepolymer (UP), an alkylene type polyol, an ether type polyol, an ester type polyol, an ester amide type polyol, an ester ether type polyol, a carbonate type polyol etc. are mentioned, for example.
These polyols may be used alone or in combination of two or more.
The polyol used in the present embodiment is preferably a diol, more preferably an ester type diol, an alkylene type diol and a carbonate type diol, and still more preferably an ester type diol and a carbonate type diol.
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール、ポリネオペンチルテレフタレートジオール等が挙げられる。
Examples of ester type diols include alkane diols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, etc .; ethylene glycol, propylene glycol, Alkylene glycols such as diethylene glycol and dipropylene glycol; one or more selected from diols such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, diphenylmethane- 4,4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, hetaic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, Hexahydrophthalic acid Hexahydroisophthalic acid, hexahydroterephthalic acid, and one or more selected from dicarboxylic acids and anhydrides thereof, such as methyl hexahydrophthalic acid, and condensation polymers of.
Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene hexamethylene adipate diol, Polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methyl pentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene sebacate diol, polyneo A pentyl terephthalate diol etc. are mentioned.
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。 As the alkylene type diol, for example, alkanediol such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, etc .; ethylene glycol, propylene glycol, And alkylene glycols such as diethylene glycol and dipropylene glycol; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol; and polyoxyalkylene glycols such as polytetramethylene glycol.
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。 As a carbonate type diol, for example, 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, 1,3-propylene carbonate diol 2,2-dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
 これらの中でも、本実施形態で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。
Examples of the polyvalent isocyanate which is a raw material of the urethane prepolymer (UP) include aromatic polyisocyanate, aliphatic polyisocyanate, and alicyclic polyisocyanate.
These polyisocyanates may be used alone or in combination of two or more.
Further, these polyvalent isocyanates may be trimethylolpropane adduct type modified bodies, Burret type modified bodies reacted with water, or isocyanurate type modified bodies containing an isocyanurate ring.
Among these, as the polyvalent isocyanate used in the present embodiment, diisocyanate is preferable, and 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tridiisocyanate More preferred is one or more selected from diisocyanates (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanates.
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。 As alicyclic diisocyanate, for example, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentadiisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane Diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, etc. may be mentioned, and isophorone diisocyanate (IPDI) is preferred.
 本実施形態において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
In the present embodiment, the urethane prepolymer (UP) to be the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a linear urethane prepolymer having an ethylenically unsaturated group at both ends. Polymers are preferred.
As a method of introducing an ethylenically unsaturated group at both ends of the linear urethane prepolymer, an NCO group at the end of the linear urethane prepolymer formed by reacting a diol and a diisocyanate compound, and a hydroxyalkyl (meth) acrylate And the method of making it react.
Examples of hydroxyalkyl (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxy Examples include butyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。
The vinyl compound to be the side chain of the acrylic urethane resin (U1) contains at least (meth) acrylic acid ester.
As a (meth) acrylic acid ester, 1 or more types chosen from an alkyl (meth) acrylate and a hydroxyalkyl (meth) acrylate are preferable, and it is more preferable to use together an alkyl (meth) acrylate and a hydroxyalkyl (meth) acrylate.
When alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are used in combination, the blending ratio of hydroxyalkyl (meth) acrylate is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of alkyl (meth) acrylate. The amount is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and still more preferably 1.5 to 10 parts by mass.
 アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。
 ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。
The carbon number of the alkyl group contained in the alkyl (meth) acrylate is preferably 1 to 24, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 3.
Examples of hydroxyalkyl (meth) acrylates include the same hydroxyalkyl (meth) acrylates used to introduce an ethylenically unsaturated group at both ends of the linear urethane prepolymer described above.
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは単独で用いてもよく、2種以上を併用してもよい。
As vinyl compounds other than (meth) acrylic acid esters, for example, aromatic hydrocarbon vinyl compounds such as styrene, α-methylstyrene, vinyl toluene; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether; vinyl acetate, vinyl propionate And polar group-containing monomers such as (meth) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid and meta (acrylamide).
These may be used alone or in combination of two or more.
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。
The content of (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, still more preferably, based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
The total content of alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass with respect to the total amount (100% by mass) of the vinyl compound. The content is 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
 本実施形態で用いるアクリルウレタン系樹脂(U1)は、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを混合し、両者を重合することで得られる。
 当該重合においては、さらにラジカル開始剤を加えて行うことが好ましい。
The acrylic urethane resin (U1) used in the present embodiment is obtained by mixing the urethane prepolymer (UP) and the vinyl compound containing (meth) acrylic acid ester, and polymerizing the both.
In the said superposition | polymerization, it is preferable to carry out by adding a radical initiator.
 本実施形態で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。 In the acrylic urethane resin (U1) used in the present embodiment, the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) to the structural unit (u12) derived from the vinyl compound [(u11) / As (u12)], the mass ratio is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, still more preferably 35/65. It is ~ 55/45.
〔オレフィン系樹脂〕
 樹脂組成物(y1)に含まれる樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
[Olefin resin]
As an olefin resin suitable as resin contained in a resin composition (y1), it is a polymer which has a structural unit derived from an olefin monomer at least.
The above-mentioned olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, and specific examples thereof include ethylene, propylene, butylene, isobutylene and 1-hexene.
Among these, ethylene and propylene are preferable.
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチル-1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレン-ビニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。 Specific olefinic resins, for example, ultra low density polyethylene (VLDPE, density: 880 kg / m 3 or more 910 kg / m less than 3), low density polyethylene (LDPE, density: 910 kg / m 3 or more 915 kg / m less than 3 ), Medium density polyethylene (MDPE, density: 915 kg / m 3 or more and less than 942 kg / m 3 ), high density polyethylene (HDPE, density: 942 kg / m 3 or more), polyethylene resins such as linear low density polyethylene; (PP); polybutene resin (PB); ethylene-propylene copolymer; olefin elastomer (TPO); poly (4-methyl-1-pentene) (PMP); ethylene-vinyl acetate copolymer (EVA); ethylene -Vinyl alcohol copolymer (EVOH); ethylene-propylene And olefin-based ternary copolymers such as-(5-ethylidene-2-norbornene).
 本実施形態において、オレフィン系樹脂は、さらに酸変性、水酸基変性、及びアクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。 In the present embodiment, the olefin-based resin may be a modified olefin-based resin further subjected to one or more kinds of modification selected from acid modification, hydroxyl group modification, and acryl modification.
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、単独で用いてもよく、2種以上を併用してもよい。
For example, as an acid-modified olefin-based resin obtained by acid-modifying an olefin-based resin, a modified polymer obtained by graft polymerizing unsaturated carboxylic acid or its anhydride with the above-mentioned non-modified olefin-based resin Can be mentioned.
Examples of the above-mentioned unsaturated carboxylic acids or their anhydrides include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, itaconic anhydride And glutaconic anhydride, citraconic anhydride, aconitic acid anhydride, norbornene dicarboxylic acid anhydride, tetrahydrophthalic acid anhydride and the like.
In addition, unsaturated carboxylic acid or its anhydride may be used independently and may use 2 or more types together.
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、後述のモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
As an acrylic modified olefin resin formed by subjecting an olefin resin to acrylic modification, a modified polymer obtained by graft polymerizing alkyl (meth) acrylate as a side chain to the above-mentioned unmodified olefin resin which is the main chain Polymers may be mentioned.
The number of carbon atoms of the alkyl group contained in the above alkyl (meth) acrylate is preferably 1 to 20, more preferably 1 to 16, and still more preferably 1 to 12.
As said alkyl (meth) acrylate, the same thing as the compound which can be selected as a below-mentioned monomer (a1 ') is mentioned, for example.
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等が挙げられる。
Examples of the hydroxyl group-modified olefin resin obtained by subjecting an olefin resin to hydroxyl group modification include a modified polymer obtained by graft polymerizing a hydroxyl group-containing compound to the above-mentioned non-modified olefin resin which is the main chain.
Examples of the above-mentioned hydroxyl group-containing compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate and 4-hydroxybutyl (meth) acrylate; and unsaturated alcohols such as vinyl alcohol and allyl alcohol.
〔アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂〕
 本実施形態において、樹脂組成物(y1)には、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有割合としては、樹脂組成物(y1)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、より好ましくは10質量部未満、更に好ましくは5質量部未満、より更に好ましくは1質量部未満である。
[Resin other than acrylic urethane resin and olefin resin]
In the present embodiment, the resin composition (y1) may contain a resin other than the acrylic urethane resin and the olefin resin as long as the effects of the present invention are not impaired.
Examples of such resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer Cellulose: triacetate cellulose; polycarbonate; polyurethane not corresponding to acrylic urethane resin; polysulfone; polyetheretherketone; polyethersulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; A fluorine resin etc. are mentioned.
The content ratio of resins other than acrylic urethane resins and olefin resins is preferably less than 30 parts by mass, more preferably 20 parts by mass, with respect to 100 parts by mass of the total amount of resins contained in the resin composition (y1). It is less than 10 parts by weight, more preferably less than 5 parts by weight, and even more preferably less than 1 part by weight.
 樹脂組成物(y1)は、膨張性粒子を含むことが好ましい。
 粘着シート(A)は、膨張性粒子を、粘着剤層ではなく、弾性率が高い基材(Y1)に含むことにより、半導体ウエハに代表される被加工物を載置する粘着剤層(X1)の厚さの調整、粘着力、粘弾性率等の制御等、設計の自由度が向上する。これによって得られたチップの位置ズレ及びチップ欠けの発生を抑制できる。さらに、粘着シート(A)を用いる場合、チップは、粘着剤層(X1)の粘着表面に載置されるため、膨張性粒子を含む基材(Y1)とチップとが直に接することがない。これによって、膨張性粒子に由来する残渣及び大きく変形した粘着剤層の一部がチップに付着したり、粘着剤層に形成された凹凸形状がチップに転写されることが抑制され清浄性を保ったまま、チップを次工程に供することができる。
 膨張性粒子の好適な含有量は上記の通りである。
The resin composition (y1) preferably contains expandable particles.
The pressure-sensitive adhesive sheet (A) is a pressure-sensitive adhesive layer (X1) on which a workpiece represented by a semiconductor wafer is placed by including the expandable particles in the base (Y1) having a high elastic modulus instead of the pressure-sensitive adhesive layer. The degree of freedom in design, such as the control of the thickness adjustment and the control of the adhesive strength and the viscoelastic modulus, is improved. The positional deviation of the chip obtained by this and the generation of chipping can be suppressed. Furthermore, when the pressure-sensitive adhesive sheet (A) is used, the chip is placed on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1), so that the base (Y1) containing the expandable particles does not come in direct contact with the chip. . As a result, the residue derived from the expandable particles and a part of the greatly deformed pressure-sensitive adhesive layer adhere to the chip, and the uneven shape formed on the pressure-sensitive adhesive layer is inhibited from being transferred to the chip, maintaining cleanliness. As it is, the chip can be subjected to the next step.
The preferred content of the expandable particles is as described above.
 樹脂組成物(y1)は、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、樹脂組成物(y1)中の前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
The resin composition (y1) may contain a base material additive as needed, as long as the effects of the present invention are not impaired.
Examples of the base material additive include ultraviolet light absorbers, light stabilizers, antioxidants, antistatic agents, slip agents, antiblocking agents, coloring agents and the like. These base material additives may be used alone or in combination of two or more.
When these base material additives are contained, the content of each base material additive is preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin in the resin composition (y1). And more preferably 0.001 to 10 parts by mass.
〔無溶剤型樹脂組成物(y1’)〕
 本実施形態で用いる樹脂組成物(y1)の一態様として、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y1’)が挙げられる。
 無溶剤型樹脂組成物(y1’)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y1’)から形成した塗膜に対して、エネルギー線を照射することで、基材(Y1)を得ることができる。
 無溶剤型樹脂組成物(y1’)に配合される膨張性粒子の種類、形状、配合量(含有量)については、上述のとおりである。
[Solvent-free type resin composition (y1 ')]
As an aspect of the resin composition (y1) used in the present embodiment, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray polymerizable monomer, and the above-mentioned expandable particles are blended. Solvent-free resin composition (y1 ') which does not mix | blend and do not mix | blend a solvent.
In the non-solvent type resin composition (y1 '), although the solvent is not blended, the energy ray polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
The substrate (Y1) can be obtained by irradiating the coating film formed of the solventless resin composition (y1 ') with an energy ray.
The type, shape, and amount (content) of the expandable particles blended in the solventless resin composition (y1 ′) are as described above.
 無溶剤型樹脂組成物(y1’)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50000以下であるが、好ましくは1000~50000、より好ましくは2000~40000、更に好ましくは3000~35000、より更に好ましくは4000~30000である。 The mass average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y1 ') is 50000 or less, preferably 1000 to 50000, more preferably 2000 to 40000, still more preferably 3000 to 35000, Still more preferably, it is 4000 to 30000.
 前記オリゴマーとしては、上述の樹脂組成物(y1)に含まれる樹脂のうち、質量平均分子量(Mw)が50000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましい。
 なお、該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂等も使用し得る。
Among the resins contained in the above-mentioned resin composition (y1), as the above-mentioned oligomer, those having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less may be used. UP) is preferred.
In addition, as this oligomer, the modified olefin resin etc. which have an ethylenically unsaturated group can also be used.
 無溶剤型樹脂組成物(y1’)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y1’)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。 The total content of the oligomer and the energy ray polymerizable monomer in the solventless resin composition (y1 ′) is preferably based on the total amount (100% by mass) of the solventless resin composition (y1 ′). It is 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, still more preferably 70 to 85% by mass.
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。
 これらのエネルギー線重合性モノマーは、単独で用いてもよく、2種以上を併用してもよい。
Examples of energy ray polymerizable monomers include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, adamantane ( Alicyclic polymerizable compounds such as meta) acrylate and tricyclodecane acrylate; aromatic polymerizable compounds such as phenyl hydroxy propyl acrylate, benzyl acrylate and phenol ethylene oxide modified acrylate; tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, N- Examples thereof include heterocyclic polymerizable compounds such as vinyl pyrrolidone and N-vinyl caprolactam.
These energy beam polymerizable monomers may be used alone or in combination of two or more.
 無溶剤型樹脂組成物(y1’)中における、前記オリゴマーと前記エネルギー線重合性モノマーとの含有量比(前記オリゴマー/エネルギー線重合性モノマー)は、質量比で、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。 The content ratio of the oligomer to the energy beam polymerizable monomer (the oligomer / energy beam polymerizable monomer) in the solvent-free resin composition (y1 ′) is preferably 20/80 to 90 by mass ratio. It is preferably 10/10, more preferably 30/70 to 85/15, still more preferably 35/65 to 80/20.
 本実施形態において、無溶剤型樹脂組成物(y1’)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
In the present embodiment, it is preferable that the solventless resin composition (y1 ') further contains a photopolymerization initiator.
By containing a photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with energy rays of relatively low energy.
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
As the photopolymerization initiator, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyrol Nitrile, dibenzyl, diacetyl, 8-chloroanthraquinone and the like can be mentioned.
These photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。 The compounding amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, further preferably 100 parts by mass with respect to the total amount (100 parts by mass) of the oligomer and the energy ray polymerizable monomer. Preferably, it is 0.02 to 3 parts by mass.
 基材(Y1)と積層する他の層との層間密着性を向上させる観点から、基材(Y1)の表面に対して、酸化法、凹凸化法等による表面処理、プライマー処理、易接着処理を施してもよい。酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。 From the viewpoint of improving the interlayer adhesion between the base material (Y1) and other layers to be laminated, the surface treatment of the surface of the base material (Y1) by an oxidation method, a roughening method, etc., a primer treatment, an adhesion treatment You may Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet process), hot air treatment, ozone, ultraviolet irradiation treatment and the like, and examples of the surface roughening method include sand blast method, solvent treatment method, etc. Can be mentioned.
〔基材(Y1)の貯蔵弾性率〕
 基材(Y1)の23℃における貯蔵弾性率E’(23)は、好ましくは1.0×10Pa以上、より好ましくは5.0×10~5.0×1012Pa、更に好ましくは1.0×10~1.0×1012Pa、より更に好ましくは5.0×10~1.0×1011Pa、更になお好ましくは1.0×10~1.0×1010Paである。基材(Y1)の貯蔵弾性率E’(23)が上記範囲内であると、ダイシング中における被加工物の位置ズレ及びチップを転写する際の位置ズレの発生を抑制することができる。
 なお、本明細書において、所定の温度における基材(Y1)の貯蔵弾性率E’は、実施例に記載の方法により測定された値を意味する。
[Storage elastic modulus of substrate (Y1)]
The storage elastic modulus E ′ (23) at 23 ° C. of the substrate (Y1) is preferably 1.0 × 10 6 Pa or more, more preferably 5.0 × 10 6 to 5.0 × 10 12 Pa, further preferably Is more preferably 1.0 × 10 7 to 1.0 × 10 12 Pa, still more preferably 5.0 × 10 7 to 1.0 × 10 11 Pa, still more preferably 1.0 × 10 8 to 1.0 × It is 10 10 Pa. When the storage elastic modulus E ′ (23) of the base material (Y1) is within the above range, it is possible to suppress the occurrence of positional deviation of a workpiece during dicing and positional deviation when transferring a chip.
In addition, in this specification, storage-elastic-modulus E 'of the base material (Y1) in predetermined | prescribed temperature means the value measured by the method as described in an Example.
 基材(Y1)が膨張性基材(Y1-1)であって、膨張性粒子として熱膨張性粒子を含む場合、前記熱膨張性粒子の膨張開始温度(t)における、膨張性基材(Y1-1)の貯蔵弾性率E’(t)が、1.0×10Pa以下であることが好ましい。これにより熱膨張性粒子を膨張させる温度において、膨張性基材(Y1-1)が熱膨張性粒子の体積膨張に追随して変形し易くなり、粘着剤層(X1)の粘着表面に凹凸を形成し易くなる。これによって、小さい外力によってチップから分離することができる。
 上記観点から、膨張性基材(Y1-1)の貯蔵弾性率E’(t)は、より好ましくは9.0×10Pa以下、更に好ましくは8.0×10Pa以下、より更に好ましくは6.0×10Pa以下、更になお好ましくは4.0×10Pa以下である。また、膨張した熱膨張性粒子の流動を抑制し、粘着剤層(X1)の粘着表面に形成される凹凸の形状維持性を向上させ、分離性をより向上させる観点から、膨張性基材(Y1-1)の貯蔵弾性率E’(t)は、好ましくは1.0×10Pa以上、より好ましくは1.0×10Pa以上、更に好ましくは1.0×10Pa以上である。
When the substrate (Y1) is an expandable substrate (Y1-1) and the thermally expandable particles are contained as expandable particles, the expandable substrate (at the expansion start temperature (t) of the thermally expandable particles) The storage elastic modulus E ′ (t) of Y1-1) is preferably 1.0 × 10 7 Pa or less. As a result, at the temperature at which the thermally expandable particles are expanded, the expandable base material (Y1-1) easily deforms following the volumetric expansion of the thermally expandable particles, and asperities are formed on the adhesive surface of the pressure-sensitive adhesive layer (X1). It becomes easy to form. This allows separation from the chip with a small external force.
