WO2019097667A1 - Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program - Google Patents

Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program Download PDF

Info

Publication number
WO2019097667A1
WO2019097667A1 PCT/JP2017/041441 JP2017041441W WO2019097667A1 WO 2019097667 A1 WO2019097667 A1 WO 2019097667A1 JP 2017041441 W JP2017041441 W JP 2017041441W WO 2019097667 A1 WO2019097667 A1 WO 2019097667A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
unit
command
diagnosis
communication device
Prior art date
Application number
PCT/JP2017/041441
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 向井
一宏 小松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019554140A priority Critical patent/JPWO2019097667A1/en
Priority to PCT/JP2017/041441 priority patent/WO2019097667A1/en
Publication of WO2019097667A1 publication Critical patent/WO2019097667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to a communication abnormality diagnosis device, a communication system, a communication abnormality diagnosis method, and a program.
  • communication systems are known in which a plurality of communication devices are mutually connected via a pair of communication lines.
  • a communication system for example, there is an air conditioning system in which an outdoor unit, an indoor unit, and a remote controller are connected via a pair of communication lines.
  • an outdoor unit, an indoor unit, and a remote controller are connected via a pair of communication lines.
  • Patent Document 1 describes a technique for determining whether or not an abnormality has occurred by analyzing a signal flowing through a transmission path. Further, in Patent Document 1, when it is determined that an abnormality has occurred, the technique of estimating the cause of the occurrence of the abnormality by comparing the waveform data of the signal before and after the abnormality has occurred with the waveform data of the normal signal. Is also described.
  • the signal waveform may be distorted due to an abnormality in the communication path such as an excess wiring length or a connector contact failure, or may be distorted due to a signal collision on the communication line. Therefore, with the technique described in Patent Document 1, it can not be determined whether distortion of the signal waveform is due to an abnormality in the communication path or due to a signal collision, and the abnormality in the communication path could not be diagnosed accurately. Therefore, a technology for accurately diagnosing an abnormality in a communication path is desired.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a communication abnormality diagnosis device, a communication system, a communication abnormality diagnosis method, and a program for accurately diagnosing an abnormality in a communication path.
  • the communication abnormality diagnosis device is: A communication abnormality diagnosis device connected to a communication device via a pair of communication lines, the communication abnormality diagnosis device comprising: The communication device receives the first control command of the control command after the communication device receives the first control command, and a second interval shorter than the first interval defined as the minimum transmission interval of the control command has elapsed. Measuring means for measuring a signal waveform of an ACK command transmitted as an acknowledgment to the control command; A diagnosis unit that diagnoses an abnormality in a communication path from the communication device to the communication abnormality diagnosis apparatus based on the signal waveform measured by the measurement unit; And output means for outputting a diagnosis result by the diagnosis means.
  • a signal of an ACK command transmitted by the communication device when the communication device receives the first control command and a second interval shorter than the first interval determined as the minimum transmission interval of the control command has elapsed.
  • An abnormality in the communication path from the communication device to the communication abnormality diagnosing device is diagnosed based on the waveform. Therefore, according to the present invention, it is possible to diagnose an abnormality of the communication path with high accuracy.
  • the block diagram of the communication system concerning Embodiment 1 of the present invention The block diagram of the outdoor unit which concerns on Embodiment 1 of this invention Functional configuration diagram of the outdoor unit according to Embodiment 1 of the present invention Functional configuration diagram of the indoor unit according to the first embodiment of the present invention Functional configuration diagram of the remote controller according to the first embodiment of the present invention Diagram showing an example of signal waveforms between a pair of communication lines Explanatory drawing of processing performed at the time of signal collision Explanatory drawing of the first interval and the second interval Illustration of waveform feature
  • a flowchart showing communication error diagnosis processing executed by the outdoor unit according to the first embodiment of the present invention A flowchart showing a communication error diagnosis process performed by the outdoor unit according to Embodiment 2 of the present invention
  • a configuration diagram of a communication system according to Embodiment 3 of the present invention Functional configuration diagram of the communication error diagnosis device according to the third embodiment of the present invention
  • Functional configuration diagram of the outdoor unit according to Embodiment 4 of the present invention Functional configuration diagram of the remote controller according to the fourth embodiment
  • the communication system 1000 is a system in which a plurality of communication devices communicate with each other, and is a system including a communication abnormality diagnosis device that diagnoses an abnormality in a communication path between the plurality of communication devices.
  • a communication abnormality diagnosis device that diagnoses an abnormality in a communication path between the plurality of communication devices.
  • the communication system 1000 is an air conditioning system and the communication abnormality diagnosis device is an outdoor unit 100 will be described.
  • the communication abnormality diagnosis device diagnoses an abnormality in a communication path from the first communication device to the second communication device based on a signal waveform of an ACK (Acknowledge) command transmitted from the first communication device to the second communication device. Do.
  • the ACK command is guaranteed not to collide with other commands, as described later.
  • the signal waveform of the ACK command is guaranteed to be free of distortion due to signal collisions. According to the diagnosis based on the signal waveform of the ACK command, the abnormality of the communication path can be accurately detected from the distortion not caused by the signal collision, that is, the distortion caused by the abnormality of the communication path.
  • the communication system 1000 includes an outdoor unit 100, an indoor unit 200, an indoor unit 300, and a remote controller 400.
  • the outdoor unit 100, the indoor unit 200, the indoor unit 300, and the remote controller 400 are mutually connected by a pair of communication lines including a communication line 510 and a communication line 520.
  • each of the outdoor unit 100, the indoor unit 200, the indoor unit 300, and the remote controller 400 will be referred to as communication devices as appropriate.
  • the communication device that is the communication abnormality diagnosis device may not be called a communication device.
  • the communication device changes the voltage applied between the pair of communication lines to transmit a command. Further, the communication device detects the level of the voltage between the pair of communication lines or the presence or absence of a change in the voltage between the pair of communication lines, and receives the command.
  • data transmitted and received via a pair of communication lines is called a command, and the command is not necessarily limited to data that means any command.
  • one command is transmitted and received as one frame.
  • Control commands are roughly divided into control commands and ACK commands.
  • the control command is a command for instructing control of the communication device of the transmission destination, a command of requesting transmission of data to the communication device of the transmission destination, a command for transmitting data to the communication device of the transmission destination, or the like.
  • the ACK command is a command for the communication device that has received the control command to notify the communication device of the transmission source of the control command that the control command has been normally received.
  • the outdoor unit 100 is an air conditioner arranged outside the room which is the target space of the air conditioning control in the air conditioning system.
  • the outdoor unit 100 has a function as a communication abnormality diagnosis device in addition to the function as an air conditioner.
  • the function as the communication error diagnosis device includes the function as the waveform measurement device.
  • the outdoor unit 100 includes a communication unit 11, a measurement unit 12, a storage unit 13, a main unit 14, an operation reception unit 15, a display unit 16, and a control unit 17.
  • the measuring unit 12 corresponds to a measuring unit.
  • the display unit 16 corresponds to display means.
  • the communication unit 11 is a communication interface for connecting the outdoor unit 100 to the indoor unit 200, the indoor unit 300, and the remote controller 400 via a pair of communication lines.
  • the communication unit 11 transmits and receives a command configured by a combination of 1 and 0 under the control of the control unit 17.
  • the communication unit 11 executes serial communication in accordance with a carrier sense multiple access with collision detection (CSMA / CD) method.
  • the communication unit 11 communicates by a baseband modulation method using a transmission path code such as AMI (Alternate Mark Inversion cord), NRZ (Non Return to Zero), CMI (Code Mark Inversion code), or the like.
  • AMI Alternate Mark Inversion cord
  • NRZ Non Return to Zero
  • CMI Code Mark Inversion code
  • the communication unit 11 sets the voltage between the pair of communication lines to E (V) when transmitting 1 and sets the voltage between the pair of communication lines to 0 (V) when transmitting 0.
  • the communication unit 11 switches the voltage to be applied between the pair of communication lines, for example, each time a period corresponding to the communication speed of 9600 bps elapses. Further, the communication unit 11 transmits 1 to the control unit 17 when the voltage between the pair of communication lines is E (V), and 0 when the voltage between the pair of communication lines is 0 (V). Transmit to control unit 17.
  • the communication unit 11 executes, for example, a process of converting the voltage applied between the pair of communication lines into 1 or 0 and transmitting the voltage to the control unit 17 each time a period corresponding to the communication speed of 9600 bps elapses.
  • the measurement unit 12 measures a signal waveform of a command transmitted and received on the pair of communication lines.
  • the measurement unit 12 measures a voltage waveform between the pair of communication lines according to the control of the control unit 17. That is, the measurement unit 12 samples the voltage between the pair of communication lines at a predetermined cycle.
  • the measurement unit 12 causes the storage unit 13 to store information indicating the signal waveform obtained by the measurement (hereinafter, referred to as “waveform information” as appropriate).
  • the measurement unit 12 includes, for example, an A / D (Analog / Digital) converter.
  • the storage unit 13 stores various kinds of data necessary for the air conditioning control process and the communication abnormality diagnosis process executed by the outdoor unit 100.
  • the storage unit 13 stores, for example, an air conditioning control program for executing the air conditioning control process and a communication abnormality diagnosis program for executing the communication abnormality diagnosis process.
  • the storage unit 13 also stores the waveform information supplied from the measurement unit 12.
  • the storage unit 13 stores reference value information indicating a reference value of the waveform feature amount.
  • the storage unit 13 includes, for example, a readable and writable non-volatile semiconductor memory such as a flash memory and an EEPROM (Electrically Erasable Programmable Read-Only Memory).
  • the main unit 14 is a component for realizing the function as an air conditioner among the functions of the outdoor unit 100.
  • the main unit 14 includes, for example, a compressor, a condenser, an expansion valve, and an evaporator.
  • the operation reception unit 15 receives an operation related to the air conditioning control process and the communication abnormality diagnosis process from the user.
  • the operation related to the air conditioning control process is, for example, an operation setting operation, an operation output setting operation, and a setting temperature changing operation.
  • the setting operation of the operation mode is, for example, an operation of setting any one of a heating operation mode, a cooling operation mode, a dehumidifying operation mode, and a blowing operation mode.
  • the operation relating to the communication error diagnosis process is, for example, an operation instructing the start of the communication error diagnosis process, and an operation designating a communication path to be a diagnosis target of the communication error.
  • the communication path is specified by, for example, two communication devices connected to both ends of the communication path.
  • the operation reception unit 15 includes, for example, a touch screen and a button.
  • the display unit 16 displays information on the air conditioning control process and the communication abnormality diagnosis process.
  • the information related to the air conditioning control process is, for example, information indicating an operation mode, information indicating an operation output, and information indicating a set temperature.
  • the information related to the communication error diagnosis process is, for example, information indicating a diagnosis result.
  • the information indicating the diagnosis result is, for example, information indicating the communication path and the presence or absence of abnormality in association with each other.
  • the display unit 16 includes, for example, a touch screen and a liquid crystal display.
  • the control unit 17 generally controls the outdoor unit 100. That is, the control unit 17 executes the process related to the air conditioning control process and the communication abnormality diagnosis process.
  • the control unit 17 includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a real time clock (RTC).
  • the CPU operates according to a program stored in the ROM and uses the RAM as a work area.
  • the CPU has a function of clocking based on the information supplied from the RTC.
  • the control unit 17 functionally includes a transmission / reception unit 171, a measurement instruction unit 174, a diagnosis unit 175, an output unit 178, and an air conditioning control unit 179. These functional units are realized by the CPU executing the air conditioning control program and the communication abnormality diagnosis program stored in the storage unit 13.
  • the measurement instruction unit 174 corresponds to a measurement instruction unit.
  • the diagnostic unit 175 corresponds to the diagnostic means.
  • the output unit 178 corresponds to the output means.
  • the transmission and reception unit 171 controls transmission and reception of commands by the communication unit 11.
  • the transmitting and receiving unit 171 includes a transmitting unit 172 and a receiving unit 173.
  • the transmission unit 172 corresponds to a transmission unit.
  • the receiving unit 173 corresponds to a receiving unit.
  • the transmission unit 172 transmits a command via the communication unit 11.
  • the transmitting unit 172 supplies a binary number forming a command to the communication unit 11, and causes the communication unit 11 to apply a voltage according to the binary number forming the command between the pair of communication lines.
  • the transmitting unit 172 transmits a test command to a communication device (hereinafter, appropriately referred to as a “communication device of the other party of communication” as appropriate) that transmits an ACK command.
  • the test command is a control command for transmitting an ACK command to the communication device of the communication partner.
  • the test command is preferably a control command that does not force processing other than the processing for transmitting the ACK command to the communication device of the communication partner.
  • the processing other than the processing for transmitting the ACK command is, for example, processing for executing control or processing for receiving data.
  • the test command is a type of first control command.
  • the first control command is a control command that requests transmission of an ACK command.
  • the first control command other than the test command is, for example, a control command that imposes some control on the communication device at the other end of communication and a process of transmitting an ACK command, or transmits some data to the communication device at the other end of communication Is a control command that forces the process of sending
  • the receiving unit 173 receives a command via the communication unit 11. For example, the receiving unit 173 reconstructs a command from the binary number supplied from the communication unit 11. The receiving unit 173 receives an ACK command from the communication device of the communication partner.
  • the measurement instruction unit 174 instructs the measurement unit 12 to measure the signal waveform according to the transmission / reception status of the command by the transmission / reception unit 171.
  • the measurement instruction unit 174 instructs the measurement unit 12 to measure the signal waveform of the ACK command transmitted by the communication device of the communication partner.
  • the communication device of the communication partner transmits an ACK command as an acknowledgment to the first control command when the second interval has elapsed since the reception of the first control command.
  • the second interval is shorter than the first interval defined as the minimum transmission interval of the control command.
  • the first interval is about 20 msec
  • the second interval is about 5 msec.
  • the measurement instruction unit 174 determines, between the pair of communication lines in a period until the reception unit 173 completes reception of the ACK command after the second interval elapses after transmission of the test command by the transmission unit 172 is completed.
  • the measurement unit 12 is instructed to measure the voltage waveform.
  • the diagnosis unit 175 diagnoses an abnormality in the communication path from the communication device of the communication partner to the outdoor unit 100, which is a communication diagnosis device.
  • the diagnosis unit 175 includes a feature amount detection unit 176 and a determination unit 177.
  • the feature amount detection unit 176 corresponds to a feature amount determination unit.
  • the determination unit 177 corresponds to the determination unit.
  • the feature amount detection unit 176 detects, from the signal waveform measured by the measurement unit 12, a waveform feature amount including at least one of a peak value, a sag, a pulse width, a rise time, and a fall time.
  • the predetermined range (hereinafter referred to as “reference value range” as appropriate) is, for example, a waveform calculated from the reference value of the waveform feature amount from the lower limit value of the waveform feature amount calculated from the reference value of the waveform feature amount It is a range up to the upper limit value of the feature amount.
  • the lower limit value of the waveform feature amount is, for example, 80% of the reference value of the waveform feature amount.
  • the upper limit value of the waveform feature amount is, for example, 120% of the reference value of the waveform feature amount.
  • the reference value information stored in the storage unit 13 indicates the reference values of the waveform feature amounts of the peak value, the sag, the pulse width, the rise time, and the fall time.
  • the output unit 178 outputs the diagnosis result by the diagnosis unit 175.
  • the output unit 178 outputs information indicating the diagnosis result to the display unit 16 and causes the display unit 16 to display the diagnosis result.
  • the air conditioning control unit 179 controls the main unit 14 to control air conditioning.
  • the air conditioning control unit 179 controls the air conditioning in accordance with, for example, the operation accepted by the operation accepting unit 15 and the control command received by the receiving unit 173.
  • the indoor unit 200 is an air conditioner disposed in a room which is a target space of air conditioning control in the air conditioning system.
  • the indoor unit 200 has a function as an air conditioner and does not have a function as a communication abnormality diagnosis device.
  • the indoor unit 200 includes a communication unit 21, a storage unit 23, a main unit 24, and a control unit 27.
  • the communication unit 21 is a communication interface for connecting the indoor unit 200 to the outdoor unit 100, the indoor unit 300, and the remote controller 400 via a pair of communication lines.
  • the communication unit 21 transmits and receives a command configured by a combination of 1 and 0 under the control of the control unit 27.
  • the function of the communication unit 21 is basically the same as the function of the communication unit 11.
  • the storage unit 23 stores various data required for the air conditioning control process performed by the indoor unit 200.
  • the storage unit 23 stores, for example, an air conditioning control program for executing the air conditioning control process.
  • the storage unit 23 includes, for example, a readable and writable non-volatile semiconductor memory such as a flash memory and an EEPROM.
  • the main unit 24 is a component for realizing the function as an air conditioner.
  • the main unit 24 includes, for example, a fan, a heat exchanger, and a temperature sensor.
  • the control unit 27 generally controls the indoor unit 200. That is, the control unit 27 executes a process related to the air conditioning control process.
  • the control unit 27 includes, for example, a CPU, a ROM, a RAM, and an RTC.
  • the CPU operates according to a program stored in the ROM and uses the RAM as a work area.
  • the CPU has a function of clocking based on the information supplied from the RTC.
  • control unit 27 functionally includes a transmission / reception unit 271 and an air conditioning control unit 279. These functional units are realized by the CPU executing the air conditioning control program stored in the storage unit 23.
  • the transmission and reception unit 271 controls transmission and reception of commands by the communication unit 21.
  • the transmitting and receiving unit 271 includes a transmitting unit 272 and a receiving unit 273.
  • the transmission unit 272 corresponds to a transmission unit.
  • the receiving unit 273 corresponds to a receiving unit.
  • the transmission unit 272 transmits a command via the communication unit 21.
  • the receiving unit 273 receives the command via the communication unit 21.
  • the transmitting unit 272 transmits an ACK command as a positive response to the first control command when the second interval has elapsed since the reception unit 273 received the first control command. For example, when the second interval has elapsed since the reception unit 273 receives the test command from the outdoor unit 100, the transmission unit 27 transmits, to the outdoor unit 100, an ACK command for the test command.
  • the air conditioning control unit 279 controls the main unit 24 to control air conditioning.
  • the air conditioning control unit 279 controls the air conditioning, for example, in accordance with the control command received by the receiving unit 273.
  • the indoor unit 300 is an air conditioner disposed in a room which is a target space of air conditioning control in the air conditioning system.
  • the indoor unit 300 has a function as an air conditioner and does not have a function as a communication abnormality diagnosis device.
  • the configuration of the indoor unit 300 is basically the same as the configuration of the indoor unit 200. That is, the indoor unit 300 has the same configuration as the communication unit 21, the storage unit 23, the main unit 24, the control unit 27, and the like. Since the function of the indoor unit 300 is basically the same as the function of the indoor unit 200, the description will be omitted.
  • the remote controller 400 is an operation terminal that remotely controls the outdoor unit 100, the indoor unit 200, and the indoor unit 300 in the air conditioning system.
  • the remote controller 400 has a function as an operation terminal and does not have a function as a communication abnormality diagnosis device.
  • the remote controller 400 includes a communication unit 41, a storage unit 43, an operation receiving unit 45, a display unit 46, and a control unit 47.
  • the display unit 46 corresponds to display means.
  • the communication unit 41 is a communication interface for connecting the remote controller 400 to the outdoor unit 100, the indoor unit 200, and the indoor unit 300 via a pair of communication lines.
  • the communication unit 41 transmits and receives a command configured by a combination of 1 and 0 under the control of the control unit 47.
  • the function of the communication unit 41 is basically the same as the function of the communication unit 11.
  • the storage unit 43 stores various data required for the remote control process performed by the remote controller 400.
  • the storage unit 43 stores, for example, a remote control program for executing the remote control process.
  • the storage unit 43 includes, for example, a readable and writable non-volatile semiconductor memory such as a flash memory and an EEPROM.
  • the operation receiving unit 45 receives an operation related to the remote control process from the user.
  • the operation relating to the remote control process is, for example, an operation for setting the operation mode, an operation for setting the operation output, and an operation for changing the set temperature.
  • the operation receiving unit 45 includes, for example, a touch screen and a button.
  • the display unit 46 displays information on the remote control process.
  • the information related to the remote control process is, for example, information indicating an operation mode, information indicating an operation output, and information indicating a set temperature.
  • the display unit 46 includes, for example, a touch screen and a liquid crystal display.
  • the control unit 47 centrally controls the remote controller 400. That is, the control unit 47 executes a process related to the remote control process.
  • the control unit 47 includes, for example, a CPU, a ROM, a RAM, and an RTC.
  • the CPU operates according to a program stored in the ROM and uses the RAM as a work area.
  • the CPU has a function of clocking based on the information supplied from the RTC.
  • the control unit 47 functionally includes a transmission / reception unit 471.
  • the functional unit is realized by the CPU executing the remote control program stored in the storage unit 43.
  • the transmission and reception unit 471 controls transmission and reception of a command by the communication unit 41.
  • the transmitting and receiving unit 471 includes a transmitting unit 472 and a receiving unit 473.
  • the transmission unit 472 corresponds to a transmission unit.
  • the receiving unit 473 corresponds to a receiving unit.
  • the transmission unit 472 transmits a command via the communication unit 41.
  • the receiving unit 473 receives the command via the communication unit 41.
  • the transmitting unit 472 transmits an ACK command as a positive response to the first control command when the second interval has elapsed since the receiving unit 473 received the first control command. For example, when the second interval has elapsed since the reception unit 473 receives the test command from the outdoor unit 100, the transmission unit 472 transmits, to the outdoor unit 100, an ACK command for the test command.
  • Communication line 510 and communication line 520 constitute a pair of communication lines for the outdoor unit 100, the indoor unit 200, the indoor unit 300 and the remote controller 400 to mutually communicate.
  • a voltage of E (V) or 0 (V) is applied between the pair of communication lines.
  • the pair of communication lines connect the outdoor unit 100, the indoor unit 200, the indoor unit 300, and the remote controller 400 in series.
  • the baseband modulation methods include the NRZ method using NRZ as a transmission line code, the RZ method using RZ as a transmission line code, and the AMI method using AMI as a transmission line code.
  • a voltage between a pair of communication lines is maintained at E (V) or 0 (V) during a period representing a code for one bit (hereinafter, appropriately referred to as “one bit period”).
  • the voltage between a pair of communication lines is maintained at E (V) in a 1-bit period representing 1 and the voltage between a pair of communication lines is 0 (V) in a 1-bit period representing 0. Maintained.
  • the first half period of one bit period is maintained at E (V) or 0 (V), and the second half period of one bit period is maintained at E (V).
  • the voltage between a pair of communication lines is maintained at E (V) during 1 bit period representing 1 and the first half period of 1 bit period representing 0 is a pair
  • the voltage between the communication lines is maintained at 0 (V)
  • the voltage between the pair of communication lines is maintained at E (V) in the second half of the 1-bit period representing 0.
  • E (V), -E (V) or 0 (V) is maintained in the first half of one bit period, and E (V) in the second half of one bit period. Maintained).
  • E (V) in the AMI system with a duty ratio of 50%
  • the voltage between a pair of communication lines is maintained at 0 (V) during 1 bit period representing 1 and the first half period of 1 bit period representing 0 is a pair
  • the voltage between the communication lines is maintained at E (V) or -E (V)
  • the voltage between the pair of communication lines is maintained at 0 (V) in the second half of the 1-bit period representing 0.
  • the polarity of the voltage between the pair of communication lines is switched every time 0 is transmitted.
  • the logic assigned to the voltage between the pair of communication lines can be reversed.
  • the signal waveform may be greatly distorted.
  • An abnormality in the communication path is a failure in the communication path, for example, a contact failure between the communication line 510 or communication line 520 and the communication device, or a specified length in which the total length of the communication line 510 or communication line 520 is predetermined. This is an abnormality caused by the excess communication line length.
  • the signal waveform is greatly distorted, for example, the peak value of the signal waveform is significantly reduced.
  • the cause of distortion of the signal waveform is not limited to an abnormality in the communication path, but may be a collision of control commands.
  • the winning communication device can not detect that the control command has collided. That is, when diagnosing an abnormality in the communication path based on the signal waveform of the control command, if there is a collision of control commands even if there is no abnormality in the communication path, it may be diagnosed as an abnormality in the communication path. Therefore, in the present embodiment, the abnormality in the communication path is diagnosed based on the signal waveform of the ACK command secured not to collide with another command.
  • the reason why the ACK command is a command secured not to collide with other commands will be described.
  • the winning CDMA / CD system will be described with reference to FIG.
  • communication control according to the winning CDMA / CD system is realized according to the following procedures (1) to (6).
  • the communication device issues a control command transmission request.
  • (2) Wait until the no signal time on the pair of communication lines, which has been constantly measured, becomes equal to or greater than the first interval.
  • the process immediately shifts to (3).
  • the non-signal time is a time during which no signal appears on the pair of communication lines. That is, the no signal time is the length of a period in which the bit data constituting the command is not transmitted.
  • FIG. 7 shows an example when the transmission data of the indoor unit 200 and the transmission data of the indoor unit 300 collide.
  • the transmission data of the indoor unit 200 is a control command transmitted by the indoor unit 200.
  • the transmission data of the indoor unit 300 is a control command transmitted by the indoor unit 300.
  • data on a pair of communication lines is 0 when one or more communication devices transmit 0, 1 when all communication devices transmit 1 or all communication devices do not transmit data.
