WO2019097996A1 - Preparation estimating method and preparation estimating device - Google Patents

Preparation estimating method and preparation estimating device Download PDF

Info

Publication number
WO2019097996A1
WO2019097996A1 PCT/JP2018/040091 JP2018040091W WO2019097996A1 WO 2019097996 A1 WO2019097996 A1 WO 2019097996A1 JP 2018040091 W JP2018040091 W JP 2018040091W WO 2019097996 A1 WO2019097996 A1 WO 2019097996A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
fresh concrete
cement
aggregate
water
Prior art date
Application number
PCT/JP2018/040091
Other languages
French (fr)
Japanese (ja)
Inventor
公治 里山
閑田 徹志
和久 依田
振煥 全
成浩 蔡
俊憲 親本
浩 笠井
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to SG11202003881PA priority Critical patent/SG11202003881PA/en
Publication of WO2019097996A1 publication Critical patent/WO2019097996A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass

Definitions

  • the present invention relates to a method and an apparatus for estimating the proportion of fresh concrete.
  • a mortar is collected from fresh concrete, cement components contained in the collected mortar are dissolved with an ion exchange resin, and the electric conductivity of a filtrate obtained by dissolution is measured. Then, the cement amount is measured from the measured electrical conductivity, and the collected mortar is dried, and the moisture content of fresh concrete is measured from the degree of weight reduction when dried. Thus, the cement amount and the water content are measured, and the ratio of water to cement is determined from the measurement results.
  • the ratio of water to cement is determined through dissolution of the cement component by the ion exchange resin, drying of the mortar, and the like.
  • the measurement takes time, and there is a problem that the preparation of fresh concrete can not be evaluated promptly at the site.
  • the estimation of the preparation of fresh concrete is performed at the site where the fresh concrete has been transported, and it may be necessary to determine the purchase availability of the fresh concrete using the result of the estimation of the preparation. Since it may be necessary to make a decision on the site like this, it is required to estimate the preparation in a short time.
  • the measurement method described above is not suitable for on-site use because it requires a great deal of time after drying and the like. Therefore, there is a need for a method to quickly estimate the mix of fresh concrete.
  • An object of the present invention is to provide a blending estimation method and a blending estimation device capable of rapidly estimating the blending of fresh concrete.
  • the present inventors have found that the electrical conductivity of fresh concrete is affected by the components and temperature of fresh concrete. According to this finding, the components of fresh concrete can be estimated in a short time by measuring the electrical conductivity, temperature, and mass per unit volume (unit volume mass) of fresh concrete.
  • the present invention has been made based on such findings. That is, the blending estimation method according to the present invention is a blending estimation method for estimating the blending of fresh concrete including water, cement, and aggregate.
  • the method for estimating the mix includes steps of measuring the electrical conductivity of fresh concrete, measuring the temperature of fresh concrete, measuring the mass per unit volume of fresh concrete, conductivity, temperature and unit volume Calculating the amount of water contained in the fresh concrete, the amount of cement contained in the fresh concrete, and the amount of aggregate in the aggregate contained in the fresh concrete from the weight per unit.
  • the conductivity, temperature, and unit volume mass of fresh concrete are measured, and the measured conductivity, temperature, and water volume, cement amount, and bone contained in fresh concrete from the unit volume mass. Calculate the amount of material.
  • the amounts of water and cement and the amount of aggregate are calculated from the electrical conductivity, the temperature, and the unit volume mass, the amounts of water and cement and the amount of aggregate contained in fresh concrete can be derived quickly and easily. .
  • the amount of water and the amount of cement are known, it is possible to grasp the water-cement ratio.
  • the strength of fresh concrete can be easily estimated by the water-cement ratio. Specifically, when the ratio of water to cement is high, it can be estimated that the strength of fresh concrete is low. As described above, since the preparation and strength of fresh concrete can be quickly estimated, the quality of fresh concrete can be efficiently evaluated.
  • fresh concrete may contain admixtures.
  • the above-described composition estimation method may include the steps of measuring the density of each of water, cement, aggregate and admixture contained in fresh concrete, and measuring the amount of air contained in fresh concrete.
  • the amount of water, the amount of cement, the amount of aggregate, and the amount of admixture of the admixture contained in fresh concrete may be calculated from the electric conductivity, temperature, unit volume mass, density and air amount. .
  • the amount of admixture can also be derived quickly and easily.
  • the strength of fresh concrete can be estimated from the amount of admixture, the amount of water and the amount of cement.
  • the density may be calculated in advance before performing the calculating step.
  • the amount of water, cement, aggregate and admixture contained in fresh concrete can be calculated by calculating each density in advance. It can be calculated quickly. Therefore, it is possible to more quickly estimate the preparation of fresh concrete.
  • the amount of air may be calculated in advance before performing the step of calculating. In this case, even if there is no measuring instrument for measuring the air amount on site, it is possible to estimate the preparation of fresh concrete quickly by calculating the air amount in advance. Moreover, since it is not necessary to measure the amount of air on site by calculating the amount of air in advance, it is possible to more quickly estimate the preparation of fresh concrete.
  • the blending estimation device is a blending estimation device that estimates the blending of fresh concrete including water, cement, and aggregate.
  • This mixture estimation device comprises an electrical conductivity measuring unit that measures the electrical conductivity of fresh concrete, a temperature measuring unit that measures the temperature of fresh concrete, and a unit volume mass measuring unit that measures the mass per unit volume of fresh concrete Calculate the amount of water contained in fresh concrete, the amount of cement contained in fresh concrete, and the amount of aggregate contained in fresh concrete from the electric conductivity, temperature, and mass per unit volume And a calculation unit.
  • the electric conductivity measurement unit measures the electric conductivity of the fresh concrete
  • the temperature measurement unit measures the temperature of the fresh concrete
  • the unit volume mass measurement unit measures the unit volume mass of the fresh concrete.
  • the calculation unit calculates the amount of water, the amount of cement, and the amount of aggregate from the electrical conductivity, the temperature, and the unit volume mass.
  • the calculation unit calculates the amount of water, the amount of cement and the amount of aggregate from the electric conductivity, the temperature and the unit volume mass, the amount of water, the amount of cement and the amount of aggregate of fresh concrete can be derived quickly and easily. Therefore, as with the above-described blending estimation method, the blending of fresh concrete can be quickly estimated, and the quality of fresh concrete can be efficiently evaluated.
  • A) is a graph which shows the relationship between the measured value of the electrical resistivity (1 / EC) of fresh concrete, and the calculated value of the electrical resistivity (1 / EC) by regression.
  • (B) is a graph which shows the relationship between the amount of admixtures of fresh concrete and ⁇ (1 / EC).
  • (A) is a graph which shows the relationship between the measured value of lnEC and the calculated value of lnEC obtained by regression.
  • (B) is a graph showing the relationship between the amount of admixture and ⁇ (lnEC).
  • (A) is a graph showing the relationship between the amount of cement and ⁇ (1 / EC) for each type of cement.
  • (B) is a graph showing the relationship between the amount of cement and ⁇ (lnEC) for each type of cement.
  • (A) is a graph showing the relationship between the amount of cement and ⁇ (1 / EC) for each type of cement.
  • (B) is a graph showing the relationship between the amount of cement and ⁇ (lnEC) for each type of cement.
  • (A) And (b) is the graph which showed the relationship between an actual preparation and the presumed preparation.
  • (A) And (b) is the graph which showed the relationship between an actual preparation and the presumed preparation. It is a flowchart which shows the mixing
  • FIG. 1 is a block diagram showing a mixture estimation device 1 according to the present embodiment.
  • FIG. 2 is a perspective view showing an example of means for measuring fresh concrete R.
  • Fresh concrete R is a ready-made concrete to be transported to a construction site, and is unloaded when it is not solidified. After fresh concrete R hardens, it takes a lot of time to repair or remove it, so it is important to conduct a quality inspection before hardening.
  • the mixing estimation apparatus 1 performs quality inspection of fresh concrete R carried into the construction site, and checks whether mixing of fresh concrete R is in a desired state.
  • Fresh concrete R contains, for example, ordinary portland cement.
  • Fresh concrete R is composed of water, aggregate including fine aggregate and coarse aggregate, cement, and admixture.
  • Admixtures may include fly ash, blast furnace slag, and the like. Admixtures such as fly ash and blast furnace slag are used to react with the cement to increase its strength. That is, cement and admixture are binders that increase the strength of fresh concrete R.
  • the blending estimation device 1 estimates blending of fresh concrete R, for example, before fresh concrete R is purchased. As described above, the preparation of the fresh concrete R is estimated by the preparation estimating device 1 before the purchase, so that the purchaser can quickly determine on the site whether to purchase the fresh concrete R.
  • the mixture estimation apparatus 1 includes an electric conductivity measurement unit 11 that measures the electric conductivity of fresh concrete R, a temperature measurement unit 12 that measures the temperature of fresh concrete R, and fresh concrete R.
  • Unit volume mass measurement unit 13 that measures unit volume mass (mass per unit volume)
  • density measurement unit 14 that measures the density of each component of fresh concrete R
  • air that measures the amount of air contained in fresh concrete R
  • an amount measuring unit 15 that measures the amount of air contained in fresh concrete R.
  • the blending estimation device 1 includes a calculating unit 20 that calculates the amount of each component of the fresh concrete R, and a display unit 30 that displays each component calculated by the calculating unit 20.
  • the measurement values measured by the electrical conductivity measurement unit 11, the temperature measurement unit 12, the unit volume mass measurement unit 13, the density measurement unit 14 and the air amount measurement unit 15 are input to the calculation unit 20.
  • the calculation unit 20 calculates the amount of water W, the amount of aggregate G, the amount of cement C, and the amount of admixture F, which are components of the fresh concrete R, from the input measurement values.
  • the calculating unit 20 and the display unit 30 may be included in a portable terminal such as a tablet terminal, for example. In this case, the input of each measurement value to the calculation unit 20 and the display of the calculated amount of each component are performed on the display of the tablet terminal.
  • the electrical conductivity measurement part 11 is provided with the electrical conductivity cell 11a inserted in the fresh concrete R, as FIG. 2 shows, for example.
  • the electrical conductivity measured by the electrical conductivity measurement unit 11 is input to the calculation unit 20.
  • the conductivity cell 11a is inserted into, for example, each of four arbitrary portions P1, P2, P3, and P4.
  • the calculated four conductivity values are input to the calculation unit 20.
  • the structure of the electrical conductivity measurement part 11, and the location where the electrical conductivity cell 11a is inserted are not restricted to said example, but can be changed suitably.
  • the temperature measurement unit 12 includes a sensor unit inserted into the fresh concrete R, for example, similarly to the electric conductivity cell 11a, and measures the temperature of the fresh concrete R by inserting the sensor unit into the fresh concrete R. .
  • the temperature of the fresh concrete R measured by the temperature measurement unit 12 is input to the calculation unit 20.
  • the configuration of the temperature measurement unit 12 can be changed as appropriate.
  • the unit volume mass measurement unit 13 is measured, for example, by determining the mass of the fresh concrete R filled in a container of a predetermined volume. Also, prior to the measurement of fresh concrete R on site, concrete of a plurality of types (N types) of blends may be mixed in a laboratory or a concrete plant to measure a unit volume mass. The unit volume mass of the fresh concrete R measured by the unit volume mass measurement unit 13 is input to the calculation unit 20. The configuration of the unit volume mass measurement unit 13 can also be changed as appropriate.
  • the density measurement unit 14 measures the density of each of water, cement, aggregate, and admixture contained in the fresh concrete R. Each density measured by the density measurement unit 14 is input to the calculation unit 20.
  • the density measurement unit 14 may measure each of the above-described densities in advance prior to the on-site measurement. As a specific example, the density measurement unit 14 calculates the densities of cement, aggregate, and admixture as inverse numbers of b1, b2, and b3 using Expression (1).
  • the calculated value y j ′ of the volume of the solid material is expressed by equation (2).
  • the air amount measurement unit 15 measures the amount of air (air amount) contained in the fresh concrete R.
  • the air amount measured by the air amount measurement unit 15 is input to the calculation unit 20.
  • the air amount measurement unit 15 may measure the air amount according to, for example, JIS A 1128 (a test method based on the pressure of the air amount of fresh concrete).
  • the air amount measurement unit 15 may measure the air ratio A of the fresh concrete R from the unit volume mass UW (kg / m 3 ) determined by the unit volume mass measurement unit 13 using the equation (5). .
  • Equation (5) The regression equation from N (A j , UW j ) of equation (6) is equation (5). Further, it is known that the relationship between the air ratio A and the unit volume mass UW contained in the fresh concrete R is represented by the relationship of a linear function, as shown in FIG. Thus, air flow rate measuring unit 15 obtains the air ratio A of fresh concrete R from unit volume mass UW to unit volume mass measuring unit 13 has measured, may calculate the amount of air V a from the air ratio A determined.
  • the display unit 30 displays each component of the fresh concrete R calculated by the calculation unit 20.
  • the display unit 30 includes a display 31 as shown in FIG. 4, for example.
  • the temperature of fresh concrete R the amount of water, the electric conductivity, the unit volume mass, the amount of cement, the amount of aggregate, the amount of admixtures, and the acceptance or rejection (whether the preparation of fresh concrete R is in a desired state Text boxes 31a, 31b, 31c, 31d, 31e, 31f, 31g, and 31h for displaying?
  • the calculation unit 20 includes a water amount calculation unit 21, an aggregate amount calculation unit 22, a cement amount calculation unit 23, and an admixture amount calculation unit 24.
  • the calculation unit 20 is, for example, a tablet terminal, and includes a central processing unit (CPU), and a storage unit including a read only memory (ROM) and a random access memory (RAM). Each function of the calculation unit 20 is realized, for example, by loading a program stored in the ROM into the RAM and executing the program by the CPU.
  • the storage unit of the calculation unit 20 stores, for example, Equations (7) to (10) described later.
  • (1 / EC) is the electric resistivity of fresh concrete R
  • T is the temperature of fresh concrete R (K)
  • W is the amount of fresh concrete R water (kg / m 3 )
  • C is the amount of fresh concrete R cement (kg / m 3 ) m 3 )
  • G indicate the aggregate amount (kg / m 3 ) of fresh concrete R
  • F indicate the admixture amount (kg / m 3 ) of fresh concrete R, respectively.
  • the electrical resistivity (1 / EC) is the reciprocal of the electrical conductivity EC.
  • a 0 , a 1 , a 2 , a 3 , a 4 , and a 5 indicate coefficients obtained by regression analysis in advance for each type of fresh concrete R.
  • lnEC indicates the logarithm of EC
  • b 0 , b 1 , b 2 , b 3 , b 4 and b 5 indicate coefficients obtained by regression analysis in advance for each type of fresh concrete R.
  • Formula (9) shows that the unit volume mass UW (kg / m 3 ) of fresh concrete and the sum of the mass of each component are equal to each other.
  • W W is the density of water
  • ⁇ C is the density of cement
  • ⁇ G is the density of aggregate
  • ⁇ F is the density of admixture
  • V a is the amount of air. Equation (10) indicates that the sum of the mass of each component divided by the density of each component is 1.
  • the water amount calculation unit 21 calculates the water amount W of the fresh concrete R from the equations (7) to (10) described above, and the aggregate amount calculation unit 22 calculates the aggregate amount G of the fresh concrete R, cement amount The calculation unit 23 calculates the cement amount C of the fresh concrete R, and the admixture amount calculation unit 24 calculates the admixture amount F of the fresh concrete R.
  • each value of a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , b 0 , b 1 , b 2 , b 3 , b 4 and b 5 depends on the type of fresh concrete R. Be changed.
  • Formula (7) is a formula which shows an electrical resistivity (1 / EC).
  • the rule of thumb is known that the total resistance when there are several scattering mechanisms that cause scattering of electrical resistivity (1 / EC) is the sum of the resistances when the individual mechanisms exist alone, as Matthesen's law. ing.
  • the electrical resistivity of a dilute alloy has been found to be the sum of a temperature independent resistance (from impurity scattering) and a temperature dependent resistance (from lattice scattering).
  • the electrical resistivity of a substance depends on temperature, so the electrical resistivity (1 / EC) of fresh concrete R is referred to Matthiassen's law, and an equation (7) consisting of a temperature dependent term and a term of each material Is represented by.
  • equation (11) was obtained as a result of multiple regression analysis on 46 actual data obtained from fresh concrete including water amount W, cement amount C when concrete is ordinary portland cement, and aggregate amount G.
  • the amount of admixture F (the amount of fly ash FA) is zero.
  • the calculated value by the regression equation of equation (11) matched well with the measured value as shown in FIG. 5 (a). Thus, the validity of equation (11) is verified.
  • a ′ 0 ⁇ 0.869
  • a 1 188
  • a 2 ⁇ 7.84 ⁇ 10 ⁇ 4
  • a 3 ⁇ 1.39 ⁇ 10 ⁇ 4
  • a 4 2.79 It is x 10 -4 .
  • the electrical resistivity (1 / EC) is expressed by the sum of Formula (11) and Formula (12), and Formula (13).
  • a 0 ⁇ 0.869
  • a 1 188
  • a 2 ⁇ 7.84 ⁇ 10 ⁇ 4
  • a 3 ⁇ 1.39 ⁇ 10 ⁇ 4
  • a 4 2.79 ⁇ 10 ⁇ 4
  • a 5 4.37 ⁇ 10 ⁇ 4 .
  • the equation (7) is derived from the above equation (13).
  • n is the number of ions in a unit volume
  • e is the charge of the ion
  • is the mobility of the ion
  • T is the absolute temperature
  • D is the diffusion coefficient
  • k B is the Boltzmann constant. Show. Also, the diffusion coefficient D has temperature dependency as shown in equation (16).
  • Equation (16) Q represents the activation energy of diffusion, R represents the gas constant, and D 0 represents the constant (frequency factor).
  • Equation (17) is derived from the equations (14) to (16).
  • lnEC is expressed by the sum of the equations (23) and (24) and the equation (25).
  • b 0 17.3
  • b 1 -2.70 ⁇ 10 3
  • b 2 1.01 ⁇ 10 -2
  • b 3 1.14 ⁇ 10 -3
  • b 4 - It is 4.42 ⁇ 10 -3
  • b 5 -3.92 ⁇ 10 -3 .
  • the equation (8) is derived from the above equation (25).
  • Formula (7) and Formula (8) mentioned above are corrected according to the kind of cement of fresh concrete.
  • amendment of Formula (7) and Formula (8) according to the kind of cement is demonstrated.
  • the values are values when using ordinary Portland cement. If the cement is not ordinary Portland cement, correct the values and constant terms of the above factors.
  • Equation (13) and Equation (25) can be approximated by a linear equation of unit cement amount as in Equation (26) and Equation (27).
  • c 0 , c 3 , d 0 and d 3 are constants.
  • FIGS. 7 (a), 7 (b), 8 (a) and 8 (b). The relationship between the cement amount C and ⁇ (1 / EC) and the relationship between the cement amount C and ⁇ (ln EC) are shown in FIGS. 7 (a), 7 (b), 8 (a) and 8 (b). .
  • FIGS. 7 (a), 7 (b), 8 (a) and 8 (b) the relationship between the cement amount C and ⁇ (1 / EC), and the cement amount C and ⁇ (ln EC) It can be seen that the relationship of) satisfies the linear relationship. That is, y ( ⁇ (1 / EC) or ⁇ (lnEC)) is represented by a linear function of x (cement amount C).
  • NP_P, NS_S, TS_R, and TC_L in each graph have shown the kind of cement, respectively.
  • y indicates a correction amount.
  • the estimated blending of the amount of water W, the amount of cement C, the amount of aggregate G, and the amount of admixture F (fly ash) obtained using the formulas (7) to (10), and the actual blending which is the actual blending and 9A, 9B, 10A, and 10B show the relationship of the above.
  • FIGS. 9 (a), 9 (b), 10 (a) and 10 (b) estimated formulation and actual composition of each component when using the equations (7) to (10) It can be seen that the formulation is almost identical. Thus, the validity of the equations (7) to (10) is verified.
  • equation (7) showing the electrical resistivity (1 / EC)
  • coefficient a 1 of the reciprocal of temperature T is positive
  • coefficient a 2 of water amount W is negative
  • coefficient a 3 of cement amount C is negative
  • aggregate amount G The coefficient a 4 of is positive
  • the coefficient a 5 of the amount of admixture F is positive. This is because the electrical resistivity (1 / EC) decreases as the temperature T increases or the water amount W or cement amount C increases, and the electrical resistivity (1/1) increases as the aggregate amount G or admixture amount F increases. It is based on the finding that EC) increases.
  • equation (8) indicating the lnEC is the logarithm of the electrical conductivity
  • the coefficient b 1 of the inverse of the temperature T is negative
  • the coefficient b 2 of water W positive is negative
  • the coefficient b 3 of cement content C positive
  • the aggregate amount G The coefficient b 4 of is negative
  • the coefficient b 5 of the amount of admixture F is negative.
  • FIG. 11 is a flow chart showing an example of the compounding estimation method using the compounding estimation device 1.
  • the electrical conductivity EC, the temperature T and the unit volume mass UW of the fresh concrete R are measured using the electrical conductivity measurement unit 11, the temperature measurement unit 12, and the unit volume mass measurement unit 13 (step S1).
  • the electrical conductivity cell 11a is inserted into fresh concrete R to measure the electrical conductivity EC, and the measured electrical conductivity EC is input to the calculation unit 20.
  • the sensor unit of the temperature measurement unit 12 is inserted into fresh concrete R to measure the temperature T, and the measured temperature T is input to the calculation unit 20 (step of inputting the electrical conductivity and the temperature).
  • the unit volume mass measurement unit 13 measures the unit volume mass UW by obtaining the mass of the fresh concrete R filled in a container of a predetermined volume, and inputs the measured unit volume mass UW to the calculation unit 20 (unit Step of inputting volume mass).
  • the density measuring unit 14 measures the densities W w , C c , G G , and F F of the fresh concrete R using the above-mentioned equation (1), and the air amount measuring unit 15 uses the above-mentioned equation (5) measuring the amount of air V a Te.
  • air flow rate measuring unit 15 may measure the air volume V a of fresh concrete R by JIS A 1128 (test method by the pressure of the air amount of the fresh concrete) or the like. Then, the density of each component of the fresh concrete R measured by the density measurement unit 14 and the air amount V a of the fresh concrete R measured by the air amount measurement unit 15 are input to the calculation unit 20 (density and air amount Step to enter).
  • a known density such as a value indicated by the manufacturer may be input to the calculation unit 20.
  • measurement of the density by the density measurement unit 14 and measurement of the air amount by the air amount measurement unit 15 are omitted, and 7) It is also possible to omit the term of the additive amount F of the equation (9) and the equation (10).
  • the water amount calculation unit 21 calculates the water amount W of the fresh concrete R
  • the aggregate amount calculation unit 22 calculates the aggregate amount G of the fresh concrete R
  • the cement amount calculation unit 23 calculates the fresh concrete
  • the cement amount C of R is calculated
  • the admixture amount calculation unit 24 calculates the admixture amount F of the fresh concrete R (step S3).
  • the water amount calculating unit 21, the aggregate amount calculating unit 22, the cement amount calculating unit 23 and the admixture amount calculating unit 24 input the electric conductivity EC, the temperature T, the unit volume mass UW, the density ⁇ W , ⁇
  • the water amount W, the aggregate amount G, the cement amount C, and the admixture amount F are calculated using C 1 , G G , ⁇ F and the air amount V a and the aforementioned equations (7) to (10) Process to calculate).
  • the display unit 30 After calculating the water amount W, the aggregate amount G, the cement amount C, and the admixture amount F, the display unit 30 displays the calculated values (step S4). For example, the display unit 30 displays the temperature T, the water amount W, the conductivity EC, the unit volume mass UW of the fresh concrete R in each of the text boxes 31a, 31b, 31c, 31d, 31e, 31g, and 31h of the display 31. , Cement amount C, aggregate amount G, admixture amount F, and pass / fail.
  • the text box 31 h displays the result of the quality inspection of the fresh concrete R carried into the construction site. Specifically, in the text box 31h, when the preparation of the fresh concrete R is in a desired state, it is displayed as a pass, and when it is not in a desired state, it is displayed as a rejection. After displaying the amount and pass / fail of each component of fresh concrete R in this manner, a series of steps are completed.
  • fresh concrete R is composed of water, cement, aggregate and admixture.
  • the amount of cement may be reduced, and an incorrect thing including powder different from cement may be mixed.
  • the water-cement ratio (the ratio of water to cement (W / C)) is a large value in the blending estimation device 1. Therefore, in the mixture estimation device 1, it is possible to quickly detect an incorrect fresh concrete R, and it is possible to quickly estimate the quality of the fresh concrete R.
  • the electric conductivity EC, the temperature T and the unit volume mass UW of the fresh concrete R are measured, and from the measured electric conductivity EC, the temperature T and the unit volume mass UW
  • the amount W of water, the amount C of cement and the amount G of aggregate contained in the fresh concrete R are calculated.
  • the water amount W, cement amount C and aggregate amount G are calculated from the electrical conductivity EC, temperature T and unit volume mass UW, so the amount of water and cement contained in fresh concrete R and the amount of aggregate can be rapidly determined. And it can be easily derived.
  • the water-cement ratio can be grasped, and the strength of the fresh concrete R can be easily estimated by the water-cement ratio. Specifically, when the ratio of water to cement is high, it can be estimated that the strength of fresh concrete R is low. As described above, since the preparation and strength of the fresh concrete R can be quickly estimated, the quality of the fresh concrete R can be efficiently evaluated.
  • fresh concrete R contains an admixture.
  • the blending estimation method includes the steps of measuring the density of each of water, cement, aggregate, and admixture contained in fresh concrete R, and measuring the amount of air contained in fresh concrete R. In the process of calculating, electric conductivity EC, temperature T, unit volume mass UW, density W W , C C , G G , F F and air amount V a , water amount W, cement amount C, aggregate amount G, And the amount F of admixtures contained in fresh concrete R is calculated.
  • the amount of admixture can also be derived quickly and easily.
  • the strength of the fresh concrete R can be estimated from the admixture amount F, the water amount W, and the cement amount C.
  • the densities ⁇ w , C c , G G and F F may be calculated in advance before performing the calculating step.
  • the respective densities ⁇ W , C C , ⁇ G and F F By calculating, the amounts of water, cement, aggregate and admixture contained in fresh concrete R can be calculated quickly. Therefore, it is possible to estimate the preparation of fresh concrete R more quickly.
  • the air amount V a may be calculated in advance before performing the calculating step. In this case, even when there is no measuring device for measuring the air volume V a in situ, by previously calculating the air amount V a, it is possible to quickly perform the estimation of the preparation of fresh concrete R. Further, in advance by calculating the air amount V a, since the field must be measured air amount, so that it is possible to estimate the preparation of fresh concrete R more quickly.
  • the water amount W, the cement amount C, the aggregate amount G, and the admixture amount F are calculated using the equations (7) to (10) described above.
  • C, aggregate amount G and admixture amount F can be calculated quickly and accurately. Therefore, in the present embodiment, the preparation of water, cement, aggregate and admixture in fresh concrete R can be evaluated with high accuracy and speed.
  • the densities W W , C C , G G and ⁇ F of the components of fresh concrete R are calculated using equation (1), and the air of fresh concrete R is calculated using equation (5)
  • the quantity V a was calculated.
  • the densities ⁇ w , C c , G G , F F and the air amount V a of each component may be calculated using an equation different from the equation (1) or the equation (5).
  • the water amount W, the cement amount C, the aggregate amount G, and the admixture amount F may be calculated using equations different from the equations (7) to (10).
  • the mixture estimation including the electrical conductivity measurement unit 11, the temperature measurement unit 12, the unit volume mass measurement unit 13, the density measurement unit 14, the air amount measurement unit 15, the calculation unit 20, and the display unit 30.
  • the apparatus 1 has been described. However, each configuration of the mixture estimation device 1 can be changed as appropriate.
  • the means can be changed as appropriate.
  • the mode of data input to the calculation unit 20, and the display content and the display mode of the display 31 of the display unit 30 can be appropriately changed.
  • known values may be input to the calculation unit 20 as the densities W W , C C , G G , and F F, and it is possible to omit the calculation of the admixture amount F. .
  • the density measurement unit 14 and the air amount measurement unit 15 can be eliminated.
  • the temperature T, the water amount W, the electrical conductivity EC, the unit volume mass UW, the cement amount C, the aggregate amount G, the admixture through the steps of the flowchart shown in FIG.
  • the example which displays the quantity F and pass / fail has been described.
  • the order and contents of each step can be changed as appropriate.
  • the measurement order of the electrical conductivity EC, the temperature T, the unit volume mass UW, the density W W , C C , G G , ⁇ ⁇ F and the air amount V a is not limited to the above embodiment and can be suitably changed. It is possible.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Proportion estimation device, 11 ... Electric conductivity measurement part, 11a ... Electric conductivity cell, 12 ... Temperature measurement part, 13 ... Unit volume mass measurement part, 14 ... Density measurement part, 15 ... Air amount measurement part, 20 ... Calculation part, 21 ... water amount calculation part, 22 ... aggregate amount calculation part, 23 ... cement amount calculation part, 24 ... admixture amount calculation part, 30 ... display part, 31 ... display, 31a, 31b, 31c, 31d, 31e , 31f ... text box, R ... fresh concrete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A method for estimating a preparation of fresh concrete according to one embodiment is a preparation estimating method for estimating a preparation of fresh concrete including water, cement, and aggregate. This preparation estimating method includes: a step for measuring the electrical conductivity of fresh concrete; a step for estimating the temperature of the fresh concrete; a step for measuring the mass per unit volume of the fresh concrete; and a step in which the amount of water contained in the fresh concrete, the amount of cement contained in the fresh concrete and the amount of aggregate contained in the fresh concrete are calculated from the electric conductivity, the temperature and the mass per unit volume.

