WO2019098077A1 - Water quality diagnostic system, power generation plant, and water quality diagnostic method - Google Patents

Water quality diagnostic system, power generation plant, and water quality diagnostic method Download PDF

Info

Publication number
WO2019098077A1
WO2019098077A1 PCT/JP2018/041063 JP2018041063W WO2019098077A1 WO 2019098077 A1 WO2019098077 A1 WO 2019098077A1 JP 2018041063 W JP2018041063 W JP 2018041063W WO 2019098077 A1 WO2019098077 A1 WO 2019098077A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
water
unit
measurement
rank
Prior art date
Application number
PCT/JP2018/041063
Other languages
French (fr)
Japanese (ja)
Inventor
貴行 和田
仙市 椿▲崎▼
翔 下田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201880054236.XA priority Critical patent/CN111033253B/en
Priority to KR1020207004493A priority patent/KR102344805B1/en
Publication of WO2019098077A1 publication Critical patent/WO2019098077A1/en
Priority to PH12020500356A priority patent/PH12020500356A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a water quality diagnosis system, a power plant, and a water quality diagnosis method.
  • the dissolved oxygen of water flowing in the water circulation system is kept as zero as possible. It is kept weakly alkaline using ammonia, etc. Water treatment to add ammonia and the like is performed when water is supplied from the condensate system in the water circulation system to the water supply system.
  • Patent Document 1 describes that events (monitoring instrument data etc.) that occurred in the past are stored in a database system, and when a certain event occurs, reference is made to data stored in the database system.
  • the pH value and the electrical conductivity of water which are separate measurement values, have a correlation based on the ammonia concentration. That is, even if the electric conductivity decreases due to the intentional operation for water quality adjustment, if the pH value also changes according to the correlation, there is no abnormality in the water quality (no harmful impurities are included)
  • the present disclosure has been made in view of such circumstances, and provides a water quality diagnosis system, a power plant, and a water quality diagnosis method capable of diagnosing the degree of water quality abnormality more accurately and uniformly. With the goal.
  • an electric conductivity measurement unit provided in a water circulation system in a power plant and measuring electric conductivity of circulating water, and a pH value of the water provided in the water circulation system and circulated
  • the controller comprises: a pH measuring unit for measuring; and a control device for diagnosing the degree of water quality abnormality, wherein the control device is a reference value based on the correlation between pH value and electric conductivity in the water circulation system, and water quality in the water circulation system
  • a storage unit in which a plurality of preset ranks indicating the degree of abnormality and a deviation range from the reference value respectively corresponding to the plurality of ranks are stored; and the electric conductivity measurement unit and the pH measurement unit And a rank determination unit that determines a rank of the measurement result based on the measurement result and the deviation range stored in the storage unit.
  • the degree of water quality abnormality is determined based on the measurement result by the electrical conductivity measuring unit and the pH measuring unit based on the deviation range from the reference value based on the correlation between the pH value and the electrical conductivity. Therefore, it is possible to effectively judge the water quality abnormality which could not be accurately determined only by the pH value or the electrical conductivity alone. That is, even if there is little fluctuation in the pH value where confirmation is usually made with priority given to the standard range of water quality abnormality and no abnormality is recognized, by combining the fluctuation of electrical conductivity that is sensitive to water quality, The presence or absence of water quality abnormality can be judged effectively.
  • the water quality abnormality is accurately and uniformly judged without depending on the skill of the measurer. It becomes possible. Since the water quality abnormality can be accurately determined, the influence of the water quality deterioration on the entire power generation plant (for example, boiler evaporation tube leakage, turbine performance deterioration, etc.) can be effectively prevented.
  • the controller uses the determination result by the rank determination unit corresponding to each of a plurality of the measurement results, and the water circulation system according to a frequency distribution state of the plurality of ranks in the determination result.
  • a comprehensive determination unit may be provided to comprehensively determine the degree of water quality abnormality in the above.
  • each of the conductivity measuring unit and the pH measuring unit determined in the predetermined period Even if each rank result to the measurement result is, for example, variation in each measurement result of the electrical resistivity due to the concentration difference of water flowing in the water circulation system (for example, ammonia concentration difference), within the error range from the frequency distribution of each rank If there is a large number of ranks that can be determined, a comprehensive judgment is made that there is no problem, not a serious abnormality, so that a comprehensive judgment with high accuracy can be made.
  • control device is configured in advance to a value different from the values of the electric conductivity measuring unit and the pH measuring unit used for the comprehensive determination according to the comprehensive determination result by the comprehensive determining unit. It is good also as providing the cause estimating part which presumes the cause of the above-mentioned general judgment result by judging whether it is set conditions or not.
  • the comprehensive determination result determined by the comprehensive determination unit satisfies a preset condition with respect to a value different from the value used for the comprehensive determination result.
  • the water quality diagnosis system includes at least one acid electric conductivity measurement unit provided in the water circulation system and measuring acid electric conductivity of circulating water, and the cause estimation unit is a water quality abnormality having a high overall judgment result. It is determined whether the measurement result from the acid electrical conductivity measurement unit is equal to or greater than a preset threshold, and when it is a positive determination, seawater leakage is estimated as the cause of the overall determination result. You may do it.
  • the cause estimation is based on whether the measurement result of the acid conductivity measuring unit is within a preset threshold or not. By being performed automatically, it is possible to quickly estimate whether the cause of the water quality abnormality is due to seawater leakage.
  • the water quality diagnosis system may further include a display unit that displays the comprehensive determination result and a cause corresponding to the comprehensive determination result estimated by the cause estimating unit.
  • the driver of the power generation plant can easily recognize the general determination result and the cause thereof, so that the abnormality of the plant can be promptly detected and dealt with.
  • the water quality diagnosis system includes a simulation device, and the control device includes a communication unit for transmitting to the simulation device the measurement result related to the cause and the water quality abnormality estimated for the comprehensive determination result, the simulation device
  • the leakage leak amount and the leak time may be calculated based on the information acquired from the communication unit and the simulation model and / or the accumulated data in the past, and the leakage contamination range in the power plant may be derived. Good.
  • the operator of the power plant can easily recognize the contamination range.
  • the plan of measures such as future additional investigation contents and treatment contents, schedule, etc., and to easily restore the soundness of the power plant promptly and appropriately Become.
  • Some embodiments of the present invention are a power plant including a boiler, a steam turbine, a condenser, and the above water quality diagnosis system.
  • an electric conductivity measurement unit and a pH measurement unit provided in a water circulation system in a power plant, and a reference value based on a correlation between a pH value and electric conductivity in the water circulation system and the water circulation
  • a water quality diagnosis system comprising a control unit having a storage unit in which a plurality of preset ranks indicating the degree of water quality abnormality in the system and a deviation range from the reference value corresponding to each of the plurality of ranks are stored.
  • the method for diagnosing water quality according to claim 1, wherein an electric conductivity measuring step of measuring electric conductivity of circulating water, a pH measuring step of measuring pH value of circulating water, the electric conductivity measuring step and the pH measuring step And a rank determination step of determining the rank of the measurement result based on the measurement result obtained by the step and the deviation range stored in the storage unit.
  • FIG. 1 shows schematic structure of the water circulation system in the power generation plant provided with the water quality diagnostic system which concerns on 1st Embodiment. It is a functional block diagram showing the function with which the control device in the water quality diagnostic system concerning a 1st embodiment is provided. It is the figure which showed the information stored in the storage part in the water quality diagnosis system concerning a 1st embodiment. It is the figure which showed the correlation of pH value and electrical conductivity in the water quality diagnosis system which concerns on 1st Embodiment. It is the figure which showed the relationship of comprehensive judgment and rank in the water quality diagnosis system concerning a 1st embodiment. It is the figure which showed the flowchart of the rank determination process in the water quality diagnostic system which concerns on 1st Embodiment.
  • FIG. 1 It is a figure which shows schematic structure of the water circulation system in the power generation plant provided with the water quality diagnostic system which concerns on 2nd Embodiment. It is the functional block diagram which showed the function with which the control apparatus in the water quality diagnostic system concerning 2nd Embodiment is equipped. It is the figure which showed the cause and confirmation item of the water quality abnormality in the water quality diagnosis system which concerns on 2nd Embodiment. It is the figure which showed the example of a notification of the cause of the general diagnostic result and water quality abnormality in the water quality diagnosis system concerning a 2nd embodiment.
  • FIG. 1 is a view showing a schematic configuration of a water circulation system 1 in a power plant provided with a water quality diagnosis system according to the first embodiment.
  • the water circulation system 1 according to the present embodiment mainly includes a steam system, a condensate system, a water supply system, an electrical conductivity measurement unit 3, a pH measurement unit 4, and a control device 5. It is provided as a configuration.
  • the steam system comprises a boiler 6 and a turbine 7 (steam turbine), and the condensate system comprises a condenser 8, a condensate pump 9, a condensate demineralizer 10, and a grand steam condenser 11.
  • the water supply system is configured to include the low pressure heater 12, the deaerator 13, the water supply pump 14, and the high pressure heater 15.
  • the boiler 6, the turbine 7, the condenser 8, the condensate pump 9, the condensate demineralizer 10, the grand steam condenser 11, the low pressure heater 12, the deaerator 13, the feed water pump 14, and the high pressure heater 15 are connected in order, and water (and steam) circulates through each device.
  • the feed water supplied from the water feed system is converted into steam by heat exchange in the boiler 6, and the turbine 7 is rotationally driven.
  • heat exchange with combustion heat of the fuel is performed to evaporate the high-pressure water supplied from the water supply system to generate high-temperature high-pressure steam.
  • the boiler 6 is applicable also to any methods, such as a through flow method, a natural circulation method, and a forced circulation method.
  • the high temperature and high pressure steam is supplied to the turbine 7 to rotationally drive the turbine blades.
  • the thermal energy of the steam supplied from the boiler 6 by the high pressure turbine or the low pressure turbine is converted into mechanical energy.
  • a generator (not shown) is rotationally driven to generate electric power.
  • the steam which has finished work in the turbine 7 is supplied to the condenser 8 in the condensate system.
  • the steam which has finished its work in the turbine 7 is condensed so that it can be supplied to the boiler 6 and the turbine 7 again.
  • cooling water is allowed to flow through a cooling pipe provided in the condenser 8, and heat exchange is performed between the exhaust steam from the turbine 7 and the cooling water flowing in the cooling pipe, Condensate and condense the exhaust steam.
  • the condensed water is sent to the condensed water demineralizer 10 by the condensed water pump 9.
  • the condensed water demineralizer 10 purifies the water condensed by the condenser 8.
  • the condensate contains a small amount of impurities such as metal ions and chlorine generated in the system, and these impurities may cause a failure such as corrosion of a heat transfer tube constituting the boiler 6.
  • the desalting treatment is performed using an anion resin or a cation resin.
  • the ground steam used for the shaft seal portion etc. of the turbine 7 is condensed by the ground steam condenser 11 and condensed.
  • the water supply supplied from the condensate system is brought into a high temperature and high pressure state, and is supplied to the evaporation system of the boiler 6.
  • the feed water supplied from the condensate system is heated to, for example, about 150 ° C. by the low pressure heater 12.
  • the heated feed water is supplied to the deaerator 13 to remove non-condensed gas such as oxygen and carbon dioxide dissolved in the feed water.
  • the deaerated feed water is pumped by the feed water pump 14, and the feed water in the high pressure state is further heated to, for example, about 250 ° C. by the high pressure heater 15, and is supplied to the boiler 6 without evaporation.
  • the configuration of the water circulation system 1 is not limited to the above configuration, and can be applied to any method.
  • the conductivity measuring unit 3 is provided in the water circulation system 1 and measures the conductivity of the circulating water. Specifically, the electrical conductivity measurement unit 3 is disposed upstream of the feed water flow with respect to the boiler 6. By measuring the electric conductivity of the feed water supplied to the boiler 6 by the electric conductivity measurement unit 3, it is possible to monitor the water treatment chemical concentration (for pH value adjustment) or the like of the feed water. Electrical conductivity (Specific Conductivity: SC) may be written as SC separately from acid conductivity as described later. The electrical conductivity SC corresponds to the reciprocal of the electrical resistance [ ⁇ ⁇ cm] possessed by the solution between the electrodes when the electrodes having a cross-sectional area of 1 cm 2 face each other at a distance of 1 cm.
  • SC Specific Conductivity
  • the electrodes of a predetermined area are disposed apart by a predetermined distance, and a voltage is applied between the electrodes in a state where the water supply is flowing between them, so that the current flowing between the electrodes is It detects and calculates the electric conductivity.
  • the pH measurement unit 4 is provided in the water circulation system 1 and measures the pH value of the circulating water. Specifically, the pH measurement unit 4 is disposed upstream of the feed water flow with respect to the boiler 6. Usually, the water supply is maintained weakly alkaline (for example, about pH 9 to 10) in order to prevent corrosion of each device. By measuring the pH value of the feed water supplied to the boiler 6 by the pH measurement unit 4, it can be monitored whether the feed water is maintained weakly alkaline.
  • the electrical conductivity measurement unit 3 and the pH measurement unit 4 are disposed upstream of the feed water flow with respect to the boiler 6, but this is especially applied to the feed water supplied to the boiler 6 and the turbine 7. Water quality diagnosis is performed to suppress corrosion of the boiler 6 and the turbine 7.
  • the arrangement positions of the electrical conductivity measurement unit 3 and the pH measurement unit 4 are not limited to the above positions, and can be appropriately changed and added.
  • the control device 5 diagnoses the degree of water quality abnormality using the measurement results of the electrical conductivity measurement unit 3 and the pH measurement unit 4.
  • the control device 5 includes, for example, a CPU (central processing unit) (not shown), a memory such as a random access memory (RAM), and a computer readable recording medium.
  • a CPU central processing unit
  • RAM random access memory
  • the process of a series of processes for realizing various functions to be described later is recorded in the form of a program on a recording medium or the like, and the CPU reads this program to a RAM or the like to execute information processing and arithmetic processing.
  • various functions described later are realized.
  • FIG. 2 is a functional block diagram showing the functions of the control device 5. As shown in FIG. 2, the control device 5 includes a storage unit 21, a rank determination unit 22, and a general determination unit 23.
  • the storage unit 21 respectively corresponds to a plurality of predetermined ranks indicating the degree of water quality abnormality in the water circulation system 1, a reference value based on the correlation between the pH value and the electric conductivity in the water circulation system 1, and a plurality of ranks.
  • the deviation range from the reference value is stored.
  • An example of the information stored in the storage unit 21 in the present embodiment is shown in FIG. In the present embodiment, the case where the rank is divided into, for example, five stages (ranks a to e) according to the difference range from the reference value in consideration of the measurement error of each measurement value will be described. Can be changed as appropriate.
  • the rank is a preset class for representing the degree of water quality abnormality, and is, for example, divided into rank a to rank e as shown in FIG. 3, and is determined for each measurement value.
  • the rank a is the rank at which the degree of water quality abnormality is the lowest, and as shown in FIG. 3, indicates that the current operating state can be maintained without problems, for example, within the measurement error range.
  • Rank b is the second lowest rank in the degree of water quality abnormality and indicates that although it is within the standard, some outliers may be recognized.
  • Rank c indicates that the degree of water quality abnormality is middle rank, and some abnormal values may be recognized, and it is necessary to check periodically. For example, public standards such as JIS standards Within the value, the upper limit level is acceptable.
  • Rank d is the second highest rank of the degree of water quality abnormality, and indicates that serious outliers are recognized.
  • Rank e is the rank where the degree of water quality abnormality is the highest, shows that many serious outliers are recognized, and it is necessary to take early measures, for example, a level that requires measures after unit shutdown It becomes. That is, when the diagnosis result of the water quality in the water circulation system 1 is a rank with high degree of water quality abnormality (especially, rank e), it indicates that an early response is necessary.
  • the reference value is calculated from the correlation between the pH value and the electrical conductivity based on the ammonia concentration that is added and managed for water treatment (to prevent corrosion) in the water circulation system 1.
  • the correlation between pH value and conductivity can be expressed by the following approximate expression.
  • SC in Formula (1) has shown electrical conductivity [mS / m].
  • equation (1) it is possible to calculate a pH value (theoretical value) with ammonia having the same concentration as the ammonia concentration estimated in a certain electric conductivity [mS / m].
  • the approximate line (reference value) of the correlation of pH value and electrical conductivity represented by Formula (1) is shown as a solid line in FIG.
  • 9.6 is calculated as the pH value (theoretical value). This indicates that the ammonia concentration estimated from the electric conductivity of 1 [mS / m] and the ammonia concentration estimated from the pH 9.6 have the same value.
  • the water in the water circulation system 1 is for water treatment It is estimated that there is very little contamination of impurities other than ammonia added to and there is no abnormality in the water quality.
  • the measurement results of the pH value and the electrical conductivity are largely separated from the approximate line (reference value) represented by the equation (1), some influence other than the ammonia added for water treatment , Indicates that the water quality is deteriorating.
  • Some effects include, for example, seawater leakage (seawater mixing), organic matter mixing, and the like.
  • the deviation range from the reference value corresponding to each of the plurality of ranks is defined in accordance with the deviation state from the reference value of the correlation between the pH value and the electrical conductivity represented by the formula (1).
  • the divergence range of rank a is set within the reference value ⁇ 0.05.
  • the divergence range of rank b is set within the reference value ⁇ 0.1 (above the reference value ⁇ 0.05).
  • the divergence range of rank c is set within the reference value ⁇ 0.15 (above the reference value ⁇ 0.1).
  • the divergence range of rank d is set within the reference value ⁇ 0.2 (above the reference value ⁇ 0.15).
  • the divergence range of rank e is set to the reference value ⁇ 0.2 or more.
  • the measurement result of pH value and electrical conductivity can be uniformly associated with the degree of water quality abnormality by dividing and defining the range of deviation from the reference value in rank.
  • the divergence range is not limited to the above, and can be changed as appropriate.
  • a period from regular maintenance is divided into a period T1 (for example, 0 to 1.5 years), a period T2 (for example, 1.5 to 2.5 years), a period T3 (for example, 2.5 years)
  • the graph shows an example of plotting the measurement results of the pH value and the conductivity obtained in each of the following periods.
  • the measurement results of the pH value and the electrical conductivity in the period T1 are somewhat dispersed, there is no measurement result that is determined to be the rank e.
  • the variation range of the pH value does not change so much, and the electrical conductivity significantly decreases.
  • the rank determination unit 22 determines the rank of the measurement result based on the measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 and the divergence range stored in the storage unit 21. Specifically, the rank determination unit 22 acquires measurement results from the conductivity measurement unit 3 and the pH measurement unit 4 at predetermined intervals (for example, every hour), and stores the measurement results and the storage unit 21. Check against the range of divergence. Then, the rank corresponding to the divergence range in which the measurement result is included is determined. As described above, the degree of water quality abnormality is uniformly determined by making the degree of water quality abnormality correspond to the rank according to the deviation range with respect to the reference value indicating that the water quality is normal for each measurement result. be able to.
