WO2019095930A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2019095930A1
WO2019095930A1 PCT/CN2018/111012 CN2018111012W WO2019095930A1 WO 2019095930 A1 WO2019095930 A1 WO 2019095930A1 CN 2018111012 W CN2018111012 W CN 2018111012W WO 2019095930 A1 WO2019095930 A1 WO 2019095930A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data
source base
terminal
target base
Prior art date
Application number
PCT/CN2018/111012
Other languages
English (en)
French (fr)
Inventor
刘壮
刘旸
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020207013545A priority Critical patent/KR102335821B1/ko
Priority to EP18879455.6A priority patent/EP3713299A4/en
Priority to JP2020521357A priority patent/JP2021503731A/ja
Priority to US16/764,358 priority patent/US11477715B2/en
Publication of WO2019095930A1 publication Critical patent/WO2019095930A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to the field of communications, and in particular to a data transmission method and apparatus.
  • the 5G network architecture is innovative and flexible.
  • the base station on the radio access network side is separated into two functional entities: the centralized processing unit CU (Centralized Unit) and the distributed processing unit DU (Distributed Unit).
  • a base station contains one CU and one or more DUs.
  • the delay-insensitive network function is placed in the centralized processing unit CU, and the delay-sensitive network function is placed in the distributed processing unit DU, and the ideal or non-ideal between the CU and the DU is adopted.
  • the fronthaul is transmitted and connected.
  • FIG. 1 is a schematic diagram of a connection between a terminal and a plurality of DUs in a base station according to the related art.
  • the existing wireless networking technology supports multiple terminals in a terminal and a base station.
  • the DUs are connected, and the terminal can simultaneously transmit and receive data from two or more DUs simultaneously.
  • the PDCP and its PDCP are placed in the CU, and the entities below the RLC and its RLC are placed in the DU.
  • the downlink PDCP PDU data may be offloaded to the terminal by two or more DUs for the base station CU entity, and if a certain DU occurs during data transmission
  • the terminal service connection "outage" (outage is defined as a short-lived link quality degradation in this document), in order to reduce the data transmission delay and packet loss, the DU needs to send an outage message to the CU, wherein the outage message carries the DU continuously.
  • the maximum PDCP SN sequence number is successfully sent, and the CU receives the outage message of the DU.
  • the CU can determine, by using the “maximum PDCP SN sequence number” in the outage message, which PDCP PDUs sent to the DU have not been successfully sent by the DU. This part of the unsuccessfully sent PDCP PDU data can be sent to another DU for transmission to the terminal, thereby reducing data transmission delay and packet loss.
  • the DU may send a terminal service connection "RESUME" message to the CU to notify the CU that the terminal connection link quality has been restored, so that the CU can resume transmitting the terminal service bearer data to the CU.
  • the DU is transmitted.
  • the CU sends the data that the source DU does not successfully transmit to the target DU for retransmission, but the target DU may not recognize whether the data is retransmitted data or newly transmitted data, and the data is queued at the end of the transmission queue, thereby Lead to increased data transmission delay.
  • an anchoring base station is a base station connected to a core network, and is configured to receive terminal service bearer data delivered by a core network.
  • the split base station refers to a base station connected to the anchor base station and configured to receive the terminal service bearer data that is offloaded by the anchor base station.
  • the user terminal is connected to the anchor base station and the offload base station at the same time.
  • the existing dual-connection technology can only wait for the base station DU terminal. After the link quality is restored, the data transmission continues, and the quality of the terminal connection link is deteriorated in the base station DU, and the data that is not successfully transmitted on the base station DU is transmitted to another base station for transmission, thereby causing data transmission delay. Big or even lost.
  • the embodiment of the present disclosure provides a data transmission method and apparatus, to at least solve the related art, in a base station dual connection technology, when a certain base station adopts a CU/DU separation structure, even if the quality of the downlink data transmission link of the DU is deteriorated, The network side cannot take the initiative to make relevant adjustments, which leads to the problem of increasing data transmission delay and even packet loss.
  • a data transmission method including:
  • the source base station detects that the link quality degradation occurs due to the connection with the terminal through the distributed processing unit DU;
  • the source base station determines, by the centralized processing unit CU, the data that the DU does not successfully transmit, and sends, by the CU, the data that is not successfully transmitted by the DU to the target base station by using a downlink data frame, where the downlink data frame is used by the source eNB.
  • the target base station Transmitting, by the target base station, the unsuccessfully transmitted data to the terminal; or, the source base station transmitting, to the target base station, the source base station link quality degradation message, where the link quality degradation message Carrying a sequence number of the successfully transmitted data, the link quality degradation message is used by the target base station to determine, according to the sequence number, data that the DU is not successfully transmitted, and stop sending the offload data to the source base station and The data that the DU did not successfully transmit is transmitted to the terminal.
  • the sending, by the eNB, the data that is not successfully transmitted by the DU by using the CU to the target base station by using the downlink data frame includes:
  • the source base station sends the downlink data frame to the target base station by using an interface between the source base station and the target base station, where the downlink data frame carries data that the DU does not successfully transmit.
  • the method further includes:
  • the source base station stops transmitting data to the DU, and transmits data received from the core network to the target base station, and transmits the data to the terminal by the target base station.
  • the determining, by the eNB, the data that the DU does not successfully transmit by using the CU includes:
  • the source base station sends a link quality degradation message to the CU by using the DU, where the link quality degradation message carries a sequence number of the successfully transmitted data of the DU;
  • the source base station determines, by the CU, data that the DU does not successfully transmit according to the sequence number.
  • the method further includes:
  • the source base station detects that the connection link with the terminal returns to normal through the DU;
  • the source base station resumes sending data of the terminal service bearer to the DU by using the CU.
  • the method further includes:
  • the source base station starts a timer by using the CU, and after receiving the recovery message from the DU before the timer expires, clearing the timer;
  • the recovery message from the DU is not received, and the service connection of the terminal is released.
  • the method further includes:
  • the source base station detects that the connection link with the terminal returns to normal through the DU;
  • the source base station sends the recovery message to the target base station by using the CU, where the recovery message is used by the target base station to resume sending the offload data to the source base station.
  • the downlink data frame carries a retransmission data indication, where the retransmission data indication is used to indicate that the target base station identifies retransmission data and prioritizes processing.
  • a data transmission method including:
  • the target base station receives data that is not successfully transmitted by the distributed processing unit DU that is sent by the source base station through the downlink data frame, where the downlink data frame is sent by the source base station through the centralized processing unit CU, and the DU is not successfully transmitted.
  • the data is determined by the CU when the source base station detects that the connection with the terminal is degraded by the CU, and transmits the unsuccessfully transmitted data carried in the downlink data frame to the terminal; or ,
  • the target base station receives the source base station link quality degradation message sent by the source base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and determines the DU according to the sequence number.
  • the unsuccessfully transmitted data stops transmitting the offloaded data to the source base station and transmits the unsuccessfully transmitted data of the DU to the terminal.
  • the method further includes:
  • the target base station receives data received by the source base station and received from the core network;
  • the target base station transmits the data to the terminal.
  • the method further includes:
  • the downlink data frame further carries a retransmission data indication, where the target base station indicates, by using the retransmission data indication, that the data is retransmitted data;
  • the method further include:
  • the target base station resumes transmitting the offloaded data to the source base station according to the recovery message.
  • a data transmission apparatus which is applied to a source base station, and includes:
  • a detecting module configured to detect, by the distributed processing unit DU, that a link quality degradation occurs in connection with the terminal;
  • a first sending module configured to determine, by the centralized processing unit CU, data that is not successfully transmitted by the DU, and send, by the CU, data that is not successfully transmitted by the DU to a target base station by using a downlink data frame, where the downlink is a data frame is used by the target base station to transmit the unsuccessfully transmitted data to the terminal;
  • a second sending module configured to send the source base station link quality degradation message to the target base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and the link quality degradation message And determining, by the target base station, the data that the DU is not successfully transmitted according to the sequence number, stopping transmitting the offloaded data to the source base station, and transmitting the data that the DU is not successfully transmitted to the terminal.