Description

調合推定方法及び調合推定装置Blending estimation method and blending estimation apparatus
 本発明は、フレッシュコンクリートの調合推定方法及び調合推定装置に関する。 The present invention relates to a method and an apparatus for estimating the proportion of fresh concrete.
 例えば工事現場にはフレッシュコンクリートが搬送され、搬送されたフレッシュコンクリートに対して、フレッシュコンクリートの調合を推定する作業が従来から行われている。この作業は、コンクリートの強度を推定し、コンクリートの品質を管理する上で重要である。フレッシュコンクリートの調合を推定する方法としては、特開平2-276965号公報に、フレッシュコンクリートに含まれる水とセメントとの比を求める測定方法が記載されている。 For example, fresh concrete is transported to a construction site, and work to estimate the blending of fresh concrete is conventionally performed on the transported fresh concrete. This work is important in estimating the strength of concrete and managing the quality of concrete. As a method of estimating the proportion of fresh concrete, a measuring method for determining the ratio of water to cement contained in fresh concrete is described in JP-A-2-276965.
 この測定方法では、フレッシュコンクリートからモルタルを採取し、採取したモルタルに含まれるセメント成分をイオン交換樹脂で溶解し、溶解して得られた濾液の電気伝導度を測定する。そして、測定した電気伝導度からセメント量を測定すると共に、採取したモルタルを乾燥し、乾燥したときの重量の減少度合からフレッシュコンクリートの含水量を測定する。このようにセメント量と含水量とを測定し、これらの測定結果から水とセメントとの比を求めている。 In this measurement method, a mortar is collected from fresh concrete, cement components contained in the collected mortar are dissolved with an ion exchange resin, and the electric conductivity of a filtrate obtained by dissolution is measured. Then, the cement amount is measured from the measured electrical conductivity, and the collected mortar is dried, and the moisture content of fresh concrete is measured from the degree of weight reduction when dried. Thus, the cement amount and the water content are measured, and the ratio of water to cement is determined from the measurement results.
特開平2-276965号公報JP-A-2-276965
 前述した測定方法では、イオン交換樹脂によるセメント成分の溶解、及びモルタルの乾燥等を経て水とセメントの比を求めている。このように、前述した測定方法では、イオン交換樹脂による溶解及びモルタルの乾燥等を伴うため、測定に時間がかかり、現場で速やかにフレッシュコンクリートの調合を評価できないという問題がある。 In the measurement method described above, the ratio of water to cement is determined through dissolution of the cement component by the ion exchange resin, drying of the mortar, and the like. As described above, in the measurement method described above, since the dissolution by the ion exchange resin and the drying of the mortar are involved, the measurement takes time, and there is a problem that the preparation of fresh concrete can not be evaluated promptly at the site.
 また、フレッシュコンクリートの調合の推定は、フレッシュコンクリートが搬送された現場で行われるものであり、調合の推定の結果を用いてフレッシュコンクリートの購入可否を判断しなければならない場合がある。このように現場で判断しなければならないこともあるため、調合の推定を短時間で行うことが求められている。しかしながら、前述した測定方法は、乾燥等を経ることによって多大な時間を要するため、現場での採用にそぐわない。従って、フレッシュコンクリートの調合を迅速に推定する方法が求められている。 Further, the estimation of the preparation of fresh concrete is performed at the site where the fresh concrete has been transported, and it may be necessary to determine the purchase availability of the fresh concrete using the result of the estimation of the preparation. Since it may be necessary to make a decision on the site like this, it is required to estimate the preparation in a short time. However, the measurement method described above is not suitable for on-site use because it requires a great deal of time after drying and the like. Therefore, there is a need for a method to quickly estimate the mix of fresh concrete.
 本発明は、フレッシュコンクリートの調合の推定を迅速に行うことができる調合推定方法及び調合推定装置を提供することを目的とする。 An object of the present invention is to provide a blending estimation method and a blending estimation device capable of rapidly estimating the blending of fresh concrete.
 本発明者らは、フレッシュコンクリートの電気伝導率が、フレッシュコンクリートの含有成分と温度の影響を受けているという知見を見出した。この知見によれば、フレッシュコンクリートの電気伝導率、温度、及び単位容積当たりの質量(単位容積質量)を測定することにより、フレッシュコンクリートの含有成分を短時間で推定できる。本発明は、このような知見に基づいてなされたものである。すなわち、本発明に係る調合推定方法は、水と、セメントと、骨材とを含むフレッシュコンクリートの調合を推定する調合推定方法である。この調合推定方法は、フレッシュコンクリートの電気伝導率を測定する工程と、フレッシュコンクリートの温度を測定する工程と、フレッシュコンクリートの単位容積当たりの質量を測定する工程と、電気伝導率、温度及び単位容積当たりの質量から、フレッシュコンクリートに含まれる水の水量、フレッシュコンクリートに含まれるセメントのセメント量、及びフレッシュコンクリートに含まれる骨材の骨材量を算出する工程と、を備える。 The present inventors have found that the electrical conductivity of fresh concrete is affected by the components and temperature of fresh concrete. According to this finding, the components of fresh concrete can be estimated in a short time by measuring the electrical conductivity, temperature, and mass per unit volume (unit volume mass) of fresh concrete. The present invention has been made based on such findings. That is, the blending estimation method according to the present invention is a blending estimation method for estimating the blending of fresh concrete including water, cement, and aggregate. The method for estimating the mix includes steps of measuring the electrical conductivity of fresh concrete, measuring the temperature of fresh concrete, measuring the mass per unit volume of fresh concrete, conductivity, temperature and unit volume Calculating the amount of water contained in the fresh concrete, the amount of cement contained in the fresh concrete, and the amount of aggregate in the aggregate contained in the fresh concrete from the weight per unit.
 この調合推定方法では、フレッシュコンクリートの電気伝導率、温度、及び単位容積質量を測定し、測定した電気伝導率、温度、及び単位容積質量からフレッシュコンクリートに含まれる水の水量、セメント量、及び骨材量を算出する。このように電気伝導率と温度と単位容積質量から水量、セメント量及び骨材量を算出するので、フレッシュコンクリートに含まれる水及びセメントの量、並びに骨材量を迅速且つ容易に導き出すことができる。水の量とセメントの量が分かれば、水セメント比を把握することが可能である。その結果、水セメント比によってフレッシュコンクリートの強度を容易に推定することができる。具体的には、セメントに対する水の比率が高い場合にフレッシュコンクリートの強度が低いことを推定できる。このように、フレッシュコンクリートの調合及び強度を迅速に推定することができるので、フレッシュコンクリートの品質を効率よく評価することができる。 In this formulation estimation method, the conductivity, temperature, and unit volume mass of fresh concrete are measured, and the measured conductivity, temperature, and water volume, cement amount, and bone contained in fresh concrete from the unit volume mass. Calculate the amount of material. Thus, since the amount of water, the amount of cement, and the amount of aggregate are calculated from the electrical conductivity, the temperature, and the unit volume mass, the amounts of water and cement and the amount of aggregate contained in fresh concrete can be derived quickly and easily. . If the amount of water and the amount of cement are known, it is possible to grasp the water-cement ratio. As a result, the strength of fresh concrete can be easily estimated by the water-cement ratio. Specifically, when the ratio of water to cement is high, it can be estimated that the strength of fresh concrete is low. As described above, since the preparation and strength of fresh concrete can be quickly estimated, the quality of fresh concrete can be efficiently evaluated.
 また、フレッシュコンクリートは、混和材を含んでいてもよい。前述した調合推定方法は、フレッシュコンクリートに含まれる水、セメント、骨材及び混和材のそれぞれの密度を測定する工程と、フレッシュコンクリートに含まれる空気量を測定する工程と、を備えてもよい。前述した算出する工程では、電気伝導率、温度、単位容積質量、密度及び空気量から、水量、セメント量、骨材量、及びフレッシュコンクリートに含まれる混和材の混和材量を算出してもよい。この場合、混和材の量を迅速且つ容易に導き出すこともできる。また、この混和材量と水量とセメント量からフレッシュコンクリートの強度を推定することができる。 Also, fresh concrete may contain admixtures. The above-described composition estimation method may include the steps of measuring the density of each of water, cement, aggregate and admixture contained in fresh concrete, and measuring the amount of air contained in fresh concrete. In the step of calculating as described above, the amount of water, the amount of cement, the amount of aggregate, and the amount of admixture of the admixture contained in fresh concrete may be calculated from the electric conductivity, temperature, unit volume mass, density and air amount. . In this case, the amount of admixture can also be derived quickly and easily. Also, the strength of fresh concrete can be estimated from the amount of admixture, the amount of water and the amount of cement.
 また、密度を測定する工程では、算出する工程を実行する前に、密度を予め算出してもよい。この場合、水、セメント、骨材及び混和材のそれぞれの密度が未知であったときでも、各密度を予め算出することにより、フレッシュコンクリートに含まれる水、セメント、骨材及び混和材の量を速やかに算出することができる。従って、フレッシュコンクリートの調合の推定をより迅速に行うことができる。 Further, in the step of measuring the density, the density may be calculated in advance before performing the calculating step. In this case, even when the density of each of water, cement, aggregate and admixture is unknown, the amount of water, cement, aggregate and admixture contained in fresh concrete can be calculated by calculating each density in advance. It can be calculated quickly. Therefore, it is possible to more quickly estimate the preparation of fresh concrete.
 また、空気量を測定する工程では、算出する工程を実行する前に、空気量を予め算出してもよい。この場合、空気量を現場で測定する測定器がないときであっても、空気量を予め算出しておくことにより、フレッシュコンクリートの調合の推定を迅速に行うことができる。また、予め空気量を算出することにより、現場で空気量を測定する必要がなくなるため、フレッシュコンクリートの調合の推定をより迅速に行うことができる。 Further, in the step of measuring the amount of air, the amount of air may be calculated in advance before performing the step of calculating. In this case, even if there is no measuring instrument for measuring the air amount on site, it is possible to estimate the preparation of fresh concrete quickly by calculating the air amount in advance. Moreover, since it is not necessary to measure the amount of air on site by calculating the amount of air in advance, it is possible to more quickly estimate the preparation of fresh concrete.
 本発明に係る調合推定装置は、水と、セメントと、骨材とを含むフレッシュコンクリートの調合を推定する調合推定装置である。この調合推定装置は、フレッシュコンクリートの電気伝導率を測定する電気伝導率測定部と、フレッシュコンクリートの温度を測定する温度測定部と、フレッシュコンクリートの単位容積当たりの質量を測定する単位容積質量測定部と、電気伝導率、温度、及び単位容積当たりの質量から、フレッシュコンクリートに含まれる水の水量、フレッシュコンクリートに含まれるセメントのセメント量、及びフレッシュコンクリートに含まれる骨材の骨材量を算出する算出部と、を備える。 The blending estimation device according to the present invention is a blending estimation device that estimates the blending of fresh concrete including water, cement, and aggregate. This mixture estimation device comprises an electrical conductivity measuring unit that measures the electrical conductivity of fresh concrete, a temperature measuring unit that measures the temperature of fresh concrete, and a unit volume mass measuring unit that measures the mass per unit volume of fresh concrete Calculate the amount of water contained in fresh concrete, the amount of cement contained in fresh concrete, and the amount of aggregate contained in fresh concrete from the electric conductivity, temperature, and mass per unit volume And a calculation unit.
 この調合推定装置では、電気伝導率測定部がフレッシュコンクリートの電気伝導率を測定し、温度測定部がフレッシュコンクリートの温度を測定し、単位容積質量測定部がフレッシュコンクリートの単位容積質量を測定する。算出部は、電気伝導率、温度及び単位容積質量から水量、セメント量及び骨材量を算出する。算出部が電気伝導率、温度及び単位容積質量から水量、セメント量及び骨材量を算出することにより、フレッシュコンクリートの水量、セメント量及び骨材量を迅速且つ容易に導き出すことができる。従って、前述した調合推定方法と同様、フレッシュコンクリートの調合を迅速に推定することができると共に、フレッシュコンクリートの品質を効率よく評価することができる。 In this mixture estimation device, the electric conductivity measurement unit measures the electric conductivity of the fresh concrete, the temperature measurement unit measures the temperature of the fresh concrete, and the unit volume mass measurement unit measures the unit volume mass of the fresh concrete. The calculation unit calculates the amount of water, the amount of cement, and the amount of aggregate from the electrical conductivity, the temperature, and the unit volume mass. When the calculation unit calculates the amount of water, the amount of cement and the amount of aggregate from the electric conductivity, the temperature and the unit volume mass, the amount of water, the amount of cement and the amount of aggregate of fresh concrete can be derived quickly and easily. Therefore, as with the above-described blending estimation method, the blending of fresh concrete can be quickly estimated, and the quality of fresh concrete can be efficiently evaluated.
 本発明によれば、フレッシュコンクリートの調合の推定を迅速に行うことができる。 According to the present invention, it is possible to quickly estimate the preparation of fresh concrete.