  • the rank determination unit 22 acquires the measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 when the operation state is in the steady state so that the measurement result is not affected by the operation state of the power generation plant. It is also good.
  • the steady state is, for example, a state in which a rated output with a plant output of 90% or more is performed. As described above, by defining the operating state of the power generation plant and using the measurement result in the steady state, the variation in the measurement result can be suppressed.
  • the comprehensive determination unit 23 uses the determination result by the rank determination unit 22 corresponding to each of the plurality of measurement results, and according to the frequency distribution state corresponding to the plurality of ranks in the determination result, the degree of water quality abnormality in the water circulation system 1 Make an overall decision. Specifically, the comprehensive determination unit 23 determines the rank determined for each measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 measured within a predetermined period (for example, one month from a predetermined date) A result is acquired, and a frequency distribution state is calculated for a plurality of acquired ranks (for example, rank a to rank e). As shown in FIG.
  • comprehensive judgments A to E are set in advance according to the frequency distribution criteria for a plurality of ranks (for example, rank a to rank e), and the degree of water quality abnormality is It can be comprehensively judged based on the state of the designated period.
  • the frequency distribution reference of the rank in the comprehensive judgment A in this embodiment is, for example, that the rank a is 90% or more, and the ranks d and e are 0%, so that the current driving state can be maintained without problems. Is shown. For example, rank a and b are 80% or more, and ranks d and e are 0%, so that operation continuation is possible but some outliers are recognized.
  • the frequency distribution reference of the rank in the comprehensive judgment D is, for example, a state in which the ranks a and b are 0%, the ranks d and e are 80% or more, and the rank e is less than 20%.
  • the degree of abnormality is the second highest, and serious outliers may be observed, which requires preparation for maintenance.
  • the rank frequency distribution standard in the comprehensive judgment E is, for example, that the rank e is 20% or more, the degree of water quality abnormality is the highest, many serious outliers are recognized, and early maintenance measures are necessary. Is shown.
  • the comprehensive judgment C is a case other than the comprehensive judgments A, B, D, and E, and the degree of water quality abnormality is an intermediate rank, and some abnormal values may be recognized, and it is necessary to check periodically. It is shown that.
  • the number of classes of integrated judgment and the frequency distribution reference in the integrated judgment unit 23 are not limited to the above described classes (A to E) and the frequency distribution reference, and can be changed as appropriate.
  • the flow shown in FIG. 6 is repeatedly executed in a predetermined control cycle (for example, every hour), and a rank result (for example, rank a %) determined for each measurement result in units of one month from a predetermined date, for example.
  • Rank e is identified by the measurement date and time and stored.
  • the rank determination unit 22 acquires measurement results by the electrical conductivity measurement unit 3 and the pH measurement unit 4 (S101). Then, it is determined whether or not the acquired measurement result is within the divergence range of the rank a (within the reference value ⁇ 0.05) (S102). If the acquired measurement result is within the divergence range of rank a (YES in S102), the measurement result is determined to be rank a (S103).
  • the acquired measurement result is not within the divergence range of rank a (NO determination in S102), it is determined whether or not the acquired measurement result is within the divergence range of rank b (within reference value ⁇ 0.1) (S104). If the acquired measurement result is within the divergence range of rank b (YES in S104), the measurement result is determined to be rank b (S105).
  • the acquired measurement result is not within the divergence range of rank b (NO determination in S104), it is determined whether the acquired measurement result is within the divergence range of rank c (within reference value ⁇ 0.15) (S106). If the acquired measurement result is within the divergence range of rank c (YES in S106), the measurement result is determined to be rank c (S107).
  • the acquired measurement result is not within the divergence range of rank c (NO determination in S106)
  • the measurement result is determined to be rank e (S110), and the process is ended.
  • the above control is repeatedly performed in a predetermined control cycle, and a plurality of ranks (rank a to rank e) corresponding to the measurement result are identified by the measurement date and time and stored in the storage unit 21.
  • the comprehensive determination unit 23 determines the rank (for example, rank a to rank e) determined for each measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 measured within a predetermined period (for example, one month). Is obtained from the storage unit 21 and comprehensive judgments (for example, A to E) are performed according to the frequency distribution state for the plurality of acquired ranks. The result of the comprehensive determination is displayed on a display or the like included in the power generation plant and notified to the operation of the power generation plant.
  • each measurement result by the electric conductivity measurement unit 3 and the pH measurement unit 4 is divided into pH value and electric conductivity. Since the degree of water quality abnormality is determined based on the deviation range from the reference value based on the correlation, water quality abnormality that could not be accurately determined only by the pH value or the electrical conductivity alone is effectively judged. be able to. Since the measurement results by the conductivity measuring unit 3 and the pH measuring unit 4 are divided into a plurality of ranks (for example, rank a to rank e) indicating the degree of water quality abnormality, accurate and accurate without depending on the skill of the measurer It becomes possible to judge the water quality abnormality uniformly. Since the water quality abnormality can be accurately determined, the influence of the water quality deterioration on the entire power generation plant (for example, boiler evaporation tube leakage, turbine performance deterioration, etc.) can be effectively prevented.
  • each rank result for each measurement result of the electrical conductivity measuring unit 3 and the pH measuring unit 4 determined in a predetermined period is, for example, the difference in electric resistivity by the concentration difference of water flowing in the water circulation system 1 (for example, ammonia concentration difference)
  • the frequency distribution of rank a to rank e indicates that the frequency of rank a is high
  • comprehensive judgment is made that there is no problem and no serious abnormality. That is, it is possible to perform comprehensive judgment with high accuracy based on the frequency of each rank determined for each measurement value.
  • the control device 5 in the first embodiment diagnoses the degree of water quality abnormality using the measurement results of the electrical conductivity measurement unit 3 and the pH measurement unit 4, but in the present embodiment, the control device 5 In addition to the process of the first embodiment, the cause of the water quality abnormality is estimated.
  • points of the water quality diagnosis system according to the present embodiment which are different from the first embodiment will be mainly described.
  • the pH values of acid conductivity measuring unit 17 and boiler 6 water are measured as another measuring unit separately from the measuring unit of the first embodiment.
  • a boiler water pH measurement unit 18, a chlorine concentration measurement unit 19, and a sodium concentration measurement unit 20 are provided.
  • the control unit in the present embodiment is provided with a cause estimation unit 24 as shown in FIG.
  • the storage unit 21 stores the calibration history of the pH measurement unit 4, the cause of the estimated water quality abnormality, and a confirmation item for confirming the cause of the estimation.
  • the calibration history of the pH measurement unit 4 is a calibration date and time when the pH measurement unit 4 was calibrated.
  • a part of the presumed cause of the water quality abnormality and the confirmation item for confirming the presumed cause are typically represented by a table as shown in FIG.
  • the storage unit 21 stores, for example, causes and the like that are estimated in the case of comprehensive judgments D and E in which a comprehensive judgment is made that there is an abnormality in water quality.
  • the pH measurement unit 4 If the water quality abnormality (overall judgment D or E) is determined and the average value of the measurement results by the pH measurement unit 4 is lower than the reference value, the pH measurement unit 4 is maintained as abnormal or weakly alkaline It shows that the water quality had deteriorated (it changed to acid tendency). For this reason, in the storage unit 21, there are respective causes (incorrect calibration of the pH measuring unit 4, seawater leakage, organic matter mixing, chlorine leakage) which are estimated as the causes of the abnormality of the pH measuring unit 4 or the water quality shifting to the acid tendency. It is stored. When the water quality abnormality (overall judgment D or E) is judged, and the average value of the measurement results by the pH measurement unit 4 is higher than the reference value, the pH measurement unit 4 is maintained as abnormal or weakly alkaline.
  • the storage unit 21 stores the causes (incorrect calibration of the pH measuring unit 4 and sodium leakage) which are estimated as the causes of the abnormality of the pH measuring unit 4 or the water quality further shifting to the alkaline tendency.
  • the storage unit 21 stores confirmation items (C1 to C6) for estimating the more likely causes with respect to the respective causes.
  • the acid conductivity measuring unit 17 is installed at at least one of the outlet of the condenser 8, the inlet of the boiler 6, and the inlet of the turbine 7.
  • the acid conductivity is passed through a strongly acidic cation exchange resin layer converted to the hydrogen ion type to remove volatile substances such as ammonium ions from the water flowing through the water circulation system 1, and the conductivity of the water after removal is calculated. I am measuring.
  • the boiler water pH measurement unit 18 is installed in the boiler 6 and measures the pH value of the boiler 6 water. In the case of a drum type boiler as an example of the boiler 6, the pH value of the boiler 6 water in the drum is measured.
  • At least one chlorine concentration measurement unit 19 is provided on the upstream side of the condensate demineralizer 10 in the condensate system and in the water supply system.
  • the chlorine concentration measurement unit 19 measures the chlorine concentration of water supplied from the outside such as a pure water device (not shown) and flowing to the water circulation system 1.
  • At least one sodium concentration measurement unit 20 is provided on the upstream side of the condensate demineralizer 10 in the condensate system and in the water supply system.
  • the sodium concentration measuring unit 20 measures the sodium concentration of the water flowing to the water circulation system 1 supplied from the outside such as a pure water device (not shown).
  • the cause estimation unit 24 automatically determines whether or not the condition different from the value used for the comprehensive determination result is satisfied in accordance with the comprehensive determination result by the comprehensive determination unit 23 and whether the condition is set in advance. Estimate the cause of the overall judgment result. Specifically, the cause estimation unit 24 reads the confirmation item for each cause of the water quality abnormality stored in the storage unit 21 and determines whether the condition described in the confirmation item is satisfied or not. The cause corresponding to the confirmation item is output as an estimation result.
  • the cause and confirmation item shown in FIG. 9 are an example of a part, and the cause and confirmation item can be set as appropriate. Although the specific process performed by the cause estimation unit 24 will be described below for each confirmation item, each cause estimation process is executed by sequential processing or parallel processing.
  • the average value of the measurement results by the pH measurement unit 4 measured within the predetermined period (for example, one month from the predetermined date) when the water quality abnormality (general judgment D or E) is judged and the comprehensive judgment is made is higher than the reference value
  • the cause estimation unit 24 reads out each of the confirmation items C1 to C4 from the storage unit 21 in order to estimate the cause of the water quality abnormality. Then, it is determined whether the condition described in each confirmation item is satisfied for a value different from the value used for the comprehensive determination result, and the cause is estimated.
  • the cause estimation unit 24 refers to the calibration history of the pH measurement unit 4 and determines whether or not the calibration has been performed within a predetermined period (for example, one month). . Then, if it is determined that the calibration has not been performed within a predetermined period, the cause of the water quality abnormality when the deterioration state of the pH measurement unit 4 is confirmed by comparing the value with the hand analysis, etc. As, the cause of the calibration failure of the pH measurement unit 4 is estimated.
  • the cause estimation unit 24 acquires the measurement result of the acid conductivity measurement unit 17 and determines whether the measurement result is within a preset threshold. If it is determined that the measurement result of the acid conductivity measuring unit 17 is not within the preset threshold value, it is assumed that seawater infiltrates and a trace amount of hydrogen chloride (HCl) is generated. Seawater leakage is estimated as the cause.
  • the threshold value in the confirmation item C2 is set as the acid conductivity in which the salt concentration allowed for water flowing in the water circulation system 1 is considered. In order to confirm the occurrence location of seawater leakage, it is preferable that the acid conductivity measuring unit 17 be installed at the outlet of the condenser 8, near the inlet of the boiler 6, and near the inlet of the turbine 7 and compare the measurement results.
  • the cause estimation unit 24 acquires the measurement results of the pH measurement unit 4 and the boiler water pH measurement unit 18, and the measurement result of the pH measurement unit 4 and the boiler water pH measurement unit It is determined whether or not the difference from the 18 measurement results is within a preset threshold value. Then, when it is determined that the difference between the measurement result of the pH measurement unit 4 and the measurement result of the boiler water pH measurement unit 18 is not within the preset threshold, organic substance contamination is estimated as the cause of the water quality abnormality. In the water circulation system 1, when organic matter is mixed from industrial water or the like supplied from the outside, there is a high possibility that the organic matter is decomposed due to temperature rise and a trace amount of acid is generated.
  • the threshold value in the confirmation item C3 is set as a pH value corresponding to the amount of generated acid when it is assumed that an acid is generated from an organic substance due to a temperature rise.
  • the cause estimation unit 24 acquires the measurement result of the chlorine concentration measurement unit 19, and determines whether the measurement result of the chlorine concentration measurement unit 19 is within a preset threshold. judge. Then, when it is determined that the measurement result of the chlorine concentration measurement unit 19 is not within the preset threshold value, a slight amount of chlorine leakage from a pure water device (not shown) or the like is estimated as the cause of the water quality abnormality. . Confirm the trace chlorine concentration from ion chromatography etc. and determine the cause.
  • the threshold value in the confirmation item C3 is set as the concentration of chlorine that is allowed for the water flowing through the water circulation system 1.
  • the cause estimation unit 24 reads out each confirmation item C5-C6 from the storage unit 21 in order to estimate the cause of the water quality abnormality. Then, it is determined whether or not the condition described in each confirmation item is satisfied, and the cause is estimated.
  • the cause estimation unit 24 refers to the calibration history of the pH measurement unit 4 and determines whether or not the calibration has been performed within a predetermined period (for example, one month). Then, if it is determined that the calibration has not been performed within a predetermined period, the cause of the water quality abnormality when the deterioration state of the pH measurement unit 4 is confirmed by comparing the value with the hand analysis, etc. As, the calibration failure of the pH measurement unit 4 and the cause are estimated.
  • the confirmation item C5 is the same as the confirmation item C1.
  • the cause estimation unit 24 acquires the measurement result of the sodium concentration measurement unit 20, and determines whether the measurement result of the sodium concentration measurement unit 20 is within a preset threshold. judge. Then, when it is determined that the measurement result of the sodium concentration measurement unit 20 is not within the preset threshold value, a slight amount of sodium leakage from a pure water device (not shown) or the like is estimated as the cause of the water quality abnormality. . Check the concentration of a small amount of sodium component from ion chromatography etc. and determine the cause. The threshold value in the confirmation item C6 is set as the concentration of sodium acceptable to the water flowing through the water circulation system 1.
  • the cause estimating unit 24 when the integrated determination D or E indicating water quality abnormality is determined, a cause different from the value used for the integrated determination result is estimated from the storage unit 21 and The confirmation item is read out, and the probable cause is estimated based on the conditions described in each confirmation item.
  • the estimated cause is displayed on a display or the like included in the power plant, and the operator of the power plant is notified. This makes it possible to estimate the cause accurately and quickly, so that plant abnormalities can be detected early.
  • a map image as shown in FIG. 10 may be displayed on the display.
  • the horizontal axis indicates the comprehensive determination result
  • the vertical axis indicates the acid conductivity.
  • the upper right on the map indicates that the level of attention (impact) of each water quality anomaly is high.
  • the cause of the water quality abnormality stored in the storage unit 21 is arranged on the map according to a preset threshold value. Then, according to the comprehensive judgment result and the cause estimation result, the visual attention level and the cause can be notified easily and quickly by indicating the current value of the measurement value corresponding to the cause of each water quality abnormality with a ⁇ mark or the like. it can.
  • the comprehensive determination E is determined, and the measurement value when seawater leakage is estimated as the cause is shown as the current value.
  • Each cause, attention level, etc. can be changed suitably.
  • the comprehensive judgment result and the cause estimated for the general judgment result, the map shown in FIG. 10, the measurement result related to the water quality abnormality, the operation state of the power generation plant, etc. are for example by the communication device (not shown) via the Internet etc. It may be transmitted to a computer (simulation apparatus) installed at a remote control center or the like and displayed. The computer may be provided in a power plant.
  • the measurement results related to the water quality abnormality are, for example, each measurement unit (electrical conductivity measurement unit 3, pH measurement unit 4, acid conductivity measurement unit 17, boiler water pH measurement unit 18, chlorine concentration measurement unit 19, sodium It is a measurement result obtained from the concentration measurement unit 20 or the like.
  • a simulation model and / or data accumulated from the past according to the information acquired from the communication device for example, the overall determination result, the cause estimated for the overall determination result, the operating state of the power plant, etc.
  • the leakage leak amount and the leak time may be calculated using (the measurement results of the electrical conductivity measuring unit 3 and the pH measuring unit 4) or the like, the seawater leakage contamination range in the power plant may be calculated, and the map may be displayed.
  • the simulation model is a virtual model of a power generation plant, and it is possible to virtually operate the virtual model on a computer according to each parameter (for example, measurement results of the electrical conductivity measurement unit 3 and the like).
  • the data accumulated from the past refers to each measurement data (data in which the measurement result of each measurement unit such as the electric conductivity measurement unit 3 and leakage leak etc. is associated) when leakage leak actually occurs in the power generation plant is there.
  • a map of the seawater leakage contamination range in this power generation plant is transmitted to the control room of the power generation plant by a communication device (not shown) and the operator of the power generation plant is easily polluted by visualizing and showing the seawater leakage contamination range. The range can be recognized.
  • the plan of measures such as future additional investigation contents and treatment contents, schedule, etc.
  • the water quality diagnosis system, the power generation plant, and the water quality diagnosis method according to the present embodiment it is possible to automatically estimate the cause that can be the comprehensive determination result determined by the comprehensive determination unit 23 Become. For this reason, in particular, even in the case where the comprehensive determination result indicates high water quality abnormality, it is possible to accurately and quickly estimate the cause. Since the cause of the water quality abnormality can be recognized quickly, it can be expected to take an early response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The purpose of the present invention is to provide: a water quality diagnostic system in which degrees of water quality abnormality can be diagnosed more accurately and more uniformly; a power generation plant; and a water quality diagnostic method. This water quality diagnostic system disposed in a power generation plant is provided with: an electric conductivity measurement unit (3) that is disposed in a water circulation line (1) of a power generation plant and measures the electric conductivities of circulating water; a pH measurement unit (4) that is disposed in the water circulation line (1) and measures pH values of the circulating water; and a control device (5) that diagnoses degrees of water quality abnormality. The control device (5) is provided with: a storage unit that stores reference values based on correlations between the pH values and the electric conductivities in the water circulation line (1), a plurality of preset ranks that indicate the degrees of water quality abnormality in the water circulation line (1), and a range of deviations from the reference values corresponding to the plurality of ranks; and a rank determination unit that determines the ranks of measurement results, on the basis of the measurement results by the electric conductivity measurement unit (3) and the pH measurement unit (4), and on the basis of the range of deviations stored in the storage unit.

