WO2019096033A1 - 瓣膜支架、瓣膜假体和输送装置 - Google Patents

瓣膜支架、瓣膜假体和输送装置 Download PDF

Info

Publication number
WO2019096033A1
WO2019096033A1 PCT/CN2018/114215 CN2018114215W WO2019096033A1 WO 2019096033 A1 WO2019096033 A1 WO 2019096033A1 CN 2018114215 W CN2018114215 W CN 2018114215W WO 2019096033 A1 WO2019096033 A1 WO 2019096033A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fixing
valve prosthesis
ear
stent
Prior art date
Application number
PCT/CN2018/114215
Other languages
English (en)
French (fr)
Inventor
侍行坤
阳明
陈国明
李�雨
Original Assignee
上海微创心通医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创心通医疗科技有限公司 filed Critical 上海微创心通医疗科技有限公司
Priority to EP18877449.1A priority Critical patent/EP3711716B1/en
Priority to ES18877449T priority patent/ES2968281T3/es
Publication of WO2019096033A1 publication Critical patent/WO2019096033A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2439Expansion controlled by filaments

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a valve stent, a valve prosthesis and a delivery device.
  • aortic valve disease has become one of the common cardiovascular diseases.
  • the incidence rate in China is 2%-5%, and it ranks third in Europe and America after coronary heart disease and hypertension.
  • Thousands of patients benefit from surgical aortic valve replacement every year, but even in developed countries, there are still a large number of patients with severe aortic valve disease due to advanced disease, advanced age, and multiple comorbidities.
  • Aortic valve disease can be caused by congenital defects, natural aging processes, infection or the formation of scars. Over time, calcification may deposit around the aortic valve, resulting in aortic stenosis and/or valvular insufficiency causing "aortic regurgitation.”
  • Patients with aortic valve disease are mainly characterized by angina pectoris, syncope and heart failure. The patient's quality of life is seriously degraded, the survival time is significantly shortened, and effective treatment must be performed.
  • the percutaneous artificial aortic valve products have been continuously updated and improved.
  • the representative products currently used in clinical practice are Edwards valve stent system and CoreValve valve stent system.
  • Edwards-SAPIEN bioprosthesis made of bovine pericardium, sutured on a stainless steel (or chrome-plated) stent, using a balloon-expandable stent to position the valve at the annulus, without the need to transport the sheath, can be antegrade, retrograde Or the method of apical approach, the valve for clinical application has two sizes of 23mm and 26mm in diameter.
  • An example of such an aortic valve is described in patent application WO200, 149,462 A2.
  • the Edwards-SAPIEN aortic valve system has undergone a large number of clinical trials and has obtained very satisfactory results.
  • the CoreValve Valve System is another clinically successful valve stent that was first successfully applied to the human body in 2005.
  • the artificial valve which is mainly made of three-leaf pig pericardium, is sutured on a nickel-knitted alloy self-expanding stent.
  • the stent is currently available in 26mm, 29mm and 31mm sizes.
  • An example of such a valve system is given in U.S. Patent Publication No. US 2011/0172765 A1.
  • the CoreValve valve stent is made of nickel-chin memory alloy. The upper part of the stent is used to anchor the ascending aorta above the sinus sinus. The radial support force is low.
  • the central part of the stent is sewed with leaflets, and its geometry is concave. Coronary blood flow is unobstructed; the lower part of the stent is placed and fixed at the aortic annulus, and its radial support force is strong.
  • the latest clinical studies have confirmed that the implantation of the CoreValve valve system not only has good hemodynamic effects, but also a 30-day mortality rate of 8%, indicating an ideal safety.
  • the fixed ear of the existing valve prosthesis is a vertically upward structure. Since the fixed ear is larger than the ends of other meshes, when the human body is implanted, the fixed ear and the ascending aortic wall fit together, and the vertical upward structure There is a risk of puncturing the ascending aorta.
  • the structure in which the fixed ear is vertically upward is difficult to load at the time of loading, which results in a time-consuming loading. In the course of surgery, the time is life, and the gap of just a few seconds is likely to be the distance between life and death. From this point of view, the drawbacks of fixing the vertical upright structure of the ear are particularly obvious. In the case of TAVR surgery, there is a valve in valve. The design of the fixed ear in the vertical direction is also not conducive to the stability of the implanted second valve.
  • the present invention provides a valve stent, comprising: a stent body having a mesh tube shape; and at least two fixing ears, each of which is connected to the stent body and oriented The inside of the bracket body is bent.
  • each of the fixing ears includes a first bending section and a second bending section, and the angle of bending the first bending section to the inner side of the bracket body is greater than the second bending section An angle of bending toward an inner side of the bracket main body, the first bent section is closer to the bracket main body than the second bent section in an axial direction of the bracket main body.
  • the angle at which the first bending segment is bent toward the inner side of the bracket body ranges from 10° to 45°, and the angle of the second bending segment is bent toward the inner side of the bracket body.
  • the range is 5° to 40°.
  • the angle at which the second bending segment is bent toward the inner side of the bracket body ranges from 15° to 30°.
  • the first bending segment comprises a connecting rod
  • the second bending segment comprises a fixing portion
  • one end of the connecting rod is connected with the bracket body
  • the other end of the connecting rod is fixed with the fixing
  • the portion is connected, and one end of the fixing portion away from the connecting rod is a free end.
  • the first bending segment includes a first connecting segment
  • the second bending segment includes a fixing portion and a second connecting segment connected to the fixing portion, the second connecting segment and the second connecting segment
  • One end of a connecting section is connected, and the other end of the first connecting section is connected to the bracket body, and one end of the fixing portion away from the second connecting section is a free end.
  • the at least two fixing ears have the same shape and are evenly disposed along the circumferential direction of the bracket body.
  • the fixing portion of each of the fixing ears has a through hole.
  • the length of the fixing ear is between 1 mm and 6 mm.
  • the length of the fixing ear is between 3 mm and 5 mm.
  • the fixing ear is manufactured by cutting or knitting.
  • the present invention also provides a valve prosthesis comprising a prosthetic valve and a valve support as described above, the artificial valve being secured to the valve support.
  • the present invention also provides a delivery device for delivering the above-described valve prosthesis, the delivery device comprising: a sheath tube for receiving a valve prosthesis; an inner tube, the inner tube being disposed at And a fixing head, the fixing head is sleeved on the inner tube, and the fixing head is fixedly connected with the inner tube, and the fixing head is used for defining a fixed ear of the valve prosthesis At the position of the inner tube.
  • the guiding tube is disposed outside the sheath tube, the inner surface of the guiding tube is a tapered surface, and the guiding tube can be sleeved on the inner tube.
  • the guiding tube is for clamping a fixing ear of the valve prosthesis on the fixing head.
  • a plurality of grooves are formed on an outer circumferential surface of the fixing head, and the plurality of grooves are evenly distributed on an outer circumferential surface of the fixing head, and each of the grooves is configured to receive one of the fixings The fixed part of the ear.
  • the groove has a bottom, and a shape of a bottom of the groove matches a shape of the fixing portion.
  • a bottom of the groove is provided with a boss that matches a through hole provided on a fixing portion of the fixing ear of the valve prosthesis.
  • the invention provides a valve stent, a valve prosthesis and a conveying device, which have the following beneficial effects:
  • the fixing ear comprises a first bending section and a second bending section
  • the angle of bending the first bending section to the inner side of the bracket body is greater than the angle of the second bending section to the An angle at which the inner side of the stent body is bent, in the axial direction of the stent body, the first bending segment is closer to the stent body than the second bending segment, thereby further reducing the valve
  • the difficulty of folding the fixation ear and fixing the fixation ear in the delivery device can further save the loading time of the valve support, thereby improving the loading efficiency of the valve prosthesis.
  • the fixation of the fixed ear of the valve prosthesis to the inside of the stent body limits the freedom of movement of the second valve prosthesis along the axial direction of the valve prosthesis under the condition of the midvalvular flap, which can effectively reduce the valve prosthesis The risk of shifting.
  • Figure 1 is a front elevational view of a valve prosthesis in an embodiment of the present invention
  • FIG. 2 is a top plan view of a valve prosthesis in an embodiment of the present invention.
  • Figure 3 is a front elevational view of a valve stent in accordance with one embodiment of the present invention.
  • FIG. 4 is a partially enlarged schematic view of a valve prosthesis in an embodiment of the present invention.
  • Figure 5 is a schematic structural view of a conveying device in an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a fixed ear mounting head of a valve prosthesis according to an embodiment of the present invention.
  • Figure 7 is a partially enlarged schematic view showing a fixing head in an embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of a valve prosthesis in the prior art
  • Figure 9 is a schematic view showing the structure of a valve prosthesis in an embodiment of the present invention.
  • Figure 10 is a schematic illustration of a valve prosthesis implanted in the aorta in accordance with one embodiment of the present invention.
  • Figure 11 is a partially enlarged schematic view showing a portion of the valve prosthesis shown in Figure 10 after implantation into the aorta;
  • Figure 12 is a schematic view showing a structure in which two valve prostheses are implanted in the aorta according to an embodiment of the present invention
  • Figure 13 is a schematic view showing another structure when two valve prostheses are implanted in the aorta according to an embodiment of the present invention.
  • Figure 14 is a partial structural view of the two valve prosthesis B in the first state when two valve prostheses are implanted in the aorta in Figure 13;
  • Figure 15 is a partial structural view of the two valve prosthesis B in the second state when two valve prostheses are implanted in the aorta in Figure 13;
  • Figure 16 is a front elevational view of a valve prosthesis in accordance with yet another embodiment of the present invention.
  • Figure 17 is a partially enlarged schematic view showing a fixing ear in still another embodiment of the present invention.
  • Figure 18 is a schematic view showing the structure of two valve prostheses implanted in the aorta according to still another embodiment of the present invention.
  • Figure 19 is a front elevational view of a valve prosthesis in accordance with another embodiment of the present invention.
  • Figure 20 is a front elevational view of a valve prosthesis in still another embodiment of the present invention.
  • FIG. 21 is a partially enlarged schematic view showing a fixing ear of a valve prosthesis according to still another embodiment of the present invention.
  • Figure 22 is a partially enlarged schematic view of a conveying device in still another embodiment of the present invention.
  • 310-bracket body 311-inflow channel structure; 312-transition channel structure; 313-outflow channel structure; 314-stitching ring;
  • 320-fixed ear 320a-first connecting end; 321-fixing portion; 322-connecting rod; 323-through hole; 324-first connecting portion; 325-second connecting portion;
  • valve stent, valve prosthesis and delivery device of the present invention are further described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the drawings are in a very simplified form and all use non-precise proportions, and are only for convenience and clarity to assist the purpose of the embodiments of the present invention.
  • the angle at which any one of the fixing ear, the fixing portion, the connecting rod, the first connecting portion and the second connecting portion is bent toward the inner side of the bracket body means the central axis of the valve bracket The angle between the parallel lines.
  • FIG. 1 is a front view of a valve prosthesis in an embodiment of the present invention
  • FIG. 2 is a plan view of a valve prosthesis in an embodiment of the present invention, the valve prosthesis 100 including artificial Valve 200 and valve support. The artificial valve 200 is secured to the valve support.
  • the artificial valve 200 includes a leaflet 210 and a skirt 220.
  • the leaflets 210 and the skirt 220 are secured to the valve support by stitching.
  • the skirt 220 is used to prevent paravalvular leakage.
  • the artificial valve 200 can be a tricuspid valve.
  • the valve stent 300 includes a stent body 310 and two fixation ears 320.
  • the stent body 310 has a mesh shape.
  • Two of the fixing ears 320 are disposed on the bracket body 310, and the two fixing ears 320 are bent toward the inner side of the bracket body 310.
  • the fixing lug 320 has a first connecting end 320a, and the first connecting end 320a is connected to the bracket main body 310.
  • the fixing lug 320 is located along the bracket main body 310 from the first connecting end 320a. The direction of the central axis extends. That is, in the fixing lug 320, the first connecting end 320a is farthest from the central axis of the bracket main body 310.
  • the bracket body 310 includes an inflow channel structure 311, a transition channel structure 312, and an outflow channel structure 313 that are sequentially connected.
  • the maximum outer diameter of the outflow channel structure 313 of the bracket body 310 is the largest, and the maximum outer diameter of the transition channel structure 312 is the smallest.