  • a data transmission apparatus which is applied to a target base station, and includes:
  • a first receiving module configured to receive data that is not successfully transmitted by the distributed processing unit DU that is sent by the source base station through the downlink data frame, where the downlink data frame is sent by the source base station by using a centralized processing unit CU,
  • the unsuccessfully transmitted data of the DU is determined by the CU by the eNB, and the unsuccessfully transmitted data carried in the downlink data frame is transmitted to the source base station by using the CU to detect that the link quality of the connection with the terminal is decreased.
  • a second receiving module configured to receive the source base station link quality degradation message sent by the source base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and is determined according to the sequence number
  • the data that the DU does not successfully transmit stops transmitting the offloaded data to the source base station and transmits the data that the DU fails to successfully transmit to the terminal.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the source base station detects that the connection with the terminal has a link quality degradation through the distributed processing unit DU; the source base station determines, by the centralized processing unit CU, the data that the DU is not successfully transmitted; The CU sends the unsuccessfully transmitted data of the DU to the target base station through the downlink data frame, and the unsuccessfully transmitted data is transmitted to the terminal by the target base station, or the target base station receives the link quality degradation of the original base station.
  • the message thus stops transmitting the offloaded data to the source base station and transmits the unsuccessfully transmitted data indicated by the maximum sequence number of the data that has been successfully transmitted in the message to the terminal, and solves the related art in the base station dual connection technology when a certain base station
  • the CU/DU separation structure is adopted, and even if the quality of the downlink data transmission link of the DU is deteriorated, the network side cannot actively take measures to perform related adjustments, thereby causing an increase in data transmission delay and even a packet loss problem. Data is retransmitted on a good quality base station, thereby reducing data transmission delay and reducing packet loss, thereby improving the user experience.
  • FIG. 1 is a schematic diagram of a connection between a terminal and a plurality of DUs under one base station according to the related art
  • FIG. 2 is a schematic diagram of a dual connection of a base station according to the related art
  • FIG. 3 is a block diagram showing a hardware structure of a mobile terminal of a data transmission method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart 1 of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a second flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a downlink data frame definition for transmitting user plane data between network elements according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a process after an DU of an anchor base station occurs outage according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a process after a DU of a shunt base station occurs outage according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram 1 of a data transmission device in accordance with an embodiment of the present disclosure.
  • FIG. 10 is a block diagram 2 of a data transmission device in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a block diagram of a hardware structure of a mobile terminal according to a data transmission method according to an embodiment of the present disclosure.
  • the mobile terminal 10 may include one or two (only one is shown in the figure).
  • the processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), a memory 104 for storing data, and a transmission device 106 for communication functions.
  • a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the data transfer method in the embodiment of the present disclosure, and the processor 102 executes various programs by running software programs and modules stored in the memory 104. Functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or two magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 4 is a flowchart 1 of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes:
  • Step S402 the source base station detects, by the distributed processing unit DU, that the link quality degradation occurs when the connection with the terminal occurs;
  • Step S404 the source base station determines, by the centralized processing unit CU, the data that the DU does not successfully transmit, and sends, by the CU, the data that is not successfully transmitted by the DU to the target base station by using a downlink data frame, where the downlink is performed.
  • a data frame is used by the target base station to transmit the unsuccessfully transmitted data to the terminal;
  • Step S406 the source base station sends the source base station link quality degradation message to the target base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and the link quality degradation message And determining, by the target base station, the data that the DU is not successfully transmitted according to the sequence number, stopping transmitting the offloaded data to the source base station, and transmitting the data that the DU is not successfully transmitted to the terminal.
  • the structure of the base station dual connection technology in the base station dual-connection technology is adopted.
  • the quality of the downlink data transmission link of the DU is deteriorated, the network side cannot take the initiative to perform related adjustment. As a result, the data transmission delay is increased or even the packet loss problem is achieved.
  • the data transmission delay and packet loss are reduced, and the user experience is improved.
  • the sending, by the eNB, the data that is not successfully transmitted by the DU by using the CU to the target base station by using the downlink data frame includes: the source base station adopts an interface between the source base station and the target base station The downlink data frame is sent to the target base station, where the downlink data frame carries data that the DU does not successfully transmit.
  • the method further includes: stopping, by the source base station, sending data to the DU, And transmitting data received from the core network to the target base station, and transmitting the data to the terminal by the target base station.
  • the determining, by the eNB, the data that the DU fails to transmit by using the CU includes: sending, by the source base station, a link quality degradation message to the CU by using a DU, where the link quality degradation message is used. Carrying a sequence number for successfully transmitting data by the DU; the source base station determines, by the CU, data that the DU does not successfully transmit according to the sequence number.
  • the method further includes: the source base station detects, by using the DU, that a connection link with the terminal returns to normal; and the source base station sends a link back to the CU through the DU to resume normal recovery.
  • the source base station resumes sending data of the terminal service bearer to the DU by using the CU.
  • the method further includes: the source base station starting a timer by using the CU, before the timer expires, After receiving the recovery message from the DU, the timer is cleared; when the timer expires, the recovery message from the DU is not received, and the service connection of the terminal is released.
  • the method further includes: the source base station detects, by using the DU, that the connection link with the terminal returns to normal. Transmitting, by the source base station, a recovery message to the CU by using the DU to restore a normal recovery message; the source base station sends the recovery message to the target base station by using the CU, where the recovery message is used by the source station The target base station resumes transmitting the offload data to the source base station.
  • the downlink data frame carries a retransmission data indication, where the retransmission data indication is used to indicate that the target base station identifies retransmission data and prioritizes processing.
  • FIG. 5 is a second flowchart of a data transmission method according to an embodiment of the present disclosure. As shown in FIG. 5, the method includes:
  • Step S502 The target base station receives data that is not successfully transmitted by the distributed processing unit DU that is sent by the source base station through the downlink data frame, where the downlink data frame is sent by the source base station by using a centralized processing unit CU, where the DU is not
  • the successfully transmitted data is determined by the CU when the source base station detects that the connection with the terminal is degraded by the eNB, and transmits the unsuccessfully transmitted data carried in the downlink data frame to the Terminal; or,
  • Step S504 the target base station receives the source base station link quality degradation message sent by the source base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and is determined according to the sequence number.
  • the data that the DU does not successfully transmit stops transmitting the offloaded data to the source base station and transmits the data that the DU fails to successfully transmit to the terminal.
  • the method further includes: after the target base station transmits the unsuccessfully transmitted data to the terminal according to the retransmission data indication, the target base station receives the source base station to send Data received from the core network; the target base station transmits the data to the terminal.
  • the method further includes: the downlink data frame further carries a retransmission data indication, where the target base station The retransmission data indicates that the data is retransmitted, the data transmission priority is increased, and the retransmission data is preferentially transmitted.
  • the method further The target base station receives a recovery message sent by the source base station by using the CU, where the recovery message is that the source base station detects that the connection link with the terminal returns to normal through the DU, and then passes the The DU is sent to the CU; the target base station resumes sending the offload data to the source base station according to the recovery message.
  • a “retransmission data indication” field is added in a downlink data frame definition for transmitting user plane data between network elements, and can be applied to an interface (F1 interface) between a CU and a DU in a base station, and a base station and a base station. Interface (X2 or XN interface). If the field exists in the downlink data frame, it indicates that the data is retransmitted. If it does not exist, it indicates that it is non-retransmitted data; or the value of the field is TRUE for retransmitted data, and the value is FALSE for non-retransmitted data.
  • the CU When the downlink data definition is applied to the interface between the CU and the DU, the CU sends the data that is not successfully transmitted on the DU to the target DU through the downlink data frame.
  • the target DU identifies that the data is retransmitted data through the “Retransmission Data Indication” field in the downlink data frame, the data transmission priority is increased, and the data is preferentially transmitted.
  • the source base station transmits the unsuccessfully transmitted data on the base station to the target base station through the downlink data frame.
  • the target base station identifies the data as retransmission data through the “retransmission data indication” field in the downlink data frame, the data transmission priority is increased, and the data is preferentially transmitted.