Description

水質診断システム、発電プラント、及び水質診断方法Water quality diagnosis system, power generation plant, and water quality diagnosis method
 本発明は、水質診断システム、発電プラント、及び水質診断方法に関するものである。 The present invention relates to a water quality diagnosis system, a power plant, and a water quality diagnosis method.
 発電プラントでは、ボイラやタービンを含む水循環系の各構造物及び配管等を構成する鉄や銅等を含む金属材料の腐食を抑制するため、水循環系に流れる水の溶存酸素を極力零に保つとともに、アンモニア等を用いて弱アルカリ性に維持している。アンモニア等を添加する水処理は、水循環系における復水系から給水系へ送水される際に行われている。 In the power generation plant, in order to suppress corrosion of metal materials including iron, copper, etc. that constitute each structure of the water circulation system including boilers and turbines, piping, etc., the dissolved oxygen of water flowing in the water circulation system is kept as zero as possible. It is kept weakly alkaline using ammonia, etc. Water treatment to add ammonia and the like is performed when water is supplied from the condensate system in the water circulation system to the water supply system.
 水循環系における水質の異常(例えば、pH値低下等)は、水循環系を構成する構造物等の金属材料の腐食を引き起こすため、発電プラントでは、定期的に水質診断を行っている。一般的には、発電プラントの水質診断は、水質診断員が定期的に計器の値を読み取り、読み取った値を手動で分析することによって、管理基準値の範囲との比較や経時的変化を確認することで良否の判断が行われている。さらに各計測値や各分析値は、不純物や異物の混入で値が変化することもあり、種々の要因が重なった各計測値や各分析値の変動がある場合もある。このため、水質異常の診断には、専門的知識を必要とし、また、個人の判断差が含まれてしまい、水質異常を画一的に判断することが困難であった。 Since abnormalities in the water quality in the water circulation system (for example, a decrease in pH value etc.) cause corrosion of metal materials such as structures constituting the water circulation system, the water quality is regularly checked in the power generation plant. In general, water quality diagnosis of a power plant is conducted by the water quality inspector periodically reading the value of the meter and manually analyzing the read value to confirm comparison with the range of control reference values and changes over time Judgment of good or bad is done by doing. Furthermore, each measured value or each analyzed value may change due to contamination with impurities or foreign matter, and there may be a variation in each measured value or each analyzed value in which various factors overlap. For this reason, diagnosis of water quality abnormalities requires specialized knowledge, and individual judgment differences are included, making it difficult to uniformly judge water quality abnormalities.
 特許文献1では、過去に発生した事象(監視計器データ等)をデータベースシステムに蓄積しておき、ある事象が発生した場合に、データベースシステムに蓄積されたデータを参照することが記載されている。 Patent Document 1 describes that events (monitoring instrument data etc.) that occurred in the past are stored in a database system, and when a certain event occurs, reference is made to data stored in the database system.
特開2003-288114号公報JP 2003-288114 A
 しかしながら、発電プラントにおける水質をより的確に判断するためには、従来のように、それぞれの測定や分析項目において別々に水質診断を行うだけでは不十分であることが判ってきた。一方では水質異常を見逃してしまった場合には、水循環系に腐食等が生じ、ボイラ蒸発管漏洩やタービン性能低下等といった大きな問題を引き起こす危惧があるため、水質異常の判断に当たり、水質の測定値や分析値が異常とする傾向等も画一的に判断できることが望まれている。 However, in order to judge the water quality in a power plant more accurately, it has been found that it is not sufficient to carry out water quality diagnosis separately for each measurement or analysis item as in the past. On the other hand, if the water quality abnormality is overlooked, corrosion etc. will occur in the water circulation system, which may cause major problems such as boiler evaporation pipe leakage and turbine performance deterioration, etc. It is desirable that it is possible to uniformly determine the tendency of analysis values to be abnormal or the like.
 例えば、別々の測定値である水のpH値と電気伝導率は、アンモニア濃度に基づいて相関関係を有している。つまり、水質調整のための意図的な操作によって電気伝導率が低下したとしても、pH値も該相関関係に従って変化していれば、水質に異常がない(有害な不純物が含まれていない)という特性を利用する水質評価方法の活用を発見するに至った。すなわち、pH値及び電気伝導率が、予め算出されている相関関係に基づく基準値から逸脱していなければ、他の不純物等の混入はなく水質には問題がないということが推定される。よって、水質をより的確かつ画一的に判断するために、測定項目の相関関係を考慮して、水質異常の診断を行うことができることを発見するに至った。 For example, the pH value and the electrical conductivity of water, which are separate measurement values, have a correlation based on the ammonia concentration. That is, even if the electric conductivity decreases due to the intentional operation for water quality adjustment, if the pH value also changes according to the correlation, there is no abnormality in the water quality (no harmful impurities are included) We came to discover the use of the water quality evaluation method that uses the characteristics. That is, if the pH value and the electrical conductivity do not deviate from the reference value based on the correlation calculated in advance, it is estimated that there is no contamination of other impurities and the like and there is no problem in the water quality. Therefore, in order to judge water quality more appropriately and uniformly, it came to discover that diagnosis of water quality abnormality can be performed in consideration of correlation of a measurement item.
 ここで、水質異常の傾向等を画一的に認識するためには、水質異常の度合を正確に診断することが必要である。測定項目の相関関係を考慮して、水質異常の診断を行うにあたり、水質異常の度合についても正確かつ画一的に診断することで、水質悪化を事前に認識することができ、発電プラントへの影響を最小限に抑えることができる。 Here, in order to uniformly recognize the tendency of the water quality abnormality etc., it is necessary to diagnose the degree of the water quality abnormality correctly. When diagnosing the water quality abnormality in consideration of the correlation of the measurement items, it is possible to recognize the water quality deterioration in advance by accurately and uniformly diagnosing the degree of the water quality abnormality. The impact can be minimized.
 本開示は、このような事情に鑑みてなされたものであって、より正確かつ画一的に水質異常の度合を診断することのできる水質診断システム、発電プラント、及び水質診断方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a water quality diagnosis system, a power plant, and a water quality diagnosis method capable of diagnosing the degree of water quality abnormality more accurately and uniformly. With the goal.
 本発明の幾つかの実施形態は、発電プラントにおける水循環系に設けられ、循環する水の電気伝導率を計測する電気伝導率計測部と、前記水循環系に設けられ、循環する水のpH値を計測するpH計測部と、水質異常の度合を診断する制御装置と、を備え、前記制御装置は、前記水循環系におけるpH値及び電気伝導率の相関関係に基づく基準値と、前記水循環系における水質異常の度合を示す予め設定された複数のランクと、前記複数のランクにそれぞれ対応する前記基準値からの乖離範囲とが格納された記憶部と、前記電気伝導率計測部及び前記pH計測部による計測結果と、前記記憶部に格納された前記乖離範囲とに基づいて、前記計測結果のランクを判定するランク判定部と、を備える水質診断システム。 In some embodiments of the present invention, an electric conductivity measurement unit provided in a water circulation system in a power plant and measuring electric conductivity of circulating water, and a pH value of the water provided in the water circulation system and circulated The controller comprises: a pH measuring unit for measuring; and a control device for diagnosing the degree of water quality abnormality, wherein the control device is a reference value based on the correlation between pH value and electric conductivity in the water circulation system, and water quality in the water circulation system A storage unit in which a plurality of preset ranks indicating the degree of abnormality and a deviation range from the reference value respectively corresponding to the plurality of ranks are stored; and the electric conductivity measurement unit and the pH measurement unit And a rank determination unit that determines a rank of the measurement result based on the measurement result and the deviation range stored in the storage unit.
 上記のような構成によれば、電気伝導率計測部及びpH計測部による計測結果を、pH値及び電気伝導率の相関関係に基づく基準値からの乖離範囲に基づいて、水質異常の度合を判定することとしたため、pH値のみ又は電気伝導率のみでは正確に判断できなかった水質異常についても、効果的に判断することができる。すなわち、通常は水質異常の基準範囲にあるかを優先して確認を行うpH値には変動が少なく異常が認められない場合でも、水質に敏感に反応する電気導電率の変動を組み合わせることで、水質異常の有無を効果的に判断することができる。電気伝導率計測部及びpH計測部による計測結果を、水質異常の度合を示す複数のランクに分けることとしたため、計測者の技量に依ることなく、正確かつ画一的に水質異常の判断を行うことが可能となる。水質異常を正確に判断することができるため、水質悪化による発電プラント全体への影響(例えば、ボイラ蒸発管漏洩、タービン性能低下等)を効果的に防止することができる。 According to the above configuration, the degree of water quality abnormality is determined based on the measurement result by the electrical conductivity measuring unit and the pH measuring unit based on the deviation range from the reference value based on the correlation between the pH value and the electrical conductivity. Therefore, it is possible to effectively judge the water quality abnormality which could not be accurately determined only by the pH value or the electrical conductivity alone. That is, even if there is little fluctuation in the pH value where confirmation is usually made with priority given to the standard range of water quality abnormality and no abnormality is recognized, by combining the fluctuation of electrical conductivity that is sensitive to water quality, The presence or absence of water quality abnormality can be judged effectively. Since the measurement results by the electrical conductivity measuring unit and the pH measuring unit are divided into a plurality of ranks indicating the degree of water quality abnormality, the water quality abnormality is accurately and uniformly judged without depending on the skill of the measurer. It becomes possible. Since the water quality abnormality can be accurately determined, the influence of the water quality deterioration on the entire power generation plant (for example, boiler evaporation tube leakage, turbine performance deterioration, etc.) can be effectively prevented.
 上記水質診断システムにおいて、前記制御装置は、複数の前記計測結果のそれぞれに対応した前記ランク判定部による判定結果を用い、前記判定結果における前記複数のランクの度数分布状態に応じて、前記水循環系における水質異常の度合を総合的に判定する総合判定部を備えることとしてもよい。 In the water quality diagnosis system, the controller uses the determination result by the rank determination unit corresponding to each of a plurality of the measurement results, and the water circulation system according to a frequency distribution state of the plurality of ranks in the determination result. A comprehensive determination unit may be provided to comprehensively determine the degree of water quality abnormality in the above.
 上記のような構成によれば、複数のランクに対する度数分布状態に応じて、水質異常の度合を総合的に判定することとしたため、所定期間に判定した電気伝導率計測部及びpH計測部の各計測結果に対する各ランク結果が、例えば、水循環系を流れる水の濃度差(例えば、アンモニア濃度差)によって電気抵抗率の各測定結果がばらついたとしても、各ランクの度数分布から、誤差範囲内と判断できるランクの度数が多い状態であれば、重度の異常ではなく問題なしとする総合判断を行うので、確度の高い総合判定を行うことができる。 According to the configuration as described above, since the degree of water quality abnormality is comprehensively determined according to the frequency distribution state for a plurality of ranks, each of the conductivity measuring unit and the pH measuring unit determined in the predetermined period Even if each rank result to the measurement result is, for example, variation in each measurement result of the electrical resistivity due to the concentration difference of water flowing in the water circulation system (for example, ammonia concentration difference), within the error range from the frequency distribution of each rank If there is a large number of ranks that can be determined, a comprehensive judgment is made that there is no problem, not a serious abnormality, so that a comprehensive judgment with high accuracy can be made.
 上記水質診断システムにおいて、前記制御装置は、前記総合判定部による総合判定結果に応じて、総合判定に用いた前記電気伝導率計測部及び前記pH計測部の値とは異なる値に対して、予め設定された条件を満たすか否かを判定することにより、前記総合判定結果の原因を推定する原因推定部を備えることとしてもよい。 In the above water quality diagnosis system, the control device is configured in advance to a value different from the values of the electric conductivity measuring unit and the pH measuring unit used for the comprehensive determination according to the comprehensive determination result by the comprehensive determining unit. It is good also as providing the cause estimating part which presumes the cause of the above-mentioned general judgment result by judging whether it is set conditions or not.
 上記のような構成によれば、総合判定部により判定された総合判定結果となり得る原因を、総合判定結果に用いた値と異なる値に対して、予め設定された条件を満たすか否かを判定することで、自動的に推定することが可能となる。このため、特に、総合判定結果が高い水質異常を示す場合であっても、正確かつ迅速に、原因を推定することができるので、プラントの異常を早期に発見することができる。 According to the configuration as described above, it is determined whether or not the cause that can be the comprehensive determination result determined by the comprehensive determination unit satisfies a preset condition with respect to a value different from the value used for the comprehensive determination result. By doing this, it is possible to estimate automatically. For this reason, in particular, even when the comprehensive determination result indicates a high water quality abnormality, the cause can be accurately and quickly estimated, so that the plant abnormality can be detected early.
 上記水質診断システムにおいて、前記水循環系に設けられ、循環する水の酸電気伝導率を測定する少なくとも1つの酸電気伝導率計測部を備え、前記原因推定部は、前記総合判定結果が高い水質異常を示す場合に、前記酸電気伝導率計測部からの計測結果が予め設定された閾値以上であるか否かを判定し、肯定判定である場合に、前記総合判定結果の原因として海水漏洩を推定することとしてもよい。 The water quality diagnosis system includes at least one acid electric conductivity measurement unit provided in the water circulation system and measuring acid electric conductivity of circulating water, and the cause estimation unit is a water quality abnormality having a high overall judgment result. It is determined whether the measurement result from the acid electrical conductivity measurement unit is equal to or greater than a preset threshold, and when it is a positive determination, seawater leakage is estimated as the cause of the overall determination result. You may do it.
 上記のような構成によれば、総合判定結果が高い水質異常を示す場合であっても、酸電気伝導率計測部の計測結果が予め設定された閾値以内か否かに基づいて、原因推定が自動的に行われることで、該水質異常の原因が海水漏洩によるものか否かを迅速に推定することができる。 According to the above configuration, even if the comprehensive determination result indicates high water quality abnormality, the cause estimation is based on whether the measurement result of the acid conductivity measuring unit is within a preset threshold or not. By being performed automatically, it is possible to quickly estimate whether the cause of the water quality abnormality is due to seawater leakage.
 上記水質診断システムにおいて、前記総合判定結果と前記原因推定部によって推定された前記総合判定結果に対応する原因とを表示する表示部を備えることとしてもよい。 The water quality diagnosis system may further include a display unit that displays the comprehensive determination result and a cause corresponding to the comprehensive determination result estimated by the cause estimating unit.
 上記のような構成によれば、発電プラントの運転者は、容易に、総合判定結果とその原因を認識することが可能となるので、プラントの異常を早期に発見して対応することができる。 According to the configuration as described above, the driver of the power generation plant can easily recognize the general determination result and the cause thereof, so that the abnormality of the plant can be promptly detected and dealt with.
 上記水質診断システムにおいて、シミュレーション装置を備え、前記制御装置は、前記総合判定結果に対して推定される原因及び水質異常に関連する計測結果を前記シミュレーション装置に送信する通信部を備え、前記シミュレーション装置は、前記通信部より取得した情報と、シミュレーションモデルおよび/または蓄積された過去のデータとに基づいて、漏洩リーク量及びリーク時間を算定し、前記発電プラントにおける漏洩汚染範囲を導出することとしてもよい。 The water quality diagnosis system includes a simulation device, and the control device includes a communication unit for transmitting to the simulation device the measurement result related to the cause and the water quality abnormality estimated for the comprehensive determination result, the simulation device The leakage leak amount and the leak time may be calculated based on the information acquired from the communication unit and the simulation model and / or the accumulated data in the past, and the leakage contamination range in the power plant may be derived. Good.
 上記のような構成によれば、発電プラントの運転員は容易に汚染範囲を認識することができる。発電プラントでは、水質異常の発生に対して、今後の追加調査内容と処置内容、スケジュール等の対策の計画を迅速に提案して、早期に適切に発電プラントの健全性を回復することが容易になる。 According to the above configuration, the operator of the power plant can easily recognize the contamination range. In the power plant, for the occurrence of water quality abnormality, it is possible to promptly propose the plan of measures such as future additional investigation contents and treatment contents, schedule, etc., and to easily restore the soundness of the power plant promptly and appropriately Become.
 本発明の幾つかの実施形態は、ボイラと、蒸気タービンと、復水器と、上記水質診断システムと、を備えた発電プラントである。 Some embodiments of the present invention are a power plant including a boiler, a steam turbine, a condenser, and the above water quality diagnosis system.
 本発明の幾つかの実施形態は、発電プラントにおける水循環系に設けられた電気伝導率計測部及びpH計測部と、前記水循環系におけるpH値及び電気伝導率の相関関係に基づく基準値と前記水循環系における水質異常の度合を示す予め設定された複数のランクと前記複数のランクにそれぞれ対応する前記基準値からの乖離範囲とが格納された記憶部を有する制御装置と、を備えた水質診断システムの水質診断方法であって、循環する水の電気伝導率を計測する電気伝導率計測工程と、循環する水のpH値を計測するpH計測工程と、前記電気伝導率計測工程及び前記pH計測工程による計測結果と、前記記憶部に格納された前記乖離範囲とに基づいて、前記計測結果のランクを判定するランク判定工程と、を有する水質診断方法である。 In some embodiments of the present invention, an electric conductivity measurement unit and a pH measurement unit provided in a water circulation system in a power plant, and a reference value based on a correlation between a pH value and electric conductivity in the water circulation system and the water circulation A water quality diagnosis system comprising a control unit having a storage unit in which a plurality of preset ranks indicating the degree of water quality abnormality in the system and a deviation range from the reference value corresponding to each of the plurality of ranks are stored. The method for diagnosing water quality according to claim 1, wherein an electric conductivity measuring step of measuring electric conductivity of circulating water, a pH measuring step of measuring pH value of circulating water, the electric conductivity measuring step and the pH measuring step And a rank determination step of determining the rank of the measurement result based on the measurement result obtained by the step and the deviation range stored in the storage unit.
 本発明によれば、より正確かつ画一的に水質異常の度合を診断することができるという効果を奏する。 According to the present invention, it is possible to diagnose the degree of the water quality abnormality more accurately and uniformly.
第1実施形態に係る水質診断システムを備えた発電プラントにおける水循環系の概略構成を示す図である。It is a figure which shows schematic structure of the water circulation system in the power generation plant provided with the water quality diagnostic system which concerns on 1st Embodiment. 第1実施形態に係る水質診断システムにおける制御装置が備える機能を示した機能ブロック図である。It is a functional block diagram showing the function with which the control device in the water quality diagnostic system concerning a 1st embodiment is provided. 第1実施形態に係る水質診断システムにおける記憶部に格納されている情報を示した図である。It is the figure which showed the information stored in the storage part in the water quality diagnosis system concerning a 1st embodiment. 第1実施形態に係る水質診断システムにおいてpH値と電気伝導率の相関関係を示した図である。It is the figure which showed the correlation of pH value and electrical conductivity in the water quality diagnosis system which concerns on 1st Embodiment. 第1実施形態に係る水質診断システムにおける総合判定とランクとの関係を示した図である。It is the figure which showed the relationship of comprehensive judgment and rank in the water quality diagnosis system concerning a 1st embodiment. 第1実施形態に係る水質診断システムにおけるランク判定処理のフローチャートを示した図である。It is the figure which showed the flowchart of the rank determination process in the water quality diagnostic system which concerns on 1st Embodiment. 第2実施形態に係る水質診断システムを備えた発電プラントにおける水循環系の概略構成を示す図である。It is a figure which shows schematic structure of the water circulation system in the power generation plant provided with the water quality diagnostic system which concerns on 2nd Embodiment. 第2実施形態に係る水質診断システムにおける制御装置が備える機能を示した機能ブロック図である。It is the functional block diagram which showed the function with which the control apparatus in the water quality diagnostic system concerning 2nd Embodiment is equipped. 第2実施形態に係る水質診断システムにおける水質異常の原因と確認項目を示した図である。It is the figure which showed the cause and confirmation item of the water quality abnormality in the water quality diagnosis system which concerns on 2nd Embodiment. 第2実施形態に係る水質診断システムにおける総合診断結果及び水質異常の原因の通知例を示した図である。It is the figure which showed the example of a notification of the cause of the general diagnostic result and water quality abnormality in the water quality diagnosis system concerning a 2nd embodiment.
〔第1実施形態〕
 以下に、幾つかの実施形態に係る水質診断システム、発電プラント、及び水質診断方法について、図面を参照して説明する。