From the above viewpoint, the storage elastic modulus E ′ (t) of the expandable base material (Y1-1) is more preferably 9.0 × 10 6 Pa or less, still more preferably 8.0 × 10 6 Pa or less, and further more Preferably it is 6.0 * 10 < 6 > Pa or less, More preferably, it is 4.0 * 10 < 6 > Pa or less. In addition, from the viewpoint of suppressing the flow of the expanded thermally expandable particles, improving the shape maintainability of the unevenness formed on the adhesive surface of the pressure-sensitive adhesive layer (X1), and further improving the separability, the expandable substrate ( The storage elastic modulus E ′ (t) of Y1-1) is preferably 1.0 × 10 3 Pa or more, more preferably 1.0 × 10 4 Pa or more, still more preferably 1.0 × 10 5 Pa or more is there.
(非膨張性基材(Y1’))
 粘着シート(A)は、膨張性基材(Y1-1)の一方の面に粘着剤層(X1)を有し、他方の面に非膨張性基材(Y1’)を有していてもよい。
 本明細書における「非膨張性基材」とは、粘着シート(A)に含まれる膨張性粒子が膨張する条件で処理した際、下記式から算出される体積変化率が5体積%未満であるものと定義する。
 体積変化率(%)=(処理後の前記層の体積-処理前の前記層の体積)/処理前の前記層の体積×100
 上記式から算出される非膨張性基材(Y1’)の体積変化率(%)は、好ましくは2体積%未満、より好ましくは1体積%未満、更に好ましくは0.1体積%未満、より更に好ましくは0.01体積%未満である。
 膨張性粒子が膨張する条件は、膨張性粒子が熱膨張性粒子である場合は、膨張開始温度(t)で3分間の加熱処理を施す条件である。
 非膨張性基材(Y1’)は、膨張性粒子を含有してもよいが、その含有量は少ないほど好ましく、非熱膨張性基材(Y1’)の全質量(100質量%)に対して、通常、3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満であり、膨張性粒子を含有しないことが最も好ましい。
(Non-intumescent base material (Y1 '))
The pressure-sensitive adhesive sheet (A) has the pressure-sensitive adhesive layer (X1) on one side of the expandable base material (Y1-1) and has the non-expandable base (Y1 ′) on the other side. Good.
The term "non-intumescent base material" in the present specification means that the volume change rate calculated from the following formula is less than 5% by volume when treated under conditions where the expandable particles contained in the pressure-sensitive adhesive sheet (A) expand. It defines as a thing.
Volume change rate (%) = (volume of the layer after treatment−volume of the layer before treatment) / volume of the layer before treatment × 100
The volume change rate (%) of the non-intumescent substrate (Y1 ') calculated from the above equation is preferably less than 2% by volume, more preferably less than 1% by volume, still more preferably less than 0.1% by volume More preferably, it is less than 0.01% by volume.
The conditions under which the expandable particles expand are the conditions under which the heat treatment for 3 minutes is performed at the expansion start temperature (t) when the expandable particles are thermally expandable particles.
The non-intumescent substrate (Y1 ') may contain intumescent particles, but its content is preferably as low as possible, relative to the total mass (100% by mass) of the non-thermally-expandable substrate (Y1') Generally less than 3% by weight, preferably less than 1% by weight, more preferably less than 0.1% by weight, still more preferably less than 0.01% by weight, still more preferably less than 0.001% by weight, Most preferably, they do not contain sexual particles.
 非膨張性基材(Y1’)の形成材料としては、例えば、紙材、樹脂、金属等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非膨張性基材(Y1’)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
As a forming material of non-intumescent base material (Y1 '), a paper material, resin, a metal etc. are mentioned, for example.
Examples of the paper material include thin paper, medium paper, high quality paper, impregnated paper, coated paper, art paper, sulfuric acid paper, glassine paper and the like.
Examples of the resin include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polyethylene terephthalate, poly Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acryl-modified polyurethane; polymethylpentene; polysulfone; Polyether sulfone; Polyphenylene sulfide; Polyimide resin such as polyether imide and polyimide; Polyamide resin; Acrylic resin; Tsu Motokei resin, and the like.
Examples of the metal include aluminum, tin, chromium, titanium and the like.
These forming materials may be comprised by 1 type, and may use 2 or more types together.
As a non-intumescent base material (Y1 ') using two or more kinds of forming materials in combination, a paper material was laminated with a thermoplastic resin such as polyethylene, or a metal film was formed on the surface of a resin film or sheet containing resin. And the like.
In addition, as a formation method of a metal layer, the method of vapor-depositing said metal by PVD methods, such as vacuum evaporation, sputtering, and ion plating, for example, or sticking metal foil consisting of said metal using a general adhesive And the like.
 粘着シート(A)が、非膨張性基材(Y1’)を有する場合、膨張性粒子を膨張させる前における、膨張性基材(Y1-1)と非膨張性基材(Y1’)との厚さ比〔(Y1-1)/(Y1’)〕は、好ましくは0.02~200、より好ましくは0.03~150、更に好ましくは0.05~100である。 When the pressure-sensitive adhesive sheet (A) has a non-intumescent substrate (Y1 '), the expandable sheet (Y1-1) and the non-intumescent substrate (Y1') are used before the intumescent particles are expanded. The thickness ratio [(Y1-1) / (Y1 ')] is preferably 0.02 to 200, more preferably 0.03 to 150, and still more preferably 0.05 to 100.
 非膨張性基材(Y1’)と積層する他の層との層間密着性を向上させる観点から、非膨張性基材(Y1’)が樹脂を含む場合、非膨張性基材(Y1’)の表面に対しても、上述の基材(Y1)と同様に、酸化法、凹凸化法等による表面処理、プライマー処理、易接着処理を施してもよい。
 非膨張性基材(Y1’)が樹脂を含む場合、該樹脂と共に、樹脂組成物(y1)にも含有し得る、上述の基材用添加剤を含有してもよい。
In the case where the non-intumescent substrate (Y1 ') contains a resin, from the viewpoint of improving the interlayer adhesion between the non-intumescent substrate (Y1') and other layers laminated, the non-intumescent substrate (Y1 ') In the same manner as the above-mentioned base material (Y1), the surface treatment by the oxidation method, the surface roughening method or the like, the primer treatment or the easy adhesion treatment may be applied to the surface of the above.
When the non-intumescent substrate (Y1 ') contains a resin, it may contain the above-mentioned additive for a substrate that can be contained in the resin composition (y1) together with the resin.
(粘着剤層(X1))
 粘着剤層(X1)は、粘着性を有する層である。粘着剤層(X1)は、粘着性樹脂を含有し、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
(Pressure-sensitive adhesive layer (X1))
An adhesive layer (X1) is a layer which has adhesiveness. The pressure-sensitive adhesive layer (X1) contains a pressure-sensitive adhesive resin, and may optionally contain an additive for pressure-sensitive adhesive such as a crosslinking agent, a tackifier, a polymerizable compound, and a polymerization initiator.
 粘着剤層(X1)の粘着表面の粘着力は、膨張性粒子が膨張する前の23℃において、好ましくは0.1~10.0N/25mm、より好ましくは0.2~8.0N/25mm、更に好ましくは0.4~6.0N/25mm、より更に好ましくは0.5~4.0N/25mmである。前記粘着力が0.1N/25mm以上であると、被加工物を十分に固定することができ、ダイシング中における被加工物の位置ズレの発生を抑制することができる。一方、該粘着力が10.0N/25mm以下であると、チップと分離する際に、わずかな力で容易に分離することができる。
 なお、上記の粘着力は、実施例に記載の方法により測定された値を意味する。
The adhesive strength of the adhesive surface of the adhesive layer (X1) is preferably 0.1 to 10.0 N / 25 mm, more preferably 0.2 to 8.0 N / 25 mm at 23 ° C. before the expandable particles expand. More preferably, it is 0.4 to 6.0 N / 25 mm, still more preferably 0.5 to 4.0 N / 25 mm. A workpiece can be fully fixed as the said adhesive force is 0.1 N / 25 mm or more, and generation | occurrence | production of the positional offset of a workpiece during dicing can be suppressed. On the other hand, when the adhesive strength is 10.0 N / 25 mm or less, when separating from the chip, it can be easily separated with a slight force.
In addition, said adhesive force means the value measured by the method as described in an Example.
 粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、23℃において、好ましくは1.0×10~1.0×10Pa、より好ましくは5.0×10~5.0×10Pa、更に好ましくは1.0×10~1.0×10Paである。粘着剤層(X1)の貯蔵せん断弾性率G’(23)が1.0×10Pa以上であると、チップと分離する際にチップの位置ズレを防止することができる。一方、粘着剤層(X1)の貯蔵せん断弾性率G’(23)が1.0×10Pa以下であると、膨張した膨張性粒子による凹凸が粘着表面に形成され易く、わずかな力で容易に分離することができる。
 粘着シート(A)が複数の粘着剤層を有する粘着シートである場合、チップが貼付される粘着剤層の貯蔵せん断弾性率G’(23)が上記範囲内であることが好ましく、基材(Y1)よりもチップが貼付される側の総ての粘着剤層の貯蔵せん断弾性率G’(23)が上記範囲内であることが好ましい。
 なお、本明細書において、粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、実施例に記載の方法により測定された値を意味する。
The storage shear modulus G ′ (23) of the pressure-sensitive adhesive layer (X1) is preferably 1.0 × 10 4 to 1.0 × 10 8 Pa, more preferably 5.0 × 10 4 to 5 at 23 ° C. .0 × 10 7 Pa, more preferably 1.0 × 10 5 ~ 1.0 × 10 7 Pa. When the storage shear elastic modulus G ′ (23) of the pressure-sensitive adhesive layer (X1) is 1.0 × 10 4 Pa or more, positional deviation of the chip can be prevented when separating from the chip. On the other hand, when the storage shear modulus G '(23) of the pressure-sensitive adhesive layer (X1) is 1.0 × 10 8 Pa or less, unevenness due to the expanded expandable particles is easily formed on the pressure-sensitive adhesive surface, with a slight force. It can be easily separated.
When the pressure-sensitive adhesive sheet (A) is a pressure-sensitive adhesive sheet having a plurality of pressure-sensitive adhesive layers, it is preferable that the storage shear elastic modulus G ′ (23) of the pressure-sensitive adhesive layer to which the chip is attached be within the above range. It is preferable that the storage shear elastic modulus G '(23) of all the pressure-sensitive adhesive layers on the side to which the chip is attached is more than the above-mentioned range than Y1).
In addition, in this specification, storage shear elastic modulus G '(23) of an adhesive layer (X1) means the value measured by the method as described in an Example.
 粘着剤層(X1)の厚さは、優れた粘着力を発現させる観点、及び、加熱処理による膨張性基材中の膨張性粒子の膨張により、形成される粘着剤層の表面に凹凸を形成し易くする観点から、好ましくは1~60μm、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。 The thickness of the pressure-sensitive adhesive layer (X1) forms asperities on the surface of the pressure-sensitive adhesive layer to be formed by expansion of the expandable particles in the expandable base material by heat treatment, from the viewpoint of expressing excellent adhesion. From the viewpoint of facilitating operation, it is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
 粘着剤層(X1)の厚さに対する基材(Y1)の厚さの比(基材(Y1)/粘着剤層(X1))は、チップの位置ズレを防止する観点から、23℃において、好ましくは0.2以上、より好ましくは0.5以上、更に好ましくは1.0以上、より更に好ましくは5.0以上であり、また、分離する際に、わずかな力で容易に分離し得る粘着シートとする観点から、好ましくは1000以下、より好ましくは200以下、更に好ましくは60以下、より更に好ましくは30以下である。
 粘着剤層(X1)の厚さは、実施例に記載の方法により測定された値を意味する。
The ratio of the thickness of the substrate (Y1) to the thickness of the pressure-sensitive adhesive layer (X1) (substrate (Y1) / pressure-sensitive adhesive layer (X1)) is 23 ° C. from the viewpoint of preventing positional deviation of the chip It is preferably 0.2 or more, more preferably 0.5 or more, more preferably 1.0 or more, still more preferably 5.0 or more, and can be easily separated by a slight force when it is separated. From the viewpoint of forming a pressure-sensitive adhesive sheet, it is preferably 1000 or less, more preferably 200 or less, further preferably 60 or less, and still more preferably 30 or less.
The thickness of the pressure-sensitive adhesive layer (X1) means a value measured by the method described in the examples.
 粘着剤層(X1)は、粘着性樹脂を含む粘着剤組成物(x1)から形成することができる。以下、粘着剤組成物(x1)に含まれ得る各成分について説明する。 The pressure-sensitive adhesive layer (X1) can be formed from a pressure-sensitive adhesive composition (x1) containing a pressure-sensitive adhesive resin. Hereinafter, each component which may be contained in an adhesive composition (x1) is demonstrated.
〔粘着性樹脂〕
 粘着剤層(X1)の形成材料である粘着性樹脂は、該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であることが好ましい。粘着性樹脂の質量平均分子量(Mw)は、粘着力の向上の観点から、より好ましくは1万~200万、更に好ましくは2万~150万、より更に好ましくは3万~100万である。
[Adhesive resin]
It is preferable that the adhesive resin which is a formation material of an adhesive layer (X1) has adhesiveness by this resin alone, and is a polymer whose mass average molecular weight (Mw) is 10,000 or more. The mass average molecular weight (Mw) of the adhesive resin is more preferably 10,000 to 2,000,000, further preferably 20,000 to 1,500,000 and still more preferably 30,000 to 1,000,000, from the viewpoint of improving the adhesive strength.
 粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Examples of the adhesive resin include rubber resins such as acrylic resins, urethane resins and polyisobutylene resins, polyester resins, olefin resins, silicone resins, polyvinyl ether resins and the like.
These tackifying resins may be used alone or in combination of two or more.
Moreover, when these adhesive resins are copolymers which have 2 or more types of structural units, the form of this copolymer is not specifically limited, A block copolymer, a random copolymer, and a graft co It may be any of polymers.
 粘着性樹脂は、上記の粘着性樹脂の側鎖に重合性官能基を導入した、エネルギー線硬化型の粘着性樹脂であってもよい。
 前記重合性官能基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 また、エネルギー線としては、紫外線、電子線等が挙げられるが、紫外線が好ましい。
The adhesive resin may be an energy ray-curable adhesive resin in which a polymerizable functional group is introduced into the side chain of the above-mentioned adhesive resin.
Examples of the polymerizable functional group include (meth) acryloyl group and vinyl group.
Moreover, although an ultraviolet-ray, an electron beam, etc. are mentioned as an energy ray, an ultraviolet-ray is preferable.
 粘着性樹脂の含有量は、粘着剤組成物(x1)の有効成分の全量(100質量%)に対して、好ましくは30~99.99質量%、より好ましくは40~99.95質量%、更に好ましくは50~99.90質量%、より更に好ましくは55~99.80質量%、更になお好ましくは60~99.50質量%である。
 なお、本明細書の以下の記載において、「粘着剤組成物の有効成分の全量に対する各成分の含有量」は、「該粘着剤組成物から形成される粘着剤層中の各成分の含有量」と同義である。
The content of the adhesive resin is preferably 30 to 99.99% by mass, more preferably 40 to 99.95% by mass, with respect to the total amount (100% by mass) of the active components of the pressure-sensitive adhesive composition (x1). More preferably, it is 50 to 99.90% by mass, still more preferably 55 to 99.80% by mass, still more preferably 60 to 99.50% by mass.
In the following description of the present specification, “content of each component relative to the total amount of the active component of the pressure-sensitive adhesive composition” is “content of each component in the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition Is the same as
 粘着性樹脂は、優れた粘着力を発現させると共に、分離する際には粘着表面に膨張性粒子の膨張による凹凸を形成し易くして分離性を向上させた粘着シートとする観点から、アクリル系樹脂を含むことが好ましい。
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物(x1)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。
The tackifying resin is an acrylic resin from the viewpoint of expressing excellent tackiness and forming an unevenness due to expansion of the expansive particles on the tacky surface when separating to make the tackiness sheet having improved separability. It is preferred to contain a resin.
The content ratio of the acrylic resin in the adhesive resin is preferably 30 to 100% by mass, more preferably 50 based on the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x1). It is -100% by mass, more preferably 70-100% by mass, still more preferably 85-100% by mass.
〔アクリル系樹脂〕
 粘着性樹脂として使用し得る、アクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられ、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。
[Acrylic resin]
As an acrylic resin that can be used as a tacky resin, for example, a polymer including a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, a (meth) acrylate having a cyclic structure And polymers containing structural units derived therefrom, and structural units (a1) derived from alkyl (meth) acrylates (a1 ′) (hereinafter also referred to as “monomers (a1 ′)”) and functional group-containing monomers (a2) The acrylic copolymer (A1) having a structural unit (a2) derived from ') (hereinafter also referred to as "monomer (a2')") is more preferable.
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着特性の向上の観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートが好ましい。
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。
The number of carbon atoms of the alkyl group of the monomer (a1 ′) is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and still more preferably 4 to 8 from the viewpoint of improving adhesion properties. It is.
In addition, the alkyl group which a monomer (a1 ') has may be a linear alkyl group, and a branched alkyl group may be sufficient.
As the monomer (a1 ′), for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( Meta) acrylate, stearyl (meth) acrylate, etc. are mentioned.
These monomers (a1 ′) may be used alone or in combination of two or more.
As the monomer (a1 ′), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable.
The content of the structural unit (a1) is preferably 50 to 99.9 mass%, more preferably 60 to 99.0 mass based on the total structural units (100 mass%) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, still more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましい。
 水酸基含有モノマーとしては、例えば、上述の水酸基含有化合物と同じものが挙げられる。
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~40質量%、より好ましくは0.5~35質量%、更に好ましくは1.0~30質量%、より更に好ましくは3.0~25質量%である。
As a functional group which a monomer (a2 ') has, a hydroxyl group, a carboxy group, an amino group, an epoxy group etc. are mentioned, for example.