  • the CU After the CU node of the anchoring base station receives the terminal service connection outage message reported by the base station DU, the CU passes the "Packet Data Convergence Protocol (PDCP) SN sequence number that is continuously successfully delivered in the outage message".
  • the IE determines which PDCP PDUs of the DU have not been successfully transmitted, and sends the PDCP PDUs to the offloading base station through the inter-base station downlink data frame, and indicates that the data is retransmitted data in the "retransmission data indication" of the downlink data frame. And stopping sending data to the base station DU, and transmitting subsequent terminal service bearer data received from the core network to the offload base station for transmission.
  • PDCP Packet Data Convergence Protocol
  • the traffic distribution base station identifies the data as the retransmission data by using the “retransmission data indication” field in the downlink data frame, thereby improving the data transmission priority, and preferentially transmitting the data. data.
  • the anchor base station resumes transmitting the terminal service bearer data to the local base station DU.
  • the anchor base station CU may start a timer, and the CU stops the timer after receiving the RESUME message from the terminal of the DU before the timer expires. After the timer expires, the CU has not received the REMUNE message sent by the terminal reported by the DU, and the CU may initiate a terminal RRC connection release process to release the service connection of the terminal.
  • the offloading base station After the CU node of the offloading base station receives the terminal service connection outage message reported by the base station DU. If the inter-base station interface can directly identify the outage message, the offloading base station directly forwards the outage message to the anchoring base station, otherwise the shunting base station CU constructs an outage message sent to the anchoring base station, and the shunting base station CU parses the received outage message from the DU.
  • the maximum PDCP SN sequence number "IE" successfully submitted consecutively, and the IE value is filled in the "Continuously Successfully Delivered Maximum PDCP SN Sequence Number" IE in the constructed outage message sent to the anchor base station.
  • the offloading base station transmits the outage message to the anchor base station.
  • the shunt base station After the CU node of the shunt base station receives the RESUME message of the terminal service connection reported by the base station DU, if the inter-base station interface can directly identify the RESUME message, the shunt base station directly forwards the RESUME message to the anchor base station, otherwise the shunt base station CU constructs the anchor base station.
  • the sent RESUME message is used to notify the anchor base station that the quality of the transmission link of the offload base station terminal has been restored.
  • the anchor base station After the anchor base station receives the terminal service connection outage message sent by the offloading base station, the anchor base station determines, by using the "continuously successfully delivered maximum PDCP SN sequence number" IE in the outage message, which PDCP PDUs on the offloading base station have not been successfully transmitted. And sending part of the PDCP PDU to the terminal at the base station. Moreover, the anchor base station stops transmitting the terminal service bearer data to the offload base station. After the anchor base station receives the terminal service connection resume message reported by the offloading base station, the base station resumes transmitting the terminal service bearer offload data to the offloading base station.
  • the anchoring base station may start a timer, and after receiving the RESUME message of the trafficking base station terminal service connection before the timer expires, the anchoring base station stops the timer. After the timer expires, the anchor base station has not received the RESUME message of the terminal service connection reported by the offloading base station, and the anchor base station may initiate the bearer type modification process to modify the service bearer shunted to the offload base station to be separately transmitted by the anchor base station.
  • the type, or anchoring base station may initiate a offloading base station node release procedure.
  • the existing dual-connection technology can only wait for the quality of the base station DU service link. After the recovery, the data transmission continues, resulting in increased data transmission delay and even packet loss.
  • the network side can retransmit data on a base station with good link quality, thereby reducing data transmission delay and reducing packet loss. And determining whether the data is retransmitted data by defining a “retransmission data indication” field in the downlink data frame between the network elements, thereby improving the data transmission priority and reducing the data transmission delay.
  • FIG. 6 is a schematic diagram of a downlink data frame definition for transmitting user plane data between network elements according to an embodiment of the present disclosure, as shown in FIG. 6, applicable to an interface (F1 interface) between a CU and a DU inside a base station, and a base station and Interface between base stations (X2 or XN interface).
  • the "retransmission data indication" field proposed by the present disclosure is included in the downlink data frame, and the fields of other downlink data frames are not indicated in the schematic diagram. If the field exists, it indicates that the data is retransmitted. If it does not exist, it indicates that it is non-retransmitted data; or the value of the field is TRUE for retransmitted data, and the value is FALSE for non-retransmitted data.
  • the CU When the downlink data frame definition is applied to the interface between the CU and the DU, the CU sends the data that is not successfully transmitted on the DU to the target DU through the downlink data frame.
  • the target DU identifies that the data is retransmitted data through the “Retransmission Data Indication” field in the downlink data frame, the data transmission priority is increased, and the data is preferentially transmitted.
  • the source base station sends the unsuccessfully transmitted data on the base station to the target base station for transmission through the downlink data frame.
  • the target base station identifies the data as retransmission data through the “retransmission data indication” field in the downlink data frame, the data transmission priority is increased, and the data is preferentially transmitted.
  • FIG. 7 is a flowchart of a process after an DU of an anchor base station occurs outage, as shown in FIG. 7, according to an embodiment of the present disclosure, including:
  • Step 1 The terminal establishes a dual connection with the anchor base station and the offload base station.
  • the anchor base station is a base station of a CU/DU separation architecture.
  • the offloading base station may be a CU/DU separation architecture or an integrated architecture.
  • step 2 the DU of the anchoring base station detects the terminal link quality outage.
  • Step 3 The DU of the anchoring base station reports the terminal service connection outage message to the base station CU.
  • Step 4 The anchor base station stops sending downlink service downlink data to the DU.
  • Step 5 The CU of the anchoring base station judges which PDCP PDUs of the DU have not been successfully transmitted through the "Maximum PDCP SN sequence number successfully submitted consecutively" in the outage message, and sends the PDCP PDU to the offload base station through the downlink data frame. .
  • the subsequent terminal service bearer data received from the core network is all sent to the offload base station for transmission through the downlink data frame.
  • Step 6 When the offloading base station identifies the data as retransmitted data through the “retransmission data indication” field in the downlink data frame, thereby increasing the data transmission priority and preferentially transmitting the data.
  • Step 7 After the DU of the anchoring base station detects the quality of the terminal service link, the terminal sends a resume message to the CU.
  • Step 8 After receiving the resume message reported by the base station DU, the CU node that anchors the base station resumes transmitting data to the base station DU.
  • the CU of the anchor base station may start a timer, and the CU stops the timer after receiving the RESUME message before the timer expires. After the timer expires, the CU has not received the RESUME message reported by the DU, and the CU may initiate a terminal RRC connection release process to release the connection with the terminal.
  • FIG. 8 is a flowchart of a process after a DU of a offloading base station occurs outage, as shown in FIG. 8, according to an embodiment of the present disclosure, including:
  • Step 1 The terminal establishes a dual connection with the anchor base station and the offload base station.
  • the split base station is a base station of a CU/DU separation architecture.
  • the anchor base station can be a CU/DU separation architecture or an integrated architecture.
  • step 2 the DU of the offloading base station detects the terminal link quality outage.
  • Step 3 The DU of the offloading base station reports the terminal service connection outage message to the offloading base station CU.
  • Step 4 When the CU node of the offloading base station receives the terminal service connection outage message reported by the base station DU, the offloading base station sends an outage message to the anchoring base station, and the outage message includes the "continuously delivered maximum PDCP SN sequence number" IE .
  • Step 5 After receiving the terminal service connection outage message sent by the offloading base station, the anchor base station stops transmitting the terminal service bearer data to the offloading base station.
  • the base station is anchored and determines which PDCP PDUs of the DU have not been successfully transmitted through the "Maximum PDCP SN sequence number successfully submitted consecutively" in the outage message, and transmits the PDCP PDU to the terminal on the anchor base station.
  • the subsequent terminal service bearer data received from the core network is all sent to the terminal at the anchor base station.
  • Step 6 After the DU of the offloading base station detects the quality of the service link of the terminal, the terminal service connection resume message is sent to the offloading base station CU.
  • Step 7 After the offloading base station CU receives the terminal service connection resume message sent by the base station DU, the offloading base station sends a resume message to the anchoring base station.
  • Step 8 After the anchor base station receives the terminal service connection resume message reported by the offloading base station, the anchor base station resumes transmitting the terminal service bearer data to the offloading base station.