 図1は、第1実施形態に係る水質診断システムを備えた発電プラントにおける水循環系1の概略構成を示す図である。図1に示すように、本実施形態に係る水循環系1は、蒸気系と、復水系と、給水系と、電気伝導率計測部3と、pH計測部4と、制御装置5とを主な構成として備えている。
First Embodiment
Hereinafter, a water quality diagnosis system, a power plant, and a water quality diagnosis method according to some embodiments will be described with reference to the drawings.
FIG. 1 is a view showing a schematic configuration of a water circulation system 1 in a power plant provided with a water quality diagnosis system according to the first embodiment. As shown in FIG. 1, the water circulation system 1 according to the present embodiment mainly includes a steam system, a condensate system, a water supply system, an electrical conductivity measurement unit 3, a pH measurement unit 4, and a control device 5. It is provided as a configuration.
 蒸気系は、ボイラ6及びタービン7(蒸気タービン)を備えて構成され、復水系は、復水器8、復水ポンプ9、復水脱塩装置10、及びグランド蒸気復水器11を備えて構成され、給水系は、低圧ヒータ12、脱気器13、給水ポンプ14、及び高圧ヒータ15を備えて構成されている。本実施形態における水循環系1では、ボイラ6、タービン7、復水器8、復水ポンプ9、復水脱塩装置10、グランド蒸気復水器11、低圧ヒータ12、脱気器13、給水ポンプ14、高圧ヒータ15の順に接続され、各装置を介して水(および蒸気)が循環している。 The steam system comprises a boiler 6 and a turbine 7 (steam turbine), and the condensate system comprises a condenser 8, a condensate pump 9, a condensate demineralizer 10, and a grand steam condenser 11. The water supply system is configured to include the low pressure heater 12, the deaerator 13, the water supply pump 14, and the high pressure heater 15. In the water circulation system 1 in the present embodiment, the boiler 6, the turbine 7, the condenser 8, the condensate pump 9, the condensate demineralizer 10, the grand steam condenser 11, the low pressure heater 12, the deaerator 13, the feed water pump 14, and the high pressure heater 15 are connected in order, and water (and steam) circulates through each device.
 蒸気系では、給水系から供給された給水をボイラ6での熱交換で蒸気に変え、タービン7を回転駆動している。具体的には、まず、ボイラ6において、燃料の燃焼発熱と熱交換することで、給水系から供給された高圧の給水を蒸発させて高温高圧の蒸気を生成する。ボイラ6は、貫流方式、自然循環方式及び強制循環方式等のいずれの方式についても適用可能である。そして、高温高圧の蒸気はタービン7に供給され、タービンブレードを回転駆動する。タービン7では、高圧タービンや低圧タービンによってボイラ6から供給された蒸気のもつ熱エネルギーを力学的なエネルギーに変換する。そして、タービンブレードに対する蒸気の作用によって発生した回転トルクを用いて、図示しない発電機等を回転駆動して発電をする。タービン7で仕事を終えた蒸気は、復水系における復水器8へ供給される。 In the steam system, the feed water supplied from the water feed system is converted into steam by heat exchange in the boiler 6, and the turbine 7 is rotationally driven. Specifically, first, in the boiler 6, heat exchange with combustion heat of the fuel is performed to evaporate the high-pressure water supplied from the water supply system to generate high-temperature high-pressure steam. The boiler 6 is applicable also to any methods, such as a through flow method, a natural circulation method, and a forced circulation method. Then, the high temperature and high pressure steam is supplied to the turbine 7 to rotationally drive the turbine blades. In the turbine 7, the thermal energy of the steam supplied from the boiler 6 by the high pressure turbine or the low pressure turbine is converted into mechanical energy. Then, using a rotational torque generated by the action of steam on the turbine blades, a generator (not shown) is rotationally driven to generate electric power. The steam which has finished work in the turbine 7 is supplied to the condenser 8 in the condensate system.
 復水系では、タービン7で仕事を終えた蒸気を、再度ボイラ6及びタービン7へ供給できるように復水させる。具体的には、復水器8において、復水器8内に設けた冷却管に冷却水を流し、タービン7からの排気蒸気と冷却管を流れる冷却水との間で熱交換を行わせ、排気蒸気を凝縮させ復水させる。そして、復水ポンプ9によって、復水された水を復水脱塩装置10へ送水する。復水脱塩装置10では、復水器8によって復水された水を浄化する。復水には、系統内で発生した金属イオンや塩素などの不純物が微量ながら含まれており、これらの不純物は、ボイラ6を構成する伝熱管の腐食発生などの障害を引き起こす可能性がある。このため、復水脱塩装置10では、アニオン樹脂やカチオン樹脂を用いて脱塩処理が行われる。タービン7の軸シール部分などに使用されるグランド蒸気は、グランド蒸気復水器11にて凝縮され復水される。復水系の処理が完了すると、復水は給水として給水系に供給される。 In the water recovery system, the steam which has finished its work in the turbine 7 is condensed so that it can be supplied to the boiler 6 and the turbine 7 again. Specifically, in the condenser 8, cooling water is allowed to flow through a cooling pipe provided in the condenser 8, and heat exchange is performed between the exhaust steam from the turbine 7 and the cooling water flowing in the cooling pipe, Condensate and condense the exhaust steam. Then, the condensed water is sent to the condensed water demineralizer 10 by the condensed water pump 9. The condensed water demineralizer 10 purifies the water condensed by the condenser 8. The condensate contains a small amount of impurities such as metal ions and chlorine generated in the system, and these impurities may cause a failure such as corrosion of a heat transfer tube constituting the boiler 6. For this reason, in the condensate demineralizer 10, the desalting treatment is performed using an anion resin or a cation resin. The ground steam used for the shaft seal portion etc. of the turbine 7 is condensed by the ground steam condenser 11 and condensed. When the treatment of the condensate system is completed, the condensate is supplied to the water supply system as water supply.
 給水系では、復水系から供給された給水を高温高圧状態にして、ボイラ6の蒸発系へ供給する。復水系から供給された給水は、低圧ヒータ12によって、例えば約150℃まで加熱される。加熱された給水は、脱気器13へ供給され、給水中に溶存する酸素や炭酸ガスなどの非凝縮ガスが除去される。脱気された給水は、給水ポンプ14によって圧送され、高圧状態の給水は、高圧ヒータ15によって、さらに例えば約250℃まで加熱され、蒸発しない状態でボイラ6に供給される。 In the water supply system, the water supply supplied from the condensate system is brought into a high temperature and high pressure state, and is supplied to the evaporation system of the boiler 6. The feed water supplied from the condensate system is heated to, for example, about 150 ° C. by the low pressure heater 12. The heated feed water is supplied to the deaerator 13 to remove non-condensed gas such as oxygen and carbon dioxide dissolved in the feed water. The deaerated feed water is pumped by the feed water pump 14, and the feed water in the high pressure state is further heated to, for example, about 250 ° C. by the high pressure heater 15, and is supplied to the boiler 6 without evaporation.
 水循環系1において、上記の循環が繰り返し行われる。水循環系1の構成は、上記の構成に限られず、あらゆる方式に適用可能である。 In the water circulation system 1, the above circulation is repeated. The configuration of the water circulation system 1 is not limited to the above configuration, and can be applied to any method.
 電気伝導率計測部3は、水循環系1に設けられ、循環する水の電気伝導率を計測する。具体的には、電気伝導率計測部3は、ボイラ6に対して給水流れの上流側に配置されている。電気伝導率計測部3によりボイラ6に供給される給水の電気伝導率を計測することによって、給水の水処理薬品濃度(pH値調整用)等を監視することができる。電気伝導率(Specific
Conductivity:SC)は後述する酸電気伝導率と区別してSCと併記されてもよい。電気伝導率SCとは、断面積1cmの電極が距離1cm離れて相対しているときに、電極間にある溶液が持つ電気抵抗[Ω・cm]の逆数に相当する。つまり、電気伝導率計測部3では、所定面積の電極が所定距離だけ離れて配置されており、この間に給水が流れている状態で電極間に電圧を印加することで、電極間に流れる電流を検出し、電気伝導率を算出している。
The conductivity measuring unit 3 is provided in the water circulation system 1 and measures the conductivity of the circulating water. Specifically, the electrical conductivity measurement unit 3 is disposed upstream of the feed water flow with respect to the boiler 6. By measuring the electric conductivity of the feed water supplied to the boiler 6 by the electric conductivity measurement unit 3, it is possible to monitor the water treatment chemical concentration (for pH value adjustment) or the like of the feed water. Electrical conductivity (Specific
Conductivity: SC) may be written as SC separately from acid conductivity as described later. The electrical conductivity SC corresponds to the reciprocal of the electrical resistance [Ω · cm] possessed by the solution between the electrodes when the electrodes having a cross-sectional area of 1 cm 2 face each other at a distance of 1 cm. That is, in the electrical conductivity measuring unit 3, the electrodes of a predetermined area are disposed apart by a predetermined distance, and a voltage is applied between the electrodes in a state where the water supply is flowing between them, so that the current flowing between the electrodes is It detects and calculates the electric conductivity.
 pH計測部4は、水循環系1に設けられ、循環する水のpH値を計測する。具体的には、pH計測部4は、ボイラ6に対して給水流れの上流側に配置されている。通常は、給水は、各機器の腐食等を防ぐために、弱アルカリ性(例えば、pH9~10程度)に維持されている。pH計測部4によりボイラ6に供給される給水のpH値を計測することによって、給水が弱アルカリ性に維持されているか否かを監視することができる。 The pH measurement unit 4 is provided in the water circulation system 1 and measures the pH value of the circulating water. Specifically, the pH measurement unit 4 is disposed upstream of the feed water flow with respect to the boiler 6. Usually, the water supply is maintained weakly alkaline (for example, about pH 9 to 10) in order to prevent corrosion of each device. By measuring the pH value of the feed water supplied to the boiler 6 by the pH measurement unit 4, it can be monitored whether the feed water is maintained weakly alkaline.
 本実施形態では、電気伝導率計測部3及びpH計測部4は、ボイラ6に対して給水流れの上流側に配置されているが、これは、特にボイラ6及びタービン7に供給される給水の水質診断を行い、ボイラ6及びタービン7の腐食を抑制するためである。しかしながら、電気伝導率計測部3及びpH計測部4の配置位置は、上記位置に限定されず、適宜変更及び追加が可能である。 In the present embodiment, the electrical conductivity measurement unit 3 and the pH measurement unit 4 are disposed upstream of the feed water flow with respect to the boiler 6, but this is especially applied to the feed water supplied to the boiler 6 and the turbine 7. Water quality diagnosis is performed to suppress corrosion of the boiler 6 and the turbine 7. However, the arrangement positions of the electrical conductivity measurement unit 3 and the pH measurement unit 4 are not limited to the above positions, and can be appropriately changed and added.
 制御装置5は、電気伝導率計測部3及びpH計測部4の計測結果を用いて、水質異常の度合を診断する。 The control device 5 diagnoses the degree of water quality abnormality using the measurement results of the electrical conductivity measurement unit 3 and the pH measurement unit 4.
 制御装置5は、例えば、図示しないCPU(中央演算装置)、RAM(Random Access Memory)等のメモリ、及びコンピュータ読み取り可能な記録媒体等かを備えている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。 The control device 5 includes, for example, a CPU (central processing unit) (not shown), a memory such as a random access memory (RAM), and a computer readable recording medium. The process of a series of processes for realizing various functions to be described later is recorded in the form of a program on a recording medium or the like, and the CPU reads this program to a RAM or the like to execute information processing and arithmetic processing. Thus, various functions described later are realized.
 図2は、制御装置5が備える機能を示した機能ブロック図である。図2に示されるように、制御装置5は、記憶部21と、ランク判定部22と、総合判定部23とを備えている。 FIG. 2 is a functional block diagram showing the functions of the control device 5. As shown in FIG. 2, the control device 5 includes a storage unit 21, a rank determination unit 22, and a general determination unit 23.
 記憶部21は、水循環系1における水質異常の度合を示す予め設定された複数のランクと、水循環系1におけるpH値及び電気伝導率の相関関係に基づく基準値と、複数のランクにそれぞれ対応する基準値からの乖離範囲とが格納されている。記憶部21に格納されている情報の本実施形態における一例を図3に示す。本実施形態では、各測定値の計測誤差を考慮して、基準値との乖離範囲に応じてランクは例えば5段階(ランクa~e)に分けられている場合について説明するが、ランクの階数は適宜変更可能である。 The storage unit 21 respectively corresponds to a plurality of predetermined ranks indicating the degree of water quality abnormality in the water circulation system 1, a reference value based on the correlation between the pH value and the electric conductivity in the water circulation system 1, and a plurality of ranks. The deviation range from the reference value is stored. An example of the information stored in the storage unit 21 in the present embodiment is shown in FIG. In the present embodiment, the case where the rank is divided into, for example, five stages (ranks a to e) according to the difference range from the reference value in consideration of the measurement error of each measurement value will be described. Can be changed as appropriate.
 ランクは、水質異常の度合を表すための予め設定された階級であり、例えば、図3に示すようにランクaからランクeに分けられていて、測定値毎に判断される。本実施形態では、ランクaとは、水質異常の度合が最も低いランクであり、図3に示すように、問題なく、現在の運転状態を維持できることを示していて、例えば計測誤差範囲内となる。ランクbとは、水質異常の度合が2番目に低いランクであり、基準内であるが、若干の異常値が認められる場合があることを示している。ランクcとは、水質異常の度合が中間のランクであり、若干の異常値が認められる場合があり、定期的に確認する必要があることを示していて、例えばJIS規格などの公的規格基準値以内で許容される上限レベルとなる。ランクdとは、水質異常の度合が2番目に高いランクであり、深刻な異常値が認められることを示している。ランクeとは、水質異常の度合が最も高いランクであり、多くの深刻な異常値が認められ、早期の対策が必要であることを示していて、例えばユニット停止しての対策が必要なレベルとなる。つまり、水循環系1における水質の診断結果が、水質異常の度合が高いランク(特に、ランクe)である場合には、早期の対応が必要であること示している。 The rank is a preset class for representing the degree of water quality abnormality, and is, for example, divided into rank a to rank e as shown in FIG. 3, and is determined for each measurement value. In the present embodiment, the rank a is the rank at which the degree of water quality abnormality is the lowest, and as shown in FIG. 3, indicates that the current operating state can be maintained without problems, for example, within the measurement error range. . Rank b is the second lowest rank in the degree of water quality abnormality and indicates that although it is within the standard, some outliers may be recognized. Rank c indicates that the degree of water quality abnormality is middle rank, and some abnormal values may be recognized, and it is necessary to check periodically. For example, public standards such as JIS standards Within the value, the upper limit level is acceptable. Rank d is the second highest rank of the degree of water quality abnormality, and indicates that serious outliers are recognized. Rank e is the rank where the degree of water quality abnormality is the highest, shows that many serious outliers are recognized, and it is necessary to take early measures, for example, a level that requires measures after unit shutdown It becomes. That is, when the diagnosis result of the water quality in the water circulation system 1 is a rank with high degree of water quality abnormality (especially, rank e), it indicates that an early response is necessary.
 基準値とは、水循環系1において水処理のため(腐食を防ぐため)に添加して管理しているアンモニア濃度に基づく、pH値及び電気伝導率の相関関係から算出される。pH値及び電気伝導率の相関関係は、以下の近似式で表すことができる。 The reference value is calculated from the correlation between the pH value and the electrical conductivity based on the ammonia concentration that is added and managed for water treatment (to prevent corrosion) in the water circulation system 1. The correlation between pH value and conductivity can be expressed by the following approximate expression.
[数1]
  pH=0.43×ln(SC)+9.6  (1)
[Equation 1]
pH = 0.43 × ln (SC) +9.6 (1)
 式(1)におけるSCとは、電気伝導率[mS/m]を示している。式(1)では、ある電気伝導率[mS/m]において推定されるアンモニア濃度と同じ濃度のアンモニアによるpH値(理論値)を算出することができる。式(1)で表されるpH値及び電気伝導率の相関関係の近似線(基準値)を基準線として、図4の実線で示す。例えば、式(1)において、電気伝導率が1[mS/m]のときには、pH値(理論値)として9.6が算出される。これは、電気伝導率が1[mS/m]から推定されるアンモニア濃度と、pH9.6から推定されるアンモニア濃度とが同じ値となることを示している。つまり、pH値及び電気伝導率の計測結果が、式(1)で表される近似線(基準値)上もしくは計測誤差範囲で近傍にある場合、水循環系1における水には、水処理のために添加したアンモニア以外の不純物等の混入は極少なく、水質に異常がないと推定される。一方で、pH値及び電気伝導率の計測結果が、式(1)で表される近似線(基準値)から大きく離れている場合には、水処理のために添加したアンモニア以外のなんらかの影響で、水質が悪化していることを示している。なんらかの影響とは、例えば、海水漏洩(海水混入)や、有機物混入等である。 SC in Formula (1) has shown electrical conductivity [mS / m]. In equation (1), it is possible to calculate a pH value (theoretical value) with ammonia having the same concentration as the ammonia concentration estimated in a certain electric conductivity [mS / m]. The approximate line (reference value) of the correlation of pH value and electrical conductivity represented by Formula (1) is shown as a solid line in FIG. For example, in the formula (1), when the electric conductivity is 1 [mS / m], 9.6 is calculated as the pH value (theoretical value). This indicates that the ammonia concentration estimated from the electric conductivity of 1 [mS / m] and the ammonia concentration estimated from the pH 9.6 have the same value. That is, when the measurement result of the pH value and the electric conductivity is on the approximation line (reference value) represented by the equation (1) or in the vicinity of the measurement error range, the water in the water circulation system 1 is for water treatment It is estimated that there is very little contamination of impurities other than ammonia added to and there is no abnormality in the water quality. On the other hand, if the measurement results of the pH value and the electrical conductivity are largely separated from the approximate line (reference value) represented by the equation (1), some influence other than the ammonia added for water treatment , Indicates that the water quality is deteriorating. Some effects include, for example, seawater leakage (seawater mixing), organic matter mixing, and the like.
 複数のランクにそれぞれ対応する基準値からの乖離範囲は、式(1)で表されるpH値及び電気伝導率の相関関係の基準値からの乖離状態に応じて規定されている。例えば、図3及び図4に示されるように、ランクaの乖離範囲は、基準値±0.05以内に設定される。ランクbの乖離範囲は、(基準値±0.05を超えて)基準値±0.1以内に設定される。ランクcの乖離範囲は、(基準値±0.1を超えて)基準値±0.15以内に設定される。ランクdの乖離範囲は、(基準値±0.15を超えて)基準値±0.2以内に設定される。ランクeの乖離範囲は、基準値±0.2以上に設定される。このように、基準値からの乖離範囲をランクに分けて規定することで、pH値及び電気伝導率の計測結果と、水質異常の度合とを画一的に対応づけることができる。乖離範囲は上記に限定されず、適宜変更可能である。 The deviation range from the reference value corresponding to each of the plurality of ranks is defined in accordance with the deviation state from the reference value of the correlation between the pH value and the electrical conductivity represented by the formula (1). For example, as shown in FIG. 3 and FIG. 4, the divergence range of rank a is set within the reference value ± 0.05. The divergence range of rank b is set within the reference value ± 0.1 (above the reference value ± 0.05). The divergence range of rank c is set within the reference value ± 0.15 (above the reference value ± 0.1). The divergence range of rank d is set within the reference value ± 0.2 (above the reference value ± 0.15). The divergence range of rank e is set to the reference value ± 0.2 or more. Thus, the measurement result of pH value and electrical conductivity can be uniformly associated with the degree of water quality abnormality by dividing and defining the range of deviation from the reference value in rank. The divergence range is not limited to the above, and can be changed as appropriate.
 図4には、例えば定期メンテナンスからの期間を区切り、期間T1(例えば0年から1.5年)、期間T2(例えば1.5年から2.5年)、期間T3(例えば2.5年から3.5年)のそれぞれの期間に取得したpH値及び電気伝導率の計測結果をプロットした例を示している。期間T1におけるpH値及び電気伝導率の計測結果は、多少ばらついているものの、ランクeと判定される計測結果はない。しかし、経年経過に従って、pH値はばらつき範囲があまり変化せず、電気伝導率が大きく低下することで、期間T2では、ランクeと判定される計測結果が増え、期間T3では、ランクeと判定される計測結果が約半数を占める状態となっている。つまり、経年変化に従って、pH値はばらつき範囲があまり変化しないために、pH値のみの計測では見過ごしていた水質異常が、電気伝導度との基準値との乖離状態を把握することで、期間がT1からT2,T3へと推移するに従い水質が基準値から逸脱していることが確認できる。つまり、図4の例では、pH計の異常または水循環系に対して、pH値には影響を及ぼさないが、電気伝導率にのみ影響を及ぼす不純物が混入した可能性があることを示している。このように、pH値及び電気伝導率の相関関係の基準値からの乖離に着目することによって、pH値からでは把握が難しかった水質異常を正確に判断することができる。 In FIG. 4, for example, a period from regular maintenance is divided into a period T1 (for example, 0 to 1.5 years), a period T2 (for example, 1.5 to 2.5 years), a period T3 (for example, 2.5 years) The graph shows an example of plotting the measurement results of the pH value and the conductivity obtained in each of the following periods. Although the measurement results of the pH value and the electrical conductivity in the period T1 are somewhat dispersed, there is no measurement result that is determined to be the rank e. However, as the aging progresses, the variation range of the pH value does not change so much, and the electrical conductivity significantly decreases. In period T2, the measurement result that is determined to be rank e increases, and in period T3, it is determined to be rank e Measurement results account for about half. In other words, the variation range of the pH value does not change much with the secular change, so the water quality abnormality that was overlooked only in the measurement of the pH value grasps the deviation state of the conductivity from the reference value. It can be confirmed that the water quality deviates from the reference value as it changes from T1 to T2 and T3. That is, in the example of FIG. 4, it is indicated that there is a possibility that an impurity that does not affect the pH value but affects only the electric conductivity may be mixed in the abnormality of the pH meter or the water circulation system. . As described above, by focusing on the deviation from the reference value of the correlation between the pH value and the electrical conductivity, it is possible to accurately determine the water quality abnormality which was difficult to grasp from the pH value.