実施形態に係るフレッシュコンクリートの調合推定装置を示すブロック図である。It is a block diagram showing a mixture estimation device of fresh concrete concerning an embodiment. 図1の調合推定装置におけるフレッシュコンクリートの測定部の例を示す斜視図である。It is a perspective view which shows the example of the measurement part of the fresh concrete in the mixture estimation apparatus of FIG. フレッシュコンクリートの単位容積質量と空気率との関係を示すグラフである。It is a graph which shows the relationship between the unit volume mass of fresh concrete, and an air ratio. 図1の調合推定装置の表示部の例を示す図である。It is a figure which shows the example of the display part of the mixture estimation apparatus of FIG. (a)は、フレッシュコンクリートの電気抵抗率(1/EC)の測定値と回帰式による電気抵抗率(1/EC)の計算値との関係を示すグラフである。(b)は、フレッシュコンクリートの混和材量とΔ(1/EC)との関係を示すグラフである。(A) is a graph which shows the relationship between the measured value of the electrical resistivity (1 / EC) of fresh concrete, and the calculated value of the electrical resistivity (1 / EC) by regression. (B) is a graph which shows the relationship between the amount of admixtures of fresh concrete and Δ (1 / EC). (a)は、lnECの測定値と回帰式によって得られたlnECの計算値との関係を示すグラフである。(b)は、混和材量とΔ(lnEC)との関係を示すグラフである。(A) is a graph which shows the relationship between the measured value of lnEC and the calculated value of lnEC obtained by regression. (B) is a graph showing the relationship between the amount of admixture and Δ (lnEC). (a)は、セメント量とΔ(1/EC)との関係をセメントの種類ごとに示したグラフである。(b)は、セメント量とΔ(lnEC)との関係をセメントの種類ごとに示したグラフである。(A) is a graph showing the relationship between the amount of cement and Δ (1 / EC) for each type of cement. (B) is a graph showing the relationship between the amount of cement and Δ (lnEC) for each type of cement. (a)は、セメント量とΔ(1/EC)との関係をセメントの種類ごとに示したグラフである。(b)は、セメント量とΔ(lnEC)との関係をセメントの種類ごとに示したグラフである。(A) is a graph showing the relationship between the amount of cement and Δ (1 / EC) for each type of cement. (B) is a graph showing the relationship between the amount of cement and Δ (lnEC) for each type of cement. (a)及び(b)は、実際の調合と推定した調合との関係を示したグラフである。(A) And (b) is the graph which showed the relationship between an actual preparation and the presumed preparation. (a)及び(b)は、実際の調合と推定した調合との関係を示したグラフである。(A) And (b) is the graph which showed the relationship between an actual preparation and the presumed preparation. 実施形態に係るフレッシュコンクリートの調合推定方法を示すフローチャートである。It is a flowchart which shows the mixing | blending estimation method of the fresh concrete which concerns on embodiment.
 以下では、図面を参照しながら、実施形態に係るフレッシュコンクリートの調合推定装置及び調合推定方法について説明する。図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。 In the following, with reference to the drawings, the mixing concrete estimating apparatus and mixing proportion estimating method of fresh concrete according to the embodiment will be described. In the description of the drawings, the same or corresponding elements will be denoted by the same reference symbols, and overlapping descriptions will be omitted as appropriate.
 まず、本実施形態に係るフレッシュコンクリートの調合推定装置について説明する。図1は、本実施形態に係る調合推定装置1を示すブロック図である。図2は、フレッシュコンクリートRを測定する手段の一例を示す斜視図である。フレッシュコンクリートRは、工事現場に搬送される生コンであり、固まっていない状態で荷降しされる。フレッシュコンクリートRが固まった後には補修又は撤去等に多大な時間を要するため、固まる前に品質検査を行うことが重要である。調合推定装置1は、工事現場に搬入されたフレッシュコンクリートRの品質検査を行い、フレッシュコンクリートRの調合が所望の状態になっているか否かの検査を行う。 First, a blending estimation device for fresh concrete according to the present embodiment will be described. FIG. 1 is a block diagram showing a mixture estimation device 1 according to the present embodiment. FIG. 2 is a perspective view showing an example of means for measuring fresh concrete R. Fresh concrete R is a ready-made concrete to be transported to a construction site, and is unloaded when it is not solidified. After fresh concrete R hardens, it takes a lot of time to repair or remove it, so it is important to conduct a quality inspection before hardening. The mixing estimation apparatus 1 performs quality inspection of fresh concrete R carried into the construction site, and checks whether mixing of fresh concrete R is in a desired state.
 フレッシュコンクリートRは、例えば、普通ポルトランドセメントを含んでいる。フレッシュコンクリートRは、水、細骨材及び粗骨材を含む骨材、セメント、並びに混和材によって構成されている。混和材は、フライアッシュ及び高炉スラグ等を含んでいてもよい。フライアッシュ及び高炉スラグ等の混和材は、セメントと反応して強度を高めるために用いられる。すなわち、セメント及び混和材は、フレッシュコンクリートRの強度を高める結合材である。 Fresh concrete R contains, for example, ordinary portland cement. Fresh concrete R is composed of water, aggregate including fine aggregate and coarse aggregate, cement, and admixture. Admixtures may include fly ash, blast furnace slag, and the like. Admixtures such as fly ash and blast furnace slag are used to react with the cement to increase its strength. That is, cement and admixture are binders that increase the strength of fresh concrete R.
 調合推定装置1は、例えばフレッシュコンクリートRが購入される前に、フレッシュコンクリートRの調合を推定する。このように、調合推定装置1によって購入前にフレッシュコンクリートRの調合が推定されることにより、購入者は、フレッシュコンクリートRを購入するかどうかの判断を現場で迅速に行うことが可能である。 The blending estimation device 1 estimates blending of fresh concrete R, for example, before fresh concrete R is purchased. As described above, the preparation of the fresh concrete R is estimated by the preparation estimating device 1 before the purchase, so that the purchaser can quickly determine on the site whether to purchase the fresh concrete R.
 図1に示されるように、調合推定装置1は、フレッシュコンクリートRの電気伝導率を測定する電気伝導率測定部11と、フレッシュコンクリートRの温度を測定する温度測定部12と、フレッシュコンクリートRの単位容積質量(単位容積当たりの質量)を測定する単位容積質量測定部13と、フレッシュコンクリートRの各成分の密度を測定する密度測定部14と、フレッシュコンクリートRに含まれる空気量を測定する空気量測定部15とを備える。 As shown in FIG. 1, the mixture estimation apparatus 1 includes an electric conductivity measurement unit 11 that measures the electric conductivity of fresh concrete R, a temperature measurement unit 12 that measures the temperature of fresh concrete R, and fresh concrete R. Unit volume mass measurement unit 13 that measures unit volume mass (mass per unit volume), density measurement unit 14 that measures the density of each component of fresh concrete R, and air that measures the amount of air contained in fresh concrete R And an amount measuring unit 15.
 更に、調合推定装置1は、フレッシュコンクリートRの各成分の量を算出する算出部20と、算出部20によって算出された各成分を表示する表示部30とを備えている。電気伝導率測定部11、温度測定部12、単位容積質量測定部13、密度測定部14及び空気量測定部15によって測定された各測定値は、算出部20に入力される。算出部20は、入力された各測定値から、フレッシュコンクリートRの成分である水量W、骨材量G、セメント量C及び混和材量Fを算出する。算出部20及び表示部30は、例えば、タブレット端末等の携帯端末に含まれていてもよい。この場合、算出部20への各測定値の入力、及び算出された各成分の量の表示は、タブレット端末のディスプレイに対して行われる。 Furthermore, the blending estimation device 1 includes a calculating unit 20 that calculates the amount of each component of the fresh concrete R, and a display unit 30 that displays each component calculated by the calculating unit 20. The measurement values measured by the electrical conductivity measurement unit 11, the temperature measurement unit 12, the unit volume mass measurement unit 13, the density measurement unit 14 and the air amount measurement unit 15 are input to the calculation unit 20. The calculation unit 20 calculates the amount of water W, the amount of aggregate G, the amount of cement C, and the amount of admixture F, which are components of the fresh concrete R, from the input measurement values. The calculating unit 20 and the display unit 30 may be included in a portable terminal such as a tablet terminal, for example. In this case, the input of each measurement value to the calculation unit 20 and the display of the calculated amount of each component are performed on the display of the tablet terminal.
 電気伝導率測定部11は、例えば図2に示されるように、フレッシュコンクリートRに挿入される電気伝導率セル11aを備える。電気伝導率セル11aがフレッシュコンクリートRに挿入されることによってフレッシュコンクリートRの電気伝導率が測定される。電気伝導率測定部11が測定した電気伝導率は算出部20に入力される。電気伝導率セル11aは、例えば、任意の4箇所の部分P1,P2,P3,P4のそれぞれに挿入され、算出部20には、測定された4つの電気伝導率が入力される。なお、電気伝導率測定部11の構成、及び電気伝導率セル11aが挿入される箇所は、上記の例に限られず適宜変更可能である。 The electrical conductivity measurement part 11 is provided with the electrical conductivity cell 11a inserted in the fresh concrete R, as FIG. 2 shows, for example. By inserting the conductivity cell 11a into the fresh concrete R, the conductivity of the fresh concrete R is measured. The electrical conductivity measured by the electrical conductivity measurement unit 11 is input to the calculation unit 20. The conductivity cell 11a is inserted into, for example, each of four arbitrary portions P1, P2, P3, and P4. The calculated four conductivity values are input to the calculation unit 20. In addition, the structure of the electrical conductivity measurement part 11, and the location where the electrical conductivity cell 11a is inserted are not restricted to said example, but can be changed suitably.
 温度測定部12は、例えば電気伝導率セル11aと同様、フレッシュコンクリートRに挿入されるセンサ部を備えており、このセンサ部がフレッシュコンクリートRに挿入されることによってフレッシュコンクリートRの温度を測定する。温度測定部12が測定したフレッシュコンクリートRの温度は、算出部20に入力される。なお、温度測定部12の構成についても適宜変更可能である。 The temperature measurement unit 12 includes a sensor unit inserted into the fresh concrete R, for example, similarly to the electric conductivity cell 11a, and measures the temperature of the fresh concrete R by inserting the sensor unit into the fresh concrete R. . The temperature of the fresh concrete R measured by the temperature measurement unit 12 is input to the calculation unit 20. The configuration of the temperature measurement unit 12 can be changed as appropriate.
 単位容積質量測定部13は、例えば、所定容量の容器に充填されたフレッシュコンクリートRの質量を求めることによって測定される。また、現場でのフレッシュコンクリートRの測定に先立ち、実験室又はコンクリートプラントにおいて複数種類(N種類)の調合のコンクリートを練り混ぜて単位容積質量を測定してもよい。単位容積質量測定部13が測定したフレッシュコンクリートRの単位容積質量は、算出部20に入力される。単位容積質量測定部13の構成についても適宜変更可能である。 The unit volume mass measurement unit 13 is measured, for example, by determining the mass of the fresh concrete R filled in a container of a predetermined volume. Also, prior to the measurement of fresh concrete R on site, concrete of a plurality of types (N types) of blends may be mixed in a laboratory or a concrete plant to measure a unit volume mass. The unit volume mass of the fresh concrete R measured by the unit volume mass measurement unit 13 is input to the calculation unit 20. The configuration of the unit volume mass measurement unit 13 can also be changed as appropriate.
 密度測定部14は、フレッシュコンクリートRに含まれる水、セメント、骨材及び混和材のそれぞれの密度を測定する。密度測定部14が測定した各密度は算出部20に入力される。密度測定部14は、上記の各密度を現場での測定に先立ち予め測定してもよい。具体例として、密度測定部14は、式(1)を用いてセメント、骨材及び混和材のそれぞれの密度を、b1、b2、b3の逆数として算出する。
Figure JPOXMLDOC01-appb-M000001
The density measurement unit 14 measures the density of each of water, cement, aggregate, and admixture contained in the fresh concrete R. Each density measured by the density measurement unit 14 is input to the calculation unit 20. The density measurement unit 14 may measure each of the above-described densities in advance prior to the on-site measurement. As a specific example, the density measurement unit 14 calculates the densities of cement, aggregate, and admixture as inverse numbers of b1, b2, and b3 using Expression (1).
Figure JPOXMLDOC01-appb-M000001
 x1j、x2j、x3j(j=1、2、・・・N)は、調合jにおけるセメント、骨材及び混和材の質量であり、yは固体材料の体積である。ここで、算出される密度の逆数をbとすると、固体材料の体積の計算値y’は式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 N個の調合(j=1、2、・・・N)について最小2乗法によりb、b、bを求める式が前述した式(1)である。具体的には、式(3)に対して式(4)を満たす連立方程式が式(1)である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
x 1j, x 2j, x 3j (j = 1,2, ··· N) is cement in Formulation j, the mass of the aggregate and admixture, y j is the volume of the solid material. Here, assuming that the reciprocal of the calculated density is b i , the calculated value y j ′ of the volume of the solid material is expressed by equation (2).
Figure JPOXMLDOC01-appb-M000002
The equation for obtaining b 1 , b 2 and b 3 by the least squares method for N preparations (j = 1, 2,... N) is the equation (1) described above. Specifically, simultaneous equations which satisfy equation (4) with respect to equation (3) are equation (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 空気量測定部15は、フレッシュコンクリートRに含まれる空気の量(空気量)を測定する。空気量測定部15が測定した空気量は算出部20に入力される。空気量測定部15は、例えば、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法)によって空気量を測定してもよい。また、空気量測定部15は、式(5)を用いて、単位容積質量測定部13が求めた単位容積質量UW(kg/m)からフレッシュコンクリートRの空気率Aを測定してもよい。
Figure JPOXMLDOC01-appb-M000005
The air amount measurement unit 15 measures the amount of air (air amount) contained in the fresh concrete R. The air amount measured by the air amount measurement unit 15 is input to the calculation unit 20. The air amount measurement unit 15 may measure the air amount according to, for example, JIS A 1128 (a test method based on the pressure of the air amount of fresh concrete). Alternatively, the air amount measurement unit 15 may measure the air ratio A of the fresh concrete R from the unit volume mass UW (kg / m 3 ) determined by the unit volume mass measurement unit 13 using the equation (5). .
Figure JPOXMLDOC01-appb-M000005
 調合j(x1j、x2j、x3j、x4j:kg)(j=1、2、・・・N)の単位容積質量UW(kg/m)から、式(6)のように1m中の各調合量xij(kg/m)を計算して空気率Aを求めてもよい。
Figure JPOXMLDOC01-appb-M000006
Formulation j (x 1j, x 2j, x 3j, x 4j: kg) (j = 1,2, ··· N) from the unit volume weight UW j of (kg / m 3), as in Equation (6) each of the mixing amount x ij in 1 m 3 of (kg / m 3) may be determined air ratio a j calculated.
Figure JPOXMLDOC01-appb-M000006