  • the anchor base station may start a timer, and after receiving the resolving base station terminal service connection RESUME message before the timer expires, the anchor base station is anchored. Stop the timer. After the timer expires, the anchor base station has not received the RESUME message reported by the offloading base station, and the anchor base station can initiate the terminal service bearer type modification process, and can modify the terminal service bearer type to be transmitted only on the anchor base station, or anchor.
  • the fixed base station can initiate a offload base station node release procedure.
  • FIG. 9 is a block diagram 1 of the data transmission apparatus according to an embodiment of the present disclosure. As shown in FIG. 9, the method includes:
  • the detecting module 92 is configured to detect, by the distributed processing unit DU, that a link quality degradation occurs in connection with the terminal;
  • a first sending module 94 configured to determine, by the centralized processing unit CU, data that is not successfully transmitted by the DU, and send, by the CU, data that is not successfully transmitted by the DU to a target base station by using a downlink data frame, where And the downlink data frame is used by the target base station to transmit the unsuccessfully transmitted data to the terminal;
  • the second sending module 96 is configured to send the source base station link quality degradation message to the target base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and the link quality is degraded.
  • the message is used by the target base station to determine, according to the sequence number, data that the DU is not successfully transmitted, stop transmitting the offloaded data to the source base station, and transmit data that is not successfully transmitted by the DU to the terminal.
  • the functions of the detection module 92, the first transmitting module 94, and the second transmitting module 96 described above are implemented by a controller and a processor of the base station.
  • FIG. 10 is a block diagram 2 of the data transmission apparatus according to an embodiment of the present disclosure. As shown in FIG. 10, the method includes:
  • the first receiving module 102 is configured to receive data that is not successfully transmitted by the distributed processing unit DU that is sent by the source base station by using the downlink data frame, where the downlink data frame is sent by the source base station by using a centralized processing unit CU.
  • the unsuccessfully transmitted data of the DU is determined by the CU by the source eNB, and the unsuccessful transmission data carried in the downlink data frame is determined by the CU when the link quality of the connection with the terminal is detected by the DU. To the terminal; or,
  • the second receiving module 104 is configured to receive the source base station link quality degradation message sent by the source base station, where the link quality degradation message carries a sequence number of the successfully transmitted data, according to the serial number Determining data that the DU does not successfully transmit, stopping transmitting the offloaded data to the source base station, and transmitting the data that the DU is not successfully transmitted to the terminal.
  • the functions of the foregoing detection module, the first receiving module 102 and the second receiving module 104 are implemented by a controller and a processor of the base station.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the source base station detects, by using the distributed processing unit DU, that the link quality of the connection with the terminal decreases.
  • the source base station determines, by the centralized processing unit CU, the data that the DU does not successfully transmit, and sends, by the CU, the data that is not successfully transmitted by the DU to the target base station by using a downlink data frame, where the downlink data is sent.
  • the frame is used by the target base station to transmit the unsuccessfully transmitted data to the terminal;
  • the source base station sends the source base station link quality degradation message to the target base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and the link quality degradation message is used. And determining, by the target base station, the data that the DU is not successfully transmitted according to the sequence number, stopping transmitting the offloaded data to the source base station, and transmitting the data that the DU is not successfully transmitted to the terminal.
  • the foregoing storage medium may be further configured to store program code for performing the following steps:
  • the target base station receives data that is not successfully transmitted by the distributed processing unit DU that is sent by the source base station through the downlink data frame, where the downlink data frame is sent by the source base station by using a centralized processing unit CU, and the DU is unsuccessful.
  • the transmitted data is determined by the CU by the source eNB, and the unsuccessfully transmitted data carried in the downlink data frame is transmitted to the terminal by the CU. ;or,
  • the target base station receives the source base station link quality degradation message sent by the source base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and determines the location according to the sequence number.
  • the data that the DU does not successfully transmit stops transmitting the shunt data to the source base station and transmits the data that the DU does not successfully transmit to the terminal.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present disclosure also provide a processor for running a program, wherein the program executes the steps of any of the above methods when executed.
  • the foregoing program is used to perform the following steps:
  • the source base station detects, by using the distributed processing unit DU, that the link quality of the connection with the terminal decreases.
