JP4096285B2 - Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same - Google Patents

Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same Download PDF

Info

Publication number
JP4096285B2
JP4096285B2 JP2001051567A JP2001051567A JP4096285B2 JP 4096285 B2 JP4096285 B2 JP 4096285B2 JP 2001051567 A JP2001051567 A JP 2001051567A JP 2001051567 A JP2001051567 A JP 2001051567A JP 4096285 B2 JP4096285 B2 JP 4096285B2
Authority
JP
Japan
Prior art keywords
aggregate
water
mass
amount
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001051567A
Other languages
Japanese (ja)
Other versions
JP2002257817A (en
Inventor
茂幸 十河
竜一 近松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001051567A priority Critical patent/JP4096285B2/en
Publication of JP2002257817A publication Critical patent/JP2002257817A/en
Application granted granted Critical
Publication of JP4096285B2 publication Critical patent/JP4096285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート材料を計量する際、水量補正を行うために細骨材の表面水率を測定する方法及びそれを用いたコンクリート材料の計量方法に関する。
【0002】
【従来の技術】
コンクリートを現場配合する際、水量がコンクリート強度等に大きな影響を及ぼすため、練混ぜ時に十分管理する必要があるが、配合材料である骨材は、その貯蔵状況や気候条件等によって含水状態が異なり、湿潤状態の骨材を用いるとコンクリート中の水量が骨材の表面水の量だけ増加し、乾燥状態の骨材を用いるとコンクリート中の水量は有効吸水量だけ減少する。
【0003】
そのため、骨材の乾湿程度に応じて練混ぜ時の水量を補正し示方配合通りのコンクリートを製造することが、コンクリートの品質を維持する上できわめて重要な事項となる。
【0004】
ここで、湿潤状態における表面水の水量(細骨材の表面に付着している水量)を表乾状態(表面乾燥飽水状態)の細骨材の質量で除した比率を表面水率と呼んでいるが、貯蔵されている骨材、特に細骨材は一般に濡れていることが多いため、かかる表面水率を骨材の乾湿程度の指標として予め測定し、その測定値に基づいて練混ぜ水量を調整するのが一般的である。
【0005】
そして、このような表面水率の測定は、従来、細骨材が貯蔵されたストックビンと呼ばれる貯蔵容器から少量の試料を採取してその質量及び絶乾状態での質量を計測し、次いで、これらの計測値と予め測定された表乾状態の吸水率とを用いて算出していた。
【0006】
【発明が解決しようとする課題】
しかしながら、このような測定方法では、わずかな試料から全体の表面水率を推測しているにすぎないため、精度の面でどうしても限界がある一方、絶乾状態の質量を計測するには乾燥炉等による加熱作業が必要となるため、実際に使用する量に近い量を採取してこれを試料とすることは、経済性や時間の面で非現実的であるという問題を生じていた。
【0007】
また、このような問題を補うべく、練混ぜ状況をオペレータが目視で確認したり、ミキサの負荷電流を参考にすることによって練混ぜ水量の調整を行うといった方法を採用することがあるが、かかる方法自体が精度の低いものであり、結局、強度面で20%近い大きな安全率を見込まざるを得なくなり、不経済な配合となるという問題も生じていた。
【0008】
本発明は、上述した事情を考慮してなされたもので、細骨材の表面水率を正確に測定可能な骨材の表面水率測定方法及びそれを用いたコンクリート材料の計量方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る骨材の表面水率測定方法は請求項1に記載したように、所定の容器内に投入される水の投入量MIを計量し、湿潤状態の骨材を前記水とともに前記容器内に水没させて水浸骨材とし、前記容器内の水浸骨材の全質量Mf及び全容積Vfを計量し、前記全質量Mf及び前記全容積Vfから、前記水浸骨材中の水の質量Mw及び前記骨材が表乾状態にあるときの質量Maを、ρaを表乾状態における骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出し、次いで、前記湿潤状態の骨材の質量Mawを、
aw=Mf―MI (3)
から算出し、算出された前記湿潤状態の骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出するものである。
【0010】
また、本発明に係るコンクリート材料の計量方法は請求項2に記載したように、所定の容器内に投入される水の投入量MIを計量し、湿潤状態の骨材を前記水とともに前記容器内に水没させて水浸骨材とし、前記容器内の水浸骨材の全質量Mf及び全容積Vfを計量し、前記全質量Mf及び前記全容積Vfから、前記水浸骨材中の水の質量Mw、前記骨材が表乾状態にあるときの質量Maを、ρaを表乾状態の骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出し、次いで、前記湿潤状態の骨材の質量Mawを、
aw=Mf―MI (3)
から算出し、算出された前記湿潤状態の骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出し、次いで、前記容器内の骨材及び水をコンクリート材料とするとともに、前記骨材が貯蔵された貯蔵容器から不足する骨材を採取して補充し、採取された骨材に対して前記表面水率を適用して水量を補正するものである。
【0013】
また、本発明に係る骨材の表面水率測定方法は、前記水浸骨材内の空気量をa(%)とし、前記Vfに代えて、Vf・(1―a/100)を用いるものである。
【0014】
また、本発明に係るコンクリート材料の計量方法は、前記水浸骨材内の空気量をa(%)とし、前記Vfに代えて、Vf・(1―a/100)を用いるものである。
【0015】
参考発明に係る骨材の表面水率測定方法及びそれを用いたコンクリート材料の計量方法においては、まず、湿潤状態の骨材の質量Mawを計量する。
【0016】
次に、骨材を所定の容器内に水没させて水浸骨材とし、かかる状態にて容器内の水浸骨材の全質量Mf及び全容積Vfを計量する。計量にあたっては、容器内から空気が排出された状態で行う。
【0017】
次に、全質量Mf及び全容積Vfから、前記水浸骨材中の水の質量Mw及び前記骨材が表乾状態にあるときの質量Maを、ρaを表乾状態における骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出する。
【0018】
次に、湿潤状態の骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出する。
【0019】
このようにすると、従来のようにわずかな量に対してではなく、コンクリート配合に使用される量、例えば1バッチ若しくはそれに近い量に対して骨材の表面水率の測定が可能となるので、骨材の表面水率を正確に算出することができる。
【0020】
請求項1、請求項2に係る骨材の表面水率測定方法及びそれを用いたコンクリート材料の計量方法においては、まず、所定の容器内に投入される水の投入量MIを計量する。
【0021】
次に、計量された水を湿潤状態の骨材とともに前記容器内に水没させて水浸骨材とし、かかる状態にて容器内の水浸骨材の全質量Mf及び全容積Vfを計量する。計量にあたっては、容器内から空気が排出された状態で行う。
【0022】
次に、全質量Mf及び全容積Vfから、前記水浸骨材中の水の質量Mw及び前記骨材が表乾状態にあるときの質量Maを、ρaを表乾状態における骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出する。