That is, as a monomer (a2 '), a hydroxyl-containing monomer, a carboxy-group containing monomer, an amino-group containing monomer, an epoxy-group containing monomer etc. are mentioned, for example.
These monomers (a2 ′) may be used alone or in combination of two or more.
Among these, as the monomer (a2 ′), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable.
As a hydroxyl-containing monomer, the same thing as the above-mentioned hydroxyl-containing compound is mentioned, for example.
Examples of carboxy group-containing monomers include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; and ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and anhydrides thereof And 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
The content of the structural unit (a2) is preferably 0.1 to 40% by mass, more preferably 0.5 to 35% by mass, relative to the total constituent units (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, and still more preferably 3.0 to 25% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from another monomer (a3 ′) other than the monomers (a1 ′) and (a2 ′).
In the acrylic copolymer (A1), the content of the structural units (a1) and (a2) is preferably 70% of the total structural units (100 mass%) of the acrylic copolymer (A1). It is about -100% by mass, more preferably 80-100% by mass, still more preferably 90-100% by mass, still more preferably 95-100% by mass.
 モノマー(a3’)としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、N-ビニルピロリドン等が挙げられる。 Examples of the monomer (a3 ′) include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene-based monomers such as butadiene, isoprene and chloroprene; cyclohexyl (meth) acrylate, Has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, imide (meth) acrylate (Meth) acrylate; styrene, α-methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloyl Ruhorin, N- vinylpyrrolidone and the like.
 アクリル系共重合体(A1)は、側鎖に重合性官能基を導入した、エネルギー線硬化型のアクリル系共重合体としてもよい。該重合性官能基及び該エネルギー線としては、上述のとおりである。なお、重合性官能基は、上述の構成単位(a1)及び(a2)を有するアクリル系共重合体と、該アクリル系共重合体の構成単位(a2)が有する官能基と結合可能な置換基と重合性官能基とを有する化合物とを反応させることで導入することができる。
 前記化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。
The acrylic copolymer (A1) may be an energy ray-curable acrylic copolymer in which a polymerizable functional group is introduced into the side chain. The polymerizable functional group and the energy ray are as described above. The polymerizable functional group is a substituent capable of binding to the acrylic copolymer having the above-mentioned structural units (a1) and (a2) and the functional group possessed by the structural unit (a2) of the acrylic copolymer. It can introduce | transduce by making the compound which has, and a polymerizable functional group react.
Examples of the compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate and the like.
 アクリル系樹脂の質量平均分子量(Mw)は、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, further preferably 350,000 to 1,200,000, and still more preferably 500,000 to 1,100,000.
〔架橋剤〕
 粘着剤組成物(x1)は、上述のアクリル系共重合体(A1)のような官能基を含有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 該架橋剤は、官能基を有する粘着性樹脂と反応して、該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。
[Crosslinking agent]
When the pressure-sensitive adhesive composition (x1) contains a pressure-sensitive resin containing a functional group such as the above-mentioned acrylic copolymer (A1), it is preferable to further contain a crosslinking agent.
The crosslinking agent reacts with the adhesive resin having a functional group to crosslink the adhesive resins with the functional group as a crosslinking origin.
As a crosslinking agent, an isocyanate type crosslinking agent, an epoxy type crosslinking agent, an aziridine type crosslinking agent, a metal chelate type crosslinking agent etc. are mentioned, for example.
These crosslinking agents may be used alone or in combination of two or more.
Among these crosslinking agents, isocyanate-based crosslinking agents are preferable from the viewpoint of enhancing the cohesion and improving the adhesiveness, and from the viewpoint of availability and the like.
The content of the crosslinking agent is appropriately adjusted according to the number of functional groups possessed by the adhesive resin, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having a functional group. The amount is more preferably 0.03 to 7 parts by mass, still more preferably 0.05 to 5 parts by mass.
〔粘着付与剤〕
 粘着剤組成物(x1)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10000、より好ましくは500~8000、更に好ましくは800~5000である。
[Tackifier]
The pressure-sensitive adhesive composition (x1) may further contain a tackifier from the viewpoint of further improving the adhesion.
In the present specification, the term "tackifier" refers to a component that aids in improving the adhesive strength of the above-mentioned tacky resin, and refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000, It is to be distinguished from the sexing resin.
The mass average molecular weight (Mw) of the tackifier is preferably 400 to 10000, more preferably 500 to 8000, and still more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。 The tackifier is obtained, for example, by copolymerizing a rosin resin, a terpene resin, a styrene resin, a penten formed by thermal decomposition of petroleum naphtha, a C5 fraction such as isoprene, piperine, 1,3-pentadiene and the like. C5 petroleum resins, indene formed by thermal decomposition of petroleum naphtha, C9 petroleum resins obtained by copolymerizing C9 fractions such as vinyl toluene, and hydrogenated resins obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C., more preferably 65 to 160 ° C., still more preferably 70 to 150 ° C.
In the present specification, the "softening point" of the tackifier means a value measured in accordance with JIS K 2531.
The tackifier may be used alone or in combination of two or more different in softening point, structure and the like. When two or more types of tackifiers are used, it is preferable that the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
 粘着付与剤の含有量は、粘着剤組成物(x1)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.05~55質量%、更に好ましくは0.1~50質量%、より更に好ましくは0.5~45質量%、更になお好ましくは1.0~40質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.05 to 55% by mass, based on the total amount (100% by mass) of the active ingredients of the pressure-sensitive adhesive composition (x1). More preferably, it is 0.1 to 50% by mass, still more preferably 0.5 to 45% by mass, and still more preferably 1.0 to 40% by mass.
〔光重合開始剤〕
 本実施形態において、粘着剤組成物(x1)が、粘着性樹脂として、エネルギー線硬化型の粘着性樹脂を含む場合、さらに光重合開始剤を含有することが好ましい。
 エネルギー線硬化型の粘着性樹脂及び光重合開始剤を含有する粘着剤組成物とすることで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させ、粘着力を所望の範囲に調整することが可能となる。
 なお、光重合開始剤としては、上述の無溶剤型樹脂組成物(y1)に配合されるものと同じものが挙げられる。
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。
[Photopolymerization initiator]
In the present embodiment, when the pressure-sensitive adhesive composition (x1) contains an energy ray-curable adhesive resin as the adhesive resin, it is preferable to further contain a photopolymerization initiator.
By using a pressure-sensitive adhesive composition containing an energy ray-curable adhesive resin and a photopolymerization initiator, the curing reaction sufficiently proceeds even by irradiation of energy rays of relatively low energy, and adhesion is desired. It becomes possible to adjust to the range.
In addition, as a photoinitiator, the same thing as what is mix | blended with the above-mentioned non-solvent type resin composition (y1) is mentioned.
The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and still more preferably 0.1 parts by mass with respect to 100 parts by mass of the energy ray-curable adhesive resin. It is 05 to 2 parts by mass.
〔粘着剤用添加剤〕
 本実施形態において、粘着剤層(X1)の形成材料である粘着剤組成物(x1)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
 粘着剤層(X1)は、膨張性粒子を含有していてもよい。その含有量は、粘着性樹脂100質量部に対して、好ましくは5質量部以下が好ましく、2質量部以下がより好ましく、含有しないことが最も好ましい。
[Additives for pressure sensitive adhesive]
In the embodiment, the pressure-sensitive adhesive composition (x1), which is a forming material of the pressure-sensitive adhesive layer (X1), is used in a general pressure-sensitive adhesive other than the above-mentioned additives as long as the effects of the present invention are not impaired. May contain an additive for pressure-sensitive adhesive.
Examples of such an adhesive additive include an antioxidant, a softener (plasticizer), a rust inhibitor, a pigment, a dye, a retarder, a reaction accelerator (catalyst), an ultraviolet absorber, and the like.
These pressure-sensitive adhesive additives may be used alone or in combination of two or more.
When the adhesive additive is contained, the content of each adhesive additive is preferably 0.0001 to 20 parts by mass, and more preferably 0.001 to 100 parts by mass of the adhesive resin. 10 parts by mass.
The pressure-sensitive adhesive layer (X1) may contain expandable particles. The content is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, and most preferably not contained with respect to 100 parts by mass of the adhesive resin.
(剥離材)
 任意で用いられる剥離材としては、両面剥離処理をされた剥離シート、片面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
 剥離材用の基材としては、例えば、上質紙、グラシン紙、クラフト紙等の紙類;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等のプラスチックフィルム;等が挙げられる。
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。
 剥離材の厚さは、特に制限はないが、好ましくは10~200μm、より好ましくは25~170μm、更に好ましくは35~80μmである。
(Peeling material)
As the peeling material optionally used, a peeling sheet subjected to double-sided peeling treatment, a peeling sheet subjected to single-sided peeling treatment and the like are used, and a substrate obtained by applying a peeling agent on a substrate for a peeling material can be mentioned.
Examples of substrates for release materials include papers such as high-quality paper, glassine paper, kraft paper, etc .; polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polypropylene resin, polyethylene resin, etc. Plastic films, such as an olefin resin film ;; etc. are mentioned.
Examples of release agents include silicone resins, olefin resins, isoprene resins, rubber elastomers such as butadiene resins, long chain alkyl resins, alkyd resins, fluorine resins, and the like.
The thickness of the release material is not particularly limited, but is preferably 10 to 200 μm, more preferably 25 to 170 μm, and still more preferably 35 to 80 μm.
<粘着シート(A)の製造方法>
 粘着シート(A)の製造方法としては、特に制限はなく、例えば、下記工程(Ia)及び(Ib)を有する製造方法(I)が挙げられる。
 工程(Ia):剥離材の剥離処理面上に、基材(Y1)の形成材料である樹脂組成物(y1)を塗布して塗膜を形成し、該塗膜を乾燥又はUV硬化し、基材(Y1)を形成する工程。
 工程(Ib):形成した基材(Y1)の表面上に、粘着剤層(X1)の形成材料である粘着剤組成物(x1)を塗布して塗膜を形成し、該塗膜を乾燥し、粘着剤層(X1)を形成する工程。
<Production Method of Adhesive Sheet (A)>
There is no restriction | limiting in particular as a manufacturing method of an adhesive sheet (A), For example, the manufacturing method (I) which has following process (Ia) and (Ib) is mentioned.
Step (Ia): A resin composition (y1), which is a forming material of the substrate (Y1), is applied onto the release-treated surface of the release material to form a coating, and the coating is dried or UV cured. Process of forming a base material (Y1).
Step (Ib): The pressure-sensitive adhesive composition (x1), which is a material for forming the pressure-sensitive adhesive layer (X1), is coated on the surface of the formed substrate (Y1) to form a coating, and the coating is dried. And forming a pressure-sensitive adhesive layer (X1).
 粘着シート(A)の別の製造方法としては、例えば、下記工程(IIa)~(IIc)を有する製造方法(II)が挙げられる。
 工程(IIa):剥離材の剥離処理面上に、基材(Y1)の形成材料である樹脂組成物(y1)を塗布して塗膜を形成し、該塗膜を乾燥又はUV硬化し、基材(Y1)を形成する工程。
 工程(IIb):剥離材の剥離処理面上に、粘着剤層(X1)の形成材料である粘着剤組成物(x1)を塗布して塗膜を形成し、該塗膜を乾燥し、粘着剤層を形成する工程。
 工程(IIc):工程(IIa)で形成した基材(Y1)の表面と、工程(IIb)で形成した粘着剤層(X1)の表面とを貼り合せる工程。
As another method for producing the pressure-sensitive adhesive sheet (A), for example, the production method (II) having the following steps (IIa) to (IIc) can be mentioned.
Step (IIa): A resin composition (y1), which is a forming material of the substrate (Y1), is applied onto the release-treated surface of the release material to form a coating, and the coating is dried or UV cured. Process of forming a base material (Y1).
Step (IIb): The pressure-sensitive adhesive composition (x1), which is a material for forming the pressure-sensitive adhesive layer (X1), is applied onto the release-treated surface of the release material to form a coating, and the coating is dried and adhered. Forming an agent layer.
Step (IIc): a step of bonding the surface of the base material (Y1) formed in step (IIa) and the surface of the pressure-sensitive adhesive layer (X1) formed in step (IIb).
 上記製造方法(I)及び(II)において、樹脂組成物(y1)及び粘着剤組成物(x1)は、希釈溶媒を配合し、溶液の形態としてもよい。
 塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
In the above production methods (I) and (II), the resin composition (y1) and the pressure-sensitive adhesive composition (x1) may be mixed with a diluting solvent to form a solution.
Examples of the coating method include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
 なお、製造方法(I)及び製造方法(II)における乾燥又はUV照射は、膨張性粒子が膨張しない条件を適宜選択して実施することが好ましい。例えば、熱膨張性粒子を含有する樹脂組成物(y1)を乾燥して基材(Y1)を形成する場合は、乾燥温度は熱膨張性粒子の膨張開始温度(t)未満で行うことが好ましい。
 また、粘着シート(A)が、膨張性基材(Y1-1)と非膨張性基材(Y1’)とを有する場合は、前記工程(Ia)及び(IIa)において、樹脂組成物(y1)は、予め形成した非膨張性基材(Y1’)の上に塗布すればよい。非膨張性基材(Y’)は、例えば、非膨張性基材(Y’)の形成材料である樹脂組成物を用いて、前記工程(Ia)及び(IIa)と同様の操作で形成することができる。
The drying or UV irradiation in the production method (I) and the production method (II) is preferably carried out by appropriately selecting conditions under which the expandable particles do not expand. For example, when the resin composition (y1) containing thermally expandable particles is dried to form a substrate (Y1), the drying temperature is preferably lower than the expansion start temperature (t) of the thermally expandable particles .
In addition, when the pressure-sensitive adhesive sheet (A) has an intumescent substrate (Y1-1) and a non-intumescent substrate (Y1 '), the resin composition (y1) may be used in the steps (Ia) and (IIa). ) May be applied on a preformed non-intumescent substrate (Y1 ′). The non-intumescent substrate (Y ') is formed, for example, using the resin composition which is a forming material of the non-intumescent substrate (Y') by the same operation as the steps (Ia) and (IIa). be able to.
[本実施形態に係る半導体装置の製造方法]
 次に、本実施形態に係る半導体装置の製造方法の各工程について説明する。
 本実施形態に係る半導体装置の製造方法は、下記工程(1)~(3)をこの順で有する。
 工程(1):粘着シート(A)の粘着剤層(X1)に被加工物を貼付した後、該被加工物をダイシングし、粘着剤層(X1)の上に個片化した複数のチップを得る工程。
 工程(2):基材(Y2)及び粘着剤層(X2)を有する粘着シート(B)を用いて、前記複数のチップの粘着剤層(X1)と接する面とは反対側の面に、粘着シート(B)の粘着剤層(X2)を貼付する工程。
 工程(3):前記膨張性粒子を膨張させて、粘着シート(B)に貼付した前記複数のチップと粘着シート(A)とを分離する工程。
 以下、被加工物として半導体ウエハを使用する例について、図面を参照しながら説明する。
[Method of Manufacturing Semiconductor Device According to Present Embodiment]
Next, each process of the manufacturing method of the semiconductor device concerning this embodiment is explained.
The method of manufacturing a semiconductor device according to the present embodiment includes the following steps (1) to (3) in this order.
Step (1): A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1) To get
Step (2): using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
Step (3): a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
Hereinafter, an example of using a semiconductor wafer as a workpiece will be described with reference to the drawings.
<工程(1)>
 図2(a)及び(b)には、粘着シート(A)の粘着剤層(X1)に半導体ウエハWを貼付した後、半導体ウエハWをダイシングし、粘着剤層(X1)の上に個片化した複数の半導体チップCPを得る工程(1)を説明する断面図が示されている。
<Step (1)>
2A and 2B, after the semiconductor wafer W is attached to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), the semiconductor wafer W is diced to form individual pieces on the pressure-sensitive adhesive layer (X1). A cross-sectional view for explaining the step (1) of obtaining a plurality of singulated semiconductor chips CP is shown.
 半導体ウエハWは、例えば、シリコンウエハであってもよいし、ガリウム、砒素等の化合物半導体ウエハであってもよい。
 半導体ウエハWは、その回路面W1に回路W2を有する。回路W2を形成する方法としては、例えば、エッチング法、リフトオフ法等が挙げられる。なお、本明細書中、回路面W1と反対側の面を「チップ裏面」と称することがある。
 半導体ウエハWは、予め所定の厚さに研削して、チップ裏面を露出させて粘着シート(A)に貼付されている。半導体ウエハWを研削する方法としては、例えば、グラインダー等を用いる公知の方法が挙げられる。
 粘着シート(A)には、半導体ウエハWを保持する目的でリングフレームを貼付してもよい。この場合、粘着シート(A)の粘着剤層(X1)の上に、リングフレーム及び半導体ウエハWを載置し、これらを軽く押圧し、固定する。
 次いで、粘着シート(A)に保持された半導体ウエハWは、ダイシングにより個片化され、複数の半導体チップCPが形成される。ダイシングには、例えば、ダイシングソー、レーザー、プラズマダイシング、ステルスダイシング等の切断手段が用いられる。ダイシングの際の切断深さは、半導体ウエハの厚さを考慮して適宜設定すればよいが、例えば、粘着剤層(X1)の上面から2μm以内の深さとすることができる。
 なお、本工程を後述する別のダイシング工程と区別するため「第一のダイシング工程」と称する場合がある。
 工程(1)は、半導体ウエハWをダイシングした後、得られた複数の半導体チップCP同士の間隔を広げるために、粘着シート(A)を引き伸ばす処理を含んでいてもよい。
The semiconductor wafer W may be, for example, a silicon wafer, or a compound semiconductor wafer such as gallium or arsenic.
The semiconductor wafer W has a circuit W2 on its circuit surface W1. Examples of a method of forming the circuit W2 include an etching method, a lift-off method, and the like. In the present specification, the surface opposite to the circuit surface W1 may be referred to as "chip back surface".
The semiconductor wafer W is ground to a predetermined thickness in advance to expose the chip back surface and is attached to the adhesive sheet (A). Examples of the method for grinding the semiconductor wafer W include known methods using a grinder or the like.
A ring frame may be attached to the adhesive sheet (A) for the purpose of holding the semiconductor wafer W. In this case, the ring frame and the semiconductor wafer W are placed on the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), and these are lightly pressed and fixed.