  • the source base station determines, by the centralized processing unit CU, the data that is not successfully transmitted by the DU, and sends, by the CU, the data that is not successfully transmitted by the DU to the target base station by using a downlink data frame, where the downlink data is sent.
  • the frame is used by the target base station to transmit the unsuccessfully transmitted data to the terminal; or
  • the source base station sends the source base station link quality degradation message to the target base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and the link quality degradation message is used. And determining, by the target base station, the data that the DU is not successfully transmitted according to the sequence number, stopping transmitting the offloaded data to the source base station, and transmitting the data that the DU is not successfully transmitted to the terminal.
  • the foregoing program is further configured to perform the following steps:
  • the target base station receives data that is not successfully transmitted by the distributed processing unit DU that is sent by the source base station through the downlink data frame, where the downlink data frame is sent by the source base station by using a centralized processing unit CU, and the DU is unsuccessful.
  • the transmitted data is determined by the CU by the source eNB, and the unsuccessfully transmitted data carried in the downlink data frame is transmitted to the terminal by the CU. ;or,
  • the target base station receives the source base station link quality degradation message sent by the source base station, where the link quality degradation message carries a sequence number of successfully transmitted data, and determines the location according to the sequence number.
  • the data that the DU does not successfully transmit stops transmitting the shunt data to the source base station and transmits the data that the DU does not successfully transmit to the terminal.
  • the specific examples in this embodiment may refer to the examples described in the foregoing embodiments and the optional embodiments, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法及装置,其中,该方法包括:源基站检测到与终端的连接出现链路质量下降;通过CU将DU未成功传输的数据通过下行数据帧发送给目标基站,通过所述目标基站将所述未成功传输的数据传输给所述终端;或目标基站接收到原基站链路质量下降消息从而停止向源基站发送分流数据并将消息中已连续成功传输的数据最大序列号指示的未成功传输的数据传输给所述终端,解决了相关技术中在基站双连接技术中当某个基站采用了CU/DU分离的结构,即使DU下行数据传输链路质量变差,网络侧也无法主动采取手段进行相关调整,从而导致数据传输时延加大甚至丢包的问题,从而降低数据传输时延和减少丢包,提高了用户体验。

Description

数据传输方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种数据传输方法及装置。
背景技术
5G网络架构具有革新性和组网的灵活性,在5G网络中无线接入网侧的基站被分离为集中式处理单元CU(Centralized Unit)和分布式处理单元DU(Distributed Unit)两个功能实体,一个基站包含一个CU,以及一个或者多个DU。在CU-DU分离的网络架构中,时延不敏感的网络功能放在集中处理单元CU中,时延敏感的网络功能放在分布式处理单元DU中,CU与DU之间通过理想或非理想前传(fronthaul)进行传输和连接。
图1是根据相关技术中终端和一个基站下多个DU连接的示意图,如图1所示,为了给用户提供更高的速率,现有的无线组网技术支持终端和一个基站中的多个DU相连接,终端可以同时从两个或者多个DU同时收发数据。
在现有的CU/DU分离架构中,对于CU/DU高层分离方案,将PDCP及其PDCP以上放在CU,RLC及其RLC以下的实体放在DU。当终端和一个基站下的多个DU连接的时候,对于基站CU实体将下行PDCP PDU数据可以分流到两个或者两个以上的DU来传输给终端,在数据传输过程中,如果某一个DU发生了终端业务连接"outage"(outage在本文中定义为短暂的链路质量下降),为了降低数据传输时延和丢包,那么该DU需要向CU发送outage消息,其中outage消息中携带DU已经连续发送成功的最大PDCP SN序列号,CU接收到该DU的outage消息,CU可以通过该outage消息中携带“最大PDCP SN序列号”判断发送到DU的哪些PDCP PDU还没有被该DU成功发送,CU可以将这部分未成功发送的PDCP PDU数据发送到另一个DU上传输给终端,从而可以降低数据发送时延和丢包。当发生“outage"的DU链路质量恢复以后,DU可以向CU发送终端业务连接"RESUME"消息,用于通知CU其终端连接链路质量已经恢复,从而CU可以恢复将终端业务承载数据发送给该DU来传输。但是在相关技术中,CU将源DU未成功传输的数据发送到目标DU重新传输,但是可能目标DU无法识别这些数据是重传数据还是新传数据,并将这些数据排在发送队列尾部,从而导致加大数据传输时延。
另外,在现有无线通信技术中也支持基站双连接技术,一个用户可以和两个或者两个以上的基站保持连接,一个终端的业务承载数据可以被分流到两个或者两个以上的基站来传输。图2是根据相关技术中基站双连接的示意图,如图2所示,锚定基站指和核心网相连的基站,用于接收核心网下发的终端业务承载数据。分流基站,指和锚定基站相连的,用于接收锚定基站分流的终端业务承载数据的基站。用户终端和锚定基站以及分流基站同时连接。
当在采用基站双连接技术,当其中某个基站采用了CU/DU分离的结构,当该基站的DU出现终端业务链路短暂质量恶化后,现有的双连接技术只能等待该基站DU终端链路质量恢 复后再继续传输数据,而无法在该基站DU发生终端连接链路质量恶化,将该基站DU上未能成功传输的数据发送到另一个基站上传输,从而导致数据传输时延加大甚至丢包。所以现有双连接技术下,当其中某个基站采用了CU/DU分离的结构,即使DU下行数据传输链路质量变差,网络侧也无法主动采取手段进行相关调整,从而导致数据传输时延加大甚至丢包。
针对相关技术中在基站双连接技术中当某个基站采用了CU/DU分离的结构,即使DU下行数据传输链路质量变差,网络侧也无法主动采取手段进行相关调整,从而导致数据传输时延加大甚至丢包的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种数据传输方法及装置,以至少解决相关技术中在基站双连接技术中当某个基站采用了CU/DU分离的结构,即使DU下行数据传输链路质量变差,网络侧也无法主动采取手段进行相关调整,从而导致数据传输时延加大甚至丢包的问题。
根据本公开的一个实施例,提供了一种数据传输方法,包括:
源基站通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
所述源基站通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,所述源基站向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
可选地,所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站包括:
所述源基站通过所述源基站与所述目标基站之间的接口将所述下行数据帧发送给所述目标基站,其中,所述下行数据帧中携带有所述DU未成功传输的数据。
可选地,在所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站之后,所述方法还包括:
所述源基站停止向所述DU发送数据,并将从核心网接收到的数据发送给所述目标基站,通过所述目标基站将所述数据传输给所述终端。
可选地,所述源基站通过所述CU确定所述DU未成功传输的数据包括:
所述源基站通过DU向所述CU发送链路质量下降消息,其中,所述链路质量下降消息中携带有所述DU成功传输数据的序列号;
所述源基站通过所述CU根据所述序列号确定所述DU未成功传输的数据。
可选地,所述方法还包括:
所述源基站通过所述DU检测到与所述终端的连接链路恢复正常;
所述源基站通过所述DU向所述CU发送链路恢复正常的恢复消息;
所述源基站通过所述CU恢复向所述DU发送所述终端业务承载的数据。
可选地,在所述源基站通过所述DU向所述CU发送链路质量下降消息之后,所述方法还包括:
所述源基站通过所述CU启动一个定时器,当定时器超时前,接收到来自所述DU的所述恢复消息后,对所述定时器进行清零;
当定时器超时后,未接收到来自所述DU的所述恢复消息,释放所述终端的业务连接。
可选地,在所述源基站向所述目标基站发送源基站链路质量下降消息之后,所述方法还包括:
所述源基站通过所述DU检测到与所述终端的连接链路恢复正常;
所述源基站通过所述DU向所述CU发送链路恢复正常的恢复消息;
所述源基站通过所述CU向所述目标基站发送所述恢复消息,其中,所述恢复消息用于所述目标基站恢复向所述源基站发送分流数据。
可选地,所述下行数据帧中携带有重传数据指示,其中,所述重传数据指示用于指示所述目标基站识别重传数据并优先处理。
根据本公开的另一个实施例,还提供了一种数据传输方法,包括:
目标基站接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
所述目标基站接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
可选地,所述方法还包括:
在所述目标基站根据所述重传数据指示将所述未成功传输的数据传输给所述终端的同时或之后,所述目标基站接收所述源基站发送的从核心网接收到的数据;
所述目标基站将所述数据传输给所述终端。
可选地,在所述目标基站接收源基站通过下行数据帧发送的DU未成功传输的数据之后,所述方法还包括:
所述下行数据帧中还携带有重传数据指示,所述目标基站通过所述重传数据指示识别出所述数据为重传数据;
提高所述数据发送优先级。
可选地,在根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端之后,所述方法还包括:
所述目标基站接收所述源基站通过所述CU发送的恢复消息,其中,所述恢复消息是所述源基站通过所述DU检测到与所述终端的连接链路恢复正常后,通过所述DU发送给所述CU的;
所述目标基站根据所述恢复消息恢复向所述源基站发送分流数据。
根据本公开的另一个实施例,还提供了一种数据传输装置,应用于源基站,包括:
检测模块,设置为通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
第一发送模块,设置为通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
第二发送模块,设置为向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
根据本公开的另一个实施例,还提供了一种数据传输装置,应用于目标基站,包括:
第一接收模块,设置为接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