 図4の例のように、電気伝導率が低下したとしても、pH値も低下しており、基準値からあまり逸脱しなく計測誤差内の乖離状態であれば、水処理のために添加するアンモニア添加量の意図的な操作であり、アンモニア以外の不純物は極少ないということとなり、水質には問題がない、または、アンモニア添加設備の異常が考えられる。このため、pH値のみ又は電気伝導率のみを別々に分析しただけでは水質異常を正確に把握することはできず、pH値及び電気伝導率の相関関係を基準として水質診断を行うことが重要である。 As in the example of FIG. 4, even if the electrical conductivity is lowered, the pH value is also lowered, and if it is a separated state within the measurement error without much deviating from the reference value, ammonia added for water treatment The intentional operation of the added amount is that the amount of impurities other than ammonia is extremely small, and there is no problem with the water quality, or an abnormality in the ammonia addition equipment can be considered. For this reason, it is not possible to accurately grasp the water quality abnormality only by separately analyzing only the pH value or the electrical conductivity separately, and it is important to perform water quality diagnosis on the basis of the correlation between the pH value and the electrical conductivity. is there.
 ランク判定部22は、電気伝導率計測部3及びpH計測部4による計測結果と、記憶部21に格納された乖離範囲とに基づいて、計測結果のランクを判定する。具体的には、ランク判定部22は、所定期間毎(例えば、1時間毎)に電気伝導率計測部3及びpH計測部4から計測結果を取得し、該計測結果と、記憶部21に格納されている乖離範囲とを照合する。そして、該測定結果が含まれている乖離範囲に対応するランクを判断する。このように、各計測結果に対して水質が正常であることを示す基準値に対する乖離範囲に応じて、水質異常の度合をランクとして対応させることで、画一的に水質異常の度合を決定することができる。 The rank determination unit 22 determines the rank of the measurement result based on the measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 and the divergence range stored in the storage unit 21. Specifically, the rank determination unit 22 acquires measurement results from the conductivity measurement unit 3 and the pH measurement unit 4 at predetermined intervals (for example, every hour), and stores the measurement results and the storage unit 21. Check against the range of divergence. Then, the rank corresponding to the divergence range in which the measurement result is included is determined. As described above, the degree of water quality abnormality is uniformly determined by making the degree of water quality abnormality correspond to the rank according to the deviation range with respect to the reference value indicating that the water quality is normal for each measurement result. be able to.
 ランク判定部22は、計測結果が発電プラントの運転状態に影響されないように、運転状態が定常状態となっている場合に電気伝導率計測部3及びpH計測部4による計測結果を取得することとしてもよい。定常状態とは、例えば、プラント出力が90%以上の定格運転を行っている状態である。このように、発電プラントの運転状態を規定して定常状態における計測結果を用いることで、計測結果のばらつきを抑制することができる。 As the rank determination unit 22 acquires the measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 when the operation state is in the steady state so that the measurement result is not affected by the operation state of the power generation plant. It is also good. The steady state is, for example, a state in which a rated output with a plant output of 90% or more is performed. As described above, by defining the operating state of the power generation plant and using the measurement result in the steady state, the variation in the measurement result can be suppressed.
 総合判定部23は、複数の計測結果のそれぞれに対応したランク判定部22による判定結果を用い、判定結果における複数のランクに対応する度数分布状態に応じて、水循環系1における水質異常の度合を総合的に判定する。具体的には、総合判定部23は、所定期間内(例えば、所定期日から1ヶ月)に計測された電気伝導率計測部3及びpH計測部4による各計測結果に対して判定されたランク結果を取得し、取得した複数のランク(例えばランクa~ランクe)に対する度数分布状態を算出する。総合判定部23には、図5に示されるように、複数のランク(例えばランクa~ランクe)に対する度数分布基準に応じて総合判定A~Eが予め設定されていて、水質異常の度合いが指定の期間の状態をもとに総合的に判断できる。本実施形態における総合判定Aにおけるランクの度数分布基準とは、例えばランクaが90%以上であり、かつ、ランクd及びeが0%の状態であり、問題なく現在の運転状態を維持できることを示していている。総合判定Bにおけるランクの度数分布基準とは、例えばランクa及びbが80%以上であり、かつ、ランクd及びeが0%の状態であり、運転継続可能であるが若干の異常値が認められる場合があることを示している。総合判定Dにおけるランクの度数分布基準とは、例えばランクa及びbが0%であり、かつ、ランクd及びeが80%以上であり、かつ、ランクeが20%未満の状態であり、水質異常の度合が2番目に高く深刻な異常値が認められる場合がありメンテナンスの準備が必要である。総合判定Eにおけるランクの度数分布基準とは、例えばランクeが20%以上の状態であり、水質異常の度合が最も高く多くの深刻な異常値が認められ、早期のメンテナンス対策が必要であることを示している。総合判定Cは、総合判定A、B、D、E以外の場合であり、水質異常の度合が中間のランクであり、若干の異常値が認められる場合があり、定期的に確認する必要があることを示している。総合判定部23における総合判定の階級数及び度数分布基準は、上記の階級(A~E)及び度数分布基準に限定されず、適宜変更が可能である。 The comprehensive determination unit 23 uses the determination result by the rank determination unit 22 corresponding to each of the plurality of measurement results, and according to the frequency distribution state corresponding to the plurality of ranks in the determination result, the degree of water quality abnormality in the water circulation system 1 Make an overall decision. Specifically, the comprehensive determination unit 23 determines the rank determined for each measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 measured within a predetermined period (for example, one month from a predetermined date) A result is acquired, and a frequency distribution state is calculated for a plurality of acquired ranks (for example, rank a to rank e). As shown in FIG. 5, comprehensive judgments A to E are set in advance according to the frequency distribution criteria for a plurality of ranks (for example, rank a to rank e), and the degree of water quality abnormality is It can be comprehensively judged based on the state of the designated period. The frequency distribution reference of the rank in the comprehensive judgment A in this embodiment is, for example, that the rank a is 90% or more, and the ranks d and e are 0%, so that the current driving state can be maintained without problems. Is shown. For example, rank a and b are 80% or more, and ranks d and e are 0%, so that operation continuation is possible but some outliers are recognized. Indicates that they may be The frequency distribution reference of the rank in the comprehensive judgment D is, for example, a state in which the ranks a and b are 0%, the ranks d and e are 80% or more, and the rank e is less than 20%. The degree of abnormality is the second highest, and serious outliers may be observed, which requires preparation for maintenance. The rank frequency distribution standard in the comprehensive judgment E is, for example, that the rank e is 20% or more, the degree of water quality abnormality is the highest, many serious outliers are recognized, and early maintenance measures are necessary. Is shown. The comprehensive judgment C is a case other than the comprehensive judgments A, B, D, and E, and the degree of water quality abnormality is an intermediate rank, and some abnormal values may be recognized, and it is necessary to check periodically. It is shown that. The number of classes of integrated judgment and the frequency distribution reference in the integrated judgment unit 23 are not limited to the above described classes (A to E) and the frequency distribution reference, and can be changed as appropriate.
 次に、上述のランク判定部22によるランク判定処理について図6を参照して説明する。図6に示すフローは、所定の制御周期(例えば、1時間毎)で繰り返し実行され、所定期日から例えば1ヶ月間単位での各計測結果に対して判定されたランク結果(例えばランクa~ランクe)を計測日時で識別して蓄積する。 Next, the rank determination process by the above-described rank determination unit 22 will be described with reference to FIG. The flow shown in FIG. 6 is repeatedly executed in a predetermined control cycle (for example, every hour), and a rank result (for example, rank a ...) determined for each measurement result in units of one month from a predetermined date, for example. Rank e) is identified by the measurement date and time and stored.
 まず、ランク判定部22は、電気伝導率計測部3及びpH計測部4による計測結果を取得する(S101)。そして、取得した計測結果が、ランクaの乖離範囲内(基準値±0.05以内)であるか否かを判定する(S102)。取得した計測結果が、ランクaの乖離範囲内であれば(S102のYES判定)、計測結果をランクaと判定する(S103)。 First, the rank determination unit 22 acquires measurement results by the electrical conductivity measurement unit 3 and the pH measurement unit 4 (S101). Then, it is determined whether or not the acquired measurement result is within the divergence range of the rank a (within the reference value ± 0.05) (S102). If the acquired measurement result is within the divergence range of rank a (YES in S102), the measurement result is determined to be rank a (S103).
 取得した計測結果が、ランクaの乖離範囲内でなければ(S102のNO判定)、取得した計測結果が、ランクbの乖離範囲内(基準値±0.1以内)であるか否かを判定する(S104)。取得した計測結果が、ランクbの乖離範囲内であれば(S104のYES判定)、計測結果をランクbと判定する(S105)。 If the acquired measurement result is not within the divergence range of rank a (NO determination in S102), it is determined whether or not the acquired measurement result is within the divergence range of rank b (within reference value ± 0.1) (S104). If the acquired measurement result is within the divergence range of rank b (YES in S104), the measurement result is determined to be rank b (S105).
 取得した計測結果が、ランクbの乖離範囲内でなければ(S104のNO判定)、取得した計測結果が、ランクcの乖離範囲内(基準値±0.15以内)であるか否かを判定する(S106)。取得した計測結果が、ランクcの乖離範囲内であれば(S106のYES判定)、計測結果をランクcと判定する(S107)。 If the acquired measurement result is not within the divergence range of rank b (NO determination in S104), it is determined whether the acquired measurement result is within the divergence range of rank c (within reference value ± 0.15) (S106). If the acquired measurement result is within the divergence range of rank c (YES in S106), the measurement result is determined to be rank c (S107).
 取得した計測結果が、ランクcの乖離範囲内でなければ(S106のNO判定)、取得した計測結果が、ランクdの乖離範囲内(基準値±0.2以内)であるか否かを判定する(S108)。取得した計測結果が、ランクdの乖離範囲内であれば(S108のYES判定)、計測結果をランクdと判定する(S109)。 If the acquired measurement result is not within the divergence range of rank c (NO determination in S106), it is determined whether or not the acquired measurement result is within the divergence range of rank d (within reference value ± 0.2) (S108). If the acquired measurement result is within the divergence range of rank d (YES in S108), the measurement result is determined to be rank d (S109).
 取得した計測結果が、ランクdの乖離範囲内でなければ(S108のNO判定)、計測結果をランクeと判定し(S110)、処理を終了する。上記の制御は、所定の制御周期で繰り返し実行され、計測結果と対応する複数のランク(ランクa~ランクe)は、計測日時で識別して記憶部21に格納される。 If the acquired measurement result is not within the divergence range of rank d (NO in S108), the measurement result is determined to be rank e (S110), and the process is ended. The above control is repeatedly performed in a predetermined control cycle, and a plurality of ranks (rank a to rank e) corresponding to the measurement result are identified by the measurement date and time and stored in the storage unit 21.
 そして、総合判定部23は、所定期間内(例えば、1ヶ月)に計測された電気伝導率計測部3及びpH計測部4による各計測結果に対して判定されたランク(例えばランクa~ランクe)を記憶部21から取得し、取得した複数のランクに対する度数分布状態に応じて総合判定(例えばA~E)を行う。総合判定の結果は、発電プラントが備えるディスプレイ等に表示され、発電プラントの運転に通知される。 Then, the comprehensive determination unit 23 determines the rank (for example, rank a to rank e) determined for each measurement result by the electrical conductivity measurement unit 3 and the pH measurement unit 4 measured within a predetermined period (for example, one month). Is obtained from the storage unit 21 and comprehensive judgments (for example, A to E) are performed according to the frequency distribution state for the plurality of acquired ranks. The result of the comprehensive determination is displayed on a display or the like included in the power generation plant and notified to the operation of the power generation plant.
 以上説明したように、本実施形態に係る水質診断システム、発電プラント、及び水質診断方法によれば、電気伝導率計測部3及びpH計測部4による各計測結果を、pH値及び電気伝導率の相関関係に基づく基準値からの乖離範囲に基づいて、水質異常の度合を判定することとしたため、pH値のみ又は電気伝導率のみでは正確に判断できなかった水質異常についても、効果的に判断することができる。電気伝導率計測部3及びpH計測部4による計測結果を、水質異常の度合を示す複数のランク(例えばランクa~ランクe)に分けることとしたため、計測者の技量に依ることなく、正確かつ画一的に水質異常の判断を行うことが可能となる。水質異常を正確に判断することができるため、水質悪化による発電プラント全体への影響(例えば、ボイラ蒸発管漏洩、タービン性能低下等)を効果的に防止することができる。 As described above, according to the water quality diagnosis system, the power generation plant, and the water quality diagnosis method according to the present embodiment, each measurement result by the electric conductivity measurement unit 3 and the pH measurement unit 4 is divided into pH value and electric conductivity. Since the degree of water quality abnormality is determined based on the deviation range from the reference value based on the correlation, water quality abnormality that could not be accurately determined only by the pH value or the electrical conductivity alone is effectively judged. be able to. Since the measurement results by the conductivity measuring unit 3 and the pH measuring unit 4 are divided into a plurality of ranks (for example, rank a to rank e) indicating the degree of water quality abnormality, accurate and accurate without depending on the skill of the measurer It becomes possible to judge the water quality abnormality uniformly. Since the water quality abnormality can be accurately determined, the influence of the water quality deterioration on the entire power generation plant (for example, boiler evaporation tube leakage, turbine performance deterioration, etc.) can be effectively prevented.
 複数のランク(例えばランクa~ランクe)に対する度数分布状態に応じて、水質異常の度合を総合的に判定(例えばA~E)することとしたため、指定の期間の状態をもとに総合的に異常の有無を高い確度で判断できる。例えば所定期間に判定した電気伝導率計測部3及びpH計測部4の各計測結果に対する各ランク結果が、例えば、水循環系1を流れる水の濃度差(例えば、アンモニア濃度差)によって電気抵抗率の各測定結果がばらついたとしても、ランクa~ランクeの度数分布からランクaの度数が多い状態であれば、重度の異常ではなく問題なしとする総合判断:Aを行う。すなわち、各測定値に判断する各ランクの度数をもとにした確度の高い総合判定を行うことができる。 Since the degree of water quality abnormality is comprehensively judged (for example, A to E) according to the frequency distribution state for a plurality of ranks (for example, rank a to rank e), comprehensively based on the state of the designated period The presence or absence of an abnormality can be determined with high accuracy. For example, each rank result for each measurement result of the electrical conductivity measuring unit 3 and the pH measuring unit 4 determined in a predetermined period is, for example, the difference in electric resistivity by the concentration difference of water flowing in the water circulation system 1 (for example, ammonia concentration difference) Even if the measurement results vary, if the frequency distribution of rank a to rank e indicates that the frequency of rank a is high, comprehensive judgment is made that there is no problem and no serious abnormality. That is, it is possible to perform comprehensive judgment with high accuracy based on the frequency of each rank determined for each measurement value.
〔第2実施形態〕
 次に、本発明の第2実施形態に係る水質診断システム、発電プラント、及び水質診断方法について説明する。上記第1実施形態における制御装置5は、電気伝導率計測部3及びpH計測部4の計測結果を用いて、水質異常の度合を診断していたが、本実施形態では、制御装置5は、上記第1実施形態の処理に加えて、水質異常の原因を推定する。以下、本実施形態に係る水質診断システムについて、第1実施形態と異なる点について主に説明する。
Second Embodiment
Next, a water quality diagnosis system, a power plant, and a water quality diagnosis method according to a second embodiment of the present invention will be described. The control device 5 in the first embodiment diagnoses the degree of water quality abnormality using the measurement results of the electrical conductivity measurement unit 3 and the pH measurement unit 4, but in the present embodiment, the control device 5 In addition to the process of the first embodiment, the cause of the water quality abnormality is estimated. Hereinafter, points of the water quality diagnosis system according to the present embodiment which are different from the first embodiment will be mainly described.
 本実施形態における水質診断システムでは、図7に示すように、第1実施形態の計測部とは別に他の計測部として、酸電気伝導率計測部17と、ボイラ6水のpH値を測定するボイラ水pH計測部18と、塩素濃度計測部19と、ナトリウム濃度計測部20とを備える。本実施形態における制御部は、図8に示すように、原因推定部24を備えている。 In the water quality diagnosis system according to the present embodiment, as shown in FIG. 7, the pH values of acid conductivity measuring unit 17 and boiler 6 water are measured as another measuring unit separately from the measuring unit of the first embodiment. A boiler water pH measurement unit 18, a chlorine concentration measurement unit 19, and a sodium concentration measurement unit 20 are provided. The control unit in the present embodiment is provided with a cause estimation unit 24 as shown in FIG.
 記憶部21には、pH計測部4の校正履歴と、推定される水質異常の原因と、推定される原因を確認するための確認項目とが格納されている。pH計測部4の校正履歴とは、pH計測部4を校正した校正日時である。推定される水質異常の原因と、推定される原因を確認するための確認項目とは、本実施形態では例えば、図9のようなテーブルでその一部が代表的に表される。本実施形態では、記憶部21には、例えば、水質に異常がある総合判断を行った総合判定D及びEの場合に推定される原因等が格納されているものとする。 The storage unit 21 stores the calibration history of the pH measurement unit 4, the cause of the estimated water quality abnormality, and a confirmation item for confirming the cause of the estimation. The calibration history of the pH measurement unit 4 is a calibration date and time when the pH measurement unit 4 was calibrated. In the present embodiment, for example, a part of the presumed cause of the water quality abnormality and the confirmation item for confirming the presumed cause are typically represented by a table as shown in FIG. In the present embodiment, it is assumed that the storage unit 21 stores, for example, causes and the like that are estimated in the case of comprehensive judgments D and E in which a comprehensive judgment is made that there is an abnormality in water quality.
 水質異常(総合判定D又はE)が判定された場合であって、pH計測部4による計測結果の平均値が基準値よりも低い場合には、pH計測部4の異常または弱アルカリ性に維持されていた水質が悪化(酸性傾向へ推移)したことを示している。このため、記憶部21には、pH計測部4の異常または水質が酸性傾向へと推移した原因として推定される各原因(pH計測部4の校正不良、海水漏洩、有機物混入、塩素漏洩)が格納されている。水質異常(総合判定D又はE)が判定された場合であって、pH計測部4による計測結果の平均値が基準値よりも高い場合には、pH計測部4の異常または弱アルカリ性に維持されていた水質が悪化(更にアルカリ性傾向へ推移)したことを示している。このため、記憶部21には、pH計測部4の異常または水質が更にアルカリ性傾向へ推移した原因として推定される各原因(pH計測部4の校正不良、ナトリウム漏洩)が格納されている。記憶部21には、上記原因のうち、より可能性が高い原因を推定するための確認項目(C1~C6)がそれぞれの原因に対して格納されている。 If the water quality abnormality (overall judgment D or E) is determined and the average value of the measurement results by the pH measurement unit 4 is lower than the reference value, the pH measurement unit 4 is maintained as abnormal or weakly alkaline It shows that the water quality had deteriorated (it changed to acid tendency). For this reason, in the storage unit 21, there are respective causes (incorrect calibration of the pH measuring unit 4, seawater leakage, organic matter mixing, chlorine leakage) which are estimated as the causes of the abnormality of the pH measuring unit 4 or the water quality shifting to the acid tendency. It is stored. When the water quality abnormality (overall judgment D or E) is judged, and the average value of the measurement results by the pH measurement unit 4 is higher than the reference value, the pH measurement unit 4 is maintained as abnormal or weakly alkaline. It indicates that the water quality had deteriorated (further changed to an alkaline tendency). For this reason, the storage unit 21 stores the causes (incorrect calibration of the pH measuring unit 4 and sodium leakage) which are estimated as the causes of the abnormality of the pH measuring unit 4 or the water quality further shifting to the alkaline tendency. Among the above causes, the storage unit 21 stores confirmation items (C1 to C6) for estimating the more likely causes with respect to the respective causes.
 酸電気伝導率計測部17は、復水器8出口、ボイラ6入口付近、タービン7入口付近、の少なくとも1箇所に設置される。酸電気伝導率は、水素イオン型に変換した強酸性陽イオン交換樹脂層を通過させて水循環系1を流れる水からアンモニウムイオン等の揮発性物質を除去し、除去後の水について電気伝導率を計測している。
 ボイラ水pH計測部18は、ボイラ6に設置され、ボイラ6水におけるpH値を計測している。ボイラ6の一例としてドラム型ボイラの場合は、ドラム内のボイラ6水におけるpH値を計測している。
The acid conductivity measuring unit 17 is installed at at least one of the outlet of the condenser 8, the inlet of the boiler 6, and the inlet of the turbine 7. The acid conductivity is passed through a strongly acidic cation exchange resin layer converted to the hydrogen ion type to remove volatile substances such as ammonium ions from the water flowing through the water circulation system 1, and the conductivity of the water after removal is calculated. I am measuring.