 式(6)のN個の(A,UW)からの回帰式が式(5)となる。また、フレッシュコンクリートRに含まれる空気率Aと単位容積質量UWとの関係は、図3に示されるように、1次関数の関係で表されることが分かっている。よって、空気量測定部15は、単位容積質量測定部13が測定した単位容積質量UWからフレッシュコンクリートRの空気率Aを求め、求めた空気率Aから空気量Vを算出してもよい。 The regression equation from N (A j , UW j ) of equation (6) is equation (5). Further, it is known that the relationship between the air ratio A and the unit volume mass UW contained in the fresh concrete R is represented by the relationship of a linear function, as shown in FIG. Thus, air flow rate measuring unit 15 obtains the air ratio A of fresh concrete R from unit volume mass UW to unit volume mass measuring unit 13 has measured, may calculate the amount of air V a from the air ratio A determined.
 表示部30は、算出部20によって算出されたフレッシュコンクリートRの各成分を表示する。表示部30は、例えば図4に示されるように、ディスプレイ31を備える。このディスプレイ31には、フレッシュコンクリートRの温度、水量、電気伝導率、単位容積質量、セメント量、骨材量、混和材量、及び合否(フレッシュコンクリートRの調合が所望の状態になっているか否か)をそれぞれ表示するテキストボックス31a,31b,31c,31d,31e,31f,31g,31hが設けられている。 The display unit 30 displays each component of the fresh concrete R calculated by the calculation unit 20. The display unit 30 includes a display 31 as shown in FIG. 4, for example. In this display 31, the temperature of fresh concrete R, the amount of water, the electric conductivity, the unit volume mass, the amount of cement, the amount of aggregate, the amount of admixtures, and the acceptance or rejection (whether the preparation of fresh concrete R is in a desired state Text boxes 31a, 31b, 31c, 31d, 31e, 31f, 31g, and 31h for displaying?
 算出部20には、フレッシュコンクリートRの電気伝導率、フレッシュコンクリートRの温度、フレッシュコンクリートRの単位容積質量、フレッシュコンクリートRの各成分(水、セメント、骨材及び混和材のそれぞれ)の密度、並びにフレッシュコンクリートRの空気量が入力される。図1に示されるように、算出部20は、水量算出部21、骨材量算出部22、セメント量算出部23及び混和材量算出部24を備えている。算出部20は、前述したように例えばタブレット端末であり、CPU(Central Processing Unit)と、ROM(Read Only Memory)及びRAM(Random Access Memory)を含む記憶部と備える。算出部20の各機能は、例えば、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することによって実現される。 In the calculation unit 20, the electrical conductivity of fresh concrete R, the temperature of fresh concrete R, the unit volume mass of fresh concrete R, the density of each component (water, cement, aggregate and admixture) of fresh concrete R, And the air amount of fresh concrete R is input. As shown in FIG. 1, the calculation unit 20 includes a water amount calculation unit 21, an aggregate amount calculation unit 22, a cement amount calculation unit 23, and an admixture amount calculation unit 24. As described above, the calculation unit 20 is, for example, a tablet terminal, and includes a central processing unit (CPU), and a storage unit including a read only memory (ROM) and a random access memory (RAM). Each function of the calculation unit 20 is realized, for example, by loading a program stored in the ROM into the RAM and executing the program by the CPU.
 算出部20の記憶部には、例えば、後述の式(7)~式(10)が記憶される。
Figure JPOXMLDOC01-appb-M000007
 (1/EC)はフレッシュコンクリートRの電気抵抗率、TはフレッシュコンクリートRの温度(K)、WはフレッシュコンクリートRの水量(kg/m)、CはフレッシュコンクリートRのセメント量(kg/m)、GはフレッシュコンクリートRの骨材量(kg/m)、FはフレッシュコンクリートRの混和材量(kg/m)をそれぞれ示している。電気抵抗率(1/EC)は電気伝導率ECの逆数である。a,a,a,a,a,aは、フレッシュコンクリートRの種類ごとに予め回帰分析によって求められた係数を示している。
The storage unit of the calculation unit 20 stores, for example, Equations (7) to (10) described later.
Figure JPOXMLDOC01-appb-M000007
(1 / EC) is the electric resistivity of fresh concrete R, T is the temperature of fresh concrete R (K), W is the amount of fresh concrete R water (kg / m 3 ), C is the amount of fresh concrete R cement (kg / m 3 ) m 3 ) and G indicate the aggregate amount (kg / m 3 ) of fresh concrete R, and F indicate the admixture amount (kg / m 3 ) of fresh concrete R, respectively. The electrical resistivity (1 / EC) is the reciprocal of the electrical conductivity EC. a 0 , a 1 , a 2 , a 3 , a 4 , and a 5 indicate coefficients obtained by regression analysis in advance for each type of fresh concrete R.
Figure JPOXMLDOC01-appb-M000008
 lnECはECの対数、b,b,b,b,b,bは、フレッシュコンクリートRの種類ごとに予め回帰分析によって求められた係数を示している。
Figure JPOXMLDOC01-appb-M000008
lnEC indicates the logarithm of EC, and b 0 , b 1 , b 2 , b 3 , b 4 and b 5 indicate coefficients obtained by regression analysis in advance for each type of fresh concrete R.
Figure JPOXMLDOC01-appb-M000009
 式(9)は、フレッシュコンクリートの単位容積質量UW(kg/m)と各成分の質量の和とが互いに等しいことを示している。
Figure JPOXMLDOC01-appb-M000010
 ρは水の密度、ρはセメントの密度、ρは骨材の密度、ρは混和材の密度、Vは空気量をそれぞれ示している。式(10)は、各成分の質量を各成分の密度で割った値の和が1になることを示している。
Figure JPOXMLDOC01-appb-M000009
Formula (9) shows that the unit volume mass UW (kg / m 3 ) of fresh concrete and the sum of the mass of each component are equal to each other.
Figure JPOXMLDOC01-appb-M000010
W W is the density of water, ρ C is the density of cement, ρ G is the density of aggregate, ρ F is the density of admixture, and V a is the amount of air. Equation (10) indicates that the sum of the mass of each component divided by the density of each component is 1.
 例えば前述した式(7)~式(10)から、水量算出部21はフレッシュコンクリートRの水量Wを算出し、骨材量算出部22はフレッシュコンクリートRの骨材量Gを算出し、セメント量算出部23はフレッシュコンクリートRのセメント量Cを算出し、混和材量算出部24はフレッシュコンクリートRの混和材量Fを算出する。 For example, the water amount calculation unit 21 calculates the water amount W of the fresh concrete R from the equations (7) to (10) described above, and the aggregate amount calculation unit 22 calculates the aggregate amount G of the fresh concrete R, cement amount The calculation unit 23 calculates the cement amount C of the fresh concrete R, and the admixture amount calculation unit 24 calculates the admixture amount F of the fresh concrete R.
 例えば、フレッシュコンクリートRが普通ポルトランドセメントである場合、a,a,a,a,a,a,b,b,b,b,b及びbの各値は、a=-0.869、a=188、a=-7.84×10-4、a=-1.39×10-4、a=2.79×10-4、a=4.37×10-4、b=17.3、b=-2.70×10、b=1.01×10-2、b=1.14×10-3、b=-4.42×10-3、b=-3.92×10-3である。但し、a,a,a,a,a,a,b,b,b,b,b及びbの各値は、フレッシュコンクリートRの種類に応じて変更される。 For example, when fresh concrete R is ordinary Portland cement, each of a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , b 0 , b 1 , b 2 , b 3 , b 4 and b 5 The values are a 0 = −0.869, a 1 = 188, a 2 = −7.84 × 10 −4 , a 3 = −1.39 × 10 −4 , a 4 = 2.79 × 10 −4 , a 5 = 4.37 × 10 -4 , b 0 = 17.3, b 1 = -2.70 × 10 3, b 2 = 1.01 × 10 -2, b 3 = 1.14 × 10 - 3 , b 4 = −4.42 × 10 −3 and b 5 = −3.92 × 10 −3 . However, each value of a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , b 0 , b 1 , b 2 , b 3 , b 4 and b 5 depends on the type of fresh concrete R. Be changed.
 前述した式(7)が導き出された根拠について説明する。式(7)は、電気抵抗率(1/EC)を示す式である。電気抵抗率(1/EC)の散乱となる散乱機構がいくつか存在するときの全抵抗は、個々の機構が単独に存在する場合の抵抗の和になるという経験則がマティーセンの法則として知られている。例えば、希薄合金の電気抵抗率は、温度に依存しない抵抗(不純物散乱由来)と、温度に依存する抵抗(格子散乱由来)の和になることが見出されている。一般に物質の電気抵抗率は温度に依存することから、フレッシュコンクリートRの電気抵抗率(1/EC)を、マティーセンの法則を参考に、温度依存項と各材料の項とからなる式(7)で表している。 The basis on which the equation (7) described above is derived will be described. Formula (7) is a formula which shows an electrical resistivity (1 / EC). The rule of thumb is known that the total resistance when there are several scattering mechanisms that cause scattering of electrical resistivity (1 / EC) is the sum of the resistances when the individual mechanisms exist alone, as Matthesen's law. ing. For example, the electrical resistivity of a dilute alloy has been found to be the sum of a temperature independent resistance (from impurity scattering) and a temperature dependent resistance (from lattice scattering). In general, the electrical resistivity of a substance depends on temperature, so the electrical resistivity (1 / EC) of fresh concrete R is referred to Matthiassen's law, and an equation (7) consisting of a temperature dependent term and a term of each material Is represented by.
 また、水量W、コンクリートが普通ポルトランドセメントであるときのセメント量C、及び骨材量Gを含むフレッシュコンクリートから得られた46の実測データに対する重回帰分析の結果として式(11)を得た。式(11)では混和材量F(フライアッシュFAの量)を0としている。式(11)の回帰式による計算値は、図5(a)に示されるように、測定値と良好に一致した。こうして式(11)の妥当性が検証されている。
Figure JPOXMLDOC01-appb-M000011
 式(11)において、a’=-0.869、a=188、a=-7.84×10-4、a=-1.39×10-4、a=2.79×10-4である。
In addition, equation (11) was obtained as a result of multiple regression analysis on 46 actual data obtained from fresh concrete including water amount W, cement amount C when concrete is ordinary portland cement, and aggregate amount G. In the equation (11), the amount of admixture F (the amount of fly ash FA) is zero. The calculated value by the regression equation of equation (11) matched well with the measured value as shown in FIG. 5 (a). Thus, the validity of equation (11) is verified.
Figure JPOXMLDOC01-appb-M000011
In the formula (11), a ′ 0 = −0.869, a 1 = 188, a 2 = −7.84 × 10 −4 , a 3 = −1.39 × 10 −4 , a 4 = 2.79 It is x 10 -4 .
 次に、水量W、セメント量C、骨材量G及び混和材量F(フライアッシュFA)を含むフレッシュコンクリートから得られた22の実測データの電気抵抗率(1/EC)の測定値と共に、式(11)に水量W、セメント量C及び骨材量Gを代入した計算値との差であるΔ(1/EC)を求めた。その結果、Δ(1/EC)と混和材量Fとの間に図5(b)及び式(12)に示される線形関係を確認した。
Figure JPOXMLDOC01-appb-M000012
 式(12)において、a’’=0、a=4.37×10-4である。
Next, together with the measured values of electrical resistivity (1 / EC) of 22 measured data obtained from fresh concrete including water amount W, cement amount C, aggregate amount G and admixture amount F (fly ash FA), The difference Δ (1 / EC) from the calculated value obtained by substituting the water amount W, the cement amount C and the aggregate amount G into the equation (11) was determined. As a result, the linear relationship shown in FIG. 5 (b) and equation (12) between Δ (1 / EC) and the additive amount F was confirmed.
Figure JPOXMLDOC01-appb-M000012
In the equation (12), a ′ ′ 0 = 0 and a 5 = 4.37 × 10 −4 .
 以上の結果より、式(11)と式(12)の和、及び式(13)にて電気抵抗率(1/EC)を表した。
Figure JPOXMLDOC01-appb-M000013
 式(13)において、a=-0.869、a=188、a=-7.84×10-4、a=-1.39×10-4、a=2.79×10-4、a=4.37×10-4である。
 以上の式(13)から式(7)が導出される。
From the above results, the electrical resistivity (1 / EC) is expressed by the sum of Formula (11) and Formula (12), and Formula (13).
Figure JPOXMLDOC01-appb-M000013
In the formula (13), a 0 = −0.869, a 1 = 188, a 2 = −7.84 × 10 −4 , a 3 = −1.39 × 10 −4 , a 4 = 2.79 × 10 −4 and a 5 = 4.37 × 10 −4 .
The equation (7) is derived from the above equation (13).
 前述した式(8)が導き出された根拠について説明する。フレッシュコンクリートの電気伝導率ECは、セメント水溶液のイオン移動度に支配される。この仮定によれば、電気伝導率ECを式(14)で表すことができ、Einsteinの関係式である式(15)が成立すると考えられる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
The basis on which the equation (8) described above is derived will be described. The electrical conductivity EC of fresh concrete is governed by the ion mobility of the aqueous cement solution. According to this assumption, the electrical conductivity EC can be expressed by equation (14), and it is considered that equation (15), which is an Einstein's relational expression, holds.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(14)、式(15)において、nは単位体積中のイオン数、eはイオンの電荷、μはイオンの移動度、Tは絶対温度、Dは拡散係数、kはBoltzmann定数をそれぞれ示す。また、拡散係数Dは、式(16)のように温度依存性がある。
Figure JPOXMLDOC01-appb-M000016
In the equations (14) and (15), n is the number of ions in a unit volume, e is the charge of the ion, μ is the mobility of the ion, T is the absolute temperature, D is the diffusion coefficient, and k B is the Boltzmann constant. Show. Also, the diffusion coefficient D has temperature dependency as shown in equation (16).
Figure JPOXMLDOC01-appb-M000016
 式(16)において、Qは拡散の活性化エネルギー、Rは気体定数、Dは定数(振動数因子)をそれぞれ示す。式(14)~式(16)から式(17)が導出される。
Figure JPOXMLDOC01-appb-M000017
In equation (16), Q represents the activation energy of diffusion, R represents the gas constant, and D 0 represents the constant (frequency factor). The equation (17) is derived from the equations (14) to (16).
Figure JPOXMLDOC01-appb-M000017
 式(17)の対数をとると、
Figure JPOXMLDOC01-appb-M000018
Taking the logarithm of equation (17),
Figure JPOXMLDOC01-appb-M000018
 また、Taylor級数展開を示す式(19)を式(18)の右辺2項に適用して式(20)で近似すると、式(21)が得られる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Further, by applying the equation (19) indicating Taylor series expansion to the two terms on the right side of the equation (18) and approximating the equation (20), the equation (21) is obtained.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 イオン濃度、拡散の振動数因子、及び定数から成る前述したAが調合に依存すると考え、各調合量の線形式で置き換えた式(22)を仮定した。
Figure JPOXMLDOC01-appb-M000022
It was assumed that the aforementioned A consisting of ion concentration, diffusion frequency factor, and constant depended on the formulation, and equation (22) was assumed in which each formulation was replaced with a linear form.
Figure JPOXMLDOC01-appb-M000022