  • the outer diameter of the inflow channel structure 311 is from the end far from the transitional path structure 312 to the vicinity. The other end of the transition duct structure 312 gradually becomes smaller.
  • the mesh of the outflow channel structure 313 is sparsely wide, while the mesh of the inflow channel structure 311 is denser and narrower.
  • the number of meshes of the outflow channel structure 313 is less than the number of meshes of the transition channel structure 312 and the inflow channel structure 311.
  • the outer diameters of the inflow channel structure 311, the transition channel structure 312, and the outflow channel structure 313 in this embodiment may be varied in other ways.
  • the maximum outer diameter of the inflow channel structure 311 may be located at an intermediate portion of the inflow channel structure 311.
  • the grids of the inflow channel structure 311, the transition channel structure 312, and the outflow channel structure 313 in this embodiment may also be changed in other manners, such as the inflow channel structure 311 and the transition channel structure 312.
  • the meshes of the outflow channel structure 313 are equal or unequal in size.
  • a plurality of sewing rings 314 are disposed on the transition channel structure 312, and the leaflets 210 are sewn at the position of the sewing ring 314.
  • the sewing ring 314 is preferably evenly distributed along the axial direction of the valve stent 300.
  • the transition channel structure 312 is provided with three sewing rings 314.
  • a skirt 220 is sewn to the inflow channel structure 311.
  • the material of the skirt 220 can be selected from a medical material having a sealing effect, and the suturing method adopts the existing suturing technique.
  • the outflow channel structure 313 is bent away from an end of the transition channel structure 312 toward the inner side of the outflow channel structure 313. Specifically, the outflow channel structure 313 extends from the direction of the central axis away from the stent body 310 from the transition to the transition channel structure 312, and at the maximum outer diameter of the outflow channel structure 313, along the stent body 310. The direction of the central axis extends.
  • the fixing ear 320 can be restrained by the shape of the mold, so that the fixing ear 320 as a whole is inclined toward the inner side of the bracket main body 310.
  • the angle at which the fixing ear 320 is bent toward the inner side of the stent body 310 is an angle between the parallel line connecting the fixed ear 320 and the central axis of the valve stent 300.
  • the fixing ear 320 is The angle between the parallel lines of the central axis of the valve stent 300 is the first angle ⁇ 1.
  • the angle at which the fixing lug 320 is bent toward the inner side of the bracket main body 310 is 10° to 45°.
  • the angle of bending of the fixed ear 320 to the inner side of the stent body 310 exceeds 45°, the loading of the valve prosthesis 100 will become very difficult, and the fixing ear 320 will be directed into the stent body 310.
  • the angle of the side bending is less than 10°, the bending of the fixing ear 320 to the inner side of the bracket body 310 will not be effective. Therefore, in the embodiment, the plurality of fixing ears 320 are directed to the bracket body 310.
  • the angle of the inner bend is preferably between 10 and 45 degrees.
  • one end of the outflow channel structure 313 away from the transition channel structure 312 is provided with two fixing ears 320 symmetric about the central axis of the valve stent 300 .
  • the number of the fixed ears 320 may be three, four or five.
  • the number of the fixing ears 320 is preferably two to four.
  • a plurality of the fixing ears 320 are preferably evenly disposed along the circumferential direction of the bracket main body 310.
  • the plurality of the fixing ears 320 may also be non-uniformly disposed along the circumferential direction of the bracket body 310.
  • the shape of the plurality of fixing ears 320 is preferably the same.
  • FIG. 4 is a partially enlarged schematic view of a valve prosthesis according to an embodiment of the present invention.
  • the fixing ear 320 includes a fixing portion 321 and a connecting rod 322.
  • the connecting rod 322 serves as a first bending section of the fixing ear 320
  • the fixing portion 321 serves as a second bending section of the fixing ear 320 .
  • One end of the connecting rod 322 is connected to the bracket body 310, and the other end of the connecting rod 322 is connected to the fixing portion 321.
  • the first connecting end 320 a is an end of the connecting rod 322 connected to the bracket body 310 .
  • the fixing portion 321 away from the connecting rod 322 is a free end of the fixing ear 320.
  • the fixing portion 321 is preferably flat.
  • the first connecting end 320 a is preferably connected to the top end of the mesh on the outflow channel structure 313 , and the fixing part 321 is surrounded by a smooth rounded corner.
  • the connecting rod 322 has a rod shape, and the overall width is smaller than the fixing portion 321 .
  • the angle at which the first bending segment is bent toward the inner side of the bracket body 310 ranges from 10° to 45°, and the second bending segment is bent toward the inner side of the bracket body 310.
  • the angle ranges from 5° to 40°. More preferably, the angle at which the second bending section is bent toward the inner side of the bracket body 310 ranges from 15° to 30°.
  • the length of the fixing lug 320 is preferably between 1 mm and 6 mm. Further, the length of the fixing ear 320 is between 3 mm and 5 mm. The fixing ear 320 in the length range facilitates the realization of the bending angle of the fixing ear 320 to achieve a better loading effect.
  • the fixing ear 320 and the bracket body 310 are integrally manufactured.
  • the mesh tubular stent body 310 and the fixation ears 320 can be cut over a shape memory alloy (typically a nickel titanium alloy) tube and then shaped by a mold.
  • the fixing ear 320 and the bracket body 310 can also be separately manufactured, and then the bracket body 310 and the fixing ear 320 are fixedly connected by welding or sewing.
  • the valve prosthesis 100 of this embodiment can be implanted into a human body by a delivery device, and it is often necessary to load the valve prosthesis 100 into the delivery device prior to performing the implantation procedure.
  • the delivery device 400 includes a sheath tube 410, an inner tube 420, a fixation head 430, and a guide tube 440.
  • the sheath tube 410 is used to house the valve prosthesis 100.
  • the inner tube 420 is disposed within the sheath tube 410.
  • the fixing head 430 is sleeved on the inner tube 420, and the fixing head 430 is fixedly connected to the inner tube 420.
  • the fixation head 430 is used to define the position of the fixation ear 320 of the valve prosthesis 100 relative to the inner tube 420.
  • the fixed head 430 and the inner tube 420 are movable along the sheath 410.
  • the guiding tube 440 is disposed outside the sheath tube 410, and the guiding tube 440 is used to clamp the fixing ear 320 of the valve prosthesis 100 on the fixing head 430.
  • FIG. 6 is a schematic structural view of a fixing ear of a valve prosthesis according to an embodiment of the present invention, which is disposed on a fixing head, and the inner tube 420 is composed of a first tube body 421 and a second tube body 422. composition.
  • the fixing head 430 is mounted on the first pipe body 421.
  • the fixing head 430 is preferably located at an intermediate position of the inner tube 420, that is, where the first tube body 421 and the second tube body 422 are connected. Referring to FIG. 5 and FIG. 6, in this embodiment, the outer diameter of the first tubular body 421 is preferably smaller than the outer diameter of the second tubular body 422. The material of the first tubular body 421 is preferably softer than the second tubular body 422.
  • At least two grooves 431 are defined in the outer circumferential surface of the fixing head 430, and the plurality of grooves 431 are preferably evenly distributed on the outer circumferential surface of the fixing head 430.
  • FIG. 7 is a partially enlarged schematic view of the fixing head in an embodiment of the present invention, each of the grooves 431 accommodating a fixing portion 321 of the fixing ear 320.
  • the groove 431 has a bottom 432, and the shape of the bottom 432 of the groove 431 matches the shape of the fixing portion 321 .
  • the bottom surface 432 of the groove 431 is a first curved surface
  • the inner side of the fixing portion 321 of the fixing ear 320 is a second curved surface
  • the first curved surface and the second curved surface may overlap at least partially.
  • the first curved surface is bonded to the second curved surface.
  • the depth of the groove 431 is greater than the thickness of the fixing ear 320 by 0 to 0.4 mm.
  • the outer contour of the fixing head 430 away from the one end of the second tubular body 422 is larger than the outer diameter of the first tubular body 421 , thereby forming a convex protruding from the outer surface of the first tubular body 421 .
  • the inner surface 441 of the guide tube 440 is a tapered surface.
  • the guide tube 440 has a first end 442 and a second end 443.
  • the first end 442 is located at a large diameter end of the inner surface 441 of the guiding tube 440
  • the second end 443 is located at a small diameter end of the inner surface 441 of the guiding tube 440.
  • the process of loading the valve prosthesis 100 into the sheath 410 of the delivery device 400 is as follows:
  • valve prosthesis 100 is placed in ice water, and the guiding tube 440 is placed over the valve prosthesis 100 such that the fixing ears 320 of the valve prosthesis 100 are gathered by the guiding tube 440.
  • the inner tube 420 is inserted into the valve prosthesis 100 and the guiding tube 440 from the side of the valvular prosthesis 100 having the fixed ear 320, so that the valve prosthesis 100 and the guiding tube 440 are sleeved on the inner tube 420.
  • the position of the valve prosthesis 100 and the guide tube 440 is adjusted such that the fixation ears 320 of the valve prosthesis 100 correspond one-to-one with the position of the recess 431 on the fixation head 430, and then the guide tube 440 is brought closer to the sheath 410.
  • the direction of movement is such that the fixing ears 320 are further gathered.
  • the direction of movement of the guiding tube 440 can be reversed in a direction opposite to the direction indicated by the first arrow J1 in FIG. 6 until the fixing ear 320 is clamped to the fixing head.
  • the retaining ear 320 of the valve prosthesis 100 is now just touching the bottom 432 of the recess 431 of the fixed head 430.
  • the outflow channel structure 313 of the valve prosthesis 100 may be firstly offset from the convex surface of the fixed head 430 by one end of the transition channel structure 312, and then passed through the rotating guide tube 440 and the valve prosthesis 100. The way to fix the position of the ear 320 is adjusted.
  • the moving direction of the sheath tube 410 can be referred to the first arrow J1 in FIG. direction.
  • FIG. 8 is a structural schematic view of the valve prosthesis in the prior art
  • FIG. 9 is a valve prosthesis loading in an embodiment of the present invention.
  • the valve prosthesis 100 has a released state and a crimped state. In the released state, the valve prosthesis 100 is flared into a petal-like shape.
  • the valve prosthesis 100 is compressed by the delivery device 400 into a sheath 410 having a very small inner diameter and then implanted through the arterial or apical approach, releasing the valve prosthesis 100 when it reaches the aortic root position.
  • the valve prosthesis 100 is expanded open, the prosthetic leaflet 210 is distracted, and the valve prosthesis 100 begins to work.
  • FIG. 10 is a schematic view of the valve prosthesis implanted in the aorta according to an embodiment of the present invention.
  • the body 100 can reach the position of the root of the aorta D through the delivery device 400, that is, the third position W3.
  • the valve prosthesis 100 can be released when the position of the valve prosthesis 100 is determined to be appropriate.
  • the valve prosthesis 100 is gradually opened, and after complete release, the outflow tract structure 313 of the valve prosthesis 100 is located at the position of the ascending aorta D, that is, the fourth position W4.
  • the fourth position W4 Refer to Figure 10.
  • the outflow tract structure 313 of the valve prosthesis 100 is located in the ascending aorta D. Due to the great elasticity of the aorta D, the maximum outer diameter of the valve prosthesis 100 is large.
  • the tract structure 313 will distract the aorta D, since the volume of the fixed ear 320 of the valve prosthesis 100 is larger and longer than the other mesh tips of the valve prosthesis 100, if the fixed ear is vertically upward, ie the fixed ear is along Parallel to the direction of the central axis of the stent body, the fixed ear is easily punctured or stabbed to the wall of the ascending aorta D, causing serious complications, and therefore, by bending the fixation ear 320 toward the inside of the stent body 310 The fold reduces the risk of the fixation ear 320 piercing the wall of the ascending aorta D. Referring to FIG. 11, FIG. 11, FIG.
  • FIG. 11 is a partially enlarged schematic view showing a portion of the valve prosthesis shown in FIG. 10 after implantation into the aorta, and a fixed ear 320 and a tube for ascending aorta D which are bent toward the inside of the stent main body 310.
  • the wall has a certain distance, which can effectively avoid the damage of the fixed ear 320 to the wall of the aorta D.
  • valve prosthesis 100 When the valve prosthesis 100 is implanted into the aorta D, it is often the case that the release position is not ideal. If the position of the valve prosthesis 100 after implantation of the aortic D is not ideal, it is easy to cause a large reflux of the aorta D, and a valve prosthesis 100 must be implanted again, that is, a midvalvular flap is formed. In the midvalvular valve, the second implanted valve prosthesis 100 is primarily positioned by the support force provided by its outflow tract structure 313.
  • FIG. 12 is a schematic view showing a structure in which two valve prostheses are implanted in the aorta according to an embodiment of the present invention, wherein one of the valve prostheses has been implanted Another is in the process of implantation.
  • Figure 13 is a schematic illustration of another configuration in which two valve prostheses are implanted in the aorta in one embodiment of the invention, wherein both valve prostheses have been implanted.