The boiler water pH measurement unit 18 is installed in the boiler 6 and measures the pH value of the boiler 6 water. In the case of a drum type boiler as an example of the boiler 6, the pH value of the boiler 6 water in the drum is measured.
 塩素濃度計測部19は、復水系における復水脱塩装置10の上流側及び給水系において少なくとも1つ設けられる。塩素濃度計測部19では、純水装置(図示せず)などの外部から給水されて水循環系1に流れる水の塩素濃度を測定する。
 ナトリウム濃度計測部20は、復水系における復水脱塩装置10の上流側及び給水系において少なくとも1つ設けられる。ナトリウム濃度計測部20では、純水装置(図示せず)などの外部から給水される水循環系1に流れる水のナトリウム濃度を測定する。
At least one chlorine concentration measurement unit 19 is provided on the upstream side of the condensate demineralizer 10 in the condensate system and in the water supply system. The chlorine concentration measurement unit 19 measures the chlorine concentration of water supplied from the outside such as a pure water device (not shown) and flowing to the water circulation system 1.
At least one sodium concentration measurement unit 20 is provided on the upstream side of the condensate demineralizer 10 in the condensate system and in the water supply system. The sodium concentration measuring unit 20 measures the sodium concentration of the water flowing to the water circulation system 1 supplied from the outside such as a pure water device (not shown).
 原因推定部24では、総合判定部23による総合判定結果に応じて、総合判定結果に用いた値と異なる値に対して、予め設定された条件を満たすか否かを判定することにより、自動的に総合判定結果の原因を推定する。具体的には、原因推定部24は、記憶部21に格納されている水質異常の各原因に対する確認項目を読み出し、確認項目に記載された条件を満たすか否かを判定し、条件を満たす場合に、該確認項目に対応する原因を推定結果として出力する。 The cause estimation unit 24 automatically determines whether or not the condition different from the value used for the comprehensive determination result is satisfied in accordance with the comprehensive determination result by the comprehensive determination unit 23 and whether the condition is set in advance. Estimate the cause of the overall judgment result. Specifically, the cause estimation unit 24 reads the confirmation item for each cause of the water quality abnormality stored in the storage unit 21 and determines whether the condition described in the confirmation item is satisfied or not. The cause corresponding to the confirmation item is output as an estimation result.
 次に、上述の原因推定部24による原因推定処理の具体例について、図9を参照して説明する。図9に示される原因及び確認項目は一部についての一例であり、原因及び確認項目は適宜設定できる。
 以下では、原因推定部24で行われる具体的な処理を、各確認項目別に説明するが、各原因推定処理は、逐次処理又は並列処理によって実行される。
Next, a specific example of the cause estimation process by the above-described cause estimation unit 24 will be described with reference to FIG. The cause and confirmation item shown in FIG. 9 are an example of a part, and the cause and confirmation item can be set as appropriate.
Although the specific process performed by the cause estimation unit 24 will be described below for each confirmation item, each cause estimation process is executed by sequential processing or parallel processing.
 水質異常(総合判定D又はE)が判定され、総合判定を行った所定期間内(例えば、所定期日から1ヶ月)に計測されたpH計測部4による計測結果の平均値が基準値よりも低い場合に、原因推定部24は、水質異常の原因を推定するために、記憶部21より、各確認項目C1-C4を読み出す。そして、総合判定結果に用いた値と異なる値に対して、各確認項目に記載された条件が満たされるか否かを判定し、原因を推定する。 The average value of the measurement results by the pH measurement unit 4 measured within the predetermined period (for example, one month from the predetermined date) when the water quality abnormality (general judgment D or E) is judged and the comprehensive judgment is made is higher than the reference value When it is low, the cause estimation unit 24 reads out each of the confirmation items C1 to C4 from the storage unit 21 in order to estimate the cause of the water quality abnormality. Then, it is determined whether the condition described in each confirmation item is satisfied for a value different from the value used for the comprehensive determination result, and the cause is estimated.
 原因推定部24は、確認項目C1を記憶部21から読み出した場合に、pH計測部4の校正履歴を参照して所定期間(例えば、1ヶ月)以内に校正が行われたか否かを判定する。そして、所定期間以内に校正が行われていないと判定された場合には、手分析との値を比較するなどで、pH計測部4の劣化状況が確認された際には、水質異常の原因として、pH計測部4の校正不良をと原因を推定する。 When reading the confirmation item C1 from the storage unit 21, the cause estimation unit 24 refers to the calibration history of the pH measurement unit 4 and determines whether or not the calibration has been performed within a predetermined period (for example, one month). . Then, if it is determined that the calibration has not been performed within a predetermined period, the cause of the water quality abnormality when the deterioration state of the pH measurement unit 4 is confirmed by comparing the value with the hand analysis, etc. As, the cause of the calibration failure of the pH measurement unit 4 is estimated.
 原因推定部24は、確認項目C2を記憶部21から読み出した場合に、酸電気伝導率計測部17の計測結果を取得し、計測結果が予め設定された閾値以内か否かを判定する。そして、酸電気伝導率計測部17の計測結果が予め設定された閾値以内でないと判定された場合には、海水が浸入して微量の塩化水素(HCl)が発生しているとして、水質異常の原因として、海水漏洩を推定する。確認項目C2における閾値とは、水循環系1を流れる水に許容される塩類濃度が考慮された酸電気伝導率として設定される。海水漏洩の発生箇所を確認するには、酸電気伝導率計測部17は、復水器8出口、ボイラ6入口付近、タービン7入口付近に設置して、その計測結果を比較することが好ましい。 When the confirmation item C2 is read from the storage unit 21, the cause estimation unit 24 acquires the measurement result of the acid conductivity measurement unit 17 and determines whether the measurement result is within a preset threshold. If it is determined that the measurement result of the acid conductivity measuring unit 17 is not within the preset threshold value, it is assumed that seawater infiltrates and a trace amount of hydrogen chloride (HCl) is generated. Seawater leakage is estimated as the cause. The threshold value in the confirmation item C2 is set as the acid conductivity in which the salt concentration allowed for water flowing in the water circulation system 1 is considered. In order to confirm the occurrence location of seawater leakage, it is preferable that the acid conductivity measuring unit 17 be installed at the outlet of the condenser 8, near the inlet of the boiler 6, and near the inlet of the turbine 7 and compare the measurement results.
 原因推定部24は、確認項目C3を記憶部21から読み出した場合に、pH計測部4及びボイラ水pH計測部18の計測結果を取得し、pH計測部4の計測結果とボイラ水pH計測部18の計測結果との差が予め設定された閾値以内か否かを判定する。そして、pH計測部4の計測結果とボイラ水pH計測部18の計測結果との差が予め設定された閾値以内でないと判定された場合には、水質異常の原因として、有機物混入を推定する。水循環系1において、外部から供給する工業用水などから有機物が混入した場合には、温度上昇によって有機物が分解されて微量の酸が発生する可能性が高い。このため、例えばボイラ6より上流側に設けられたpH計測部4とボイラ6に設けられたボイラ水pH計測部18とのpH値を用いて局所的な差を比較することによって、有機物混入による酸発生を検知することができる。確認項目C3における閾値とは、温度上昇によって有機物から酸が発生したと想定される場合に許容される酸発生量に対応するpH値として設定される。 When reading the confirmation item C3 from the storage unit 21, the cause estimation unit 24 acquires the measurement results of the pH measurement unit 4 and the boiler water pH measurement unit 18, and the measurement result of the pH measurement unit 4 and the boiler water pH measurement unit It is determined whether or not the difference from the 18 measurement results is within a preset threshold value. Then, when it is determined that the difference between the measurement result of the pH measurement unit 4 and the measurement result of the boiler water pH measurement unit 18 is not within the preset threshold, organic substance contamination is estimated as the cause of the water quality abnormality. In the water circulation system 1, when organic matter is mixed from industrial water or the like supplied from the outside, there is a high possibility that the organic matter is decomposed due to temperature rise and a trace amount of acid is generated. For this reason, for example, due to the mixing of organic substances by comparing local differences using the pH values of the pH measuring unit 4 provided on the upstream side of the boiler 6 and the boiler water pH measuring unit 18 provided in the boiler 6 Acid generation can be detected. The threshold value in the confirmation item C3 is set as a pH value corresponding to the amount of generated acid when it is assumed that an acid is generated from an organic substance due to a temperature rise.
 原因推定部24は、確認項目C4を記憶部21から読み出した場合に、塩素濃度計測部19の計測結果を取得し、塩素濃度計測部19の計測結果が予め設定された閾値以内か否かを判定する。そして、塩素濃度計測部19の計測結果が予め設定された閾値以内でないと判定された場合には、水質異常の原因として、純水装置(図示せず)などからの微量の塩素漏洩を推定する。イオンクロマトグラフィなどから微量の塩素成分濃度を確認して原因を確定する。確認項目C3における閾値とは、水循環系1を流れる水に許容される塩素の濃度として設定される。 When the confirmation item C4 is read from the storage unit 21, the cause estimation unit 24 acquires the measurement result of the chlorine concentration measurement unit 19, and determines whether the measurement result of the chlorine concentration measurement unit 19 is within a preset threshold. judge. Then, when it is determined that the measurement result of the chlorine concentration measurement unit 19 is not within the preset threshold value, a slight amount of chlorine leakage from a pure water device (not shown) or the like is estimated as the cause of the water quality abnormality. . Confirm the trace chlorine concentration from ion chromatography etc. and determine the cause. The threshold value in the confirmation item C3 is set as the concentration of chlorine that is allowed for the water flowing through the water circulation system 1.
 一方で、水質異常(総合判定D又はE)が判定され、総合判定を行った所定期間内(例えば、所定期日から1ヶ月)に計測されたpH計測部4による計測結果の平均値が基準値よりも高い場合に、原因推定部24は、水質異常の原因を推定するために、記憶部21より、各確認項目C5-C6を読み出す。そして、各確認項目に記載された条件が満たされるか否かを判定し、原因を推定する。 On the other hand, the average value of the measurement results by the pH measurement unit 4 measured within the predetermined period (for example, one month from the predetermined date) in which the water quality abnormality (general judgment D or E) was judged and the comprehensive judgment was made When it is higher than the value, the cause estimation unit 24 reads out each confirmation item C5-C6 from the storage unit 21 in order to estimate the cause of the water quality abnormality. Then, it is determined whether or not the condition described in each confirmation item is satisfied, and the cause is estimated.
 原因推定部24は、確認項目C5を記憶部21から読み出した場合に、pH計測部4の校正履歴を参照して所定期間(例えば1ヶ月)以内に校正が行われたか否かを判定する。そして、所定期間以内に校正が行われていないと判定された場合には、手分析との値を比較するなどで、pH計測部4の劣化状況が確認された際には、水質異常の原因として、pH計測部4の校正不良と原因を推定する。確認項目C5は、確認項目C1と同一である。 When reading the confirmation item C5 from the storage unit 21, the cause estimation unit 24 refers to the calibration history of the pH measurement unit 4 and determines whether or not the calibration has been performed within a predetermined period (for example, one month). Then, if it is determined that the calibration has not been performed within a predetermined period, the cause of the water quality abnormality when the deterioration state of the pH measurement unit 4 is confirmed by comparing the value with the hand analysis, etc. As, the calibration failure of the pH measurement unit 4 and the cause are estimated. The confirmation item C5 is the same as the confirmation item C1.
 原因推定部24は、確認項目C6を記憶部21から読み出した場合に、ナトリウム濃度計測部20の計測結果を取得し、ナトリウム濃度計測部20の計測結果が予め設定された閾値以内か否かを判定する。そして、ナトリウム濃度計測部20の計測結果が予め設定された閾値以内でないと判定された場合には、水質異常の原因として、純水装置(図示せず)などからの微量のナトリウム漏洩を推定する。イオンクロマトグラフィなどから微量のナトリウム成分濃度を確認して原因を確定する。確認項目C6における閾値とは、水循環系1を流れる水に許容されるナトリウムの濃度として設定される。 When reading the confirmation item C6 from the storage unit 21, the cause estimation unit 24 acquires the measurement result of the sodium concentration measurement unit 20, and determines whether the measurement result of the sodium concentration measurement unit 20 is within a preset threshold. judge. Then, when it is determined that the measurement result of the sodium concentration measurement unit 20 is not within the preset threshold value, a slight amount of sodium leakage from a pure water device (not shown) or the like is estimated as the cause of the water quality abnormality. . Check the concentration of a small amount of sodium component from ion chromatography etc. and determine the cause. The threshold value in the confirmation item C6 is set as the concentration of sodium acceptable to the water flowing through the water circulation system 1.
 このように、原因推定部24では、水質異常を示す総合判定D又はEが判定された場合に、総合判定結果に用いた値と異なる値に対して、記憶部21から、推定される原因とその確認項目を読み出し、各確認項目に記載の条件に基づいて可能性の高い原因を推定する。推定された原因は、発電プラントが備えるディスプレイ等に表示され、発電プラントの運転員に通知される。これにより、正確かつ迅速に、原因を推定することができるので、プラントの異常を早期に発見することができる。 Thus, in the cause estimating unit 24, when the integrated determination D or E indicating water quality abnormality is determined, a cause different from the value used for the integrated determination result is estimated from the storage unit 21 and The confirmation item is read out, and the probable cause is estimated based on the conditions described in each confirmation item. The estimated cause is displayed on a display or the like included in the power plant, and the operator of the power plant is notified. This makes it possible to estimate the cause accurately and quickly, so that plant abnormalities can be detected early.
 総合判定結果とその原因を発電プラントの運転員に通知する際には、例えば、図10に示すようなマップ画像をディスプレイに表示してもよい。図10に示すマップは、横軸が総合判定結果を示しており、縦軸が酸電気伝導率を示している。マップ上の右上ほど各水質異常の原因の注意レベル(影響度)が高いことを示している。記憶部21に格納されている水質異常の原因は、予め設定された閾値に従ってマップ上に配置されている。そして、総合判定結果及び原因推定結果に応じて、各水質異常の原因に対応する計測値の現状値を◎印などで示すことで、注意レベルと原因を容易に視覚的に素早く通知することができる。図10の例では、総合判定Eが判定され、原因として海水漏洩が推定された場合の計測値を現状値として示している。各原因及び注意レベル等は、適宜変更可能である。 When the operator of the power generation plant is notified of the comprehensive determination result and the cause thereof, for example, a map image as shown in FIG. 10 may be displayed on the display. In the map shown in FIG. 10, the horizontal axis indicates the comprehensive determination result, and the vertical axis indicates the acid conductivity. The upper right on the map indicates that the level of attention (impact) of each water quality anomaly is high. The cause of the water quality abnormality stored in the storage unit 21 is arranged on the map according to a preset threshold value. Then, according to the comprehensive judgment result and the cause estimation result, the visual attention level and the cause can be notified easily and quickly by indicating the current value of the measurement value corresponding to the cause of each water quality abnormality with a 印 mark or the like. it can. In the example of FIG. 10, the comprehensive determination E is determined, and the measurement value when seawater leakage is estimated as the cause is shown as the current value. Each cause, attention level, etc. can be changed suitably.
 総合判定結果や総合判定結果に対して推定される原因、図10に示すマップ、水質異常に関連する計測結果、発電プラントの運転状態等は、例えばインターネット等を介して通信装置(図示なし)により遠隔地の中央制御所等に設置されたコンピュータ(シミュレーション装置)へと送信され、表示させてもよい。コンピュータは発電プラントに設けられてもよい。水質異常に関連する計測結果とは、例えば、各計測部(電気伝導率計測部3、pH計測部4、酸電気伝導率計測部17、ボイラ水pH計測部18、塩素濃度計測部19、ナトリウム濃度計測部20等)から得た計測結果である。コンピュータでは、通信装置より取得した情報(例えば、総合判定結果、総合判定結果に対して推定される原因、発電プラントの運転状態等)に応じて、例えばシミュレーションモデルおよび/または過去から蓄積されたデータ(電気伝導率計測部3及びpH計測部4の計測結果)等を用い、漏洩リーク量やリーク時間を算定し、発電プラントにおける海水漏洩汚染範囲を算出して、マップ表示してもよい。シミュレーションモデルとは、発電プラントの仮想モデルであり、各パラメータ(例えば、電気伝導率計測部3の計測結果等)に応じて仮想モデルをコンピュータ上で仮想動作させることが可能とされている。過去から蓄積されたデータとは、発電プラントにおいて実際に漏洩リークが発生した場合における、各計測データ(電気伝導率計測部3など各計測部の計測結果と漏洩リーク等が関連づけられたデータ)である。この発電プラントにおける海水漏洩汚染範囲のマップは、通信装置(図示せず)により発電プラントの制御室に送信され、海水漏洩汚染範囲を可視化して示すことで、発電プラントの運転員は容易に汚染範囲を認識することができる。発電プラントでは、水質異常の発生に対して、今後の追加調査内容と処置内容、スケジュール等の対策の計画を迅速に提案して、早期に適切に発電プラントの健全性を回復することが容易になる。 The comprehensive judgment result and the cause estimated for the general judgment result, the map shown in FIG. 10, the measurement result related to the water quality abnormality, the operation state of the power generation plant, etc. are for example by the communication device (not shown) via the Internet etc. It may be transmitted to a computer (simulation apparatus) installed at a remote control center or the like and displayed. The computer may be provided in a power plant. The measurement results related to the water quality abnormality are, for example, each measurement unit (electrical conductivity measurement unit 3, pH measurement unit 4, acid conductivity measurement unit 17, boiler water pH measurement unit 18, chlorine concentration measurement unit 19, sodium It is a measurement result obtained from the concentration measurement unit 20 or the like. In the computer, for example, a simulation model and / or data accumulated from the past according to the information acquired from the communication device (for example, the overall determination result, the cause estimated for the overall determination result, the operating state of the power plant, etc.) The leakage leak amount and the leak time may be calculated using (the measurement results of the electrical conductivity measuring unit 3 and the pH measuring unit 4) or the like, the seawater leakage contamination range in the power plant may be calculated, and the map may be displayed. The simulation model is a virtual model of a power generation plant, and it is possible to virtually operate the virtual model on a computer according to each parameter (for example, measurement results of the electrical conductivity measurement unit 3 and the like). The data accumulated from the past refers to each measurement data (data in which the measurement result of each measurement unit such as the electric conductivity measurement unit 3 and leakage leak etc. is associated) when leakage leak actually occurs in the power generation plant is there. A map of the seawater leakage contamination range in this power generation plant is transmitted to the control room of the power generation plant by a communication device (not shown) and the operator of the power generation plant is easily polluted by visualizing and showing the seawater leakage contamination range. The range can be recognized. In the power plant, for the occurrence of water quality abnormality, it is possible to promptly propose the plan of measures such as future additional investigation contents and treatment contents, schedule, etc., and to easily restore the soundness of the power plant promptly and appropriately Become.
 以上説明したように、本実施形態に係る水質診断システム、発電プラント、及び水質診断方法によれば、総合判定部23により判定された総合判定結果となり得る原因を自動的に推定することが可能となる。このため、特に、総合判定結果が高い水質異常を示す場合であっても、正確かつ迅速に、原因を推定することができる。水質異常の原因を迅速に認識することができるため、早期の対応を行うことが期待できる。 As described above, according to the water quality diagnosis system, the power generation plant, and the water quality diagnosis method according to the present embodiment, it is possible to automatically estimate the cause that can be the comprehensive determination result determined by the comprehensive determination unit 23 Become. For this reason, in particular, even in the case where the comprehensive determination result indicates high water quality abnormality, it is possible to accurately and quickly estimate the cause. Since the cause of the water quality abnormality can be recognized quickly, it can be expected to take an early response.
 本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。各実施形態を組み合わせることも可能である。 The present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. It is also possible to combine each embodiment.
1     :水循環系
3     :電気伝導率計測部
4     :pH計測部
5     :制御装置
6     :ボイラ
7     :タービン
8     :復水器
9     :復水ポンプ
10    :復水脱塩装置
11    :グランド蒸気復水器
12    :低圧ヒータ
13    :脱気器
14    :給水ポンプ
15    :高圧ヒータ
17    :酸電気伝導率計測部
18    :ボイラ水pH計測部
19    :塩素濃度計測部
20    :ナトリウム濃度計測部
21    :記憶部
22    :ランク判定部
23    :総合判定部
24    :原因推定部
1: Water circulation system 3: Electric conductivity measurement part 4: pH measurement part 5: Control device 6: Boiler 7: Turbine 8: Condenser 9: Condenser pump 10: Condensate water desalination apparatus 11: Grand steam condenser 12: low pressure heater 13: deaerator 14: feed water pump 15: high pressure heater 17: acid conductivity measuring unit 18: boiler water pH measuring unit 19: chlorine concentration measuring unit 20: sodium concentration measuring unit 21: storage unit 22: Rank determination unit 23: General determination unit 24: Cause estimation unit