 また、式(7)の導出に用いた水量W、セメント量C及び骨材量Gを含むフレッシュコンクリートの46の実測データに対する重回帰分析の結果として式(23)を得た。式(23)の回帰式による計算値とlnECの測定値は図6(a)に示されるように良好な一致を示した。こうして式(22)の妥当性が検証されている。
Figure JPOXMLDOC01-appb-M000023
 式(23)において、b’=17.4、b=-2.70×10、b=1.01×10-2、b=1.14×10-3、b=-4.42×10-3である。
Moreover, Formula (23) was obtained as a result of the multiple regression analysis with respect to the measurement data of 46 of the fresh concrete containing the amount W of water, the amount C of cement, and the amount G of aggregates used for derivation | leading-out of Formula (7). The calculated value by the regression equation of equation (23) and the measured value of lnEC showed a good agreement as shown in FIG. 6 (a). Thus, the validity of equation (22) is verified.
Figure JPOXMLDOC01-appb-M000023
In the formula (23), b '0 = 17.4, b 1 = -2.70 × 10 3, b 2 = 1.01 × 10 -2, b 3 = 1.14 × 10 -3, b 4 = It is −4.42 × 10 −3 .
 次に、式(7)の導出に用いた水量W、セメント量C、骨材量G及び混和材量Fを含むフレッシュコンクリートから得られた22の実測データのlnECの測定値と、式(23)に水量W、セメント量C及び骨材量Gを代入した計算値の差であるΔ(lnEC)と混和材量Fに図6(b)及び式(24)に示す線形関係を確認した。
Figure JPOXMLDOC01-appb-M000024
 式(24)において、b’’=-1.39×10-1、b=3.92×10-4である。
Next, measured values of lnEC of 22 actual data obtained from fresh concrete including water amount W, cement amount C, aggregate amount G and admixture amount F used for deriving equation (7), and equation (23 The linear relationships shown in FIG. 6 (b) and equation (24) are confirmed for Δ (lnEC), which is the difference between the calculated values obtained by substituting the water amount W, cement amount C and aggregate amount G)).
Figure JPOXMLDOC01-appb-M000024
In formula (24), b ′ ′ 0 = −1.39 × 10 −1 and b 5 = 3.92 × 10 −4 .
 以上、式(23)と式(24)の和、及び式(25)でlnECを表した。
Figure JPOXMLDOC01-appb-M000025
 式(25)において、b=17.3、b=-2.70×10、b=1.01×10-2、b=1.14×10-3、b=-4.42×10-3、b=-3.92×10-3である。
 以上の式(25)から式(8)が導出される。
As described above, lnEC is expressed by the sum of the equations (23) and (24) and the equation (25).
Figure JPOXMLDOC01-appb-M000025
In the formula (25), b 0 = 17.3 , b 1 = -2.70 × 10 3, b 2 = 1.01 × 10 -2, b 3 = 1.14 × 10 -3, b 4 = - It is 4.42 × 10 -3 and b 5 = -3.92 × 10 -3 .
The equation (8) is derived from the above equation (25).
 前述した式(7)及び式(8)は、フレッシュコンクリートのセメントの種類に応じて修正される。以下では、セメントの種類に応じた式(7)及び式(8)の修正について説明する。式(13)及び式(25)のそれぞれの係数a,a,a,a,a,a、b,b,b,b,b及びbの各値は、普通ポルトランドセメントを用いた場合の値である。セメントが普通ポルトランドセメントでない場合には、上記の各係数の値と定数項を修正する。式(13)と式(25)による計算値と実測値の差は、式(26)及び式(27)のように、単位セメント量の1次式で近似できることを実験で確認している。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 式(26)、式(27)において、c、c、d及びdは定数である。
Formula (7) and Formula (8) mentioned above are corrected according to the kind of cement of fresh concrete. Below, correction | amendment of Formula (7) and Formula (8) according to the kind of cement is demonstrated. The coefficients a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , b 0 , b 1 , b 2 , b 3 , b 4 and b 5 of the equations (13) and (25) The values are values when using ordinary Portland cement. If the cement is not ordinary Portland cement, correct the values and constant terms of the above factors. It has been confirmed by an experiment that the difference between the calculated value and the actual measured value by Equation (13) and Equation (25) can be approximated by a linear equation of unit cement amount as in Equation (26) and Equation (27).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
In formulas (26) and (27), c 0 , c 3 , d 0 and d 3 are constants.
 数種類の調合から上記の定数c、c、d及びdの値を決定し、式(28)、式(29)のように修正すればよい。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
The values of the above constants c 0 , c 3 , d 0 and d 3 may be determined from several types of preparations, and corrected as in equation (28) and equation (29).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 セメント量CとΔ(1/EC)の関係、及びセメント量CとΔ(lnEC)の関係を図7(a)、図7(b)、図8(a)及び図8(b)に示す。図7(a)、図7(b)、図8(a)及び図8(b)に示されるように、セメント量CとΔ(1/EC)の関係、及びセメント量CとΔ(lnEC)の関係は、共に、線形関係を満たしていることが分かる。すなわち、y(Δ(1/EC)又はΔ(lnEC))は、x(セメント量C)の1次関数で表される。なお、各グラフにおけるNP_P、NS_S、TS_R及びTC_Lは、それぞれセメントの種類を示している。また、yは補正量を示している。 The relationship between the cement amount C and Δ (1 / EC) and the relationship between the cement amount C and Δ (ln EC) are shown in FIGS. 7 (a), 7 (b), 8 (a) and 8 (b). . As shown in FIGS. 7 (a), 7 (b), 8 (a) and 8 (b), the relationship between the cement amount C and Δ (1 / EC), and the cement amount C and Δ (ln EC) It can be seen that the relationship of) satisfies the linear relationship. That is, y (Δ (1 / EC) or Δ (lnEC)) is represented by a linear function of x (cement amount C). In addition, NP_P, NS_S, TS_R, and TC_L in each graph have shown the kind of cement, respectively. Also, y indicates a correction amount.
 また、式(7)~式(10)を用いて得られた水量W、セメント量C、骨材量G及び混和材量F(フライアッシュ)の推定調合と、実際の調合である実調合との関係を図9(a)、図9(b)、図10(a)及び図10(b)に示す。図9(a)、図9(b)、図10(a)及び図10(b)に示されるように、式(7)~式(10)を用いたときの各成分の推定調合と実調合とは概ね一致していることが分かる。こうして式(7)~式(10)の妥当性が検証されている。 In addition, the estimated blending of the amount of water W, the amount of cement C, the amount of aggregate G, and the amount of admixture F (fly ash) obtained using the formulas (7) to (10), and the actual blending which is the actual blending and 9A, 9B, 10A, and 10B show the relationship of the above. As shown in FIGS. 9 (a), 9 (b), 10 (a) and 10 (b), estimated formulation and actual composition of each component when using the equations (7) to (10) It can be seen that the formulation is almost identical. Thus, the validity of the equations (7) to (10) is verified.
 電気抵抗率(1/EC)を示す式(7)において、温度Tの逆数の係数aは正、水量Wの係数aは負、セメント量Cの係数aは負、骨材量Gの係数aは正、混和材量Fの係数aは正である。これは、温度Tが高くなるか、又は水量W若しくはセメント量Cが多くなると電気抵抗率(1/EC)が減少し、骨材量G若しくは混和材量Fが多くなると電気抵抗率(1/EC)が増加するという知見による。 In equation (7) showing the electrical resistivity (1 / EC), coefficient a 1 of the reciprocal of temperature T is positive, coefficient a 2 of water amount W is negative, coefficient a 3 of cement amount C is negative, aggregate amount G The coefficient a 4 of is positive, and the coefficient a 5 of the amount of admixture F is positive. This is because the electrical resistivity (1 / EC) decreases as the temperature T increases or the water amount W or cement amount C increases, and the electrical resistivity (1/1) increases as the aggregate amount G or admixture amount F increases. It is based on the finding that EC) increases.
 電気伝導率の対数であるlnECを示す式(8)において、温度Tの逆数の係数bは負、水量Wの係数bは正、セメント量Cの係数bは正、骨材量Gの係数bは負、混和材量Fの係数bは負である。これは、温度Tが高くなるか、又は水量W若しくはセメント量Cが多くなると電気伝導率ECが増加し、骨材量G若しくは混和材量Fの量が多くなると電気伝導率ECが減少するという知見による。 In equation (8) indicating the lnEC is the logarithm of the electrical conductivity, the coefficient b 1 of the inverse of the temperature T is negative, the coefficient b 2 of water W positive, the coefficient b 3 of cement content C positive, the aggregate amount G The coefficient b 4 of is negative, and the coefficient b 5 of the amount of admixture F is negative. The reason is that the electrical conductivity EC increases as the temperature T increases, or the water amount W or cement amount C increases, and the electrical conductivity EC decreases as the aggregate amount G or admixture amount F increases. Based on findings.
 次に、本実施形態に係るフレッシュコンクリートRの調合推定方法について説明する。図11は、調合推定装置1を用いた調合推定方法の一例を示すフローチャートである。まず、電気伝導率測定部11、温度測定部12及び単位容積質量測定部13を用いてフレッシュコンクリートRの電気伝導率EC、温度T及び単位容積質量UWの測定を行う(ステップS1)。 Next, a method of estimating the proportion of fresh concrete R according to the present embodiment will be described. FIG. 11 is a flow chart showing an example of the compounding estimation method using the compounding estimation device 1. First, the electrical conductivity EC, the temperature T and the unit volume mass UW of the fresh concrete R are measured using the electrical conductivity measurement unit 11, the temperature measurement unit 12, and the unit volume mass measurement unit 13 (step S1).
 具体的には、フレッシュコンクリートRに電気伝導率セル11aを挿入して電気伝導率ECの測定を行い、測定した電気伝導率ECを算出部20に入力する。そして、温度測定部12のセンサ部をフレッシュコンクリートRに挿入して温度Tを測定し、測定した温度Tを算出部20に入力する(電気伝導率及び温度を入力する工程)。また、例えば所定容量の容器に充填されたフレッシュコンクリートRの質量を求めることによって単位容積質量測定部13が単位容積質量UWを測定し、測定した単位容積質量UWを算出部20に入力する(単位容積質量を入力する工程)。 Specifically, the electrical conductivity cell 11a is inserted into fresh concrete R to measure the electrical conductivity EC, and the measured electrical conductivity EC is input to the calculation unit 20. Then, the sensor unit of the temperature measurement unit 12 is inserted into fresh concrete R to measure the temperature T, and the measured temperature T is input to the calculation unit 20 (step of inputting the electrical conductivity and the temperature). Also, for example, the unit volume mass measurement unit 13 measures the unit volume mass UW by obtaining the mass of the fresh concrete R filled in a container of a predetermined volume, and inputs the measured unit volume mass UW to the calculation unit 20 (unit Step of inputting volume mass).
 続いて、密度測定部14及び空気量測定部15を用いてフレッシュコンクリートRの水の密度ρ、セメントの密度ρ、骨材の密度ρ、混和材の密度ρ及び空気量Vを測定する。例えば、密度測定部14は前述した式(1)を用いてフレッシュコンクリートRの密度ρ,ρ,ρ,ρを測定し、空気量測定部15は前述した式(5)を用いて空気量Vを測定する。 Subsequently, using the density measurement unit 14 and the air amount measurement unit 15, the density 水W of water of fresh concrete R, the density C C of cement, the density G G of aggregate, the density F F of admixture, and the amount of air V a Measure For example, the density measuring unit 14 measures the densities W w , C c , G G , and F F of the fresh concrete R using the above-mentioned equation (1), and the air amount measuring unit 15 uses the above-mentioned equation (5) measuring the amount of air V a Te.
 また、空気量測定部15は、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法)等によりフレッシュコンクリートRの空気量Vを測定してもよい。そして、密度測定部14が測定したフレッシュコンクリートRの各成分の密度、及び空気量測定部15が測定したフレッシュコンクリートRの空気量Vのそれぞれを算出部20に入力する(密度及び空気量を入力する工程)。 Also, air flow rate measuring unit 15 may measure the air volume V a of fresh concrete R by JIS A 1128 (test method by the pressure of the air amount of the fresh concrete) or the like. Then, the density of each component of the fresh concrete R measured by the density measurement unit 14 and the air amount V a of the fresh concrete R measured by the air amount measurement unit 15 are input to the calculation unit 20 (density and air amount Step to enter).
 なお、密度測定部14による密度の測定に代えて、例えばメーカーによって示された値等、既知の密度を算出部20に入力してもよい。また、フレッシュコンクリートRに混和材が含まれていないことが予め分かっている場合には、密度測定部14による密度の測定、及び空気量測定部15による空気量の測定を省略すると共に、式(7)~式(9)の混和材量Fの項と式(10)を省略することも可能である。 Note that, instead of the measurement of the density by the density measurement unit 14, a known density such as a value indicated by the manufacturer may be input to the calculation unit 20. In addition, when it is known in advance that the fresh concrete R does not contain any admixture, measurement of the density by the density measurement unit 14 and measurement of the air amount by the air amount measurement unit 15 are omitted, and 7) It is also possible to omit the term of the additive amount F of the equation (9) and the equation (10).
 次に、算出部20において、水量算出部21がフレッシュコンクリートRの水量Wを算出し、骨材量算出部22がフレッシュコンクリートRの骨材量Gを算出し、セメント量算出部23がフレッシュコンクリートRのセメント量Cを算出し、混和材量算出部24がフレッシュコンクリートRの混和材量Fを算出する(ステップS3)。このとき、水量算出部21、骨材量算出部22、セメント量算出部23及び混和材量算出部24は、入力された電気伝導率EC、温度T、単位容積質量UW、密度ρ,ρ,ρ,ρ及び空気量Vと前述した式(7)~式(10)を用いて、水量W、骨材量G、セメント量C及び混和材量Fのそれぞれを算出する(算出する工程)。 Next, in the calculation unit 20, the water amount calculation unit 21 calculates the water amount W of the fresh concrete R, the aggregate amount calculation unit 22 calculates the aggregate amount G of the fresh concrete R, and the cement amount calculation unit 23 calculates the fresh concrete The cement amount C of R is calculated, and the admixture amount calculation unit 24 calculates the admixture amount F of the fresh concrete R (step S3). At this time, the water amount calculating unit 21, the aggregate amount calculating unit 22, the cement amount calculating unit 23 and the admixture amount calculating unit 24 input the electric conductivity EC, the temperature T, the unit volume mass UW, the density ρ W , ρ The water amount W, the aggregate amount G, the cement amount C, and the admixture amount F are calculated using C 1 , G G , ρ F and the air amount V a and the aforementioned equations (7) to (10) Process to calculate).
