WO2019097597A1 - Temperature control device and warm-up completion time estimation method - Google Patents

Temperature control device and warm-up completion time estimation method Download PDF

Info

Publication number
WO2019097597A1
WO2019097597A1 PCT/JP2017/041044 JP2017041044W WO2019097597A1 WO 2019097597 A1 WO2019097597 A1 WO 2019097597A1 JP 2017041044 W JP2017041044 W JP 2017041044W WO 2019097597 A1 WO2019097597 A1 WO 2019097597A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature control
time
calculated
value
Prior art date
Application number
PCT/JP2017/041044
Other languages
French (fr)
Japanese (ja)
Inventor
茂文 後藤
裕久 吉川
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2017/041044 priority Critical patent/WO2019097597A1/en
Priority to JP2019554087A priority patent/JP6845449B2/en
Publication of WO2019097597A1 publication Critical patent/WO2019097597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Definitions

  • the present invention relates to a temperature control device that controls the temperatures of a plurality of temperature control zones, and a method of estimating heating completion time.
  • Patent Document 1 discloses a temperature after a predetermined time has elapsed based on the temperature measurement value of the temperature control zone that is the slowest in reaching the target temperature in order to synchronize the temperature rise completion time.
  • a temperature control method for setting the predicted temperature to a provisional target temperature of another temperature control zone is disclosed.
  • the temperature control zone master A temperature control method is disclosed that calculates a corrected temperature target value of another temperature control zone (slave section) using the measured value arrival rate of the section).
  • a value obtained by dividing the integrated value of the operating amount in each temperature control zone by the largest value among the integrated values of the operating amount in the plurality of temperature control zones is an output limiter value of each temperature control zone
  • Patent Document 3 makes the time required to reach the target temperature of each temperature control zone substantially the same for a control target having a plurality of temperature control zones without causing generation of a large peak power. Can be very useful. However, there are also calls for further suppression of peak power. In addition, since suppressing the peak power lengthens the time until the temperature rise is completed, there is also a request to know how long the temperature rise time will be extended when the peak power is suppressed. .
  • the present invention in view of the above points, is a temperature control device capable of making the time required to reach the target temperature of each temperature control zone substantially the same for a control target having a plurality of temperature control zones. It aims at providing a temperature control device and estimation method of temperature rise completion time which can estimate temperature rise completion time which fluctuates by suppression of the peak power concerned while aiming at control of peak power more.
  • a temperature control device for controlling the temperature of a controlled object having a plurality of temperature control zones wherein the temperature control devices are determined for each temperature control zone such that the time for the temperature of each temperature control zone to reach the target temperature matches.
  • a predetermined output limiter value is multiplied by the total power suppression coefficient common to each temperature control zone to obtain a suppression output limiter value, and the operation amount for temperature control in the temperature control zone calculated based on the target temperature and the measured temperature is The calculated operation amount is used as the operation amount when the suppression output limiter value is equal to or less than the suppression output limiter value, and the suppression output limiter value is used as the operation amount when the calculated operation amount is larger than the suppression output limiter value.
  • a temperature control unit for controlling the temperature of each temperature control zone, and a reference increase obtained by substituting a reference condition into an approximate expression approximating the temperature rise characteristic of the control object by a first-order delay;
  • a heating rate multiplying factor which is a ratio of a time calculation value and a heating time calculation value obtained by substituting a desired setting condition into the approximate expression, is calculated, and the temperature raising time measured under the reference condition is What is claimed is: 1.
  • a temperature control apparatus comprising: a temperature rise time estimation unit that calculates an estimated temperature rise time by multiplying a temperature rise time ratio.
  • C heating time multiplication factor
  • B total power suppression coefficient
  • ⁇ SP load factor at control stabilization after temperature rising.
  • C heat-up time ratio
  • B total power reduction coefficient
  • theta SP control stability when the load rate after heating
  • K process gain
  • [Delta] Y the difference in ambient temperature at reference conditions and setting conditions.
  • a temperature control method for controlling the temperature of a controlled object having a plurality of temperature control zones wherein the temperature control method is determined for each temperature control zone so that the time for the temperature of each temperature control zone to reach the target temperature matches.
  • a suppression output limiter value which is a value obtained by multiplying the total output suppression coefficient common to each temperature control zone by a predetermined output limiter value, is set as the upper limit of the operation amount, and from the target temperature and the measurement temperature, for temperature control in the temperature control zone The operation amount is calculated, and the calculated operation amount is used as the operation amount when the calculated operation amount is less than the suppression output limiter value, and the suppression output limiter is used when the calculated operation amount is larger than the suppression output limiter value.
  • a temperature rising completion time estimation method comprising: calculating a heating time magnification; and calculating an estimated temperature rising time by multiplying the temperature rising time multiplied by the temperature rising time actually measured under the reference condition.
  • C heating time multiplication factor
  • B total power suppression coefficient
  • ⁇ SP load factor at control stabilization after temperature rising.
  • C heat-up time ratio
  • B total power reduction coefficient
  • theta SP control stability when the load rate after heating
  • K process gain
  • [Delta] Y the difference in ambient temperature at reference conditions and setting conditions.
  • the temperature control device of the present invention in the temperature control device capable of making the time required to reach the target temperature of each temperature control zone substantially the same, peak power can be further suppressed and the peak power It is possible to estimate the temperature rise completion time that fluctuates due to the suppression of.
  • a block diagram schematically showing the configuration of a temperature control device according to an embodiment of the present invention Block diagram schematically showing the configuration of the temperature control unit Schematic illustration of a plastic molding machine having N temperature control zones 1 1 to 1 N with mutually interfering temperatures.
  • Graph showing experimental results of temperature control when using the temperature control method disclosed in Patent Document 3 Graph showing experimental results of temperature control when the temperature control method according to the embodiment is used
  • the present invention is a temperature control device for controlling the temperature of a controlled object having a plurality of temperature control zones, and operation in each temperature control zone such that the time for the temperature of each temperature control zone to reach the target temperature matches. It is a technique used for temperature controlled devices whose quantity is controlled.
  • the amount of operation of each temperature control zone (temperature rise time) is controlled in order to suppress the peak power of the conventional device controlled so that the temperature rise time of each temperature control zone matches.
  • the manipulated variable (controlled to match) is multiplied by the total power suppression coefficient common to each temperature control zone.
  • the present invention is a temperature control device capable of estimating a temperature rise completion time that fluctuates with such suppression of peak power, and a method of estimating a temperature rise completion time. In the embodiment described below, as a method of “controlling the operation amount in each temperature control zone so that the time when the temperature of each temperature control zone reaches the target temperature matches” to which the present invention is applied, Patent Document 3 Using the technology disclosed in
  • the temperature control device 100 is, for example, a temperature of a control target having N (N is an integer of 1 or more) temperature control zones such as a plastic molding machine shown in FIG. Control.
  • FIG. 1 is a block diagram showing an outline of a configuration of a temperature control device of the present embodiment.
  • the temperature control device 100 according to the present embodiment includes a display unit 120 for displaying various types of information, an input unit 130 for receiving input of set values from a user, an operation instruction, and the like, A heat time estimation unit 110 and a temperature control unit 140 are provided.
  • the display unit 120 is formed of, for example, a liquid crystal panel, and also displays the estimated value of the temperature rise completion time calculated by the temperature rise time estimation unit 110 described below.
  • the input unit 130 in the present embodiment has a function of receiving a signal input from another device (for example, a temperature controller) in addition to the function as a UI that receives an input from the user.
  • FIG. 2 is a block diagram schematically showing the configuration of the temperature control unit 140.
  • the temperature control unit 140 includes temperature control means 10 1 to 10 N respectively corresponding to the N temperature control zones 1 1 to 1 N , and controls the power supply to the respective heaters 2 1 to 2 N. By performing each of them, temperature control for each of the temperature control zones 1 1 to 1 N is performed.
  • the temperature control units 10 1 to 10 N have the same configuration, and switch the signals of the correction target temperature setting unit 11, the target temperature setting unit 12, the correction target temperature setting unit 11, and the target temperature setting unit 12 to obtain SV values.
  • Switch 13 for outputting, temperature measuring unit 14 for measuring the temperature (PV value) of the temperature control zone, difference calculating unit 15 for calculating the difference between the PV value and the SV value from the switch 13, the SV value and the PV value
  • the PID control calculation unit 16 that calculates the MV value by performing PID control based on the difference between the two, the calculated MV value, and the suppression output limiter value output from the total power suppression coefficient multiplication unit 60 described below
  • the output limiter 17 outputs the MV value if the MV value is less than or equal to the suppression output limiter value, and outputs the suppression output limiter value if the MV value exceeds the suppression output limiter value.
  • the temperature control apparatus 100 uses, as a method of “controlling the operation amount in each temperature control zone so that the time when the temperature in each temperature control zone reaches the target temperature matches”.
  • the difference between the temperature control unit 140 and the patent document 3 is the total power suppression coefficient multiplication unit 60 only.
  • the parts other than the total power suppression coefficient multiplying unit 60 have the same configuration and processing concept as those of Patent Document 3, and therefore will be described here in a simplified manner.
  • the processing concept concerning the same configuration as Patent Document 3 is to use an output limiter value for matching the temperature rise time and suppressing the peak power for each of the temperature control zones 1 1 to 1 N.
  • This output limiter value measures the temperature rise of temperature control zones 1 1 to 1 N once with an operation amount controlled so that the temperature rise completion time of each temperature control zones 1 1 to 1 N coincide. It is calculated by dividing the integrated value of the operation amount of each temperature control zone by the largest value among the integrated values of the operation amount for each temperature control zone. Specifically, the temperature control zones 1 1 to 1 N are raised by the SV 1 ′ (corresponding to the operation amount controlled to match the temperature rise time) set by the correction target temperature setting unit 11.
  • the changeover switch 13 outputs SV 1 ′ from the correction target temperature setting unit 11 and the changeover switch 18 outputs MV 1 from the PID control calculation unit 16
  • the integrated value of is stored in the operation amount integrated value storage unit 40.
  • the output limiter value calculation unit 50 the largest value among the integrated values of the operation amounts for each temperature control zone stored in the operation amount integrated value storage unit 40 corresponds to the operation amount of each temperature control zone.
  • the changeover switch 13 is the output from the target temperature setting unit 12 (for example, SV inputted from the temperature controller), and the changeover switch 18 is the output limiter It is switched to select each of the outputs from 17.
  • the output limiter 17 outputs the MV value as it is if the MV value from the PID control calculation unit 16 is equal to or less than the output limiter value, and if the MV value from the PID control calculation unit 16 exceeds the output limiter value. Output the output limiter value.
  • the operation amount for controlling the power supply to the heater is controlled with the output limiter value corresponding to each of the temperature control zones 1 1 to 1 N as the upper limit. According to the technology of Patent Document 3, the temperature rise time is made to coincide and the peak power is suppressed by the above process.
  • the total power suppression coefficient multiplication unit 60 is provided for the technique of Patent Document 3 to allow each temperature to be set for the output limiter value for each temperature control zone described above.
  • the “suppressed output limiter value” is calculated in which the output limiter value is further restricted.
  • the output limiter 17 outputs the MV value as it is if the MV value from the PID control calculation unit 16 is equal to or less than the suppression output limiter value, and the MV value from the PID control calculation unit 16 exceeds the suppression output limiter value. Outputs the suppression output limiter value.
  • the peak power can be further suppressed while matching the temperature increase completion time of each temperature control zone. That is, the temperature control unit 140 in the temperature control device 100 according to the present embodiment is configured such that, in temperature control of a control target having a plurality of temperature control zones, the time for the temperature of each temperature control zone to reach the target temperature matches.
  • a control output limiter value which is a value obtained by multiplying a predetermined output limiter value determined for each temperature control zone by a total power suppression coefficient common to each temperature control zone, is set as the upper limit of the operation amount, and the target temperature and the measured temperature
  • the operation amount for temperature control in the temperature control zone is calculated from the above, and when the calculated operation amount is equal to or less than the suppression output limiter value, the calculated operation amount is used as the operation amount, and the calculated operation amount is the suppression output
  • the suppression output limiter value is used as an operation amount to control the temperature of each temperature control zone.
  • FIGS. 4 to 6 are graphs showing experimental results of experiments in which each temperature control zone is heated to 100 ° C. in a plastic molding machine having four temperature control zones shown in FIG.
  • FIG. 4 shows experimental results in the case of using the temperature control method disclosed in Patent Document 3
  • FIGS. 5 and 6 show the total power suppression coefficient in the temperature control device 100 of this embodiment of 0.8 ( It is a graph which shows the result of the experiment performed by FIG. 5) and 0.6 (FIG. 6).
  • FIGGS. 4 shows experimental results in the case of using the temperature control method disclosed in Patent Document 3
  • FIGS. 5 and 6 show the total power suppression coefficient in the temperature control device 100 of this embodiment of 0.8 ( It is a graph which shows the result of the experiment performed by FIG. 5) and 0.6 (FIG. 6).
  • the temperature control device 100 includes the temperature increase time estimation unit 110 so as to be able to calculate an estimated value of the temperature increase completion time that increases in accordance with the total power suppression coefficient.
  • the temperature rising time estimation unit 110 substitutes the reference temperature calculated value obtained by substituting the reference conditions into an approximation formula that approximates the temperature rising characteristics of the control object with a first-order delay, and substitutes the desired setting conditions into the approximation formula.
  • the estimated temperature increase time is calculated by calculating the temperature increase time ratio that is the ratio to the temperature increase time calculated value obtained by the above-mentioned method, and multiplying the temperature increase time measured by the reference condition by the temperature increase time ratio. It is calculated.
  • the value represented by the equation 7 is, however, the load ratio ⁇ which is a value normalized by the maximum value P MAX of the operation amount Is expressed by Equation 7. That is, the load factor corresponding to the maximum value of the operation amount corresponds to the maximum operation amount normalized by the maximum value of the operation amount.
  • This Ta is “a reference temperature rise time calculated value obtained by substituting a reference condition into an approximate expression that approximates the temperature rise characteristic to be controlled by a first order delay”.
  • Tb is “a temperature rise time calculation value obtained by substituting a desired setting condition into an approximate expression in which the temperature rise characteristic to be controlled is approximated by a first order delay”.
  • Equation 12 is the case where the maximum value of the manipulated variable is a value (desired setting condition) obtained by multiplying the maximum value of the manipulated variable (reference condition) by that time by the coefficient B (the desired setting condition), and the ambient temperature is Y 0 (reference In the case where the condition (desired setting condition) deviates from the condition (the desired setting condition), it is an equation for calculating how many times the time until the target temperature is reached becomes with respect to the reference condition.
  • Equation 12 is a formula derived for one control target, but in the case of a control target having a plurality of temperature control zones, the load factor ⁇ SPi when stabilized at the target value is calculated for each temperature control zone In order to obtain different values, it is necessary to calculate one load factor ⁇ SP to be used for this calculation.
  • the following equation 13 is a calculation equation of the load factor ⁇ SP substituted into the equation 12.
  • P i is the rated power of the heat source (heater) in each temperature control zone
  • ⁇ SPi is the load factor at the time of control stabilization after temperature rise in each temperature control zone.
  • the operation amount (load factor) is taken as A ⁇ B
  • the time Tc required for the Atsushi Nobori can be calculated by equation 14. That is, the total power consumption is obtained by measuring the temperature rise time under the reference condition Ta which is the temperature rise time under the reference condition, the load factor ⁇ SP when the temperature is stable, and the process gain K by actually performing the temperature rise control once in advance. It is possible to calculate an estimated value of the temperature rise completion time when the suppression coefficient B is changed or when the ambient temperature is changed (desired setting condition). The temperature and the stable state of the load factor theta SP, a load factor of the control stability when the temperature was raised (a state in which the control object is stabilized at the target temperature).
  • the temperature rise time estimation unit 110 calculates the estimated value of the temperature rise completion time described above. Specifically, temperature rise control is performed in advance by an actual device, Ta, ⁇ SP , and K (reference conditions) measured by this are acquired, and these values are stored in the temperature rise time estimation unit 110. When the user inputs the setting value of the total power suppression coefficient B and the ambient temperature information (desired setting condition) from the input unit 130 in the temperature rising control to be performed thereafter, the temperature rising time estimation unit 110 causes Expression 12 and Expression 14 to be input. An estimated value of the temperature rise completion time is calculated based on this, and this is output to the display unit 120. Since the user can know the estimated value of the temperature increase completion time when setting the temperature increase control, it is very convenient.
  • the characteristics of the object to be controlled are generally approximated by "temporary delay + waste time", but in the explanation so far, the waste time has been omitted, and therefore, the case where the waste time is included is described below.
  • the waste time is a constant value regardless of the coefficient with respect to the manipulated variable, the waste time is simply subtracted from the time required from the start of temperature rise to the completion of temperature rise, and the previous term is calculated, and the waste time is added after the calculation. In this case, it is possible to calculate the time required to reach the target value in the case of “temporary delay + dead time” when the output limiter value is “output limiter value ⁇ total power suppression coefficient B”.
  • Ta and the like were measured in the experiment of FIG. 4 as “the temperature increase control under the reference conditions in which the experiment shown in FIG.
  • the estimated value of the temperature rise completion time calculated by the above calculation method was about 57.4 minutes . Table 2 summarizes these conditions and the like.
  • the total power suppression coefficient (0 ⁇ total power suppression coefficient ⁇ 1) common to each temperature control zone is set to the output limiter value for each temperature control zone.
  • the “suppressed output limiter value” that further restricts the output limiter value by multiplication as the upper limit of the operation amount it is possible to further suppress the peak power while matching the temperature rise completion time of each temperature control zone can do.
  • the convenience is high.
  • the difference ( ⁇ Y) of the ambient temperature is also used as a parameter as an example, and the case where this is input by the user is taken as an example.
  • the ambient temperature may be automatically measured, and ⁇ Y, which is the difference from the “reference condition”, may be automatically calculated.
  • the formula 12 (or the formula 15) and the formula 14 are shown as the form of the formula for calculating the estimated value of the temperature rise completion time, the form of the formula is not limited to this. Of course, the equation may be appropriately modified and used. Further, in the present embodiment, although it has been described that the calculation process based on Equation 12 and Equation 14 is performed by the temperature rising time estimation unit 110, the increase corresponding to each condition is performed in advance based on Equation 12 (or Equation 15).
  • the heating time magnification C is calculated, and the temperature rising time magnification C corresponding to each condition is set as a table in the apparatus, and the calculation of the estimated value of the temperature rising completion time by the temperature rising time estimation unit 110 is Alternatively, calculation may be performed only on the basis of Equation 14 using C acquired from the table.
  • the present invention is applied to an apparatus for controlling the temperatures of a plurality of temperature control zones which mutually interfere with each other, the present invention is directed to a control in which the temperatures of the respective temperature control zones do not interfere. Of course it can also be used for the subject. Further, in the present embodiment, a method of “controlling the operation amount in each temperature control zone so that the time when the temperature of each temperature control zone reaches the target temperature matches” in the temperature control device to which the present invention is applied. Although the method using the method of Patent Document 3 is taken as an example, the present invention can also be applied to one in which the temperature rise time is synchronized by another method.
  • Temperature control device 110 100. . . Temperature control device 110. . . Heating time estimation unit 140. . . Temperature control unit 1 1 to 1 N. . . Temperature control zone 10 1 to 10 N. . . Temperature control means 50. . . Total power suppression coefficient multiplier