  • Figure 14 is a partial structural view of the two valve prosthesis B in the first state when the two valve prostheses are implanted in the aorta of Figure 13, and Figure 15 is the two implanted in the aorta in Figure 13 Schematic diagram of the local structure of the two valve prostheses B in the second state in the case of a valve prosthesis.
  • the overall structure of the valve prostheses 500 and 600 in this embodiment may be any one of the valve prostheses 100 in the above embodiment, and will not be described herein.
  • the second valve prosthesis 600 is located in the first valve prosthesis 500 and the second valve prosthesis 600 is implanted in the aorta D after the first valve prosthesis 500.
  • the second valve prosthesis 600 is delivered to the aortic D root, referring to Figure 12, the second valve prosthesis 600 is not released.
  • the position of the second valve prosthesis 600 relative to the first valve prosthesis 500 can be adjusted based on image information of the two valve prostheses displayed by the visualization instrument such that the second valve prosthesis 600 is relative to the aorta D and One valve prosthesis 500 is moderately positioned.
  • the sheath 410 can be rotated such that the fixation ears 320 of the second valve prosthesis 600 and the fixation ears 320 of the first valve prosthesis 500 are offset by an angle, preferably 30 degrees. Subsequently, the second valve prosthesis 600 is released.
  • the fixation ear 320 is bent toward the inside of the stent body 310, after the second valve prosthesis 600 is fully released, the two valve prostheses 100 (ie, the first valve prosthesis 500 and the second valve prosthesis 600)
  • the relative positions of at least the following two states exist. Referring to Fig. 14, at this time, the second valve prosthesis 600 is implanted at a high position, and the relative positions of the two valve prostheses 100 are in the first state, that is, the fixed ears 320 of the first valve prosthesis 500 are embedded in the second position.
  • the underside of one node P of the valve prosthesis 600 that is, the fixation ear 320 of the first valve prosthesis 500, is embedded in a side of the node P of the second valve prosthesis 600 that is adjacent to the inflow channel structure 311.
  • the fixation ear 320 of the first valve prosthesis 500 can be bent toward the inside of the stent body 310, thereby restricting the second valve prosthesis 600 from tilting away from the aorta D, the second valve
  • the direction in which the prosthesis 600 is tilted away from the direction of the aorta D can be referred to the second arrow J2 in FIG.
  • the second valve prosthesis 600 is a low position implant, and the relative positions of the two valve prostheses 100 are in the second state, that is, the fixed ears 320 of the first valve prosthesis 500 are embedded in the second position.
  • the upper side of one node P of the valve prosthesis 600 that is to say the fixation ear 320 of the first valve prosthesis 500, is embedded in the side of a node P of the second valve prosthesis 600 remote from the inflow channel structure 311.
  • fixation ear 320 of the first valve prosthesis 500 is bent toward the inside of the stent body 310, thereby restricting the second valve prosthesis 600 from tilting toward the aorta D, the second valve
  • the direction in which the prosthesis 600 is tilted toward the direction of the aorta D can be referred to the third arrow J3 in FIG.
  • the fixation of the fixation ears 320 of the valve prosthesis 100 to the inside of the stent body 310 limits the freedom of movement of the second valve prosthesis 600 along the axial direction of the valve prosthesis 100 under the condition of the midvalvular flap. It can effectively reduce the risk of displacement of the valve prosthesis 100.
  • the Applicant has also proposed a valve prosthesis which is substantially identical to the valve prosthesis of the above embodiment, the difference being the shape and configuration of the fixed ear, where the same is no longer the same.
  • the description will mainly introduce the structure of the fixed ear.
  • FIG. 16 is a front view of a valve prosthesis according to still another embodiment of the present invention
  • FIG. 17 is a partially enlarged schematic view showing a fixing ear according to another embodiment of the present invention.
  • the fixing ear also includes the connecting rod and the fixing portion, but the angle at which the fixing ear is bent toward the inner side of the bracket main body in each embodiment may be different in each segment.
  • the connecting rod 322 may also be a curved rod.
  • the fixing portion 321 extends in a direction close to the central axis of the bracket body 310 at an angle smaller than the connecting line between the two ends of the connecting rod 322 and the center of the bracket body 310.
  • the angle between the parallel lines of the axis that is, the angle at which the fixing portion 321 is bent toward the inner side of the holder main body 310 is smaller than the angle at which the connecting rod 322 is bent toward the inner side of the holder main body 310.
  • the angle at which the fixing portion 321 is bent toward the inner side of the bracket body 310 is the second angle ⁇ 2 as shown in FIG. 17, and the angle at which the connecting rod 322 is bent toward the inner side of the bracket body 310 is The third angle ⁇ 3.
  • the valve prosthesis is compressed at the time of loading, and the fixing lug 320 has only the end portion of the fixing portion 321 and the recess of the fixing head 430. 431, it should be understood by those skilled in the art that at this time, the contact surface of the fixing portion 321 of the single fixing lug 320 and the groove 431 is small for the fixing ear. Therefore, when the valve prosthesis is further loaded into the sheath tube 410, the fixing portion 321 of the fixing lug 320 is easily slipped out of the groove 431.
  • the angle at which the fixing portion 321 of the fixing lug 320 extends in a direction close to the central axis of the bracket main body 310 is smaller than the angle between the line between the two end portions of the connecting rod 322 and the direction of the central axis of the bracket main body 310
  • the fixing ear 320 is fixed.
  • the abutting surface of the fixing portion 321 and the groove 431 can be increased, thereby preventing the fixing portion 321 of the fixing ear 320 from slipping out of the groove 431 when the valve prosthesis is loaded into the sheath tube, thereby further reducing Loading difficulty and improving loading efficiency.
  • FIG. 18 is a schematic structural view of a valve prosthesis implanted in the aorta according to still another embodiment of the present invention.
  • the fixing portion 321 is attached to the stent.
  • the angle of the inner side of the main body 310 is bent less than the angle between the line connecting the two ends of the connecting rod 322 and the parallel line of the central axis of the bracket body 310, so that the two fixing ears 320 can be prevented from being away from the valve prosthesis
  • One end of the inflow channel structure is too close so that the fixation ear of the first valve prosthesis 500 can be prevented from interfering with the second valve prosthesis 600 or with the delivery device delivering the second valve prosthesis 600.
  • the angle at which the fixing portion 321 is bent toward the inner side of the bracket body 310 may be greater than or equal to the angle at which the connecting rod 322 is bent toward the inner side of the bracket body 310.
  • the connecting rod includes a first connecting section 324 and a second connecting section 325.
  • One end of the first connecting section 324 is connected to the bracket body 310, and the other end of the first connecting section 324 is connected to one end of the second connecting section 325, the first connecting section 324 and the bracket One end of the body 310 is connected to the first connection end 320a.
  • the other end of the second connecting section 325 is connected to the fixing portion.
  • the first connecting section 324 forms a first bending section of the fixing ear 320
  • the second connecting section 325 forms a second bending section of the fixing ear 320, the first connecting section 324 and the second
  • the angle at which the connecting section 325 is bent toward the inner side of the bracket body 310 may be the same or different.
  • the angle at which the second connecting portion 325 is bent toward the inner side of the bracket main body 310 is greater than the angle at which the first connecting portion 324 is bent toward the inner side of the bracket main body 310, or the second connection
  • the angle at which the segment 325 is bent toward the inner side of the stent body 310 is smaller than the angle at which the first connecting segment 324 is bent toward the inner side of the stent body 310.
  • the second connecting portion 325 and the fixing portion 321 together form a second bending portion of the fixing ear, that is, the first connecting portion 324 is directed to the bracket.
  • An angle at which the inner side of the main body 310 is bent is larger than an angle at which the second connecting portion 325 is bent toward the inner side of the bracket main body 310, and the second connecting portion 325 is bent toward the inner side of the bracket main body 310.
  • the angle is the same as the angle at which the fixing portion 321 is bent toward the inner side of the bracket body 310, that is, the fixing ear 320 occurs at the junction of the first connecting portion 324 and the second connecting portion 325.
  • the bending is performed, and the second connecting portion 325 and the fixing portion 321 are bent at a predetermined angle in a direction away from the central axis of the bracket main body 310.
  • the angle at which the first bending segment is bent toward the inner side of the bracket body 310 ranges from 10° to 45°, and the second bending segment is bent toward the inner side of the bracket body 310.
  • the angle ranges from 5° to 40°. More preferably, the angle at which the second bending section is bent toward the inner side of the bracket body 310 ranges from 15° to 30°.
  • FIG. 19 is a front view of a valve prosthesis according to another embodiment of the present invention.
  • the main difference between the valve prosthesis 100 of the present embodiment and the valve prosthesis 100 of the first embodiment is that the embodiment The plurality of fixation ears 320 of the valve prosthesis 100 can be made by weaving.
  • the plurality of fixing ears 320 can be made by multi-layer knitting.
  • the fixing ears 320 made by other methods are softer, such as softer than the fixing ears 320 made by cutting, when When the fixing ear 320 is in contact with the wall of the aorta D, the fixing ear 320 can be easily squeezed, so that the fixing ear 320 is bent toward the inner side of the stent body 310 without damaging the wall of the aorta D, thereby reducing the fixation. The risk of the ear 320 piercing the wall of the aorta D.
  • the fixing ear 320 formed by the multi-layer weaving method is larger than the thickness of the fixing ear 320 which is formed by cutting, the fixing ear 320 can be conveniently fixed to the conveying device 400, thereby facilitating the fake valve.
  • the body 100 is loaded into the delivery device 400.
  • the multi-layer woven valve prosthesis 100 is relatively soft, the difficulty of folding the fixation ear 320 and securing the fixation ear 320 in the delivery device 400 when loading the valve prosthesis 100 into the sheath tube 410 can be reduced. Saving the loading time of the valve support 300 can increase the loading efficiency of the valve support 300.
  • the stent body 310 and the fixing ears 320 of the valve prosthesis 100 are both made by weaving.
  • the plurality of fixing ears 320 may be integrally woven with the bracket body 310, or may be separately woven and then welded to the bracket body 310.
  • the stent body 310 of the valve prosthesis 100 can be formed in other ways.
  • the plurality of fixing ears 320 can be bent toward the inner side of the bracket body 310 by means of mold setting.
  • the fixing lug 320 has an L-shape, that is, the fixing lug 320 first extends toward the inner side of the bracket main body 310 along the radial direction of the bracket main body 310, and then moves away from the axial direction of the bracket main body 310.
  • the direction of the outflow channel structure 313 extends.
  • the plurality of fixing ears 320 can extend parallel to the axial direction of the bracket body 310 in a direction away from the outflow channel structure 313.
  • This embodiment provides a valve prosthesis.
  • the main difference between the valve prosthesis of the embodiment and the valve prosthesis of the first embodiment is that in the embodiment, the plurality of fixing ears of the valve prosthesis can be made by cutting, and the main body of the stent is woven. Made in a way.
  • FIG. 20 is a front view of a valve prosthesis according to still another embodiment of the present invention
  • FIG. 21 is a partially enlarged schematic view showing a fixed ear of a valve prosthesis according to still another embodiment of the present invention.
  • the main difference between the valve prosthesis of the embodiment and the valve prosthesis of the first embodiment is that in the present embodiment, the plurality of fixing ears 320 of the valve prosthesis 100 can be made by weaving.
  • the fixing ear 320 has a through hole 323.
  • the through hole 323 is preferably located at the center of the fixing portion 321 of the fixing ear 320.
  • the thickness of the fixing lug 320 is preferably greater than the thickness of the bracket body 310.
  • FIG. 22 is a partially enlarged schematic view of a conveying device in another embodiment of the present invention.
  • a boss 433 may be disposed at the bottom 432 of the recess 431 of the fixing head 430 of the conveying device 400.
  • the boss 433 preferably matches the through hole 323 of the fixing lug 320.
  • the boss 433 of the bottom portion 432 is so that the fixing ears 320 of the valve prosthesis 100 are slightly compressed to bring the fixing ears 320 into contact with the bottom 432 of the recess 431 of the fixing head 430, thereby facilitating loading of the fixing ears 320 to In the sheath 410.
  • valve stent, the valve prosthesis and the conveying device provided by the invention can achieve the following effects by bending the fixed ear to the inner side of the stent body:
  • the fixation of the fixed ear of the valve prosthesis to the inside of the stent body limits the freedom of movement of the second valve prosthesis along the axial direction of the valve prosthesis under the condition of the midvalvular flap, which can effectively reduce the valve prosthesis The risk of shifting.