【0023】
次に、湿潤状態の骨材の質量Mawを、
aw=Mf―MI (3)
から算出する。
【0024】
次に、算出された湿潤状態の骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出する。
【0025】
このようにすると、従来のようにわずかな量に対してではなく、コンクリート配合に使用される量、例えば1バッチ若しくはそれに近い量に対して骨材の表面水率の測定が可能となるので、骨材の表面水率を正確に算出することができる。
【0026】
請求項1及び請求項2に係る各発明において、骨材を水没させる容器は任意であるが、コンクリート材料の計量に用いる容器を用いるようにすれば、コンクリートの配合単位すなわち1バッチに相当する量を一度に計量することができる。
【0027】
なお、容器内の骨材や水は、表面水率を測定する過程ですでに計量が終了しているので、あらためて計量することなく、これらの細骨材や水をそのままコンクリート材料として用いることができる。そして、そのときに上述した水の質量Mwを用いて水量を補正するようにすれば、示方配合通り若しくはそれに近い現場配合が可能となる。
【0028】
容器内の骨材や水の量は、1バッチ若しくはそれに近い量を目安とするのが精度上好ましいしそれが可能であるが、例えば1バッチの半分の量だけ投入するようにしても、従来の表面水率測定方法に比べればはるかに多量の骨材を対象とすることとなり、十分な精度改善を図ることができる。
【0029】
容器内の骨材や水の量は、このように基本的には任意であって、コンクリート配合を行う単位、例えば1バッチに合わせる必要はない。したがって、表面水率を計測するのに使用した骨材や水だけでは例えば1バッチのコンクリートを配合するのに不足する場合が考えられるが、かかる場合には、不足分の骨材や水を適宜補充すればよい。
【0030】
ここで、不足分の骨材を補充するには、上述した容器内の骨材及び水をコンクリート材料とするとともに、前記骨材が貯蔵された貯蔵容器から不足する骨材を採取して補充し、採取された骨材に対して前記表面水率を適用して水量を補正する。
【0031】
このようにすると、あらたに採取された骨材の表面水率を再度測定することなく、水量補正を行うことができる。これは、表面水率の算出の基礎にされた骨材と同じ貯蔵容器内に貯蔵された骨材であれば、その表面水率は、先に算出された表面水率と同等であるとみなしてもコンクリートの品質上差し支えないとの考えに立脚したものである。
【0032】
なお、本発明の骨材は、主として細骨材を対象とするが、粗骨材にも本発明を適用することができることは言うまでもない。
【0033】
ここで、水浸骨材内の空気量a(%)を考慮するのであれば、既知である全容量Vfに(1―a/100)を乗じ、これをあらためて全容量とすることで、空気量を除いた実際の全容量でさらに精度の高い計量が可能となる。
【0034】
【発明の実施の形態】
以下、本発明に係る骨材の表面水率測定方法及びそれを用いたコンクリート材料の計量方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0035】
(第1実施形態)
【0036】
図1は、本実施形態に係る骨材の表面水率測定方法の手順を示したフローチャートである。同図でわかるように、本実施形態に係る骨材の表面水率測定方法においては、まず、湿潤状態の細骨材の質量Mawを計量する(ステップ101)。ここで、細骨材の量としては、1バッチのコンクリート配合に必要な量を目安とする。例えば、1バッチのコンクリート配合に必要な全量を投入するのが望ましい。
【0037】
次に、細骨材を所定の容器内に水没させて水浸骨材とし(ステップ102)、かかる状態にて容器内の水浸骨材の全質量Mf及び全容積Vfを計量する(ステップ103)。なお、容器内に気泡が含まれた状態で全容積Vfを計測することがないよう、水の投入時に空気ができるだけ入らないよう留意するとともに、必要に応じて容器に振動を加えて気泡を追い出す。
【0038】
ここで、細骨材を水没させる容器として、コンクリート材料の計量に用いる容器を用いるようにすれば、コンクリートの配合単位すなわち1バッチに相当する量を一度に計量することができる。
【0039】
次に、計量された全質量Mf及び全容積Vfから、水浸骨材中の水の質量Mw及び細骨材が表乾状態にあるときの質量Maを、ρaを表乾状態の細骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出する(ステップ104)。
【0040】
次に、湿潤状態の細骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出する(ステップ105)。
【0041】
以上説明したように、本実施形態に係る骨材の表面水率測定方法によれば、従来のようにわずかな量に対してではなく、コンクリート配合に使用される量、例えば1バッチ若しくはそれに近い量に対して細骨材の表面水率の測定が可能となるので、細骨材の表面水率を正確に算出することが可能となる。
【0042】
したがって、かかる細骨材をコンクリート材料として用いれば、細骨材の表面水に関する水量補正を正確に行うことが可能となり、コンクリートの品質向上を図ることが可能となる。
【0043】
本実施形態では、表面水率の測定精度が高くなるように、測定対象となる細骨材の量を1バッチに必要な量を目安としたが、必ずしもかかる量を測定する必要はなく、例えば1バッチの半分の量を対象として表面水率を測定するようにしてよい。かかる場合においても、従来の表面水率測定方法に比べればはるかに多量の細骨材を対象とすることとなり、細骨材の表面水率を十分な精度で測定することができる。
【0044】
また、本実施形態では、湿潤状態の細骨材を容器に水没させるにあたって詳しく言及しなかったが、湿潤状態の細骨材の質量を計量する際に用いた容器に水を入れるようにしてもよいし、水を入れた容器に計量が終わった湿潤状態の細骨材を投入するようにしてもよい。
【0045】
また、本実施形態では、水浸骨材内の空気量a(%)を考慮しなかったが、かかる空気量a(%)を考慮するのであれば、全容量Vfに(1―a/100)を乗じ、これをあらためて全容量とすることで、空気量を除いた実際の全容量でさらに精度の高い計量が可能となる。
【0046】
具体的には、(2)式に代えて、(2′)式、すなわち
a/ρa+Mw/ρw=Vf・(1―a/100) (2′)
を用いるようにすればよい。
【0047】
(第2実施形態)
【0048】
図2は、本実施形態に係るコンクリート材料の計量方法の手順を示したフローチャートである。同図でわかるように、本実施形態に係るコンクリート材料の計量方法は、第1実施形態で述べた手順で表面水率の算出を行った細骨材や水をコンクリート材料にそのまま用いる場合を想定したものであり、表面水率を算出するまでの手順(ステップ101〜105)については、第1実施形態と同様であるので、ここではその説明を省略する。
【0049】
細骨材に対して表面水率が算出されたならば、容器内の細骨材及び水をコンクリート材料として用いるが、かかる容器内の細骨材や水は、上述したように、表面水率を測定する過程ですでに計量が終了しているので、あらためて計量する必要はない。
【0050】
容器内の細骨材や水をコンクリート材料として用いるにあたり、これらの細骨材や水だけでは例えば1バッチのコンクリートを配合するのに不足する場合が考えられる。
【0051】
まず、水が不足する場合には、第1実施形態で算出された水の質量Mwを用いて水量を補正する。すなわち、示方配合に示された配合量から水の質量Mwを差し引いた分だけ、あらたに水を補充する(ステップ106)。
【0052】
一方、細骨材が不足する場合には、表面水率の測定に用いた細骨材が貯蔵された貯蔵容器から不足分の細骨材を採取して補充するとともに、採取された細骨材に対して上述の表面水率を適用し、水量を補正する(ステップ107)。
【0053】
このようにすると、あらたに採取された細骨材の表面水率を再度測定することなく、水量補正を行うことができる。
【0054】
次に、容器内の細骨材及び水並びにそれらの補充分をコンクリート材料としてコンクリートを製造する(ステップ108)。なお、コンクリートを製造するにあたっては、セメント、粗骨材、混和剤その他のコンクリート材料についても示方配合通りになるようにそれぞれ計量する必要があることは言うまでもない。
【0055】