第二接收模块,设置为接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本公开的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本公开,源基站通过分布式处理单元DU检测到与终端的连接出现链路质量下降;所述源基站通过集中式处理单元CU确定所述DU未成功传输的数据;所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,通过所述目标基站将所述未成功传输的数据传输给所述终端,或目标基站接收到原基站链路质量下降消息从而停止向源基站发送分流数据并将消息中已连续成功传输的数据最大序列号指示的未成功传输的数据传输给所述终端,解决了相关技术中在基站双连接技术中当某个基站采用了CU/DU分离的结构,即使DU下行数据传输链路质量变差,网络侧也无法主动采取手段进行相关调整,从而导致数据传输时延加大甚至丢包的问题,通过采取在链路质量好的基站上重传数据,从而降低数据传输时延和减少丢包,提高了用户体验。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据相关技术中终端和一个基站下多个DU连接的示意图;
图2是根据相关技术中基站双连接的示意图;
图3是本公开实施例的数据传输方法的移动终端的硬件结构框图;
图4是根据本公开实施例的数据传输方法的流程图一;
图5是根据本公开实施例的数据传输方法的流程图二;
图6是根据本公开实施例的网元间传输用户面数据的下行数据帧定义的示意图;
图7是根据本公开实施例的当锚定基站的DU发生outage以后的处理的流程图;
图8是根据本公开实施例的当分流基站的DU发生outage以后的处理的流程图;
图9是根据本公开实施例的数据传输装置的框图一;
图10是根据本公开实施例的数据传输装置的框图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本公开实施例的数据传输方法的移动终端的硬件结构框图,如图3所示,移动终端10可以包括一个或两个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的数据传输方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者两个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
基于上述的移动终端,本公开实施例,提供了一种数据传输方法,图4是根据本公开实 施例的数据传输方法的流程图一,如图4所示,包括:
步骤S402,源基站通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
步骤S404,所述源基站通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
步骤S406,所述源基站向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
通过上述步骤,解决了相关技术中在基站双连接技术中当某个基站采用了CU/DU分离的结构,即使DU下行数据传输链路质量变差,网络侧也无法主动采取手段进行相关调整,从而导致数据传输时延加大甚至丢包的问题,通过采取在链路质量好的基站上重传数据,从而降低数据传输时延和减少丢包,提高了用户体验。
可选地,所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站包括:所述源基站通过所述源基站与所述目标基站之间的接口将所述下行数据帧发送给所述目标基站,其中,所述下行数据帧中携带有所述DU未成功传输的数据。
可选地,在所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站之后,所述方法还包括:所述源基站停止向所述DU发送数据,并将从核心网接收到的数据发送给所述目标基站,通过所述目标基站将所述数据传输给所述终端。
可选地,所述源基站通过所述CU确定所述DU未成功传输的数据包括:所述源基站通过DU向所述CU发送链路质量下降消息,其中,所述链路质量下降消息中携带有所述DU成功传输数据的序列号;所述源基站通过所述CU根据所述序列号确定所述DU未成功传输的数据。
可选地,所述方法还包括:所述源基站通过所述DU检测到与所述终端的连接链路恢复正常;所述源基站通过所述DU向所述CU发送链路恢复正常的恢复消息;所述源基站通过所述CU恢复向所述DU发送所述终端业务承载的数据。
可选地,在所述源基站通过所述DU向所述CU发送链路质量下降消息之后,所述方法还包括:所述源基站通过所述CU启动一个定时器,当定时器超时前,接收到来自所述DU的所述恢复消息后,对所述定时器进行清零;当定时器超时后,未接收到来自所述DU的所述恢复消息,释放所述终端的业务连接。
可选地,在所述源基站向所述目标基站发送源基站链路质量下降消息之后,所述方法还包括:所述源基站通过所述DU检测到与所述终端的连接链路恢复正常;所述源基站通过所述DU向所述CU发送链路恢复正常的恢复消息;所述源基站通过所述CU向所述目标基站发送所述恢复消息,其中,所述恢复消息用于所述目标基站恢复向所述源基站发送分流数据。
可选地,所述下行数据帧中携带有重传数据指示,其中,所述重传数据指示用于指示所述目标基站识别重传数据并优先处理。
实施例2
本公开实施例还提供了一种数据传输方法,提供了一种数据传输方法,图5是根据本公开实施例的数据传输方法的流程图二,如图5所示,包括:
步骤S502,目标基站接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
步骤S504,所述目标基站接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
可选地,所述方法还包括:在所述目标基站根据所述重传数据指示将所述未成功传输的数据传输给所述终端的同时或之后,所述目标基站接收所述源基站发送的从核心网接收到的数据;所述目标基站将所述数据传输给所述终端。
可选地,在所述目标基站接收源基站通过下行数据帧发送的DU未成功传输的数据之后,所述方法还包括:所述下行数据帧中还携带有重传数据指示,所述目标基站通过所述重传数据指示识别出所述数据为重传数据,提高所述数据发送优先级,优先发送重传数据。
可选地,在根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端之后,所述方法还包括:所述目标基站接收所述源基站通过所述CU发送的恢复消息,其中,所述恢复消息是所述源基站通过所述DU检测到与所述终端的连接链路恢复正常后,通过所述DU发送给所述CU的;所述目标基站根据所述恢复消息恢复向所述源基站发送分流数据。
本公开实施例在网元间传输用户面数据的下行数据帧定义中增加了“重传数据指示”字段,可以应用于基站内部CU和DU之间的接口(F1接口),以及基站和基站之间的接口(X2或者XN接口)。下行数据帧中如果该字段存在则表明是重传数据,不存在则表明是非重传数据;或者该字段取值为TRUE为重传数据,取值为FALSE为非重传数据。
当该下行数据定义应用于CU和DU之间的接口时候,CU将一个DU上未成功传输的数据,通过下行数据帧发送给目标DU传输。当目标DU通过下行数据帧中的“重传数据指示”字段识别出该数据为重传数据,从而提高该数据发送优先级,优先发送该数据。
当该下行数据定义应用于基站和基站之间的接口时候,源基站将本基站上未成功传输的数据,通过下行数据帧发送给目标基站传输。当目标基站通过下行数据帧中的“重传数据指示”字段识别出该数据为重传数据,从而提高该数据发送优先级,优先发送该数据。
当锚定基站的CU节点接收到本基站DU上报的终端业务连接outage消息后,CU通过outage消息中"连续成功递交的最大分组数据汇聚协议(Packet Data Convergence Protocol,简称为PDCP)SN序列号"IE判断DU有哪些PDCP PDU还未成功传输,并将这部分PDCP  PDU通过基站间下行数据帧发送给分流基站传输,并在下行数据帧的“重传数据指示”表明该数据为重传数据。并且停止向本基站DU发送数据,并将从核心网接收到的后续终端业务承载数据发送给分流基站传输。当分流基站接收到锚定基站转发的下行数据帧,分流基站如果通过下行数据帧中的“重传数据指示”字段识别出该数据为重传数据,从而提高该数据发送优先级,优先发送该数据。当锚定基站的CU节点接收到本基站DU上报的终端业务连接resume消息后,锚定基站恢复向本基站DU发送终端业务承载数据。可选的,锚定基站CU接收到终端连接outage消息后,可以启动一个定时器,当定时器超时前接收到来自DU的终端连接RESUME消息后,CU停止该定时器。当定时器超时后,CU还未接收到DU上报的终端连接RESUME消息,CU可以发起终端RRC连接释放过程,释放终端的业务连接。
当分流基站的CU节点接收到本基站DU上报的终端业务连接outage消息后。如果基站间接口可以直接识别outage消息,那么分流基站直接向锚定基站转发outage消息,否则分流基站CU构造向锚定基站发送的outage消息,分流基站CU解析接收到的来自DU的outage消息中"连续成功递交的最大PDCP SN序列号"IE,并将该IE数值填入构造的向锚定基站发送的outage消息中的"连续成功递交的最大PDCP SN序列号"IE。分流基站将该outage消息发送给锚定基站。当分流基站CU节点接收到本基站DU上报的终端业务连接RESUME消息后,如果基站间接口可以直接识别RESUME消息,那么分流基站直接向锚定基站转发RESUME消息,否则分流基站CU构造向锚定基站发送的RESUME消息,用于向锚定基站通知分流基站终端业务传输链路质量已经恢复。
当锚定基站接收到分流基站发送过来的终端业务连接outage消息以后,锚定基站通过outage消息中"连续成功递交的最大PDCP SN序列号"IE判断分流基站上有哪些PDCP PDU还未成功传输,并将这部分PDCP PDU在本基站上发送给终端。并且,锚定基站停止向分流基站发送终端业务承载数据。当锚定基站接收到分流基站上报的终端业务连接resume消息后,基站恢复向分流基站发送终端业务承载分流数据。可选的,锚定基站接收到分流基站发送的终端业务连接outage消息后,可以启动一个定时器,当定时器超时前接收到分流基站终端业务连接RESUME消息后,锚定基站停止该定时器。当定时器超时后,锚定基站还未接收到分流基站上报的终端业务连接RESUME消息,锚定基站可以发起承载类型修改过程将分流到分流基站的业务承载修改为单独由锚定基站传输的承载类型,或者锚定基站可以发起分流基站节点释放过程。
当在采用基站双连接技术,当其中某个基站采用了CU/DU分离的结构,当该基站的DU出现终端业务连接outage后,现有的双连接技术只能等待该基站DU业务链路质量恢复后再继续传输数据,从而导致数据传输时延加大甚至丢包。采用本公开技术以后,网络侧可以采取在链路质量好的基站上重传数据,从而降低数据传输时延和减少丢包。并且通过定义网元间下行数据帧中的“重传数据指示”字段来标识数据是否为重传数据,从而提高该数据发送优先级,来降低数据发送时延。
下面结合附图对本公开实施例进行进一步说明。
示例1
图6是根据本公开实施例的网元间传输用户面数据的下行数据帧定义的示意图,如图6所示,可以应用于基站内部CU和DU之间的接口(F1接口),以及基站和基站之间的接口(X2或者XN接口)。下行数据帧中包含本公开提出的“重传数据指示”字段,其他下行数据帧的字段没有标明在示意图中。如果该字段存在则表明是重传数据,不存在则表明是非重传数据;或者该字段取值为TRUE为重传数据,取值为FALSE为非重传数据。
当该下行数据帧定义应用于CU和DU之间的接口时候,CU将一个DU上未成功传输的数据,通过下行数据帧发送给目标DU传输。当目标DU通过下行数据帧中的“重传数据指示”字段识别出该数据为重传数据,从而提高该数据发送优先级,优先发送该数据。
当该下行数据帧定义应用于基站和基站之间的接口时候,源基站将本基站上未成功传输的数据,通过下行数据帧发送给目标基站传输。当目标基站通过下行数据帧中的“重传数据指示”字段识别出该数据为重传数据,从而提高该数据发送优先级,优先发送该数据。
示例2
图7是根据本公开实施例的当锚定基站的DU发生outage以后的处理的流程图,如图7所示,包括:
步骤1,终端和锚定基站以及分流基站建立了双连接。其中锚定基站是一个CU/DU分离架构的基站。分流基站可以是CU/DU分离架构也可以是一体式架构。
步骤2,锚定基站的DU检测到了终端链路质量outage。
步骤3,锚定基站的DU向本基站CU上报终端业务连接outage消息。
步骤4,锚定基站停止向DU发送终端业务下行数据。
步骤5,锚定基站的CU通过outage消息中"连续成功递交的最大PDCP SN序列号"IE判断DU有哪些PDCP PDU还未成功传输,并将这部分PDCP PDU通过下行数据帧发送给分流基站传输。并将从核心网接收到的后续终端业务承载数据通过下行数据帧全部发送给分流基站传输。
步骤6,当分流基站通过下行数据帧中的“重传数据指示”字段识别出该数据为重传数据,从而提高该数据发送优先级,优先发送该数据。
步骤7,当锚定基站的DU检测到终端业务链路质量恢复以后,向CU发送终端连接resume消息。
步骤8,锚定基站的CU节点接收到本基站DU上报的resume消息后,锚定基站恢复向本基站DU发送数据。
另外可选的,在步骤3以后,锚定基站的CU接收到终端业务连接outage消息后,可以启动一个定时器,当定时器超时前接收到RESUME消息后,CU停止该定时器。当定时器超时后,CU还未接收到DU上报的RESUME消息,CU可以发起终端RRC连接释放过程,释放和终端的连接。
示例3
图8是根据本公开实施例的当分流基站的DU发生outage以后的处理的流程图,如图8所示,包括:
步骤1,终端和锚定基站以及分流基站建立了双连接。其中分流基站是一个CU/DU分离架构的基站。锚定基站可以是CU/DU分离架构也可以是一体式架构。
步骤2,分流基站的DU检测到了终端链路质量outage.