Abstract

A temperature control device characterized by: for each temperature control zone of a plurality of temperature control zones 11 to 1N, setting, as an upper-limit operation amount, a restrictive output limiter value obtained by multiplying a predetermined output limiter value set for the temperature control zone by a total power restriction coefficient, which is common to all of the temperature control zones, wherein the predetermined output limiter values for the temperature control zones are set so as to equalize the time it takes for each temperature control zone to reach a target temperature; calculating a warm-up time scale factor, which is the ratio of a calculated reference warm-up time value obtained by substituting reference conditions into an approximate expression, relative to a calculated warm-up time value obtained by substituting desired setting conditions into the approximate expression, wherein the approximate expression is obtained by approximating the warm-up characteristics of a controlled object to a first order lag; and calculating an estimated warm-up time by multiplying an actual warm-up time measured under said reference conditions by the warm-up time scale factor.

Description

温度制御装置及び昇温完了時間の推定方法Temperature control device and estimation method of temperature rise completion time
 本発明は、複数の温度制御ゾーンの温度を制御する温度制御装置及び昇温完了時間の推定方法に関するものである。 The present invention relates to a temperature control device that controls the temperatures of a plurality of temperature control zones, and a method of estimating heating completion time.
 複数の温度制御ゾーンを有するプラスチック成形機、リフロー炉や熱処理装置などでは、各々の温度制御ゾーンにおける熱容量等の特性に合わせてヒータを設計しているが、実際の温度制御では、各々の温度制御ゾーンが目標温度に到達する時刻にバラツキが生じてしまうことが多い。
 早くに目標温度に到達した温度制御ゾーンでは、他の温度制御ゾーンが目標温度に到達するまで目標温度を維持する必要があるため、プラスチック成形機などの成形物である樹脂が焼けてしまうことがある。また、無駄な電力を消費することになる。
 このような問題に対し、特許文献1には、昇温完了時刻を同期させるために、目標温度に到達するまでの時間が最も遅い温度制御ゾーンの温度測定値に基づいて所定時間経過後の温度を予測し、当該予測温度を他の温度制御ゾーンの仮目標温度に設定する温度制御方法が開示されている。
 特許文献2には、複数の温度制御ゾーンの目標温度が異なる場合でも、昇温完了時刻を同期させることができるようにするため、目標温度に到達するまでの時間が最も遅い温度制御ゾーン(マスタ区間)の測定値到達率を用いて、他の温度制御ゾーン(スレーブ区間)の補正した温度目標値を算出する温度制御方法が開示されている。
 特許文献3には、複数の温度制御ゾーンにおける操作量の積算値のうちの最も大きな値によって、各温度制御ゾーンにおける操作量の積算値を除算した値を、各温度制御ゾーンの出力リミッタ値とすることにより、複数の温度制御ゾーンの温度が相互に干渉する場合でも、大きなピーク電力の発生を招くことなく、各温度制御ゾーンの目標温度に到達するまでに要する時間をほぼ同じにすることができる温度制御装置及び温度制御方法が開示されている。
In plastic molding machines with multiple temperature control zones, reflow furnaces, heat treatment equipment, etc., the heater is designed according to the characteristics such as heat capacity in each temperature control zone, but in actual temperature control, each temperature control The time when the zone reaches the target temperature often varies.
In the temperature control zone where the target temperature is reached quickly, it is necessary to maintain the target temperature until the other temperature control zones reach the target temperature, so that the resin which is a molding such as a plastic molding machine may be burned is there. Also, it consumes unnecessary power.
With regard to such a problem, Patent Document 1 discloses a temperature after a predetermined time has elapsed based on the temperature measurement value of the temperature control zone that is the slowest in reaching the target temperature in order to synchronize the temperature rise completion time. And a temperature control method for setting the predicted temperature to a provisional target temperature of another temperature control zone.
According to Patent Document 2, even when the target temperatures of a plurality of temperature control zones are different, the temperature control zone (master A temperature control method is disclosed that calculates a corrected temperature target value of another temperature control zone (slave section) using the measured value arrival rate of the section).
In Patent Document 3, a value obtained by dividing the integrated value of the operating amount in each temperature control zone by the largest value among the integrated values of the operating amount in the plurality of temperature control zones is an output limiter value of each temperature control zone Thus, even when the temperatures of the plurality of temperature control zones interfere with each other, the time required to reach the target temperature of each temperature control zone can be made substantially the same without causing generation of a large peak power. A temperature control device and temperature control method are disclosed.
特開平10-315291号公報Japanese Patent Application Laid-Open No. 10-315291 特開2005-35090号公報JP 2005-35090 A 国際公開第2016/075786号International Publication No. 2016/075786
 特許文献3の技術は、複数の温度制御ゾーンを有する制御対象に対して、大きなピーク電力の発生を招くことなく、各温度制御ゾーンの目標温度に到達するまでに要する時間をほぼ同じにすることができ、非常に有用なものである。
 しかしながら、さらなるピーク電力の抑制を求める声もある。また、ピーク電力を抑制すると、昇温完了までの時間が長くなるものであるため、どの程度のピーク電力の抑制をした場合に、どの程度昇温時間が長くなるのかを知りたいという要請もある。
The technique of Patent Document 3 makes the time required to reach the target temperature of each temperature control zone substantially the same for a control target having a plurality of temperature control zones without causing generation of a large peak power. Can be very useful.
However, there are also calls for further suppression of peak power. In addition, since suppressing the peak power lengthens the time until the temperature rise is completed, there is also a request to know how long the temperature rise time will be extended when the peak power is suppressed. .
 本発明は、上記の点に鑑み、複数の温度制御ゾーンを有する制御対象に対して、各温度制御ゾーンの目標温度に到達するまでに要する時間をほぼ同じにすることが可能な温度制御装置において、よりピーク電力の抑制を図ると共に、当該ピーク電力の抑制によって変動する昇温完了時間を推定可能な温度制御装置及び昇温完了時間の推定方法を提供することを目的とする。 The present invention, in view of the above points, is a temperature control device capable of making the time required to reach the target temperature of each temperature control zone substantially the same for a control target having a plurality of temperature control zones. It aims at providing a temperature control device and estimation method of temperature rise completion time which can estimate temperature rise completion time which fluctuates by suppression of the peak power concerned while aiming at control of peak power more.
(構成1)
 複数の温度制御ゾーンを有する制御対象の温度を制御する温度制御装置であって、各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各々の温度制御ゾーン毎に定められた所定の出力リミッタ値に、各温度制御ゾーンで共通する総電力抑制係数を乗じて抑制出力リミッタ値とし、目標温度と測定温度に基づいて算出される前記温度制御ゾーンにおける温度制御用の操作量が、前記抑制出力リミッタ値以下である場合は算出した前記操作量を操作量として使用し、算出した前記操作量が前記抑制出力リミッタ値より大きい場合は前記抑制出力リミッタ値を操作量として使用して、各温度制御ゾーンの温度を制御する温度制御部と、前記制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値と、前記近似式に所望の設定条件を代入して得られる昇温時間算出値との比である昇温時間倍率を算出し、前記基準条件にて実測した昇温時間に、前記昇温時間倍率を乗算することで、推定昇温時間を算出する昇温時間推定部と、を備えることを特徴とする温度制御装置。
(Configuration 1)
A temperature control device for controlling the temperature of a controlled object having a plurality of temperature control zones, wherein the temperature control devices are determined for each temperature control zone such that the time for the temperature of each temperature control zone to reach the target temperature matches. A predetermined output limiter value is multiplied by the total power suppression coefficient common to each temperature control zone to obtain a suppression output limiter value, and the operation amount for temperature control in the temperature control zone calculated based on the target temperature and the measured temperature is The calculated operation amount is used as the operation amount when the suppression output limiter value is equal to or less than the suppression output limiter value, and the suppression output limiter value is used as the operation amount when the calculated operation amount is larger than the suppression output limiter value. A temperature control unit for controlling the temperature of each temperature control zone, and a reference increase obtained by substituting a reference condition into an approximate expression approximating the temperature rise characteristic of the control object by a first-order delay; A heating rate multiplying factor, which is a ratio of a time calculation value and a heating time calculation value obtained by substituting a desired setting condition into the approximate expression, is calculated, and the temperature raising time measured under the reference condition is What is claimed is: 1. A temperature control apparatus comprising: a temperature rise time estimation unit that calculates an estimated temperature rise time by multiplying a temperature rise time ratio.
(構成2)
 前記昇温時間倍率が、下記式1若しくはこれを変形して得られる式によって算出されることを特徴とする構成1に記載の温度制御装置。
(Configuration 2)
The temperature control device according to Configuration 1, wherein the temperature raising time multiplying factor is calculated by the following equation 1 or an equation obtained by modifying the same.
Figure JPOXMLDOC01-appb-M000007
 上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率。
Figure JPOXMLDOC01-appb-M000007
In the above equation, C: heating time multiplication factor, B: total power suppression coefficient, θ SP : load factor at control stabilization after temperature rising.
(構成3)
 前記昇温時間倍率が、下記式2若しくはこれを変形して得られる式によって算出されることを特徴とする構成1に記載の温度制御装置。
(Configuration 3)
The temperature control device according to Configuration 1, wherein the temperature increase time ratio is calculated by the following equation 2 or a equation obtained by modifying the following equation.
Figure JPOXMLDOC01-appb-M000008
 上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率、K:プロセスゲイン、ΔY:基準条件と設定条件における周囲温度の差。
Figure JPOXMLDOC01-appb-M000008
In the above formula, C: heat-up time ratio, B: total power reduction coefficient, theta SP: control stability when the load rate after heating, K: process gain, [Delta] Y: the difference in ambient temperature at reference conditions and setting conditions.
(構成4)
 前記昇温後の制御安定時の負荷率が、下記式3若しくはこれを変形して得られる式によって算出されることを特徴とする構成2又は3に記載の温度制御装置。
(Configuration 4)
The temperature control device according to Configuration 2 or 3, wherein the load factor at the time of control stabilization after the temperature rise is calculated by the following equation 3 or a equation obtained by modifying the following equation.
Figure JPOXMLDOC01-appb-M000009
 上記式において、P:各温度制御ゾーンの熱源の定格電力、θSPi:各温度制御ゾーンの昇温後の制御安定時の負荷率。
Figure JPOXMLDOC01-appb-M000009
In the above equation, P i : rated power of the heat source in each temperature control zone, θ SPi : load factor at control stabilization after temperature rise in each temperature control zone.
(構成5)
 複数の温度制御ゾーンを有する制御対象の温度を制御する温度制御方法であって、各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各々の温度制御ゾーン毎に定められた所定の出力リミッタ値に、各温度制御ゾーンで共通する総電力抑制係数を乗じた値である抑制出力リミッタ値を操作量の上限とし、目標温度と測定温度から当該温度制御ゾーンにおける温度制御用の操作量を算出し、算出した操作量が前記抑制出力リミッタ値以下である場合は算出した操作量を操作量として使用し、算出した操作量が前記抑制出力リミッタ値より大きい場合は前記抑制出力リミッタ値を操作量として使用して、各温度制御ゾーンの温度を制御する温度制御方法における、昇温完了時間の推定方法であって、前記制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値と、前記近似式に所望の設定条件を代入して得られる昇温時間算出値との比である昇温時間倍率を算出し、前記基準条件にて実測した昇温時間に、前記昇温時間倍率を乗算することで、推定昇温時間を算出することを特徴とする昇温完了時間の推定方法。
(Configuration 5)
A temperature control method for controlling the temperature of a controlled object having a plurality of temperature control zones, wherein the temperature control method is determined for each temperature control zone so that the time for the temperature of each temperature control zone to reach the target temperature matches. A suppression output limiter value, which is a value obtained by multiplying the total output suppression coefficient common to each temperature control zone by a predetermined output limiter value, is set as the upper limit of the operation amount, and from the target temperature and the measurement temperature, for temperature control in the temperature control zone The operation amount is calculated, and the calculated operation amount is used as the operation amount when the calculated operation amount is less than the suppression output limiter value, and the suppression output limiter is used when the calculated operation amount is larger than the suppression output limiter value. It is a method of estimating temperature rising completion time in a temperature control method of controlling temperature of each temperature control zone using a value as an operation amount, which is the temperature rising characteristic of the control object Ascension, which is the ratio of the calculated reference temperature increase time obtained by substituting the reference condition into an approximation formula approximated by a first-order delay, and the calculated temperature rise time obtained by substituting a desired setting condition into the approximation formula A temperature rising completion time estimation method comprising: calculating a heating time magnification; and calculating an estimated temperature rising time by multiplying the temperature rising time multiplied by the temperature rising time actually measured under the reference condition.
(構成6)
 前記昇温時間倍率が、下記式4若しくはこれを変形して得られる式によって算出されることを特徴とする構成5に記載の昇温完了時間の推定方法。
(Configuration 6)
The temperature rise completion time estimation method according to Configuration 5, wherein the temperature rise time magnification is calculated by the following formula 4 or a formula obtained by modifying the formula 4 below.
Figure JPOXMLDOC01-appb-M000010
 上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率。
Figure JPOXMLDOC01-appb-M000010
In the above equation, C: heating time multiplication factor, B: total power suppression coefficient, θ SP : load factor at control stabilization after temperature rising.
(構成7)
 前記昇温時間倍率が、下記式5若しくはこれを変形して得られる式によって算出されることを特徴とする構成5に記載の昇温完了時間の推定方法。
(Configuration 7)
The temperature rise completion time estimation method according to Configuration 5, wherein the temperature rise time magnification is calculated by the following formula 5 or a formula obtained by modifying the following formula 5:
Figure JPOXMLDOC01-appb-M000011
 上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率、K:プロセスゲイン、ΔY:基準条件と設定条件における周囲温度の差。
Figure JPOXMLDOC01-appb-M000011
In the above formula, C: heat-up time ratio, B: total power reduction coefficient, theta SP: control stability when the load rate after heating, K: process gain, [Delta] Y: the difference in ambient temperature at reference conditions and setting conditions.
(構成8)
 前記昇温後の制御安定時の負荷率が、下記式6若しくはこれを変形して得られる式によって算出されることを特徴とする構成6又は7に記載の昇温完了時間の推定方法。
(Configuration 8)
The method for estimating the temperature rise completion time according to Configuration 6 or 7, wherein the load factor at the time of control stabilization after the temperature rise is calculated by the following equation 6 or a equation obtained by modifying the following equation.
Figure JPOXMLDOC01-appb-M000012
 上記式において、P:各温度制御ゾーンの熱源の定格電力、θSPi:各温度制御ゾーンの昇温後の制御安定時の負荷率。
Figure JPOXMLDOC01-appb-M000012
In the above equation, P i : rated power of the heat source in each temperature control zone, θ SPi : load factor at control stabilization after temperature rise in each temperature control zone.
 本発明の温度制御装置によれば、各温度制御ゾーンの目標温度に到達するまでに要する時間をほぼ同じにすることが可能な温度制御装置において、よりピーク電力の抑制を図ると共に、当該ピーク電力の抑制によって変動する昇温完了時間を推定することができる。 According to the temperature control device of the present invention, in the temperature control device capable of making the time required to reach the target temperature of each temperature control zone substantially the same, peak power can be further suppressed and the peak power It is possible to estimate the temperature rise completion time that fluctuates due to the suppression of.
本発明に係る実施形態の温度制御装置の構成の概略を示すブロック図A block diagram schematically showing the configuration of a temperature control device according to an embodiment of the present invention 温度制御部の構成の概略を示すブロック図Block diagram schematically showing the configuration of the temperature control unit 相互に温度が干渉するN個の温度制御ゾーン1~1を有しているプラスチック成形機を示す概略説明図Schematic illustration of a plastic molding machine having N temperature control zones 1 1 to 1 N with mutually interfering temperatures. 特許文献3に開示されている温度制御方法を用いた場合の温度制御の実験結果を示すグラフGraph showing experimental results of temperature control when using the temperature control method disclosed in Patent Document 3 実施形態における温度制御方法を用いた場合の温度制御の実験結果を示すグラフGraph showing experimental results of temperature control when the temperature control method according to the embodiment is used 実施形態における温度制御方法を用いた場合の温度制御の実験結果を示すグラフGraph showing experimental results of temperature control when the temperature control method according to the embodiment is used
 本発明は、複数の温度制御ゾーンを有する制御対象の温度を制御する温度制御装置であって、各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各温度制御ゾーンにおける操作量が制御される温度制御装置に対して用いられる技術である。本発明では、このような各温度制御ゾーンの昇温時間が一致するように制御される従来の装置に対し、そのピーク電力を抑制するために、各温度制御ゾーンの操作量(昇温時間が一致するように制御された操作量)に対して、各温度制御ゾーンで共通する総電力抑制係数を乗じる。また、本発明は、このようなピーク電力の抑制に伴って変動する昇温完了時間を推定することが可能な温度制御装置、昇温完了時間の推定方法である。
 以下で説明する実施形態では、本発明を適用する“各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各温度制御ゾーンにおける操作量を制御”の方法として、特許文献3に開示されている技術を用いている。
The present invention is a temperature control device for controlling the temperature of a controlled object having a plurality of temperature control zones, and operation in each temperature control zone such that the time for the temperature of each temperature control zone to reach the target temperature matches. It is a technique used for temperature controlled devices whose quantity is controlled. In the present invention, the amount of operation of each temperature control zone (temperature rise time) is controlled in order to suppress the peak power of the conventional device controlled so that the temperature rise time of each temperature control zone matches. The manipulated variable (controlled to match) is multiplied by the total power suppression coefficient common to each temperature control zone. Further, the present invention is a temperature control device capable of estimating a temperature rise completion time that fluctuates with such suppression of peak power, and a method of estimating a temperature rise completion time.
In the embodiment described below, as a method of “controlling the operation amount in each temperature control zone so that the time when the temperature of each temperature control zone reaches the target temperature matches” to which the present invention is applied, Patent Document 3 Using the technology disclosed in
 以下、本発明の実施態様について、図面を参照しながら具体的に説明する。なお、以下の実施態様は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In addition, the following embodiment is one form at the time of embodying this invention, Comprising: This invention is not limited within the range.
 本実施形態の温度制御装置100は、例えば図3に示されるプラスチック成形機のような、相互に温度が干渉するN個(Nは1以上の整数)の温度制御ゾーンを有する制御対象の温度を制御する。
 図1は、本実施形態の温度制御装置の構成の概略を示すブロック図である。
 本実施形態の温度制御装置100は、図1に示されるように、各種の情報を表示する表示部120と、ユーザからの設定値の入力や操作指示等が入力される入力部130と、昇温時間推定部110と、温度制御部140と、を備える。
 表示部120は、例えば液晶パネル等によって構成され、以下で説明する昇温時間推定部110によって算出された昇温完了時間の推定値の表示も行う。
 本実施形態における入力部130は、ユーザからの入力を受けるUIとしての機能に加え、他の機器(例えば温度調節器)から入力される信号を受ける機能も有するものである。
The temperature control device 100 according to the present embodiment is, for example, a temperature of a control target having N (N is an integer of 1 or more) temperature control zones such as a plastic molding machine shown in FIG. Control.
FIG. 1 is a block diagram showing an outline of a configuration of a temperature control device of the present embodiment.
As shown in FIG. 1, the temperature control device 100 according to the present embodiment includes a display unit 120 for displaying various types of information, an input unit 130 for receiving input of set values from a user, an operation instruction, and the like, A heat time estimation unit 110 and a temperature control unit 140 are provided.
The display unit 120 is formed of, for example, a liquid crystal panel, and also displays the estimated value of the temperature rise completion time calculated by the temperature rise time estimation unit 110 described below.
The input unit 130 in the present embodiment has a function of receiving a signal input from another device (for example, a temperature controller) in addition to the function as a UI that receives an input from the user.
 図2は、温度制御部140の構成の概略を示すブロック図である。
 温度制御部140は、N個の温度制御ゾーン1~1に対してそれぞれ対応する温度制御手段10~10を備えており、各ヒータ2~2への電力供給の制御をそれぞれ行うことで、各温度制御ゾーン1~1に対する温度制御を行うものである。
 各温度制御手段10~10は同じ構成であり、それぞれ、補正目標温度設定部11、目標温度設定部12、補正目標温度設定部11と目標温度設定部12の信号を切り替えてSV値を出力する切換スイッチ13、温度制御ゾーンの温度(PV値)を測定する温度測定部14、当該PV値と切換スイッチ13からのSV値の差分を算出する差分算出部15、当該SV値とPV値の差分に基づいてPID制御を行ってMV値を算出するPID制御演算部16、当該算出されたMV値と、以下で説明する総電力抑制係数乗算部60から出力される抑制出力リミッタ値とを比較して、MV値が抑制出力リミッタ値以下であればMV値を出力し、MV値が抑制出力リミッタ値を超えている場合には抑制出力リミッタ値を出力する出力リミッタ17、出力リミッタ17とPID制御演算部16の信号を切り替えてこれをMVとして出力する切換スイッチ18、を備える。
 本実施形態の温度制御装置100は、前述したごとく、“各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各温度制御ゾーンにおける操作量を制御”の方法として、特許文献3に開示されている技術を用いており、温度制御部140における特許文献3との相違点は総電力抑制係数乗算部60のみである。
 総電力抑制係数乗算部60以外の部分は、特許文献3と同一の構成・処理概念であるため、ここでは簡略化した説明とする。特許文献3と同一の構成に関する処理概念は、各温度制御ゾーン1~1に対して、昇温時間を一致させ且つピーク電力を抑制させるための出力リミッタ値を用いるものである。この出力リミッタ値は、各温度制御ゾーン1~1の昇温完了時間が一致するように制御した操作量にて温度制御ゾーン1~1の昇温を一度行い、この際に測定した温度制御ゾーンごとの操作量の積算値のうち、一番大きな値によって、各温度制御ゾーンの操作量の積算値を除算することによって算出される。
 少し具体的に説明すると、先ず、補正目標温度設定部11によって設定されるSV´(昇温時間が一致するように制御した操作量に相当)によって、温度制御ゾーン1~1の昇温を一度行い(切換スイッチ13は補正目標温度設定部11からのSV´を出力、切換スイッチ18はPID制御演算部16からのMVを出力)、この際の温度制御ゾーンごとの操作量の積算値が、操作量積算値記憶部40に記憶される。
 次に、出力リミッタ値算出部50において、操作量積算値記憶部40に記憶されている温度制御ゾーンごとの操作量の積算値のうち、一番大きな値によって、各温度制御ゾーンの操作量の積算値を除算することにより、各温度制御ゾーン1~1に対応する出力リミッタ値L~L(前述のごとく、最大の操作量の積算値(出力の最大値)によって、各温度制御ゾーンの操作量の積算値を正規化した0~1の値)が、算出される。
 この出力リミッタ値L~Lが得られた後における昇温制御では、切換スイッチ13は目標温度設定部12からの出力(例えば温度調節器から入力されるSV)、切換スイッチ18は出力リミッタ17からの出力をそれぞれ選択するように切り替えられる。出力リミッタ17においては、PID制御演算部16からのMV値が出力リミッタ値以下であればそのままMV値を出力し、PID制御演算部16からのMV値が出力リミッタ値を超えている場合には出力リミッタ値を出力する。これによりヒータへの電力供給を制御する操作量は、各温度制御ゾーン1~1に対応する出力リミッタ値を上限として制御される。特許文献3の技術は、上記処理により、昇温時間を一致させ且つピーク電力を抑制させるものである。
FIG. 2 is a block diagram schematically showing the configuration of the temperature control unit 140. As shown in FIG.
The temperature control unit 140 includes temperature control means 10 1 to 10 N respectively corresponding to the N temperature control zones 1 1 to 1 N , and controls the power supply to the respective heaters 2 1 to 2 N. By performing each of them, temperature control for each of the temperature control zones 1 1 to 1 N is performed.
The temperature control units 10 1 to 10 N have the same configuration, and switch the signals of the correction target temperature setting unit 11, the target temperature setting unit 12, the correction target temperature setting unit 11, and the target temperature setting unit 12 to obtain SV values. Switch 13 for outputting, temperature measuring unit 14 for measuring the temperature (PV value) of the temperature control zone, difference calculating unit 15 for calculating the difference between the PV value and the SV value from the switch 13, the SV value and the PV value The PID control calculation unit 16 that calculates the MV value by performing PID control based on the difference between the two, the calculated MV value, and the suppression output limiter value output from the total power suppression coefficient multiplication unit 60 described below In comparison, the output limiter 17 outputs the MV value if the MV value is less than or equal to the suppression output limiter value, and outputs the suppression output limiter value if the MV value exceeds the suppression output limiter value. It comprises a changeover switch 18, to output as MV by switching the signal of the output limiter 17 and the PID control calculation unit 16.
As described above, the temperature control apparatus 100 according to the present embodiment uses, as a method of “controlling the operation amount in each temperature control zone so that the time when the temperature in each temperature control zone reaches the target temperature matches”. The difference between the temperature control unit 140 and the patent document 3 is the total power suppression coefficient multiplication unit 60 only.
The parts other than the total power suppression coefficient multiplying unit 60 have the same configuration and processing concept as those of Patent Document 3, and therefore will be described here in a simplified manner. The processing concept concerning the same configuration as Patent Document 3 is to use an output limiter value for matching the temperature rise time and suppressing the peak power for each of the temperature control zones 1 1 to 1 N. This output limiter value measures the temperature rise of temperature control zones 1 1 to 1 N once with an operation amount controlled so that the temperature rise completion time of each temperature control zones 1 1 to 1 N coincide. It is calculated by dividing the integrated value of the operation amount of each temperature control zone by the largest value among the integrated values of the operation amount for each temperature control zone.
Specifically, the temperature control zones 1 1 to 1 N are raised by the SV 1 ′ (corresponding to the operation amount controlled to match the temperature rise time) set by the correction target temperature setting unit 11. Perform the temperature once (the changeover switch 13 outputs SV 1 ′ from the correction target temperature setting unit 11 and the changeover switch 18 outputs MV 1 from the PID control calculation unit 16), and the operation amount for each temperature control zone at this time The integrated value of is stored in the operation amount integrated value storage unit 40.
Next, in the output limiter value calculation unit 50, the largest value among the integrated values of the operation amounts for each temperature control zone stored in the operation amount integrated value storage unit 40 corresponds to the operation amount of each temperature control zone. by dividing the integrated value by the temperature control zones 1 1 ~ 1 ~ output limiter value L 1 corresponding to N L N (as described above, the maximum amount of operation of the integrated value (the maximum value of the output), the temperature A value of 0 to 1) obtained by normalizing the integrated value of the operation amount of the control zone is calculated.
In the temperature raising control after obtaining the output limiter values L 1 to L N , the changeover switch 13 is the output from the target temperature setting unit 12 (for example, SV inputted from the temperature controller), and the changeover switch 18 is the output limiter It is switched to select each of the outputs from 17. The output limiter 17 outputs the MV value as it is if the MV value from the PID control calculation unit 16 is equal to or less than the output limiter value, and if the MV value from the PID control calculation unit 16 exceeds the output limiter value. Output the output limiter value. As a result, the operation amount for controlling the power supply to the heater is controlled with the output limiter value corresponding to each of the temperature control zones 1 1 to 1 N as the upper limit. According to the technology of Patent Document 3, the temperature rise time is made to coincide and the peak power is suppressed by the above process.
 本実施形態の温度制御装置100においては、この特許文献3の技術に対して、総電力抑制係数乗算部60を備えることにより、上記説明した温度制御ゾーンごとの出力リミッタ値に対して、各温度制御ゾーンで共通する総電力抑制係数(0<総電力抑制係数<1)を乗算することで、出力リミッタ値をより制限した“抑制出力リミッタ値”を算出している。出力リミッタ17では、PID制御演算部16からのMV値が抑制出力リミッタ値以下であればそのままMV値を出力し、PID制御演算部16からのMV値が抑制出力リミッタ値を超えている場合には抑制出力リミッタ値を出力する。
 これにより、本実施形態の温度制御装置100では、各温度制御ゾーンの昇温完了時間を一致させつつ、より一層のピーク電力の抑制を実現している。
 即ち、本実施形態の温度制御装置100における温度制御部140は、複数の温度制御ゾーンを有する制御対象の温度制御において、各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各々の温度制御ゾーン毎に定められた所定の出力リミッタ値に、各温度制御ゾーンで共通する総電力抑制係数を乗じた値である抑制出力リミッタ値を操作量の上限とし、目標温度と測定温度から当該温度制御ゾーンにおける温度制御用の操作量を算出し、算出した操作量が前記抑制出力リミッタ値以下である場合は算出した操作量を操作量として使用し、算出した操作量が前記抑制出力リミッタ値より大きい場合は前記抑制出力リミッタ値を操作量として使用して、各温度制御ゾーンの温度を制御するものである。
In the temperature control device 100 according to the present embodiment, the total power suppression coefficient multiplication unit 60 is provided for the technique of Patent Document 3 to allow each temperature to be set for the output limiter value for each temperature control zone described above. By multiplying the total power suppression coefficient common to the control zones (0 <total power suppression coefficient <1), the “suppressed output limiter value” is calculated in which the output limiter value is further restricted. The output limiter 17 outputs the MV value as it is if the MV value from the PID control calculation unit 16 is equal to or less than the suppression output limiter value, and the MV value from the PID control calculation unit 16 exceeds the suppression output limiter value. Outputs the suppression output limiter value.
Thereby, in the temperature control device 100 according to the present embodiment, the peak power can be further suppressed while matching the temperature increase completion time of each temperature control zone.
That is, the temperature control unit 140 in the temperature control device 100 according to the present embodiment is configured such that, in temperature control of a control target having a plurality of temperature control zones, the time for the temperature of each temperature control zone to reach the target temperature matches. A control output limiter value, which is a value obtained by multiplying a predetermined output limiter value determined for each temperature control zone by a total power suppression coefficient common to each temperature control zone, is set as the upper limit of the operation amount, and the target temperature and the measured temperature The operation amount for temperature control in the temperature control zone is calculated from the above, and when the calculated operation amount is equal to or less than the suppression output limiter value, the calculated operation amount is used as the operation amount, and the calculated operation amount is the suppression output When the value is larger than the limiter value, the suppression output limiter value is used as an operation amount to control the temperature of each temperature control zone.
 ここで、本実施形態の温度制御装置100が、各温度制御ゾーンの昇温完了時間を一致させつつより一層のピーク電力の抑制ができることを、実験にて確認した。
 図4~6は、図3に示される温度制御ゾーンを4つ有しているプラスチック成形機において、各温度制御ゾーンを100度まで昇温させる実験の実験結果を示すグラフである。
 図4は、特許文献3に開示されている温度制御方法を用いた場合の実験結果であり、図5、6は、本実施形態の温度制御装置100における総電力抑制係数を、0.8(図5)と0.6(図6)にして行った実験の結果を示すグラフである。
 図4~6において、“CH毎のPV(即ち、各温度制御ゾーンの測定温度)”として示されるように、本実施形態の温度制御装置100による制御の場合(図5、6)においても、特許文献3の制御(図4)と遜色ないレベルにて、各温度制御ゾーンの昇温完了時間を一致させることができた。
 また、図4~6において、“4CHの合計電力ΣMV”として示されるように、本実施形態の温度制御装置100による制御の場合(図5、6)、特許文献3の制御(図4)よりもさらにピーク電力の抑制をすることができた。
Here, it was confirmed by experiments that the temperature control device 100 of the present embodiment can further suppress peak power while making the temperature rise completion time of each temperature control zone coincide with each other.
FIGS. 4 to 6 are graphs showing experimental results of experiments in which each temperature control zone is heated to 100 ° C. in a plastic molding machine having four temperature control zones shown in FIG.
FIG. 4 shows experimental results in the case of using the temperature control method disclosed in Patent Document 3, and FIGS. 5 and 6 show the total power suppression coefficient in the temperature control device 100 of this embodiment of 0.8 ( It is a graph which shows the result of the experiment performed by FIG. 5) and 0.6 (FIG. 6).
In the case of control by the temperature control device 100 of the present embodiment (FIGS. 5 and 6), as shown as “PV for each CH (ie, measured temperature of each temperature control zone)” in FIGS. The temperature rise completion time of each temperature control zone could be matched at a level comparable to the control (FIG. 4) of Patent Document 3.
Further, as shown by “total power MV MV of 4 CH” in FIGS. 4 to 6, in the case of control by the temperature control device 100 of the present embodiment (FIGS. 5 and 6), the control of Patent Document 3 (FIG. 4) The peak power could be further suppressed.
 ここで、図4~6にも表れているように、総電力抑制係数によって、出力リミッタ値をさらに制限した抑制出力リミッタ値を用いることにより、昇温完了までの時間は長くなる。具体的には、特許文献3の制御(図4)では、約32分で昇温が完了しているのに対し、総電力抑制係数を0.8とした場合(図5)には昇温完了時間が約43分、総電力抑制係数を0.6とした場合(図6)には昇温完了時間が約58分と、それぞれ長くなっている。
 これに関し、本実施形態の温度制御装置100では、昇温時間推定部110を備えることにより、総電力抑制係数に応じて長くなる昇温完了時間の推定値を算出可能としている。
 昇温時間推定部110は、制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値と、前記近似式に所望の設定条件を代入して得られる昇温時間算出値との比である昇温時間倍率を算出し、前記基準条件にて実測した昇温時間に、前記昇温時間倍率を乗算することで、推定昇温時間を算出するものである。
Here, as also shown in FIGS. 4 to 6, by using the suppression output limiter value in which the output limiter value is further restricted by the total power suppression coefficient, the time until the temperature rise completion becomes longer. Specifically, in the control of Patent Document 3 (FIG. 4), the temperature rise is completed in about 32 minutes, but when the total power suppression coefficient is 0.8 (FIG. 5), the temperature rise When the completion time is about 43 minutes and the total power suppression coefficient is 0.6 (FIG. 6), the temperature rise completion time is extended to about 58 minutes.
In this regard, the temperature control device 100 according to the present embodiment includes the temperature increase time estimation unit 110 so as to be able to calculate an estimated value of the temperature increase completion time that increases in accordance with the total power suppression coefficient.
The temperature rising time estimation unit 110 substitutes the reference temperature calculated value obtained by substituting the reference conditions into an approximation formula that approximates the temperature rising characteristics of the control object with a first-order delay, and substitutes the desired setting conditions into the approximation formula. The estimated temperature increase time is calculated by calculating the temperature increase time ratio that is the ratio to the temperature increase time calculated value obtained by the above-mentioned method, and multiplying the temperature increase time measured by the reference condition by the temperature increase time ratio. It is calculated.
 昇温完了時間の推定値を算出する算出式について説明する。 A calculation formula for calculating an estimated value of the temperature rise completion time will be described.
 最初にプロセスゲインKは操作量(電力)の変動幅と制御量の変動幅の係数を意味する値で、操作量=Pの時の制御量(温度)の最終値をYとし、操作量=Pの時の制御量の最終値をYとすると式7で表される値だが、操作量については一般的に操作量の最大値PMAXで正規化した値である負荷率θを使用して式7で表される。即ち、操作量の最大値に相当する負荷率は、操作量の最大値で正規化した最大操作量に相当する。 First, process gain K is a value that means the variation range of the manipulated variable (electric power) and the variation range of the controlled variable, and the final value of the controlled variable (temperature) when manipulated variable = P 1 is Y 1 Assuming that the final value of the control amount when the amount = P 2 is Y 2 , the value represented by the equation 7 is, however, the load ratio θ which is a value normalized by the maximum value P MAX of the operation amount Is expressed by Equation 7. That is, the load factor corresponding to the maximum value of the operation amount corresponds to the maximum operation amount normalized by the maximum value of the operation amount.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、制御理論では操作量と制御量の最終値の関係は線形(Y、Pがどのような値であってもKは同じ値)として扱い、且つ一般的に操作量Pはその最大値PMAXで正規化した値(以後この値を負荷率θと記載)を使用する。この様に定義すると、制御量(温度)の最終値の変化巾Y(Y=Y-Y)と負荷率の変化巾θ(θ=θ-θ)の関係はKを係数とした式8で表される。 Also, in the control theory, the relationship between the manipulated variable and the final value of the controlled variable is treated as linear (K is the same value regardless of Y and P, and generally the manipulated variable P is its maximum value P The value normalized by MAX (hereinafter referred to as the load factor θ) is used. In this definition, the relationship between the change width Y of the final value of the control amount (temperature) (Y = Y 2- Y 1 ) and the change width θ of the load factor (θ = θ 21 ) It is expressed by equation 8 below.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 次に、関係する変数およびその関係式を以下の表1のように定義する。 Next, related variables and their relational expressions are defined as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1中の「制御量のステップ応答を表す数式(制御対象を一時遅れで近似した式)」を式9として再掲する。 “Formula representing step response of control amount (expression in which control target is approximated by temporary delay)” in Table 1 is represented again as Expression 9.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、式9にy(t)=Ysp、t=Ta、θ=1、Ye=Yを代入して、Taを算出すると、式10となる。このTaは、「制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値」である。 Here, when Ta is calculated by substituting y (t) = Ysp, t = Ta, θ = 1, Ye = Y 0 into Expression 9, Expression 10 is obtained. This Ta is “a reference temperature rise time calculated value obtained by substituting a reference condition into an approximate expression that approximates the temperature rise characteristic to be controlled by a first order delay”.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 次に、式9にy(t)=Ysp、t=Tb、θ=B、Ye=Y+ΔYを代入して、Tbを算出すると、式11となる。このTbは、「制御対象の昇温特性を1次遅れで近似した近似式に所望の設定条件を代入して得られる昇温時間算出値」である。 Next, when Tb is calculated by substituting y (t) = Ysp, t = Tb, θ = B, Ye = Y 0 + ΔY into Expression 9, Expression 11 is obtained. This Tb is “a temperature rise time calculation value obtained by substituting a desired setting condition into an approximate expression in which the temperature rise characteristic to be controlled is approximated by a first order delay”.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、θSP=(YSP-Y)/Kとして、C=Tb/Taを求めると式12となる。 Here, when C = Tb / Ta is obtained as θ SP = (Y SP -Y 0 ) / K, Expression 12 is obtained.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 式12で求められるCは、「制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値(Ta)と、前記近似式に所望の設定条件を代入して得られる昇温時間算出値(Tb)との比である昇温時間倍率」である。
 式12は、操作量の最大値を、それまでの操作量の最大値(基準条件)に係数Bをかけた値(所望の設定条件)にした場合で、且つ、周囲温度がY(基準条件)からΔYだけずれた場合(所望の設定条件)における、目標温度に到達するまでの時間が基準条件に対して何倍になるかを計算する数式である。
“C calculated by the equation 12 is“ a reference temperature increase calculation value (Ta) obtained by substituting a reference condition into an approximate expression that approximates the temperature It is a temperature rising time magnification which is a ratio with the temperature rising time calculated value (Tb) obtained by substituting setting conditions.
Equation 12 is the case where the maximum value of the manipulated variable is a value (desired setting condition) obtained by multiplying the maximum value of the manipulated variable (reference condition) by that time by the coefficient B (the desired setting condition), and the ambient temperature is Y 0 (reference In the case where the condition (desired setting condition) deviates from the condition (the desired setting condition), it is an equation for calculating how many times the time until the target temperature is reached becomes with respect to the reference condition.
 ただし、式12は、制御対象を1つの制御対象として導出した数式だが、複数の温度制御ゾーンを有する制御対象の場合には目標値に安定したときの負荷率θSPiは、温度制御ゾーン毎に異なった値になるため、この計算に使用すべき1つの負荷率θSPを算出する必要がある。下記の式13は、式12に代入する負荷率θSPの計算式である。式13において、Pは、各温度制御ゾーンの熱源(ヒータ)の定格電力、θSPiは各温度制御ゾーンの昇温後の制御安定時の負荷率である。 However, Equation 12 is a formula derived for one control target, but in the case of a control target having a plurality of temperature control zones, the load factor θ SPi when stabilized at the target value is calculated for each temperature control zone In order to obtain different values, it is necessary to calculate one load factor θ SP to be used for this calculation. The following equation 13 is a calculation equation of the load factor θ SP substituted into the equation 12. In Equation 13, P i is the rated power of the heat source (heater) in each temperature control zone, and θ SPi is the load factor at the time of control stabilization after temperature rise in each temperature control zone.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 制御対象に加える操作量(負荷率)をAとした場合に、制御対象の温度(制御量)が目標値に到達するのに要する時間をTaとした場合で、且つ、制御対象の温度(制御量)が安定した状態で十分に時間が経過した時の操作量(負荷率)がθSPである場合に対して、操作量(負荷率)の最大値をA・Bとした場合の目標値到達に要する時間Tcは式14で算出できる。 Assuming that the time required for the temperature (control amount) of the control object to reach the target value is Ta, where the operation amount (load factor) to be added to the control object is A, and the temperature of the control object (control The target value when the maximum value of the manipulated variable (load factor) is A · B compared to the case where the manipulated variable (load factor) is θ SP when sufficient time has elapsed in a stable state) The time Tc required for the arrival can be calculated by equation 14.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 以上から、TaとθSPを予め測定すれば、操作量(負荷率)をA・Bとした時に、昇温に要する時間Tcは式14で算出できる。即ち、予め一度実際に実機にて昇温制御を行って、基準条件時における昇温時間であるTa、温度安定時の負荷率θSPと、プロセスゲインKを測定しておくことにより、総電力抑制係数Bを変更した場合や周辺温度が変わった場合(所望の設定条件)における、昇温完了時間の推定値を算出することができる。なお、温度安定時の負荷率θSPとは、昇温後の制御安定時(制御対象が目標温度で安定している状態)の負荷率である。 From the above, if previously measured Ta and theta SP, the operation amount (load factor) is taken as A · B, the time Tc required for the Atsushi Nobori can be calculated by equation 14. That is, the total power consumption is obtained by measuring the temperature rise time under the reference condition Ta which is the temperature rise time under the reference condition, the load factor θ SP when the temperature is stable, and the process gain K by actually performing the temperature rise control once in advance. It is possible to calculate an estimated value of the temperature rise completion time when the suppression coefficient B is changed or when the ambient temperature is changed (desired setting condition). The temperature and the stable state of the load factor theta SP, a load factor of the control stability when the temperature was raised (a state in which the control object is stabilized at the target temperature).