以上説明したように、本実施形態に係るコンクリート材料の計量方法によれば、容器内の細骨材や水は、表面水率を測定する過程ですでに計量が終了しているので、あらためて計量することなく、これらの細骨材や水をそのままコンクリート材料として用いることができる。そして、表面水率の算定過程で得られた水の質量Mwを用いて水量を補正するようにすれば、示方配合通りの配合が可能となる。
【0056】
また、本実施形態に係るコンクリート材料の計量方法によれば、細骨材が不足する場合、表面水率が測定された細骨材が貯蔵された貯蔵容器から不足する細骨材を採取して補充し、採取された細骨材に対して前記表面水率を適用して水量を補正するようにしたので、あらたに採取された細骨材の表面水率を再度測定することなく、水量補正を行うことができる。
【0057】
(第3実施形態)
【0058】
図3は、本実施形態に係る骨材の表面水率測定方法の手順を示したフローチャートである。同図でわかるように、本実施形態に係る骨材の表面水率測定方法においては、まず、所定の容器内に投入される水の投入量MIを計量する(ステップ111)。
【0059】
次に、計量された水を湿潤状態の細骨材とともに上述した容器内に水没させて水浸骨材とし(ステップ112)、かかる状態にて容器内の水浸骨材の全質量Mf及び全容積Vfを計量する(ステップ113)。ここで、細骨材の量としては、1バッチのコンクリート配合に必要な量を目安とする。例えば、1バッチのコンクリート配合に必要な全量を投入するのが望ましい。
【0060】
なお、容器内に気泡が含まれた状態で全容積Vfを計測することがないよう、水の投入時に空気ができるだけ入らないよう留意するとともに、必要に応じて容器に振動を加えて気泡を追い出す。
【0061】
ここで、細骨材を水没させる容器として、コンクリート材料の計量に用いる容器を用いるようにすれば、コンクリートの配合単位すなわち1バッチに相当する量を一度に計量することができる。
【0062】
次に、計量された全質量Mf及び全容積Vfから、水浸骨材中の水の質量Mw及び細骨材が表乾状態にあるときの質量Maを、ρaを表乾状態の細骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出する(ステップ114)。
【0063】
次に、湿潤状態の骨材の質量Mawを、
aw=Mf―MI (3)
から算出し(ステップ115)、次いで、算出された湿潤状態の細骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出する(ステップ116)。
【0064】
以上説明したように、本実施形態に係る骨材の表面水率測定方法によれば、従来のようにわずかな量に対してではなく、コンクリート配合に使用される量、例えば1バッチ若しくはそれに近い量に対して細骨材の表面水率の測定が可能となるので、細骨材の表面水率を正確に算出することが可能となる。
【0065】
したがって、かかる細骨材をコンクリート材料として用いれば、細骨材の表面水に関する水量補正を正確に行うことが可能となり、コンクリートの品質向上を図ることが可能となる。
【0066】
本実施形態では、表面水率の測定精度が高くなるように、測定対象となる細骨材の量を1バッチに必要な量を目安としたが、必ずしもかかる量を測定する必要はなく、例えば1バッチの半分の量を対象として表面水率を測定するようにしてよい。かかる場合においても、従来の表面水率測定方法に比べればはるかに多量の細骨材を対象とすることとなり、細骨材の表面水率を十分な精度で測定することができる。
【0067】
また、本実施形態では、水浸骨材内の空気量a(%)を考慮しなかったが、かかる空気量a(%)を考慮するのであれば、全容量Vfに(1―a/100)を乗じ、これをあらためて全容量とすることで、空気量を除いた実際の全容量でさらに精度の高い計量が可能となる。
【0068】
具体的には、(2)式に代えて、(2′)式、すなわち
a/ρa+Mw/ρw=Vf・(1―a/100) (2′)
を用いるようにすればよい。
【0069】
(第4実施形態)
【0070】
図4は、本実施形態に係るコンクリート材料の計量方法の手順を示したフローチャートである。同図でわかるように、本実施形態に係るコンクリート材料の計量方法は、第3実施形態で述べた手順で表面水率の算出を行った細骨材や水をコンクリート材料にそのまま用いる場合を想定したものであり、表面水率を算出するまでの手順(ステップ111〜116)については、第3実施形態と同様であるので、ここではその説明を省略する。
【0071】
細骨材に対して表面水率が算出されたならば、容器内の細骨材及び水をコンクリート材料として用いるが、かかる容器内の細骨材や水は、上述したように、表面水率を測定する過程ですでに計量が終了しているので、あらためて計量する必要はない。
【0072】
容器内の細骨材や水をコンクリート材料として用いるにあたり、これらの細骨材や水だけでは例えば1バッチのコンクリートを配合するのに不足する場合が考えられる。
【0073】
まず、水が不足する場合には、第3実施形態で算出された水の質量Mwを用いて水量を補正する。すなわち、示方配合に示された配合量から水の質量Mwを差し引いた分だけ、あらたに水を補充する(ステップ117)。
【0074】
一方、細骨材が不足する場合には、表面水率の測定に用いた細骨材が貯蔵された貯蔵容器から不足分の細骨材を採取して補充するとともに、採取された細骨材に対して上述の表面水率を適用し、水量を補正する(ステップ118)。
【0075】
このようにすると、あらたに採取された細骨材の表面水率を再度測定することなく、水量補正を行うことができる。
【0076】
次に、容器内の細骨材及び水並びにそれらの補充分をコンクリート材料としてコンクリートを製造する(ステップ119)。なお、コンクリートを製造するにあたっては、セメント、粗骨材、混和剤その他のコンクリート材料についても示方配合通りになるようにそれぞれ計量する必要があることは言うまでもない。
【0077】
以上説明したように、本実施形態に係るコンクリート材料の計量方法によれば、容器内の細骨材や水は、表面水率を測定する過程ですでに計量が終了しているので、あらためて計量することなく、これらの細骨材や水をそのままコンクリート材料として用いることができる。そして、表面水率の算定過程で得られた水の質量Mwを用いて水量を補正するようにすれば、示方配合通りの配合が可能となる。
【0078】
また、本実施形態に係るコンクリート材料の計量方法によれば、細骨材が不足する場合、表面水率が測定された細骨材が貯蔵された貯蔵容器から不足する細骨材を採取して補充し、採取された細骨材に対して前記表面水率を適用して水量を補正するようにしたので、あらたに採取された細骨材の表面水率を再度測定することなく、水量補正を行うことができる。
【0079】
【発明の効果】
以上述べたように、請求項1に係る本発明の骨材の表面水率測定方法によれば、骨材の表面水率を正確に算出することが可能となる。したがって、かかる骨材をコンクリート材料として用いれば、骨材の表面水に関する水量補正を正確に行うことが可能となり、コンクリートの品質向上を図ることができる。
【0080】
また、請求項2に係る本発明のコンクリート材料の計量方法によれば、容器内の骨材や水は、表面水率を測定する過程ですでに計量が終了しているので、あらためて計量することなく、これらの骨材や水をそのままコンクリート材料として用いることができる。そして、表面水率の算定過程で得られた水の質量Mwを用いて水量を補正するようにすれば、示方配合通りの配合が可能となる。また、骨材が不足する場合、あらたに採取された骨材の表面水率を再度測定することなく、水量補正が可能となる。
【0081】
【図面の簡単な説明】
【図1】第1実施形態に係る骨材の表面水率測定方法の手順を示したフローチャート。
【図2】第2実施形態に係るコンクリート材料の計量方法の手順を示したフローチャート。
【図3】第3実施形態に係る骨材の表面水率測定方法の手順を示したフローチャート。
【図4】第4実施形態に係るコンクリート材料の計量方法の手順を示したフローチャート。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the surface water ratio of a fine aggregate in order to correct the amount of water when measuring a concrete material, and a method for measuring a concrete material using the method.
[0002]
[Prior art]