步骤3,分流基站的DU向分流基站CU上报终端业务连接outage消息。
步骤4,当分流基站的CU节点接收到本基站DU上报的终端业务连接outage消息后,分流基站向锚定基站发送的outage消息,outage消息中包含"连续成功递交的最大PDCP SN序列号"IE。
步骤5,锚定基站接收到分流基站发送过来的终端业务连接outage消息以后,停止向分流基站发送终端业务承载数据。锚定基站并通过outage消息中"连续成功递交的最大PDCP SN序列号"IE判断DU有哪些PDCP PDU还未成功传输,并将这部分PDCP PDU在锚定基站上发送给终端。并将从核心网接收到的后续终端业务承载数据全部在锚定基站上发送给终端。
步骤6,当分流基站的DU检测到终端业务链路质量恢复以后,向分流基站CU发送终端业务连接resume消息。
步骤7,分流基站CU接收到本基站DU发送的终端业务连接resume消息以后,分流基站向锚定基站发送resume消息。
步骤8,锚定基站的接收到分流基站上报的终端业务连接resume消息后,锚定基站恢复向分流基站发送终端业务承载数据。
可选的,在步骤4以后,锚定基站接收到分流基站发送的终端业务连接outage消息后,可以启动一个定时器,当定时器超时前接收到分流基站终端业务连接RESUME消息后,锚定基站停止该定时器。当定时器超时后,锚定基站还未接收到分流基站上报的RESUME消息,锚定基站可以发起终端业务承载类型修改过程,可以将终端业务承载类型修改为只在锚定基站上传输,或者锚定基站可以发起分流基站节点释放过程。
实施例3
根据本公开的另一个实施例,还提供了一种数据传输装置,应用于源基站,图9是根据本公开实施例的数据传输装置的框图一,如图9所示,包括:
检测模块92,用于通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
第一发送模块94,用于通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
第二发送模块96,用于向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
上述的检测模块92,第一发送模块94以及第二发送模块96的功能通过基站的控制器和 处理器实现。
实施例4
根据本公开的另一个实施例,还提供了一种数据传输装置,应用于目标基站,图10是根据本公开实施例的数据传输装置的框图二,如图10所示,包括:
第一接收模块102,用于接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
第二接收模块104,用于接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
上述的检测模块,第一接收模块102和第二接收模块104的功能通过基站的控制器和处理器实现。
实施例5
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,源基站通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
S12,所述源基站通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
S13,所述源基站向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
可选地,在本实施例中,上述存储介质还可以被设置为存储用于执行以下步骤的程序代码:
S21,目标基站接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
S22,所述目标基站接收所述源基站发送的所述源基站链路质量下降消息,其中,所述 链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
实施例6
本公开的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,在本实施例中,上述程序用于执行以下步骤:
S31,源基站通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
S32,所述源基站通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
S33,所述源基站向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
可选地,在本实施例中,上述程序还用于执行以下步骤:
S41,目标基站接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
S42,所述目标基站接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在两个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的两个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员 来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种数据传输方法,包括:
    源基站通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
    所述源基站通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
    所述源基站向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
  2. 根据权利要求1所述的方法,其中,所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站包括:
    所述源基站通过所述源基站与所述目标基站之间的接口将所述下行数据帧发送给所述目标基站,其中,所述下行数据帧中携带有所述DU未成功传输的数据。
  3. 根据权利要求1所述的方法,其中,在所述源基站通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站之后,所述方法还包括:
    所述源基站停止向所述DU发送数据,并将从核心网接收到的数据发送给所述目标基站,通过所述目标基站将所述数据传输给所述终端。
  4. 根据权利要求1所述的方法,其中,所述源基站通过所述CU确定所述DU未成功传输的数据包括:
    所述源基站通过DU向所述CU发送链路质量下降消息,其中,所述链路质量下降消息中携带有所述DU成功传输数据的序列号;
    所述源基站通过所述CU根据所述序列号确定所述DU未成功传输的数据。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述方法还包括:
    所述源基站通过所述DU检测到与所述终端的连接链路恢复正常;
    所述源基站通过所述DU向所述CU发送链路恢复正常的恢复消息;
    所述源基站通过所述CU恢复向所述DU发送所述终端业务承载的数据。
  6. 根据权利要求4所述的方法,其中,在所述源基站通过所述DU向所述CU发送链路质量下降消息之后,所述方法还包括:
    所述源基站通过所述CU启动一个定时器,当定时器超时前,接收到来自所述DU的所述恢复消息后,对所述定时器进行清零;
    当定时器超时后,未接收到来自所述DU的所述恢复消息,释放所述终端的业务连接。
  7. 根据权利要求1所述的方法,其中,在所述源基站向所述目标基站发送源基站链路质量下降消息之后,所述方法还包括:
    所述源基站通过所述DU检测到与所述终端的连接链路恢复正常;
    所述源基站通过所述DU向所述CU发送链路恢复正常的恢复消息;
    所述源基站通过所述CU向所述目标基站发送所述恢复消息,其中,所述恢复消息用于所述目标基站恢复向所述源基站发送分流数据。
  8. 根据权利要求1所述的方法,其中,所述下行数据帧中携带有重传数据指示,其中,所述重传数据指示用于指示所述目标基站识别重传数据并优先处理。
  9. 一种数据传输方法,包括:
    目标基站接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
    所述目标基站接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    在所述目标基站根据所述重传数据指示将所述未成功传输的数据传输给所述终端的同时或之后,所述目标基站接收所述源基站发送的从核心网接收到的数据;
    所述目标基站将所述数据传输给所述终端。
  11. 根据权利要求9所述的方法,其中,在所述目标基站接收源基站通过下行数据帧发送的DU未成功传输的数据之后,所述方法还包括:
    所述下行数据帧中还携带有重传数据指示,所述目标基站通过所述重传数据指示识别出所述数据为重传数据;
    提高所述数据发送优先级。
  12. 根据权利要求9所述的方法,其中,在根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端之后,所述方法还包括:
    所述目标基站接收所述源基站通过所述CU发送的恢复消息,其中,所述恢复消息是所述源基站通过所述DU检测到与所述终端的连接链路恢复正常后,通过所述DU发送给所述CU的;
    所述目标基站根据所述恢复消息恢复向所述源基站发送分流数据。
  13. 一种数据传输装置,应用于源基站,包括:
    检测模块,设置为通过分布式处理单元DU检测到与终端的连接出现链路质量下降;
    第一发送模块,设置为通过集中式处理单元CU确定所述DU未成功传输的数据,通过所述CU将所述DU未成功传输的数据通过下行数据帧发送给目标基站,其中,所述下行数据帧用于所述目标基站将所述未成功传输的数据传输给所述终端;或者,
    第二发送模块,设置为向所述目标基站发送所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,所述链路质量下降消息用于所述目标基站根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
  14. 一种数据传输装置,应用于目标基站,包括:
    第一接收模块,设置为接收源基站通过下行数据帧发送的分布式处理单元DU未成功传输的数据,其中,所述下行数据帧是所述源基站通过集中式处理单元CU发送的,所述DU未成功传输的数据是所述源基站通过所述DU检测到与终端的连接出现链路质量下降情况下通过所述CU确定的,将所述下行数据帧中携带的未成功传输数据传输给所述终端;或者,
    第二接收模块,设置为接收所述源基站发送的所述源基站链路质量下降消息,其中,所述链路质量下降消息中携带有已成功传输数据的序列号,根据所述序列号确定所述DU未成功传输的数据,停止向所述源基站发送分流数据并将所述DU未成功传输的数据传输给所述终端。
  15. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至8、9至12中任一项所述的方法。
  16. 一种处理器,其中,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至8、9至12中任一项所述的方法。
PCT/CN2018/111012 2017-11-17 2018-10-19 数据传输方法及装置 WO2019095930A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207013545A KR102335821B1 (ko) 2017-11-17 2018-10-19 데이터 전송 방법 및 장치
EP18879455.6A EP3713299A4 (en) 2017-11-17 2018-10-19 METHOD AND DEVICE FOR DATA TRANSFER
JP2020521357A JP2021503731A (ja) 2017-11-17 2018-10-19 データ伝送方法及び装置
US16/764,358 US11477715B2 (en) 2017-11-17 2018-10-19 Method and device for data transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148233.6A CN109803315B (zh) 2017-11-17 2017-11-17 数据传输方法及装置
CN201711148233.6 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095930A1 true WO2019095930A1 (zh) 2019-05-23

Family

ID=66539266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111012 WO2019095930A1 (zh) 2017-11-17 2018-10-19 数据传输方法及装置

Country Status (6)

Country Link
US (1) US11477715B2 (zh)
EP (1) EP3713299A4 (zh)
JP (1) JP2021503731A (zh)
KR (1) KR102335821B1 (zh)
CN (1) CN109803315B (zh)
WO (1) WO2019095930A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187414B (zh) 2019-07-04 2022-05-24 华为技术有限公司 指示数据传输情况的方法和装置
CN110708721A (zh) * 2019-09-05 2020-01-17 中国联合网络通信集团有限公司 一种数据传输方法及装置
WO2021051284A1 (zh) * 2019-09-17 2021-03-25 Oppo广东移动通信有限公司 一种上行重传处理方法、电子设备及存储介质
CN111222882A (zh) * 2020-01-03 2020-06-02 腾讯科技(深圳)有限公司 基于区块链的数据传输方法、装置、设备及可读存储介质
CN113810949A (zh) * 2020-06-12 2021-12-17 华为技术有限公司 数据传输方法和装置
CN114158072B (zh) * 2021-11-26 2023-05-30 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
CN115460648B (zh) * 2022-11-10 2023-03-28 广州世炬网络科技有限公司 无线链路失效检测方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813213A (zh) * 2014-12-31 2016-07-27 中国电信股份有限公司 双连接方案中传输数据的方法、基站和系统
CN106550490A (zh) * 2016-10-31 2017-03-29 北京小米移动软件有限公司 一种无线链路失败的处理方法和装置
US20170207884A1 (en) * 2016-01-18 2017-07-20 Qualcomm Incorporated Harq llr buffer and reordering buffer management
CN107027153A (zh) * 2017-03-16 2017-08-08 上海华为技术有限公司 业务的切换方法、上下文迁移方法及相关设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217219A (ja) 2005-02-03 2006-08-17 Matsushita Electric Ind Co Ltd 制御局装置、基地局装置及びデータ再送方法
EP4280795A3 (en) * 2012-09-28 2024-02-07 Mitsubishi Electric Corporation Mobile communication system
CN103716869B (zh) * 2013-12-12 2016-12-07 浙江工业大学 一种d2d通信中基于能效优化的分布式功率控制方法
JPWO2017010062A1 (ja) * 2015-07-10 2018-05-24 日本電気株式会社 通信システム、通信方法、および通信用プログラム
CN107360561B (zh) * 2016-05-03 2020-09-11 株式会社Kt 改变连接状态的方法及其设备
CN108632934B (zh) * 2017-03-24 2021-01-01 华为技术有限公司 切换的方法和设备
CN109246770B (zh) * 2017-05-05 2021-06-22 华为技术有限公司 一种切换的方法、终端设备及网络设备
CN106921996B (zh) * 2017-05-12 2019-07-26 电信科学技术研究院 一种层2统计量的统计方法、cu及du
CN107241754B (zh) * 2017-06-08 2021-03-30 上海无线通信研究中心 自适应上行参考信号传输方法及相应的功能单元
JP7433911B2 (ja) * 2017-06-26 2024-02-20 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 帯域内制御シグナリングを利用するバッファ処理

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813213A (zh) * 2014-12-31 2016-07-27 中国电信股份有限公司 双连接方案中传输数据的方法、基站和系统
US20170207884A1 (en) * 2016-01-18 2017-07-20 Qualcomm Incorporated Harq llr buffer and reordering buffer management
CN106550490A (zh) * 2016-10-31 2017-03-29 北京小米移动软件有限公司 一种无线链路失败的处理方法和装置
CN107027153A (zh) * 2017-03-16 2017-08-08 上海华为技术有限公司 业务的切换方法、上下文迁移方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3713299A4 *

Also Published As

Publication number Publication date
EP3713299A4 (en) 2021-09-29
US11477715B2 (en) 2022-10-18
CN109803315A (zh) 2019-05-24
KR20200065055A (ko) 2020-06-08
CN109803315B (zh) 2022-08-19
US20200280898A1 (en) 2020-09-03
JP2021503731A (ja) 2021-02-12
EP3713299A1 (en) 2020-09-23
KR102335821B1 (ko) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2019095930A1 (zh) 数据传输方法及装置
US11129081B2 (en) Providing communication for a mobile communication device using a central unit node and distributed unit nodes
US10805430B2 (en) Evolved data compression scheme signaling
JP5281700B2 (ja) 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法
US10021663B2 (en) Method and device for realizing data transmission
TWI406576B (zh) 執行交接程序及建立資料之方法
EP2420014B1 (en) Method of receiving a point-to-multipoint service in a wireless communication system
KR20200134329A (ko) 신규 무선 접속 기술에서의 중복 및 rlc 동작
US20160352469A1 (en) Communication methods performed by secondary base station and master base station and associated base stations
KR20170053326A (ko) 통신 시스템에서 데이터 송수신 방법 및 장치
AU2003276747A1 (en) Method for moving a receive window in a radio access network
WO2018036492A1 (zh) 拥塞处理方法及装置
US20150180786A1 (en) Method for setting parameter in data transmission service, terminal, and base station
EP3484081B1 (en) Data retransmission method and device
US10470233B2 (en) RLC delivery failure resolution
TWI807527B (zh) 降低多分支傳輸中封包延遲的方法和裝置
US20220337346A1 (en) Method and apparatus for retransmitting packets in dual connectivity network
US20230396368A1 (en) Methods, apparatuses, and media for operating point-to-multipoint radio bearer
CN110730467A (zh) 数据传输方法及数据接收设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521357

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207013545

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879455

Country of ref document: EP

Effective date: 20200617