 本実施形態の温度制御装置100では、昇温時間推定部110によって、上記の昇温完了時間の推定値の算出が行われる。
 具体的には、予め実機にて昇温制御が行われ、これによって測定されるTa、θSP、K(基準条件)が取得され、これらの値が昇温時間推定部110に記憶される。
 その後に行う昇温制御において、ユーザが総電力抑制係数Bの設定値や周辺温度情報(所望の設定条件)を入力部130から入力すると、昇温時間推定部110において、式12及び式14に基づいて昇温完了時間の推定値が算出され、これが表示部120に出力される。ユーザは、昇温制御の設定時において、昇温完了時間の推定値を知ることができるため、非常に利便性が高い。
 なお、制御では制御対象の特性を一般的に「一時遅れ+ムダ時間」で近似するが、ここまでの説明ではムダ時間を省略して説明してきたので、以下にムダ時間を含めた場合について説明する。
 ムダ時間は操作量に対する係数とは無関係に一定な値なので、単に昇温開始から昇温完了までに要した時間からムダ時間を減算した上で、前期の計算を行い、計算後にムダ時間を加算すれば、出力リミッタ値を、出力リミッタ値×総電力抑制係数Bにした時の「一時遅れ+ムダ時間」の場合の目標値に到達するまでの時間が計算できる。
In the temperature control device 100 of the present embodiment, the temperature rise time estimation unit 110 calculates the estimated value of the temperature rise completion time described above.
Specifically, temperature rise control is performed in advance by an actual device, Ta, θ SP , and K (reference conditions) measured by this are acquired, and these values are stored in the temperature rise time estimation unit 110.
When the user inputs the setting value of the total power suppression coefficient B and the ambient temperature information (desired setting condition) from the input unit 130 in the temperature rising control to be performed thereafter, the temperature rising time estimation unit 110 causes Expression 12 and Expression 14 to be input. An estimated value of the temperature rise completion time is calculated based on this, and this is output to the display unit 120. Since the user can know the estimated value of the temperature increase completion time when setting the temperature increase control, it is very convenient.
In the control, the characteristics of the object to be controlled are generally approximated by "temporary delay + waste time", but in the explanation so far, the waste time has been omitted, and therefore, the case where the waste time is included is described below. Do.
Since the waste time is a constant value regardless of the coefficient with respect to the manipulated variable, the waste time is simply subtracted from the time required from the start of temperature rise to the completion of temperature rise, and the previous term is calculated, and the waste time is added after the calculation. In this case, it is possible to calculate the time required to reach the target value in the case of “temporary delay + dead time” when the output limiter value is “output limiter value × total power suppression coefficient B”.
 図4で示した実験を“予め実機にて行う基準条件での昇温制御”として、図4の実験においてTa等を測定した。当該基準条件での実測値を用いて、“所望の設定条件”を、B=0.8、ΔY=0.0℃として、上記算出方式によって算出された昇温完了時間の推定値は、約41.5分であった。また、“所望の設定条件”を、B=0.6、ΔY=2.0℃とした場合、上記算出方式によって算出された昇温完了時間の推定値は、約57.4分であった。
 これらの条件等をまとめたものが表2である。
Ta and the like were measured in the experiment of FIG. 4 as “the temperature increase control under the reference conditions in which the experiment shown in FIG. The estimated value of the temperature rise completion time calculated by the above calculation method is approximately about “the desired setting condition”, B = 0.8, ΔY = 0.0 ° C., using the actual measurement value under the reference condition. It was 41.5 minutes. In addition, when “desired setting condition” is B = 0.6 and ΔY = 2.0 ° C., the estimated value of the temperature rise completion time calculated by the above calculation method was about 57.4 minutes .
Table 2 summarizes these conditions and the like.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 B=0.8、ΔY=0.0℃は、図5の実験条件であり、図5に示されるように、実際の昇温完了時間は約43分であった。また、B=0.6、ΔY=2.0℃は図6の実験条件であり、実際の昇温完了時間は約58分であった。上記方式によって算出された推定値(約41.5分、約57.4分)は、実際の昇温完了時間に近い値であり、実用的な精度をもっていることが確かめられた。 B = 0.8 and ΔY = 0.0 ° C. are the experimental conditions of FIG. 5, and as shown in FIG. 5, the actual temperature rise completion time was about 43 minutes. In addition, B = 0.6 and ΔY = 2.0 ° C. are the experimental conditions of FIG. 6, and the actual temperature rise completion time was about 58 minutes. It was confirmed that the estimated values (about 41.5 minutes and about 57.4 minutes) calculated by the above method are values close to the actual temperature rise completion time, and have practical accuracy.
 以上のごとく、本実施形態の温度制御装置100によれば、温度制御ゾーンごとの出力リミッタ値に対して、各温度制御ゾーンで共通する総電力抑制係数(0<総電力抑制係数<1)を乗算することで、出力リミッタ値をより制限した“抑制出力リミッタ値”を、操作量の上限とすることにより、各温度制御ゾーンの昇温完了時間を一致させつつより一層のピーク電力の抑制をすることができる。
 また、総電力抑制係数の設定により変動する昇温完了時間の推定値を算出することができるため、利便性が高い。
As described above, according to the temperature control device 100 of the present embodiment, the total power suppression coefficient (0 <total power suppression coefficient <1) common to each temperature control zone is set to the output limiter value for each temperature control zone. By setting the “suppressed output limiter value” that further restricts the output limiter value by multiplication as the upper limit of the operation amount, it is possible to further suppress the peak power while matching the temperature rise completion time of each temperature control zone can do.
In addition, since it is possible to calculate the estimated value of the temperature rise completion time which fluctuates by setting of the total power suppression coefficient, the convenience is high.
 本実施形態では、昇温完了時間の推定値の算出において、周辺温度の相違(ΔY)もパラメータとして用いるものを例とし、これがユーザによって入力されるものを例としたが、温度センサを備えることにより、自動的に周辺温度を測定し、“基準条件”との差分であるΔYを自動的に算出するものであってもよい。
 また、例えば、装置の設置環境が基本的に温度管理されていて周辺温度の相違を考慮する必要がない場合等においては、式12のΔYを用いない(ΔY=0とする)ことで、式15のように簡略化してもよい。
In this embodiment, in the calculation of the estimated value of the temperature rise completion time, the difference (ΔY) of the ambient temperature is also used as a parameter as an example, and the case where this is input by the user is taken as an example. Thus, the ambient temperature may be automatically measured, and ΔY, which is the difference from the “reference condition”, may be automatically calculated.
Further, for example, when the installation environment of the apparatus is basically temperature-controlled and it is not necessary to consider the difference in the ambient temperature, etc., ΔY in equation 12 is not used (ΔY = 0), thereby It may be simplified as 15.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 本実施形態では、昇温完了時間の推定値を算出する式の形として、式12(若しくは式15)及び式14を示したが、式の形をこれに限定するというものではなく、これらの式を適宜変形して使用するものであっても勿論構わない。
 また、本実施形態では昇温時間推定部110によって、式12及び式14に基づいた算出処理を行うものとして説明したが、式12(若しくは式15)に基づいて、予め各条件に対応した昇温時間倍率Cを算出しておき、装置に各条件に対応した昇温時間倍率Cをテーブルとして設定しておくことにおり、昇温時間推定部110による昇温完了時間の推定値の算出は、当該テーブルから取得されるCを用いて式14に基づいた計算をするのみ等としてもよい。
In this embodiment, although the formula 12 (or the formula 15) and the formula 14 are shown as the form of the formula for calculating the estimated value of the temperature rise completion time, the form of the formula is not limited to this. Of course, the equation may be appropriately modified and used.
Further, in the present embodiment, although it has been described that the calculation process based on Equation 12 and Equation 14 is performed by the temperature rising time estimation unit 110, the increase corresponding to each condition is performed in advance based on Equation 12 (or Equation 15). The heating time magnification C is calculated, and the temperature rising time magnification C corresponding to each condition is set as a table in the apparatus, and the calculation of the estimated value of the temperature rising completion time by the temperature rising time estimation unit 110 is Alternatively, calculation may be performed only on the basis of Equation 14 using C acquired from the table.
 本実施形態では、本発明を、相互に温度が干渉する複数の温度制御ゾーンの温度を制御する装置に使用する場合を例としたが、本発明は、各温度制御ゾーンの温度が干渉しない制御対象にも当然利用できる。
 また、本実施形態では、本発明を適用する温度制御装置における、“各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各温度制御ゾーンにおける操作量を制御”の方法について、特許文献3の方法を用いるものを例としたが、その他の方式によって昇温時間を同期するものに対しても本発明を適用することができる。
In the present embodiment, although the present invention is applied to an apparatus for controlling the temperatures of a plurality of temperature control zones which mutually interfere with each other, the present invention is directed to a control in which the temperatures of the respective temperature control zones do not interfere. Of course it can also be used for the subject.
Further, in the present embodiment, a method of “controlling the operation amount in each temperature control zone so that the time when the temperature of each temperature control zone reaches the target temperature matches” in the temperature control device to which the present invention is applied. Although the method using the method of Patent Document 3 is taken as an example, the present invention can also be applied to one in which the temperature rise time is synchronized by another method.
 100...温度制御装置
 110...昇温時間推定部
 140...温度制御部
 1~1... 温度制御ゾーン
 10~10... 温度制御手段
 50...総電力抑制係数乗算部
100. . . Temperature control device 110. . . Heating time estimation unit 140. . . Temperature control unit 1 1 to 1 N. . . Temperature control zone 10 1 to 10 N. . . Temperature control means 50. . . Total power suppression coefficient multiplier