When mixing concrete on site, the amount of water has a large effect on the concrete strength and so on, so it is necessary to manage it thoroughly during mixing. However, the aggregate, which is a mixed material, has a different moisture content depending on its storage conditions and climatic conditions. When the wet aggregate is used, the amount of water in the concrete increases by the amount of surface water of the aggregate, and when the aggregate in the dry state is used, the amount of water in the concrete decreases by the effective water absorption.
[0003]
For this reason, it is extremely important to maintain the quality of concrete by correcting the amount of water at the time of mixing according to the degree of dryness and wetness of the aggregate and producing concrete as indicated.
[0004]
Here, the ratio of the amount of surface water in the wet state (the amount of water adhering to the surface of the fine aggregate) divided by the mass of the fine aggregate in the surface dry state (surface dry saturated state) is called the surface water ratio. However, since stored aggregates, especially fine aggregates, are often wet, the surface water ratio is measured in advance as an indicator of the degree of dryness and wetness of the aggregates, and is mixed based on the measured values. It is common to adjust the amount of water.
[0005]
And, the measurement of such a surface water ratio is to collect a small amount of sample from a storage container called a stock bottle in which fine aggregates are conventionally stored, measure its mass and the mass in an absolutely dry state, It calculated using these measured values and the water absorption of the surface dry state measured beforehand.
[0006]
[Problems to be solved by the invention]
However, in such a measurement method, the total surface water percentage is only estimated from a small number of samples, so there is a limit in terms of accuracy. Therefore, it is not practical in terms of economy and time to collect an amount close to the amount actually used and use it as a sample.
[0007]
In addition, in order to make up for such a problem, there are cases where an operator visually confirms the mixing state or adjusts the mixing water amount by referring to the load current of the mixer, but such a method may be adopted. The method itself has low accuracy, and eventually, a large safety factor of about 20% in terms of strength has to be expected, resulting in a problem that the composition becomes uneconomical.
[0008]
The present invention has been made in consideration of the above-described circumstances, and provides a method for measuring the surface water ratio of an aggregate capable of accurately measuring the surface water ratio of a fine aggregate and a method for measuring a concrete material using the same. For the purpose.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for measuring the surface water ratio of the aggregate according to the present invention measures the amount of water M I introduced into a predetermined container as described in claim 1, aggregate by submerged into the vessel together with the water and water-immersed aggregate, were weighed total mass M f and the total volume V f of the water-immersed aggregate in the container, the total mass M f and said total volume From V f , the mass M w of the water in the water-immersed aggregate and the mass M a when the aggregate is in the surface dry state, ρ a is the density of the aggregate in the surface dry state, and ρ w is the water As density, M a + M w = M f (1)
M a / ρ a + M w / ρ w = V f (2)
Then, the mass M aw of the wet aggregate is calculated as follows :
M aw = M f −M I (3)
Calculated from, and calculates the surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a of the aggregate of the calculated the wet state.