 水量W、骨材量G、セメント量C及び混和材量Fを算出した後には、算出した各値を表示部30が表示する(ステップS4)。例えば、表示部30は、ディスプレイ31のテキストボックス31a,31b,31c,31d,31e,31f,31g,31hのそれぞれに、フレッシュコンクリートRの温度T、水量W、電気伝導率EC、単位容積質量UW、セメント量C、骨材量G、混和材量F、及び合否を表示する。 After calculating the water amount W, the aggregate amount G, the cement amount C, and the admixture amount F, the display unit 30 displays the calculated values (step S4). For example, the display unit 30 displays the temperature T, the water amount W, the conductivity EC, the unit volume mass UW of the fresh concrete R in each of the text boxes 31a, 31b, 31c, 31d, 31e, 31g, and 31h of the display 31. , Cement amount C, aggregate amount G, admixture amount F, and pass / fail.
 テキストボックス31hには、工事現場に搬入されたフレッシュコンクリートRの品質検査の結果が表示される。具体的には、テキストボックス31hには、フレッシュコンクリートRの調合が所望の状態になっている場合には合格と表示され、所望の状態になっていない場合には不合格と表示される。このようにフレッシュコンクリートRの各成分の量及び合否を表示した後、一連の工程が完了する。 The text box 31 h displays the result of the quality inspection of the fresh concrete R carried into the construction site. Specifically, in the text box 31h, when the preparation of the fresh concrete R is in a desired state, it is displayed as a pass, and when it is not in a desired state, it is displayed as a rejection. After displaying the amount and pass / fail of each component of fresh concrete R in this manner, a series of steps are completed.
 前述したように、フレッシュコンクリートRは、水、セメント、骨材及び混和材によって構成される。フレッシュコンクリートRとしては、セメントの量を減らしてセメントとは異なる粉体を含む不正なものが混入されることがある。このような不正なフレッシュコンクリートRが現場に搬入された場合、調合推定装置1では、水セメント比(セメントに対する水の割合(W/C))が大きい値となる。よって、調合推定装置1では、不正なフレッシュコンクリートRを迅速に検出することが可能であり、フレッシュコンクリートRの品質を迅速に推定することが可能である。 As described above, fresh concrete R is composed of water, cement, aggregate and admixture. As fresh concrete R, the amount of cement may be reduced, and an incorrect thing including powder different from cement may be mixed. When such incorrect fresh concrete R is carried to the site, the water-cement ratio (the ratio of water to cement (W / C)) is a large value in the blending estimation device 1. Therefore, in the mixture estimation device 1, it is possible to quickly detect an incorrect fresh concrete R, and it is possible to quickly estimate the quality of the fresh concrete R.
 次に、本実施形態に係るフレッシュコンクリートRの調合推定方法及び調合推定装置1から得られる作用効果について説明する。本実施形態に係る調合推定方法及び調合推定装置1では、フレッシュコンクリートRの電気伝導率EC、温度T及び単位容積質量UWを測定し、測定した電気伝導率EC、温度T及び単位容積質量UWからフレッシュコンクリートRに含まれる水の水量W、セメント量C及び骨材量Gを算出する。このように電気伝導率ECと温度Tと単位容積質量UWから水量W、セメント量C及び骨材量Gを算出するので、フレッシュコンクリートRに含まれる水及びセメントの量、並びに骨材量を迅速且つ容易に導き出すことができる。 Next, a method of estimating mixing of fresh concrete R according to the present embodiment and an effect obtained from the mixing estimation apparatus 1 will be described. In the compounding estimation method and the compounding estimation apparatus 1 according to the present embodiment, the electric conductivity EC, the temperature T and the unit volume mass UW of the fresh concrete R are measured, and from the measured electric conductivity EC, the temperature T and the unit volume mass UW The amount W of water, the amount C of cement and the amount G of aggregate contained in the fresh concrete R are calculated. Thus, the water amount W, cement amount C and aggregate amount G are calculated from the electrical conductivity EC, temperature T and unit volume mass UW, so the amount of water and cement contained in fresh concrete R and the amount of aggregate can be rapidly determined. And it can be easily derived.
 水量Wとセメント量Cが分かれば、水セメント比を把握することが可能であり、水セメント比によってフレッシュコンクリートRの強度を容易に推定することができる。具体的には、セメントに対する水の比率が高い場合にはフレッシュコンクリートRの強度が低いことを推定できる。このように、フレッシュコンクリートRの調合及び強度を迅速に推定することができるので、フレッシュコンクリートRの品質を効率よく評価することができる。 If the amount W of water and the amount C of cement are known, the water-cement ratio can be grasped, and the strength of the fresh concrete R can be easily estimated by the water-cement ratio. Specifically, when the ratio of water to cement is high, it can be estimated that the strength of fresh concrete R is low. As described above, since the preparation and strength of the fresh concrete R can be quickly estimated, the quality of the fresh concrete R can be efficiently evaluated.
 また、フレッシュコンクリートRは、混和材を含んでいる。本実施形態に係る調合推定方法は、フレッシュコンクリートRに含まれる水、セメント、骨材及び混和材のそれぞれの密度を測定する工程と、フレッシュコンクリートRに含まれる空気量を測定する工程とを備え、算出する工程では、電気伝導率EC、温度T、単位容積質量UW、密度ρ,ρ,ρ,ρ及び空気量Vから、水量W、セメント量C、骨材量G、及びフレッシュコンクリートRに含まれる混和材量Fを算出する。よって、混和材の量を迅速且つ容易に導き出すこともできる。また、混和材量Fと水量Wとセメント量CからフレッシュコンクリートRの強度を推定することができる。 In addition, fresh concrete R contains an admixture. The blending estimation method according to the present embodiment includes the steps of measuring the density of each of water, cement, aggregate, and admixture contained in fresh concrete R, and measuring the amount of air contained in fresh concrete R. In the process of calculating, electric conductivity EC, temperature T, unit volume mass UW, density W W , C C , G G , F F and air amount V a , water amount W, cement amount C, aggregate amount G, And the amount F of admixtures contained in fresh concrete R is calculated. Thus, the amount of admixture can also be derived quickly and easily. Also, the strength of the fresh concrete R can be estimated from the admixture amount F, the water amount W, and the cement amount C.
 また、密度を測定する工程では、算出する工程を実行する前に、密度ρ,ρ,ρ,ρを予め算出しておいてもよい。この場合、水、セメント、骨材及び混和材のそれぞれの密度ρ,ρ,ρ,ρが未知であったときでも、各密度ρ,ρ,ρ,ρを予め算出することにより、フレッシュコンクリートRに含まれる水、セメント、骨材及び混和材の量を速やかに算出することができる。従って、フレッシュコンクリートRの調合の推定をより迅速に行うことができる。 Further, in the step of measuring the density, the densities ρ w , C c , G G and F F may be calculated in advance before performing the calculating step. In this case, even if the densities W W , C C , G G and F F of water, cement, aggregate and admixture are unknown, the respective densities ρ W , C C , ρ G and F F By calculating, the amounts of water, cement, aggregate and admixture contained in fresh concrete R can be calculated quickly. Therefore, it is possible to estimate the preparation of fresh concrete R more quickly.
 また、空気量を測定する工程では、算出する工程を実行する前に、空気量Vを予め算出してもよい。この場合、空気量Vを現場で測定する測定器がないときであっても、空気量Vを予め算出しておくことにより、フレッシュコンクリートRの調合の推定を迅速に行うことができる。また、予め空気量Vを算出することにより、現場で空気量を測定する必要がなくなるため、フレッシュコンクリートRの調合の推定をより迅速に行うことができる。 Further, in the step of measuring the air amount, the air amount V a may be calculated in advance before performing the calculating step. In this case, even when there is no measuring device for measuring the air volume V a in situ, by previously calculating the air amount V a, it is possible to quickly perform the estimation of the preparation of fresh concrete R. Further, in advance by calculating the air amount V a, since the field must be measured air amount, so that it is possible to estimate the preparation of fresh concrete R more quickly.
 特に、本実施形態では、前述した式(7)~式(10)を用いて、水量W、セメント量C、骨材量G及び混和材量Fを算出しているので、水量W、セメント量C、骨材量G及び混和材量Fを迅速且つ正確に算出することができる。よって、本実施形態では、フレッシュコンクリートRにおける水、セメント、骨材及び混和材の調合を高精度且つ迅速に評価することができる。 In particular, in the present embodiment, the water amount W, the cement amount C, the aggregate amount G, and the admixture amount F are calculated using the equations (7) to (10) described above. C, aggregate amount G and admixture amount F can be calculated quickly and accurately. Therefore, in the present embodiment, the preparation of water, cement, aggregate and admixture in fresh concrete R can be evaluated with high accuracy and speed.
 以上、本発明に係る調合推定方法及び調合推定装置の実施形態について説明した。しかしながら、本発明は、前述した実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲において変形し、又は他のものに適用したものであってもよい。すなわち、本発明は、各請求項の要旨を変更しない範囲において種々の変形が可能である。 The embodiments of the blending estimation method and the blending estimation device according to the present invention have been described above. However, the present invention is not limited to the embodiments described above, and may be modified or applied to other things without departing from the scope of the invention described in each claim. That is, the present invention can be variously modified without departing from the scope of the claims.
 例えば、前述の実施形態では、式(1)を用いてフレッシュコンクリートRの各成分の密度ρ,ρ,ρ,ρを算出し、式(5)を用いてフレッシュコンクリートRの空気量Vを算出した。しかしながら、式(1)又は式(5)とは異なる式を用いて各成分の密度ρ,ρ,ρ,ρ及び空気量Vのそれぞれを算出してもよい。また、式(7)~式(10)とは異なる式を用いて水量W、セメント量C、骨材量G及び混和材量Fを算出してもよい。このように前述した実施形態の式と異なる式を用いた場合であっても前述と同様の効果が得られる。 For example, in the embodiment described above, the densities W W , C C , G G and ρ F of the components of fresh concrete R are calculated using equation (1), and the air of fresh concrete R is calculated using equation (5) The quantity V a was calculated. However, the densities ρ w , C c , G G , F F and the air amount V a of each component may be calculated using an equation different from the equation (1) or the equation (5). The water amount W, the cement amount C, the aggregate amount G, and the admixture amount F may be calculated using equations different from the equations (7) to (10). As described above, even in the case of using a formula different from the formula of the embodiment described above, the same effect as described above can be obtained.
 また、前述の実施形態では、電気伝導率測定部11、温度測定部12、単位容積質量測定部13、密度測定部14、空気量測定部15、算出部20及び表示部30を備えた調合推定装置1について説明した。しかしながら、調合推定装置1の各構成については適宜変更可能である。電気伝導率ECを測定する手段、温度Tを測定する手段、単位容積質量UWを測定する手段、密度ρ,ρ,ρ,ρを測定する手段、及び空気量Vを測定する手段は適宜変更可能である。更に、算出部20へのデータ入力の態様、並びに、表示部30のディスプレイ31の表示内容及び表示態様についても適宜変更可能である。 Further, in the above-described embodiment, the mixture estimation including the electrical conductivity measurement unit 11, the temperature measurement unit 12, the unit volume mass measurement unit 13, the density measurement unit 14, the air amount measurement unit 15, the calculation unit 20, and the display unit 30. The apparatus 1 has been described. However, each configuration of the mixture estimation device 1 can be changed as appropriate. A means for measuring the electrical conductivity EC, a means for measuring the temperature T, a means for measuring the unit mass UW, a means for measuring the densities W W , C C , G G , F F , and the air amount V a The means can be changed as appropriate. Furthermore, the mode of data input to the calculation unit 20, and the display content and the display mode of the display 31 of the display unit 30 can be appropriately changed.
 また、前述したように、密度ρ,ρ,ρ,ρとしては既知の値を算出部20に入力してもよいし、混和材量Fの算出を省略することが可能である。この場合、密度測定部14及び空気量測定部15を不要とすることもできる。 Further, as described above, known values may be input to the calculation unit 20 as the densities W W , C C , G G , and F F, and it is possible to omit the calculation of the admixture amount F. . In this case, the density measurement unit 14 and the air amount measurement unit 15 can be eliminated.
 また、前述の実施形態では、図11に示されるフローチャートの各工程を経て表示部30が温度T、水量W、電気伝導率EC、単位容積質量UW、セメント量C、骨材量G、混和材量F及び合否を表示する例について説明した。しかしながら、本発明に係る調合推定方法において、各工程の順序及び内容は適宜変更可能である。特に、電気伝導率EC、温度T、単位容積質量UW、密度ρ,ρ,ρ,ρ及び空気量Vの測定順序については、前述の実施形態に限られず適宜変更することが可能である。 Further, in the embodiment described above, the temperature T, the water amount W, the electrical conductivity EC, the unit volume mass UW, the cement amount C, the aggregate amount G, the admixture, through the steps of the flowchart shown in FIG. The example which displays the quantity F and pass / fail has been described. However, in the blending estimation method according to the present invention, the order and contents of each step can be changed as appropriate. In particular, the measurement order of the electrical conductivity EC, the temperature T, the unit volume mass UW, the density W W , C C , G G , 空 気F and the air amount V a is not limited to the above embodiment and can be suitably changed. It is possible.
1…調合推定装置、11…電気伝導率測定部、11a…電気伝導率セル、12…温度測定部、13…単位容積質量測定部、14…密度測定部、15…空気量測定部、20…算出部、21…水量算出部、22…骨材量算出部、23…セメント量算出部、24…混和材量算出部、30…表示部、31…ディスプレイ、31a,31b,31c,31d,31e,31f…テキストボックス、R…フレッシュコンクリート。 DESCRIPTION OF SYMBOLS 1 ... Proportion estimation device, 11 ... Electric conductivity measurement part, 11a ... Electric conductivity cell, 12 ... Temperature measurement part, 13 ... Unit volume mass measurement part, 14 ... Density measurement part, 15 ... Air amount measurement part, 20 ... Calculation part, 21 ... water amount calculation part, 22 ... aggregate amount calculation part, 23 ... cement amount calculation part, 24 ... admixture amount calculation part, 30 ... display part, 31 ... display, 31a, 31b, 31c, 31d, 31e , 31f ... text box, R ... fresh concrete.