Claims (8)

  1.  発電プラントにおける水循環系に設けられ、循環する水の電気伝導率を計測する電気伝導率計測部と、
     前記水循環系に設けられ、循環する水のpH値を計測するpH計測部と、
     水質異常の度合を診断する制御装置と、
    を備え、
     前記制御装置は、
     前記水循環系におけるpH値及び電気伝導率の相関関係に基づく基準値と、前記水循環系における水質異常の度合を示す予め設定された複数のランクと、前記複数のランクにそれぞれ対応する前記基準値からの乖離範囲とが格納された記憶部と、
     前記電気伝導率計測部及び前記pH計測部による計測結果と、前記記憶部に格納された前記乖離範囲とに基づいて、前記計測結果のランクを判定するランク判定部と、
    を備える水質診断システム。
    An electric conductivity measurement unit provided in a water circulation system in a power plant and measuring electric conductivity of circulating water;
    A pH measuring unit provided in the water circulation system and measuring a pH value of the circulating water;
    A controller for diagnosing the degree of water quality abnormality;
    Equipped with
    The controller is
    From the reference value based on the correlation between pH value and electric conductivity in the water circulation system, a plurality of preset ranks indicating the degree of water quality abnormality in the water circulation system, and the reference values respectively corresponding to the plurality of ranks A storage unit in which the divergence range of
    A rank determination unit that determines a rank of the measurement result based on the measurement result by the electrical conductivity measurement unit and the pH measurement unit, and the divergence range stored in the storage unit;
    Water quality diagnostic system equipped with
  2.  前記制御装置は、複数の前記計測結果のそれぞれに対応した前記ランク判定部による判定結果を用い、前記判定結果における前記複数のランクの度数分布状態に応じて、前記水循環系における水質異常の度合を総合的に判定する総合判定部を備える請求項1に記載の水質診断システム。 The control device uses the determination result by the rank determination unit corresponding to each of the plurality of measurement results, and the degree of water quality abnormality in the water circulation system according to the frequency distribution state of the plurality of ranks in the determination result The water quality diagnosis system according to claim 1, further comprising a comprehensive determination unit that determines comprehensively.
  3.  前記制御装置は、前記総合判定部による総合判定結果に応じて、総合判定に用いた前記電気伝導率計測部及び前記pH計測部の値とは異なる値に対して、予め設定された条件を満たすか否かを判定することにより、前記総合判定結果の原因を推定する原因推定部を備える請求項2に記載の水質診断システム。 The control device satisfies a preset condition for a value different from the values of the electric conductivity measurement unit and the pH measurement unit used for the comprehensive determination according to the comprehensive determination result by the comprehensive determination unit. The water quality diagnosis system according to claim 2, further comprising: a cause estimation unit configured to estimate a cause of the comprehensive determination result by determining whether or not it is.
  4.  前記水循環系に設けられ、循環する水の酸電気伝導率を測定する少なくとも1つの酸電気伝導率計測部を備え、
     前記原因推定部は、前記総合判定結果が高い水質異常を示す場合に、前記酸電気伝導率計測部からの計測結果が予め設定された閾値以上であるか否かを判定し、肯定判定である場合に、前記総合判定結果の原因として海水漏洩を推定する請求項3に記載の水質診断システム。
    The water circulation system includes at least one acid electric conductivity measurement unit provided in the water circulation system and measuring acid electric conductivity of the circulating water,
    The said cause estimation part determines whether the measurement result from the said acid electrical conductivity measurement part is more than the preset threshold value, when the said general determination result shows high water quality abnormality, It is affirmation determination The water quality diagnosis system according to claim 3, wherein seawater leakage is estimated as a cause of the comprehensive determination result.
  5.  前記総合判定結果と前記原因推定部によって推定された前記総合判定結果に対応する原因とを表示する表示部を備えた請求項3または4に記載の水質診断システム。 The water quality diagnosis system according to claim 3, further comprising a display unit that displays the comprehensive determination result and a cause corresponding to the comprehensive determination result estimated by the cause estimation unit.
  6.  シミュレーション装置を備え、
     前記制御装置は、前記総合判定結果に対して推定される原因及び水質異常に関連する計測結果を前記シミュレーション装置に送信する通信部を備え、
     前記シミュレーション装置は、前記通信部より取得した情報と、シミュレーションモデルおよび/または蓄積された過去のデータとに基づいて、漏洩リーク量及びリーク時間を算定し、前記発電プラントにおける漏洩汚染範囲を導出する請求項4または5に記載の水質診断システム。
    Equipped with simulation equipment,
    The control device includes a communication unit that transmits, to the simulation device, a measurement result related to the cause and water quality abnormality estimated for the comprehensive determination result.
    The simulation apparatus calculates a leakage leakage amount and a leakage time based on the information acquired from the communication unit and the simulation model and / or accumulated data in the past, and derives a leakage contamination range in the power generation plant. The water quality diagnosis system according to claim 4 or 5.
  7.  ボイラと、
     蒸気タービンと、
     復水器と、
     請求項1から6のいずれか1項に記載の水質診断システムと、
    を備えた発電プラント。
    A boiler,
    With a steam turbine,
    With a condenser,
    The water quality diagnosis system according to any one of claims 1 to 6,
    Power plant equipped with.
  8.  発電プラントにおける水循環系に設けられた電気伝導率計測部及びpH計測部と、前記水循環系におけるpH値及び電気伝導率の相関関係に基づく基準値と前記水循環系における水質異常の度合を示す予め設定された複数のランクと前記複数のランクにそれぞれ対応する前記基準値からの乖離範囲とが格納された記憶部を有する制御装置と、を備えた水質診断システムの水質診断方法であって、
     循環する水の電気伝導率を計測する電気伝導率計測工程と、
     循環する水のpH値を計測するpH計測工程と、
     前記電気伝導率計測工程及び前記pH計測工程による計測結果と、前記記憶部に格納された前記乖離範囲とに基づいて、前記計測結果のランクを判定するランク判定工程と、
    を有する水質診断方法。
    Electric conductivity measurement unit and pH measurement unit provided in the water circulation system in the power generation plant, and a reference value based on the correlation between pH value and electric conductivity in the water circulation system, and a preset value indicating the degree of water quality abnormality in the water circulation system A control device having a storage unit in which the plurality of ranks and the deviation range from the reference value respectively corresponding to the plurality of ranks are stored;
    An electrical conductivity measurement step of measuring the electrical conductivity of circulating water;
    PH measurement process which measures pH value of circulating water,
    A rank determination step of determining a rank of the measurement result based on the measurement result of the electric conductivity measurement step and the pH measurement step, and the deviation range stored in the storage unit;
    Water quality diagnostic method with.
PCT/JP2018/041063 2017-11-20 2018-11-05 Water quality diagnostic system, power generation plant, and water quality diagnostic method WO2019098077A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880054236.XA CN111033253B (en) 2017-11-20 2018-11-05 Water quality diagnosis system, power station, and water quality diagnosis method
KR1020207004493A KR102344805B1 (en) 2017-11-20 2018-11-05 Water quality diagnosis system, power plant, and water quality diagnosis method
PH12020500356A PH12020500356A1 (en) 2017-11-20 2020-02-19 Water quality diagnostic system, power plant, and water quality diagnostic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222748 2017-11-20
JP2017222748A JP6878256B2 (en) 2017-11-20 2017-11-20 Water quality diagnostic system, power plant, and water quality diagnostic method