Next, the semiconductor wafer W held by the adhesive sheet (A) is singulated by dicing to form a plurality of semiconductor chips CP. For dicing, cutting means such as dicing saw, laser, plasma dicing, stealth dicing and the like are used, for example. The cutting depth in dicing may be set as appropriate in consideration of the thickness of the semiconductor wafer, but can be, for example, a depth of 2 μm or less from the upper surface of the pressure-sensitive adhesive layer (X1).
In addition, in order to distinguish this process from another dicing process mentioned later, it may be called a "1st dicing process."
The step (1) may include a process of stretching the pressure-sensitive adhesive sheet (A) in order to widen the distance between the plurality of obtained semiconductor chips CP after dicing the semiconductor wafer W.
<工程(2)>
 図3には、基材(Y2)及び粘着剤層(X2)を有する粘着シート(B)を用いて、複数の半導体チップCPの粘着剤層(X1)と接する面とは反対側の面に、粘着シート(B)の粘着剤層(X2)を貼付する工程(2)を説明する断面図が示されている。
<Step (2)>
In FIG. 3, using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface on the opposite side to the surface in contact with the pressure-sensitive adhesive layer The cross section explaining the process (2) which affixes the adhesive layer (X2) of an adhesive sheet (B) is shown.
 粘着シート(B)の態様は、その後の工程に応じて適宜決定すればよい。例えば、第一のダイシング工程の次工程として、複数の半導体チップCPの間隔を広げるエキスパンド工程を実施する場合、粘着シート(B)としてエキスパンド用の粘着シート(以下、「エキスパンドテープ」ともいう)を使用すればよい。一方、後の工程の作業性等を考慮して、第一のダイシング工程とエキスパンド工程との間に、複数の半導体チップCPの表裏(すなわち、回路面W1とチップ裏面)を反転させる反転工程を実施する場合は、反転用の粘着シート(以下、「反転用粘着シート」ともいう)を使用すればよい。
 図3には、粘着シート(B)として、反転用粘着シートを使用する例が示されている。
 次に、反転用粘着シート及びエキスパンドテープとして好適な粘着シート(B)の態様について説明する。
The mode of the pressure-sensitive adhesive sheet (B) may be determined appropriately according to the subsequent steps. For example, in the case where an expanding step of widening the intervals of a plurality of semiconductor chips CP is performed as a step subsequent to the first dicing step, a pressure-sensitive adhesive sheet for expansion (hereinafter also referred to as "expanding tape") as a pressure-sensitive adhesive sheet (B) You may use it. On the other hand, in consideration of the workability and the like in the subsequent steps, an inversion step is performed between the first dicing step and the expanding step to invert the front and back of the plurality of semiconductor chips CP (that is, the circuit surface W1 and the chip back). In the case of implementation, a reverse pressure-sensitive adhesive sheet (hereinafter, also referred to as “reverse pressure-sensitive adhesive sheet”) may be used.
The example which uses the adhesive sheet for inversion as an adhesive sheet (B) is shown by FIG.
Next, the aspect of the adhesive sheet (B) suitable as an adhesive sheet for inversion and an expand tape is demonstrated.
(反転用粘着シート)
 反転用粘着シートは、基材(Y2)及び粘着剤層(X2)を有し、粘着シート(A)から複数の半導体チップCPを転写された後、該複数の半導体チップCPを、さらに別の粘着シートに転写することで、半導体チップCPの粘着剤層と接する面を反転させるために用いられる。
 反転用粘着シートは、上記目的を達成できるものであれば特に制限はないが、半導体チップと貼付及び分離可能であることが必要であるため、粘着シート(A)等の膨張性粒子を含む粘着シート、後述するエキスパンドテープのように、再剥離性を有する非エネルギー線硬化性粘着剤から構成される粘着剤層を有する粘着シート、エネルギー線硬化性粘着剤から構成される粘着剤層を有する粘着シート等が好適である。
 反転用粘着シートの基材(Y2)は、粘着シート(A)の基材(Y1)の形成材料として挙げられるものを使用して形成することができる。また、反転用粘着シートの粘着剤層(X2)としては、粘着剤層(X1)又は後述するエキスパンドテープの粘着剤層(X2)の形成材料として挙げられるものを使用して形成することができる。
 粘着シート(B)として粘着シート(A)を使用する場合、工程(1)で使用する粘着シート(A)の態様と、本工程で使用する粘着シート(A)の態様とは、同一であっても異なっていてもよい。
(Adhesive sheet for reversal)
The reversing pressure-sensitive adhesive sheet has a base (Y2) and a pressure-sensitive adhesive layer (X2), and after transferring the plurality of semiconductor chips CP from the pressure-sensitive adhesive sheet (A), the plurality of semiconductor chips CP By transferring the adhesive sheet, the semiconductor chip CP is used to invert the surface in contact with the adhesive layer.
The pressure-sensitive adhesive sheet for reversal is not particularly limited as long as the above object can be achieved, but since it is necessary to be able to be attached and separated from the semiconductor chip, it is an adhesive containing expandable particles such as pressure-sensitive adhesive sheet (A) Pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising a non-energy ray-curable pressure-sensitive adhesive having removability, such as an expanded tape to be described later, pressure-sensitive adhesive having a pressure-sensitive adhesive layer comprising an energy ray-curable pressure-sensitive adhesive A sheet or the like is suitable.
The base (Y2) of the reverse pressure-sensitive adhesive sheet can be formed using a material mentioned as a forming material of the base (Y1) of the pressure-sensitive adhesive sheet (A). Moreover, as an adhesive layer (X2) of the adhesive sheet for inversion, it can form using what is mentioned as a forming material of an adhesive layer (X1) or the adhesive layer (X2) of the expand tape mentioned later. .
When using an adhesive sheet (A) as an adhesive sheet (B), the aspect of the adhesive sheet (A) used at a process (1) and the aspect of the adhesive sheet (A) used at this process are the same. Or they may be different.
 反転用粘着シートの基材(Y2)の厚さは、好ましくは10~1000μm、より好ましくは20~500μm、更に好ましくは25~400μm、より更に好ましくは30~300μmである。
 反転用粘着シートの粘着剤層(X2)の厚さは、好ましくは1~60μmであり、より好ましくは2~50μm、更に好ましくは3~40μm、より更に好ましくは5~30μmである。
The thickness of the substrate (Y2) of the reverse pressure-sensitive adhesive sheet is preferably 10 to 1000 μm, more preferably 20 to 500 μm, still more preferably 25 to 400 μm, and still more preferably 30 to 300 μm.
The thickness of the pressure-sensitive adhesive layer (X2) of the reverse pressure-sensitive adhesive sheet is preferably 1 to 60 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and still more preferably 5 to 30 μm.
(エキスパンドテープ)
 次に、エキスパンドテープとして好適な粘着シート(B)について説明する。
 エキスパンドテープは、基材(Y2)及び粘着剤層(X2)を有し、粘着シート(A)から粘着剤層(X2)の上に複数の半導体チップCPを転写された後、該複数の半導体チップCP同士の間隔を、粘着シート(B)を引き伸ばして広げるために用いられる。
(Expand tape)
Next, the adhesive sheet (B) suitable as an expand tape is demonstrated.
The expand tape has a substrate (Y2) and a pressure-sensitive adhesive layer (X2), and after transferring a plurality of semiconductor chips CP from the pressure-sensitive adhesive sheet (A) onto the pressure-sensitive adhesive layer (X2), the plurality of semiconductors The spacing between the chips CP is used to stretch the adhesive sheet (B).
 エキスパンドテープの基材(Y2)の材質としては、例えば、ポリ塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート等)、アクリル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、ポリイミド樹脂、ポリウレタン樹脂、およびポリスチレン樹脂等が挙げられる。
 エキスパンドテープの基材(Y2)は熱可塑性エラストマー、ゴム系材料等を含有することが好ましく、熱可塑性エラストマーを含有することがより好ましい。
 熱可塑性エラストマーとしては、ウレタン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、アクリル系エラストマー、アミド系エラストマー等が挙げられる。
The material of the base material (Y2) of the expand tape is, for example, polyvinyl chloride resin, polyester resin (polyethylene terephthalate etc.), acrylic resin, polycarbonate resin, polyethylene resin, polypropylene resin, acrylonitrile butadiene styrene resin, polyimide resin, Polyurethane resin, polystyrene resin and the like can be mentioned.
The base (Y2) of the expanded tape preferably contains a thermoplastic elastomer, a rubber-based material, and the like, and more preferably contains a thermoplastic elastomer.
Examples of the thermoplastic elastomer include urethane elastomers, olefin elastomers, vinyl chloride elastomers, polyester elastomers, styrene elastomers, acrylic elastomers, and amide elastomers.
 エキスパンドテープの基材(Y2)は、上記材料からなるフィルムが複数層積層されたものであってもよく、上記材料からなるフィルムと、その他のフィルムとが積層されたものであってもよい。
 エキスパンドテープの基材(Y2)は、上記の樹脂系材料を主材料とするフィルム内に、顔料、染料、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤が含まれていてもよい。
The base (Y2) of the expanded tape may be a laminate of a plurality of films made of the above material, or may be a film made of the above material and another film.
The base material (Y2) of the expanded tape contains various additives such as pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like in a film containing the above-mentioned resin material as a main material. May be
 エキスパンドテープの粘着剤層(X2)は、非エネルギー線硬化性粘着剤から構成されてもよいし、エネルギー線硬化性粘着剤から構成されてもよい。
 非エネルギー線硬化性粘着剤としては、所望の粘着力及び再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着シート(B)を延伸した際に半導体チップ等の脱落を効果的に抑制する観点から、アクリル系粘着剤が好ましい。
The pressure-sensitive adhesive layer (X2) of the expand tape may be composed of a non-energy ray curable pressure sensitive adhesive or may be composed of an energy ray curable pressure sensitive adhesive.
As the non-energy ray curable adhesive, those having desired adhesive strength and removability are preferable. For example, acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive And polyvinyl ether pressure-sensitive adhesives. Among these, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of effectively suppressing the detachment of the semiconductor chip or the like when the pressure-sensitive adhesive sheet (B) is stretched.
 エネルギー線硬化性粘着剤は、エネルギー線照射により硬化して粘着力が低下するため、半導体チップと粘着シート(B)とを分離させる際、エネルギー線照射することにより、容易に分離させることができる。
 エキスパンドテープの粘着剤層(X2)を構成するエネルギー線硬化性粘着剤としては、例えば、(a)エネルギー線硬化性を有するポリマー、並びに(b)少なくとも1つ以上のエネルギー線硬化性基を有するモノマー及び/又はオリゴマーから選ばれる1種以上を含有するものが挙げられる。
 (a)エネルギー線硬化性を有するポリマーとしては、側鎖に不飽和基等のエネルギー線硬化性を有する官能基(エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体が好ましい。該アクリル酸エステル(共)重合体としては、例えば、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレートと、重合性の二重結合と、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、エポキシ基等の官能基とを分子内に有するモノマーとを共重合させた後、さらに、該官能基に結合する官能基を有する不飽和基含有化合物を反応させて得られるものが挙げられる。
 (b)少なくとも1つ以上のエネルギー線硬化性基を有するモノマー及び/又はオリゴマーとしては、多価アルコールと(メタ)アクリル酸とのエステルが挙げられ、具体的には、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類、ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。
 エネルギー線硬化性粘着剤においては、上記成分以外にも、光重合開始剤、架橋剤等を適宜配合してもよい。
The energy ray-curable pressure-sensitive adhesive is cured by energy ray irradiation and the adhesive force is reduced. Therefore, when the semiconductor chip and the pressure-sensitive adhesive sheet (B) are separated, they can be easily separated by energy ray irradiation. .
The energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer (X2) of the expanded tape includes, for example, (a) a polymer having energy ray curability, and (b) at least one energy ray curable group. What contains 1 or more types chosen from a monomer and / or an oligomer is mentioned.
(A) As a polymer having energy ray curability, a (meth) acrylic acid ester (co) weight to which a functional group (energy ray curable group) having energy ray curability such as unsaturated group is introduced in the side chain Coalescence is preferred. As the acrylic ester (co) polymer, for example, alkyl (meth) acrylate having 1 to 18 carbon atoms in the alkyl group, a polymerizable double bond, a hydroxy group, a carboxy group, an amino group, a substituted one Those obtained by copolymerizing a monomer having a functional group such as an amino group and an epoxy group in the molecule with another and then reacting an unsaturated group-containing compound having a functional group to be bonded to the functional group Be
(B) Examples of the monomer and / or oligomer having at least one energy ray-curable group include esters of polyhydric alcohol and (meth) acrylic acid, and specifically, cyclohexyl (meth) acrylate, Monofunctional acrylic acid esters such as isobornyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1 Polyfunctional acrylics such as 2,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate and dimethylol tricyclodecane di (meth) acrylate Esters, polyesters oligo (meth) acrylates, and polyurethane oligo (meth) acrylate.
In the energy ray-curable pressure-sensitive adhesive, in addition to the above components, a photopolymerization initiator, a crosslinking agent, and the like may be appropriately blended.
 エキスパンドテープの基材(Y2)の厚さは、特に限定されないが、好ましくは20~250μm、より好ましくは40~200μmである。
 エキスパンドテープの粘着剤層(X2)の厚さは、特に限定されないが、好ましくは3~50μm、より好ましくは5~40μmである。
The thickness of the base (Y2) of the expanded tape is not particularly limited, but is preferably 20 to 250 μm, more preferably 40 to 200 μm.
The thickness of the pressure-sensitive adhesive layer (X2) of the expanded tape is not particularly limited, but preferably 3 to 50 μm, more preferably 5 to 40 μm.
 23℃においてMD方向及びCD方向に測定されるエキスパンドテープの破断伸度は、それぞれ100%以上であることが好ましい。破断伸度が上記範囲であることで、大きく延伸することが可能となる。そのため、ファンアウト型パッケージの製造といった、半導体チップ同士を十分に離間させる必要がある用途に好適に使用することができる。 The elongation at break of the expand tape measured in the MD direction and the CD direction at 23 ° C. is preferably 100% or more. When the breaking elongation is in the above-mentioned range, it is possible to stretch greatly. Therefore, it can be used suitably for the use which needs to fully separate semiconductor chips, such as manufacture of a fan-out type package.
 なお、粘着シート(B)の粘着剤層(X2)が、エネルギー線硬化性粘着剤から構成されている場合は、粘着シート(A)が含有する膨張性粒子は、熱膨張性粒子であることが好ましい。 When the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B) is composed of an energy ray-curable pressure-sensitive adhesive, the expandable particles contained in the pressure-sensitive adhesive sheet (A) are thermally expandable particles. Is preferred.
<工程(3)>
 図4には、前記膨張性粒子を膨張させて、複数の半導体チップCPと粘着シート(A)とを分離する工程(3)を説明する断面図が示されている。
 本工程では、膨張性粒子を、その種類に応じて、熱、エネルギー線等によって膨張させることにより、粘着剤層(X1)の粘着表面(X1a)に凹凸を形成し、これにより、粘着表面(X1a)と複数の半導体チップCPとの粘着力を低下させ、粘着シート(A)と複数の半導体チップCPとを分離させる。
<Step (3)>
FIG. 4 is a cross-sectional view for explaining the step (3) of expanding the expandable particles to separate the plurality of semiconductor chips CP and the adhesive sheet (A).
In this step, the expandable particles are expanded by heat, energy rays and the like according to their types to form asperities on the adhesive surface (X1a) of the adhesive layer (X1). The adhesion between the semiconductor chip CP and the plurality of semiconductor chips CP is reduced to separate the adhesive sheet (A) from the plurality of semiconductor chips CP.
 膨張性粒子を膨張させる方法は、膨張性粒子の種類に応じて適宜選択すればよく、膨張性粒子が熱膨張性粒子である場合は、膨張開始温度(t)以上の温度に加熱すればよい。ここで、「膨張開始温度(t)以上の温度」としては、「膨張開始温度(t)+10℃」以上「膨張開始温度(t)+60℃」以下であることが好ましく、「膨張開始温度(t)+15℃」以上「膨張開始温度(t)+40℃」以下であることがより好ましい。具体的には、その熱膨張性粒子の種類に応じて、例えば、70~330℃の範囲に加熱して膨張させればよい。 The method of expanding the expandable particles may be appropriately selected according to the type of expandable particles, and when the expandable particles are thermally expandable particles, it may be heated to a temperature higher than the expansion start temperature (t) . Here, the “temperature at or above the expansion start temperature (t)” is preferably “expansion start temperature (t) + 10 ° C.” or more and “expansion start temperature (t) + 60 ° C.” or less, “expansion start temperature (t)). It is more preferable that it is t) + 15 ° C or more and "expansion start temperature (t) + 40 ° C" or less. Specifically, depending on the type of the thermally expandable particles, for example, it may be expanded by heating to a range of 70 to 330.degree.
 膨張性粒子の膨張は、基材(Y1)の粘着剤層(X1)とは反対側の面(Y1a)を固定した状態で実施することが好ましい。面(Y1a)が固定されていることによって、面(Y1a)に側における凹凸の発生が物理的に抑制され、粘着剤層(X1)の粘着表面(X1a)側に効率的に凹凸を形成することができる。前記固定は任意の方法を採用することができ、例えば、上記した非膨張性基材(Y1’)を基材(Y1)の面(Y1a)側に設ける方法、固定治具として複数の吸引孔を有する吸引テーブルを用いて、基材(Y1)の面(Y1a)を固定する方法、任意の粘着剤層、両面粘着シート等を介して基材(Y1)の面(Y1a)に硬質支持体を貼付する方法等が挙げられる。
 前記吸引テーブルは、真空ポンプ等の減圧機構を有し、該減圧機構によって複数の吸引孔から対象物を吸引することによって、対象物を吸引面に固定するものである。
 前記硬質支持体の材質は、機械的強度、耐熱性等を考慮して適宜決定すればよく、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ、ABS、アクリル、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド、ポリアミドイミド等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、及びシリコンウエハ等が好ましい。エンジニアリングプラスチックとしては、ナイロン、ポリカーボネート(PC)、及びポリエチレンテレフタレート(PET)等が挙げられる。スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、及びポリエーテルエーテルケトン(PEEK)等が挙げられる。
The expansion of the expandable particles is preferably carried out in a state in which the surface (Y1a) opposite to the pressure-sensitive adhesive layer (X1) of the substrate (Y1) is fixed. By fixing the surface (Y1a), the occurrence of unevenness on the side of the surface (Y1a) is physically suppressed, and the unevenness is formed efficiently on the adhesive surface (X1a) side of the pressure-sensitive adhesive layer (X1) be able to. The fixing may be any method, for example, a method of providing the non-intumescent base material (Y1 ′) described above on the surface (Y1a) side of the base material (Y1), a plurality of suction holes as a fixing jig Method of fixing the surface (Y1a) of the substrate (Y1) by using a suction table having a hard support on the surface (Y1a) of the substrate (Y1) via an optional pressure-sensitive adhesive layer, double-sided pressure-sensitive adhesive sheet, etc. And the like.