Claims (5)

  1.  水と、セメントと、骨材とを含むフレッシュコンクリートの調合を推定する調合推定方法であって、
     前記フレッシュコンクリートの電気伝導率を測定する工程と、
     前記フレッシュコンクリートの温度を測定する工程と、
     前記フレッシュコンクリートの単位容積当たりの質量を測定する工程と、
     前記電気伝導率、前記温度及び前記単位容積当たりの質量から、前記フレッシュコンクリートに含まれる水の水量、前記フレッシュコンクリートに含まれるセメントのセメント量、及び前記フレッシュコンクリートに含まれる骨材の骨材量を算出する工程と、
    を備える調合推定方法。
    A blending estimation method for estimating the blending of fresh concrete containing water, cement and aggregate,
    Measuring the electrical conductivity of the fresh concrete;
    Measuring the temperature of the fresh concrete;
    Measuring the mass per unit volume of the fresh concrete;
    From the electrical conductivity, the temperature, and the mass per unit volume, the amount of water contained in the fresh concrete, the amount of cement of cement contained in the fresh concrete, and the amount of aggregate in the aggregate contained in the fresh concrete Calculating the
    Formulation estimation method comprising:
  2.  前記フレッシュコンクリートは、混和材を含んでおり、
     前記フレッシュコンクリートに含まれる水、セメント、骨材及び混和材のそれぞれの密度を測定する工程と、
     前記フレッシュコンクリートに含まれる空気量を測定する工程と、
    を備え、
     前記算出する工程では、前記電気伝導率、前記温度、前記単位容積当たりの質量、前記密度及び前記空気量から、前記水量、前記セメント量、前記骨材量、及び前記フレッシュコンクリートに含まれる混和材の混和材量を算出する、
    請求項1に記載の調合推定方法。
    The fresh concrete contains an admixture,
    Measuring each density of water, cement, aggregate and admixture contained in the fresh concrete;
    Measuring the amount of air contained in the fresh concrete;
    Equipped with
    In the step of calculating, from the electric conductivity, the temperature, the mass per unit volume, the density, and the air amount, the water amount, the cement amount, the aggregate amount, and the admixture contained in the fresh concrete Calculate the amount of admixture of
    The compounding estimation method according to claim 1.
  3.  前記密度を測定する工程では、前記算出する工程を実行する前に、前記密度を予め算出する、
    請求項2に記載の調合推定方法。
    In the step of measuring the density, the density is calculated in advance before performing the calculating step.
    The compounding estimation method according to claim 2.
  4.  前記空気量を測定する工程では、前記算出する工程を実行する前に、前記空気量を予め算出する、
    請求項2又は3に記載の調合推定方法。
    In the step of measuring the amount of air, the amount of air is calculated in advance before the step of calculating is performed.
    The compounding estimation method according to claim 2 or 3.
  5.  水と、セメントと、骨材とを含むフレッシュコンクリートの調合を推定する調合推定装置であって、
     前記フレッシュコンクリートの電気伝導率を測定する電気伝導率測定部と、
     前記フレッシュコンクリートの温度を測定する温度測定部と、
     前記フレッシュコンクリートの単位容積当たりの質量を測定する単位容積質量測定部と、
     前記電気伝導率、前記温度、及び前記単位容積当たりの質量から、前記フレッシュコンクリートに含まれる水の水量、前記フレッシュコンクリートに含まれるセメントのセメント量、及び前記フレッシュコンクリートに含まれる骨材の骨材量を算出する算出部と、
    を備える調合推定装置。
    A blending estimation device for estimating blending of fresh concrete including water, cement, and aggregate,
    An electrical conductivity measuring unit that measures the electrical conductivity of the fresh concrete;
    A temperature measurement unit that measures the temperature of the fresh concrete;
    A unit volume mass measurement unit that measures the mass per unit volume of the fresh concrete;
    From the electrical conductivity, the temperature, and the mass per unit volume, the amount of water contained in the fresh concrete, the amount of cement of cement contained in the fresh concrete, and the aggregate of aggregate contained in the fresh concrete A calculation unit that calculates an amount;
    A blending estimation device comprising:
PCT/JP2018/040091 2017-11-15 2018-10-29 Preparation estimating method and preparation estimating device WO2019097996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11202003881PA SG11202003881PA (en) 2017-11-15 2018-10-29 Preparation estimating method and preparation estimating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-220239 2017-11-15
JP2017220239A JP6629820B2 (en) 2017-11-15 2017-11-15 Formulation estimation method and formulation estimation device