[0010]
Also, weighing of the concrete material according to the present invention as described in claim 2, weighed input amount M I of water are introduced into a predetermined container, the container aggregate wet with the water Submerged in water to form a water-immersed aggregate, the total mass M f and the total volume V f of the water-immersed aggregate in the container are measured, and the water-immersed bone is calculated from the total mass M f and the total volume V f. The mass M w of water in the aggregate, the mass M a when the aggregate is in a dry state, ρ a as the density of the aggregate in the dry state, and ρ w as the density of water, M a + M w = M f (1)
M a / ρ a + M w / ρ w = V f (2)
Then, the mass M aw of the wet aggregate is calculated as follows :
M aw = M f −M I (3)
Calculated from calculated surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a of the calculated aggregate of the wet state, then the aggregate in the container and Water is used as a concrete material, and a shortage of aggregate is collected from a storage container in which the aggregate is stored, and the amount of water is corrected by applying the surface water ratio to the collected aggregate. It is.
[0013]
The surface water ratio measurement method for a bone material according to the present invention, the air amount of the water-immersed in aggregate as a (%), in place of the V f, · V f a (1-a / 100) It is what is used.
[0014]
Also, weighing of the concrete material according to the present invention, the air amount of the water-immersed in aggregate as a (%), in place of the V f, but using · V f (1-a / 100) is there.
[0015]
In the aggregate surface water ratio measuring method and the concrete material measuring method using the aggregate according to the reference invention, first, the mass M aw of the aggregate in a wet state is measured.
[0016]
Next, the aggregate is submerged in a predetermined container to form a water-immersed aggregate, and in this state, the total mass M f and the total volume V f of the water-immersed aggregate in the container are measured. Weighing is performed with air exhausted from the container.
[0017]
Next, from the total mass M f and the total volume V f , the mass M w of the water in the water-immersed aggregate and the mass M a when the aggregate is in the surface dry state, ρ a in the surface dry state Aggregate density, ρ w as water density, M a + M w = M f (1)
M a / ρ a + M w / ρ w = V f (2)
Calculate from
[0018]
Then, to calculate the surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a bone material in the wet state.
[0019]
In this way, since it becomes possible to measure the surface water content of the aggregate with respect to the amount used for concrete blending, for example, one batch or an amount close thereto, not to a small amount as in the past, The surface water percentage of the aggregate can be calculated accurately.
[0020]
Claim 1, in the weighing of the surface water ratio measurement method for a bone material according to claim 2 and concrete material using the same, first, weighed input amount M I of water are introduced into a predetermined container.
[0021]
Next, the measured water is submerged in the container together with the aggregate in a wet state to form a submerged aggregate, and in this state, the total mass M f and the total volume V f of the submerged aggregate in the container are measured. To do. Weighing is performed with air exhausted from the container.
[0022]
Next, from the total mass M f and the total volume V f , the mass M w of the water in the water-immersed aggregate and the mass M a when the aggregate is in the surface dry state, ρ a in the surface dry state Aggregate density, ρ w as water density, M a + M w = M f (1)
M a / ρ a + M w / ρ w = V f (2)
Calculate from
[0023]
Next, the mass M aw of the aggregate in the wet state is
M aw = M f −M I (3)
Calculate from
[0024]
Then, to calculate the surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a of the aggregate of the calculated wet.
[0025]
In this way, since it becomes possible to measure the surface water content of the aggregate with respect to the amount used for concrete blending, for example, one batch or an amount close thereto, not to a small amount as in the past, The surface water percentage of the aggregate can be calculated accurately.
[0026]
In each of the inventions according to claim 1 and claim 2, the container for submerging the aggregate is arbitrary, but if the container used for measuring the concrete material is used, the amount corresponding to the blending unit of concrete, that is, one batch. Can be measured at once.
[0027]
Note that the aggregate and water in the container have already been measured in the process of measuring the surface water percentage, so these aggregates and water can be used as concrete materials as they are without being measured again. it can. If the amount of water is corrected using the above-described water mass M w at that time, on-site blending can be performed as shown or close to the blend.
[0028]
The amount of aggregate and water in the container is preferably one batch or an amount close to it, which is preferable in terms of accuracy, but it is possible to do this. Compared to the surface water content measurement method, a much larger amount of aggregate is targeted, and sufficient accuracy improvement can be achieved.
[0029]
The amount of aggregate and water in the container is basically arbitrary as described above, and does not need to be adjusted to a unit for mixing concrete, for example, one batch. Therefore, the aggregate and water used for measuring the surface water ratio may be insufficient to mix, for example, one batch of concrete. You just need to replenish.
[0030]
Here, in order to replenish the deficient aggregate, the aggregate and water in the container described above are used as a concrete material, and the deficient aggregate is collected and replenished from the storage container in which the aggregate is stored. The amount of water is corrected by applying the surface water ratio to the collected aggregate.
[0031]
If it does in this way, water quantity correction | amendment can be performed, without measuring the surface water rate of the newly extract | collected aggregate again. If the aggregate is stored in the same storage container as the aggregate on which the surface water ratio is calculated, the surface water ratio is considered to be equivalent to the previously calculated surface water ratio. However, it is based on the idea that there is no problem in the quality of concrete.
[0032]
The aggregate of the present invention is mainly intended for fine aggregates, but it goes without saying that the present invention can also be applied to coarse aggregates.
[0033]
Here, if the amount of air a (%) in the water-immersed aggregate is taken into consideration, the known total capacity Vf is multiplied by (1-a / 100), and this is set to the total capacity again. More accurate weighing is possible with the actual total capacity excluding the air volume.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an aggregate surface water ratio measuring method and a concrete material measuring method using the same according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0035]
(First embodiment)
[0036]
FIG. 1 is a flowchart showing a procedure of an aggregate surface water percentage measuring method according to the present embodiment. As can be seen from the figure, in the aggregate surface water percentage measuring method according to the present embodiment, first, the mass M aw of the fine aggregate in a wet state is measured (step 101). Here, as an amount of fine aggregate, an amount necessary for blending one batch of concrete is used as a guide. For example, it is desirable to add the total amount required for a batch of concrete mix.
[0037]
Next, the fine aggregate is submerged in a predetermined container to form a water-immersed aggregate (step 102), and in this state, the total mass M f and the total volume V f of the water-immersed aggregate in the container are measured ( Step 103). In order to prevent the total volume V f from being measured when air bubbles are contained in the container, care should be taken to prevent air from entering as much as possible when adding water, and if necessary, vibration should be applied to the container to remove air bubbles. Kick out.