The suction table has a pressure reducing mechanism such as a vacuum pump, and the target pressure is fixed to the suction surface by sucking the object from a plurality of suction holes by the pressure reducing mechanism.
The material of the hard support may be appropriately determined in consideration of mechanical strength, heat resistance, etc. For example, metallic materials such as SUS; nonmetallic inorganic materials such as glass, silicon wafer; epoxy, ABS, acrylic, Resin materials such as engineering plastics, super engineering plastics, polyimides, and polyamideimides; composite materials such as glass epoxy resins; and the like. Among these, SUS, glass, silicon wafers and the like are preferable. Examples of engineering plastics include nylon, polycarbonate (PC), and polyethylene terephthalate (PET). Super engineering plastics include polyphenylene sulfide (PPS), polyether sulfone (PES), and polyether ether ketone (PEEK).
<エキスパンド工程>
 次に、上記で得られた複数の半導体チップCP同士の間隔を広げるエキスパンド工程を実施する。
 エキスパンド工程は、粘着シート(B)の態様に応じて、工程(3)の後に、下記工程(4A)又は工程(4B-1)~(4B-3)(以下、「工程(4B)」ともいう)を実施して行うことができる。
<Expanding process>
Next, an expanding step is performed to widen the distance between the plurality of semiconductor chips CP obtained above.
In the expanding step, depending on the aspect of the pressure-sensitive adhesive sheet (B), after the step (3), the following step (4A) or steps (4B-1) to (4B-3) (hereinafter also referred to as "step (4B)") Can be carried out.
 工程(4A):粘着シート(B)がエキスパンド用の粘着シートであって、粘着シート(B)に貼付された前記複数の半導体チップ同士の間隔を、前記エキスパンド用粘着シートを引き伸ばして広げる工程。 Step (4A): a step in which the pressure-sensitive adhesive sheet (B) is a pressure-sensitive adhesive sheet for expand, and the space between the plurality of semiconductor chips attached to the pressure-sensitive adhesive sheet (B) is stretched to expand the pressure-sensitive adhesive sheet for expand.
  工程(4B-1):粘着シート(B)上の複数の半導体チップの粘着剤層(X2)と接する面とは反対側の面に、エキスパンドテープである粘着シート(C)の粘着剤層(X3)を貼付する工程。
 工程(4B-2):粘着シート(C)に貼付された複数の半導体チップCPから粘着シート(B)を分離する工程。
 工程(4B-3):粘着シート(C)に貼付された前記複数の半導体チップ同士の間隔を、前記エキスパンド用粘着シートを引き伸ばして広げる工程。
Step (4B-1): The adhesive layer of the adhesive sheet (C), which is an expand tape, on the surface of the plurality of semiconductor chips on the adhesive sheet (B) opposite to the surface in contact with the adhesive layer Process of sticking X3).
Step (4B-2): A step of separating the pressure-sensitive adhesive sheet (B) from the plurality of semiconductor chips CP attached to the pressure-sensitive adhesive sheet (C).
Step (4B-3): a step of stretching and expanding the pressure-sensitive adhesive sheet for expansion, between the plurality of semiconductor chips attached to the pressure-sensitive adhesive sheet (C).
 工程(4A)は、工程(2)で使用した粘着シート(B)がエキスパンドテープである場合であり、この場合は、粘着シート(B)を引き伸ばして複数の半導体チップCP同士の間隔を広げればよい。 The step (4A) is a case where the pressure-sensitive adhesive sheet (B) used in the step (2) is an expand tape. In this case, the pressure-sensitive adhesive sheet (B) is stretched to widen the space between the plurality of semiconductor chips CP. Good.
 工程(4B)は、粘着シート(B)が反転用粘着シートである場合であり、反転用粘着シートである粘着シート(B)から、エキスパンド用の粘着シートである粘着シート(C)に複数の半導体チップCPを転写した後、エキスパンドする工程である。
 本実施形態では、工程(4B)について説明する。
The step (4B) is a case where the pressure-sensitive adhesive sheet (B) is a reversing pressure-sensitive adhesive sheet, and from the pressure-sensitive adhesive sheet (B) which is a reversing pressure-sensitive adhesive sheet to a plurality of pressure-sensitive adhesive sheets (C) which is a pressure-sensitive adhesive sheet for expanding. This is a step of expanding after transferring the semiconductor chip CP.
In the present embodiment, the step (4B) will be described.
 図5(a)及び(b)には、反転用粘着シートである粘着シート(B)上の複数の半導体チップCPの粘着剤層(X2)と接する面とは反対側の面に、エキスパンドテープである粘着シート(C)の粘着剤層(X3)を貼付する工程(4B-1)、その後、複数の半導体チップCPから粘着シート(B)を分離する工程(4B-2)を示す断面図が示されている。
 粘着シート(B)を複数の半導体チップCPから分離する方法は、粘着シート(B)の種類の応じて適宜選択すればよく、粘着シート(B)の粘着剤層(X2)が、非エネルギー線硬化性粘着剤から構成されている場合は、所定の条件で再剥離すればよく、粘着剤層(X2)が、エネルギー線硬化性粘着剤から構成されている場合は、エネルギー線照射により硬化して粘着力を低下させてから分離すればよい。
 エキスパンドテープの好ましい態様は前記の通りである。
In FIGS. 5 (a) and 5 (b), an expanded tape is formed on the surface of the plurality of semiconductor chips CP on the pressure-sensitive adhesive sheet (B), which is the reverse pressure-sensitive adhesive sheet, on the side opposite to the side in contact with the pressure-sensitive adhesive layer (X2). A cross-sectional view showing a step (4B-1) of attaching the pressure-sensitive adhesive layer (X3) of the pressure-sensitive adhesive sheet (C), and a step (4B-2) of separating the pressure-sensitive adhesive sheet (B) from a plurality of semiconductor chips CP It is shown.
The method for separating the pressure-sensitive adhesive sheet (B) from the plurality of semiconductor chips CP may be appropriately selected according to the type of the pressure-sensitive adhesive sheet (B), and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B) is a non-energy ray When it is composed of a curable adhesive, it may be peeled off again under predetermined conditions, and when the adhesive layer (X2) is composed of an energy ray curable adhesive, it is cured by energy ray irradiation. The adhesion may be reduced before separation.
Preferred embodiments of the expandable tape are as described above.
 図6(a)及び(b)には、エキスパンド用粘着シート(C)に貼付された複数の半導体チップ同士CPの間隔を、粘着シート(C)を引き伸ばして広げる工程(4B-3)を説明する断面図が示されている。
 上記の工程を経て、図6(a)に示すように、複数の半導体チップCPは、粘着シート(C)の粘着剤層(X3)上に載置される。
 次いで、図6(b)に示すように、粘着シート(C)を引き伸ばして、複数の半導体チップCP同士の間隔を、距離Dまで広げる。
 粘着シート(C)を引き延ばす方法としては、環状又は円状のエキスパンダを押し当てて粘着シート(C)を引き延ばす方法、把持部材等を用いて粘着シート(C)の外周部を掴んで引き延ばす方法等が挙げられる。
 エキスパンド後の複数の半導体チップCP間の距離Dは、所望する半導体装置の形態に応じて適宜決定すればよいが、好ましくは50~6000μmである。
FIGS. 6A and 6B explain the step (4B-3) of stretching the adhesive sheet (C) to widen the gap between the plurality of semiconductor chips CP attached to the expand adhesive sheet (C). A cross-sectional view is shown.
Through the above steps, as shown in FIG. 6A, the plurality of semiconductor chips CP are placed on the pressure-sensitive adhesive layer (X3) of the pressure-sensitive adhesive sheet (C).
Next, as shown in FIG. 6B, the adhesive sheet (C) is stretched to increase the distance between the plurality of semiconductor chips CP to the distance D.
As a method of stretching the pressure-sensitive adhesive sheet (C), a method of pressing an annular or circular expander and stretching the pressure-sensitive adhesive sheet (C), a method of grasping and stretching the outer peripheral portion of the pressure-sensitive adhesive sheet (C) using a gripping member or the like Etc.
The distance D between the plurality of expanded semiconductor chips CP may be appropriately determined according to the form of the desired semiconductor device, but is preferably 50 to 6000 μm.
<工程(5)~(8)>
 本実施形態に係る半導体装置の製造方法は、基材(Y4)及び粘着剤層(X4)を有する粘着シート(D)を使用して、さらに、下記工程(5)~(8)を実施してもよい。
 工程(5):エキスパンド工程で間隔を広げた複数の半導体チップCPを、粘着シート(D)の粘着剤層(X4)に転写する工程。
 工程(6):前記複数の半導体チップCPと、粘着剤層(X4)の粘着表面のうち前記複数の半導体チップCPの周辺部と、を封止材で被覆し、該封止材を硬化させて、前記半導体チップが硬化封止材に封止されてなる硬化封止体を得る工程。
 工程(7):粘着シート(D)を前記硬化封止体から分離する工程。
 工程(8):粘着シート(D)を分離した硬化封止体に、再配線層を形成する工程。
 ただし、粘着シート(D)として、エキスパンドテープである粘着シート(C)を使用してもよく、その場合、工程(5)を実施する必要はない。この場合、以下で説明される粘着シート(D)は、粘着シート(C)を意味するものとする。
 以下、工程(5)~(8)について、順に説明する。
<Steps (5) to (8)>
The method for manufacturing a semiconductor device according to the present embodiment further implements the following steps (5) to (8) using an adhesive sheet (D) having a base (Y4) and an adhesive layer (X4). May be
Step (5): A step of transferring the plurality of semiconductor chips CP whose intervals are expanded in the expanding step to the pressure-sensitive adhesive layer (X4) of the pressure-sensitive adhesive sheet (D).
Step (6): covering the plurality of semiconductor chips CP and the peripheral portion of the plurality of semiconductor chips CP in the adhesive surface of the pressure-sensitive adhesive layer (X4) with a sealing material, and curing the sealing material And a step of obtaining a cured sealing body in which the semiconductor chip is sealed in a curing sealing material.
Process (7): A process of separating an adhesive sheet (D) from the hardening sealing object.
Process (8): The process of forming a rewiring layer in the hardening sealing body which isolate | separated the adhesive sheet (D).
However, as an adhesive sheet (D), you may use the adhesive sheet (C) which is an expand tape, and in that case, it is not necessary to implement a process (5). In this case, the pressure-sensitive adhesive sheet (D) described below shall mean the pressure-sensitive adhesive sheet (C).
The steps (5) to (8) will be described in order below.
〔工程(5)〕
 工程(5)は、エキスパンド工程で間隔を広げられた複数の半導体チップCPを、粘着シート(D)の粘着剤層(X4)に転写する工程である。
 図7(a)及び(b)には、エキスパンド用粘着シート(C)上の複数の半導体チップCPの粘着剤層(X3)と接する面とは反対側の面に、粘着シート(D)の粘着剤層(X4)を貼付した後、複数の半導体チップCPから粘着シート(C)を分離する工程を示す断面図が示されている。
 ここで、粘着シート(D)は、その粘着表面(X4a)上で複数の半導体チップCPの封止を行って硬化封止体を得た後に、該硬化封止体から分離されるものである。したがって、粘着シート(D)には、封止材による封止の間には、半導体チップの位置ズレが発生せず、かつ半導体チップと仮固定用シートとの接着界面に封止材が進入しない程度の接着性が求められ、封止後には容易に除去し得る分離性が求められる。
 粘着シート(D)は、上記目的を達成できるものであれば特に制限はないが、半導体チップとの貼付及び分離可能であることが必要であるため、粘着シート(A)等の膨張性粒子を含む粘着シート、再剥離性を有する非エネルギー線硬化性粘着剤から構成される粘着剤層を有する粘着シート、エネルギー線硬化性粘着剤から構成される粘着剤層を有する粘着シート等が好適である。これらの中でも、特に優れた接着性と分離性とを両立する観点から、粘着シート(A)を使用することが好ましい。
 粘着シート(D)として粘着シート(A)を使用する場合、工程(1)で使用する粘着シート(A)の態様と、本工程で使用する粘着シート(A)の態様とは、同一であっても異なっていてもよい。
[Step (5)]
The step (5) is a step of transferring the plurality of semiconductor chips CP whose intervals are expanded in the expanding step to the pressure-sensitive adhesive layer (X4) of the pressure-sensitive adhesive sheet (D).
In FIGS. 7A and 7B, on the surface of the adhesive sheet for expansion (C) opposite to the surface in contact with the adhesive layer (X3) of the plurality of semiconductor chips CP, the adhesive sheet (D) is A cross-sectional view showing a step of separating the pressure-sensitive adhesive sheet (C) from the plurality of semiconductor chips CP after sticking the pressure-sensitive adhesive layer (X4) is shown.
Here, the pressure-sensitive adhesive sheet (D) is separated from the cured sealing body after sealing the plurality of semiconductor chips CP on the pressure-sensitive adhesive surface (X4a) to obtain a cured sealing body. . Therefore, in the pressure-sensitive adhesive sheet (D), positional deviation of the semiconductor chip does not occur during sealing with the sealing material, and the sealing material does not enter the adhesion interface between the semiconductor chip and the temporary fixing sheet A degree of adhesion is sought and separability which can be easily removed after sealing is sought.
The pressure-sensitive adhesive sheet (D) is not particularly limited as long as the above object can be achieved, but it is necessary that the pressure-sensitive adhesive sheet (D) can be attached to and separated from the semiconductor chip. A pressure-sensitive adhesive sheet containing a pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer comprising a non-energy ray curable pressure-sensitive adhesive having removability, a pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer comprising an energy ray-curable pressure-sensitive adhesive, etc. . Among these, it is preferable to use the pressure-sensitive adhesive sheet (A) from the viewpoint of achieving both particularly excellent adhesiveness and releasability.
When using an adhesive sheet (A) as an adhesive sheet (D), the aspect of the adhesive sheet (A) used at a process (1) and the aspect of the adhesive sheet (A) used at this process are the same. Or they may be different.
 本工程において、粘着シート(C)と複数の半導体チップCPとを分離する方法は、粘着シート(B)の場合と同じように、粘着シート(C)の態様に応じて決定すればよい。 In this step, the method of separating the pressure-sensitive adhesive sheet (C) and the plurality of semiconductor chips CP may be determined according to the mode of the pressure-sensitive adhesive sheet (C), as in the case of the pressure-sensitive adhesive sheet (B).
〔工程(6)〕
 図8(a)~(c)には、複数の半導体チップCPと、粘着剤層(X4)の粘着表面(X4a)のうち複数の半導体チップCPの周辺部45と、を封止材40で被覆し(以下、該工程を「被覆工程」ともいう)、該封止材40を硬化させて(以下、該工程を「硬化工程」ともいう)、複数の半導体チップCPが硬化封止材41に封止されてなる硬化封止体50を得る工程(6)を説明する断面図が示されている。
[Step (6)]
8A to 8C, a plurality of semiconductor chips CP and peripheral portions 45 of the plurality of semiconductor chips CP in the adhesive surface (X4a) of the pressure-sensitive adhesive layer (X4) Coating (hereinafter, the process is also referred to as “coating process”), and the sealing material 40 is cured (hereinafter, the process is also referred to as “curing process”), and a plurality of semiconductor chips CP are cured and sealed 41 Sectional drawing explaining the process (6) which obtains the hardening sealing body 50 sealed by this is shown.
 封止材40は、複数の半導体チップCP及びそれに付随する要素を外部環境から保護する機能を有するものである。封止材40としては特に制限はなく、従来、半導体封止材料として使用されているものの中から、任意のものを適宜選択して用いることができる。
 封止材40は、機械的強度、耐熱性、絶縁性等の観点から、硬化性を有するものであり、例えば、熱硬化性樹脂組成物、エネルギー線硬化性樹脂組成物等が挙げられる。
 封止材40である熱硬化性樹脂組成物が含有する熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シアネート樹脂等が挙げられるが、機械的強度、耐熱性、絶縁性、成形性等の観点から、エポキシ樹脂が好ましい。
 前記熱硬化性樹脂組成物は、前記熱硬化性樹脂の他にも、必要に応じて、フェノール樹脂系硬化剤、アミン系硬化剤等の硬化剤、硬化促進剤、シリカ等の無機充填材、エラストマー等の添加剤を含有していてもよい。
 封止材40は、室温で固形であっても、液状であってもよい。また、室温で固形である封止材40の形態は、特に限定されず、例えば、顆粒状、シート状等であってもよい。
 本実施形態においては、シート状の封止材(以下、「シート状封止材」ともいう)を用いて被覆工程及び硬化工程を実施することが好ましい。シート状封止材を用いる方法では、シート状封止材を複数の半導体チップCP及びその周辺部45を覆うように載置することで、複数の半導体チップCP及びその周辺部45を封止材40によって被覆する。その際、複数の半導体チップCP同士の間隙に、封止材40が充填されない部分が生じないように、真空ラミネート法等によって、適宜減圧しながら、加熱及び圧着させることが好ましい。
The sealing material 40 has a function of protecting the plurality of semiconductor chips CP and the components attached thereto from the external environment. There is no restriction | limiting in particular as the sealing material 40, Arbitrary things can be suitably selected and used from what is conventionally used as a semiconductor sealing material.
The sealing material 40 has curability from the viewpoint of mechanical strength, heat resistance, insulation and the like, and examples thereof include a thermosetting resin composition, an energy ray curable resin composition, and the like.
As a thermosetting resin which the thermosetting resin composition which is the sealing material 40 contains, although an epoxy resin, a phenol resin, cyanate resin etc. are mentioned, for example, mechanical strength, heat resistance, insulation, a moldability Epoxy resin is preferable from the viewpoint of
The thermosetting resin composition is, in addition to the thermosetting resin, if necessary, a curing agent such as a phenol resin-based curing agent, an amine-based curing agent, a curing accelerator, an inorganic filler such as silica, You may contain additives, such as an elastomer.
The sealing material 40 may be solid or liquid at room temperature. Moreover, the form of the sealing material 40 which is solid at room temperature is not particularly limited, and may be, for example, granular form, sheet form or the like.
In the present embodiment, it is preferable to carry out the covering step and the curing step using a sheet-like sealing material (hereinafter, also referred to as a “sheet-like sealing material”). In the method using the sheet-like sealing material, the sheet-like sealing material is placed so as to cover the plurality of semiconductor chips CP and the peripheral portion 45 thereof, whereby the plurality of semiconductor chips CP and the peripheral portion 45 thereof are sealed. Cover by 40. At that time, it is preferable to perform heating and pressure bonding while appropriately reducing the pressure by a vacuum laminating method or the like so that a portion where the sealing material 40 is not filled does not occur in the gaps between the plurality of semiconductor chips CP.
 封止材40により、複数の半導体チップCP及びその周辺部45を被覆する方法としては、従来、半導体封止工程に適用されている方法の中から、任意の方法を適宜選択して適用することができ、例えば、ロールラミネート法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、トランスファーモールディング法、圧縮成形モールド法等を適用することができる。
 これらの方法においては、通常、封止材40の充填性を高めるために、被覆時に封止材40を加熱して流動性を付与する。
 前記被覆工程において熱硬化性樹脂組成物を加熱する温度は、封止材40の種類、粘着シート(D)の種類等によっても異なるが、例えば、30~180℃であり、50~170℃が好ましく、70~150℃がより好ましい。また、加熱時間は、例えば、5秒~60分間であり、10秒~45分間が好ましく、15秒~30分間がより好ましい。
As a method of covering the plurality of semiconductor chips CP and the peripheral portion 45 thereof by the sealing material 40, any method may be appropriately selected and applied from the methods conventionally applied to the semiconductor sealing step. For example, a roll laminating method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a transfer molding method, a compression molding method, etc. can be applied.
In these methods, in order to enhance the filling property of the sealing material 40, the sealing material 40 is usually heated at the time of coating to impart fluidity.
The temperature at which the thermosetting resin composition is heated in the coating step varies depending on the type of the sealing material 40, the type of the adhesive sheet (D), etc., but is, for example, 30 to 180 ° C and 50 to 170 ° C. Preferably, 70 to 150 ° C. is more preferable. The heating time is, for example, 5 seconds to 60 minutes, preferably 10 seconds to 45 minutes, and more preferably 15 seconds to 30 minutes.
 図8(b)に示すように、封止材40は、複数の半導体チップCPの表出している面全体を覆いつつ、複数の半導体チップCP同士の間隙にも充填されている。 As shown in FIG. 8B, the sealing material 40 is filled in the gaps between the plurality of semiconductor chips CP while covering the entire exposed surface of the plurality of semiconductor chips CP.
 次に、図8(c)に示すように、被覆工程を行った後、封止材40を硬化させて、複数の半導体チップCPが硬化封止材41に封止されてなる硬化封止体50を得る。
 前記硬化工程において、封止材40を硬化させる温度は、封止材40の種類、粘着シート(D)の種類等によっても異なるが、例えば、80~240℃であり、90~200℃が好ましく、100~170℃がより好ましい。また、加熱時間は、例えば、10~180分間であり、20~150分間が好ましく、30~120分間がより好ましい。
 工程(6)により、所定距離ずつ離間した複数の半導体チップCPが硬化封止材41に埋め込まれた硬化封止体50が得られる。
Next, as shown in FIG. 8C, after the covering step is performed, the sealing material 40 is cured to form a cured sealing body in which a plurality of semiconductor chips CP are sealed in the curing sealing material 41. Get 50.
The temperature for curing the sealing material 40 in the curing step varies depending on the type of the sealing material 40, the type of the adhesive sheet (D), etc., but is, for example, 80 to 240 ° C., preferably 90 to 200 ° C. And 100 to 170 ° C. are more preferable. The heating time is, for example, 10 to 180 minutes, preferably 20 to 150 minutes, and more preferably 30 to 120 minutes.
By the step (6), a cured sealing body 50 in which a plurality of semiconductor chips CP separated by a predetermined distance are embedded in the curing sealing material 41 is obtained.
〔工程(7)〕
 次に、図8(d)に示すように、粘着シート(D)を硬化封止体50から分離する。
 粘着シート(D)を分離する方法は、粘着シート(D)の種類に応じて適宜選択すればよい。粘着シート(D)として粘着シート(A)を使用する場合は、粘着シート(A)に含まれる膨張性粒子を膨張させることにより、硬化封止体50と分離することができる。膨張性粒子を膨張させる条件は、粘着シート(A)で説明した通りである。
[Step (7)]
Next, as shown in FIG. 8D, the pressure-sensitive adhesive sheet (D) is separated from the cured sealing body 50.
The method for separating the pressure-sensitive adhesive sheet (D) may be appropriately selected according to the type of the pressure-sensitive adhesive sheet (D). When using an adhesive sheet (A) as an adhesive sheet (D), it can isolate | separate from the hardening sealing body 50 by expanding the expandable particle contained in an adhesive sheet (A). The conditions for expanding the expandable particles are as described for the pressure-sensitive adhesive sheet (A).
 なお、本実施形態では、複数の半導体チップCPの回路面W1が、粘着シート(D)の粘着剤層(X4)と接する状態で封止工程を実施する例を説明したが、回路面W1が表出した状態(すなわち、チップ裏面が粘着剤層(X4)と接する状態)で、封止工程を実施してもよい。この場合、複数の半導体チップCPの回路面W1は、封止樹脂に覆われることになるが、封止樹脂を硬化させた後、適宜、グラインダー等を使用して硬化封止材を削り、再度回路面W1を表出させればよい。 In the present embodiment, an example in which the sealing process is performed in a state in which the circuit surface W1 of the plurality of semiconductor chips CP is in contact with the adhesive layer (X4) of the adhesive sheet (D) has been described. The sealing step may be carried out in the exposed state (that is, the state in which the chip back surface is in contact with the pressure-sensitive adhesive layer (X4)). In this case, the circuit surface W1 of the plurality of semiconductor chips CP is covered with the sealing resin, but after the sealing resin is cured, the curing sealing material is appropriately scraped off using a grinder or the like, and again The circuit surface W1 may be exposed.
〔工程(8)〕
 図9(a)~(c)には、粘着シート(D)を分離した硬化封止体50に、再配線層を形成する工程(8)を説明する断面図が示されている。
 図9(b)には、半導体チップCPの回路面W1及び硬化封止体50の面50aに第1絶縁層61を形成する工程を説明する断面図が示されている。
 絶縁性樹脂を含む第1絶縁層61を、回路面W1及び面50aの上に、半導体チップCPの回路W2又は回路W2の内部端子電極W3を露出させるように形成する。絶縁性樹脂としては、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、シリコーン樹脂等が挙げられる。内部端子電極W3の材質は、導電性材料であれば限定されず、金、銀、銅、アルミニウム等の金属、これらの金属を含む合金等が挙げられる。
[Step (8)]
9 (a) to 9 (c) are cross-sectional views for explaining the step (8) of forming a rewiring layer on the cured sealing body 50 from which the pressure-sensitive adhesive sheet (D) is separated.
FIG. 9B is a cross-sectional view for explaining a process of forming the first insulating layer 61 on the circuit surface W1 of the semiconductor chip CP and the surface 50a of the cured sealing body 50.
A first insulating layer 61 containing an insulating resin is formed on the circuit surface W1 and the surface 50a so as to expose the internal terminal electrode W3 of the circuit W2 of the semiconductor chip CP or the circuit W2. As the insulating resin, polyimide resin, polybenzoxazole resin, silicone resin and the like can be mentioned. The material of the internal terminal electrode W3 is not limited as long as it is a conductive material, and metals such as gold, silver, copper and aluminum, alloys containing these metals, and the like can be mentioned.
 図9(c)には、硬化封止体50に封止された半導体チップCPと電気的に接続する再配線70を形成する工程を説明する断面図が示されている。
 本実施形態では、第1絶縁層61の形成に続いて再配線70を形成する。再配線70の材質は、導電性材料であれば限定されず、金、銀、銅、アルミニウム等の金属、これらの金属を含む合金等が挙げられる。再配線70は、サブトラクティブ法、セミアディティブ法等の公知の方法により形成できる。
FIG. 9C is a cross-sectional view for explaining the step of forming the rewiring 70 electrically connected to the semiconductor chip CP sealed in the cured sealing body 50.
In the present embodiment, following the formation of the first insulating layer 61, the rewiring 70 is formed. The material of the rewiring 70 is not limited as long as it is a conductive material, and examples thereof include metals such as gold, silver, copper, and aluminum, and alloys containing these metals. The rewiring 70 can be formed by a known method such as a subtractive method or a semi-additive method.
 図10(a)には、再配線70を覆う第2絶縁層62を形成する工程を説明する断面図が示されている。
 再配線70は、外部端子電極用の外部電極パッド70Aを有する。第2絶縁層62には開口等を設けて、外部端子電極用の外部電極パッド70Aを露出させる。本実施形態では、外部電極パッド70Aは、硬化封止体50の半導体チップCPの領域(回路面W1に対応する領域)内及び領域外(硬化封止体50上の面50aに対応する領域)に露出させている。また、再配線70は、外部電極パッド70Aがアレイ状に配置されるように、硬化封止体50の面50aに形成されている。本実施形態では、硬化封止体50の半導体チップCPの領域外に外部電極パッド70Aを露出させる構造を有するので、FOWLP又はFOPLPを得ることができる。
FIG. 10A is a cross-sectional view for explaining the process of forming the second insulating layer 62 covering the rewiring 70.
The rewiring 70 has an external electrode pad 70A for an external terminal electrode. An opening or the like is provided in the second insulating layer 62 to expose the external electrode pad 70A for the external terminal electrode. In the present embodiment, the external electrode pad 70A is in and out of the area (area corresponding to the circuit surface W1) of the semiconductor chip CP of the cured sealing body 50 (area corresponding to the surface 50a on the cured sealing body 50) Exposed to Further, the rewiring 70 is formed on the surface 50 a of the cured sealing body 50 such that the external electrode pads 70 A are arranged in an array. In the present embodiment, since the external electrode pad 70A is exposed outside the region of the semiconductor chip CP of the cured sealing body 50, FOWLP or FOPLP can be obtained.
(外部端子電極との接続工程)
 次に、必要に応じて、外部電極パッド70Aに外部端子電極80を接続させてもよい。
 図10(b)には、外部電極パッド70Aに外部端子電極80を接続させる工程を説明する断面図が示されている。
 第2絶縁層62から露出する外部電極パッド70Aに、はんだボール等の外部端子電極80を載置し、はんだ接合等により、外部端子電極80と外部電極パッド70Aとを電気的に接続させる。はんだボールの材質は、特に限定されず、含鉛はんだ、無鉛はんだ等が挙げられる。
(Connection process with external terminal electrode)
Next, if necessary, the external terminal electrode 80 may be connected to the external electrode pad 70A.
FIG. 10B is a cross-sectional view for explaining the step of connecting the external terminal electrode 80 to the external electrode pad 70A.
An external terminal electrode 80 such as a solder ball is placed on the external electrode pad 70A exposed from the second insulating layer 62, and the external terminal electrode 80 and the external electrode pad 70A are electrically connected by solder bonding or the like. The material of the solder ball is not particularly limited, and examples thereof include lead-containing solder and lead-free solder.
(第二のダイシング工程)
 図10(c)は、外部端子電極80が接続された硬化封止体50を個片化させる第二のダイシング工程を説明する断面図が示されている。
 本工程では、硬化封止体50を半導体チップCP単位で個片化する。硬化封止体50を個片化させる方法は、特に限定されず、ダイシングソー等の切断手段等によって実施することができる。
 硬化封止体50を個片化することで、半導体チップCP単位の半導体装置100が製造される。上述のように半導体チップCPの領域外にファンアウトさせた外部電極パッド70Aに外部端子電極80を接続させた半導体装置100は、FOWLP、FOPLP等として製造される。
(Second dicing process)
FIG. 10C shows a cross-sectional view for explaining a second dicing step of singulating the cured sealing body 50 to which the external terminal electrode 80 is connected.
In this process, the cured sealing body 50 is singulated in units of semiconductor chips CP. The method of singulating the cured sealing body 50 is not particularly limited, and can be carried out by a cutting means such as a dicing saw.
By separating the cured sealing body 50, the semiconductor device 100 of the semiconductor chip CP unit is manufactured. The semiconductor device 100 in which the external terminal electrode 80 is connected to the external electrode pad 70A fanned out of the area of the semiconductor chip CP as described above is manufactured as FOWLP, FOPLP or the like.
(実装工程)
 本実施形態では、個片化された半導体装置100を、プリント配線基板等に実装する工程を含むことも好ましい。
(Mounting process)
In the present embodiment, it is also preferable to include the step of mounting the singulated semiconductor device 100 on a printed wiring board or the like.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の製造例及び実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples. Physical property values in the following production examples and examples are values measured by the following methods.
<質量平均分子量(Mw)>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Mass average molecular weight (Mw)>
It measured under the following conditions using the gel permeation chromatograph apparatus (Tosoh Corp. make, a product name "HLC-8020"), and used the value measured in standard polystyrene conversion.
(Measurement condition)
・ Column: “TSK guard column HXL-L”, “TSK gel G2500 HXL”, “TSK gel G2000 HXL”, “TSK gel G1000 HXL” (all manufactured by Tosoh Corporation) • Column temperature: 40 ° C.
-Developing solvent: tetrahydrofuran-Flow rate: 1.0 mL / min
<各層の厚さの測定>
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
The thickness was measured using a constant-pressure thickness measuring device (model number: “PG-02J”, standard: JIS K6783, Z1702, Z1709) manufactured by Teclock Co., Ltd.
<熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)>
 レーザ回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。
 そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)とした。
<Average particle size (D 50 ) of thermally expandable particles, 90% particle size (D 90 )>
The particle distribution of the thermally expandable particles before expansion at 23 ° C. was measured using a laser diffraction type particle size distribution measuring apparatus (for example, product name “Mastersizer 3000” manufactured by Malvern Co., Ltd.).
Then, the particle diameter corresponding to 50% and 90% of the cumulative volume frequency calculated from the smaller particle diameter of the particle distribution is respectively referred to as “average particle diameter (D 50 ) of thermally expandable particles” and “thermally expandable particles 90% particle diameter (D 90 ) of
<膨張性基材の貯蔵弾性率E’>
 測定対象が非粘着性の膨張性基材である場合、当該膨張性基材を縦5mm×横30mm×厚さ200μmの大きさとし、剥離材を除去したものを試験サンプルとした。
 動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、所定の温度における、当該試験サンプルの貯蔵弾性率E’を測定した。
<Storage Modulus E 'of Intumescent Base Material>
When the object to be measured is a non-adhesive expandable base material, the expandable base material has a size of 5 mm long × 30 mm wide × 200 μm thick, and the release material removed is used as a test sample.
Test start temperature 0 ° C, test end temperature 300 ° C, temperature rise rate 3 ° C / min, frequency 1 Hz, amplitude 20μm using a dynamic viscoelasticity measurement device (manufactured by TA Instruments, product name "DMAQ800") The storage elastic modulus E ′ of the test sample was measured at a predetermined temperature under the following conditions.
<粘着剤層の貯蔵せん断弾性率G’>
 測定対象が粘着性を有する粘着剤層である場合、当該粘着剤層を直径8mm×厚さ3mmとし、剥離材を除去したものを試験サンプルとした。
 粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度0℃、試験終了温度300℃、昇温速度3℃/分、振動数1Hzの条件で、ねじりせん断法によって、所定の温度における、試験サンプルの貯蔵せん断弾性率G’を測定した。そして、貯蔵弾性率E’の値は、測定した貯蔵せん断弾性率G’の値を基に、近似式「E’=3G’」から算出した。
<Storage shear modulus G ′ of pressure-sensitive adhesive layer>
When the object to be measured is a pressure-sensitive adhesive layer having adhesiveness, the pressure-sensitive adhesive layer has a diameter of 8 mm and a thickness of 3 mm, and the release material is removed as a test sample.
Using a visco-elasticity measuring device (manufactured by Anton Paar, device name “MCR 300”), torsional shear method under the conditions of test start temperature 0 ° C., test end temperature 300 ° C., temperature rising rate 3 ° C./min, frequency 1 Hz. The storage shear modulus G ′ of the test sample was measured at a given temperature by Then, the value of the storage elastic modulus E ′ was calculated from the approximate expression “E ′ = 3G ′” based on the measured value of the storage shear elastic modulus G ′.
<プローブタック値>
 測定対象となる膨張性基材又は粘着剤層を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置し、軽剥離フィルムを除去したものを試験サンプルとした。
 前記試験サンプルを、23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、軽剥離フィルムを除去して表出した、前記試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定した。
 具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定した。そして、その測定した値を、その試験サンプルのプローブタック値とした。
<Probe Tack Value>
The expansive substrate or pressure-sensitive adhesive layer to be measured is cut into a square of 10 mm on a side, and then allowed to stand for 24 hours under an environment of 23 ° C and 50% RH (relative humidity) to remove light peeling film It was a test sample.
Using the tacking tester (product name "NTS-4800" manufactured by Japan Special Instruments Co., Ltd.) under the environment of 23 ° C and 50% RH (relative humidity), the above-mentioned test sample was removed the light release film. The probe tack value on the surface of the test sample, which was exposed, was measured in accordance with JIS Z0237: 1991.
Specifically, after bringing a 5 mm diameter stainless steel probe into contact with the surface of a test sample with a contact load of 0.98 N / cm 2 for 1 second, the probe is subjected to the test sample at a speed of 10 mm / sec. The force required to move away from the surface was measured. And the measured value was made into the probe tack value of the test sample.
 以下の製造例での各層の形成で使用した粘着性樹脂、添加剤、熱膨張性粒子、及び剥離材の詳細は以下のとおりである。
<粘着性樹脂>
・アクリル系共重合体(i):2-エチルヘキシルアクリレート(2EHA)/2-ヒドロキシエチルアクリレート(HEA)=80.0/20.0(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体を含む溶液。希釈溶媒:酢酸エチル、固形分濃度:40質量%。
<添加剤>
・イソシアネート架橋剤(i):東ソー株式会社製、製品名「コロネートL」、固形分濃度:75質量%。
・光重合開始剤(i):BASF社製、製品名「イルガキュア184」、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン。
<熱膨張性粒子>
・熱膨張性粒子(i):株式会社クレハ製、製品名「S2640」、膨張開始温度(t)=208℃、平均粒子径(D50)=24μm、90%粒子径(D90)=49μm。
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面に、シリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm。
The details of the adhesive resin, the additive, the thermally expandable particles, and the release material used in the formation of each layer in the following production examples are as follows.
<Adhesive resin>
Acrylic copolymer (i): having a structural unit derived from a raw material monomer consisting of 2-ethylhexyl acrylate (2EHA) / 2-hydroxyethyl acrylate (HEA) = 80.0 / 20.0 (mass ratio), A solution containing a 600,000 Mw acrylic copolymer. Dilution solvent: ethyl acetate, solid concentration: 40% by mass.
<Additives>
-Isocyanate crosslinking agent (i): Tosoh Co., Ltd. make, product name "Coronato L", solid content concentration: 75 mass%.
Photopolymerization initiator (i): manufactured by BASF, product name “IRGACURE 184”, 1-hydroxy-cyclohexyl-phenyl-ketone.
<Thermally expandable particles>
Thermally expandable particles (i): product name "S2640" manufactured by Kureha Co., Ltd., expansion start temperature (t) = 208 ° C, average particle size (D 50 ) = 24 μm, 90% particle size (D 90 ) = 49 μm .
<Peeling material>
Heavy release film: product manufactured by Lintec Co., Ltd., product name “SP-PET 382150”, provided with a release agent layer formed from a silicone release agent on one side of a polyethylene terephthalate (PET) film, thickness: 38 μm.
Light release film: manufactured by Lintec Co., Ltd., product name “SP-PET 381031”, provided with a release agent layer formed from a silicone release agent on one side of a PET film, thickness: 38 μm.
製造例1
(粘着剤層(X1)の形成)
 粘着性樹脂である、上記アクリル系共重合体(i)の溶液の固形分100質量部に、上記イソシアネート系架橋剤(i)5.0質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x1)を調製した。
 そして、上記重剥離フィルムの剥離剤層の表面上に、調製した粘着剤組成物(x1)を塗布して塗膜を形成し、該塗膜を100℃で60秒間乾燥して、厚さ10μmの粘着剤層(X1)を形成した。なお、23℃における、粘着剤層(X1)の貯蔵せん断弾性率G’(23)は、2.5×10Paであった。
Production Example 1
(Formation of adhesive layer (X1))
5.0 parts by mass (solid content ratio) of the isocyanate crosslinking agent (i) is blended with 100 parts by mass of the solid content of the solution of the acrylic copolymer (i) which is a tacky resin, and diluted with toluene The mixture was uniformly stirred to prepare a pressure-sensitive adhesive composition (x1) having a solid content concentration (active ingredient concentration) of 25% by mass.
Then, the prepared pressure-sensitive adhesive composition (x1) is applied on the surface of the release agent layer of the heavy release film to form a coating, and the coating is dried at 100 ° C. for 60 seconds to have a thickness of 10 μm. The pressure-sensitive adhesive layer (X1) was formed. The storage shear modulus G ′ (23) of the pressure-sensitive adhesive layer (X1) at 23 ° C. was 2.5 × 10 5 Pa.
製造例2
(膨張性基材(Y1-1)の形成)
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5000の2官能のアクリルウレタン系オリゴマーを得た。
 そして、上記で合成したアクリルウレタン系オリゴマー40質量%(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量%(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量%(固形分比)を配合し、アクリルウレタン系オリゴマー及びエネルギー線重合性モノマーの全量100質量部に対して、さらに光重合開始剤(i)2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)を配合し、エネルギー線硬化性組成物を調製した。該エネルギー線硬化性組成物に、上記熱膨張性粒子(i)を配合し、溶媒を含有しない、無溶剤型の樹脂組成物(y1)を調製した。なお、樹脂組成物(y1)の全量(100質量%)に対する、熱膨張性粒子(i)の含有量は20質量%であった。
 次いで、上記軽剥離フィルムの剥離剤層の表面上に、調製した樹脂組成物(y1)を塗布して塗膜を形成した。そして、紫外線照射装置(アイグラフィクス社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィクス社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線を照射し、当該塗膜を硬化させ、厚さ50μmの膨張性基材(Y1-1)を形成した。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
 なお、上記で得られた膨張性基材(Y1-1)の23℃における貯蔵弾性率E’は、5.0×10Pa、100℃における貯蔵弾性率E’は、4.0×10Pa、208℃における貯蔵弾性率E’は、4.0×10Paであった。また、膨張性基材(Y1-1)のプローブタック値は、2mN/5mmφであった。
Production Example 2
(Formation of intumescent base material (Y1-1))
A 2-hydroxyethyl acrylate is reacted with a terminal isocyanate urethane prepolymer obtained by reacting an ester type diol with isophorone diisocyanate (IPDI) to obtain a bifunctional acrylic urethane oligomer having a weight average molecular weight (Mw) of 5000. Obtained.
Then, 40 mass% (solid content ratio) of the acrylic urethane-based oligomer synthesized above, and 40 mass% (solid content ratio) of isobornyl acrylate (IBXA) as an energy ray polymerizable monomer, and phenylhydroxypropyl acrylate (HPPA) ) 20 mass% (solid content ratio) is blended, and furthermore 2.0 mass parts (solid content ratio) of the photopolymerization initiator (i) with respect to 100 mass parts of the total of the acrylic urethane type oligomer and the energy ray polymerizable monomer And as an additive, 0.2 mass parts (solid content ratio) of a phthalocyanine-type pigment was mix | blended, and the energy beam curable composition was prepared. The above-mentioned thermally expandable particles (i) were blended in the energy ray-curable composition to prepare a solvent-free resin composition (y1) containing no solvent. The content of the thermally expandable particles (i) was 20% by mass with respect to the total amount (100% by mass) of the resin composition (y1).
Next, the prepared resin composition (y1) was applied onto the surface of the release agent layer of the light release film to form a coating film. Then, using a UV irradiation device (manufactured by Eye Graphics, product name “ECS-401GX”) and a high pressure mercury lamp (manufactured by Eye Graphics, product name “H04-L41”), the illuminance 160 mW / cm 2 and the light amount 500 mJ / The coating film was irradiated with ultraviolet light under the conditions of cm 2 to cure the film, thereby forming an expandable substrate (Y1-1) having a thickness of 50 μm. In addition, said illumination intensity and light quantity at the time of ultraviolet irradiation are the values measured using the illumination intensity and light quantity meter (The product made by EIT, product name "UV Power Puck II").
The storage elastic modulus E ′ at 23 ° C. of the expandable base material (Y1-1) obtained above is 5.0 × 10 8 Pa and the storage elastic modulus E ′ at 100 ° C. is 4.0 × 10 The storage elastic modulus E ′ at 6 Pa and 208 ° C. was 4.0 × 10 6 Pa. The probe tack value of the expandable base material (Y1-1) was 2 mN / 5 mmφ.
製造例3
(粘着シート(A)の作製)
 製造例1で形成した粘着剤層(X1)と、製造例2で形成した膨張性基材(Y1-1)との表面同士を貼り合わせた。これにより、軽剥離フィルム/膨張性基材(Y1-1)/粘着剤層(X1)/重剥離フィルムをこの順で積層した粘着シート(A)を作製した。
Production Example 3
(Preparation of adhesive sheet (A))
The surfaces of the pressure-sensitive adhesive layer (X1) formed in Production Example 1 and the expandable base material (Y1-1) formed in Production Example 2 were bonded to each other. Thus, a pressure-sensitive adhesive sheet (A) was produced in which the light release film / expandable substrate (Y1-1) / pressure-sensitive adhesive layer (X1) / heavy release film were laminated in this order.
製造例4
(粘着シート(B)(エキスパンドテープ)の作製)
 ブチルアクリレート/2-ヒドロキシエチルアクリレート=85/15(質量比)を反応させて得られたアクリル系共重合体と、その2-ヒドロキシエチルアクリレートに対して80モル%のメタクリロイルオキシエチルイソシアネート(MOI)とを反応させて、エネルギー線硬化型重合体を得た。このエネルギー線硬化型重合体の質量平均分子量(Mw)は、60万であった。得られたエネルギー線硬化型重合体100質量部と、光重合開始剤としての1-ヒドロキシシクロフェニルケトン(BASF社製、製品名「イルガキュア184」)3質量部と、架橋剤としてのトリレンジイソシアネート系架橋剤(東ソー社製、製品名「コロネートL」)0.45質量部とを溶媒中で混合し、粘着性組成物を得た。
 次に、ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離フィルム(リンテック株式会社製、製品名「SP-PET3811」)の剥離剤層の表面に対して、上記粘着性組成物を塗布し、加熱により乾燥させることで、剥離フィルム上に、厚さ10μmの粘着剤層(X2)を形成した。その後、この粘着剤層の露出面に、基材(Y2)として、ポリエステル系ポリウレタンエラストマーシート(シーダム社製、製品名「ハイグレスDUS202」、厚さ50μm)の片面を貼り合わせることで、粘着剤層に剥離フィルムが貼付された状態で粘着シート(B)(エキスパンドテープ)を得た。
Production Example 4
(Preparation of adhesive sheet (B) (expand tape)
An acrylic copolymer obtained by reacting butyl acrylate / 2-hydroxyethyl acrylate = 85/15 (mass ratio) and 80 mol% of methacryloyloxyethyl isocyanate (MOI) with respect to the 2-hydroxyethyl acrylate And the reaction thereof to obtain an energy ray-curable polymer. The mass average molecular weight (Mw) of this energy ray-curable polymer was 600,000. 100 parts by mass of the obtained energy ray-curable polymer, 3 parts by mass of 1-hydroxycyclophenyl ketone (manufactured by BASF, product name “IRGACURE 184”) as a photopolymerization initiator, and tolylene diisocyanate as a crosslinking agent In a solvent, 0.45 parts by mass of a cross-linking agent (manufactured by Tosoh Corporation, product name "Coronato L") was mixed in a solvent to obtain a tacky composition.
Next, the surface of the release agent layer of a release film (product name “SP-PET 3811”, manufactured by Lintec Corporation, product name “SP-PET 3811”) having a silicone-based release agent layer formed on one side of a polyethylene terephthalate (PET) film is The adhesive composition was applied and dried by heating to form an adhesive layer (X2) having a thickness of 10 μm on the release film. Thereafter, a pressure-sensitive adhesive layer is attached to the exposed surface of the pressure-sensitive adhesive layer by bonding one side of a polyester-based polyurethane elastomer sheet (product name: Higres DUS 202, product name: 50 μm, product name by Shidam Co., Ltd.) as a substrate (Y2). The adhesive sheet (B) (expand tape) was obtained in the state to which the peeling film was stuck.
[半導体装置の製造]
実施例1
 上記で得られた粘着シート(A)及び粘着シート(B)を使用して、以下の方法により、半導体装置を製造した。
<工程(1)>
 製造例3で得られた粘着シート(A)を230mm×230mmの大きさに裁断した。
 裁断後の粘着シート(A)から重剥離フィルムと軽剥離フィルムを剥離して、表出した粘着剤層(X1)の表面にリングフレーム及び半導体ウエハ(直径:150mm、厚さ:350μm)を貼付した。次に、該半導体ウエハをダイサー(ディスコ社製、製品名「DFD-651」)を使用して、以下の条件にて、半導体ウエハをフルカットでダイシングした。これにより、粘着シート(A)の粘着剤層(X1)上に、個片化された複数の半導体チップ(1800個)を得た。
 ・ダイシングブレード:ディスコ社製、製品名「NBC-ZH2050 27HECC」
 ・回転数:30,000rpm
 ・ハイト:0.06mm
 ・60mm/sec
 ・チップサイズ:3mm×3mm
<工程(2)>
 次に、製造例4で得られた粘着シート(B)を210mm×210mmの大きさに裁断した。このとき、裁断後のシートの各辺が、粘着シート(B)の基材(Y2)のMD方向と平行又は垂直となるように裁断した。次に、粘着シート(B)から剥離シートを剥離し、前記複数の半導体チップの粘着剤層(X1)と接する面とは反対側の面に、粘着シート(B)の粘着剤層(X2)を貼付した。このとき、半導体チップの一群が、粘着シート(B)の中央部に位置するように転写した。また、半導体ウエハを個片化したときのダイシングラインが、粘着シート(B)の各辺と平行又は垂直となるように転写した。
<工程(3)>
 次に、粘着シート(A)が備える膨張性基材(Y1-1)の粘着剤層(X)とは反対側の面にホットプレートを押し当てた状態とし、粘着シート(A)を熱膨張性粒子の膨張開始温度(208℃)以上となる240℃で3分間加熱し、熱膨張性粒子を膨張させて、粘着シート(B)に貼付した前記複数の半導体チップと粘着シート(A)とを分離した。なお、粘着シート(A)を分離する際には、粘着シート(A)を屈曲させることなく平面状に保ったまま、一括して同時に複数の半導体チップから分離した。
<エキスパンド工程>
 続いて、複数の半導体チップが貼付されている粘着シート(B)を、2軸延伸可能なエキスパンド装置に設置した。エキスパンド装置は、図11に示すように、互いに直交するX軸方向(正の方向を+X軸方向、負の方向を-X軸方向とする。)とY軸方向(正の方向を+Y軸方向、負の方向を-Y軸方向とする。)を有し、各方向(すなわち、+X軸方向、-X軸方向、+Y軸方向、-Y軸方向)に延伸するための保持手段を有する。粘着シート(B)のMD方向を、X軸又はY軸方向と合わせて、エキスパンド装置に設置し、前記保持手段によって、粘着シート(B)の各辺を把持させてから、下記の条件にて、粘着シート(B)を引き伸ばし、粘着シート(B)の粘着剤層(X2)上に貼付されている複数の半導体チップ同士の間隔を広げた。
 ・保持手段の個数:一辺辺り、5個
 ・延伸速度:5mm/sec
 ・延伸距離:各辺を60mmずつ延伸した。
[Manufacturing of semiconductor devices]
Example 1
The semiconductor device was manufactured by the following method using the adhesive sheet (A) and the adhesive sheet (B) which were obtained above.
<Step (1)>
The pressure-sensitive adhesive sheet (A) obtained in Production Example 3 was cut into a size of 230 mm × 230 mm.
The heavy release film and the light release film are removed from the pressure-sensitive adhesive sheet (A) after cutting, and a ring frame and a semiconductor wafer (diameter: 150 mm, thickness: 350 μm) are attached to the surface of the exposed pressure-sensitive adhesive layer (X1) did. Next, using a dicer (product name “DFD-651” manufactured by Disco, Inc.), the semiconductor wafer was diced at full cut under the following conditions. Thus, a plurality of semiconductor chips (1800 pieces) separated into pieces were obtained on the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A).
Dicing blade: manufactured by DISCO, product name "NBC-ZH2050 27 HECC"
・ Number of rotations: 30,000 rpm
・ Height: 0.06 mm
・ 60 mm / sec
・ Chip size: 3 mm × 3 mm
<Step (2)>
Next, the pressure-sensitive adhesive sheet (B) obtained in Production Example 4 was cut into a size of 210 mm × 210 mm. At this time, it cut | judged so that each edge | side of the sheet | seat after cutting might become parallel or perpendicular | vertical to MD direction of the base material (Y2) of an adhesive sheet (B). Next, the release sheet is released from the pressure-sensitive adhesive sheet (B), and the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B) is formed on the surface of the plurality of semiconductor chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1). Was attached. At this time, a group of semiconductor chips was transferred so as to be located at the center of the adhesive sheet (B). Moreover, the dicing line when dividing a semiconductor wafer into pieces was transferred so that it might become parallel or perpendicular | vertical to each edge | side of an adhesive sheet (B).
<Step (3)>
Next, the hot plate is pressed against the surface of the expandable substrate (Y1-1) of the pressure-sensitive adhesive sheet (A) on the side opposite to the pressure-sensitive adhesive layer (X), and the pressure-sensitive adhesive sheet (A) is thermally expanded. The heat-expandable particles by heating at 240 ° C. for 3 minutes, which is equal to or higher than the expansion start temperature (208 ° C.) of the conductive particles, to expand the thermally expandable particles, and the plurality of semiconductor chips attached to the adhesive sheet (B) and the adhesive sheet (A) Separated. When the pressure-sensitive adhesive sheet (A) was separated, the pressure-sensitive adhesive sheet (A) was simultaneously separated from the plurality of semiconductor chips while being kept flat without being bent.
<Expanding process>
Subsequently, a pressure-sensitive adhesive sheet (B) to which a plurality of semiconductor chips are attached was placed in a biaxially stretchable expanding apparatus. As shown in FIG. 11, the expanding device has mutually orthogonal X-axis directions (positive direction as + X-axis direction and negative direction as -X-axis direction) and Y-axis direction (positive direction as + Y-axis direction) The negative direction is the −Y axis direction), and holding means for extending in each direction (ie, the + X axis direction, the −X axis direction, the + Y axis direction, the −Y axis direction) is provided. The MD direction of the pressure-sensitive adhesive sheet (B) is aligned with the X-axis or Y-axis direction, and installed in the expanding device, and after holding each side of the pressure-sensitive adhesive sheet (B) by the holding means, Then, the pressure-sensitive adhesive sheet (B) was stretched to widen the intervals between the plurality of semiconductor chips attached on the pressure-sensitive adhesive layer (X2) of the pressure-sensitive adhesive sheet (B).
-Number of holding means: 5 per side-Stretching speed: 5 mm / sec
Stretching distance: Each side was stretched by 60 mm.
比較例1
<工程(1)>
 基材及び粘着剤層を有するダイシングテープ(リンテック株式会社製、商品名「D-820」)(以下、「比較用ダイシングテープ」ともいう)の粘着剤層の表面に、リングフレーム及び半導体ウエハ(直径:150mm、厚さ:350μm)を貼付した。その後は、実施例1の工程(1)と同様にして、個片化された複数の半導体チップを得た。
<工程(2)>
 実施例1と同様にして行った。
<工程(3)>
 比較用ダイシングテープの基材側の面から、紫外線を照度230mW/cm、光量190mJ/cm照射し、粘着剤層を硬化させて、粘着シート(B)に貼付した前記複数の半導体チップと比較用ダイシングテープとを分離した。なお、比較用ダイシングテープを分離する際には、比較用ダイシングテープを屈曲させることなく平面状に保ったまま、一括して同時に複数の半導体チップから分離した。
<エキスパンド工程>
 実施例1と同様にして行った。
Comparative Example 1
<Step (1)>
A ring frame and a semiconductor wafer (on the surface of the pressure-sensitive adhesive layer of a dicing tape having a substrate and a pressure-sensitive adhesive layer (Lintec Co., Ltd., trade name "D-820") (hereinafter also referred to as "comparison dicing tape") Diameter: 150 mm, thickness: 350 μm) was attached. Thereafter, in the same manner as in step (1) of Example 1, a plurality of singulated semiconductor chips were obtained.
<Step (2)>
It carried out like Example 1.
<Step (3)>
From the surface on the substrate side of the comparative dicing tape, ultraviolet light is irradiated at an illuminance of 230 mW / cm 2 and a light amount of 190 mJ / cm 2 to cure the pressure-sensitive adhesive layer, and the plurality of semiconductor chips attached to the pressure-sensitive adhesive sheet (B) It separated from the dicing tape for comparison. When the comparative dicing tape was separated, the comparative dicing tape was simultaneously separated from the plurality of semiconductor chips while keeping the planar shape without bending.
<Expanding process>
It carried out like Example 1.
[チップ欠けの有無評価]
 上記で得られたエキスパンド後の複数の半導体チップの外観を顕微鏡にて観察し、半導体チップのチップ欠けの有無を確認し、以下の基準で評価した。
・A:チップ欠けしたものがあった。
・F:チップ欠けしたものはなかった。
[Evaluation of chip chipping]
The appearances of the plurality of expanded semiconductor chips obtained above were observed with a microscope, and the presence or absence of chipping of the semiconductor chips was confirmed, and evaluated according to the following criteria.
A: There was a chip missing.
・ F: There was no chip missing.
[粘着シートの粘着力の測定]
(粘着シート(A)の加熱前後の粘着力測定)
 作製した粘着シート(A)の軽剥離フィルムを除去した。次に、粘着シート(A)の重剥離フィルムも除去し、表出した粘着剤層(X1)の粘着表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置したものを試験サンプルとした。
 上記の試験サンプルを用いて、23℃、50%RH(相対湿度)の環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/分にて、23℃における粘着力を測定した。
 また、上記の試験サンプルを、ホットプレート上にて、熱膨張性粒子の膨張開始温度(208℃)以上となる240℃で3分間加熱し、標準環境(23℃、50%RH(相対湿度))にて60分間静置した後、上記と同じ条件で、膨張開始温度以上での加熱後の粘着力も測定した。
[Measurement of adhesion of adhesive sheet]
(Measurement of adhesive strength before and after heating of adhesive sheet (A))
The light release film of the produced adhesive sheet (A) was removed. Next, the heavy release film of the pressure-sensitive adhesive sheet (A) is also removed, and the pressure-sensitive adhesive surface of the exposed pressure-sensitive adhesive layer (X1) is attached to an adherend stainless steel plate (SUS304 No. 360 polishing), 23 ° C., What stood still for 24 hours in the environment of 50% RH (relative humidity) was made into the test sample.
Using the test sample described above, in an environment of 23 ° C. and 50% RH (relative humidity), based on JIS Z 0237: 2000, by the 180 ° peeling method, the adhesive force at 23 ° C. at a tension rate of 300 mm / min. Was measured.
In addition, the above test sample is heated on a hot plate at 240 ° C. for 3 minutes, which is equal to or higher than the expansion start temperature (208 ° C.) of the thermally expandable particles, in a standard environment (23 ° C., 50% RH (relative humidity) After standing for 60 minutes, the adhesion after heating above the expansion start temperature was also measured under the same conditions as described above.
(比較用ダイシングテープの紫外線照射前後の粘着力測定)
 比較用ダイシングテープ(リンテック株式会社製、商品名「D-820」)の粘着表面を、被着体であるステンレス鋼板(SUS304 360番研磨)に貼付し、23℃、50%RH(相対湿度)の環境下で、24時間静置したものを試験サンプルとし、粘着シート(A)と同様の条件で、紫外線照射前の23℃における粘着力を測定した。
 次に、比較用ダイシングテープの基材側から、紫外線を照度230mW/cm、光量190mJ/cm照射した後、上記と同じ条件で、紫外線照射後の23℃における粘着力を測定した。
(Measurement of adhesion before and after UV irradiation of dicing tape for comparison)
The adhesive surface of a comparative dicing tape (Lintec Co., Ltd., trade name "D-820") is attached to the adherend, stainless steel plate (SUS304 360 No.), and 23 ° C, 50% RH (relative humidity) The samples which were allowed to stand for 24 hours under the following conditions were used as test samples, and the adhesion at 23 ° C. before ultraviolet irradiation was measured under the same conditions as the pressure-sensitive adhesive sheet (A).
Then, from the substrate side of the comparative dicing tape, illuminance ultraviolet 230 mW / cm 2, was irradiated with light quantity 190 mJ / cm 2, under the same conditions as above, were measured adhesion at 23 ° C. after ultraviolet irradiation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本実施形態の製造方法に用いる粘着シート(A)は、膨張後の粘着力が、従来の紫外線照射型の粘着シートよりも小さく、これにより半導体ウエハをダイシングして得られた複数のチップを別の粘着シートに容易に転写することができ、かつ、転写の際のチップ欠けの発生を効果的に抑制できることが分かる。 From the results in Table 1, the adhesive sheet (A) used in the manufacturing method of the present embodiment has a smaller adhesive force after expansion than the conventional ultraviolet irradiation type adhesive sheet, and is thus obtained by dicing the semiconductor wafer. It can be seen that a plurality of chips can be easily transferred to another adhesive sheet, and the occurrence of chipping during transfer can be effectively suppressed.
 1a 粘着シート(a)
 1b 粘着シート(a)
 40 封止材
 41 硬化封止材
 45 半導体チップCPの周辺部
 50 硬化封止体
 50a 面
 61 第1絶縁層
 62 第2絶縁層
 70 再配線
 70A 外部電極パッド
 80 外部端子電極
 100 半導体装置
 200 エキスパンド装置
 210 保持手段
 CP 半導体チップ
 W1 回路面
 W2 回路
 W3 内部端子電極
 
1a Adhesive sheet (a)
1b Adhesive sheet (a)
DESCRIPTION OF SYMBOLS 40 Sealing material 41 Hardening sealing material 45 Peripheral part of semiconductor chip CP 50 Hardening sealing body 50a surface 61 1st insulating layer 62 2nd insulating layer 70 Rewiring 70A External electrode pad 80 External terminal electrode 100 Semiconductor device 200 Expanding device 210 Holding means CP Semiconductor chip W1 Circuit surface W2 Circuit W3 Internal terminal electrode

Claims (11)

  1.  基材(Y1)及び粘着剤層(X1)を有し、いずれかの層に膨張性粒子を含む、膨張性の粘着シート(A)を用いる半導体装置の製造方法であって、
     下記工程(1)~(3)をこの順で有する、半導体装置の製造方法。
     工程(1):粘着シート(A)の粘着剤層(X1)に被加工物を貼付した後、該被加工物をダイシングし、粘着剤層(X1)の上に個片化した複数のチップを得る工程。
     工程(2):基材(Y2)及び粘着剤層(X2)を有する粘着シート(B)を用いて、前記複数のチップの粘着剤層(X1)と接する面とは反対側の面に、粘着シート(B)の粘着剤層(X2)を貼付する工程。
     工程(3):前記膨張性粒子を膨張させて、粘着シート(B)に貼付した前記複数のチップと粘着シート(A)とを分離する工程。
    A method of manufacturing a semiconductor device using an expandable pressure-sensitive adhesive sheet (A), comprising a substrate (Y1) and a pressure-sensitive adhesive layer (X1) and including expandable particles in any of the layers,
    A method of manufacturing a semiconductor device, comprising the following steps (1) to (3) in this order:
    Step (1): A plurality of chips obtained by attaching a workpiece to the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A), dicing the workpiece, and singulating on the pressure-sensitive adhesive layer (X1) To get
    Step (2): using a pressure-sensitive adhesive sheet (B) having a substrate (Y2) and a pressure-sensitive adhesive layer (X2), on the surface of the plurality of chips opposite to the surface in contact with the pressure-sensitive adhesive layer (X1) The process of sticking the adhesive layer (X2) of an adhesive sheet (B).
    Step (3): a step of expanding the expandable particles to separate the plurality of chips attached to the adhesive sheet (B) and the adhesive sheet (A).
  2.  粘着シート(B)がエキスパンド用の粘着シートであって、工程(3)の後に、さらに、下記工程(4A)を有する、請求項1に記載の半導体装置の製造方法。
     工程(4A):粘着シート(B)に貼付された前記複数のチップ同士の間隔を、粘着シート(B)を引き伸ばして広げる工程。
    The method for manufacturing a semiconductor device according to claim 1, wherein the pressure-sensitive adhesive sheet (B) is a pressure-sensitive adhesive sheet for expanding, and further having the following step (4A) after the step (3).
    Step (4A): Stretching the adhesive sheet (B) to widen the gap between the plurality of chips attached to the adhesive sheet (B).
  3.  基材(Y3)及び粘着剤層(X3)を有するエキスパンド用の粘着シート(C)を用いて、さらに、下記工程(4B-1)~(4B-3)を行う、請求項1に記載の半導体装置の製造方法。
     工程(4B-1):粘着シート(B)上の複数のチップの粘着剤層(X2)と接する面とは反対側の面に、粘着シート(C)の粘着剤層(X3)を貼付する工程。
     工程(4B-2):粘着シート(C)に貼付された複数のチップから粘着シート(B)を分離する工程。
     工程(4B-3):粘着シート(C)に貼付された前記複数のチップ同士の間隔を、粘着シート(C)を引き伸ばして広げる工程。
    The adhesive sheet (C) for expand which has a base material (Y3) and an adhesive layer (X3) is used to further perform the following steps (4B-1) to (4B-3). Semiconductor device manufacturing method.
    Step (4B-1): The pressure-sensitive adhesive layer (X3) of the pressure-sensitive adhesive sheet (C) is attached to the surface of the plurality of chips on the pressure-sensitive adhesive sheet (B) opposite to the surface in contact with the pressure-sensitive adhesive layer (X2). Process.
    Step (4B-2): a step of separating the pressure-sensitive adhesive sheet (B) from the plurality of chips attached to the pressure-sensitive adhesive sheet (C).
    Step (4B-3): Stretching the adhesive sheet (C) to widen the gap between the plurality of chips attached to the adhesive sheet (C).
  4.  前記エキスパンド用の粘着シートが、23℃におけるMD方向及びCD方向に測定される破断伸度が100%以上である、請求項2又は3に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 2, wherein the expansion pressure-sensitive adhesive sheet has an elongation at break measured in the MD direction and the CD direction at 23 ° C. of 100% or more.
  5.  前記膨張性粒子が、膨張開始温度(t)が60~270℃の熱膨張性粒子であり、前記工程(3)が、前記粘着シート(A)を加熱することにより、粘着シート(B)に貼付した前記複数のチップと、粘着シート(A)とを分離する工程である、請求項1~4のいずれか1項に記載の半導体装置の製造方法。 The expandable particles are thermally expandable particles having an expansion start temperature (t) of 60 to 270 ° C., and the step (3) heats the pressure-sensitive adhesive sheet (A) to form the pressure-sensitive adhesive sheet (B). The method of manufacturing a semiconductor device according to any one of claims 1 to 4, which is a step of separating the plurality of attached chips and the adhesive sheet (A).
  6.  工程(1)が、前記被加工物をダイシングした後、粘着シート(A)を引き伸ばす処理を含む、請求項1~5のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 5, wherein the step (1) includes a process of stretching the pressure-sensitive adhesive sheet (A) after dicing the workpiece.
  7.  前記膨張性粒子が膨張する前の23℃における、粘着シート(A)の粘着剤層(X1)の粘着力が、0.1~10.0N/25mmである、請求項1~6のいずれか1項に記載の半導体装置の製造方法。 The adhesive strength of the pressure-sensitive adhesive layer (X1) of the pressure-sensitive adhesive sheet (A) at 23 ° C. before the expandable particles are expanded is 0.1 to 10.0 N / 25 mm. A method of manufacturing a semiconductor device according to item 1.
  8.  粘着シート(A)が有する基材(Y1)の表面におけるプローブタック値が、50mN/5mmφ未満である、請求項1~7のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 7, wherein the probe tack value on the surface of the substrate (Y1) of the pressure-sensitive adhesive sheet (A) is less than 50 mN / 5 mmφ.
  9.  粘着シート(A)が有する基材(Y1)が、前記膨張性粒子を含む膨張性基材(Y1-1)である、請求項1~8のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 8, wherein the substrate (Y1) of the pressure-sensitive adhesive sheet (A) is an expandable substrate (Y1-1) containing the expandable particles. .
  10.  前記被加工物が、半導体ウエハである、請求項1~9のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 9, wherein the workpiece is a semiconductor wafer.
  11.  ファンアウト型の半導体装置の製造方法である、請求項10に記載の半導体装置の製造方法。
     
    The method of manufacturing a semiconductor device according to claim 10, which is a method of manufacturing a fan-out type semiconductor device.
PCT/JP2018/041297 2017-11-16 2018-11-07 Production method for semiconductor device WO2019098102A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207006573A KR102515684B1 (en) 2017-11-16 2018-11-07 Manufacturing method of semiconductor device
JP2019554182A JP7185638B2 (en) 2017-11-16 2018-11-07 Semiconductor device manufacturing method
CN201880070728.8A CN111295738A (en) 2017-11-16 2018-11-07 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220811 2017-11-16
JP2017-220811 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098102A1 true WO2019098102A1 (en) 2019-05-23

Family

ID=66539653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041297 WO2019098102A1 (en) 2017-11-16 2018-11-07 Production method for semiconductor device

Country Status (5)

Country Link
JP (1) JP7185638B2 (en)
KR (1) KR102515684B1 (en)
CN (1) CN111295738A (en)
TW (1) TWI771521B (en)
WO (1) WO2019098102A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027091A (en) * 2019-08-01 2021-02-22 リンテック株式会社 Method for manufacturing semiconductor devices
WO2021049570A1 (en) * 2019-09-12 2021-03-18 リンテック株式会社 Method of manufacturing semiconductor device
WO2021084902A1 (en) * 2019-10-29 2021-05-06 東京エレクトロン株式会社 Method for manufacturing chip-mounted substrate, and substrate processing device
CN116616780A (en) * 2023-04-19 2023-08-22 上海脑虎科技有限公司 Flexible electrode and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102467677B1 (en) * 2021-02-08 2022-11-17 (주)라이타이저 Led chip transferring method using transferring resin
KR102607265B1 (en) * 2021-02-17 2023-11-29 하나 마이크론(주) Semiconductor device and method for grinding and singulating semiconductor chips

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226650A (en) * 2000-02-16 2001-08-21 Nitto Denko Corp Radiation-curable and heat-releasable self-adhesive sheet and method of producing cut fragment by using the same
JP2006160935A (en) * 2004-12-09 2006-06-22 Nitto Denko Corp Heat-peeling method of adherend and heat-peeling apparatus of adherend
JP2016127115A (en) * 2014-12-26 2016-07-11 リンテック株式会社 Semiconductor device manufacturing method
JP2017076748A (en) * 2015-10-16 2017-04-20 リンテック株式会社 Adhesive sheet, and method for manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716668B2 (en) * 2004-04-21 2011-07-06 日東電工株式会社 Heat-peeling method for adherend and heat-peeling apparatus
TWI433545B (en) 2007-10-30 2014-04-01 Nippon Telegraph & Telephone Image encoding apparatuses and decoding apparatuses
WO2013011850A1 (en) * 2011-07-15 2013-01-24 日東電工株式会社 Method for manufacturing electronic component and adhesive sheet used in method for manufacturing electronic component
JP2016167510A (en) 2015-03-09 2016-09-15 富士通株式会社 Dicing device and method of manufacturing semiconductor device using the same
JP6673734B2 (en) * 2016-03-29 2020-03-25 リンテック株式会社 Pressure-sensitive adhesive sheet for glass dicing and method for producing the same
US10566254B2 (en) * 2016-03-30 2020-02-18 Mitsui Chemicals Tohcello, Inc. Method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226650A (en) * 2000-02-16 2001-08-21 Nitto Denko Corp Radiation-curable and heat-releasable self-adhesive sheet and method of producing cut fragment by using the same
JP2006160935A (en) * 2004-12-09 2006-06-22 Nitto Denko Corp Heat-peeling method of adherend and heat-peeling apparatus of adherend
JP2016127115A (en) * 2014-12-26 2016-07-11 リンテック株式会社 Semiconductor device manufacturing method
JP2017076748A (en) * 2015-10-16 2017-04-20 リンテック株式会社 Adhesive sheet, and method for manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027091A (en) * 2019-08-01 2021-02-22 リンテック株式会社 Method for manufacturing semiconductor devices
JP7319134B2 (en) 2019-08-01 2023-08-01 リンテック株式会社 Semiconductor device manufacturing method
WO2021049570A1 (en) * 2019-09-12 2021-03-18 リンテック株式会社 Method of manufacturing semiconductor device
WO2021084902A1 (en) * 2019-10-29 2021-05-06 東京エレクトロン株式会社 Method for manufacturing chip-mounted substrate, and substrate processing device
JP7330284B2 (en) 2019-10-29 2023-08-21 東京エレクトロン株式会社 Method for manufacturing substrate with chip, and substrate processing apparatus
CN116616780A (en) * 2023-04-19 2023-08-22 上海脑虎科技有限公司 Flexible electrode and preparation method thereof
CN116616780B (en) * 2023-04-19 2024-02-06 上海脑虎科技有限公司 Flexible electrode and preparation method thereof

Also Published As

Publication number Publication date
KR20200086656A (en) 2020-07-17
TWI771521B (en) 2022-07-21
JP7185638B2 (en) 2022-12-07
JPWO2019098102A1 (en) 2020-10-01
CN111295738A (en) 2020-06-16
KR102515684B1 (en) 2023-03-30
TW201923884A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
WO2019098102A1 (en) Production method for semiconductor device
JP6792700B2 (en) Method of heat peeling of processing inspection object
WO2021117695A1 (en) Adhesive sheet and method for producing semiconductor device
JP6761115B2 (en) Manufacturing method of semiconductor devices and double-sided adhesive sheet
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
JP7273792B2 (en) Processed product manufacturing method and adhesive laminate
JP7340457B2 (en) Adhesive laminate, method for producing workpiece with resin film, and method for producing cured sealant with cured resin film
WO2018181767A1 (en) Semiconductor device production method and adhesive sheet
CN115397938A (en) Double-sided adhesive sheet and method for manufacturing semiconductor device
JP7405618B2 (en) Adhesive laminate, method for using adhesive laminate, and method for manufacturing semiconductor device
WO2019098101A1 (en) Production method for semiconductor device
WO2019235217A1 (en) Method for producing cured sealant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879356

Country of ref document: EP

Kind code of ref document: A1