Publications (1)

Publication Number Publication Date
WO2019098077A1 true WO2019098077A1 (en) 2019-05-23

Family

ID=66538617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041063 WO2019098077A1 (en) 2017-11-20 2018-11-05 Water quality diagnostic system, power generation plant, and water quality diagnostic method

Country Status (5)

Country Link
JP (1) JP6878256B2 (en)
KR (1) KR102344805B1 (en)
CN (1) CN111033253B (en)
PH (1) PH12020500356A1 (en)
WO (1) WO2019098077A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666457A (en) * 2021-08-31 2021-11-19 重庆夏软科技有限公司 Water purification optimization system and method based on water quality monitoring
CN117035240A (en) * 2023-10-08 2023-11-10 华能山东发电有限公司烟台发电厂 Monitoring and management method and system for water used in thermal power plant

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225025B2 (en) * 2019-05-10 2023-02-20 三菱重工業株式会社 Corrosion control system, water treatment equipment and power plant, and corrosion control method and corrosion control program
JP7293068B2 (en) * 2019-09-20 2023-06-19 クリタ・ビーエムエス株式会社 Vapor quality evaluation device and vapor quality evaluation method
CN112229877A (en) * 2020-10-26 2021-01-15 新奥数能科技有限公司 Conductivity monitoring method, device and system for boiler front end side feed water
CN112444608A (en) * 2020-10-27 2021-03-05 新奥数能科技有限公司 On-line monitoring system and method for water supply dissolved oxygen
CN112305185A (en) * 2020-10-27 2021-02-02 新奥数能科技有限公司 Water supply hardness online monitoring system and method
CN114167011A (en) * 2020-10-29 2022-03-11 佛山市美的清湖净水设备有限公司 Waterway system, and water quality early warning method and device of waterway system
JP2022115155A (en) * 2021-01-28 2022-08-09 三菱重工業株式会社 Water quality diagnostic method
CN112946220B (en) * 2021-02-04 2022-12-23 华能(天津)煤气化发电有限公司 IGCC combined cycle power generation-based online detection water quality sampling detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243972A (en) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd Water quality monitor for turbine installation and method
US20100051477A1 (en) * 2006-05-30 2010-03-04 Chi-Jung Jeon Electro-chemical water processing apparatus and method thereof
JP2016205781A (en) * 2015-04-28 2016-12-08 栗田工業株式会社 Water treatment management device and water treatment management method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288114A (en) 2002-03-28 2003-10-10 Mitsubishi Heavy Ind Ltd Water quality diagnosis/operation support system
JP4396286B2 (en) * 2004-01-21 2010-01-13 三菱電機株式会社 Device diagnostic device and device monitoring system
CN103425108B (en) * 2013-08-16 2015-01-21 深圳市兰德玛水环境工程科技有限公司 Water pollution prevention and control system and method based on quality-divided discharge and quality-divided treatment
JP2016031154A (en) * 2014-07-25 2016-03-07 三菱日立パワーシステムズ株式会社 Control method, boiler control device, and program
CN105699616A (en) * 2016-03-07 2016-06-22 南京航空航天大学 Multi-parameter water quality detecting and rating system and water quality rating method based on same
CN205720196U (en) * 2016-03-07 2016-11-23 南京航空航天大学 Multi-parameter water quality detecting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051477A1 (en) * 2006-05-30 2010-03-04 Chi-Jung Jeon Electro-chemical water processing apparatus and method thereof
JP2009243972A (en) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd Water quality monitor for turbine installation and method
JP2016205781A (en) * 2015-04-28 2016-12-08 栗田工業株式会社 Water treatment management device and water treatment management method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASAKURA, Y. ET AL.: "STRUCTURAL MATERIAL ANOMALY DETECTION SYSTEM USING WATER CHEMISTRY DATA, (V) IMPURITY IONS BALANCE EVALUATION BASED ON CONDUCTIVITY DATA AND ITSAPPLICATION TO WATER CHEMISTRY DIAGNOSIS IN BWR PLANTS", JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, vol. 27, no. 8, August 1990 (1990-08-01), pages 731 - 742, XP001057582 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666457A (en) * 2021-08-31 2021-11-19 重庆夏软科技有限公司 Water purification optimization system and method based on water quality monitoring
CN117035240A (en) * 2023-10-08 2023-11-10 华能山东发电有限公司烟台发电厂 Monitoring and management method and system for water used in thermal power plant
CN117035240B (en) * 2023-10-08 2024-03-01 华能山东发电有限公司烟台发电厂 Monitoring and management method and system for water used in thermal power plant

Also Published As

Publication number Publication date
CN111033253B (en) 2022-12-20
CN111033253A (en) 2020-04-17
KR102344805B1 (en) 2021-12-30
PH12020500356A1 (en) 2021-01-11
JP6878256B2 (en) 2021-05-26
JP2019095232A (en) 2019-06-20
KR20200029555A (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2019098077A1 (en) Water quality diagnostic system, power generation plant, and water quality diagnostic method
JP2005207724A (en) Apparatus and method for analyzing water chemistry of power plant
KR20140127915A (en) Method and system for real time gas turbine performance advisory
TW200424901A (en) Operation support system for power plant
WO2007038533A2 (en) System to predict corrosion and scaling, program product, and related methods
US20180196894A1 (en) System and method for monitoring a steam turbine and producing adapted inspection intervals
KR101882847B1 (en) Method and apparatus for searching performance degradation source of power facilities
JP2011209847A (en) Plant abnormality diagnosis system
JP2020170596A (en) Failure sign detection system
Agarwal et al. Development of asset fault signatures for prognostic and health management in the nuclear industry
JP6980034B2 (en) Device life evaluation method
Haves et al. Model-based performance monitoring: Review of diagnostic methods and chiller case study
Zhang et al. Development of online validation and monitoring system for the thermal performance of nuclear power plant in service
JP2002117468A (en) Plant operation diagnosis and support system
WO2024025630A1 (en) Methods and systems for evaluating heat exchangers
CN113571742A (en) Fault diagnosis method and device for fuel cell thermal management system
Nakatsuchi et al. Novel Identification Method of Seawater Contamination into Steam-Water Circuit Including Carbon Dioxide of Power Plants Based on pH, Specific Conductivity, and Cation Conductivity
JP2019144751A (en) Water quality abnormality detection device and water quality abnormality detection method for power generation plant using power generation plant operation data
JP4912297B2 (en) Method for monitoring one or more physical parameters and fuel cell using the same
JP2016075534A (en) Failure diagnosis method for photovoltaic generation device
JPS624526B2 (en)
Hines et al. Application of monitoring and prognostics to small modular reactors
WO2022181574A1 (en) Abnormality factor estimation method for power plant
JP4493388B2 (en) Water quality management system and water quality management method in power plant
EP4345194A1 (en) Method, apparatus, computer program and system for monitoring a state of a multi-cell electrolyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207004493

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18877561

Country of ref document: EP

Kind code of ref document: A1