Abstract

一种瓣膜支架(300)、瓣膜假体(100)和输送装置(400)。瓣膜支架(300)包括:支架主体(310),支架主体(310)呈网管状;以及多个固定耳(320),多个固定耳(320)设置在支架主体(310)上,且多个固定耳(320)向支架主体(310)的内侧弯折。瓣膜假体(100)包括人造瓣膜(200)和瓣膜支架(300),人造瓣膜(200)固定在瓣膜支架(300)上。输送装置(400)用于输送瓣膜假体(100)。输送装置(400)包括:鞘管(410)、内管(420)、固定头(430)和导引管(440)。鞘管(410)用于收纳瓣膜假体(100)。固定头(430)用于限定瓣膜假体(100)的固定耳(320)相对于内管(420)的位置。导引管(440)用于将瓣膜假体(100)的固定耳(320)夹紧在固定头(430)上。瓣膜支架(300)、瓣膜假体(100)和输送装置(400)可提高瓣膜假体(100)的装载效率。

Description

瓣膜支架、瓣膜假体和输送装置 技术领域
本发明涉及医疗器械技术领域,特别涉及一种瓣膜支架、瓣膜假体和输送装置。
背景技术
随着全球老龄化社会的到来,主动脉瓣膜病变已成为常见的心血管疾病之一。在我国国内的发病率为2%-5%,而在欧美国家位于冠心病和高血压病之后,居第三位。每年有成千上万的患者能从外科主动脉瓣膜置换术中获益,但即使在发达国家,仍有大量严重主动脉瓣膜病变的患者因为疾病晚期、高龄以及存在多种合并症等原因而不能接受外科手术治疗,经皮人工主动脉瓣产品的出现和产品性能的不断完善,无疑为这部分病人带来了福音,提供了一种有效的治疗方法。
主动脉瓣膜疾病可由先天性缺陷、自然老化过程、感染或瘫痕的形成而引起。随着时间的推移,钙化物可能在主动脉瓣周围沉积,导致主动脉瓣狭窄和/或瓣膜关闭不全引起“主动脉返流”。主动脉瓣膜疾病的患者病症主要表现在心绞痛、晕厥和心衰,病人的生活质量严重下降,存活时间明显缩短,必须进行有效的治疗。
2002年Criber等首先报道了第一例人体经导管主动脉瓣膜置换病例,此后,国内外众多学者、医生均开展了经导管主动脉瓣膜置换(TAVR)的基础和临床研究,并取得了较好的临床效果,研究表明:对于无法进行外科换瓣或外科换瓣手术存在高风险的患者,这项新技术是安全有效的。与外科手术相比,经皮主动脉瓣膜置换术无需开胸及体外循环支持,是一种创伤小、并发症少、术后康复快、患者痛苦小、容易接受的治疗方法。尽管进行TAVR手术的多为高风险患者,但术后30天存活率高于90,术后患者血流动力学指标得到了明显的改善。
经皮人工主动脉瓣产品经过不断的更新改良,目前应用于临床的代表性产品有Edwards瓣膜支架系统和CoreValve瓣膜支架系统两大类。
Edwards-SAPIEN生物瓣,由牛心包制成,缝合组装在不锈钢(或钻铬合金)支架上,使用球囊扩张支架实现瓣膜在瓣环处的定位,无需输送鞘管,可采用顺行、逆行或经心尖途径的方法置入,可供临床应用的瓣膜有直径23mm和26mm两种规格。专利申请W0200即149462A2中描述了这种主动脉瓣膜的例子。Edwards-SAPIEN主动脉瓣系统已经进行大量的临床实验,得到了非常理想的研究结果。
CoreValve瓣膜系统是另一个在临床上成功使用的瓣膜支架,于2005年首次应用于人体并获成功。其主要由三叶式猪心包制成的人工瓣膜缝合在镍钦合金自膨式支架上,这种支架目前有26mm,29mm和31mm三种规格。美国专利公开文献US2011/0172765A1中给出了这种瓣膜系统的例子。CoreValve瓣膜支架由镍钦记忆合金制成,支架上部用于锚定在瓦氏窦上方的升主动脉,其径向支撑力较低;支架中部缝制有瓣叶,其几何形状内凹,使冠状动脉血流不受阻挡;支架下部用于置入固定于主动脉瓣环处,其径向支撑力强。最新的临床研究证实,植入CoreValve瓣膜系统不仅有良好的血流动力学效果,而且30天死亡率为8%,显示了比较理想的安全性。
但现有的瓣膜假体的固定耳均是竖直向上的结构,由于固定耳比其他网格端部大,当植入人体时,固定耳和升主动脉壁贴合,竖直向上的结构存在刺破升主动脉的风险。此外,固定耳竖直向上的结构在装载时装载难度大,导致装载费时,在分秒必争的手术过程中,时间就是生命,短短几秒钟的差距很有可能就是生与死的距离,因此,从这个角度来讲固定耳竖直向上结构弊端尤为明显。TAVR手术存在瓣中瓣(Valve in Valve)的情况,固定耳竖直向上的设计也不利于植入的第二个瓣膜稳固。
发明内容
本发明的目的在于提供一种瓣膜支架、瓣膜假体和输送装置,以解决现有的假体装载难度大,装载费时的问题。
为解决上述技术问题,本发明提供一种瓣膜支架,包括:支架主体,所述支架主体呈网管状;以及至少两个固定耳,每个所述固定耳均与所述支架 主体连接且均向所述支架主体的内侧弯折。
可选的,每个所述固定耳包括第一弯折段和第二弯折段,所述第一弯折段向所述支架主体的内侧弯折的角度大于所述第二弯折段向所述支架主体的内侧弯折的角度,在所述支架主体的轴向上,所述第一弯折段相较于所述第二弯折段更靠近所述支架主体。
可选的,所述第一弯折段向所述支架主体的内侧弯折的角度范围为10°到45°,所述第二弯折段向所述支架主体的内侧弯折的角度范围为5°到40°。
可选的,所述第二弯折段向所述支架主体的内侧弯折的角度范围为15°到30°。
可选的,所述第一弯折段包括连接杆,所述第二弯折段包括固定部,所述连接杆的一端与所述支架主体连接,所述连接杆的另一端与所述固定部连接,所述固定部远离所述连接杆的一端为自由端。
可选的,所述第一弯折段包括第一连接段,所述第二弯折段包括固定部及与所述固定部连接的第二连接段,所述第二连接段与所述第一连接段的一端相连,所述第一连接段的另一端与所述支架主体连接,所述固定部远离所述第二连接段的一端为自由端。
可选的,所述至少两个固定耳的形状相同且沿支架主体的周向均匀设置。
可选的,每个所述固定耳的所述固定部具有通孔。
可选的,所述固定耳的长度在1mm~6mm之间。
可选的,所述固定耳的长度在3mm~5mm之间。
可选的,所述固定耳通过切割或者编织的方式制造。
本发明还提供一种瓣膜假体,包括人造瓣膜和上述的瓣膜支架,所述人造瓣膜固定在所述瓣膜支架上。
本发明还提供一种输送装置,所述输送装置用于输送上述的瓣膜假体,所述输送装置包括:鞘管,所述鞘管用于收纳瓣膜假体;内管,所述内管设置在所述鞘管内;以及固定头,所述固定头套设在所述内管上,且所述固定头与所述内管固定连接,所述固定头用于限定所述瓣膜假体的固定耳相对于所述内管的位置。
可选的,还包括导引管,所述导引管设置在所述鞘管外,所述导引管的内表面为锥面,所述导引管可套设在所述内管上,所述导引管用于将所述瓣膜假体的固定耳夹紧在所述固定头上。
可选的,所述固定头的外周面上开设有多个凹槽,多个所述凹槽均匀分布在所述固定头的外周面上,每个所述凹槽用于容纳一个所述固定耳的固定部。
可选的,所述凹槽具有一底部,所述凹槽的底部的形状与所述固定部的形状相匹配。
可选的,所述凹槽的底部设置有一凸台,所述凸台与设置在所述瓣膜假体的所述固定耳的固定部上的通孔相匹配。
本发明提供的一种瓣膜支架、瓣膜假体和输送装置,具有以下有益效果:
首先,在将瓣膜假体装载到输送装置的鞘管内的过程中,由于固定耳向支架主体的内侧弯折,可降低收拢固定耳并使固定耳固定在输送装置中的难度,从而可节省瓣膜支架的装载时间,即可提高瓣膜假体的装载效率。
其次,由于所述固定耳包括第一弯折段和第二弯折段,所述第一弯折段向所述支架主体的内侧弯折的角度大于所述第二弯折段向所述支架主体的内侧弯折的角度,在所述支架主体的轴向上,所述第一弯折段相较于所述第二弯折段更靠近所述支架主体,因此,可进一步降低瓣膜假体在装载到鞘管中时,收拢固定耳并将固定耳固定在输送装置中的难度,从而可进一步节省瓣膜支架的装载时间,即可提高瓣膜假体的装载效率。
其次,通过使固定耳向支架主体的内侧弯折可降低固定耳刺破升主动脉的管壁的风险。
再次,瓣膜假体的固定耳向支架主体的内侧弯折限制了在瓣中瓣条件下,第二个瓣膜假体沿着瓣膜假体的轴向移动的自由度,可有效降低瓣膜假体移位的风险。
附图说明
图1是本发明一种实施例中的瓣膜假体的主视图;
图2是本发明一种实施例中的瓣膜假体的俯视图;
图3是本发明一种实施例中的瓣膜支架的主视图;
图4是本发明一种实施例中的瓣膜假体的局部放大示意图;
图5是本发明一种实施例中的输送装置的结构示意图;
图6是本发明一种实施例中的瓣膜假体的固定耳设置固定头上的结构示意图;
图7是本发明一种实施例中的固定头的局部放大示意图;
图8是现有技术中的瓣膜假体装载时的结构示意图;
图9是本发明一种实施例中的瓣膜假体装载时的结构示意图,
图10是本发明一种实施例中的瓣膜假体植入主动脉后的示意图;
图11是图10中所示的瓣膜假体植入主动脉后的示意图中A处的局部放大示意图;
图12是本发明一种实施例中在主动脉中植入有两个瓣膜假体时的一种结构示意图;
图13是本发明一种实施例中在主动脉中植入有两个瓣膜假体时的另一种结构示意图;
图14是图13中在主动脉中植入两个瓣膜假体时两个瓣膜假体B处在第一种状态下的局部结构示意图;
图15是图13中在主动脉中植入两个瓣膜假体时两个瓣膜假体B处在第二种状态下的局部结构示意图;
图16是本发明又一种实施例中的瓣膜假体的主视图;
图17是本发明又一种实施例中的固定耳的局部放大示意图;
图18是本发明又一种实施例中在主动脉中植入两个瓣膜假体时的结构示意图,
图19是本发明另一种实施例中的瓣膜假体的主视图;
图20是本发明再一种实施例中的瓣膜假体的主视图;
图21是本发明再一种实施例中的瓣膜假体的固定耳的局部放大示意图;
图22是本发明再一种实施例中的输送装置的局部放大示意图。
附图标记说明:
100-瓣膜假体;
200-人造瓣膜;210-瓣叶;220-裙边;
300-瓣膜支架;
310-支架主体;311-流入道结构;312-过渡道结构;313-流出道结构;314-缝合环;
320-固定耳;320a-第一连接端;321-固定部;322-连接杆;323-通孔;324-第一连接段;325-第二连接段;
400-输送装置;
410-鞘管;
420-内管;421-第一管体;422-第二管体;
430-固定头;431-凹槽;432-底部;433-凸台;
440-导引管;441-内表面;442-第一端;443-第二端;
第一夹角δ 1;第二夹角δ 2;第三夹角δ 3;第一箭头J1;第二箭头J2;第三箭头J3;D-主动脉;W1-第一位置;W2-第二位置;P-节点;W3-第三位置;W4-第四位置;
500-第一个瓣膜假体;600-第二个瓣膜假体。
具体实施方式
以下结合附图和具体实施例对本发明提出的瓣膜支架、瓣膜假体和输送装置作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。在以下实施例中,固定耳、固定部、连接杆、第一连接段及第二连接段中的任一者向所述支架主体的内侧弯折的角度是指其与瓣膜支架的中心轴线的平行线之间的夹角。
实施例一
本实施例提供一种瓣膜假体。参考图1和图2,图1是本发明一种实施例中的瓣膜假体的主视图,图2是本发明一种实施例中的瓣膜假体的俯视图, 所述瓣膜假体100包括人造瓣膜200和瓣膜支架。所述人造瓣膜200固定在所述瓣膜支架上。
所述人造瓣膜200包括瓣叶210和裙边220。所述瓣叶210和裙边220通过缝合的方式固定在瓣膜支架上。所述裙边220用于防止瓣周漏。本实施例中,所述人造瓣膜200可为三尖瓣。
参考图3,图3是本发明一种实施例中的瓣膜支架的主视图,所述瓣膜支架300包括支架主体310和两个固定耳320。所述支架主体310呈网管状。两个所述固定耳320设置在所述支架主体310上,且两个所述固定耳320向所述支架主体310的内侧弯折。具体来说,固定耳320具有第一连接端320a,所述第一连接端320a与支架主体310相连接,从所述第一连接端320a起,所述固定耳320沿着靠近支架主体310的中心轴线的方向延伸。即,在所述固定耳320中,所述第一连接端320a最远离所述支架主体310的中心轴线。
参考图3,所述支架主体310包括依次连接的流入道结构311、过渡道结构312和流出道结构313。