Publications (1)

Publication Number Publication Date
WO2019097996A1 true WO2019097996A1 (en) 2019-05-23

Family

ID=66539779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040091 WO2019097996A1 (en) 2017-11-15 2018-10-29 Preparation estimating method and preparation estimating device

Country Status (3)

Country Link
JP (1) JP6629820B2 (en)
SG (1) SG11202003881PA (en)
WO (1) WO2019097996A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289840A (en) * 2000-04-06 2001-10-19 Earthnics Corp Method for evaluating fresh concrete
JP2002036230A (en) * 2000-07-26 2002-02-05 Ohbayashi Corp Method for estimating mix proportion of fresh concrete
JP2002355810A (en) * 2001-05-31 2002-12-10 Ohbayashi Corp Method for measuring unit water amount of fresh concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289840A (en) * 2000-04-06 2001-10-19 Earthnics Corp Method for evaluating fresh concrete
JP2002036230A (en) * 2000-07-26 2002-02-05 Ohbayashi Corp Method for estimating mix proportion of fresh concrete
JP2002355810A (en) * 2001-05-31 2002-12-10 Ohbayashi Corp Method for measuring unit water amount of fresh concrete

Also Published As

Publication number Publication date
JP2019090712A (en) 2019-06-13
SG11202003881PA (en) 2020-05-28
JP6629820B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US8032244B2 (en) Method and system for concrete quality control based on the concrete's maturity
Spragg et al. Electrical testing of cement-based materials: Role of testing techniques, sample conditioning, and accelerated curing
Thomas The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry‐based method
US20060058904A1 (en) Method and system for concrete quality control based on the concrete's maturity
Bentz et al. Anticipating the setting time of high-volume fly ash concretes using electrical measurements: feasibility studies using pastes
JP2019181813A (en) Concrete manufacturing system and concrete manufacturing method
Wadsö et al. An international round robin test on isothermal (conduction) calorimetry for measurement of three-day heat of hydration of cement
JP2006329961A (en) Method for analyzing concentration distribution of element diffused in concrete
WO2019097996A1 (en) Preparation estimating method and preparation estimating device
US20140005981A1 (en) Method for statistical quality assurance in an examination of steel products within a steel class
Gandía-Romero et al. Influence of the area and distance between electrodes on resistivity measurements of concrete
Zheng et al. Possibility of determination of transport coefficients D and k from relaxation experiments for sphere-shaped powder samples
JP2011158437A (en) Method for quickly measuring chloride ion concentration in hardened concrete
Chang et al. Detecting the water-soluble chloride distribution of cement paste in a high-precision way
Fjellström Measurement and modelling of young concrete properties
JP3168911B2 (en) Evaluation method of water cement ratio of fresh concrete
JP6180019B2 (en) Unit water measurement method for fresh concrete or fresh mortar
JP4096285B2 (en) Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same
JP2009113408A (en) Specification value computing method for fine aggregate
JP2020094872A (en) Strength estimation method and strength estimation device of soil cement
Naiknavare et al. Model chart of quality control process for ready mixed concrete plants
Cazacliu et al. New methods for accurate water dosage in concrete central mix plants
JP3738821B2 (en) Formula estimation method for fresh concrete
JP2006038702A (en) Unit water quantity measuring calculation method in freshly mixed concrete, and unit water quantity measuring system in freshly mixed concrete
JP6914039B2 (en) Strength estimation method for mixed cement, strength estimation device and concrete manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879100

Country of ref document: EP

Kind code of ref document: A1