Claims (8)

  1.  複数の温度制御ゾーンを有する制御対象の温度を制御する温度制御装置であって、各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各々の温度制御ゾーン毎に定められた所定の出力リミッタ値に、各温度制御ゾーンで共通する総電力抑制係数を乗じて抑制出力リミッタ値とし、目標温度と測定温度に基づいて算出される前記温度制御ゾーンにおける温度制御用の操作量が、前記抑制出力リミッタ値以下である場合は算出した前記操作量を操作量として使用し、算出した前記操作量が前記抑制出力リミッタ値より大きい場合は前記抑制出力リミッタ値を操作量として使用して、各温度制御ゾーンの温度を制御する温度制御部と、
     前記制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値と、前記近似式に所望の設定条件を代入して得られる昇温時間算出値との比である昇温時間倍率を算出し、前記基準条件にて実測した昇温時間に、前記昇温時間倍率を乗算することで、推定昇温時間を算出する昇温時間推定部と、
    を備えることを特徴とする温度制御装置。
    A temperature control device for controlling the temperature of a controlled object having a plurality of temperature control zones, wherein the temperature control devices are determined for each temperature control zone such that the time for the temperature of each temperature control zone to reach the target temperature matches. A predetermined output limiter value is multiplied by the total power suppression coefficient common to each temperature control zone to obtain a suppression output limiter value, and the operation amount for temperature control in the temperature control zone calculated based on the target temperature and the measured temperature is The calculated operation amount is used as the operation amount when the suppression output limiter value is equal to or less than the suppression output limiter value, and the suppression output limiter value is used as the operation amount when the calculated operation amount is larger than the suppression output limiter value. A temperature control unit that controls the temperature of each temperature control zone;
    Reference temperature rise time calculation value obtained by substituting the reference condition into an approximation formula that approximates the temperature rise characteristic of the control object by a first-order delay, and temperature rise time obtained by substituting a desired setting condition into the approximation formula A temperature rise time estimation unit that calculates an estimated temperature rise time by calculating a temperature rise time magnification that is a ratio to a calculated value, and multiplying the temperature rise time magnification measured by the reference condition by the temperature rise time magnification When,
    A temperature control device comprising:
  2.  前記昇温時間倍率が、下記式1若しくはこれを変形して得られる式によって算出されることを特徴とする請求項1に記載の温度制御装置。
    Figure JPOXMLDOC01-appb-M000001
     上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率。
    The temperature control device according to claim 1, wherein the temperature raising time magnification is calculated by the following equation 1 or a equation obtained by modifying the same.
    Figure JPOXMLDOC01-appb-M000001
    In the above equation, C: heating time multiplication factor, B: total power suppression coefficient, θ SP : load factor at control stabilization after temperature rising.
  3.  前記昇温時間倍率が、下記式2若しくはこれを変形して得られる式によって算出されることを特徴とする請求項1に記載の温度制御装置。
    Figure JPOXMLDOC01-appb-M000002
     上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率、K:プロセスゲイン、ΔY:基準条件と設定条件における周囲温度の差。
    The temperature control device according to claim 1, wherein the temperature increase time factor is calculated by the following equation 2 or a equation obtained by modifying it.
    Figure JPOXMLDOC01-appb-M000002
    In the above formula, C: heat-up time ratio, B: total power reduction coefficient, theta SP: control stability when the load rate after heating, K: process gain, [Delta] Y: the difference in ambient temperature at reference conditions and setting conditions.
  4.  前記昇温後の制御安定時の負荷率が、下記式3若しくはこれを変形して得られる式によって算出されることを特徴とする請求項2又は3に記載の温度制御装置。
    Figure JPOXMLDOC01-appb-M000003
     上記式において、P:各温度制御ゾーンの熱源の定格電力、θSPi:各温度制御ゾーンの昇温後の制御安定時の負荷率。
    The temperature control device according to claim 2 or 3, wherein the load factor at the time of control stabilization after the temperature rise is calculated by the following equation 3 or a equation obtained by modifying it.
    Figure JPOXMLDOC01-appb-M000003
    In the above equation, P i : rated power of the heat source in each temperature control zone, θ SPi : load factor at control stabilization after temperature rise in each temperature control zone.
  5.  複数の温度制御ゾーンを有する制御対象の温度を制御する温度制御方法であって、各々の温度制御ゾーンの温度が目標温度に到達する時間が一致するように各々の温度制御ゾーン毎に定められた所定の出力リミッタ値に、各温度制御ゾーンで共通する総電力抑制係数を乗じた値である抑制出力リミッタ値を操作量の上限とし、目標温度と測定温度から当該温度制御ゾーンにおける温度制御用の操作量を算出し、算出した操作量が前記抑制出力リミッタ値以下である場合は算出した操作量を操作量として使用し、算出した操作量が前記抑制出力リミッタ値より大きい場合は前記抑制出力リミッタ値を操作量として使用して、各温度制御ゾーンの温度を制御する温度制御方法における、昇温完了時間の推定方法であって、
     前記制御対象の昇温特性を1次遅れで近似した近似式に基準条件を代入して得られる基準昇温時間算出値と、前記近似式に所望の設定条件を代入して得られる昇温時間算出値との比である昇温時間倍率を算出し、前記基準条件にて実測した昇温時間に、前記昇温時間倍率を乗算することで、推定昇温時間を算出することを特徴とする昇温完了時間の推定方法。
    A temperature control method for controlling the temperature of a controlled object having a plurality of temperature control zones, wherein the temperature control method is determined for each temperature control zone so that the time for the temperature of each temperature control zone to reach the target temperature matches. A suppression output limiter value, which is a value obtained by multiplying the total output suppression coefficient common to each temperature control zone by a predetermined output limiter value, is set as the upper limit of the operation amount, and from the target temperature and the measurement temperature, for temperature control in the temperature control zone The operation amount is calculated, and the calculated operation amount is used as the operation amount when the calculated operation amount is less than the suppression output limiter value, and the suppression output limiter is used when the calculated operation amount is larger than the suppression output limiter value. A method of estimating temperature rise completion time in a temperature control method of controlling the temperature of each temperature control zone using a value as an operation amount,
    Reference temperature rise time calculation value obtained by substituting the reference condition into an approximation formula that approximates the temperature rise characteristic of the control object by a first-order delay, and temperature rise time obtained by substituting a desired setting condition into the approximation formula It is characterized in that an estimated temperature increase time is calculated by calculating a temperature increase time ratio which is a ratio to a calculated value, and multiplying the temperature increase time measured by the reference condition by the temperature increase time ratio. How to estimate the temperature rise completion time.
  6.  前記昇温時間倍率が、下記式4若しくはこれを変形して得られる式によって算出されることを特徴とする請求項5に記載の昇温完了時間の推定方法。
    Figure JPOXMLDOC01-appb-M000004
     上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率。
    The method for estimating the temperature rise completion time according to claim 5, wherein the temperature rise time magnification is calculated by the following equation 4 or a equation obtained by modifying the following equation.
    Figure JPOXMLDOC01-appb-M000004
    In the above equation, C: heating time multiplication factor, B: total power suppression coefficient, θ SP : load factor at control stabilization after temperature rising.
  7.  前記昇温時間倍率が、下記式5若しくはこれを変形して得られる式によって算出されることを特徴とする請求項5に記載の昇温完了時間の推定方法。
    Figure JPOXMLDOC01-appb-M000005
     上記式において、C:昇温時間倍率、B:総電力抑制係数、θSP:昇温後の制御安定時の負荷率、K:プロセスゲイン、ΔY:基準条件と設定条件における周囲温度の差。
    The method of estimating heating completion time according to claim 5, wherein the heating temperature multiplication factor is calculated by the following expression 5 or a expression obtained by modifying the following expression.
    Figure JPOXMLDOC01-appb-M000005
    In the above formula, C: heat-up time ratio, B: total power reduction coefficient, theta SP: control stability when the load rate after heating, K: process gain, [Delta] Y: the difference in ambient temperature at reference conditions and setting conditions.
  8.  前記昇温後の制御安定時の負荷率が、下記式6若しくはこれを変形して得られる式によって算出されることを特徴とする請求項6又は7に記載の昇温完了時間の推定方法。
    Figure JPOXMLDOC01-appb-M000006
     上記式において、P:各温度制御ゾーンの熱源の定格電力、θSPi:各温度制御ゾーンの昇温後の制御安定時の負荷率。
    The method according to claim 6 or 7, wherein the load factor at the time of control stabilization after the temperature rise is calculated by the following formula 6 or a formula obtained by modifying the following formula.
    Figure JPOXMLDOC01-appb-M000006
    In the above equation, P i : rated power of the heat source in each temperature control zone, θ SPi : load factor at control stabilization after temperature rise in each temperature control zone.
PCT/JP2017/041044 2017-11-15 2017-11-15 Temperature control device and warm-up completion time estimation method WO2019097597A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/041044 WO2019097597A1 (en) 2017-11-15 2017-11-15 Temperature control device and warm-up completion time estimation method
JP2019554087A JP6845449B2 (en) 2017-11-15 2017-11-15 Temperature control device and method for estimating temperature rise completion time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041044 WO2019097597A1 (en) 2017-11-15 2017-11-15 Temperature control device and warm-up completion time estimation method