具体的,所述支架主体310的流出道结构313的最大外径最大,过渡道结构312的最大外径最小,流入道结构311的外径从远离所述过渡道结构312的一端到靠近所述过渡道结构312的另一端逐渐变小。流出道结构313的网格稀疏宽大,而流入道结构311的网格更致密窄小。流出道结构313的网格数量比过渡道结构312和流入道结构311的网格数量少。本领域技术人员应该可以理解,本实施例中所述流入道结构311、过渡道结构312和流出道结构313的外径可以以其它方式变化。例如,使得流入道结构311的最大外径可以位于流入道结构311的中间段。本领域技术人员还应该可以理解,本实施例中所述流入道结构311、过渡道结构312和流出道结构313的网格还可以按照其他的方式变化,例如流入道结构311、过渡道结构312和流出道结构313的网格的大小均相等或者不相等。
所述过渡道结构312上设置有多个缝合环314,所述瓣叶210缝合在所述缝合环314位置。所述缝合环314优选沿着瓣膜支架300的轴向均匀分布。优选的,所述过渡道结构312上设置有三个缝合环314。
所述流入道结构311上缝合有裙边220。所述裙边220的材料可选用有密封效果的医用材料,缝合方式采用现有缝合技术。
参考图3,所述流出道结构313远离所述过渡道结构312的一端向所述流出道结构313的内侧弯折。具体来说,流出道结构313自与过渡道结构312相连接处,沿着远离支架主体310的中心轴线的方向延伸,而在流出道结构313的最大外径处,再沿着靠近支架主体310的中心轴线的方向延伸。
本实施例中,可通过模具的形状约束固定耳320,使固定耳320整体向支架主体310的内侧倾斜。所述固定耳320向所述支架主体310的内侧弯折的角度为固定耳320与瓣膜支架300的中心轴线的平行线之间的夹角,例如,参考图3,所述固定耳320与所述瓣膜支架300的中心轴线的平行线之间的夹角为第一夹角δ1。固定耳320向所述支架主体310的内侧弯折的角度为10°到45°。实验研究表明,固定耳320向所述支架主体310的内侧弯折的角度超过45°时,瓣膜假体100的装载将会变得非常困难,而固定耳320向所述支架主体310的内侧弯折的角度小于10°时,固定耳320向支架主体310内侧弯折将不能起到较好有的效果,所以本实施例中多个所述固定耳320向所述支架主体310的内侧弯折的角度优选在10°~45°之间。
具体的,参考图1至图3,所述流出道结构313远离所述过渡道结构312的一端设置有两个关于瓣膜支架300的中心轴线对称的固定耳320。在其他的实施例中所述固定耳320的数量可为三个、四个或者五个。所述固定耳320的数量优选为两个到四个。多个所述固定耳320优选沿支架主体310的周向均匀设置。例如,当所述固定耳320的数量为两个时,两个固定耳320之间间隔180°,当所述固定耳320的数量为三个时,两个相邻的固定耳320之间间隔120°。当然,在其它的实施例中,多个所述固定耳320也可以沿支架主体310的周向非均匀设置。多个所述固定耳320的形状优选相同。
具体的,参考图4,图4是本发明一种实施例中的瓣膜假体的局部放大示意图,本实施例中,所述固定耳320包括固定部321和连接杆322。所述连接杆322作为所述固定耳320的第一弯折段,所述固定部321作为所述固定耳320的第二弯折段。所述连接杆322的一端与所述支架主体310连接,所述连 接杆322的另一端与所述固定部321连接。所述第一连接端320a为所述连接杆322与所述支架主体310连接的一端。所述固定部321远离所述连接杆322的一端为所述固定耳320的自由端。所述固定部321优选呈扁平状。具体的,参考图1、图2、图3和图4,所述第一连接端320a优选与所述流出道结构313上的网格的顶端相连,所述固定部321的周围采用光滑圆角过渡,所述连接杆322为杆状,整体宽度较固定部321小。
优选的,所述第一弯折段向所述支架主体310的内侧弯折的角度范围为10°到45°,所述第二弯折段向所述支架主体310的内侧弯折的角度范围为5°到40°。更优的,所述第二弯折段向所述支架主体310的内侧弯折的角度范围为15°到30°。
所述固定耳320的长度优选在1mm~6mm之间。进一步的,所述固定耳320的长度在3mm~5mm之间,在该长度范围内的固定耳320有利于固定耳320弯折角度的实现从而达到更好的装载效果。
本实施例中,所述固定耳320和支架主体310一体制造。例如,可在形状记忆合金(一般为镍钛合金)管材上切割出网管状支架主体310和固定耳320,然后通过模具定型。当然,在其他的实施例中,所述固定耳320和所述支架主体310还可单独制造,然后将所述支架主体310与所述固定耳320通过焊接或者缝合等方式固定连接。
本实施例中的瓣膜假体100可通过输送装置植入人体,在进行植入手术之前,通常需要将瓣膜假体100装载到输送装置中。参考图5,图5是本发明一种实施例中的输送装置的结构示意图,所述输送装置400包括鞘管410、内管420、固定头430和导引管440。所述鞘管410用于收纳瓣膜假体100。所述内管420设置在所述鞘管410内。所述固定头430套设在所述内管420上,且所述固定头430与所述内管420固定连接。所述固定头430用于限定所述瓣膜假体100的固定耳320相对于所述内管420的位置。所述固定头430和所述内管420可沿着所述鞘管410移动。所述导引管440设置在所述鞘管410外,所述导引管440用于将所述瓣膜假体100的固定耳320夹紧在所述固定头430上。
参考图5和图6,图6是本发明一种实施例中的瓣膜假体的固定耳设置在固定头上的结构示意图,所述内管420由第一管体421和第二管体422组成。在图5和图6中,固定头430安装在第一管体421上。
所述固定头430优选位于内管420的中间位置处,即设置在所述第一管体421和所述第二管体422相连接的地方,参考图5和图6,本实施例中,第一管体421的外径优选小于第二管体422的外径。第一管体421的材质优选相对于第二管体422柔软。
所述固定头430的外周面上开设有至少两个凹槽431,多个凹槽431优选均匀分布在所述固定头430的外周面上。
参考图7,图7是本发明一种实施例中的固定头的局部放大示意图,每个所述凹槽431可容纳一个固定耳320的固定部321。所述凹槽431具有一底部432,所述凹槽431的底部432的形状与所述固定部321的形状相匹配。例如,所述凹槽431的底部432为第一曲面,所述固定耳320的固定部321的内侧为第二曲面,所述第一曲面与所述第二曲面至少有部分可以重叠,进而可使所述第一曲面与所述第二曲面贴合。
优选的,所述凹槽431的深度大于所述固定耳320的厚度0~0.4mm。
参考图6和图7,所述固定头430远离所述第二管体422的一端的外部轮廓大于第一管体421的外径,因此形成一凸出于第一管体421外表面的凸起面,瓣膜假体100装载到固定头430上时,流出道结构313远离过渡道结构312的一端可与所述凸起面相抵,从而可避免瓣膜假体100相对内管420移动,以便于瓣膜假体100装载到鞘管410中。
如图5和图6所示,所述导引管440的内表面441为锥面。所述导引管440具有第一端442和第二端443。所述第一端442位于所述导引管440的内表面441的大直径端,所述第二端443位于导引管440的内表面441的小直径端。所述导引管440将所述瓣膜假体100的固定耳320夹紧在所述固定头430上时,所述导引管440套设在所述内管420上,瓣膜假体100的固定耳320穿过所述导引管440的内表面441的小直径端,在所述导引管440的内表面441的作用下收拢。
本实施例中,所述瓣膜假体100装载到输送装置400的鞘管410中的过程如下:
首先,将瓣膜假体100放入冰水中,将导引管440套在瓣膜假体100上,使瓣膜假体100的固定耳320在导引管440的作用下收拢。
其次,将内管420从瓣膜假体100具有固定耳320的一侧穿入瓣膜假体100和导引管440,使瓣膜假体100和导引管440套设在内管420上。
再次,调整瓣膜假体100和导引管440的位置,使瓣膜假体100的固定耳320与固定头430上的凹槽431的位置一一对应,之后使导引管440向靠近鞘管410的方向移动,从而使固定耳320进一步收拢,所述导引管440的移动方向可参考图6中的第一箭头J1所示的方向水平相反的方向,直至固定耳320被夹紧在固定头430的凹槽431中,此时瓣膜假体100的固定耳320刚好接触固定头430的凹槽431的底部432。在这一过程中,还可先将瓣膜假体100的流出道结构313远离过渡道结构312的一端与固定头430的所述凸起面相抵,再通过旋转导引管440和瓣膜假体100的方式调整固定耳320的位置。
之后,使鞘管410向靠近导引管440的一侧移动,逐渐把瓣膜假体100收入鞘管410内,所述鞘管410的移动方向可参考图6中的第一箭头J1所示的方向。
在将瓣膜假体100装载到鞘管410内的过程中,由于固定耳320向支架主体310的内侧弯折,可降低收拢固定耳320并使固定耳320固定在输送装置400中的难度,从而可节省瓣膜支架300的装载时间,即可提高瓣膜支架300的装载效率。
相较于现有技术中的瓣膜假体100的固定耳320均是竖直向上的结构,本实施例中的瓣膜假体100的装载难度可以大大降低装载。如果固定耳320是竖直向上设计,参考图8和图9,图8是现有技术中的瓣膜假体装载时的结构示意图,图9是本发明一种实施例中的瓣膜假体装载时的结构示意图,当瓣膜假体压缩到同样的位置时,现有技术中的瓣膜假体的两个固定耳沿着瓣膜假体的轴向延伸,固定耳无法进入鞘管,必须再进一步压缩瓣膜假体,才 能使固定耳进一步靠近固定头中的凹槽,在这一过程中,固定耳从第一位置W1移动到第二位置W2,固定耳的内侧和凹槽的底部完全贴合,此时整个瓣膜假体被压缩到小于等于鞘管的内径的大小,这在实际装载时非常难以达到,而本实施例中固定耳已经靠近固定头中的凹槽,或者已可与固定头中的凹槽相贴合。因此,本实施例中,瓣膜假体100的装载难度可以大大降低,装载效率可大大提高。
本实施例中,瓣膜假体100具有释放状态和压握状态。在释放状态下,所述瓣膜假体100张开成类似花瓣形状。在植入过程中,通过输送装置400把瓣膜假体100压缩到内径非常小的鞘管410内,然后通过动脉或心尖入路植入,到达主动脉根部位置时释放瓣膜假体100,此时瓣膜假体100张开扩大,假体瓣叶210撑开,瓣膜假体100开始工作。
具体的,参考图10,图10是本发明一种实施例中的瓣膜假体植入主动脉后的示意图,在植入过程中,当把瓣膜假体100装载进鞘管410后,瓣膜假体100就可以通过输送装置400到达主动脉D的根部的位置,即第三位置W3。当瓣膜假体100的位置确定合适后,可释放瓣膜假体100。随着瓣膜假体100的释放过程的进行,这个瓣膜假体100逐渐打开,完全释放后,瓣膜假体100的流出道结构313便会位于升主动脉D的位置,即第四位置W4,可参考图10。
当瓣膜假体100植入主动脉D根部时,瓣膜假体100的流出道结构313位于升主动脉D,由于主动脉D有很大的弹性,瓣膜假体100中最大外径较大的流出道结构313会把主动脉D撑开,由于瓣膜假体100的固定耳320的体积比瓣膜假体100的其他的网格尖端更大更长,如果固定耳竖直向上,即固定耳沿着平行于支架主体的中心轴的方向延伸,那么固定耳极易刺破或刺伤升主动脉D的管壁,造成严重的并发症,因此,通过使固定耳320向支架主体310的内侧弯折可降低固定耳320刺破升主动脉D的管壁的风险。参考图11,图11是图10中所示的瓣膜假体植入主动脉后的示意图中A处的局部放大示意图,向支架主体310内侧弯折的固定耳320和升主动脉D的管壁有一定的距离,可以有效避免固定耳320对主动脉D的管壁的损伤。
当瓣膜假体100植入主动脉D后,常常会出现释放位置不理想的情况。若瓣膜假体100植入主动脉D后的位置不理想,容易导致主动脉D较大的返流,须再次植入一个瓣膜假体100,即形成瓣中瓣。在瓣中瓣中,第二次植入的瓣膜假体100主要通过其流出道结构313提供的支撑力进行定位。