  • the indoor unit 200 From the first bit to the third bit, the data transmitted by the indoor unit 200 matches the data on the pair of communication lines. Therefore, the indoor unit 200 does not detect a data collision from the first bit to the third bit.
  • the data transmitted by the indoor unit 200 does not match the data on the pair of communication lines. Therefore, at the 4th bit, the indoor unit 200 detects that the data on the pair of communication lines is 0 even though the data transmitted by the indoor unit 200 is 1, and detects a data collision. . Then, the indoor unit 200 stops the transmission of the data of the fifth and subsequent bits.
  • the data transmitted by the indoor unit 300 matches the data on the pair of communication lines over all the bits. Therefore, the indoor unit 300 does not detect data collisions until all bits are transmitted.
  • the control command includes, for example, a header, a destination address, a self address, a command length, a command type, command data, and a check code.
  • the header is header information of the control command.
  • the destination address is the address of the communication device to which the control command is to be sent.
  • the self address is the address of the communication device that has sent the control command.
  • a unique address in the communication system 1000 is assigned to the communication device. Therefore, when control commands are simultaneously transmitted from a plurality of communication devices, at least a difference occurs in the self address, so that signal collision is detected at the latest before the transmission of the self address is completed.
  • the command length is the length of the control command.
  • the command type is a type of whether it is a normal control command or a test command.
  • the normal control command is a control command other than the test command.
  • Command data is the content of the control command.
  • the check code is data for detecting a data error of the received control command.
  • the data format of the ACK command may be the same as the data format of the control command, or may be different from the data format of the control command.
  • the first interval is an interval defined as the minimum transmission interval of the control command, and is a non-signal time which should be secured at a minimum immediately before the control command is transmitted.
  • the communication device can not transmit the control command during the period from the completion of the transmission of the immediately preceding command to the elapse of the first interval.
  • the immediately preceding command may be a control command or an ACK command.
  • the command immediately before this may be a command transmitted by the communication device that transmits the control command, or may be a command transmitted by another communication device. That is, regardless of whether the immediately preceding command is the command transmitted by itself or the immediately preceding command is the control command or the ACK command, the first interval is before the transmission of the control command. It is an interval to be secured.
  • the communication device immediately starts transmission of the control command when the transmission request of the control command is generated after the first interval has elapsed since the transmission of the immediately preceding command is completed.
  • the communication device requests transmission of the control command before the first interval elapses after transmission of the immediately preceding command is completed, the first interval elapses after transmission of the immediately preceding command is completed. Wait until and then start sending control commands.
  • a plurality of communication devices enter a standby state during the period from the completion of the transmission of the immediately preceding command to the elapse of the first interval, the transmission of control commands is simultaneously started, and a signal collision occurs.
  • the second interval is an interval defined as a waiting time from the completion of transmission of a control command to the start of transmission of an ACK command, and is a no-signal time secured immediately before transmission of the ACK command. is there.
  • the second interval is set shorter than the first interval. Therefore, the ACK command transmitted in response to the control command for which transmission has been completed is always transmitted before other control commands. Therefore, the ACK command does not collide with other commands, and the signal waveform of the ACK command does not distort due to the signal collision. That is, by detecting communication abnormality of the communication path based on the signal waveform of the ACK command, it is possible to eliminate false detection caused by signal collision.
  • the waveform feature amount includes, for example, a peak value, a sag, a pulse width, a rise time, and a fall time.
  • the peak value is the maximum value of the voltage of the pulse.
  • the sag is the difference between the voltage at the rise of the pulse and the voltage at the onset of the fall of the pulse, and is the drop in voltage at the top of the pulse.
  • the magnitude of the sag is expressed as a ratio of the voltage drop value to the peak value.
  • the pulse width is the time from when the voltage of the pulse rises to 50% of the peak value to when it falls to 50% of the peak value.
  • the rise time is the time taken for the voltage of the pulse to increase from 10% of the peak value to 90% of the peak value.
  • the fall time is the time taken for the voltage of the pulse to decrease from 90% of the peak value to 10% of the peak value.
  • the communication error diagnosis process is repeatedly performed, for example, while the outdoor unit 100 is powered on.
  • the control unit 17 determines whether or not there is a start instruction (step S101). The control unit 17 determines, for example, whether or not an operation instructing the start of the communication error diagnosis process has been performed on the operation receiving unit 15 by the user. If the control unit 17 determines that there is no start instruction (step S101: NO), the process returns to step S101. On the other hand, when determining that there is a start instruction (step S101: YES), the control unit 17 selects a communication device (step S102). The control unit 17 selects one communication device from the indoor unit 200, the indoor unit 300, and the remote controller 400.
  • the control unit 17 transmits a test command to the selected communication device (step S103). Specifically, the transmission unit 172 transmits, via the communication unit 11, a test command in which the address of the selected communication device is set as the destination address and the address of the outdoor unit 100 is set as the self address. Do. The transmitting unit 172 transmits the test command after the no-signal time exceeds the first interval. The no signal time can be measured by measuring the elapsed time after the reception unit 173 completes the reception of the last command. In the present embodiment, the receiving unit 173 receives the command even if the command is not directed to the outdoor unit 100.
  • the selected communication device that is, the communication device that has received the test command, transmits an ACK command after the second interval has elapsed since the reception of the test command is completed.
  • the control unit 17 stands by until the second interval elapses from the transmission of the test command (step S104).
  • step S105 After completing the process of step S104, the control unit 17 starts measurement of the signal waveform (step S105). Specifically, measurement instruction unit 174 transmits to measurement unit 12 a start instruction signal instructing the start of measurement of the signal waveform. On the other hand, in response to the reception of the start instruction signal, measurement unit 12 starts sampling of the voltage between the pair of communication lines, and starts measurement of the signal waveform.
  • the control unit 17 receives an ACK command (step S106). Specifically, the receiving unit 173 receives the ACK command transmitted from the selected communication device via the communication unit 11.
  • the control unit 17 ends the measurement of the signal waveform (step S107). Specifically, measurement instruction unit 174 transmits, to measurement unit 12, an end instruction signal instructing the end of measurement of the signal waveform. On the other hand, in response to the reception of the termination instruction signal, the measurement unit 12 terminates the sampling of the voltage between the pair of communication lines, and terminates the measurement of the signal waveform. The measuring unit 12 causes the storage unit 13 to store waveform information indicating the measured signal waveform.
  • the control unit 17 detects the waveform feature amount (step S108). Specifically, the feature quantity detection unit 176 detects various waveform feature quantities for each bit from the signal waveform indicated by the waveform information stored in the storage unit 13.
  • the control unit 17 diagnoses an abnormality of the communication path (step S109). Specifically, the determination unit 177 determines, for each bit, whether or not the waveform feature amount detected by the feature amount detection unit 176 falls within the reference value range indicated by the reference value information stored in the storage unit 13. And it discriminates for every kind of waveform feature amount. Then, when determining that all types of waveform feature amounts for all bits are within the reference value range, the determination unit 177 determines that there is no abnormality in the communication path. On the other hand, when determining that one of the waveform feature quantities of any type is out of the reference value range in any of the bits, the determination unit 177 determines that there is an abnormality in the communication path.
  • the communication path is a communication path from the selected communication device to the outdoor unit 100.
  • step S110 determines whether there is an unselected communication device.
  • step S110: YES the control unit 17 returns the process to step S102, and newly selects an unselected communication device.
  • step S110: NO the control unit 17 displays a diagnosis result (step S111).
  • the output unit 178 supplies information indicating the diagnosis result acquired from the diagnosis unit 175 to the display unit 16 and causes the display unit 16 to display the diagnosis result.
  • the display unit 16 displays the diagnosis result based on the information indicating the diagnosis result.
  • the display unit 16 displays the diagnosis result by, for example, associating and displaying the information indicating the communication path and the information indicating the diagnosis result.
  • the display 16 has no abnormality in the communication path from the outdoor unit 100 to the indoor unit 200. There is no abnormality in the communication path from the outdoor unit 100 to the indoor unit 300. Communication from the outdoor unit 100 to the remote controller 400 There is an abnormality in the path, so it is presumed that there is an abnormality in the communication path from the indoor unit 300 to the remote controller 400.
  • the control unit 17 completes the process of step S111, the process returns to step S101.
  • An abnormality in the communication path from the communication device to the communication abnormality diagnosis device is diagnosed based on the signal waveform. That is, in the present embodiment, an abnormality in the communication path is diagnosed on the basis of the signal waveform of the ACK command guaranteed to be free from command collision. Therefore, according to the present embodiment, it is possible to diagnose an abnormality of the communication path with high accuracy.
  • a test command for causing the communication device to transmit an ACK command is transmitted to the communication device. Therefore, according to the present embodiment, it is possible to diagnose abnormality of the communication path promptly and accurately.
  • the communication path is abnormal. It is determined. Therefore, according to the present embodiment, it is possible to diagnose abnormality of the communication path promptly and accurately.
  • the outdoor unit 100 that is an air conditioner is the communication abnormality diagnosis device.
  • the configuration provided in the outdoor unit 100, for example, the communication unit 11 and the transmission / reception unit 171 can be diverted as the configuration of the communication abnormality diagnosis device. Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path with high accuracy at low cost.
  • the outdoor unit 100 serving as the communication error diagnosis device acquires a signal waveform of an ACK command transmitted in response to the communication device receiving a test command from the outdoor unit 100.
  • the outdoor unit 100 which is the communication abnormality diagnosis device, transmits in response to the communication device receiving the first control command from another communication device (hereinafter, appropriately referred to as "second communication device").
  • second communication device An example of acquiring a signal waveform of an ACK command will be described.
  • the configuration of the outdoor unit 100 according to the present embodiment is basically the same as the configuration of the outdoor unit 100 shown in FIG.
  • the communication error diagnosis process is repeatedly performed, for example, while the outdoor unit 100 is powered on.
  • the control unit 17 determines whether there is a first control command for requesting an ACK command (step S201). For example, the control unit 17 determines whether the receiving unit 173 receives a first control command in which the address of a communication device other than the outdoor unit 100 is set as the destination address and the address of the second communication device is set as the own address. Determine if In the present embodiment, the reception unit 173 also receives a command not addressed to the outdoor unit 100. If the control unit 17 determines that there is no first control command requesting an ACK command (step S201: NO), the process returns to step S201.
  • control unit 17 determines that there is a first control command requesting an ACK command (step S201: YES)
  • the control unit 17 stands by until a second interval elapses from the transmission of the first control command (step S202). That is, the control unit 17 waits until the second interval elapses after the reception unit 173 completes the reception of the first control command.
  • step S203 the control unit 17 starts measurement of the signal waveform.
  • step S204 the control unit 17 waits until the transmission of the ACK command is completed. Specifically, the reception unit 173 waits until the reception of the ACK command is completed.
  • control unit 17 When the control unit 17 completes the process of step S204, the control unit 17 ends the measurement of the signal waveform (step S205). When the process of step S205 is completed, the control unit 17 detects the waveform feature amount (step S206). When the process of step S206 is completed, the control unit 17 diagnoses an abnormality of the communication path (step S207).
  • the communication path is a communication path from the communication device which has received the first control command and transmitted the ACK command to the outdoor unit 100.
  • step S208 the control unit 17 displays the diagnosis result (step S208). Specifically, the output unit 178 supplies information indicating the diagnosis result acquired from the diagnosis unit 175 to the display unit 16 and causes the display unit 16 to display the diagnosis result. On the other hand, the display unit 16 displays the diagnosis result based on the information indicating the diagnosis result. For example, the display unit 16 displays a message “There is no abnormality in the communication path from the outdoor unit 100 to the indoor unit 200.” Preferably, the message displayed by the display unit 16 is added or updated each time an ACK command is transmitted by a new communication device.
  • the control unit 17 completes the process of step S208, the process returns to step S201.
  • communication from the communication device to the communication abnormality diagnosis device based on the signal waveform of the ACK command transmitted to the second communication device in response to the first control command received from the second communication device.
  • An abnormality in the pathway is diagnosed. That is, in the present embodiment, there is no need for the communication abnormality diagnosis device to transmit a test command in order to cause the communication device to transmit an ACK command. Therefore, according to the present embodiment, it is possible to diagnose an abnormality of the communication path with high accuracy with a simple configuration.
  • the communication abnormality diagnosis device is the outdoor unit 100
  • the communication abnormality diagnosis device may or may not be an air conditioner other than the outdoor unit 100.
  • the air conditioners other than the outdoor unit 100 are, for example, the indoor unit 200, the indoor unit 300, or the remote controller 400.
  • the communication abnormality diagnosis device is not an air conditioner, that is, an example in which the communication abnormality diagnosis device is not incorporated in an air conditioner will be described.
  • the communication system 1100 includes an outdoor unit 110, an indoor unit 200, an indoor unit 300, a remote controller 400, and a communication abnormality diagnosis device 600.
  • the configuration of the outdoor unit 110 is basically the configuration excluding the configuration relating to the communication abnormality diagnosis processing from the configuration of the indoor unit 100.
  • the communication abnormality diagnosis device 600 includes a communication unit 61, a measurement unit 62, a storage unit 63, an operation reception unit 65, a display unit 66, and a control unit 67.
  • the measuring unit 62 corresponds to a measuring unit.
  • the display unit 66 corresponds to display means.
  • the communication unit 61, the measurement unit 62, the storage unit 63, the operation reception unit 65, the display unit 66, and the control unit 67 basically have the communication unit 11, the measurement unit 12, the storage unit 13, and the operation reception unit 15, respectively.
  • the configuration is the same as that of the display unit 16 and the control unit 17. That is, the configuration of the communication abnormality diagnosis device 600 is basically a configuration in which the main unit 14 is excluded from the configuration of the outdoor unit 100.
  • the communication error diagnosis device 600 also has a function as a waveform measurement device.
  • the communication unit 61 is a communication interface for connecting the communication abnormality diagnosis device 600 to the outdoor unit 110, the indoor unit 200, the indoor unit 300, and the remote controller 400 via the pair of communication lines.
  • the measuring unit 62 measures a signal waveform of a command transmitted and received on the pair of communication lines.
  • the storage unit 63 stores various data necessary for the communication error diagnosis process performed by the communication error diagnosis device 600.
  • the storage unit 63 stores, for example, a communication abnormality diagnosis program for executing communication abnormality diagnosis processing.
  • the storage unit 63 stores the waveform information supplied from the measurement unit 62.
  • the storage unit 63 stores reference value information indicating a reference value of the waveform feature amount.
  • the control unit 67 generally controls the communication abnormality diagnosis device 600. That is, the control unit 67 executes a process related to the communication error diagnosis process.
  • the control unit 67 functionally includes a transmission / reception unit 671, a measurement instruction unit 674, a diagnosis unit 675, and an output unit 678.
  • the measurement instruction unit 674 corresponds to a measurement instruction unit.
  • the diagnostic unit 675 corresponds to the diagnostic means.
  • the output unit 678 corresponds to the output unit.
  • the transmission / reception unit 671, the measurement instruction unit 674, the diagnosis unit 675, and the output unit 678 basically have the same configuration as the transmission / reception unit 171, the measurement instruction unit 174, the diagnosis unit 175, and the output unit 178. That is, the functional configuration of the control unit 67 is basically a configuration in which the air conditioning control unit 179 is excluded from the functional configuration of the control unit 17.
  • the transmission and reception unit 671 controls transmission and reception of the command by the communication unit 61.
  • the transmitting and receiving unit 671 includes a transmitting unit 672 and a receiving unit 673.
  • the transmission unit 672 corresponds to a transmission unit.
  • the receiving unit 673 corresponds to a receiving unit.
  • the transmission unit 672 transmits a command via the communication unit 61.
  • the receiving unit 673 receives the command via the communication unit 61.
  • the measurement instruction unit 674 instructs the measurement unit 62 to measure the signal waveform according to the transmission / reception status of the command by the transmission / reception unit 671.
  • the diagnosis unit 675 diagnoses an abnormality in the communication path from the communication device of the communication partner to the communication abnormality diagnosis device 600.
  • the diagnosis unit 675 includes a feature detection unit 676 and a determination unit 677.
  • the feature amount detection unit 676 corresponds to a feature amount detection unit.
  • the determination unit 677 corresponds to the determination unit.
  • the feature amount detection unit 676 detects, from the signal waveform measured by the measurement unit 62, a waveform feature amount including at least one of the peak value, the sag, the pulse width, the rise time, and the fall time. When the waveform feature amount detected by the feature amount detection unit 676 is out of a predetermined range, the determination unit 677 determines that the communication path is abnormal.
  • the output unit 678 outputs the diagnosis result by the diagnosis unit 675.
  • the communication abnormality diagnosis device 600 is disposed in the vicinity of the indoor unit 200, and the connection portion between the communication abnormality diagnosis device 600 and the pair of communication lines and the connection portion between the indoor unit 200 and the pair of communication lines are extremely It will be close. Therefore, with regard to the diagnosis of the communication path, it can be regarded that the communication abnormality diagnosis device 600 is incorporated in the indoor unit 200.
  • the communication path from the outdoor unit 110 to the communication abnormality diagnosis device 600 can be regarded as the communication path from the outdoor unit 110 to the indoor unit 200.
  • the communication path from the indoor unit 300 to the communication abnormality diagnosis device 600 can be regarded as the communication path from the indoor unit 300 to the indoor unit 200.
  • the communication path from the remote controller 400 to the communication abnormality diagnosis device 600 can be regarded as the communication path from the remote controller 400 to the indoor unit 200.
  • the communication unit from the outdoor unit 100 to the indoor unit 200 has no abnormality.
  • the communication path from the indoor unit 300 to the indoor unit 200 has an abnormality.
  • the communication from the remote controller 400 to the indoor unit 200 There is an abnormality in the path, so it is presumed that there is an abnormality in the communication path from the indoor unit 200 to the indoor unit 300.
  • the communication abnormality diagnosis device 600 can diagnose an abnormality in the communication path from the communication abnormality diagnosis device 600 to the indoor unit 200. When this communication path is diagnosed as abnormal, a contact failure of a connection portion between the indoor unit 200 and the pair of communication lines, a failure inside the communication unit 21 provided in the indoor unit 200, or the like may be considered.
  • the communication abnormality diagnosis device 600 is provided as a configuration different from the air conditioner. That is, in the present embodiment, it is possible to diagnose an abnormality in the communication path without changing the configuration of the air conditioner. Further, in the present embodiment, the connection points to the pair of communication lines of the communication error diagnosis device 600 can be easily changed. Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path accurately at low cost and easily.
  • the air conditioner other than the outdoor unit 100 may be the communication abnormality diagnosis device.
  • a communication system (not shown) functions as an outdoor unit 120 functioning as a communication abnormality diagnosis device, two indoor units (not shown) functioning as a communication abnormality diagnosis device, and a communication abnormality diagnosis device. And a remote controller 410.
  • the communication error diagnosis apparatus in the present embodiment also has a function as a waveform measurement apparatus.
  • the outdoor unit 120 includes a communication unit 11, a measurement unit 12, a storage unit 13, a main unit 14, and a control unit 17. That is, the configuration of the outdoor unit 120 is a configuration in which the operation receiving unit 15 and the display unit 16 are excluded from the configuration of the outdoor unit 100. Further, the control unit 17 according to the present embodiment functionally includes a transmission / reception unit 171, a measurement instruction unit 174, a diagnosis unit 175, an output unit 178, and an air conditioning control unit 179. The functional configuration of the control unit 17 according to the present embodiment is basically the same as the functional configuration of the control unit 17 according to the first embodiment.
  • the outdoor unit 120 does not include the operation reception unit 15 that receives an operation for instructing the start of the communication error diagnosis process. Therefore, for example, the outdoor unit 120 starts the communication abnormality diagnosis process according to the control command received from the remote controller 410 including the operation reception unit 45 that receives the operation instructing the start of the communication abnormality diagnosis process.
  • the outdoor unit 120 does not include the display unit 16 that displays the diagnosis result. Therefore, the outdoor unit 120 transmits, for example, a control command indicating the diagnosis result to the remote controller 410 including the display unit 46 displaying the diagnosis result via the communication unit 11, and displays the diagnosis result on the display unit 46.
  • the configuration of the two indoor units adds the measuring unit 12 to the configuration of the indoor unit 200 shown in FIG. 4 and diagnoses the measurement instructing unit 174 and the functional configuration of the control unit 27 shown in FIG.
  • the configuration corresponding to the unit 175 and the output unit 178 is added.
  • the remote controller 410 includes a communication unit 41, a measurement unit 42, a storage unit 43, an operation reception unit 45, a display unit 46, and a control unit 47. That is, the configuration of the remote controller 410 is a configuration in which the measuring unit 42 is added to the configuration of the remote controller 400.
  • the measuring unit 42 corresponds to a measuring unit.
  • the measuring unit 42 measures the signal waveforms on the pair of communication lines in the same manner as the measuring unit 12. Similar to the storage unit 13, the storage unit 43 stores a communication error diagnosis program, waveform information, and reference value information.
  • the operation receiving unit 45 receives an operation related to the communication error diagnosis process, as the operation receiving unit 15 does.
  • the control unit 47 included in the remote controller 410 functionally includes a transmission / reception unit 471, a measurement instruction unit 474, a diagnosis unit 475, and an output unit 478.
  • the measurement instruction unit 474 corresponds to a measurement instruction unit.
  • the diagnostic unit 475 corresponds to the diagnostic means.
  • the output unit 478 corresponds to an output unit.
  • the transmission and reception unit 471 transmits and receives a command via the communication unit 41.
  • the transmitting unit 472 transmits a control command instructing start of the communication abnormality diagnosis process to another air conditioner via the communication unit 41.
  • the receiving unit 473 receives a control command indicating a diagnosis result from another air conditioner via the communication unit 41.
  • the measurement instruction unit 474 causes the measurement unit 42 to measure the signal waveform according to the transmission / reception status of the command by the transmission / reception unit 471.
  • the diagnosis unit 475 diagnoses an abnormality of the communication path in accordance with the waveform information stored in the storage unit 43.
  • the output unit 478 transmits information indicating the diagnosis result by the remote controller 410 and the diagnosis result by another air conditioner to the display unit 46, and causes the display unit 46 to display these diagnosis results. Further, the output unit 478 can comprehensively judge all the diagnosis results, obtain accurate diagnosis results, and can display the obtained diagnosis results on the display unit 46.
  • all the air conditioners function as a communication abnormality diagnosis device, and the abnormality of the communication path between the two air conditioners is diagnosed. Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path with higher accuracy.
  • the operation accepting unit included in any of the air conditioners accepts an operation instructing the start of the communication abnormality diagnosis process, and the display unit included in any of the air conditioners displays the diagnostic result. . Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path with high accuracy at low cost.
  • the example in which the diagnosis results of all the communication paths are displayed has been described.
  • the diagnosis results of a part of the communication paths designated by the operation accepted by the operation accepting unit 15 may be displayed.
  • an example in which it is diagnosed that there is no abnormality in the communication path has been described only when it is determined that all types of waveform feature amounts in all the bits are within the reference value range.
  • it may be diagnosed that there is no abnormality in the communication path for example, when the proportion of bits whose waveform feature quantities of all types are within the reference value range is equal to or more than a predetermined proportion. This ratio is, for example, about 80%.
  • the communication abnormality diagnosis device 600 is disposed in the vicinity of the indoor unit 200.
  • the communication abnormality diagnosis device 600 may be disposed in the vicinity of any of the outdoor unit 110, the indoor unit 200, the indoor unit 300, and the remote controller 400.
  • the communication error diagnosis device 600 transmits a test command has been described.
  • the communication error diagnosis device 600 may not transmit the test command.
  • the air conditioner without the diagnosis unit transmits the waveform information or the waveform feature amount according to the control command to the air conditioner including the diagnosis unit, and causes the air conditioner including the diagnosis unit to diagnose an abnormality of the communication path. Just do it.
  • the communication system 1000 is an air conditioning system built in a home.
  • the communication system 1000 may be an air conditioning system built in a building.
  • the communication system 1000 may not be an air conditioning system.
  • Communication system 1000 may be a lighting system that controls a lighting device.
  • the operation program defining the operation of the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the indoor unit 200, the indoor unit 300, the remote controller 400, the remote controller 410 and the communication abnormality diagnosis device 600 according to the present invention
  • the personal computer etc. By applying the personal computer etc. to the information terminal device, the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the indoor unit 200, the indoor unit 300, the remote controller 400, the remote controller 410, the communication abnormality diagnosis device according to the present invention. It is also possible to function as 600.
  • the distribution method of such a program is arbitrary, and for example, it is stored by being stored in a computer readable recording medium such as a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or a memory card. It may be distributed via a communication network such as the Internet.
  • a computer readable recording medium such as a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or a memory card. It may be distributed via a communication network such as the Internet.
  • the present invention is applicable to a communication system in which a plurality of communication devices communicate via a pair of communication lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