[0038]
Here, if the container used for measuring the concrete material is used as the container for submerging the fine aggregate, it is possible to measure the blending unit of concrete, that is, the amount corresponding to one batch.
[0039]
Next, from the measured total mass M f and total volume V f , the mass M w of water in the water-immersed aggregate and the mass M a when the fine aggregate is in the surface dry state, and ρ a the surface dry M a + M w = M f (1) where ρ w is the density of fine aggregate in the state, ρ w
M a / ρ a + M w / ρ w = V f (2)
(Step 104).
[0040]
Then, to calculate the surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a fine aggregate in a wet state (step 105).
[0041]
As described above, according to the method for measuring the surface water content of the aggregate according to the present embodiment, the amount used for concrete blending, for example, one batch or close to it, is not a slight amount as in the past. Since the surface water ratio of the fine aggregate can be measured with respect to the amount, the surface water ratio of the fine aggregate can be accurately calculated.
[0042]
Therefore, if such a fine aggregate is used as a concrete material, it is possible to accurately correct the amount of water related to the surface water of the fine aggregate, and to improve the quality of the concrete.
[0043]
In the present embodiment, the amount of fine aggregate to be measured is used as a guide for the amount of fine aggregate to be measured so that the measurement accuracy of the surface water ratio is high, but it is not always necessary to measure the amount, for example, The surface water content may be measured for half of one batch. Even in such a case, a much larger amount of fine aggregate is targeted as compared with the conventional surface water ratio measurement method, and the surface water ratio of the fine aggregate can be measured with sufficient accuracy.
[0044]
Further, in the present embodiment, detailed mention was not made in submerging the wet fine aggregate in the container, but water may be put into the container used for measuring the mass of the wet fine aggregate. Alternatively, a wet fine aggregate that has been weighed may be put into a container containing water.
[0045]
In the present embodiment, the air amount a (%) in the water-immersed aggregate is not taken into consideration. However, if the air amount a (%) is taken into consideration, the total capacity V f is set to (1−a / 100) and renewing this to the full capacity enables more accurate weighing with the actual full capacity excluding the air volume.
[0046]
Specifically, instead of the formula (2), the formula (2 ′), that is, M a / ρ a + M w / ρ w = V f · (1−a / 100) (2 ′)
May be used.
[0047]
(Second Embodiment)
[0048]
FIG. 2 is a flowchart showing the procedure of the concrete material measurement method according to the present embodiment. As can be seen from the figure, the concrete material measurement method according to the present embodiment assumes that the fine aggregate or water whose surface water ratio has been calculated by the procedure described in the first embodiment is used as it is for the concrete material. Since the procedure (steps 101 to 105) until the surface water ratio is calculated is the same as that of the first embodiment, the description thereof is omitted here.
[0049]
If the surface water ratio is calculated for the fine aggregate, the fine aggregate and water in the container are used as the concrete material, but the fine aggregate and water in the container are, as described above, the surface water ratio. Since the measurement has already been completed in the process of measuring, there is no need to measure again.
[0050]
When the fine aggregate and water in the container are used as the concrete material, it is conceivable that the fine aggregate and water alone are insufficient to mix, for example, one batch of concrete.
[0051]
First, when water is insufficient, the amount of water is corrected using the mass Mw of water calculated in the first embodiment. That is, water is newly replenished by the amount obtained by subtracting the mass Mw of water from the blending amount shown in the formula blending (step 106).
[0052]
On the other hand, if there is a shortage of fine aggregate, the short aggregate is collected and replenished from the storage container in which the fine aggregate used for measuring the surface water ratio is stored. Is applied to the surface water rate to correct the amount of water (step 107).
[0053]
In this way, the water amount can be corrected without measuring the surface water ratio of the newly collected fine aggregate again.
[0054]
Next, concrete is produced using the fine aggregate and water in the container and their replenishment as a concrete material (step 108). Needless to say, when manufacturing concrete, cement, coarse aggregate, admixture, and other concrete materials must be weighed so as to follow the indicated composition.
[0055]
As described above, according to the concrete material measurement method according to the present embodiment, the fine aggregate and water in the container have already been measured in the process of measuring the surface water ratio, so that the measurement is performed again. The fine aggregate and water can be used as they are as a concrete material. And if the amount of water is corrected using the mass Mw of the water obtained in the process of calculating the surface water ratio, blending according to the indicated blending becomes possible.
[0056]
Further, according to the concrete material measuring method according to the present embodiment, when the fine aggregate is insufficient, the short aggregate is collected from the storage container in which the fine aggregate whose surface water ratio is measured is stored. The amount of water was corrected by applying the surface water ratio to the collected fine aggregate, so that the amount of water was corrected without measuring the surface water ratio of the newly collected fine aggregate again. It can be performed.
[0057]
(Third embodiment)
[0058]
FIG. 3 is a flowchart showing the procedure of the aggregate surface water ratio measuring method according to the present embodiment. As can be seen in the figure, in the surface water ratio measurement method for a bone material according to the present embodiment, first, weighed input amount M I of water are introduced into a predetermined container (step 111).
[0059]
Next, the weighed water is submerged in the above-mentioned container together with the fine aggregate in a wet state to form a water-immersed aggregate (step 112), and in this state, the total mass M f of the water-immersed aggregate in the container and The total volume V f is measured (step 113). Here, as an amount of fine aggregate, an amount necessary for blending one batch of concrete is used as a guide. For example, it is desirable to add the total amount required for a batch of concrete mix.
[0060]
In order to prevent the total volume V f from being measured when air bubbles are contained in the container, care should be taken to prevent air from entering as much as possible when adding water, and if necessary, vibration should be applied to the container to remove air bubbles. Kick out.
[0061]
Here, if the container used for measuring the concrete material is used as the container for submerging the fine aggregate, it is possible to measure the blending unit of concrete, that is, the amount corresponding to one batch.
[0062]
Next, from the measured total mass M f and total volume V f , the mass M w of water in the water-immersed aggregate and the mass M a when the fine aggregate is in the surface dry state, and ρ a the surface dry M a + M w = M f (1) where ρ w is the density of fine aggregate in the state, ρ w
M a / ρ a + M w / ρ w = V f (2)
(Step 114).