参考图12、图13、图14和图15,图12是本发明一种实施例中在主动脉中植入两个瓣膜假体时的一种结构示意图,其中一个瓣膜假体已完成植入,另一个正在植入过程中,图13是本发明一种实施例中在主动脉中植入两个瓣膜假体时的另一种结构示意图,其中两个瓣膜假体都已完成植入。图14是图13中在主动脉中植入两个瓣膜假体时两个瓣膜假体B处在第一种状态下的局部结构示意图,图15是图13中在主动脉中植入有两个瓣膜假体时两个瓣膜假体B处在第二种状态下的局部结构示意图。本实施例中的瓣膜假体500和600的整体结构可以是上述实施例中的瓣膜假体100的任一种形式,此处不再赘述。
第二个瓣膜假体600位于第一个瓣膜假体500中,且第二个瓣膜假体600后于第一个瓣膜假体500植入主动脉D中。当第二个瓣膜假体600输送到主动脉D根部时,参考图12,第二个瓣膜假体600并未释放。根据显影仪器显示的两个瓣膜假体的图像信息可调整第二个瓣膜假体600相对于第一个瓣膜假体500的位置,以使第二个瓣膜假体600相对于主动脉D和第一个瓣膜假体500的位置适中。同时,可旋转鞘管410,使第二个瓣膜假体600的固定耳320和第一个瓣膜假体500的固定耳320错开一定的角度,所述角度优选为30°。随后,释放第二个瓣膜假体600。
由于固定耳320向支架主体310的内侧弯折,因此第二个瓣膜假体600完全释放后,两个瓣膜假体100(即第一个瓣膜假体500和第二个瓣膜假体600)的相对位置至少存在如下两种状态。参考图14,此时第二个瓣膜假体600为高位植入,两个瓣膜假体100的相对位置处于第一种状态,即第一个瓣膜假体500的固定耳320嵌在第二个瓣膜假体600的一个节点P的下侧,也就是说第一个瓣膜假体500的固定耳320嵌在了第二个瓣膜假体600的一个节点P靠近流入道结构311的一侧。并且,第一个瓣膜假体500的固定耳320 由于向支架主体310的内侧弯折,因此可限制第二个瓣膜假体600向远离主动脉D的方向窜动,所述第二个瓣膜假体600向远离主动脉D的方向窜动的方向可参考图14中的第二箭头J2。
参考图15,此时第二个瓣膜假体600为低位植入,两个瓣膜假体100的相对位置处于第二种状态,即第一个瓣膜假体500的固定耳320嵌在第二个瓣膜假体600的一个节点P的上侧,也就是说第一个瓣膜假体500的固定耳320嵌在了第二个瓣膜假体600的一个节点P远离流入道结构311的一侧。并且,第一个瓣膜假体500的固定耳320由于向支架主体310的内侧弯折,因此可限制第二个瓣膜假体600向靠近主动脉D的方向窜动,所述第二个瓣膜假体600向靠近主动脉D的方向窜动的方向可参考图15中的第三箭头J3。
由上可知,瓣膜假体100的固定耳320向支架主体310的内侧弯折限制了在瓣中瓣条件下,第二个瓣膜假体600沿着瓣膜假体100的轴向移动的自由度,可有效降低瓣膜假体100移位的风险。
实施例二
基于上述实施例,申请人还提出了一种瓣膜假体,所述瓣膜假体与上述实施例中的瓣膜假体大致相同,区别在于固定耳的形状和结构,此处对于相同之处不再赘述,主要介绍固定耳的结构。
参考图16和图17,图16是本发明又一种实施例中的瓣膜假体的主视图,图17是本发明又一种实施例中的固定耳的局部放大示意图,本实施例中的固定耳同样包括了连接杆和固定部,但不同的是,本实施例中,所述固定耳向所述支架主体内侧弯折的角度在各段可各不相同。
本实施例中,连接杆322也可以是弧形杆,固定部321沿着靠近支架主体310中心轴线的方向延伸的角度小于连接杆322的两个端部之间的连线与支架主体310中心轴线的平行线之间的夹角,即固定部321向支架主体310的内侧弯折的角度小于连接杆322向所述支架主体310的内侧弯折的角度。其中,如图17所示所述固定部321向所述支架主体310的内侧弯折的角度为第二夹角δ2,连接杆322的向所述支架主体310的内侧弯折的角度为第三夹角δ3。
如果固定耳320所有部分都是以同一角度向所述支架主体310的内侧弯折,装载时瓣膜假体被压缩,固定耳320只有固定部321的端部那一部分和固定头430的凹槽431贴合,本领域技术人员应该可以理解,此时,对固定耳而言,单个固定耳320的固定部321与凹槽431的接触面较小。因此,在将瓣膜假体进一步装载到鞘管410中时,固定耳320的固定部321容易从凹槽431中滑脱。而当固定耳320的固定部321沿着靠近支架主体310的中心轴线的方向延伸的角度小于连接杆322的两个端部之间的连线与支架主体310中心轴线的方向之间的夹角时,即固定部321向支架主体310的内侧弯折的角度小于连接杆322的两个端部之间的连线与支架主体310中心轴线的平行线之间的夹角时,固定耳320的固定部321与凹槽431的贴合面可增大,由此,可避免固定耳320的固定部321在瓣膜假体装载到鞘管中时从凹槽431内滑脱,从而可进一步的降低装载难度,提高装载效率。
另外,若固定耳320的连接杆322和固定部321均向支架主体310的内侧弯折,将导致第一个瓣膜假体500释放后,固定耳320的最小内径变小,因此当第二个瓣膜假体600植入时,固定耳320容易与第二个瓣膜假体600或者与输送第二个瓣膜假体600的输送装置发生干涉,从而在植入第二个瓣膜假体600的过程中,容易导致第一个瓣膜假体500移位而出现传导阻滞、返流等并发症。因此,参考图18,图18是本发明又一种实施例中在主动脉中植入两个瓣膜假体时的结构示意图,若采用本实施例中的瓣膜假体,由于固定部321向支架主体310的内侧弯折的角度小于连接杆322的两个端部之间的连线与支架主体310中心轴线的平行线之间的夹角,因此可避免两个固定耳320远离瓣膜假体的流入道结构的一端的过分靠近,从而可避免第一个瓣膜假体500的固定耳与第二个瓣膜假体600或者与输送第二个瓣膜假体600的输送装置发生干涉。
当然,在其它的实施例中,固定部321向所述支架主体310的内侧弯折的角度还可大于或者等于所述连接杆322向所述支架主体310的内侧弯折的角度。
本实施例中,所述连接杆包括第一连接段324和第二连接段325。所述第 一连接段324的一端与所述支架主体310连接,所述第一连接段324的另一端与所述第二连接段325的一端连接,所述第一连接段324与所述支架主体310连接的一端为第一连接端320a。所述第二连接段325的另一端与所述固定部连接。
所述第一连接段324形成了固定耳320的第一弯折段,所述第二连接段325形成了固定耳320的第二弯折段,所述第一连接段324和所述第二连接段325向所述支架主体310的内侧弯折的角度可相同或者不相同。例如,所述第二连接段325向所述支架主体310的内侧弯折的角度大于所述第一连接段324向所述支架主体310的内侧弯折的角度,或者所述第二连接段325向所述支架主体310的内侧弯折的角度小于所述第一连接段324向所述支架主体310的内侧弯折的角度。
如图16和图17所示,优选的,所述第二连接段325和所述固定部321共同形成了固定耳的第二弯折段,也即所述第一连接段324向所述支架主体310的内侧弯折的角度大于所述第二连接段325向所述支架主体310的内侧弯折的角度,并且所述第二连接段325向所述支架主体310的内侧弯折的角度与所述固定部321向所述支架主体310的内侧弯折的角度相等,即所述固定耳320在所述第一连接段324和所述第二连接段325的连接处发生了弯折,且使得第二连接段325和固定部321向远离所述支架主体310中心轴线的方向弯折了一预定角度。
优选的,所述第一弯折段向所述支架主体310的内侧弯折的角度范围为10°到45°,所述第二弯折段向所述支架主体310的内侧弯折的角度范围为5°到40°。更优的,所述第二弯折段向所述支架主体310的内侧弯折的角度范围为15°到30°。
实施例三
本实施例提供一种瓣膜假体。参考图19,图19是本发明另一种实施例中的瓣膜假体的主视图,本实施例中的瓣膜假体100与实施例一中的瓣膜假体100的主要区别在于,本实施例中,所述瓣膜假体100的多个固定耳320可通过编织的方式制成。
优选的,本实施例中多个固定耳320可采用多层编织的方式制成。
本实施例中,由于多个所述固定耳320采用编织的方式制成,相较于其它方式制成的固定耳320柔软,如比由切割的方式制成的固定耳320柔软,当所述固定耳320和主动脉D的管壁接触时,固定耳320会很轻易地被挤压,从而使固定耳320向支架主体310的内侧弯曲而不损伤主动脉D的管壁,因此可降低固定耳320刺破主动脉D的管壁的风险。
此外,由于采用多层编织的方式制成的固定耳320的厚度较采用切割的方式制成的固定耳320的厚度大,因此,可方便固定耳320与输送装置400固定,从而便于将瓣膜假体100装载到输送装置400中。另外,由于多层编织的瓣膜假体100相对柔软,因此可降低瓣膜假体100在装载到鞘管410中时,收拢固定耳320并将固定耳320固定在输送装置400中的难度,从而可节省瓣膜支架300的装载时间,即可提高瓣膜支架300的装载效率。
参考图19,本实施例中,所述瓣膜假体100的支架主体310和固定耳320均采用编织的方式制成。其中,多个固定耳320可以和支架主体310整体编织,也可以单独编织然后焊接到支架主体310上。在其他的实施例中,瓣膜假体100的支架主体310可通过其他的方式成型。
本实施例中,可通过模具定型的方式使多个固定耳320向支架主体310的内侧弯折。
如图19所示,所述固定耳320的形状为L型,即固定耳320先沿着支架主体310的径向向支架主体310的内侧延伸,之后沿着支架主体310的轴向向远离所述流出道结构313的方向延伸。
本实施例与实施例一的区别在于,本实施例中,多个所述固定耳320可平行于支架主体310的轴向向远离所述流出道结构313的方向延伸。
实施例四
本实施例提供一种瓣膜假体。本实施例中的瓣膜假体与实施例一中的瓣膜假体的主要区别在于,本实施例中,所述瓣膜假体的多个固定耳可通过切割的方式制成,而支架主体通过编织的方式制成。
实施例五
本实施例提供一种瓣膜假体。参考图20和图21,图20是本发明再一种实施例中的瓣膜假体的主视图,图21是本发明再一种实施例中的瓣膜假体的固定耳的局部放大示意图,本实施例中的瓣膜假体与实施例一中的瓣膜假体的主要区别在于,本实施例中,所述瓣膜假体100的多个固定耳320可通过编织的方式制成。
参考图20和图21,本实施例中,所述固定耳320具有一通孔323。所述通孔323优选位于所述固定耳320的固定部321的中心处。所述固定耳320的厚度优选大于所述支架主体310的厚度。
本实施例中,参考图22,图22是本发明再一种实施例中的输送装置的局部放大示意图,可在输送装置400的固定头430的凹槽431的底部432设置一凸台433。所述凸台433优选与固定耳320的通孔323相匹配。瓣膜假体100装载到输送装置400中时,在瓣膜假体100稍微收拢的情况下,即在固定耳320收拢的情况下,固定耳320的内孔便可挂到固定头430的凹槽431的底部432的凸台433上,因此,使瓣膜假体100的固定耳320稍微压缩便可使固定耳320与固定头430的凹槽431的底部432相接触,从而便于将固定耳320装载到鞘管410中。
本发明提供的一种瓣膜支架、瓣膜假体和输送装置通过使固定耳向支架主体的内侧弯折可实现如下效果:
首先,在将瓣膜假体装载到输送装置的鞘管内的过程中,由于固定耳向支架主体的内侧弯折,可降低收拢固定耳并使固定耳固定在输送装置中的难度,从而可节省瓣膜支架的装载时间,即可提高瓣膜假体的装载效率。
其次,由于多个所述固定耳向支架主体的内侧弯折的角度大于所述流出道结构远离所述过渡道结构的一端向所述流出道结构的内侧弯折的角度,因此,可进一步降低瓣膜假体在装载到鞘管中时,收拢固定耳并将固定耳固定在输送装置中的难度,从而可进一步节省瓣膜支架的装载时间,即可提高瓣膜假体的装载效率。
其次,通过使固定耳向支架主体的内侧弯折可降低固定耳刺破升主动脉的管壁的风险。
再次,瓣膜假体的固定耳向支架主体的内侧弯折限制了在瓣中瓣条件下,第二个瓣膜假体沿着瓣膜假体的轴向移动的自由度,可有效降低瓣膜假体移位的风险。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (17)