Publications (1)

Publication Number Publication Date
WO2019097597A1 true WO2019097597A1 (en) 2019-05-23

Family

ID=66539446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041044 WO2019097597A1 (en) 2017-11-15 2017-11-15 Temperature control device and warm-up completion time estimation method

Country Status (2)

Country Link
JP (1) JP6845449B2 (en)
WO (1) WO2019097597A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035130A1 (en) * 2014-09-02 2016-03-10 理化工業株式会社 Temperature control device and temperature control method
WO2016075786A1 (en) * 2014-11-13 2016-05-19 理化工業株式会社 Temperature control device and temperature control method
WO2016142991A1 (en) * 2015-03-06 2016-09-15 理化工業株式会社 Temperature control system and temperature control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035130A1 (en) * 2014-09-02 2016-03-10 理化工業株式会社 Temperature control device and temperature control method
WO2016075786A1 (en) * 2014-11-13 2016-05-19 理化工業株式会社 Temperature control device and temperature control method
WO2016142991A1 (en) * 2015-03-06 2016-09-15 理化工業株式会社 Temperature control system and temperature control method

Also Published As

Publication number Publication date
JPWO2019097597A1 (en) 2020-04-23
JP6845449B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP3555609B2 (en) Control device, temperature controller and heat treatment device
KR101694688B1 (en) Method for controlling the temperature of a glow plug
WO2016084369A1 (en) Temperature control method and temperature control device
CN103809244A (en) System and method for controlling heating of optical fiber hot stripping device
JP4780421B2 (en) Control device
WO2016042589A1 (en) Control apparatus
WO2019097597A1 (en) Temperature control device and warm-up completion time estimation method
JP6296170B2 (en) Temperature control apparatus and temperature control method
JP2011090609A (en) Temperature control device and temperature control method
JP2004063670A (en) Controller, controlling method, heat treating device and method therefor
JP6610676B2 (en) Temperature control apparatus and temperature control method
JP2017062542A (en) Control device and control method
JP2019101847A (en) Control device and control method
WO2016075786A1 (en) Temperature control device and temperature control method
JP6433375B2 (en) Temperature correction method for hot isostatic pressurizer
JP7050616B2 (en) Control device and control method
JP2013167920A (en) Power estimation device and control device and method
JP2016191981A (en) Feedback control device, feedback control method, and feedback control program
RU2619746C1 (en) Method of expansion of the range of adjustment of acp without loss of sustainability
CN204695129U (en) The heating control apparatus of regenerating furnace
JP2018112956A (en) Controller, method for control, and control program
JP6751244B2 (en) Auto tuning device
CN108604104B (en) AC power regulator and AC power control method
JP2020021297A (en) Control apparatus and control method
JP2015204106A (en) Temperature regulation system and temperature regulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932258

Country of ref document: EP

Kind code of ref document: A1