[0063]
Next, the mass M aw of the aggregate in the wet state is
M aw = M f −M I (3)
Calculated from (step 115), then calculate the surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a fine aggregate of the calculated wet (step 116) .
[0064]
As described above, according to the method for measuring the surface water content of the aggregate according to the present embodiment, the amount used for concrete blending, for example, one batch or close to it, is not a slight amount as in the past. Since the surface water ratio of the fine aggregate can be measured with respect to the amount, the surface water ratio of the fine aggregate can be accurately calculated.
[0065]
Therefore, if such a fine aggregate is used as a concrete material, it is possible to accurately correct the amount of water related to the surface water of the fine aggregate, and to improve the quality of the concrete.
[0066]
In the present embodiment, the amount of fine aggregate to be measured is used as a guide for the amount of fine aggregate to be measured so that the measurement accuracy of the surface water ratio is high, but it is not always necessary to measure the amount, for example, The surface water content may be measured for half of one batch. Even in such a case, a much larger amount of fine aggregate is targeted as compared with the conventional surface water ratio measurement method, and the surface water ratio of the fine aggregate can be measured with sufficient accuracy.
[0067]
In the present embodiment, the air amount a (%) in the water-immersed aggregate is not taken into consideration. However, if the air amount a (%) is taken into consideration, the total capacity V f is set to (1−a / 100) and renewing this to the full capacity enables more accurate weighing with the actual full capacity excluding the air volume.
[0068]
Specifically, instead of the formula (2), the formula (2 ′), that is, M a / ρ a + M w / ρ w = V f · (1−a / 100) (2 ′)
May be used.
[0069]
(Fourth embodiment)
[0070]
FIG. 4 is a flowchart showing the procedure of the concrete material measurement method according to the present embodiment. As can be seen from the figure, the concrete material measurement method according to the present embodiment assumes a case where fine aggregate or water whose surface water ratio has been calculated by the procedure described in the third embodiment is used as it is for the concrete material. Since the procedure (steps 111 to 116) until the surface water ratio is calculated is the same as that of the third embodiment, the description thereof is omitted here.
[0071]
If the surface water ratio is calculated for the fine aggregate, the fine aggregate and water in the container are used as the concrete material, but the fine aggregate and water in the container are, as described above, the surface water ratio. Since the measurement has already been completed in the process of measuring, there is no need to measure again.
[0072]
When the fine aggregate and water in the container are used as the concrete material, it is conceivable that the fine aggregate and water alone are insufficient to mix, for example, one batch of concrete.
[0073]
First, when water is insufficient, the amount of water is corrected using the mass Mw of water calculated in the third embodiment. That is, water is newly replenished by the amount obtained by subtracting the mass Mw of water from the blending amount shown in the formula blending (step 117).
[0074]
On the other hand, if there is a shortage of fine aggregate, the short aggregate is collected and replenished from the storage container in which the fine aggregate used for measuring the surface water ratio is stored. Is applied to the surface water ratio to correct the amount of water (step 118).
[0075]
In this way, the water amount can be corrected without measuring the surface water ratio of the newly collected fine aggregate again.
[0076]
Next, concrete is produced using the fine aggregate and water in the container and their supplements as a concrete material (step 119). Needless to say, when manufacturing concrete, cement, coarse aggregate, admixture, and other concrete materials must be weighed so as to follow the indicated composition.
[0077]
As described above, according to the concrete material measurement method according to the present embodiment, the fine aggregate and water in the container have already been measured in the process of measuring the surface water ratio, so that the measurement is performed again. The fine aggregate and water can be used as they are as a concrete material. And if the amount of water is corrected using the mass Mw of the water obtained in the process of calculating the surface water ratio, blending according to the indicated blending becomes possible.
[0078]
Further, according to the concrete material measuring method according to the present embodiment, when the fine aggregate is insufficient, the short aggregate is collected from the storage container in which the fine aggregate whose surface water ratio is measured is stored. The amount of water was corrected by applying the surface water ratio to the collected fine aggregate, so that the amount of water was corrected without measuring the surface water ratio of the newly collected fine aggregate again. It can be performed.
[0079]
【The invention's effect】
As described above, according to the aggregate surface water ratio measuring method of the present invention according to claim 1, it is possible to accurately calculate the surface water ratio of the aggregate. Therefore, if such an aggregate is used as a concrete material, it becomes possible to accurately correct the amount of water related to the surface water of the aggregate, and the quality of the concrete can be improved.
[0080]
Further, according to the concrete material measuring method of the present invention according to claim 2, since the measurement of the aggregate and water in the container has already been completed in the process of measuring the surface water ratio, it should be measured again. These aggregates and water can be used as concrete materials as they are. And if the amount of water is corrected using the mass Mw of the water obtained in the process of calculating the surface water ratio, blending according to the indicated blending becomes possible. In addition, when the aggregate is insufficient, the water amount can be corrected without measuring the surface water rate of the newly collected aggregate again.
[0081]
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure of an aggregate surface water percentage measuring method according to a first embodiment.
FIG. 2 is a flowchart showing a procedure of a concrete material measurement method according to a second embodiment.
FIG. 3 is a flowchart showing a procedure of an aggregate surface water percentage measuring method according to a third embodiment.
FIG. 4 is a flowchart showing a procedure of a concrete material measurement method according to a fourth embodiment.

Claims (4)

所定の容器内に投入される水の投入量MIを計量し、湿潤状態の骨材を前記水とともに前記容器内に水没させて水浸骨材とし、前記容器内の水浸骨材の全質量Mf及び全容積Vfを計量し、前記全質量Mf及び前記全容積Vfから、前記水浸骨材中の水の質量Mw及び前記骨材が表乾状態にあるときの質量Maを、ρaを表乾状態における骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出し、次いで、前記湿潤状態の骨材の質量Mawを、
aw=Mf―MI (3)
から算出し、算出された前記湿潤状態の骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出することを特徴とする骨材の表面水率測定方法。
The amount of water M I to be charged in a predetermined container is measured, and the wet aggregate is submerged in the container together with the water to form a water-immersed aggregate. The mass M f and the total volume V f are measured, and from the total mass M f and the total volume V f , the mass M w of water in the water-immersed aggregate and the mass when the aggregate is in a surface dry state the M a, the density of the aggregate of the [rho a in-dry state, M and [rho w as the density of water a + M w = M f ( 1)
M a / ρ a + M w / ρ w = V f (2)
Then, the mass M aw of the wet aggregate is calculated as follows :
M aw = M f −M I (3)
Calculated from surface water rate from the mass M aw and the calculated M a of the aggregate of the calculated the wet state (M aw -M a) / surface water aggregate and calculates the M a Rate measurement method.