  1. 一种瓣膜支架,其特征在于,包括:
    支架主体,所述支架主体呈网管状;以及
    至少两个固定耳,每个所述固定耳均与所述支架主体连接且均向所述支架主体的内侧弯折。
  2. 如权利要求1所述的瓣膜支架,其特征在于,每个所述固定耳包括第一弯折段和第二弯折段,所述第一弯折段向所述支架主体的内侧弯折的角度大于所述第二弯折段向所述支架主体的内侧弯折的角度,在所述支架主体的轴向上,所述第一弯折段相较于所述第二弯折段更靠近所述支架主体。
  3. 如权利要求2所述的瓣膜支架,其特征在于,所述第一弯折段向所述支架主体的内侧弯折的角度范围为10°到45°,所述第二弯折段向所述支架主体的内侧弯折的角度范围为5°到40°。
  4. 如权利要求3所述的瓣膜支架,其特征在于,所述第二弯折段向所述支架主体的内侧弯折的角度范围为15°到30°。
  5. 如权利要求2所述的瓣膜支架,其特征在于,所述第一弯折段包括连接杆,所述第二弯折段包括固定部,所述连接杆的一端与所述支架主体连接,所述连接杆的另一端与所述固定部连接,所述固定部远离所述连接杆的一端为自由端。
  6. 如权利要求2所述的瓣膜支架,其特征在于,所述第一弯折段包括第一连接段,所述第二弯折段包括固定部及与所述固定部连接的第二连接段,所述第二连接段与所述第一连接段的一端相连,所述第一连接段的另一端与所述支架主体连接,所述固定部远离所述第二连接段的一端为自由端。
  7. 如权利要求1至6任一项所述的瓣膜支架,其特征在于,所述至少两个固定耳的形状相同且沿支架主体的周向均匀设置。
  8. 如权利要求1至6任一项所述的瓣膜支架,其特征在于,每个所述固定耳的所述固定部均具有通孔。
  9. 如权利要求1至6任一项所述的瓣膜支架,其特征在于,所述固定耳 的长度在1mm~6mm之间。
  10. 如权利要求9所述的瓣膜支架,其特征在于,所述固定耳的长度在3mm~5mm之间。
  11. 如权利要求1至6任一项所述的瓣膜支架,其特征在于,所述固定耳通过切割或者编织的方式制造。
  12. 一种瓣膜假体,其特征在于,包括人造瓣膜和如权利要求1至11任一项所述的瓣膜支架,所述人造瓣膜固定在所述瓣膜支架上。
  13. 一种输送装置,其特征在于,所述输送装置用于输送如权利要求12所述的瓣膜假体,所述输送装置包括:
    鞘管,所述鞘管用于收纳瓣膜假体;
    内管,所述内管设置在所述鞘管内;以及
    固定头,所述固定头套设在所述内管上,且所述固定头与所述内管固定连接,所述固定头用于限定所述瓣膜假体的固定耳相对于所述内管的位置。
  14. 如权利要求13所述的输送装置,其特征在于,还包括导引管,所述导引管设置在所述鞘管外,所述导引管的内表面为锥面,所述导引管可套设在所述内管上,所述导引管用于将所述瓣膜假体的固定耳夹紧在所述固定头上。
  15. 如权利要求13所述的输送装置,其特征在于,所述固定头的外周面上开设有多个凹槽,多个所述凹槽均匀分布在所述固定头的外周面上,每个所述凹槽用于容纳一个所述固定耳的固定部。
  16. 如权利要求13所述的输送装置,其特征在于,所述凹槽具有一底部,所述凹槽的底部的形状与所述固定部的形状相匹配。
  17. 如权利要求16所述的输送装置,其特征在于,所述凹槽的底部设置有一凸台,所述凸台与设置在所述瓣膜假体的所述固定耳的固定部上的通孔相匹配。
PCT/CN2018/114215 2017-11-17 2018-11-06 瓣膜支架、瓣膜假体和输送装置 WO2019096033A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18877449.1A EP3711716B1 (en) 2017-11-17 2018-11-06 Valve stent, valve prosthesis and delivery device
ES18877449T ES2968281T3 (es) 2017-11-17 2018-11-06 Stent valvular, prótesis valvular y dispositivo de colocación

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148589.XA CN109793596A (zh) 2017-11-17 2017-11-17 瓣膜支架、瓣膜假体和输送装置
CN201711148589.X 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019096033A1 true WO2019096033A1 (zh) 2019-05-23

Family

ID=66538502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114215 WO2019096033A1 (zh) 2017-11-17 2018-11-06 瓣膜支架、瓣膜假体和输送装置

Country Status (4)

Country Link
EP (1) EP3711716B1 (zh)
CN (1) CN109793596A (zh)
ES (1) ES2968281T3 (zh)
WO (1) WO2019096033A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US11166814B2 (en) 2019-08-20 2021-11-09 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11298227B2 (en) 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113662716A (zh) * 2021-09-27 2021-11-19 广东脉搏医疗科技有限公司 一种植入三尖瓣膜装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149462A2 (en) 2008-06-06 2009-12-10 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US20110172765A1 (en) 2005-05-13 2011-07-14 Medtronic Corevalve Llc Heart Valve Prosthesis and Methods of Manufacture and Use
US20120022633A1 (en) * 2010-07-23 2012-01-26 Christopher Olson Retaining mechanisms for prosthetic valves
CN102413793A (zh) * 2009-02-25 2012-04-11 耶拿阀门科技公司 用于瓣膜假体在病人心脏中的植入部位的定位和锚定的支架
US8317858B2 (en) * 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
CN103190968A (zh) * 2013-03-18 2013-07-10 杭州启明医疗器械有限公司 一种支架以及具有该支架的安装稳固的人造瓣膜置换装置
CN105792780A (zh) * 2013-11-22 2016-07-20 爱德华兹生命科学公司 主动脉瓣闭锁不全修复设备及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961269B (zh) * 2010-04-19 2012-09-05 杭州启明医疗器械有限公司 用于输送人造瓣膜置换装置的输送装置
CN106073946B (zh) * 2010-09-10 2022-01-04 西美蒂斯股份公司 瓣膜置换装置、用于瓣膜置换装置的递送装置以及瓣膜置换装置的生产方法
CN104000672B (zh) * 2013-02-25 2016-06-15 上海微创心通医疗科技有限公司 心脏瓣膜假体
CN106562840B (zh) * 2013-10-31 2018-06-22 上海微创心通医疗科技有限公司 一种将植入体装载到输送系统中的导引盖和装载系统
CA3041455A1 (en) * 2016-10-19 2018-05-03 Piotr Chodor Stent of aortic valve implanted transcatheterly
CN208910583U (zh) * 2017-11-17 2019-05-31 上海微创心通医疗科技有限公司 瓣膜支架、瓣膜假体和输送装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110172765A1 (en) 2005-05-13 2011-07-14 Medtronic Corevalve Llc Heart Valve Prosthesis and Methods of Manufacture and Use
US8317858B2 (en) * 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
WO2009149462A2 (en) 2008-06-06 2009-12-10 Edwards Lifesciences Corporation Low profile transcatheter heart valve
CN102413793A (zh) * 2009-02-25 2012-04-11 耶拿阀门科技公司 用于瓣膜假体在病人心脏中的植入部位的定位和锚定的支架
US20120022633A1 (en) * 2010-07-23 2012-01-26 Christopher Olson Retaining mechanisms for prosthetic valves
CN103190968A (zh) * 2013-03-18 2013-07-10 杭州启明医疗器械有限公司 一种支架以及具有该支架的安装稳固的人造瓣膜置换装置
CN105792780A (zh) * 2013-11-22 2016-07-20 爱德华兹生命科学公司 主动脉瓣闭锁不全修复设备及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3711716A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11298227B2 (en) 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11179239B2 (en) 2019-08-20 2021-11-23 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11166814B2 (en) 2019-08-20 2021-11-09 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11331186B2 (en) 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery

Also Published As

Publication number Publication date
EP3711716B1 (en) 2024-01-03
EP3711716A1 (en) 2020-09-23
EP3711716A4 (en) 2021-01-06
CN109793596A (zh) 2019-05-24
EP3711716C0 (en) 2024-01-03
ES2968281T3 (es) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2019096033A1 (zh) 瓣膜支架、瓣膜假体和输送装置
US11833038B2 (en) Valve prosthesis and method for delivery
US20220280288A1 (en) Heart valve prosthesis anchored to interventricular septum and conveying and releasing method thereof
US20200138566A1 (en) Intra-annular mounting frame for aortic valve repair
WO2018192197A1 (zh) 主动脉瓣膜装置
WO2018077146A1 (zh) 一种非对称的心脏瓣膜假体
CN104274259B (zh) 一种带瓣叶夹持装置的人工瓣膜假体
US6231602B1 (en) Aortic annuloplasty ring
WO2018077143A1 (zh) 一种心脏瓣膜假体
JP5788409B2 (ja) 低侵襲性心臓弁
WO2017121194A1 (zh) 一种具有定位环的经导管输送主动脉瓣瓣膜装置
WO2014127750A1 (zh) 心脏瓣膜假体
WO2019033989A1 (zh) 心脏瓣膜假体
CN208910583U (zh) 瓣膜支架、瓣膜假体和输送装置
CA2593652A1 (en) Stent-valve and deployment catheter for use therewith
CN205307151U (zh) 一种用于穿刺置入的房室瓣瓣膜支架及其输送系统
US11395735B2 (en) Valve stent and valve prosthesis
CN106264793A (zh) 一种自适应的心脏瓣膜假体
WO2019062366A1 (zh) 心脏瓣膜假体
CN111714250A (zh) 一种心脏瓣膜支架及其假体
JP7407482B2 (ja) 構造がフィットする経カテーテル大動脈弁植え込み装置
WO2017045078A1 (en) An aortic annular support system
WO2023051493A1 (zh) 一种可与自体瓣叶锚定的心脏瓣膜假体
WO2019128583A1 (zh) 心脏瓣膜假体及其支架
WO2022267851A1 (zh) 一种用于阻止瓣膜返流的修复装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877449

Country of ref document: EP

Effective date: 20200617