In the present invention, a measurement unit (12) measures a signal waveform of an ACK command that was transmitted by a communication device as an acknowledgement in response to a first control command when a second interval, which is shorter than a first interval established as a minimum transmission interval of a control command, had elapsed from the time at which the communication device received the first control command among the control commands. A diagnosis unit (175) diagnoses, on the basis of the signal waveform measured by the measurement unit (12), an abnormality in a communication pathway from the communication device to a communication abnormality diagnosis device. An output unit (178) outputs a diagnosis result generated by the diagnosis unit (175).

Description

通信異常診断装置、通信システム、通信異常診断方法、及び、プログラムCommunication error diagnosis device, communication system, communication error diagnosis method, and program
 本発明は、通信異常診断装置、通信システム、通信異常診断方法、及び、プログラムに関する。 The present invention relates to a communication abnormality diagnosis device, a communication system, a communication abnormality diagnosis method, and a program.
 現在、一対の通信線を介して複数の通信装置を相互に接続する通信システムが知られている。このような通信システムとして、例えば、室外機と室内機とリモートコントローラとが一対の通信線を介して接続された空調システムがある。このような通信システムでは、施工時に、複数の通信装置が一対の通信線により正しく接続されているか否かを確認することが望ましい。 Currently, communication systems are known in which a plurality of communication devices are mutually connected via a pair of communication lines. As such a communication system, for example, there is an air conditioning system in which an outdoor unit, an indoor unit, and a remote controller are connected via a pair of communication lines. In such a communication system, at the time of construction, it is desirable to confirm whether or not a plurality of communication devices are correctly connected by a pair of communication lines.
 現在、このような通信システムにおいて、複数の通信機器間の通信経路の通信異常を診断する種々の技術が知られている。例えば、特許文献1には、伝送路を流れる信号を解析することにより、異常が発生したか否かを判断する技術が記載されている。また、特許文献1には、異常が発生したと判断された場合、異常が発生した前後の信号の波形データと正常信号の波形データとを比較することにより、異常の発生の原因を推定する技術も記載されている。 At present, in such a communication system, various techniques are known for diagnosing communication errors in communication paths between a plurality of communication devices. For example, Patent Document 1 describes a technique for determining whether or not an abnormality has occurred by analyzing a signal flowing through a transmission path. Further, in Patent Document 1, when it is determined that an abnormality has occurred, the technique of estimating the cause of the occurrence of the abnormality by comparing the waveform data of the signal before and after the abnormality has occurred with the waveform data of the normal signal. Is also described.
特開2007-318471号公報Japanese Patent Application Publication No. 2007-318471
 ところで、信号波形は、配線長の超過又はコネクタの接触不良など通信経路の異常により歪むこともあれば、通信線上における信号衝突により歪むこともある。このため、特許文献1に記載された技術では、信号波形の歪みが、通信経路の異常に起因するものなのか、信号衝突に起因するものなのかを判別することができず、通信経路の異常を精度良く診断することができなかった。このため、通信経路の異常を精度良く診断する技術が望まれている。 By the way, the signal waveform may be distorted due to an abnormality in the communication path such as an excess wiring length or a connector contact failure, or may be distorted due to a signal collision on the communication line. Therefore, with the technique described in Patent Document 1, it can not be determined whether distortion of the signal waveform is due to an abnormality in the communication path or due to a signal collision, and the abnormality in the communication path Could not be diagnosed accurately. Therefore, a technology for accurately diagnosing an abnormality in a communication path is desired.
 本発明は、上記問題に鑑みてなされたものであり、通信経路の異常を精度良く診断する通信異常診断装置、通信システム、通信異常診断方法、及び、プログラムを提供することを目的とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a communication abnormality diagnosis device, a communication system, a communication abnormality diagnosis method, and a program for accurately diagnosing an abnormality in a communication path.
 上記目的を達成するために、本発明に係る通信異常診断装置は、
 一対の通信線を介して通信機器に接続される通信異常診断装置であって、
 前記通信機器が制御コマンドのうち第1制御コマンドを受信してから前記制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに前記通信機器が前記第1制御コマンドに対する肯定応答として送信したACKコマンドの信号波形を測定する測定手段と、
 前記測定手段により測定された前記信号波形に基づいて、前記通信機器から前記通信異常診断装置までの通信経路における異常を診断する診断手段と、
 前記診断手段による診断結果を出力する出力手段と、を備える。
In order to achieve the above object, the communication abnormality diagnosis device according to the present invention is:
A communication abnormality diagnosis device connected to a communication device via a pair of communication lines, the communication abnormality diagnosis device comprising:
The communication device receives the first control command of the control command after the communication device receives the first control command, and a second interval shorter than the first interval defined as the minimum transmission interval of the control command has elapsed. Measuring means for measuring a signal waveform of an ACK command transmitted as an acknowledgment to the control command;
A diagnosis unit that diagnoses an abnormality in a communication path from the communication device to the communication abnormality diagnosis apparatus based on the signal waveform measured by the measurement unit;
And output means for outputting a diagnosis result by the diagnosis means.
 本発明では、通信機器が第1制御コマンドを受信してから制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに通信機器が送信したACKコマンドの信号波形に基づいて、通信機器から通信異常診断装置までの通信経路における異常が診断される。従って、本発明によれば、通信経路の異常を精度良く診断することができる。 In the present invention, a signal of an ACK command transmitted by the communication device when the communication device receives the first control command and a second interval shorter than the first interval determined as the minimum transmission interval of the control command has elapsed. An abnormality in the communication path from the communication device to the communication abnormality diagnosing device is diagnosed based on the waveform. Therefore, according to the present invention, it is possible to diagnose an abnormality of the communication path with high accuracy.
本発明の実施形態1に係る通信システムの構成図The block diagram of the communication system concerning Embodiment 1 of the present invention 本発明の実施形態1に係る室外機の構成図The block diagram of the outdoor unit which concerns on Embodiment 1 of this invention 本発明の実施形態1に係る室外機の機能構成図Functional configuration diagram of the outdoor unit according to Embodiment 1 of the present invention 本発明の実施形態1に係る室内機の機能構成図Functional configuration diagram of the indoor unit according to the first embodiment of the present invention 本発明の実施形態1に係るリモートコントローラの機能構成図Functional configuration diagram of the remote controller according to the first embodiment of the present invention 一対の通信線間の信号波形の例を示す図Diagram showing an example of signal waveforms between a pair of communication lines 信号衝突時に実行される処理の説明図Explanatory drawing of processing performed at the time of signal collision 第1間隔と第2間隔との説明図Explanatory drawing of the first interval and the second interval 波形特徴量の説明図Illustration of waveform feature 本発明の実施形態1に係る室外機が実行する通信異常診断処理を示すフローチャートA flowchart showing communication error diagnosis processing executed by the outdoor unit according to the first embodiment of the present invention 本発明の実施形態2に係る室外機が実行する通信異常診断処理を示すフローチャートA flowchart showing a communication error diagnosis process performed by the outdoor unit according to Embodiment 2 of the present invention 本発明の実施形態3に係る通信システムの構成図A configuration diagram of a communication system according to Embodiment 3 of the present invention 本発明の実施形態3に係る通信異常診断装置の機能構成図Functional configuration diagram of the communication error diagnosis device according to the third embodiment of the present invention 本発明の実施形態4に係る室外機の機能構成図Functional configuration diagram of the outdoor unit according to Embodiment 4 of the present invention 本発明の実施形態4に係るリモートコントローラの機能構成図Functional configuration diagram of the remote controller according to the fourth embodiment of the present invention
(実施形態1)
 まず、図1を参照して、本発明の実施形態1に係る通信システム1000の構成について説明する。通信システム1000は、複数の通信機器が相互に通信するシステムであり、複数の通信機器間の通信経路の異常を診断する通信異常診断装置を含むシステムである。本実施形態では、通信システム1000が空調システムであり、通信異常診断装置が室外機100である例について説明する。
(Embodiment 1)
First, the configuration of a communication system 1000 according to the first embodiment of the present invention will be described with reference to FIG. The communication system 1000 is a system in which a plurality of communication devices communicate with each other, and is a system including a communication abnormality diagnosis device that diagnoses an abnormality in a communication path between the plurality of communication devices. In the present embodiment, an example in which the communication system 1000 is an air conditioning system and the communication abnormality diagnosis device is an outdoor unit 100 will be described.
 通信異常診断装置は、第1通信機器から第2通信機器に向けて送信されたACK(Acknowledge)コマンドの信号波形に基づいて、第1通信機器から第2通信機器までの通信経路の異常を診断する。ACKコマンドは、後述するように、他のコマンドと衝突しないことが保証される。従って、ACKコマンドの信号波形は、信号衝突に起因する歪みがないことが保証される。ACKコマンドの信号波形に基づく診断によれば、信号衝突に起因しない歪み、つまり、通信経路の異常に起因する歪みから、通信経路の異常を精度良く検出することができる。 The communication abnormality diagnosis device diagnoses an abnormality in a communication path from the first communication device to the second communication device based on a signal waveform of an ACK (Acknowledge) command transmitted from the first communication device to the second communication device. Do. The ACK command is guaranteed not to collide with other commands, as described later. Thus, the signal waveform of the ACK command is guaranteed to be free of distortion due to signal collisions. According to the diagnosis based on the signal waveform of the ACK command, the abnormality of the communication path can be accurately detected from the distortion not caused by the signal collision, that is, the distortion caused by the abnormality of the communication path.
 図1に示すように、通信システム1000は、室外機100と、室内機200と、室内機300と、リモートコントローラ400と、を備える。室外機100と室内機200と室内機300とリモートコントローラ400とは、通信線510と通信線520とを含む一対の通信線により相互に接続される。以下、室外機100と室内機200と室内機300とリモートコントローラ400とのそれぞれを、適宜、通信機器という。ただし、通信異常診断装置である通信機器と通信異常診断装置でない通信機器とを区別する必要がある場合、通信異常診断装置である通信機器を通信機器と呼ばないことがある。 As shown in FIG. 1, the communication system 1000 includes an outdoor unit 100, an indoor unit 200, an indoor unit 300, and a remote controller 400. The outdoor unit 100, the indoor unit 200, the indoor unit 300, and the remote controller 400 are mutually connected by a pair of communication lines including a communication line 510 and a communication line 520. Hereinafter, each of the outdoor unit 100, the indoor unit 200, the indoor unit 300, and the remote controller 400 will be referred to as communication devices as appropriate. However, when it is necessary to distinguish between a communication device that is a communication abnormality diagnosis device and a communication device that is not the communication abnormality diagnosis device, the communication device that is the communication abnormality diagnosis device may not be called a communication device.
 通信機器は、一対の通信線間に印加する電圧を変化させて、コマンドを送信する。また、通信機器は、一対の通信線間の電圧のレベル、又は、一対の通信線間の電圧の変化の有無を検出して、コマンドを受信する。本実施形態では、一対の通信線を介して送受信されるデータのことをコマンドと呼び、コマンドは、必ずしも、何らかの命令を意味するデータに限定されない。本実施形態では、1つのコマンドは、1つのフレームとして、送受信される。 The communication device changes the voltage applied between the pair of communication lines to transmit a command. Further, the communication device detects the level of the voltage between the pair of communication lines or the presence or absence of a change in the voltage between the pair of communication lines, and receives the command. In the present embodiment, data transmitted and received via a pair of communication lines is called a command, and the command is not necessarily limited to data that means any command. In the present embodiment, one command is transmitted and received as one frame.
 コマンドは、制御コマンドとACKコマンドとに大別される。制御コマンドは、送信先の通信機器に対する制御を指示するためのコマンド、送信先の通信機器にデータの送信を要求するコマンド、送信先の通信機器にデータを送信するためのコマンドなどである。ACKコマンドは、制御コマンドを受信した通信機器が、制御コマンドの送信元の通信機器に、制御コマンドを正常に受信したことを通知するためのコマンドである。 Commands are roughly divided into control commands and ACK commands. The control command is a command for instructing control of the communication device of the transmission destination, a command of requesting transmission of data to the communication device of the transmission destination, a command for transmitting data to the communication device of the transmission destination, or the like. The ACK command is a command for the communication device that has received the control command to notify the communication device of the transmission source of the control command that the control command has been normally received.
 室外機100は、空調システムにおいて、空調制御の対象空間である部屋の外に配置される空調機である。本実施形態では、室外機100は、空調機としての機能に加え、通信異常診断装置としての機能を備える。なお、本実施形態では、通信異常診断装置としての機能に、波形測定装置としての機能も含まれるものとする。図2に示すように、室外機100は、通信部11と、測定部12と、記憶部13と、メインユニット14と、操作受付部15と、表示部16と、制御部17と、を備える。測定部12は、測定手段に対応する。表示部16は、表示手段に対応する。 The outdoor unit 100 is an air conditioner arranged outside the room which is the target space of the air conditioning control in the air conditioning system. In the present embodiment, the outdoor unit 100 has a function as a communication abnormality diagnosis device in addition to the function as an air conditioner. In the present embodiment, it is assumed that the function as the communication error diagnosis device includes the function as the waveform measurement device. As shown in FIG. 2, the outdoor unit 100 includes a communication unit 11, a measurement unit 12, a storage unit 13, a main unit 14, an operation reception unit 15, a display unit 16, and a control unit 17. . The measuring unit 12 corresponds to a measuring unit. The display unit 16 corresponds to display means.
 通信部11は、一対の通信線を介して、室外機100を、室内機200と室内機300とリモートコントローラ400とに接続するための通信インターフェースである。通信部11は、制御部17による制御に従って、1と0との組み合わせにより構成されるコマンドを送受信する。通信部11は、CSMA/CD(Carrier Sense Multiple Access with Collision Detection)勝ち残り方式に従ったシリアル通信を実行する。通信部11は、AMI(Alternate Mark Inversion cord)、NRZ(Non Return to Zero)、CMI(Code Mark Inversion code)などの伝送路符号を用いたベースバンド変調方式で通信する。本実施形態では、伝送路符号として、NRZが採用されるものとする。 The communication unit 11 is a communication interface for connecting the outdoor unit 100 to the indoor unit 200, the indoor unit 300, and the remote controller 400 via a pair of communication lines. The communication unit 11 transmits and receives a command configured by a combination of 1 and 0 under the control of the control unit 17. The communication unit 11 executes serial communication in accordance with a carrier sense multiple access with collision detection (CSMA / CD) method. The communication unit 11 communicates by a baseband modulation method using a transmission path code such as AMI (Alternate Mark Inversion cord), NRZ (Non Return to Zero), CMI (Code Mark Inversion code), or the like. In this embodiment, NRZ is adopted as a transmission path code.
 通信部11は、1を送信するときに一対の通信線間の電圧をE(V)に設定し、0を送信するときに一対の通信線間の電圧を0(V)に設定する。通信部11は、例えば、9600bpsの通信速度に応じた期間が経過する毎に、一対の通信線間に印加する電圧を切り替える。また、通信部11は、一対の通信線間の電圧がE(V)であるときに1を制御部17に送信し、一対の通信線間の電圧が0(V)であるときに0を制御部17に送信する。通信部11は、例えば、9600bpsの通信速度に応じた期間が経過する毎に、一対の通信線間に印加された電圧を1又は0に変換して制御部17に送信する処理を実行する。 The communication unit 11 sets the voltage between the pair of communication lines to E (V) when transmitting 1 and sets the voltage between the pair of communication lines to 0 (V) when transmitting 0. The communication unit 11 switches the voltage to be applied between the pair of communication lines, for example, each time a period corresponding to the communication speed of 9600 bps elapses. Further, the communication unit 11 transmits 1 to the control unit 17 when the voltage between the pair of communication lines is E (V), and 0 when the voltage between the pair of communication lines is 0 (V). Transmit to control unit 17. The communication unit 11 executes, for example, a process of converting the voltage applied between the pair of communication lines into 1 or 0 and transmitting the voltage to the control unit 17 each time a period corresponding to the communication speed of 9600 bps elapses.
 測定部12は、一対の通信線上を送受信されるコマンドの信号波形を測定する。測定部12は、制御部17による制御に従って、一対の通信線間の電圧波形を測定する。つまり、測定部12は、一対の通信線間の電圧を、予め定められた周期でサンプリングする。測定部12は、測定により得られた信号波形を示す情報(以下、適宜「波形情報」という。)を、記憶部13に記憶させる。測定部12は、例えば、A/D(Analog/Digital)変換器を備える。 The measurement unit 12 measures a signal waveform of a command transmitted and received on the pair of communication lines. The measurement unit 12 measures a voltage waveform between the pair of communication lines according to the control of the control unit 17. That is, the measurement unit 12 samples the voltage between the pair of communication lines at a predetermined cycle. The measurement unit 12 causes the storage unit 13 to store information indicating the signal waveform obtained by the measurement (hereinafter, referred to as “waveform information” as appropriate). The measurement unit 12 includes, for example, an A / D (Analog / Digital) converter.
 記憶部13は、室外機100が実行する空調制御処理及び通信異常診断処理に必要な各種のデータを記憶する。記憶部13は、例えば、空調制御処理を実行するための空調制御プログラムと、通信異常診断処理を実行するための通信異常診断プログラムとを記憶する。また、記憶部13は、測定部12から供給された波形情報を記憶する。また、記憶部13は、波形特徴量の基準値を示す基準値情報を記憶する。記憶部13は、例えば、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の読み書き可能な不揮発性の半導体メモリを備える。 The storage unit 13 stores various kinds of data necessary for the air conditioning control process and the communication abnormality diagnosis process executed by the outdoor unit 100. The storage unit 13 stores, for example, an air conditioning control program for executing the air conditioning control process and a communication abnormality diagnosis program for executing the communication abnormality diagnosis process. The storage unit 13 also stores the waveform information supplied from the measurement unit 12. In addition, the storage unit 13 stores reference value information indicating a reference value of the waveform feature amount. The storage unit 13 includes, for example, a readable and writable non-volatile semiconductor memory such as a flash memory and an EEPROM (Electrically Erasable Programmable Read-Only Memory).
 メインユニット14は、室外機100が備える機能のうち、空調機としての機能を実現するための構成部である。メインユニット14は、例えば、コンプレッサ、凝縮器、膨張弁、蒸発器を備える。 The main unit 14 is a component for realizing the function as an air conditioner among the functions of the outdoor unit 100. The main unit 14 includes, for example, a compressor, a condenser, an expansion valve, and an evaporator.
 操作受付部15は、空調制御処理及び通信異常診断処理に関する操作をユーザから受け付ける。空調制御処理に関する操作は、例えば、運転モードの設定操作、運転出力の設定操作、設定温度の変更操作である。運転モードの設定操作は、例えば、暖房運転モード、冷房運転モード、除湿運転モード、送風運転モードのいずれかを設定する操作である。通信異常診断処理に関する操作は、例えば、通信異常診断処理の開始を指示する操作、通信異常の診断対象となる通信経路を指定する操作である。なお、通信経路は、例えば、通信経路の両端に接続される2つの通信機器により指定される。操作受付部15は、例えば、タッチスクリーン、ボタンを備える。 The operation reception unit 15 receives an operation related to the air conditioning control process and the communication abnormality diagnosis process from the user. The operation related to the air conditioning control process is, for example, an operation setting operation, an operation output setting operation, and a setting temperature changing operation. The setting operation of the operation mode is, for example, an operation of setting any one of a heating operation mode, a cooling operation mode, a dehumidifying operation mode, and a blowing operation mode. The operation relating to the communication error diagnosis process is, for example, an operation instructing the start of the communication error diagnosis process, and an operation designating a communication path to be a diagnosis target of the communication error. The communication path is specified by, for example, two communication devices connected to both ends of the communication path. The operation reception unit 15 includes, for example, a touch screen and a button.
 表示部16は、空調制御処理及び通信異常診断処理に関する情報を表示する。空調制御処理に関する情報は、例えば、運転モードを示す情報、運転出力を示す情報、設定温度を示す情報である。通信異常診断処理に関する情報は、例えば、診断結果を示す情報である。診断結果を示す情報は、例えば、通信経路と異常の有無とを対応付けて示す情報である。表示部16は、例えば、タッチスクリーン、液晶ディスプレイを備える。 The display unit 16 displays information on the air conditioning control process and the communication abnormality diagnosis process. The information related to the air conditioning control process is, for example, information indicating an operation mode, information indicating an operation output, and information indicating a set temperature. The information related to the communication error diagnosis process is, for example, information indicating a diagnosis result. The information indicating the diagnosis result is, for example, information indicating the communication path and the presence or absence of abnormality in association with each other. The display unit 16 includes, for example, a touch screen and a liquid crystal display.
 制御部17は、室外機100を統括制御する。つまり、制御部17は、空調制御処理及び通信異常診断処理に関する処理を実行する。制御部17は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、RTC(Real Time Clock)を備える。CPUは、ROMに格納されているプログラムに従って動作し、RAMをワークエリアとして使用する。CPUは、RTCから供給された情報に基づいて、計時する機能を有する。 The control unit 17 generally controls the outdoor unit 100. That is, the control unit 17 executes the process related to the air conditioning control process and the communication abnormality diagnosis process. The control unit 17 includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a real time clock (RTC). The CPU operates according to a program stored in the ROM and uses the RAM as a work area. The CPU has a function of clocking based on the information supplied from the RTC.
 図3を参照して、室外機100の機能、特に、制御部17の機能について説明する。図3に示すように、制御部17は、機能的には、送受信部171と、測定指示部174と、診断部175と、出力部178と、空調制御部179と、を備える。これらの機能部は、CPUが、記憶部13に記憶された空調制御プログラム及び通信異常診断プログラムを実行することにより実現される。測定指示部174は、測定指示手段に対応する。診断部175は、診断手段に対応する。出力部178は、出力手段に対応する。 The function of the outdoor unit 100, in particular, the function of the control unit 17 will be described with reference to FIG. As shown in FIG. 3, the control unit 17 functionally includes a transmission / reception unit 171, a measurement instruction unit 174, a diagnosis unit 175, an output unit 178, and an air conditioning control unit 179. These functional units are realized by the CPU executing the air conditioning control program and the communication abnormality diagnosis program stored in the storage unit 13. The measurement instruction unit 174 corresponds to a measurement instruction unit. The diagnostic unit 175 corresponds to the diagnostic means. The output unit 178 corresponds to the output means.
 送受信部171は、通信部11によるコマンドの送受信を制御する。送受信部171は、送信部172と、受信部173と、を備える。送信部172は、送信手段に対応する。受信部173は、受信手段に対応する。送信部172は、通信部11を介してコマンドを送信する。例えば、送信部172は、コマンドを構成する二進数を通信部11に供給し、通信部11に、コマンドを構成する二進数に応じた電圧を一対の通信線間に印加させる。 The transmission and reception unit 171 controls transmission and reception of commands by the communication unit 11. The transmitting and receiving unit 171 includes a transmitting unit 172 and a receiving unit 173. The transmission unit 172 corresponds to a transmission unit. The receiving unit 173 corresponds to a receiving unit. The transmission unit 172 transmits a command via the communication unit 11. For example, the transmitting unit 172 supplies a binary number forming a command to the communication unit 11, and causes the communication unit 11 to apply a voltage according to the binary number forming the command between the pair of communication lines.
 送信部172は、ACKコマンドを送信させる通信機器(以下、適宜「通信相手の通信機器」という。)に対して、テストコマンドを送信する。テストコマンドは、通信相手の通信機器にACKコマンドを送信させるための制御コマンドである。テストコマンドは、ACKコマンドを送信させる処理以外の処理を、通信相手の通信機器に強いることがない制御コマンドであることが望ましい。ACKコマンドを送信させる処理以外の処理は、例えば、制御を実行する処理又はデータを受信する処理である。 The transmitting unit 172 transmits a test command to a communication device (hereinafter, appropriately referred to as a “communication device of the other party of communication” as appropriate) that transmits an ACK command. The test command is a control command for transmitting an ACK command to the communication device of the communication partner. The test command is preferably a control command that does not force processing other than the processing for transmitting the ACK command to the communication device of the communication partner. The processing other than the processing for transmitting the ACK command is, for example, processing for executing control or processing for receiving data.
 テストコマンドは、第1制御コマンドの一種である。第1制御コマンドは、ACKコマンドの送信を要求する制御コマンドである。テストコマンド以外の第1制御コマンドは、例えば、通信相手の通信機器に何らかの制御を強いるとともにACKコマンドを送信する処理を強いる制御コマンド、或いは、通信相手の通信機器に何らかのデータを送信するとともにACKコマンドを送信する処理を強いる制御コマンドである。 The test command is a type of first control command. The first control command is a control command that requests transmission of an ACK command. The first control command other than the test command is, for example, a control command that imposes some control on the communication device at the other end of communication and a process of transmitting an ACK command, or transmits some data to the communication device at the other end of communication Is a control command that forces the process of sending
 受信部173は、通信部11を介してコマンドを受信する。例えば、受信部173は、通信部11から供給された二進数からコマンドを再構成する。受信部173は、通信相手の通信機器からACKコマンドを受信する。 The receiving unit 173 receives a command via the communication unit 11. For example, the receiving unit 173 reconstructs a command from the binary number supplied from the communication unit 11. The receiving unit 173 receives an ACK command from the communication device of the communication partner.
 測定指示部174は、送受信部171によるコマンドの送受信状況に応じて、測定部12に対して、信号波形の測定を指示する。測定指示部174は、通信相手の通信機器が送信したACKコマンドの信号波形を測定することを測定部12に指示する。なお、通信相手の通信機器は、第1制御コマンドを受信してから第2間隔が経過したときに、第1制御コマンドに対する肯定応答としてACKコマンドを送信する。ここで、第2間隔は、制御コマンドの最小の送信間隔として定められた第1間隔よりも短い。例えば、第1間隔は、20msec程度であり、第2間隔は、5msec程度である。測定指示部174は、例えば、送信部172によるテストコマンドの送信が完了したのち第2間隔が経過してから、受信部173によるACKコマンドの受信が完了するまでの期間における一対の通信線間の電圧波形を測定することを、測定部12に指示する。 The measurement instruction unit 174 instructs the measurement unit 12 to measure the signal waveform according to the transmission / reception status of the command by the transmission / reception unit 171. The measurement instruction unit 174 instructs the measurement unit 12 to measure the signal waveform of the ACK command transmitted by the communication device of the communication partner. The communication device of the communication partner transmits an ACK command as an acknowledgment to the first control command when the second interval has elapsed since the reception of the first control command. Here, the second interval is shorter than the first interval defined as the minimum transmission interval of the control command. For example, the first interval is about 20 msec, and the second interval is about 5 msec. For example, the measurement instruction unit 174 determines, between the pair of communication lines in a period until the reception unit 173 completes reception of the ACK command after the second interval elapses after transmission of the test command by the transmission unit 172 is completed. The measurement unit 12 is instructed to measure the voltage waveform.
 診断部175は、測定部12により測定された信号波形に基づいて、通信相手の通信機器から通信診断装置である室外機100までの通信経路における異常を診断する。診断部175は、特徴量検出部176と、判別部177と、を備える。特徴量検出部176は、特徴量判別手段に対応する。判別部177は、判別手段に対応する。特徴量検出部176は、測定部12により測定された信号波形から、波高値とサグとパルス幅と立ち上がり時間と立ち下がり時間とのうち少なくとも1つを含む波形特徴量を検出する。 Based on the signal waveform measured by the measurement unit 12, the diagnosis unit 175 diagnoses an abnormality in the communication path from the communication device of the communication partner to the outdoor unit 100, which is a communication diagnosis device. The diagnosis unit 175 includes a feature amount detection unit 176 and a determination unit 177. The feature amount detection unit 176 corresponds to a feature amount determination unit. The determination unit 177 corresponds to the determination unit. The feature amount detection unit 176 detects, from the signal waveform measured by the measurement unit 12, a waveform feature amount including at least one of a peak value, a sag, a pulse width, a rise time, and a fall time.
 判別部177は、特徴量検出部176により検出された波形特徴量が、予め定められた範囲外である場合、通信経路が異常であると判別する。予め定められた範囲(以下、適宜「基準値範囲」という。)は、例えば、波形特徴量の基準値から算出される波形特徴量の下限値から、波形特徴量の基準値から算出される波形特徴量の上限値までの範囲である。波形特徴量の下限値は、例えば、波形特徴量の基準値の80%である。波形特徴量の上限値は、例えば、波形特徴量の基準値の120%である。なお、記憶部13に記憶された基準値情報は、波高値とサグとパルス幅と立ち上がり時間と立ち下がり時間とのそれぞれの波形特徴量の基準値を示すものとする。 When the waveform feature amount detected by the feature amount detection unit 176 is out of a predetermined range, the determination unit 177 determines that the communication path is abnormal. The predetermined range (hereinafter referred to as “reference value range” as appropriate) is, for example, a waveform calculated from the reference value of the waveform feature amount from the lower limit value of the waveform feature amount calculated from the reference value of the waveform feature amount It is a range up to the upper limit value of the feature amount. The lower limit value of the waveform feature amount is, for example, 80% of the reference value of the waveform feature amount. The upper limit value of the waveform feature amount is, for example, 120% of the reference value of the waveform feature amount. The reference value information stored in the storage unit 13 indicates the reference values of the waveform feature amounts of the peak value, the sag, the pulse width, the rise time, and the fall time.
 検出された波形特徴量は、種類毎及びビット毎に、基準値範囲に入るか否か判定される。本実施形態では、全てのビットにおいて、全ての種類の波形特徴量が、基準値範囲に入る場合、通信経路が正常であると判別され、いずれかのビットにおいて、いずれかの種類の波形特徴量が、基準値範囲に入らない場合、通信経路が異常であると判別される。 It is determined whether the detected waveform feature amount falls within the reference value range for each type and each bit. In this embodiment, if all types of waveform feature quantities fall within the reference value range for all bits, it is determined that the communication path is normal, and any type of waveform feature quantities for any of the bits. Is not within the reference value range, it is determined that the communication path is abnormal.
 出力部178は、診断部175による診断結果を出力する。例えば、出力部178は、表示部16に診断結果を示す情報を出力し、表示部16に診断結果を表示させる。空調制御部179は、メインユニット14を制御して、空調を制御する。空調制御部179は、例えば、操作受付部15により受け付けられた操作、受信部173により受信された制御コマンドに従って、空調を制御する。 The output unit 178 outputs the diagnosis result by the diagnosis unit 175. For example, the output unit 178 outputs information indicating the diagnosis result to the display unit 16 and causes the display unit 16 to display the diagnosis result. The air conditioning control unit 179 controls the main unit 14 to control air conditioning. The air conditioning control unit 179 controls the air conditioning in accordance with, for example, the operation accepted by the operation accepting unit 15 and the control command received by the receiving unit 173.
 室内機200は、空調システムにおいて、空調制御の対象空間である部屋の中に配置される空調機である。本実施形態では、室内機200は、空調機としての機能を備え、通信異常診断装置としての機能を備えていない。図4に示すように、室内機200は、通信部21と、記憶部23と、メインユニット24と、制御部27と、を備える。 The indoor unit 200 is an air conditioner disposed in a room which is a target space of air conditioning control in the air conditioning system. In the present embodiment, the indoor unit 200 has a function as an air conditioner and does not have a function as a communication abnormality diagnosis device. As shown in FIG. 4, the indoor unit 200 includes a communication unit 21, a storage unit 23, a main unit 24, and a control unit 27.
 通信部21は、一対の通信線を介して、室内機200を室外機100と室内機300とリモートコントローラ400とに接続するための通信インターフェースである。通信部21は、制御部27による制御に従って、1と0との組み合わせにより構成されるコマンドを送受信する。通信部21の機能は、基本的に、通信部11の機能と同様である。 The communication unit 21 is a communication interface for connecting the indoor unit 200 to the outdoor unit 100, the indoor unit 300, and the remote controller 400 via a pair of communication lines. The communication unit 21 transmits and receives a command configured by a combination of 1 and 0 under the control of the control unit 27. The function of the communication unit 21 is basically the same as the function of the communication unit 11.
 記憶部23は、室内機200が実行する空調制御処理に必要な各種のデータを記憶する。記憶部23は、例えば、空調制御処理を実行するための空調制御プログラムを記憶する。記憶部23は、例えば、フラッシュメモリ、EEPROM等の読み書き可能な不揮発性の半導体メモリを備える。メインユニット24は、室内機200が備える機能のうち、空調機としての機能を実現するための構成部である。メインユニット24は、例えば、ファン、熱交換器、温度センサを備える。 The storage unit 23 stores various data required for the air conditioning control process performed by the indoor unit 200. The storage unit 23 stores, for example, an air conditioning control program for executing the air conditioning control process. The storage unit 23 includes, for example, a readable and writable non-volatile semiconductor memory such as a flash memory and an EEPROM. Among the functions of the indoor unit 200, the main unit 24 is a component for realizing the function as an air conditioner. The main unit 24 includes, for example, a fan, a heat exchanger, and a temperature sensor.
 制御部27は、室内機200を統括制御する。つまり、制御部27は、空調制御処理に関する処理を実行する。制御部27は、例えば、CPU、ROM、RAM、RTCを備える。CPUは、ROMに格納されているプログラムに従って動作し、RAMをワークエリアとして使用する。CPUは、RTCから供給された情報に基づいて、計時する機能を有する。 The control unit 27 generally controls the indoor unit 200. That is, the control unit 27 executes a process related to the air conditioning control process. The control unit 27 includes, for example, a CPU, a ROM, a RAM, and an RTC. The CPU operates according to a program stored in the ROM and uses the RAM as a work area. The CPU has a function of clocking based on the information supplied from the RTC.
 図4を参照して、室内機200の機能、特に、制御部27の機能について説明する。図4に示すように、制御部27は、機能的には、送受信部271と、空調制御部279と、を備える。これらの機能部は、CPUが、記憶部23に記憶された空調制御プログラムを実行することにより実現される。 The function of the indoor unit 200, in particular, the function of the control unit 27 will be described with reference to FIG. As shown in FIG. 4, the control unit 27 functionally includes a transmission / reception unit 271 and an air conditioning control unit 279. These functional units are realized by the CPU executing the air conditioning control program stored in the storage unit 23.
 送受信部271は、通信部21によるコマンドの送受信を制御する。送受信部271は、送信部272と、受信部273と、を備える。送信部272は、送信手段に対応する。受信部273は、受信手段に対応する。送信部272は、通信部21を介してコマンドを送信する。受信部273は、通信部21を介してコマンドを受信する。送信部272は、受信部273が第1制御コマンドを受信してから第2間隔が経過したときに、第1制御コマンドに対する肯定応答としてACKコマンドを送信する。例えば、送信部27は、受信部273がテストコマンドを室外機100から受信してから第2間隔が経過したときに、テストコマンドに対するACKコマンドを室外機100に送信する。 The transmission and reception unit 271 controls transmission and reception of commands by the communication unit 21. The transmitting and receiving unit 271 includes a transmitting unit 272 and a receiving unit 273. The transmission unit 272 corresponds to a transmission unit. The receiving unit 273 corresponds to a receiving unit. The transmission unit 272 transmits a command via the communication unit 21. The receiving unit 273 receives the command via the communication unit 21. The transmitting unit 272 transmits an ACK command as a positive response to the first control command when the second interval has elapsed since the reception unit 273 received the first control command. For example, when the second interval has elapsed since the reception unit 273 receives the test command from the outdoor unit 100, the transmission unit 27 transmits, to the outdoor unit 100, an ACK command for the test command.
 空調制御部279は、メインユニット24を制御して、空調を制御する。空調制御部279は、例えば、受信部273により受信された制御コマンドに従って、空調を制御する。室内機300は、空調システムにおいて、空調制御の対象空間である部屋の中に配置される空調機である。本実施形態では、室内機300は、空調機としての機能を備え、通信異常診断装置としての機能を備えていない。室内機300の構成は、基本的に、室内機200の構成と同様である。つまり、室内機300は、通信部21、記憶部23、メインユニット24、制御部27などと同様の構成を備える。室内機300の機能は、基本的に、室内機200の機能と同様であるため、説明を省略する。 The air conditioning control unit 279 controls the main unit 24 to control air conditioning. The air conditioning control unit 279 controls the air conditioning, for example, in accordance with the control command received by the receiving unit 273. The indoor unit 300 is an air conditioner disposed in a room which is a target space of air conditioning control in the air conditioning system. In the present embodiment, the indoor unit 300 has a function as an air conditioner and does not have a function as a communication abnormality diagnosis device. The configuration of the indoor unit 300 is basically the same as the configuration of the indoor unit 200. That is, the indoor unit 300 has the same configuration as the communication unit 21, the storage unit 23, the main unit 24, the control unit 27, and the like. Since the function of the indoor unit 300 is basically the same as the function of the indoor unit 200, the description will be omitted.
 リモートコントローラ400は、空調システムにおいて、室外機100と室内機200と室内機300とを遠隔から制御する操作端末である。本実施形態では、リモートコントローラ400は、操作端末としての機能を備え、通信異常診断装置としての機能を備えていない。図5に示すように、リモートコントローラ400は、通信部41と、記憶部43と、操作受付部45と、表示部46と、制御部47と、を備える。表示部46は、表示手段に対応する。 The remote controller 400 is an operation terminal that remotely controls the outdoor unit 100, the indoor unit 200, and the indoor unit 300 in the air conditioning system. In the present embodiment, the remote controller 400 has a function as an operation terminal and does not have a function as a communication abnormality diagnosis device. As shown in FIG. 5, the remote controller 400 includes a communication unit 41, a storage unit 43, an operation receiving unit 45, a display unit 46, and a control unit 47. The display unit 46 corresponds to display means.
 通信部41は、一対の通信線を介して、リモートコントローラ400を室外機100と室内機200と室内機300とに接続するための通信インターフェースである。通信部41は、制御部47による制御に従って、1と0との組み合わせにより構成されるコマンドを送受信する。通信部41の機能は、基本的に、通信部11の機能と同様である。 The communication unit 41 is a communication interface for connecting the remote controller 400 to the outdoor unit 100, the indoor unit 200, and the indoor unit 300 via a pair of communication lines. The communication unit 41 transmits and receives a command configured by a combination of 1 and 0 under the control of the control unit 47. The function of the communication unit 41 is basically the same as the function of the communication unit 11.
 記憶部43は、リモートコントローラ400が実行する遠隔操作処理に必要な各種のデータを記憶する。記憶部43は、例えば、遠隔操作処理を実行するための遠隔操作プログラムを記憶する。記憶部43は、例えば、フラッシュメモリ、EEPROM等の読み書き可能な不揮発性の半導体メモリを備える。 The storage unit 43 stores various data required for the remote control process performed by the remote controller 400. The storage unit 43 stores, for example, a remote control program for executing the remote control process. The storage unit 43 includes, for example, a readable and writable non-volatile semiconductor memory such as a flash memory and an EEPROM.
 操作受付部45は、遠隔操作処理に関する操作をユーザから受け付ける。遠隔操作処理に関する操作は、例えば、運転モードの設定操作、運転出力の設定操作、設定温度の変更操作である。操作受付部45は、例えば、タッチスクリーン、ボタンを備える。表示部46は、遠隔操作処理に関する情報を表示する。遠隔操作処理に関する情報は、例えば、運転モードを示す情報、運転出力を示す情報、設定温度を示す情報である。表示部46は、例えば、タッチスクリーン、液晶ディスプレイを備える。 The operation receiving unit 45 receives an operation related to the remote control process from the user. The operation relating to the remote control process is, for example, an operation for setting the operation mode, an operation for setting the operation output, and an operation for changing the set temperature. The operation receiving unit 45 includes, for example, a touch screen and a button. The display unit 46 displays information on the remote control process. The information related to the remote control process is, for example, information indicating an operation mode, information indicating an operation output, and information indicating a set temperature. The display unit 46 includes, for example, a touch screen and a liquid crystal display.
 制御部47は、リモートコントローラ400を統括制御する。つまり、制御部47は、遠隔制御処理に関する処理を実行する。制御部47は、例えば、CPU、ROM、RAM、RTCを備える。CPUは、ROMに格納されているプログラムに従って動作し、RAMをワークエリアとして使用する。CPUは、RTCから供給された情報に基づいて、計時する機能を有する。 The control unit 47 centrally controls the remote controller 400. That is, the control unit 47 executes a process related to the remote control process. The control unit 47 includes, for example, a CPU, a ROM, a RAM, and an RTC. The CPU operates according to a program stored in the ROM and uses the RAM as a work area. The CPU has a function of clocking based on the information supplied from the RTC.
 図5を参照して、リモートコントローラ400の機能、特に、制御部47の機能について説明する。図5に示すように、制御部47は、機能的には、送受信部471を備える。この機能部は、CPUが、記憶部43に記憶された遠隔制御プログラムを実行することにより実現される。 The function of the remote controller 400, in particular, the function of the control unit 47, will be described with reference to FIG. As shown in FIG. 5, the control unit 47 functionally includes a transmission / reception unit 471. The functional unit is realized by the CPU executing the remote control program stored in the storage unit 43.
 送受信部471は、通信部41によるコマンドの送受信を制御する。送受信部471は、送信部472と、受信部473と、を備える。送信部472は、送信手段に対応する。受信部473は、受信手段に対応する。送信部472は、通信部41を介してコマンドを送信する。受信部473は、通信部41を介してコマンドを受信する。送信部472は、受信部473が第1制御コマンドを受信してから第2間隔が経過したときに、第1制御コマンドに対する肯定応答としてACKコマンドを送信する。例えば、送信部472は、受信部473がテストコマンドを室外機100から受信してから第2間隔が経過したときに、テストコマンドに対するACKコマンドを室外機100に送信する。 The transmission and reception unit 471 controls transmission and reception of a command by the communication unit 41. The transmitting and receiving unit 471 includes a transmitting unit 472 and a receiving unit 473. The transmission unit 472 corresponds to a transmission unit. The receiving unit 473 corresponds to a receiving unit. The transmission unit 472 transmits a command via the communication unit 41. The receiving unit 473 receives the command via the communication unit 41. The transmitting unit 472 transmits an ACK command as a positive response to the first control command when the second interval has elapsed since the receiving unit 473 received the first control command. For example, when the second interval has elapsed since the reception unit 473 receives the test command from the outdoor unit 100, the transmission unit 472 transmits, to the outdoor unit 100, an ACK command for the test command.
 通信線510と通信線520とは、室外機100と室内機200と室内機300とリモートコントローラ400とが相互に通信するための一対の通信線を構成する。一対の通信線間には、E(V)又は0(V)の電圧が印加される。本実施形態では、一対の通信線は、室外機100と室内機200と室内機300とリモートコントローラ400とを直列に接続する。 Communication line 510 and communication line 520 constitute a pair of communication lines for the outdoor unit 100, the indoor unit 200, the indoor unit 300 and the remote controller 400 to mutually communicate. A voltage of E (V) or 0 (V) is applied between the pair of communication lines. In the present embodiment, the pair of communication lines connect the outdoor unit 100, the indoor unit 200, the indoor unit 300, and the remote controller 400 in series.
 次に、図6を参照して、本実施形態で採用するベースバンド変調方式について説明する。上述したように、ベースバンド変調方式には、伝送路符号としてNRZを用いるNRZ方式、伝送路符号としてRZを用いるRZ方式、伝送路符号としてAMIを用いるAMI方式などの符号化方式がある。NRZ方式では、1ビット分の符号を表す期間(以下、適宜「1ビット期間」という。)は、一対の通信線間の電圧は、E(V)又は0(V)に維持される。NRZ方式では、例えば、1を表す1ビット期間は、一対の通信線間の電圧はE(V)に維持され、0を表す1ビット期間は、一対の通信線間の電圧は0(V)に維持される。 Next, the baseband modulation method employed in the present embodiment will be described with reference to FIG. As described above, the baseband modulation methods include the NRZ method using NRZ as a transmission line code, the RZ method using RZ as a transmission line code, and the AMI method using AMI as a transmission line code. In the NRZ method, a voltage between a pair of communication lines is maintained at E (V) or 0 (V) during a period representing a code for one bit (hereinafter, appropriately referred to as “one bit period”). In the NRZ system, for example, the voltage between a pair of communication lines is maintained at E (V) in a 1-bit period representing 1 and the voltage between a pair of communication lines is 0 (V) in a 1-bit period representing 0. Maintained.
 デューティ比が50%のRZ方式では、1ビット期間のうち前半の期間はE(V)又は0(V)に維持され、1ビット期間のうち後半の期間はE(V)に維持される。デューティ比が50%のRZ方式では、例えば、1を表す1ビット期間は、一対の通信線間の電圧はE(V)に維持され、0を表す1ビット期間の前半の期間は、一対の通信線間の電圧は0(V)に維持され、0を表す1ビット期間の後半の期間は、一対の通信線間の電圧はE(V)に維持される。 In the RZ method with a duty ratio of 50%, the first half period of one bit period is maintained at E (V) or 0 (V), and the second half period of one bit period is maintained at E (V). In the RZ system with a duty ratio of 50%, for example, the voltage between a pair of communication lines is maintained at E (V) during 1 bit period representing 1 and the first half period of 1 bit period representing 0 is a pair The voltage between the communication lines is maintained at 0 (V), and the voltage between the pair of communication lines is maintained at E (V) in the second half of the 1-bit period representing 0.
 デューティ比が50%のAMI方式では、1ビット期間のうち前半の期間はE(V)、-E(V)又は0(V)に維持され、1ビット期間のうち後半の期間はE(V)に維持される。デューティ比が50%のAMI方式では、例えば、1を表す1ビット期間は、一対の通信線間の電圧は0(V)に維持され、0を表す1ビット期間の前半の期間は、一対の通信線間の電圧はE(V)又は-E(V)に維持され、0を表す1ビット期間の後半の期間は、一対の通信線間の電圧は0(V)に維持される。なお、0を表す1ビット期間の前半の期間に、一対の通信線間の電圧の極性は、0を送信する毎に切り替わる。 In the AMI system with a duty ratio of 50%, E (V), -E (V) or 0 (V) is maintained in the first half of one bit period, and E (V) in the second half of one bit period. Maintained). In the AMI system with a duty ratio of 50%, for example, the voltage between a pair of communication lines is maintained at 0 (V) during 1 bit period representing 1 and the first half period of 1 bit period representing 0 is a pair The voltage between the communication lines is maintained at E (V) or -E (V), and the voltage between the pair of communication lines is maintained at 0 (V) in the second half of the 1-bit period representing 0. In the first half period of a 1-bit period representing 0, the polarity of the voltage between the pair of communication lines is switched every time 0 is transmitted.
 なお、いずれの符号化方式においても、一対の通信線間の電圧に対して割り当てる論理を逆にすることができる。ここで、通信経路における異常がある場合、信号波形が大きく歪むことがある。通信経路における異常は、通信経路における不具合であり、例えば、通信線510又は通信線520と通信装置との接触不良、又は、通信線510又は通信線520の合計長が予め定められた規定長を超える通信線長過多に起因する異常である。信号波形が大きく歪むと、例えば、信号波形の波高値が大きく低下する。 In any of the encoding methods, the logic assigned to the voltage between the pair of communication lines can be reversed. Here, when there is an abnormality in the communication path, the signal waveform may be greatly distorted. An abnormality in the communication path is a failure in the communication path, for example, a contact failure between the communication line 510 or communication line 520 and the communication device, or a specified length in which the total length of the communication line 510 or communication line 520 is predetermined. This is an abnormality caused by the excess communication line length. When the signal waveform is greatly distorted, for example, the peak value of the signal waveform is significantly reduced.
 しかしながら、信号波形を歪ませる原因は、通信経路における異常に限定されず、制御コマンドの衝突であることもある。そして、勝ち残りCDMA/CD方式では、勝ち残った通信装置は、制御コマンドが衝突したことを検出することができない。つまり、制御コマンドの信号波形に基づいて通信経路における異常を診断する場合、通信経路における異常がなくても制御コマンドの衝突があると、通信経路における異常があると診断する可能性がある。そこで、本実施形態では、他のコマンドと衝突しないことが担保されたACKコマンドの信号波形に基づいて通信経路における異常を診断する。以下、ACKコマンドが、他のコマンドと衝突しないことが担保されたコマンドである理由について説明する。 However, the cause of distortion of the signal waveform is not limited to an abnormality in the communication path, but may be a collision of control commands. And, in the winning CDMA / CD system, the winning communication device can not detect that the control command has collided. That is, when diagnosing an abnormality in the communication path based on the signal waveform of the control command, if there is a collision of control commands even if there is no abnormality in the communication path, it may be diagnosed as an abnormality in the communication path. Therefore, in the present embodiment, the abnormality in the communication path is diagnosed based on the signal waveform of the ACK command secured not to collide with another command. Hereinafter, the reason why the ACK command is a command secured not to collide with other commands will be described.
 まず、図7を参照して、勝ち残りCDMA/CD方式について説明する。本実施形態では、以下に示す(1)~(6)の手順に従って、勝ち残りCDMA/CD方式による通信制御を実現する。(1)通信機器が制御コマンドの送信要求を発行する。(2)常時計測していた一対の通信線上の無信号時間が、第1間隔以上となるまで待機。ただし、(1)の直後において、無信号時間が第1間隔以上であった場合、直ちに、(3)に移行する。なお、無信号時間は、一対の通信線上に何の信号も表れない状態が継続した時間である。つまり、無信号時間は、コマンドを構成するビットデータが送信されていない期間の長さである。 First, the winning CDMA / CD system will be described with reference to FIG. In this embodiment, communication control according to the winning CDMA / CD system is realized according to the following procedures (1) to (6). (1) The communication device issues a control command transmission request. (2) Wait until the no signal time on the pair of communication lines, which has been constantly measured, becomes equal to or greater than the first interval. However, immediately after (1), when the no signal time is equal to or longer than the first interval, the process immediately shifts to (3). The non-signal time is a time during which no signal appears on the pair of communication lines. That is, the no signal time is the length of a period in which the bit data constituting the command is not transmitted.
 (3)iに1を代入する。つまり、i=1とする。(4)制御コマンドのi番目のビットデータを符号化した通信信号を一対の通信線上に送信。(5)送信中のビットデータと、一対の通信線上のビットデータとを照合。(6)照合結果が不一致である場合、信号衝突が発生したと判別し、次ビット以降のビットデータの送信を停止し、(2)に処理を戻す。なお、(2)に処理を戻した場合、先頭ビットのビットデータから再送処理を実行する。照合結果が一致であり、最終ビットのビットデータを送信済みである場合、制御コマンドの送信を完了する。照合結果が一致であり、最終ビットのビットデータを送信済みでない場合、i=i+1とし、次ビットのビットデータを送信するために、(4)に処理を戻す。 (3) Substitute 1 into i. That is, i = 1. (4) A communication signal obtained by encoding the ith bit data of the control command is transmitted to the pair of communication lines. (5) The bit data being transmitted and the bit data on the pair of communication lines are collated. (6) If the comparison results do not match, it is determined that a signal collision has occurred, transmission of bit data subsequent to the next bit is stopped, and the process returns to (2). When the process returns to (2), the retransmission process is executed from the bit data of the first bit. When the collation result is a match and the bit data of the final bit has been transmitted, the transmission of the control command is completed. If the collation result is a match and the bit data of the final bit has not been transmitted, then i = i + 1 is set, and the process returns to (4) to transmit the bit data of the next bit.
 図7に、室内機200の送信データと室内機300の送信データとが衝突したときの例を示す。室内機200の送信データは、室内機200が送信した制御コマンドである。室内機300の送信データは、室内機300が送信した制御コマンドある。まず、一対の通信線上のデータは、1以上の通信装置が0を送信した場合に0、全ての通信装置が1を送信、又は、全ての通信装置がデータを送信しなかった場合に1となるものとする。 FIG. 7 shows an example when the transmission data of the indoor unit 200 and the transmission data of the indoor unit 300 collide. The transmission data of the indoor unit 200 is a control command transmitted by the indoor unit 200. The transmission data of the indoor unit 300 is a control command transmitted by the indoor unit 300. First, data on a pair of communication lines is 0 when one or more communication devices transmit 0, 1 when all communication devices transmit 1 or all communication devices do not transmit data. Shall be
 1ビット目から3ビット目までは、室内機200が送信したデータと、一対の通信線上のデータとが一致する。従って、室内機200は、1ビット目から3ビット目までは、データの衝突を検知しない。ここで、4ビット目では、室内機200が送信したデータと、一対の通信線上のデータとが一致しない。このため、4ビット目において、室内機200は、室内機200が送信したデータが1であるにもかかわらず、一対の通信線上のデータが0であることを検知し、データの衝突を検知する。そして、室内機200は、5ビット目以降のデータの送信を停止する。一方、全てのビットに亘り、室内機300が送信したデータと、一対の通信線上のデータとが一致する。従って、室内機300は、全てのビットを送信するまでデータの衝突を検知しない。 From the first bit to the third bit, the data transmitted by the indoor unit 200 matches the data on the pair of communication lines. Therefore, the indoor unit 200 does not detect a data collision from the first bit to the third bit. Here, in the fourth bit, the data transmitted by the indoor unit 200 does not match the data on the pair of communication lines. Therefore, at the 4th bit, the indoor unit 200 detects that the data on the pair of communication lines is 0 even though the data transmitted by the indoor unit 200 is 1, and detects a data collision. . Then, the indoor unit 200 stops the transmission of the data of the fifth and subsequent bits. On the other hand, the data transmitted by the indoor unit 300 matches the data on the pair of communication lines over all the bits. Therefore, the indoor unit 300 does not detect data collisions until all bits are transmitted.
 次に、図8を参照して、第1間隔と第2間隔とについて説明する。まず、制御コマンドのデータフォーマットについて説明する。制御コマンドは、例えば、ヘッダと、宛先アドレスと、自己アドレスと、コマンド長と、コマンド種別と、コマンドデータと、チェックコードと、を備える。ヘッダは、制御コマンドのヘッダ情報である。宛先アドレスは、制御コマンドの送信先の通信機器のアドレスである。自己アドレスは、制御コマンドの送信元の通信機器のアドレスである。なお、通信機器には、通信システム1000内においてユニークなアドレスが割り当てられる。従って、複数の通信機器から同時に制御コマンドが送信された場合、少なくとも自己アドレスに差異が生じるため、遅くとも自己アドレスの送信が完了する前に信号衝突が検知される。 Next, the first interval and the second interval will be described with reference to FIG. First, the data format of the control command will be described. The control command includes, for example, a header, a destination address, a self address, a command length, a command type, command data, and a check code. The header is header information of the control command. The destination address is the address of the communication device to which the control command is to be sent. The self address is the address of the communication device that has sent the control command. A unique address in the communication system 1000 is assigned to the communication device. Therefore, when control commands are simultaneously transmitted from a plurality of communication devices, at least a difference occurs in the self address, so that signal collision is detected at the latest before the transmission of the self address is completed.
 コマンド長は、制御コマンドの長さである。コマンド種別は、通常の制御コマンドであるのか、テストコマンドであるのかの種別である。なお、通常の制御コマンドは、テストコマンド以外の制御コマンドである。コマンドデータは、制御コマンドの内容である。チェックコードは、受信された制御コマンドのデータ誤りを検出するためのデータである。なお、ACKコマンドのデータフォーマットは、制御コマンドのデータフォーマットと同じであってもよいし、制御コマンドのデータフォーマットと異なっていてもよい。 The command length is the length of the control command. The command type is a type of whether it is a normal control command or a test command. The normal control command is a control command other than the test command. Command data is the content of the control command. The check code is data for detecting a data error of the received control command. The data format of the ACK command may be the same as the data format of the control command, or may be different from the data format of the control command.
 第1間隔は、制御コマンドの最小の送信間隔として定められた間隔であり、制御コマンドが送信される直前に最低限確保されるべき無信号時間である。通信機器は、制御コマンドを送信する場合、直前のコマンドの送信が完了してから、第1間隔が経過するまでの期間は、制御コマンドを送信することができない。この直前のコマンドは、制御コマンドであることもあるし、ACKコマンドであることもある。また、この直前のコマンドは、制御コマンドを送信する通信機器が送信したコマンドであることもあるし、他の通信機器が送信したコマンドであることもある。つまり、第1間隔は、直前のコマンドが、自信が送信したコマンドであるか否か、並びに、直前のコマンドが、制御コマンドであるかACKコマンドであるかを問わず、制御コマンドの送信前に確保されるべき間隔である。 The first interval is an interval defined as the minimum transmission interval of the control command, and is a non-signal time which should be secured at a minimum immediately before the control command is transmitted. When transmitting the control command, the communication device can not transmit the control command during the period from the completion of the transmission of the immediately preceding command to the elapse of the first interval. The immediately preceding command may be a control command or an ACK command. Also, the command immediately before this may be a command transmitted by the communication device that transmits the control command, or may be a command transmitted by another communication device. That is, regardless of whether the immediately preceding command is the command transmitted by itself or the immediately preceding command is the control command or the ACK command, the first interval is before the transmission of the control command. It is an interval to be secured.
 つまり、通信機器は、直前のコマンドの送信が完了してから第1間隔が経過した後に制御コマンドの送信要求が発生した場合、直ちに、制御コマンドの送信を開始する。一方、通信機器は、直前のコマンドの送信が完了してから第1間隔が経過する前に制御コマンドの送信要求が発生した場合、直前のコマンドの送信が完了してから第1間隔が経過するまで待機し、その後、制御コマンドの送信を開始する。ここで、直前のコマンドの送信が完了してから第1間隔が経過するまでの期間に、複数の通信機器が待機状態になると、同時に制御コマンドの送信が開始され、信号衝突が発生する。 That is, the communication device immediately starts transmission of the control command when the transmission request of the control command is generated after the first interval has elapsed since the transmission of the immediately preceding command is completed. On the other hand, when the communication device requests transmission of the control command before the first interval elapses after transmission of the immediately preceding command is completed, the first interval elapses after transmission of the immediately preceding command is completed. Wait until and then start sending control commands. Here, when a plurality of communication devices enter a standby state during the period from the completion of the transmission of the immediately preceding command to the elapse of the first interval, the transmission of control commands is simultaneously started, and a signal collision occurs.
 一方、第2間隔は、制御コマンドの送信が完了してからACKコマンドの送信を開始するまでの待機時間として定められた間隔であり、ACKコマンドが送信される直前に確保される無信号時間である。ここで、第2間隔は、第1間隔よりも短く設定される。このため、送信が完了した制御コマンドに対して送信されるACKコマンドは、他の制御コマンドよりも必ず先に送信される。従って、ACKコマンドは、他のコマンドと衝突することはなく、ACKコマンドの信号波形は、信号衝突に起因して歪むことはない。つまり、ACKコマンドの信号波形に基づいて、通信経路の通信異常を診断することにより、信号衝突に起因した誤検出を排除することができる。 On the other hand, the second interval is an interval defined as a waiting time from the completion of transmission of a control command to the start of transmission of an ACK command, and is a no-signal time secured immediately before transmission of the ACK command. is there. Here, the second interval is set shorter than the first interval. Therefore, the ACK command transmitted in response to the control command for which transmission has been completed is always transmitted before other control commands. Therefore, the ACK command does not collide with other commands, and the signal waveform of the ACK command does not distort due to the signal collision. That is, by detecting communication abnormality of the communication path based on the signal waveform of the ACK command, it is possible to eliminate false detection caused by signal collision.
 次に、図9を参照して、波形特徴量について説明する。波形特徴量には、例えば、波高値とサグとパルス幅と立ち上がり時間と立ち下がり時間とがある。波高値は、パルスの電圧の最大値である。サグは、パルスの立ち上がった時点における電圧と、パルスが急激に立ち下がり始める時点における電圧との差であり、パルスのトップ部分における電圧の低下値である。サグの大きさは、電圧の低下値の波高値に対する割合で表される。パルス幅は、パルスの電圧が、波高値の50%に上昇した時点から波高値の50%に下降した時点までの時間である。立ち上がり時間は、パルスの電圧が、波高値の10%から波高値の90%まで増加するのに要した時間である。立ち下がり時間は、パルスの電圧が、波高値の90%から波高値の10%まで減少するのに要した時間である。 Next, waveform feature quantities will be described with reference to FIG. The waveform feature amount includes, for example, a peak value, a sag, a pulse width, a rise time, and a fall time. The peak value is the maximum value of the voltage of the pulse. The sag is the difference between the voltage at the rise of the pulse and the voltage at the onset of the fall of the pulse, and is the drop in voltage at the top of the pulse. The magnitude of the sag is expressed as a ratio of the voltage drop value to the peak value. The pulse width is the time from when the voltage of the pulse rises to 50% of the peak value to when it falls to 50% of the peak value. The rise time is the time taken for the voltage of the pulse to increase from 10% of the peak value to 90% of the peak value. The fall time is the time taken for the voltage of the pulse to decrease from 90% of the peak value to 10% of the peak value.
 次に、図10のフローチャートを参照して、室外機100が実行する通信異常診断処理について説明する。なお、通信異常診断処理は、例えば、室外機100の電源が投入されている間、繰り返し実行される。 Next, the communication abnormality diagnosis process executed by the outdoor unit 100 will be described with reference to the flowchart of FIG. The communication error diagnosis process is repeatedly performed, for example, while the outdoor unit 100 is powered on.
 まず、制御部17は、開始指示があるか否かを判別する(ステップS101)。制御部17は、例えば、通信異常診断処理の開始を指示する操作がユーザにより操作受付部15に対してなされたか否かを判別する。制御部17は、開始指示がないと判別すると(ステップS101:NO)、ステップS101に処理を戻す。一方、制御部17は、開始指示があると判別すると(ステップS101:YES)、通信機器を選択する(ステップS102)。なお、制御部17は、室内機200と室内機300とリモートコントローラ400との中から1つの通信機器を選択する。 First, the control unit 17 determines whether or not there is a start instruction (step S101). The control unit 17 determines, for example, whether or not an operation instructing the start of the communication error diagnosis process has been performed on the operation receiving unit 15 by the user. If the control unit 17 determines that there is no start instruction (step S101: NO), the process returns to step S101. On the other hand, when determining that there is a start instruction (step S101: YES), the control unit 17 selects a communication device (step S102). The control unit 17 selects one communication device from the indoor unit 200, the indoor unit 300, and the remote controller 400.
 制御部17は、ステップS102の処理を完了すると、選択された通信機器に対してテストコマンドを送信する(ステップS103)。具体的には、送信部172は、宛先アドレスとして、選択された通信機器のアドレスが設定され、自己アドレスとして、室外機100のアドレスが設定された、テストコマンドを、通信部11を介して送信する。なお、送信部172は、無信号時間が第1間隔を超えた後に、テストコマンドを送信する。なお、無信号時間は、受信部173により最後のコマンドの受信が完了されてからの経過時間を測定することにより測定することができる。なお、本実施形態では、受信部173は、室外機100宛てのコマンドでなくても、受信するものとする。 When the process of step S102 is completed, the control unit 17 transmits a test command to the selected communication device (step S103). Specifically, the transmission unit 172 transmits, via the communication unit 11, a test command in which the address of the selected communication device is set as the destination address and the address of the outdoor unit 100 is set as the self address. Do. The transmitting unit 172 transmits the test command after the no-signal time exceeds the first interval. The no signal time can be measured by measuring the elapsed time after the reception unit 173 completes the reception of the last command. In the present embodiment, the receiving unit 173 receives the command even if the command is not directed to the outdoor unit 100.
 ここで、選択された通信機器、つまり、テストコマンドを受信した通信機器は、テストコマンドの受信が完了してから第2間隔が経過した後、ACKコマンドを送信する。制御部17は、ステップS103の処理を完了すると、テストコマンドの送信から第2間隔が経過するまで待機する(ステップS104)。 Here, the selected communication device, that is, the communication device that has received the test command, transmits an ACK command after the second interval has elapsed since the reception of the test command is completed. After completing the process of step S103, the control unit 17 stands by until the second interval elapses from the transmission of the test command (step S104).
 制御部17は、ステップS104の処理を完了すると、信号波形の測定を開始する(ステップS105)。具体的には、測定指示部174は、信号波形の測定の開始を指示する開始指示信号を測定部12に送信する。一方、測定部12は、開始指示信号を受信したことに応答して、一対の通信線間の電圧のサンプリングを開始し、信号波形の測定を開始する。制御部17は、ステップS105の処理を完了すると、ACKコマンドを受信する(ステップS106)。具体的には、受信部173が、通信部11を介して、選択された通信機器から送信されたACKコマンドを受信する。 After completing the process of step S104, the control unit 17 starts measurement of the signal waveform (step S105). Specifically, measurement instruction unit 174 transmits to measurement unit 12 a start instruction signal instructing the start of measurement of the signal waveform. On the other hand, in response to the reception of the start instruction signal, measurement unit 12 starts sampling of the voltage between the pair of communication lines, and starts measurement of the signal waveform. When the control unit 17 completes the process of step S105, the control unit 17 receives an ACK command (step S106). Specifically, the receiving unit 173 receives the ACK command transmitted from the selected communication device via the communication unit 11.
 制御部17は、ステップS106の処理を完了すると、信号波形の測定を終了する(ステップS107)。具体的には、測定指示部174は、信号波形の測定の終了を指示する終了指示信号を測定部12に送信する。一方、測定部12は、終了指示信号を受信したことに応答して、一対の通信線間の電圧のサンプリングを終了し、信号波形の測定を終了する。測定部12は、測定した信号波形を示す波形情報を、記憶部13に記憶させる。制御部17は、ステップS107の処理を完了すると、波形特徴量を検出する(ステップS108)。具体的には、特徴量検出部176は、記憶部13に記憶された波形情報により示される信号波形から、ビット毎に各種の波形特徴量を検出する。 After completing the process of step S106, the control unit 17 ends the measurement of the signal waveform (step S107). Specifically, measurement instruction unit 174 transmits, to measurement unit 12, an end instruction signal instructing the end of measurement of the signal waveform. On the other hand, in response to the reception of the termination instruction signal, the measurement unit 12 terminates the sampling of the voltage between the pair of communication lines, and terminates the measurement of the signal waveform. The measuring unit 12 causes the storage unit 13 to store waveform information indicating the measured signal waveform. When the process of step S107 is completed, the control unit 17 detects the waveform feature amount (step S108). Specifically, the feature quantity detection unit 176 detects various waveform feature quantities for each bit from the signal waveform indicated by the waveform information stored in the storage unit 13.
 制御部17は、ステップS108の処理を完了すると、通信経路の異常を診断する(ステップS109)。具体的には、判別部177は、特徴量検出部176により検出された波形特徴量が、記憶部13に記憶された基準値情報により示される基準値範囲内であるか否かを、ビット毎及び波形特徴量の種類毎に判別する。そして、判別部177は、全てのビットにおいて全ての種類の波形特徴量が基準値範囲内であると判別すると、通信経路に異常がないと診断する。一方、判別部177は、いずれかのビットにおいていずれかの種類の波形特徴量が基準値範囲外であると判別すると、通信経路に異常があると診断する。なお、この通信経路は、選択された通信機器から室外機100までの通信経路である。 After completing the process of step S108, the control unit 17 diagnoses an abnormality of the communication path (step S109). Specifically, the determination unit 177 determines, for each bit, whether or not the waveform feature amount detected by the feature amount detection unit 176 falls within the reference value range indicated by the reference value information stored in the storage unit 13. And it discriminates for every kind of waveform feature amount. Then, when determining that all types of waveform feature amounts for all bits are within the reference value range, the determination unit 177 determines that there is no abnormality in the communication path. On the other hand, when determining that one of the waveform feature quantities of any type is out of the reference value range in any of the bits, the determination unit 177 determines that there is an abnormality in the communication path. The communication path is a communication path from the selected communication device to the outdoor unit 100.
 制御部17は、ステップS109の処理を完了すると、未選択の通信機器があるか否かを判別する(ステップS110)。制御部17は、未選択の通信機器があると判別すると(ステップS110:YES)、ステップS102に処理を戻し、未選択の通信機器を新たに選択する。一方、制御部17は、未選択の通信機器がないと判別すると(ステップS110:NO)、診断結果を表示する(ステップS111)。具体的には、出力部178は、診断部175から取得した診断結果を示す情報を表示部16に供給し、表示部16に診断結果を表示させる。 After completing the process of step S109, the control unit 17 determines whether there is an unselected communication device (step S110). When determining that there is an unselected communication device (step S110: YES), the control unit 17 returns the process to step S102, and newly selects an unselected communication device. On the other hand, when determining that there is no unselected communication device (step S110: NO), the control unit 17 displays a diagnosis result (step S111). Specifically, the output unit 178 supplies information indicating the diagnosis result acquired from the diagnosis unit 175 to the display unit 16 and causes the display unit 16 to display the diagnosis result.
 一方、表示部16は、診断結果を示す情報に基づいて、診断結果を表示する。表示部16は、例えば、通信経路を示す情報と診断結果を示す情報とを対応付けて表示することで、診断結果を表示する。例えば、表示部16は、「室外機100から室内機200までの通信経路に異常はありません。室外機100から室内機300までの通信経路に異常はありません。室外機100からリモートコントローラ400までの通信経路に異常があります。従って、室内機300からリモートコントローラ400までの通信経路に異常があると推定されます。」というメッセージを表示する。制御部17は、ステップS111の処理を完了すると、ステップS101に処理を戻す。 On the other hand, the display unit 16 displays the diagnosis result based on the information indicating the diagnosis result. The display unit 16 displays the diagnosis result by, for example, associating and displaying the information indicating the communication path and the information indicating the diagnosis result. For example, “the display 16 has no abnormality in the communication path from the outdoor unit 100 to the indoor unit 200. There is no abnormality in the communication path from the outdoor unit 100 to the indoor unit 300. Communication from the outdoor unit 100 to the remote controller 400 There is an abnormality in the path, so it is presumed that there is an abnormality in the communication path from the indoor unit 300 to the remote controller 400. When the control unit 17 completes the process of step S111, the process returns to step S101.
 本実施形態では、通信機器が第1制御コマンドを受信してから制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに通信機器が送信したACKコマンドの信号波形に基づいて、通信機器から通信異常診断装置までの通信経路における異常が診断される。つまり、本実施形態では、コマンドの衝突がないことが保証されたACKコマンドの信号波形に基づいて、通信経路における異常が診断される。従って、本実施形態によれば、通信経路の異常を精度良く診断することができる。 In this embodiment, after the communication device receives the first control command, an ACK command transmitted by the communication device when a second interval shorter than the first interval determined as the minimum transmission interval of the control command has elapsed. An abnormality in the communication path from the communication device to the communication abnormality diagnosis device is diagnosed based on the signal waveform. That is, in the present embodiment, an abnormality in the communication path is diagnosed on the basis of the signal waveform of the ACK command guaranteed to be free from command collision. Therefore, according to the present embodiment, it is possible to diagnose an abnormality of the communication path with high accuracy.
 また、本実施形態では、通信機器にACKコマンドを送信させるためのテストコマンドが通信機器に送信される。従って、本実施形態によれば、通信経路の異常を速やかに精度良く診断することができる。 In the present embodiment, a test command for causing the communication device to transmit an ACK command is transmitted to the communication device. Therefore, according to the present embodiment, it is possible to diagnose abnormality of the communication path promptly and accurately.
 また、本実施形態では、波高値とサグとパルス幅と立ち上がり時間と立ち下がり時間とのうち少なくとも1つを含む波形特徴量が予め定められた範囲外である場合、通信経路が異常であると判別される。従って、本実施形態によれば、通信経路の異常を速やかに精度良く診断することができる。 In the present embodiment, if the waveform feature amount including at least one of the peak value, the sag, the pulse width, the rise time, and the fall time is out of a predetermined range, the communication path is abnormal. It is determined. Therefore, according to the present embodiment, it is possible to diagnose abnormality of the communication path promptly and accurately.
 また、本実施形態では、空調機である室外機100が通信異常診断装置である。このため、本実施形態では、室外機100が備える構成、例えば、通信部11及び送受信部171を、通信異常診断装置の構成として流用することができる。従って、本実施形態によれば、低コストで、通信経路の異常を精度良く診断することができる。 Further, in the present embodiment, the outdoor unit 100 that is an air conditioner is the communication abnormality diagnosis device. For this reason, in the present embodiment, the configuration provided in the outdoor unit 100, for example, the communication unit 11 and the transmission / reception unit 171 can be diverted as the configuration of the communication abnormality diagnosis device. Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path with high accuracy at low cost.
(実施形態2)
 実施形態1では、通信異常診断装置である室外機100が、通信機器が室外機100からテストコマンドを受信したことに応答して送信したACKコマンドの信号波形を取得する例について説明した。本実施形態では、通信異常診断装置である室外機100が、通信機器が他の通信機器(以下、適宜「第2通信機器」という。)から第1制御コマンドを受信したことに応答して送信したACKコマンドの信号波形を取得する例について説明する。なお、本実施形態に係る室外機100の構成は、基本的に、図3に示す室外機100の構成と同様であるため、説明を省略する。
Second Embodiment
In the first embodiment, an example has been described in which the outdoor unit 100 serving as the communication error diagnosis device acquires a signal waveform of an ACK command transmitted in response to the communication device receiving a test command from the outdoor unit 100. In the present embodiment, the outdoor unit 100, which is the communication abnormality diagnosis device, transmits in response to the communication device receiving the first control command from another communication device (hereinafter, appropriately referred to as "second communication device"). An example of acquiring a signal waveform of an ACK command will be described. The configuration of the outdoor unit 100 according to the present embodiment is basically the same as the configuration of the outdoor unit 100 shown in FIG.
 以下、図11のフローチャートを参照して、本実施形態に係る室外機100が実行する通信異常診断処理について説明する。なお、通信異常診断処理は、例えば、室外機100の電源が投入されている間、繰り返し実行される。 Hereinafter, the communication abnormality diagnosis process performed by the outdoor unit 100 according to the present embodiment will be described with reference to the flowchart in FIG. The communication error diagnosis process is repeatedly performed, for example, while the outdoor unit 100 is powered on.
 まず、制御部17は、ACKコマンドを要求する第1制御コマンドがあるか否かを判別する(ステップS201)。制御部17は、例えば、宛先アドレスとして室外機100以外の通信機器のアドレスが設定され、自己アドレスとして第2通信機器のアドレスが設定された第1制御コマンドが、受信部173により受信されたか否かを判別する。なお、本実施形態では、受信部173は、室外機100宛てでないコマンドも受信するものとする。制御部17は、ACKコマンドを要求する第1制御コマンドがないと判別すると(ステップS201:NO)、ステップS201に処理を戻す。 First, the control unit 17 determines whether there is a first control command for requesting an ACK command (step S201). For example, the control unit 17 determines whether the receiving unit 173 receives a first control command in which the address of a communication device other than the outdoor unit 100 is set as the destination address and the address of the second communication device is set as the own address. Determine if In the present embodiment, the reception unit 173 also receives a command not addressed to the outdoor unit 100. If the control unit 17 determines that there is no first control command requesting an ACK command (step S201: NO), the process returns to step S201.
 制御部17は、ACKコマンドを要求する第1制御コマンドがあると判別すると(ステップS201:YES)、第1制御コマンドの送信から第2間隔が経過するまで待機する(ステップS202)。つまり、制御部17は、受信部173による第1制御コマンドの受信が完了してから第2間隔が経過するまで待機する。 If the control unit 17 determines that there is a first control command requesting an ACK command (step S201: YES), the control unit 17 stands by until a second interval elapses from the transmission of the first control command (step S202). That is, the control unit 17 waits until the second interval elapses after the reception unit 173 completes the reception of the first control command.
 制御部17は、ステップS202の処理を完了すると、信号波形の測定を開始する(ステップS203)。制御部17は、ステップS203の処理を完了すると、ACKコマンドの送信が完了するまで待機する(ステップS204)。具体的には、受信部173によるACKコマンドの受信が完了するまで待機する。 After completing the process of step S202, the control unit 17 starts measurement of the signal waveform (step S203). After completing the process of step S203, the control unit 17 waits until the transmission of the ACK command is completed (step S204). Specifically, the reception unit 173 waits until the reception of the ACK command is completed.
 制御部17は、ステップS204の処理を完了すると、信号波形の測定を終了する(ステップS205)。制御部17は、ステップS205の処理を完了すると、波形特徴量を検出する(ステップS206)。制御部17は、ステップS206の処理を完了すると、通信経路の異常を診断する(ステップS207)。なお、この通信経路は、第1制御コマンドを受信しACKコマンドを送信した通信機器から室外機100までの通信経路である。 When the control unit 17 completes the process of step S204, the control unit 17 ends the measurement of the signal waveform (step S205). When the process of step S205 is completed, the control unit 17 detects the waveform feature amount (step S206). When the process of step S206 is completed, the control unit 17 diagnoses an abnormality of the communication path (step S207). The communication path is a communication path from the communication device which has received the first control command and transmitted the ACK command to the outdoor unit 100.
 制御部17は、ステップS207の処理を完了すると、診断結果を表示する(ステップS208)。具体的には、出力部178は、診断部175から取得した診断結果を示す情報を表示部16に供給し、表示部16に診断結果を表示させる。一方、表示部16は、診断結果を示す情報に基づいて、診断結果を表示する。例えば、表示部16は、「室外機100から室内機200までの通信経路に異常はありません。」というメッセージを表示する。なお、表示部16により表示されるメッセージは、新たな通信機器によりACKコマンドが送信される毎に、追加又は更新されることが好適である。制御部17は、ステップS208の処理を完了すると、ステップS201に処理を戻す。 When the process of step S207 is completed, the control unit 17 displays the diagnosis result (step S208). Specifically, the output unit 178 supplies information indicating the diagnosis result acquired from the diagnosis unit 175 to the display unit 16 and causes the display unit 16 to display the diagnosis result. On the other hand, the display unit 16 displays the diagnosis result based on the information indicating the diagnosis result. For example, the display unit 16 displays a message “There is no abnormality in the communication path from the outdoor unit 100 to the indoor unit 200.” Preferably, the message displayed by the display unit 16 is added or updated each time an ACK command is transmitted by a new communication device. When the control unit 17 completes the process of step S208, the process returns to step S201.
 本実施形態では、通信機器が、第2通信機器から受信した第1制御コマンドに応答して第2通信機器に送信したACKコマンドの信号波形に基づいて、通信機器から通信異常診断装置までの通信経路における異常が診断される。つまり、本実施形態では、通信機器にACKコマンドを送信させるために、通信異常診断装置がテストコマンドを送信する必要がない。従って、本実施形態によれば、通信経路の異常を簡単な構成で精度良く診断することができる。 In the present embodiment, communication from the communication device to the communication abnormality diagnosis device based on the signal waveform of the ACK command transmitted to the second communication device in response to the first control command received from the second communication device. An abnormality in the pathway is diagnosed. That is, in the present embodiment, there is no need for the communication abnormality diagnosis device to transmit a test command in order to cause the communication device to transmit an ACK command. Therefore, according to the present embodiment, it is possible to diagnose an abnormality of the communication path with high accuracy with a simple configuration.
(実施形態3)
 実施形態1では、通信異常診断装置が室外機100である例について説明した。本発明において、通信異常診断装置は、室外機100以外の空調機であってもよいし、空調機でなくてもよい。なお、室外機100以外の空調機は、例えば、室内機200、室内機300、又は、リモートコントローラ400である。以下、本実施形態では、通信異常診断装置が空調機でない例、つまり、通信異常診断装置が空調機に組み込まれない例について説明する。図12に示すように、本実施形態に係る通信システム1100は、室外機110と、室内機200と、室内機300と、リモートコントローラ400と、通信異常診断装置600とを備える。室外機110の構成は、基本的に、室内機100の構成から通信異常診断処理に関わる構成を除外した構成である。
(Embodiment 3)
In the first embodiment, an example in which the communication abnormality diagnosis device is the outdoor unit 100 has been described. In the present invention, the communication abnormality diagnosis device may or may not be an air conditioner other than the outdoor unit 100. The air conditioners other than the outdoor unit 100 are, for example, the indoor unit 200, the indoor unit 300, or the remote controller 400. Hereinafter, in the present embodiment, an example in which the communication abnormality diagnosis device is not an air conditioner, that is, an example in which the communication abnormality diagnosis device is not incorporated in an air conditioner will be described. As shown in FIG. 12, the communication system 1100 according to the present embodiment includes an outdoor unit 110, an indoor unit 200, an indoor unit 300, a remote controller 400, and a communication abnormality diagnosis device 600. The configuration of the outdoor unit 110 is basically the configuration excluding the configuration relating to the communication abnormality diagnosis processing from the configuration of the indoor unit 100.
 以下、図13を参照して、本実施形態に係る通信異常診断装置600の構成について説明する。図13に示すように、通信異常診断装置600は、通信部61と、測定部62と、記憶部63と、操作受付部65と、表示部66と、制御部67と、を備える。測定部62は、測定手段に対応する。表示部66は、表示手段に対応する。通信部61と測定部62と記憶部63と操作受付部65と表示部66と制御部67とは、基本的に、それぞれ、通信部11と測定部12と記憶部13と操作受付部15と表示部16と制御部17と同様の構成である。つまり、通信異常診断装置600の構成は、基本的に、室外機100の構成から、メインユニット14を除外した構成である。なお、通信異常診断装置600は、波形測定装置としての機能も備える。 The configuration of the communication error diagnosis device 600 according to the present embodiment will be described below with reference to FIG. As shown in FIG. 13, the communication abnormality diagnosis device 600 includes a communication unit 61, a measurement unit 62, a storage unit 63, an operation reception unit 65, a display unit 66, and a control unit 67. The measuring unit 62 corresponds to a measuring unit. The display unit 66 corresponds to display means. The communication unit 61, the measurement unit 62, the storage unit 63, the operation reception unit 65, the display unit 66, and the control unit 67 basically have the communication unit 11, the measurement unit 12, the storage unit 13, and the operation reception unit 15, respectively. The configuration is the same as that of the display unit 16 and the control unit 17. That is, the configuration of the communication abnormality diagnosis device 600 is basically a configuration in which the main unit 14 is excluded from the configuration of the outdoor unit 100. The communication error diagnosis device 600 also has a function as a waveform measurement device.
 つまり、通信部61は、一対の通信線を介して、通信異常診断装置600を、室外機110と室内機200と室内機300とリモートコントローラ400とに接続するための通信インターフェースである。測定部62は、一対の通信線上を送受信されるコマンドの信号波形を測定する。記憶部63は、通信異常診断装置600が実行する通信異常診断処理に必要な各種のデータを記憶する。記憶部63は、例えば、通信異常診断処理を実行するための通信異常診断プログラムを記憶する。また、記憶部63は、測定部62から供給された波形情報を記憶する。また、記憶部63は、波形特徴量の基準値を示す基準値情報を記憶する。制御部67は、通信異常診断装置600を統括制御する。つまり、制御部67は、通信異常診断処理に関する処理を実行する。 That is, the communication unit 61 is a communication interface for connecting the communication abnormality diagnosis device 600 to the outdoor unit 110, the indoor unit 200, the indoor unit 300, and the remote controller 400 via the pair of communication lines. The measuring unit 62 measures a signal waveform of a command transmitted and received on the pair of communication lines. The storage unit 63 stores various data necessary for the communication error diagnosis process performed by the communication error diagnosis device 600. The storage unit 63 stores, for example, a communication abnormality diagnosis program for executing communication abnormality diagnosis processing. In addition, the storage unit 63 stores the waveform information supplied from the measurement unit 62. Further, the storage unit 63 stores reference value information indicating a reference value of the waveform feature amount. The control unit 67 generally controls the communication abnormality diagnosis device 600. That is, the control unit 67 executes a process related to the communication error diagnosis process.
 図13に示すように、制御部67は、機能的には、送受信部671と、測定指示部674と、診断部675と、出力部678と、を備える。測定指示部674は、測定指示手段に対応する。診断部675は、診断手段に対応する。出力部678は、出力手段に対応する。これらの機能部は、CPUが、記憶部63に記憶された通信異常診断プログラムを実行することにより実現される。送受信部671と測定指示部674と診断部675と出力部678とは、基本的に、送受信部171と測定指示部174と診断部175と出力部178と同様の構成である。つまり、制御部67の機能的な構成は、基本的に、制御部17の機能的な構成から空調制御部179を除外した構成である。 As shown in FIG. 13, the control unit 67 functionally includes a transmission / reception unit 671, a measurement instruction unit 674, a diagnosis unit 675, and an output unit 678. The measurement instruction unit 674 corresponds to a measurement instruction unit. The diagnostic unit 675 corresponds to the diagnostic means. The output unit 678 corresponds to the output unit. These functional units are realized by the CPU executing the communication error diagnosis program stored in the storage unit 63. The transmission / reception unit 671, the measurement instruction unit 674, the diagnosis unit 675, and the output unit 678 basically have the same configuration as the transmission / reception unit 171, the measurement instruction unit 174, the diagnosis unit 175, and the output unit 178. That is, the functional configuration of the control unit 67 is basically a configuration in which the air conditioning control unit 179 is excluded from the functional configuration of the control unit 17.
 つまり、送受信部671は、通信部61によるコマンドの送受信を制御する。送受信部671は、送信部672と、受信部673と、を備える。送信部672は、送信手段に対応する。受信部673は、受信手段に対応する。送信部672は、通信部61を介してコマンドを送信する。受信部673は、通信部61を介してコマンドを受信する。測定指示部674は、送受信部671によるコマンドの送受信状況に応じて、測定部62に対して、信号波形の測定を指示する。 That is, the transmission and reception unit 671 controls transmission and reception of the command by the communication unit 61. The transmitting and receiving unit 671 includes a transmitting unit 672 and a receiving unit 673. The transmission unit 672 corresponds to a transmission unit. The receiving unit 673 corresponds to a receiving unit. The transmission unit 672 transmits a command via the communication unit 61. The receiving unit 673 receives the command via the communication unit 61. The measurement instruction unit 674 instructs the measurement unit 62 to measure the signal waveform according to the transmission / reception status of the command by the transmission / reception unit 671.
 診断部675は、測定部62により測定された信号波形に基づいて、通信相手の通信機器から通信異常診断装置600までの通信経路における異常を診断する。診断部675は、特徴量検出部676と、判別部677と、を備える。特徴量検出部676は、特徴量検出手段に対応する。判別部677は、判別手段に対応する。特徴量検出部676は、測定部62により測定された信号波形から、波高値とサグとパルス幅と立ち上がり時間と立ち下がり時間とのうち少なくとも1つを含む波形特徴量を検出する。判別部677は、特徴量検出部676により検出された波形特徴量が、予め定められた範囲外である場合、通信経路が異常であると判別する。出力部678は、診断部675による診断結果を出力する。 Based on the signal waveform measured by the measurement unit 62, the diagnosis unit 675 diagnoses an abnormality in the communication path from the communication device of the communication partner to the communication abnormality diagnosis device 600. The diagnosis unit 675 includes a feature detection unit 676 and a determination unit 677. The feature amount detection unit 676 corresponds to a feature amount detection unit. The determination unit 677 corresponds to the determination unit. The feature amount detection unit 676 detects, from the signal waveform measured by the measurement unit 62, a waveform feature amount including at least one of the peak value, the sag, the pulse width, the rise time, and the fall time. When the waveform feature amount detected by the feature amount detection unit 676 is out of a predetermined range, the determination unit 677 determines that the communication path is abnormal. The output unit 678 outputs the diagnosis result by the diagnosis unit 675.
 本実施形態では、通信異常診断装置600は室内機200の近傍に配置され、通信異常診断装置600と一対の通信線との接続箇所と室内機200と一対の通信線との接続箇所とが極めて近いものとする。従って、通信経路の診断に関しては、室内機200に通信異常診断装置600が組み込まれたものとみなすことができる。例えば、室外機110から通信異常診断装置600までの通信経路は、室外機110から室内機200までの通信経路とみなすことができる。また、室内機300から通信異常診断装置600までの通信経路は、室内機300から室内機200までの通信経路とみなすことができる。また、リモートコントローラ400から通信異常診断装置600までの通信経路は、リモートコントローラ400から室内機200までの通信経路とみなすことができる。 In the present embodiment, the communication abnormality diagnosis device 600 is disposed in the vicinity of the indoor unit 200, and the connection portion between the communication abnormality diagnosis device 600 and the pair of communication lines and the connection portion between the indoor unit 200 and the pair of communication lines are extremely It will be close. Therefore, with regard to the diagnosis of the communication path, it can be regarded that the communication abnormality diagnosis device 600 is incorporated in the indoor unit 200. For example, the communication path from the outdoor unit 110 to the communication abnormality diagnosis device 600 can be regarded as the communication path from the outdoor unit 110 to the indoor unit 200. Further, the communication path from the indoor unit 300 to the communication abnormality diagnosis device 600 can be regarded as the communication path from the indoor unit 300 to the indoor unit 200. Further, the communication path from the remote controller 400 to the communication abnormality diagnosis device 600 can be regarded as the communication path from the remote controller 400 to the indoor unit 200.
 例えば、表示部66は、「室外機100から室内機200までの通信経路に異常はありません。室内機300から室内機200までの通信経路に異常があります。リモートコントローラ400から室内機200までの通信経路に異常があります。従って、室内機200から室内機300までの通信経路に異常があると推定されます。」というメッセージを表示する。なお、通信異常診断装置600は、通信異常診断装置600から室内機200までの通信経路の異常を診断することができる。この通信経路が異常であると診断された場合、室内機200と一対の通信線との接続箇所の接触不良、或いは、室内機200が備える通信部21の内部の不良などが考えられる。 For example, “the communication unit from the outdoor unit 100 to the indoor unit 200 has no abnormality. The communication path from the indoor unit 300 to the indoor unit 200 has an abnormality. The communication from the remote controller 400 to the indoor unit 200” There is an abnormality in the path, so it is presumed that there is an abnormality in the communication path from the indoor unit 200 to the indoor unit 300. " The communication abnormality diagnosis device 600 can diagnose an abnormality in the communication path from the communication abnormality diagnosis device 600 to the indoor unit 200. When this communication path is diagnosed as abnormal, a contact failure of a connection portion between the indoor unit 200 and the pair of communication lines, a failure inside the communication unit 21 provided in the indoor unit 200, or the like may be considered.
 本実施形態では、空調機とは別の構成として、通信異常診断装置600が設けられる。つまり、本実施形態では、空調機の構成を変更せずに、通信経路の異常を診断することができる。また、本実施形態では、通信異常診断装置600の一対の通信線への接続箇所を容易に変更することができる。従って、本実施形態によれば、低コストで容易に、通信経路の異常を精度良く診断することができる。 In the present embodiment, the communication abnormality diagnosis device 600 is provided as a configuration different from the air conditioner. That is, in the present embodiment, it is possible to diagnose an abnormality in the communication path without changing the configuration of the air conditioner. Further, in the present embodiment, the connection points to the pair of communication lines of the communication error diagnosis device 600 can be easily changed. Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path accurately at low cost and easily.
(実施形態4)
 実施形態1では、室外機100のみが通信異常診断装置である例について説明した。本発明において、室外機100以外の空調機が通信異常診断装置であってもよい。本実施形態では、全ての空調機が通信異常診断装置である例について説明する。本実施形態に係る通信システム(図示せず)は、通信異常診断装置として機能する室外機120と、通信異常診断装置として機能する2つの室内機(図示せず)と、通信異常診断装置として機能するリモートコントローラ410と、を備える。なお、本実施形態における通信異常診断装置は、波形測定装置としての機能も有する。
(Embodiment 4)
In the first embodiment, an example in which only the outdoor unit 100 is the communication abnormality diagnosis device has been described. In the present invention, the air conditioner other than the outdoor unit 100 may be the communication abnormality diagnosis device. In the present embodiment, an example in which all the air conditioners are communication abnormality diagnosis devices will be described. A communication system (not shown) according to the present embodiment functions as an outdoor unit 120 functioning as a communication abnormality diagnosis device, two indoor units (not shown) functioning as a communication abnormality diagnosis device, and a communication abnormality diagnosis device. And a remote controller 410. The communication error diagnosis apparatus in the present embodiment also has a function as a waveform measurement apparatus.
 室外機120は、通信部11と、測定部12と、記憶部13と、メインユニット14と、制御部17と、を備える。つまり、室外機120の構成は、室外機100の構成から、操作受付部15と表示部16とを除外した構成である。また、本実施形態に係る制御部17は、機能的には、送受信部171と、測定指示部174と、診断部175と、出力部178と、空調制御部179と、を備える。本実施形態に係る制御部17の機能的な構成は、基本的には、実施形態1に係る制御部17の機能的な構成と同様である。 The outdoor unit 120 includes a communication unit 11, a measurement unit 12, a storage unit 13, a main unit 14, and a control unit 17. That is, the configuration of the outdoor unit 120 is a configuration in which the operation receiving unit 15 and the display unit 16 are excluded from the configuration of the outdoor unit 100. Further, the control unit 17 according to the present embodiment functionally includes a transmission / reception unit 171, a measurement instruction unit 174, a diagnosis unit 175, an output unit 178, and an air conditioning control unit 179. The functional configuration of the control unit 17 according to the present embodiment is basically the same as the functional configuration of the control unit 17 according to the first embodiment.
 ただし、室外機120は、通信異常診断処理の開始を指示する操作を受け付ける操作受付部15を備えない。このため、室外機120は、例えば、通信異常診断処理の開始を指示する操作を受け付ける操作受付部45を備えるリモートコントローラ410から受信した制御コマンドに従って、通信異常診断処理を開始する。また、室外機120は、診断結果を表示する表示部16を備えない。このため、室外機120は、例えば、通信部11を介して、診断結果を示す制御コマンドを、診断結果を表示する表示部46を備えるリモートコントローラ410に送信し、表示部46に診断結果を表示させる。 However, the outdoor unit 120 does not include the operation reception unit 15 that receives an operation for instructing the start of the communication error diagnosis process. Therefore, for example, the outdoor unit 120 starts the communication abnormality diagnosis process according to the control command received from the remote controller 410 including the operation reception unit 45 that receives the operation instructing the start of the communication abnormality diagnosis process. In addition, the outdoor unit 120 does not include the display unit 16 that displays the diagnosis result. Therefore, the outdoor unit 120 transmits, for example, a control command indicating the diagnosis result to the remote controller 410 including the display unit 46 displaying the diagnosis result via the communication unit 11, and displays the diagnosis result on the display unit 46. Let
 2つの室内機(図示せず)の構成は、図4に示す室内機200の構成に測定部12を追加し、図4に示す制御部27の機能的な構成に、測定指示部174と診断部175と出力部178とに対応する構成を追加した構成である。 The configuration of the two indoor units (not shown) adds the measuring unit 12 to the configuration of the indoor unit 200 shown in FIG. 4 and diagnoses the measurement instructing unit 174 and the functional configuration of the control unit 27 shown in FIG. The configuration corresponding to the unit 175 and the output unit 178 is added.
 リモートコントローラ410は、通信部41と、測定部42と、記憶部43と、操作受付部45と、表示部46と、制御部47と、を備える。つまり、リモートコントローラ410の構成は、リモートコントローラ400の構成に、測定部42を追加した構成である。測定部42は、測定手段に対応する。測定部42は、測定部12と同様に、一対の通信線上の信号波形を測定する。記憶部43は、記憶部13と同様に、通信異常診断プログラム、波形情報、基準値情報を記憶する。操作受付部45は、操作受付部15と同様に、通信異常診断処理に関する操作を受け付ける。 The remote controller 410 includes a communication unit 41, a measurement unit 42, a storage unit 43, an operation reception unit 45, a display unit 46, and a control unit 47. That is, the configuration of the remote controller 410 is a configuration in which the measuring unit 42 is added to the configuration of the remote controller 400. The measuring unit 42 corresponds to a measuring unit. The measuring unit 42 measures the signal waveforms on the pair of communication lines in the same manner as the measuring unit 12. Similar to the storage unit 13, the storage unit 43 stores a communication error diagnosis program, waveform information, and reference value information. The operation receiving unit 45 receives an operation related to the communication error diagnosis process, as the operation receiving unit 15 does.
 また、リモートコントローラ410が備える制御部47は、機能的には、送受信部471と、測定指示部474と、診断部475と、出力部478と、を備える。測定指示部474は、測定指示手段に対応する。診断部475は、診断手段に対応する。出力部478は、出力手段に対応する。送受信部471は、通信部41を介してコマンドを送受信する。送信部472は、通信異常診断処理の開始を指示する制御コマンドを、通信部41を介して、他の空調機に送信する。受信部473は、診断結果を示す制御コマンドを、通信部41を介して、他の空調機から受信する。測定指示部474は、送受信部471によるコマンドの送受信状況に従って、測定部42に信号波形を測定させる。診断部475は、記憶部43に記憶された波形情報に従って、通信経路の異常を診断する。出力部478は、リモートコントローラ410による診断結果と他の空調機による診断結果とを示す情報を表示部46に送信し、表示部46にこれらの診断結果を表示させる。また、出力部478は、全ての診断結果を総合的に判断して、精度の良い診断結果を求め、求めた診断結果を表示部46に表示させることができる。 The control unit 47 included in the remote controller 410 functionally includes a transmission / reception unit 471, a measurement instruction unit 474, a diagnosis unit 475, and an output unit 478. The measurement instruction unit 474 corresponds to a measurement instruction unit. The diagnostic unit 475 corresponds to the diagnostic means. The output unit 478 corresponds to an output unit. The transmission and reception unit 471 transmits and receives a command via the communication unit 41. The transmitting unit 472 transmits a control command instructing start of the communication abnormality diagnosis process to another air conditioner via the communication unit 41. The receiving unit 473 receives a control command indicating a diagnosis result from another air conditioner via the communication unit 41. The measurement instruction unit 474 causes the measurement unit 42 to measure the signal waveform according to the transmission / reception status of the command by the transmission / reception unit 471. The diagnosis unit 475 diagnoses an abnormality of the communication path in accordance with the waveform information stored in the storage unit 43. The output unit 478 transmits information indicating the diagnosis result by the remote controller 410 and the diagnosis result by another air conditioner to the display unit 46, and causes the display unit 46 to display these diagnosis results. Further, the output unit 478 can comprehensively judge all the diagnosis results, obtain accurate diagnosis results, and can display the obtained diagnosis results on the display unit 46.
 本実施形態では、全ての空調機が通信異常診断装置として機能し、2つの空調機間の通信経路の異常が診断される。従って、本実施形態によれば、通信経路の異常を更に精度良く診断することができる。 In the present embodiment, all the air conditioners function as a communication abnormality diagnosis device, and the abnormality of the communication path between the two air conditioners is diagnosed. Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path with higher accuracy.
 また、本実施形態では、いずれかの空調機が備える操作受付部により、通信異常診断処理の開始を指示する操作が受け付けられ、いずれかの空調機が備える表示部により、診断結果が表示される。従って、本実施形態によれば、低コストで、通信経路の異常を精度良く診断することができる。 Further, in the present embodiment, the operation accepting unit included in any of the air conditioners accepts an operation instructing the start of the communication abnormality diagnosis process, and the display unit included in any of the air conditioners displays the diagnostic result. . Therefore, according to the present embodiment, it is possible to diagnose the abnormality of the communication path with high accuracy at low cost.
(変形例)
 以上、本発明の実施形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。
(Modification)
As mentioned above, although embodiment of this invention was described, in implementation of this invention, the deformation | transformation and application by various forms are possible.
 本発明において、上記実施形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本発明において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。また、上記実施形態において説明した構成、機能、動作は、自由に組み合わせることができる。 In the present invention, which part of the configuration, function, and operation described in the above embodiment is adopted is optional. Further, in the present invention, in addition to the above-described configurations, functions, and operations, further configurations, functions, and operations may be adopted. Further, the configurations, functions, and operations described in the above embodiments can be freely combined.
 例えば、実施形態1では、全ての通信経路の診断結果が表示される例について説明した。本発明において、例えば、操作受付部15に受け付けられた操作により指定された一部の通信経路の診断結果のみが表示されてもよい。また、実施形態1では、全てのビットにおいて全ての種類の波形特徴量が基準値範囲内であると判別された場合に限り、通信経路に異常がないと診断される例について説明した。本発明において、例えば、全ての種類の波形特徴量が基準値範囲内であるビットの割合が予め定められた割合以上である場合に、通信経路に異常がないと診断されてもよい。この割合は、例えば、80%程度の割合である。 For example, in the first embodiment, the example in which the diagnosis results of all the communication paths are displayed has been described. In the present invention, for example, only the diagnosis results of a part of the communication paths designated by the operation accepted by the operation accepting unit 15 may be displayed. Further, in the first embodiment, an example in which it is diagnosed that there is no abnormality in the communication path has been described only when it is determined that all types of waveform feature amounts in all the bits are within the reference value range. In the present invention, it may be diagnosed that there is no abnormality in the communication path, for example, when the proportion of bits whose waveform feature quantities of all types are within the reference value range is equal to or more than a predetermined proportion. This ratio is, for example, about 80%.
 実施形態3では、通信異常診断装置600が室内機200の近傍に配置される例について説明した。本発明において、通信異常診断装置600は、室外機110、室内機200、室内機300、リモートコントローラ400のいずれの近傍に配置されてもよい。また、実施形態3では、通信異常診断装置600がテストコマンドを送信する例について説明した。実施形態3において、実施形態2と同様に、通信異常診断装置600がテストコマンドを送信しなくてもよい。 In the third embodiment, an example in which the communication abnormality diagnosis device 600 is disposed in the vicinity of the indoor unit 200 has been described. In the present invention, the communication abnormality diagnosis device 600 may be disposed in the vicinity of any of the outdoor unit 110, the indoor unit 200, the indoor unit 300, and the remote controller 400. In the third embodiment, an example in which the communication error diagnosis device 600 transmits a test command has been described. In the third embodiment, as in the second embodiment, the communication error diagnosis device 600 may not transmit the test command.
 実施形態4では、全ての空調機が、診断部を備える例について説明した。本発明において、一部の空調機のみが診断部を備えていてもよい。この場合、例えば、診断部を備えない空調機は、診断部を備える空調機に、波形情報又は波形特徴量を制御コマンドにより送信し、診断部を備える空調機に通信経路の異常を診断させればよい。 In the fourth embodiment, an example has been described in which all the air conditioners include the diagnosis unit. In the present invention, only some of the air conditioners may have the diagnosis unit. In this case, for example, the air conditioner without the diagnosis unit transmits the waveform information or the waveform feature amount according to the control command to the air conditioner including the diagnosis unit, and causes the air conditioner including the diagnosis unit to diagnose an abnormality of the communication path. Just do it.
 実施形態1では、テストコマンドの送信から第2間隔が経過したとき、つまり、ACK信号の送信が開始されるときに、信号波形の測定が開始される例について説明した。本発明において、ACK信号の送信が開始される直前、つまり、テストコマンドの送信から第2間隔が経過する直前に、信号波形の測定が開始されてもよい。かかる構成では、例えば、電圧波形の立ち上がり部分の測定漏れを抑制することができる。実施形態1では、通信システム1000が、宅内に構築された空調システムである例について説明した。通信システム1000は、ビル内に構築された空調システムであってもよい。また、通信システム1000は、空調システムでなくてもよい。通信システム1000は、照明装置を制御する照明システムでもよい。 In the first embodiment, an example has been described in which measurement of the signal waveform is started when the second interval has elapsed since the transmission of the test command, that is, when the transmission of the ACK signal is started. In the present invention, measurement of the signal waveform may be started immediately before transmission of the ACK signal is started, that is, immediately before the second interval elapses from transmission of the test command. In such a configuration, for example, measurement leakage at the rising portion of the voltage waveform can be suppressed. In the first embodiment, an example in which the communication system 1000 is an air conditioning system built in a home has been described. The communication system 1000 may be an air conditioning system built in a building. In addition, the communication system 1000 may not be an air conditioning system. Communication system 1000 may be a lighting system that controls a lighting device.
 本発明に係る室外機100、室外機110、室外機120、室内機200、室内機300、リモートコントローラ400、リモートコントローラ410、通信異常診断装置600の動作を規定する動作プログラムを既存のパーソナルコンピュータ又は情報端末装置に適用することで、当該パーソナルコンピュータ等を本発明に係る室外機100、室外機110、室外機120、室内機200、室内機300、リモートコントローラ400、リモートコントローラ410、通信異常診断装置600として機能させることも可能である。また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、メモリカードなどのコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネットなどの通信ネットワークを介して配布してもよい。 The operation program defining the operation of the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the indoor unit 200, the indoor unit 300, the remote controller 400, the remote controller 410 and the communication abnormality diagnosis device 600 according to the present invention By applying the personal computer etc. to the information terminal device, the outdoor unit 100, the outdoor unit 110, the outdoor unit 120, the indoor unit 200, the indoor unit 300, the remote controller 400, the remote controller 410, the communication abnormality diagnosis device according to the present invention. It is also possible to function as 600. Also, the distribution method of such a program is arbitrary, and for example, it is stored by being stored in a computer readable recording medium such as a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), or a memory card. It may be distributed via a communication network such as the Internet.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. In addition, the embodiment described above is for describing the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiments but by the claims. And, various modifications applied within the scope of the claims and the meaning of the invention are considered to be within the scope of the present invention.
 本発明は、一対の通信線を介して複数の通信装置が通信する通信システムに適用可能である。 The present invention is applicable to a communication system in which a plurality of communication devices communicate via a pair of communication lines.
11,21,41,61 通信部、12,42,62 測定部、13,23,43,63 記憶部、14,24 メインユニット、15,45,65 操作受付部、16,46,66 表示部、17,27,47,67 制御部、100,110,120 室外機、171,271,471,671 送受信部、172,272,472,672 送信部、173,273,473,673 受信部、174,474,674 測定指示部、175,475,675 診断部、176,476,676 特徴量検出部、177,477,677 判別部、178,478,678 出力部、179,279 空調制御部、200,300 室内機、400,410 リモートコントローラ、510,520 通信線、600 通信異常診断装置、1000,1100 通信システム 11, 21, 41, 61 communication unit, 12, 42, 62 measurement unit, 13, 23, 43, 63 storage unit, 14, 24 main unit, 15, 45, 65 operation reception unit, 16, 46, 66 display unit 17, 27, 47, 67 control unit, 100, 110, 120 outdoor unit, 171, 271, 471, 671 transmission / reception unit, 172, 272, 472, 672 transmission unit, 173, 273, 473, 673 reception unit, 174 , 474, 674 measurement instruction unit, 175, 475, 675 diagnosis unit, 176, 476, 676 feature amount detection unit, 177, 477, 677 determination unit, 178, 478, 678 output unit, 179, 279 air conditioning control unit, 200 , 300 indoor unit, 400, 410 remote controller, 510, 520 communication line, 600 communication abnormality diagnostic equipment , 1000 and 1100 communication system

Claims (8)

  1.  一対の通信線を介して通信機器に接続される通信異常診断装置であって、
     前記通信機器が制御コマンドのうち第1制御コマンドを受信してから前記制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに前記通信機器が前記第1制御コマンドに対する肯定応答として送信したACKコマンドの信号波形を測定する測定手段と、
     前記測定手段により測定された前記信号波形に基づいて、前記通信機器から前記通信異常診断装置までの通信経路における異常を診断する診断手段と、
     前記診断手段による診断結果を出力する出力手段と、を備える、
     通信異常診断装置。
    A communication abnormality diagnosis device connected to a communication device via a pair of communication lines, the communication abnormality diagnosis device comprising:
    The communication device receives the first control command of the control command after the communication device receives the first control command, and a second interval shorter than the first interval defined as the minimum transmission interval of the control command has elapsed. Measuring means for measuring a signal waveform of an ACK command transmitted as an acknowledgment to the control command;
    A diagnosis unit that diagnoses an abnormality in a communication path from the communication device to the communication abnormality diagnosis apparatus based on the signal waveform measured by the measurement unit;
    And output means for outputting a diagnosis result by the diagnosis means.
    Communication error diagnosis device.
  2.  前記第1制御コマンドは、前記通信機器に前記ACKコマンドを送信させるためのテストコマンドであり、
     前記テストコマンドを前記通信機器に送信する送信手段と、
     前記通信機器から前記ACKコマンドを受信する受信手段と、を更に備え、
     前記測定手段は、前記送信手段による前記テストコマンドの送信が完了したのち前記第2間隔が経過してから前記受信手段による前記ACKコマンドの受信が完了するまでの期間における前記一対の通信線間の電圧波形を、前記信号波形として測定する、
     請求項1に記載の通信異常診断装置。
    The first control command is a test command for causing the communication device to transmit the ACK command,
    Transmitting means for transmitting the test command to the communication device;
    And receiving means for receiving the ACK command from the communication device;
    The measuring means is between the pair of communication lines in a period from when the second interval has elapsed after transmission of the test command by the transmitting means is completed to when reception of the ACK command by the receiving means is completed. Measuring a voltage waveform as the signal waveform,
    The communication abnormality diagnosis device according to claim 1.
  3.  前記第1制御コマンドは、前記一対の通信線を介して前記通信機器に接続された第2通信機器から前記通信機器に送信されたものであり、
     前記測定手段は、前記第2通信機器による前記第1制御コマンドの送信が完了したのち前記第2間隔が経過してから前記第2通信機器による前記ACKコマンドの受信が完了するまでの期間における前記一対の通信線間の電圧波形を、前記信号波形として測定する、
     請求項1に記載の通信異常診断装置。
    The first control command is transmitted from the second communication device connected to the communication device via the pair of communication lines to the communication device.
    The measurement means is in a period from the lapse of the second interval after the transmission of the first control command by the second communication device is completed to the time when the reception of the ACK command by the second communication device is completed. Measuring a voltage waveform between a pair of communication lines as the signal waveform;
    The communication abnormality diagnosis device according to claim 1.
  4.  前記診断手段は、
     前記信号波形から、波高値とサグとパルス幅と立ち上がり時間と立ち下がり時間とのうち少なくとも1つを含む波形特徴量を検出する特徴量検出手段と、
     前記特徴量検出手段により検出された前記波形特徴量が、予め定められた範囲外である場合、前記通信経路が通信異常であると判別する判別手段と、を備える、
     請求項1から3のいずれか1項に記載の通信異常診断装置。
    The diagnostic means is
    Feature quantity detection means for detecting, from the signal waveform, a waveform feature quantity including at least one of a peak value, a sag, a pulse width, a rise time, and a fall time;
    Determining means for determining that the communication path is abnormal in communication when the waveform feature amount detected by the feature amount detection means is out of a predetermined range.
    The communication abnormality diagnostic device according to any one of claims 1 to 3.
  5.  前記通信機器は、室外機と室内機とリモートコントローラとのうちのいずれかであり、
     前記通信異常診断装置は、前記室外機と前記室内機と前記リモートコントローラとのうち前記通信機器以外のいずれかである、
     請求項1から4のいずれか1項に記載の通信異常診断装置。
    The communication device is any of an outdoor unit, an indoor unit, and a remote controller,
    The communication abnormality diagnosis device is any one of the outdoor unit, the indoor unit, and the remote controller other than the communication device.
    The communication abnormality diagnostic device according to any one of claims 1 to 4.
  6.  通信機器と、一対の通信線を介して前記通信機器に接続される通信異常診断装置と、を備える通信システムであって、
     前記通信機器は、
     制御コマンドのうち第1制御コマンドを受信する受信手段と、
     前記受信手段により前記第1制御コマンドが受信されてから前記制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに、前記第1制御コマンドに対する肯定応答としてACKコマンドを送信する送信手段と、を備え、
     前記通信異常診断装置は、
     前記通信機器により送信された前記ACKコマンドの信号波形を測定する測定手段と、
     前記測定手段により測定された前記信号波形に基づいて、前記通信機器から前記通信異常診断装置までの通信経路における異常を診断する診断手段と、
     前記診断手段による診断結果を表示する表示手段と、を備える、
     通信システム。
    A communication system, comprising: a communication device; and a communication abnormality diagnosis device connected to the communication device via a pair of communication lines,
    The communication device is
    Receiving means for receiving a first control command of the control commands;
    As a positive response to the first control command when a second interval shorter than the first interval defined as the minimum transmission interval of the control command has elapsed since the first control command was received by the receiving means And transmission means for transmitting an ACK command,
    The communication error diagnosis device is
    Measuring means for measuring the signal waveform of the ACK command transmitted by the communication device;
    A diagnosis unit that diagnoses an abnormality in a communication path from the communication device to the communication abnormality diagnosis apparatus based on the signal waveform measured by the measurement unit;
    And display means for displaying a diagnosis result by the diagnosis means.
    Communications system.
  7.  通信機器が、一対の通信線を介して制御コマンドのうち第1制御コマンドを受信してから前記制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに、前記第1制御コマンドに対する肯定応答としてACKコマンドを送信し、
     前記一対の通信線を介して前記通信機器に接続された波形測定装置が、前記通信機器により送信された前記ACKコマンドの信号波形を測定し、
     通信異常診断装置が、前記波形測定装置により測定された前記信号波形に基づいて、前記通信機器から前記波形測定装置までの通信経路における異常を診断する、
     通信異常診断方法。
    When a communication device receives a first control command of control commands via a pair of communication lines, and a second interval shorter than the first interval set as the minimum transmission interval of the control command elapses Sending an ACK command as an acknowledgment to the first control command,
    A waveform measurement apparatus connected to the communication device via the pair of communication lines measures a signal waveform of the ACK command transmitted by the communication device;
    A communication abnormality diagnosis device diagnoses an abnormality in a communication path from the communication device to the waveform measurement device based on the signal waveform measured by the waveform measurement device.
    Communication error diagnosis method.
  8.  一対の通信線を介して通信機器に接続される通信異常診断装置が備えるコンピュータを、
     前記通信機器が制御コマンドのうち第1制御コマンドを受信してから前記制御コマンドの最小の送信間隔として定められた第1間隔よりも短い第2間隔が経過したときに前記通信機器が前記第1制御コマンドに対する肯定応答として送信したACKコマンドの信号波形を測定手段に測定させる測定指示手段、
     前記測定手段により測定された前記信号波形に基づいて、前記通信機器から前記通信異常診断装置までの通信経路における異常を診断する診断手段、
     前記診断手段による診断結果を表示手段に出力する出力手段、として機能させる、
     プログラム。
    A computer provided with a communication error diagnosis apparatus connected to a communication device via a pair of communication lines;
    The communication device receives the first control command of the control command after the communication device receives the first control command, and a second interval shorter than the first interval defined as the minimum transmission interval of the control command has elapsed. Measurement instruction means for causing the measurement means to measure the signal waveform of the ACK command transmitted as an acknowledgment to the control command;
    A diagnosis unit that diagnoses an abnormality in a communication path from the communication device to the communication abnormality diagnosis apparatus based on the signal waveform measured by the measurement unit;
    Function as output means for outputting the diagnosis result by the diagnosis means to display means,
    program.
PCT/JP2017/041441 2017-11-17 2017-11-17 Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program WO2019097667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019554140A JPWO2019097667A1 (en) 2017-11-17 2017-11-17 Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program
PCT/JP2017/041441 WO2019097667A1 (en) 2017-11-17 2017-11-17 Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041441 WO2019097667A1 (en) 2017-11-17 2017-11-17 Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program

Publications (1)

Publication Number Publication Date
WO2019097667A1 true WO2019097667A1 (en) 2019-05-23

Family

ID=66539925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041441 WO2019097667A1 (en) 2017-11-17 2017-11-17 Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program

Country Status (2)

Country Link
JP (1) JPWO2019097667A1 (en)
WO (1) WO2019097667A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001705A (en) * 1987-11-06 1991-03-19 Fujitsu Limited Protocol control circuit for data bus system
JPH08191337A (en) * 1995-01-09 1996-07-23 Daikin Ind Ltd Device and method for data transmission
JP2003056891A (en) * 2001-08-17 2003-02-26 Chofu Seisakusho Co Ltd Indoor unit communication equipment
JP2011130346A (en) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp Apparatus and method for detecting terminal system abnormality, terminal system, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001705A (en) * 1987-11-06 1991-03-19 Fujitsu Limited Protocol control circuit for data bus system
JPH08191337A (en) * 1995-01-09 1996-07-23 Daikin Ind Ltd Device and method for data transmission
JP2003056891A (en) * 2001-08-17 2003-02-26 Chofu Seisakusho Co Ltd Indoor unit communication equipment
JP2011130346A (en) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp Apparatus and method for detecting terminal system abnormality, terminal system, and program

Also Published As

Publication number Publication date
JPWO2019097667A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US10018394B2 (en) System for calibration of a compressor unit in a heating, ventilation, and air conditioning system
JP2011145014A (en) Communication system for air conditioner
US10753630B2 (en) Method and system for proactively and remotely diagnosing an HVAC system
JP2001241738A (en) Refrigerator/cooler and its controlling method
CN103810063A (en) Computer testing system and method
CN110567105B (en) Temperature sensing bulb detection and repair method and device, air conditioner and readable storage medium
JP7149863B2 (en) Abnormality monitoring device and abnormality monitoring method
KR100791928B1 (en) Method for diagnosing communication error of a multi air conditioner system
JP2011158180A (en) Air conditioning system
WO2019097667A1 (en) Communication abnormality diagnosis device, communication system, communication abnormality diagnosis method, and program
EP2333443A2 (en) Air conditioner and communication method thereof
JP4824449B2 (en) Relay transmission device and centralized meter reading system
US10001430B2 (en) Environmental conditioning unit testing
JP6530920B2 (en) Air conditioner, indoor unit of air conditioner, and communication method of air conditioner
JP2008014600A (en) Diagnostic device and air-conditioning management system
JP4196804B2 (en) Inverter air conditioner
KR20100088375A (en) Air conditioner and testing method thereof
US7990260B2 (en) Electric device and method of normality determination for communication function in such an electric device
EP4074062A1 (en) Fault tolerant interface for safety controls
JP4179297B2 (en) Centralized management system with equipment adapters
JP3183086B2 (en) Distributed air conditioner
KR20020096422A (en) Method and apparatus for testing in airconditioner
KR20090066829A (en) Method for setting time of detecting communication error of system air conditioner
JP3877737B2 (en) Communication relay device
JP2007192492A (en) Self-diagnosis display device for air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932031

Country of ref document: EP

Kind code of ref document: A1