所定の容器内に投入される水の投入量MIを計量し、湿潤状態の骨材を前記水とともに前記容器内に水没させて水浸骨材とし、前記容器内の水浸骨材の全質量Mf及び全容積Vfを計量し、前記全質量Mf及び前記全容積Vfから、前記水浸骨材中の水の質量Mw、前記骨材が表乾状態にあるときの質量Maを、ρaを表乾状態の骨材の密度、ρwを水の密度として
a+Mw=Mf (1)
a/ρa+Mw/ρw=Vf (2)
から算出し、次いで、前記湿潤状態の骨材の質量Mawを、
aw=Mf―MI (3)
から算出し、算出された前記湿潤状態の骨材の質量Maw及び算出されたMaから表面水率(Maw―Ma)/Maを算出し、次いで、前記容器内の骨材及び水をコンクリート材料とするとともに、前記骨材が貯蔵された貯蔵容器から不足する骨材を採取して補充し、採取された骨材に対して前記表面水率を適用して水量を補正することを特徴とするコンクリート材料の計量方法。
The amount of water M I to be charged in a predetermined container is measured, and the wet aggregate is submerged in the container together with the water to form a water-immersed aggregate. The mass M f and the total volume V f are measured, and from the total mass M f and the total volume V f , the mass M w of the water in the water-immersed aggregate and the mass when the aggregate is in the surface dry state. the M a, the density of aggregate-dry state [rho a, M a [rho w as the density of water a + M w = M f ( 1)
M a / ρ a + M w / ρ w = V f (2)
Then, the mass M aw of the wet aggregate is calculated as follows :
M aw = M f −M I (3)
Calculated from calculated surface water rate (M aw -M a) / M a from the mass M aw and the calculated M a of the calculated aggregate of the wet state, then the aggregate in the container and Using water as a concrete material, collecting and replenishing insufficient aggregate from the storage container in which the aggregate is stored, and correcting the amount of water by applying the surface water ratio to the collected aggregate A method for measuring concrete material characterized by the above.
前記水浸骨材内の空気量をa(%)とし、前記Vfに代えて、Vf・(1―a/100)を用いる請求項1記載の骨材の表面水率測定方法。The air quantity of the water-immersed in aggregate as a (%), the place of the V f, V f · (1 -a / 100) surface water ratio measurement method for a bone material according to claim 1, wherein using. 前記水浸骨材内の空気量をa(%)とし、前記Vfに代えて、Vf・(1―a/100)を用いる請求項2記載のコンクリート材料の計量方法。The air quantity of the water-immersed in aggregate as a (%), the V instead of f, V f · (1- a / 100) weighing of the concrete material according to claim 2 wherein used.
JP2001051567A 2001-02-27 2001-02-27 Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same Expired - Fee Related JP4096285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051567A JP4096285B2 (en) 2001-02-27 2001-02-27 Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001051567A JP4096285B2 (en) 2001-02-27 2001-02-27 Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same

Publications (2)

Publication Number Publication Date
JP2002257817A JP2002257817A (en) 2002-09-11
JP4096285B2 true JP4096285B2 (en) 2008-06-04

Family

ID=18912326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051567A Expired - Fee Related JP4096285B2 (en) 2001-02-27 2001-02-27 Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same

Country Status (1)

Country Link
JP (1) JP4096285B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883938B2 (en) * 2005-05-30 2012-02-22 株式会社熊谷組 Concrete production equipment
JP4932679B2 (en) * 2007-11-08 2012-05-16 株式会社奥村組 Method for calculating specifications of fine aggregate
JP5855911B2 (en) * 2011-11-11 2016-02-09 株式会社安藤・間 Method for measuring surface water ratio of fine aggregate
CN104596880B (en) * 2015-01-27 2017-07-18 厦门华特公路沥青技术有限公司 Cold Recycled Mixture with Emulsified Asphalt upper limit tester for water ratio, assay method and optimum moisture content assay method
CN114018751B (en) * 2021-10-29 2023-06-27 上海建工集团股份有限公司 Continuous measurement device and method for saturated surface dry state of pre-wet aggregate

Also Published As

Publication number Publication date
JP2002257817A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
TW200930682A (en) Hard water foaming agents and methods for gypsum board production
JP3525802B2 (en) Method for measuring surface water ratio of fine aggregate and measuring method of concrete material using the same
JP3525803B2 (en) Concrete material measurement method
JP4096285B2 (en) Method for measuring surface water ratio of aggregate and measuring method of concrete material using the same
JP4672049B2 (en) Method for measuring porosity of hardened cementitious material
JP4096220B2 (en) Concrete material measurement method
JP4793611B2 (en) Method and program for measuring concrete material and recording medium
JP4971273B2 (en) Method for estimating the unit water volume of concrete using an air meter
JP4009819B2 (en) Concrete material measurement method
JP2005283363A (en) Method to measure the amount of water except for water absorption of aggregate of ready-mixed concrete
JP4555244B2 (en) Unit water measurement method for fresh concrete
JP4932679B2 (en) Method for calculating specifications of fine aggregate
JP2002234025A (en) Measuring method for concrete material
JPH11114942A (en) Production of ultra-lightweight aggregate concrete
JP4469547B2 (en) Ready-mixed concrete manufacturing method and manufacturing apparatus
JP4844781B2 (en) Unit water measurement method for fresh concrete
JP4771030B2 (en) Concrete material measurement method
JPH1183718A (en) Method for measuring density of inorganic hydraulic substance and method for measuring unit water content of inorganic hydraulic kneaded matter
JP2002248617A (en) Metering method of concrete material
JP2000061926A (en) Manufacture of concrete
JP4582388B2 (en) Concrete consistency management method
JP4057188B2 (en) Method for evaluating quality of concrete using ultrasonic waves
JP4089760B2 (en) Correction method of surface water content of fine aggregate when mixing concrete
JP2003083861A (en) Simple determination method of water-cement ratio
JP5704305B2 (en) Measurement method of drying shrinkage of hardened concrete and quality judgment method of ready-mixed concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4096285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees