WO2019095875A1 - 一种信号发送方法及装置、计算机存储介质 - Google Patents

一种信号发送方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2019095875A1
WO2019095875A1 PCT/CN2018/108381 CN2018108381W WO2019095875A1 WO 2019095875 A1 WO2019095875 A1 WO 2019095875A1 CN 2018108381 W CN2018108381 W CN 2018108381W WO 2019095875 A1 WO2019095875 A1 WO 2019095875A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
threshold
subframe
time domain
configuration information
Prior art date
Application number
PCT/CN2018/108381
Other languages
English (en)
French (fr)
Inventor
方惠英
戴博
陈宪明
林伟
李书朋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18879724.5A priority Critical patent/EP3713107A4/en
Priority to US16/764,908 priority patent/US11283568B2/en
Publication of WO2019095875A1 publication Critical patent/WO2019095875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a signal transmitting method and apparatus, and a computer storage medium.
  • the Narrow Band Internet of Things (NB-IoT) access system is released in the Rel-13 protocol version released by the 3rd Generation Partnership Project (3GPP). Is supported.
  • the NB-IoT system was enhanced with enhanced features including positioning, multicasting, reduced latency, reduced power consumption, and enhanced non-anchor carrier operation. To support a wider range of IoT applications and deployment scenarios, the NB-IoT system will continue to be enhanced in Rel-15 and later versions.
  • the sequence reference signal (hereinafter referred to as the reference signal) is mainly used for signal measurement and data demodulation of the terminal, because the bandwidth of the NB-IoT system is small, such as the code of the narrowband (RS, Reed-Solomon codes).
  • the sequence length is only 2, and the reference signal is identical in the sequence of each subframe.
  • the adjacent cell data may cause interference to the reference signal, and the reference signal may also cause interference to the adjacent cell data. Inter-cell interference may affect the measurement performance and demodulation performance of the system.
  • the embodiment of the present application provides a signal sending method and device, and a computer storage medium, which can optimize transmission of reference signals and data signals to improve measurement performance and demodulation performance of the NB-IoT system.
  • the codeword mapping is extended to be transmitted on a preset number of subframes or resource units.
  • the extended mapped codeword is received on a preset number of subframes or resource elements.
  • a configuration information sending unit configured to send configuration information of the reference signal
  • the reference signal transmitting unit is configured to transmit the reference signal according to the configuration information.
  • a configuration information receiving unit configured to receive configuration information of the reference signal
  • the reference signal receiving unit is configured to receive the reference signal according to the configuration information.
  • An extension unit configured to extend a codeword mapping on a preset number of subframes or resource units
  • the sending unit is configured to send a code that maps the extension on a preset number of subframes or resource units.
  • the receiving unit is configured to receive the extended mapped codeword on a preset number of subframes or resource units.
  • the computer storage medium provided by the embodiment of the present application has a computer program stored thereon, and when the computer program is executed by the processor, the signal sending method or the signal receiving method is implemented.
  • the reference signal is sent on the idle invalid subframe, the reference signal is offset in the time domain and the frequency domain, and the terminal performs measurement based on the cell-specific reference signal on the invalid subframe, because Without the interference of data from other users, the performance of the measurement is greatly improved; the terminal can improve the demodulation performance by utilizing the user-specific reference signal transmitted on the invalid subframe.
  • the measurement signal or the demodulation performance can be improved by transmitting the reference signal in the downlink time slot of the special subframe that is not used for downlink data transmission; the codeword mapping extension can further reduce the code rate and reduce the adjacentness.
  • Mutual interference between data transmissions in small intervals; no data transmission on the quiet resource elements can reduce mutual interference between reference signals and data of adjacent cells.
  • FIG. 1 is a schematic flowchart 1 of a signal sending method according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram 1 of a reference signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram 2 of a reference signal according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram 3 of a reference signal according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart 1 of a signal receiving method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram 4 of a reference signal according to an embodiment of the present application.
  • FIG. 7 is a second schematic flowchart of a signal sending method according to an embodiment of the present application.
  • FIG. 8 is a second schematic flowchart of a signal receiving method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram 5 of a reference signal according to an embodiment of the present application.
  • FIG. 10(a) is a schematic diagram 6 of a reference signal according to an embodiment of the present application.
  • FIG. 10(b) is a schematic diagram 7 of a reference signal according to an embodiment of the present application.
  • 11(a) is a schematic diagram 8 of a reference signal according to an embodiment of the present application.
  • 11(b) is a schematic view IX of a reference signal according to an embodiment of the present application.
  • 11(c) is a schematic diagram 10 of a reference signal according to an embodiment of the present application.
  • Figure 11 (d) is a schematic diagram 11 of the reference signal of the embodiment of the present application.
  • Figure 12 (a) is a schematic diagram 12 of a reference signal of an embodiment of the present application.
  • FIG. 12(b) is a schematic diagram 13 of a reference signal according to an embodiment of the present application.
  • 12(c) is a schematic diagram of a reference signal of the embodiment of the present application.
  • FIG. 13 is a schematic diagram of a reference signal of the embodiment of the present application.
  • FIG. 14 is a schematic diagram 16 of a reference signal of an embodiment of the present application.
  • 15 is a schematic diagram of a reference signal of the embodiment of the present application.
  • 16 is a first schematic structural diagram of a signal transmitting apparatus according to an embodiment of the present application.
  • 17 is a first schematic structural diagram of a signal receiving apparatus according to an embodiment of the present application.
  • FIG. 18 is a second schematic structural diagram of a signal transmitting apparatus according to an embodiment of the present application.
  • FIG. 19 is a second schematic structural diagram of a signal receiving apparatus according to an embodiment of the present application.
  • 20 is a schematic diagram of a reference signal of an embodiment of the present application.
  • 21 is a schematic diagram 19 of a reference signal according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram 20 of a reference signal according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart 1 of a signal sending method according to an embodiment of the present disclosure. As shown in FIG. 1 , the signal sending method includes:
  • Step 101 Send configuration information of the reference signal.
  • Step 102 Send the reference signal according to the configuration information.
  • the reference signal includes at least one of the following: a cell-specific reference signal, and a user-specific reference signal.
  • the location of the reference signal in the time domain and/or the frequency domain is determined based on the cell identifier.
  • the sending configuration information of the reference signal includes: sending configuration information of the reference signal by using a user-dedicated RRC signaling or a system message.
  • the configuration information includes at least one of the following parameters: location information of a subframe carrying a reference signal, a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • location information of a subframe carrying a reference signal a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • the configuration information includes: an operation mode and special subframe configuration information
  • the reference signal is transmitted on the N downlink symbols.
  • the working mode is an in-band working mode
  • the special subframe downlink time slot includes H downlink symbols
  • the T downlink symbols in the H downlink symbols send the reference signal, and T is less than H.
  • the configuration information includes silence indication information.
  • the silence indication information indicates silence
  • the resource element except the resource element where the reference signal is located on the OFDM symbol that sends the reference signal is a silent resource element. Where the data mapping or data transmission is not performed on the silent resource element.
  • the subframe that carries the reference signal includes an invalid subframe, where the invalid subframe refers to a subframe that does not send a data signal, where the data signal includes a public signal and single user data;
  • the signal includes at least: a synchronization signal, a broadcast message, and a system message.
  • the determining, by the cell identifier, the location of the reference signal in the time domain and/or the frequency domain includes one of the following:
  • the first preset value is an integer multiple of 3, and the second preset value is an integer multiple of 2; or the first preset value is an integer multiple of 2, the first The second preset value is an integer multiple of 3.
  • the reference signal is located on the OFDM symbol that does not include the cell reference signal CRS in the time domain.
  • the time domain location of the reference signal is determined according to the CRS included on the non-DCCH symbol on the reference signal subframe, where the non-PDCCH symbol refers to: not including the PDCCH. OFDM symbol.
  • the same port of the reference signal occupies two consecutive time domain symbols in the time domain.
  • the method further includes:
  • the sequence of the reference signal includes an orthogonal spreading sequence and a pseudo random sequence, and the orthogonal spreading sequence and the pseudo random sequence are determined according to a cell identifier;
  • the sequence of reference signals includes a pseudo-random sequence, and the pseudo-random sequence is determined according to a cell identity.
  • the method further includes:
  • the orthogonal spreading sequence is selected according to the following formula: floor (cell identifier / (X ⁇ Y)) mod Z, where Y is an integer multiple of 1 or 2, and X is an integer multiple of 1 or 3, Z
  • the number of sequences is expanded for orthogonality.
  • the position of the reference signal in the time domain and/or the frequency domain can be characterized by a pattern of reference signals.
  • the basic pattern of the reference signal is subjected to pattern offset processing to obtain a pattern of the reference signal, as shown in FIG. 2 .
  • pattern offset processing As shown in FIG. 3, whether the reference signal is transmitted on the symbols #2, #3 is determined by the number of symbols occupied by the specific PDCCH.
  • FIG. 4 is a pattern of several reference signals.
  • FIG. 20 is a diagram showing a case where the guard band special subframe downlink slot includes 3 OFDM symbols and 9 OFDM symbols.
  • Figure 21 shows the basic pattern of single-port and dual-port reference signals.
  • Figure 22 is a diagram of a special subframe downlink time slot containing six downlink OFDM symbols (in-band mode of operation).
  • FIG. 5 is a schematic flowchart 1 of a signal receiving method according to an embodiment of the present disclosure. As shown in FIG. 5, the signal receiving method includes:
  • Step 501 Receive configuration information of the reference signal.
  • Step 502 Receive the reference signal according to the configuration information.
  • the reference signal includes at least one of the following: a cell-specific reference signal, and a user-specific reference signal.
  • the method further includes:
  • the location of the reference signal in the time domain and/or the frequency domain is determined based on the cell identity.
  • the configuration information includes at least one of the following parameters: location information of a subframe carrying a reference signal, a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • location information of a subframe carrying a reference signal a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • the configuration information includes: an operation mode and special subframe configuration information
  • the working mode is a guard band mode of operation
  • the special subframe downlink time slot includes N downlink symbols
  • the reference signal is received on the N downlink symbols.
  • the working mode is an in-band working mode
  • the special subframe downlink time slot includes H downlink symbols
  • T downlink symbols receive the reference signal on the H downlink symbols
  • T is smaller than H.
  • the configuration information includes: silence indication information; when the silence indication information indicates silence, the resource element except the resource element where the reference signal is located on the OFDM symbol that sends the reference signal is a silent resource. An element, wherein data mapping or data transmission is not performed on the silent resource element.
  • the subframe that carries the reference signal includes an invalid subframe, where the invalid subframe refers to a subframe that does not send a data signal, where the data signal includes a public signal and single user data;
  • the signal includes at least: a synchronization signal, a broadcast message, and a system message.
  • the determining, by the cell identifier, the location of the reference signal in the time domain and/or the frequency domain includes one of the following:
  • the first preset value is an integer multiple of 3
  • the second preset value is an integer multiple of 2 or the first preset value is an integer multiple of 2
  • the first The second preset value is an integer multiple of 3.
  • the reference signal received on the invalid subframe is located on the OFDM symbol not including the CRS in the time domain.
  • the time domain location of the reference signal is determined according to the CRS included on the non-PDCCH symbol on the reference signal subframe, where the non-PDCCH symbol refers to: not including the PDCCH. OFDM symbol.
  • the same port of the reference signal occupies two consecutive time domain symbols in the time domain.
  • the method further includes:
  • the sequence of the reference signal includes an orthogonal spreading sequence and a pseudo random sequence, and the orthogonal spreading sequence and the pseudo random sequence are determined according to a cell identifier;
  • the sequence of reference signals includes a pseudo-random sequence, and the pseudo-random sequence is determined according to a cell identity.
  • the method further includes:
  • the orthogonal spreading sequence is selected according to the following formula: floor (cell identifier / (X ⁇ Y)) mod Z, where Y is an integer multiple of 1 or 2, and X is an integer multiple of 1 or 3, Z
  • the number of sequences is expanded for orthogonality.
  • FIG. 7 is a schematic flowchart 2 of a signal sending method according to an embodiment of the present disclosure. As shown in FIG. 7, the signal sending method includes:
  • Step 701 Spread the codeword mapping on a preset number of subframes or resource units for transmission.
  • the preset number is 2N or 2 n ⁇ N, where N is the number of subframes or resource units of the resource allocation indication in the downlink control information, and n is an integer greater than 1.
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units.
  • the first threshold or the second threshold is configured by using signaling; or the first threshold or the second threshold is determined by using a preset manner.
  • FIG. 8 is a schematic flowchart 2 of a signal receiving method according to an embodiment of the present disclosure. As shown in FIG. 8 , the signal receiving method includes:
  • Step 801 Receive an extended mapped codeword on a preset number of subframes or resource units.
  • the preset number is 2N or 2 n ⁇ N, where N is the number of subframes or resource units of the resource allocation indication in the downlink control information, and n is an integer greater than 1.
  • the method further includes:
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units.
  • the first threshold or the second threshold is configured by using signaling; or the first threshold or the second threshold is determined by using a preset manner.
  • This embodiment is mainly used to configure a data silence mode to reduce interference between cells.
  • the data silence mode is configured for the UE by user-specific RRC configuration signaling.
  • the user-specific RRC configuration signaling includes fields as shown in Table 1 or Table 2:
  • a resource element other than the resource element where the reference signal is located on the OFDM symbol where the narrowband reference signal (NRS) is located is set as a silent resource element; no data mapping or data transmission is performed on the silent resource element, as shown in FIG. .
  • the UE After receiving the RRC configuration signaling of the data silent mode, the UE receives the unicast control channel (NPDCCH on the unicast search space USS) and/or the downlink data channel (NPDSCH) according to the data silent mode.
  • NPDCCH unicast control channel
  • NPDSCH downlink data channel
  • This embodiment is mainly used to configure a codeword mapping extension mode to reduce interference between cells.
  • the codeword mapping extension mode is configured for the UE by user-specific RRC signaling.
  • the user-specific RRC configuration signaling includes fields as shown in Table 2:
  • the codeword mapping is extended according to the number of repetitions on 2N SF or 2 n ⁇ N SF subframes, that is, the rate matching is in 2N SF or 2 n ⁇ N SF sub-frames.
  • the frame is performed, and N SF is the number of subframes of the resource allocation indication in the downlink control information.
  • n is an integer greater than one.
  • Encoding codeword mapping is extended when the code rate is greater than a threshold or when the number of repetitions is greater than a threshold; the code rate threshold or repetition threshold may be predefined or may be configured by RRC signaling or DCI Configure or pass the information in the DCI to implicitly indicate.
  • MCS modulation and coding scheme
  • the codeword mapping extended mode configuration is determined according to the UE version or capability; for the legacy UE (legacy UE), the codeword mapping extended mode configuration is not performed.
  • the UE receives the unicast control channel (NPDCCH on the unicast search space USS) and/or the downlink data channel (NPDSCH) according to the codeword extension mapping mode after receiving the RRC configuration signaling extended by the codeword mapping.
  • NPDCCH unicast control channel
  • NPDSCH downlink data channel
  • This embodiment is mainly used to configure the reference signal to be transmitted in an invalid subframe in the NB-IoT embedded LTE operation mode (that is, inband mode) to reduce inter-cell interference.
  • the reference signal is configured to be transmitted in an invalid subframe by a system message or a user-specific RRC signaling.
  • the reference signal is transmitted on the invalid subframe.
  • the reference signal includes a cell-specific reference signal and/or a user-specific reference signal.
  • the pattern of the reference signal (i.e., the position of the reference signal in the time domain and/or frequency domain) is related to the cell identity.
  • the invalid subframe is an idle invalid subframe.
  • the idle invalid subframe refers to a subframe that does not transmit a common signal such as a synchronization signal, a broadcast message, or a system message, and is configured as an invalid subframe.
  • the transmission of the reference signal on the invalid subframe may be configured by user-specific RRC signaling or SIB.
  • the configuration information sent in the system message or the user-specific RRC signaling includes configuration information that the reference signal is a reference signal transmission.
  • the configuration information transmitted by the reference signal includes at least one of the following parameters: a subframe position, a transmission period, a transmission interval, a time domain offset value, a frequency domain offset value, and a sequence number of a
  • the NRS reference signal pattern is based on the basic pattern of FIG. 10( a ), and performs pattern offset according to the cell identifier in the time domain and the frequency domain, that is, a specific NRS reference signal.
  • the pattern is determined based on the cell identity.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod X in the frequency domain
  • the time domain offset of the reference signal pattern is performed according to (cell identifier /X) mod Y in the time domain.
  • X is 3 or 6, and Y can be selected as 2.
  • the port of the narrowband reference signal transmitted in the invalid subframe may be the same as or different from the port of the existing narrowband reference signal.
  • the sequence of the reference signal reuses an LTE CRS sequence
  • the reference sequence has a length of 2, which is a truncated sequence of the LTE CRS sequence.
  • This embodiment is mainly used to configure a transmission pattern in which an reference signal is transmitted in an invalid subframe in an NB-IoT embedded LTE operation mode (ie, an inband mode).
  • the reference signal transmitted on the invalid subframe is located on the OFDM symbol not including the CRS in the time domain.
  • the offset is performed based on the basic pattern according to the cell identifier in the frequency domain, that is, the location of the specific reference signal in the frequency domain is determined according to the cell identifier.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod X in the frequency domain; X is 3 or 6.
  • the base pattern of the reference signal may be determined based on the case where the CRS is included on the non-PDCCH symbol in the invalid subframe.
  • the reference signal is transmitted on as many OFDM symbols as possible. As shown in Figure 11 (a) or Figure 11 (b).
  • the distribution characteristics of the reference signal in the time domain are: equally spaced or evenly distributed on other symbols than the PDCCH symbol. Distribution, as shown in Figure 11 (c).
  • a distribution characteristic of the reference signal in the time domain is: in order to ensure performance of demodulation or measurement, the reference signal is as much as possible
  • the OFDM symbol is transmitted as shown in Figure 11(d).
  • whether the reference signal is transmitted on the symbol #2, #3 is determined by the number of symbols occupied by the specific PDCCH.
  • the sequence of the reference signal reuses an LTE CRS sequence
  • the reference sequence has a length of 2, which is a truncated sequence of the LTE CRS sequence.
  • the port of the narrowband reference signal transmitted in the invalid subframe may be the same as or different from the port of the existing narrowband reference signal.
  • the idle invalid subframe refers to a subframe in which a common signal such as a synchronization signal, a broadcast message, or a system message is not transmitted.
  • This embodiment is mainly used to configure a transmission pattern in which an reference signal is transmitted in an invalid subframe in an NB-IoT embedded LTE operation mode (ie, an inband mode).
  • the position of the NRS reference signal pattern in the time domain is on an OFDM symbol that does not include a CRS, and the same port of the NRS reference signal occupies two consecutive time domain symbols in the time domain.
  • the pattern offset is performed according to the cell identifier in the frequency domain, that is, the position of the specific NRS reference signal in the frequency domain is determined according to the cell identifier.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod X in the frequency domain; X is 3 or 6.
  • the basic pattern is as shown in FIG. 12( a ) according to the case where the CRS is included in the non-LTE PDCCH symbol in the invalid subframe in which it is located.
  • the distribution characteristics of the reference signal in the time domain are: equally spaced or evenly distributed on other symbols than the PDCCH symbol.
  • the distribution is shown in Figure 12(b).
  • the time domain offset of the reference signal pattern is made in the time domain according to (cell identity /X) mod Y; Y is 2 or 4 or 6 or 8 or 10 or 12.
  • the distribution characteristic of the reference signal in the time domain is: on all OFDM symbols except the PDCCH symbol that do not include the CRS. Send, as shown in Figure 12(c).
  • the port of the narrowband reference signal transmitted in the invalid subframe may be the same as or different from the port of the existing narrowband reference signal.
  • the sequence of the reference signal reuses an LTE CRS sequence
  • the reference sequence has a length of 2, which is a truncated sequence of the LTE CRS sequence.
  • This embodiment is mainly used to configure a pattern in which a reference signal is transmitted in an invalid subframe in a NB-IoT guard band mode or a standalone mode.
  • the number of time domain symbols occupied by the NRS reference signal in the time domain is 4 or 6 or 8 or 12 or 14, as shown in FIG. 13 , according to the cell identifier in the frequency domain ( Cell ID) performs pattern offset, that is, the specific NRS reference signal pattern is determined according to the cell identifier.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod X in the frequency domain; X is 3 or 6.
  • Y performs a time domain offset of the reference signal pattern; Y is 2 or 4 or 6 or 8 or 10 or 12.
  • the port of the narrowband reference signal transmitted in the invalid subframe may be the same as or different from the port of the existing narrowband reference signal.
  • the sequence of the reference signal reuses an LTE CRS sequence
  • the reference sequence has a length of 2, which is a truncated sequence of the LTE CRS sequence.
  • the idle invalid subframe refers to a subframe in which a common signal such as a synchronization signal, a broadcast message, or a system message is not transmitted.
  • This embodiment is mainly used to configure another pattern in which the reference signal is transmitted in an invalid subframe in the NB-IoT guard band mode or standalone mode.
  • the same port of the NRS reference signal occupies two consecutive time domain symbols in the time domain.
  • the pattern offset is performed according to the cell identifier in the frequency domain, that is, specific
  • the NRS reference signal pattern is determined based on the cell identity.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod X in the frequency domain, and X is 3 or 6.
  • the number of time domain symbols occupied by the NRS reference signal in the time domain is 4 or 6 or 8, as in (a), (b) or 7 (c) in FIG. 14, in the time domain according to (cell identification / X) mod Y performs time domain offset of the reference signal pattern; X is 3 or 6; Y is 2 or 4 or 6 or 8.
  • the port of the narrowband reference signal transmitted in the invalid subframe may be the same as or different from the port of the existing narrowband reference signal.
  • the idle invalid subframe refers to a subframe in which a common signal such as a synchronization signal, a broadcast message, or a system message is not transmitted.
  • This embodiment is mainly used to configure a reference signal special subframe transmission mode to reduce inter-cell interference.
  • the transmission mode of the reference signal special subframe is transmitted through a system message or a user-specific RRC configuration signaling.
  • the system message or user-specific RRC configuration signaling includes fields as shown in Table 4:
  • Measurement reference signal is not sent in special subframe 1 Measurement reference signal is sent in special subframe
  • the configuration reference signal when the configuration reference signal is in the special subframe transmission mode, in the reference signal special subframe transmission mode, if the downlink time slot in the special subframe includes only three downlink symbols, the Three symbols are used to transmit the reference signal.
  • the basic pattern of the reference signal in the case where the downlink time slot of the special subframe includes three downlink symbols may adopt several patterns as shown in FIG.
  • the pattern of the specific reference signal is offset in the frequency domain according to the cell identifier on the basis of the basic pattern.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod Y in the frequency domain, and Y is an integer less than or equal to 6, and the reference signal density in the pattern is preferably 6 or 3.
  • Y is preferably 6 if two reference signal resource elements are included on one OFDM symbol, and preferably 3 if it is greater than two reference signal resource elements.
  • the reference signal sequence on one OFDM symbol is made up of N elements in the center of the LTE CRS sequence, where N is the number of reference signal resource elements included on one OFDM symbol.
  • the reference signal special subframe transmission mode configuration is determined according to the UE version or capability; for the legacy UE, the reference signal special subframe transmission mode configuration is not performed.
  • the UE After receiving the RRC configuration signaling configured in the special subframe transmission mode of the reference signal, the UE configures according to the special subframe transmission mode of the reference signal, and performs measurement on the corresponding special subframe through the special subframe configuration information.
  • the downlink time slot (DwPTS) in the special subframe includes only three downlink symbols, the three symbols are used to transmit the reference signal.
  • the basic pattern of the reference signal in the case where the downlink time slot of the special subframe includes three downlink symbols can adopt several patterns as shown in FIG.
  • the pattern of the specific reference signal is offset in the frequency domain according to the cell identifier on the basis of the basic pattern.
  • the frequency domain offset of the reference signal pattern is performed according to the cell identifier mod Y in the frequency domain, and Y is an integer less than or equal to 6, and the reference signal density in the pattern is preferably 6 or 3.
  • Y is preferably 6 if two reference signal resource elements are included on one OFDM symbol, and preferably 3 if it is greater than two reference signal resource elements.
  • the reference signal sequence on one OFDM symbol is made up of N elements in the center of the LTE CRS sequence, where N is the number of reference signal resource elements included on one OFDM symbol.
  • the reference signal special subframe transmission mode configuration is determined according to the UE version or capability; for the legacy UE, the reference signal special subframe transmission mode configuration is not performed.
  • FIG. 16 is a first schematic structural diagram of a signal transmitting apparatus according to an embodiment of the present application. As shown in FIG. 16, the apparatus includes:
  • the configuration information sending unit 1601 is configured to send configuration information of the reference signal
  • the reference signal transmitting unit 1602 is configured to transmit the reference signal according to the configuration information.
  • the reference signal includes at least one of the following: a cell-specific reference signal, and a user-specific reference signal.
  • the apparatus further includes: a determining unit 1603, configured to determine, according to the cell identifier, a location of the reference signal in a time domain and/or a frequency domain.
  • the device further includes:
  • the indicating unit 1604 is configured to send, by using a user-specific RRC signaling or a system message, configuration information of the reference signal, where:
  • the configuration information sending unit 1601 is further configured to send configuration information of the reference signal by using a user-dedicated RRC signaling or a system message.
  • the configuration information includes at least one of the following parameters: location information of a subframe carrying a reference signal, a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • location information of a subframe carrying a reference signal a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • the configuration information includes: an operation mode and special subframe configuration information
  • the sending unit is further configured to: if the working mode is a guard band working mode, and the special subframe downlink time slot includes N downlink symbols, send the reference signal on the N downlink symbols.
  • the sending unit is further configured to: if the working mode is an in-band working mode, and the special subframe downlink time slot includes H downlink symbols, send the reference signal by T downlink symbols on the H downlink symbols , T is less than H.
  • the configuration information includes silence indication information.
  • the silence indication information indicates silence
  • the resource element except the resource element where the reference signal is located on the OFDM symbol that sends the reference signal is a silent resource element. Where the data mapping or data transmission is not performed on the silent resource element.
  • the subframe that carries the reference signal includes an invalid subframe, where the invalid subframe refers to a subframe that does not send a data signal, where the data signal includes a public signal and single user data;
  • the signal includes at least: a synchronization signal, a broadcast message, and a system message.
  • the determining unit 1603 is specifically configured to:
  • the first preset value is an integer multiple of 3, and the second preset value is an integer multiple of 2; or the first preset value is an integer multiple of 2, the first The second preset value is an integer multiple of 3.
  • the reference signal is located on an OFDM symbol that does not include a CRS in the time domain.
  • the time domain location of the reference signal is determined according to the CRS included on the non-PDCCH symbol on the reference signal subframe, where the non-PDCCH symbol refers to: not including the PDCCH. OFDM symbol.
  • the same port of the reference signal occupies two consecutive time domain symbols in the time domain.
  • the sequence of the reference signal includes an orthogonal spreading sequence and a pseudo random sequence, and the orthogonal spreading sequence and the pseudo random sequence are determined according to a cell identifier.
  • the sequence of reference signals includes a pseudo-random sequence, and the pseudo-random sequence is determined according to a cell identity.
  • the orthogonal extended sequence OCC sequence is selected according to the following formula: floor (cell identifier / (X ⁇ Y)) mod Z, where Y is an integer multiple of 1 or 2, and X is 1 or 3. Integer multiple, Z is the number of orthogonal extension sequences.
  • each unit in the signal transmitting device may be implemented by a central processing unit (CPU) or a microprocessor (MPU, Micro Processor Unit) located in the signal transmitting device.
  • CPU central processing unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • FIG. 17 is a first schematic structural diagram of a signal receiving apparatus according to an embodiment of the present application. As shown in FIG. 17, the apparatus includes:
  • the configuration information receiving unit 1701 is configured to receive configuration information of the reference signal
  • the reference signal receiving unit 1702 is configured to receive the reference signal according to the configuration information.
  • the reference signal includes at least one of the following: a cell-specific reference signal, and a user-specific reference signal.
  • the device further includes:
  • the determining unit 1703 is configured to determine a location of the reference signal in the time domain and/or the frequency domain based on the cell identity.
  • the configuration information includes at least one of the following parameters: location information of a subframe carrying a reference signal, a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • location information of a subframe carrying a reference signal a transmission period, a transmission interval, a time domain location information in a subframe, and a frequency domain location information in a subframe.
  • the configuration information includes: an operation mode and special subframe configuration information
  • the reference signal is received on the N downlink symbols.
  • the working mode is an in-band working mode
  • the special subframe downlink time slot includes H downlink symbols
  • the T downlink symbols receive the reference signal on the H downlink symbols, and T is less than H.
  • the configuration information includes: silence indication information; when the silence indication information indicates silence, the resource element except the resource element where the reference signal is located on the OFDM symbol that sends the reference signal is a silent resource. An element, wherein data mapping or data transmission is not performed on the silent resource element.
  • the subframe that carries the reference signal includes an invalid subframe, where the invalid subframe refers to a subframe that does not send a data signal, where the data signal includes a public signal and single user data;
  • the signal includes at least: a synchronization signal, a broadcast message, and a system message.
  • the determining unit 1703 is further configured to
  • the first preset value is an integer multiple of 3
  • the second preset value is an integer multiple of 2 or the first preset value is an integer multiple of 2
  • the first The second preset value is an integer multiple of 3.
  • the reference signal received on the invalid subframe is located on the OFDM symbol not including the CRS in the time domain.
  • the time domain location of the reference signal is determined according to the CRS included on the non-PDCCH symbol on the reference signal subframe, where the non-PDCCH symbol refers to: not including the PDCCH. OFDM symbol.
  • the same port of the reference signal occupies two consecutive time domain symbols in the time domain.
  • the sequence of the reference signal includes an orthogonal spreading sequence and a pseudo random sequence, and the orthogonal spreading sequence and the pseudo random sequence are determined according to a cell identifier.
  • the sequence of reference signals includes a pseudo-random sequence, and the pseudo-random sequence is determined according to a cell identity.
  • the orthogonal spreading sequence is selected according to the following formula: floor (cell identifier / (X ⁇ Y)) mod Z, where Y is an integer multiple of 1 or 2, and X is 1 or An integer multiple of 3, Z is the number of orthogonal extension sequences.
  • the functions implemented by the respective units in the signal transmitting apparatus can be implemented by a CPU, an MPU, or a DSP, or an FPGA or the like located in the signal transmitting apparatus.
  • FIG. 18 is a schematic structural diagram of a structure of a signal sending apparatus according to an embodiment of the present application. As shown in FIG. 18, the apparatus includes:
  • the expansion unit 1801 is configured to extend the codeword mapping on a preset number of subframes or resource units;
  • the sending unit 1802 is configured to send a code that maps the extension on a preset number of subframes or resource units.
  • the preset number is 2N or 2 n ⁇ N, where N is the number of subframes or resource units of the resource allocation indication in the downlink control information, and n is an integer greater than 1.
  • the extension unit 1801 is further configured to
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units.
  • the first threshold or the second threshold is configured by using signaling; or the first threshold or the second threshold is determined by using a preset manner.
  • the functions implemented by the respective units in the signal transmitting apparatus can be implemented by a CPU, an MPU, or a DSP, or an FPGA or the like located in the signal transmitting apparatus.
  • FIG. 19 is a schematic structural diagram of the structure of a signal receiving apparatus according to an embodiment of the present application. As shown in FIG. 19, the apparatus includes:
  • the receiving unit 1901 is configured to receive the extended mapped codeword on a preset number of subframes or resource units.
  • the preset number is 2N or 2 n ⁇ N, where N is the number of subframes or resource units of the resource allocation indication in the downlink control information, and n is an integer greater than 1.
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units
  • the codeword mapping is extended on a preset number of subframes or resource units.
  • the first threshold or the second threshold is configured by using signaling; or the first threshold or the second threshold is determined by using a preset manner.
  • the functions implemented by the respective units in the signal transmitting apparatus can be implemented by a CPU, an MPU, or a DSP, or an FPGA or the like located in the signal transmitting apparatus.
  • the apparatus for tracking the service signaling described above in the embodiment of the present application may also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product. Based on such understanding, the technical solution of the embodiments of the present application may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present application further provides a computer storage medium, wherein a computer program is configured, and the computer program is configured to execute the signal sending/receiving method of the embodiment of the present application.

Abstract

本申请公开了一种信号发送方法及装置、计算机存储介质,所述方法包括:在所述无效子帧上发送参考信号。所述方法还包括:对于保护带工作模式,如果特殊子帧中的下行时隙包括N个下行符号,则确定所述N个下行符号用于发送所述参考信号。所述方法还包括:将码字映射扩展在预设数目的子帧或资源单元上进行发送。所述方法还包括:在OFDM符号上发送参考信号,所述OFDM符号上除所述参考信号所在资源元素之外的资源元素为静默资源元素,其中,所述静默资源元素上不进行数据映射或数据发送。

Description

一种信号发送方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201711147938.6、申请日为2017年11月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号发送方法及装置、计算机存储介质。
背景技术
为满足蜂窝物联网的需求,在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)组织发布的Rel-13协议版本中,窄带物联网(NB-IoT,Narrow Band Internet of Things)接入系统被支持。在后续的Rel-14协议版本中,该NB-IoT系统被增强,增强的功能包括定位、组播、减少延时、减少功耗以及增强的非锚载波操作。为支持更加广泛的物联网应用和部署场景,在Rel-15及之后的协议版本中,NB-IoT系统将继续被增强。
在NB-IoT系统中,序列参考信号(以下简称为参考信号)主要用于终端的信号测量和数据解调,由于NB-IoT系统带宽小,如窄带里所码(RS,Reed-Solomon codes)序列长度仅为2,参考信号在各子帧的序列相同。对于同频组网的小区,相邻小区数据对参考信号可能造成干扰,参考信号对相邻小区数据也可能造成干扰,小区间的干扰会影响系统的测量性能和解调性能。
发明内容
为解决上述技术问题,本申请实施例提供了一种信号发送方法及装置、计算机存储介质,能够优化参考信号和数据信号的发送,以提升NB-IoT系统的测量性能和解调性能。
本申请实施例提供的信号发送方法,包括:
发送参考信号的配置信息;
根据所述配置信息发送所述参考信号。
本申请实施例提供的信号接收方法,包括:
接收参考信号的配置信息;
根据所述配置信息接收所述参考信号。
本申请实施例提供的信号发送方法,包括:
将码字映射扩展在预设数目的子帧或资源单元上进行发送。
本申请实施例提供的信号接收方法,包括:
在预设数目的子帧或资源单元上接收扩展映射后的码字。
本申请实施例提供的信号发送装置,包括:
配置信息发送单元,配置为发送参考信号的配置信息;
参考信号发送单元,配置为根据所述配置信息发送所述参考信号。
本申请实施例提供的信号接收装置,包括:
配置信息接收单元,配置为接收参考信号的配置信息;
参考信号接收单元,配置为根据所述配置信息接收所述参考信号。
本申请实施例提供的信号发送装置,包括:
扩展单元,配置为将码字映射扩展在预设数目的子帧或资源单元上;
发送单元,配置为发送映射扩展在预设数目的子帧或资源单元上的码子。
本申请实施例提供的信号接收装置,包括:
接收单元,配置为在预设数目的子帧或资源单元上接收扩展映射后的码字。
本申请实施例提供的计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的信号发送方法或信号接收方法。
本申请实施例的技术方案中,在闲置的无效子帧上发送参考信号,参考信号在时域和频域上做偏移,终端基于无效子帧上的小区专有参考信号来做测量,由于没有来自其他用户的数据的干扰,测量的性能会大大提升;终端通过利用无效子帧上发送的用户专有的参考信号,可提升解调性能。在保护带操作模式下,通过不用于下行数据传输的特殊子帧的下行时隙中发送参考信号,可以提升测量或解调的性能;通过码字映射扩展,能进一步降低码率,降低相邻小区间的数据发送间的相互干扰;静默资源元素上不进行数据发送,可以降低相邻小区参考信号和数据之间的相互干扰。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本申请实施例的信号发送方法的流程示意图一;
图2为本申请实施例的参考信号的图样示意图一;
图3为本申请实施例的参考信号的图样示意图二
图4为本申请实施例的参考信号的图样示意图三;
图5为本申请实施例的信号接收方法的流程示意图一;
图6为本申请实施例的参考信号的图样示意图四;
图7为本申请实施例的信号发送方法的流程示意图二;
图8为本申请实施例的信号接收方法的流程示意图二;
图9为本申请实施例的参考信号的图样示意图五;
图10(a)为本申请实施例的参考信号的图样示意图六;
图10(b)为本申请实施例的参考信号的图样示意图七;
图11(a)为本申请实施例的参考信号的图样示意图八;
图11(b)为本申请实施例的参考信号的图样示意图九;
图11(c)为本申请实施例的参考信号的图样示意图十;
图11(d)为本申请实施例的参考信号的图样示意图十一;
图12(a)为本申请实施例的参考信号的图样示意图十二;
图12(b)为本申请实施例的参考信号的图样示意图十三;
图12(c)为本申请实施例的参考信号的图样示意图十四;
图13为本申请实施例的参考信号的图样示意图十五;
图14为本申请实施例的参考信号的图样示意图十六;
图15为本申请实施例的参考信号的图样示意图十七;
图16为本申请实施例的信号发送装置的结构组成示意图一;
图17为本申请实施例的信号接收装置的结构组成示意图一;
图18为本申请实施例的信号发送装置的结构组成示意图二;
图19为本申请实施例的信号接收装置的结构组成示意图二;
图20为本申请实施例的参考信号的图样示意图十八;
图21为本申请实施例的参考信号的图样示意图十九;
图22为本申请实施例的参考信号的图样示意图二十。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
以下为本申请实施例涉及到的关键术语的解释说明:
Figure PCTCN2018108381-appb-000001
Figure PCTCN2018108381-appb-000002
图1为本申请实施例的信号发送方法的流程示意图一,如图1所示,所述信号发送方法包括:
步骤101:发送参考信号的配置信息。
步骤102:根据所述配置信息发送所述参考信号。
本申请实施例中,所述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
本申请实施例中,基于小区标识确定所述参考信号在时域和/或频域的位置。
本申请实施例中,所述发送参考信号的配置信息,包括:通过用户专用的RRC信令或系统消息发送所述参考信号的配置信息。
本申请实施例中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
本申请实施例中,所述配置信息包括:工作模式和特殊子帧配置信息;
1)如果所述工作模式为保护带工作模式,且特殊子帧下行时隙包括N个下行符号,则在所述N个下行符号上发送所述参考信号。
2)如果所述工作模式为带内工作模式,且特殊子帧下行时隙包括H个下行符号,则在所述H个下行符号上T个下行符号发送所述参考信号,T小于H。
本申请实施例中,所述配置信息包括静默指示信息;当静默指示信息指示静默时,在发送所述参考信号的OFDM符号上除所述参考信号所在资源元素之外的资源元素为静默资源元素,其中,所述静默资源元素上不进行数据映射或数据发送。
本申请实施例中,所述承载参考信号的子帧包括无效子帧,所述无效子帧是指:不发送数据信号的子帧,其中,数据信号包括公共信号和单用户数据;所述公共信号至少包括:同步信号、广播消息、系统消息。
本申请实施例中,所述基于小区标识确定所述参考信号在时域和/或频域的位置,包括以下之一:
将小区的标识与第一预设值进行取余操作,得到第一余数;基于所述第一余数确定所述参考信号的频域位置;
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第一余数确定所述参考信号的频域位置,基于所述第二余数确定所述参考信号的时域位置;
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第二余数确定所述参考信号的频域位置,基于所述第一余数确定所述参考信号的时域位置。
上述取余操作和计算操作仅是表征如何通过小区标识来得到第一余数和第二余数,具体实现可有多种方式,例如表格映射,只要表格映射的实际结果和本申请取余和计算操作得到的结果相同,也属于本申请保护的范 围。
本申请实施例中,所述第一预设值为3的整数倍,所述第二预设值为2的整数倍;或者,所述第一预设值为2的整数倍,所述第二预设值为3的整数倍。
本申请实施例中,对于带内操作模式,所述参考信号在时域上位于不包括小区参考信号CRS的OFDM符号上。
本申请实施例中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非DCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
本申请实施例中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
本申请实施例中,所述方法还包括:
所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
或者,
所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
本申请实施例中,所述方法还包括:
根据如下公式选取所述正交扩展序列(OCC序列):floor(小区标识/(X×Y))mod Z,其中,Y为1或2的整数倍,X为1或3的整数倍,Z为正交扩展序列数量。
具体应用中,可以通过参考信号的图样来表征所述参考信号在时域和/或频域的位置。例如:基于小区标识,对所述参考信号的基本图样进行图样偏移处理,得到所述参考信号的图样,如图2所示。如图3所示,参考信号是否在符号#2,#3上进行发送由具体的PDCCH占据的符号数确定。
本申请实施例中,如图4所示,通过OCC序列对不同小区间的参考信号进行正交扩展。图6为几种参考信号的图样。图20为保护带特殊子帧下行时隙包含3个OFDM符号的情况以及9个OFDM符号的情况的图样。图21为单端口和双端口参考信号基本图样。图22为特殊子帧下行时隙包含6个下行OFDM符号(带内工作模式)的图样。
图5为本申请实施例的信号接收方法的流程示意图一,如图5所示,所述信号接收方法包括:
步骤501:接收参考信号的配置信息。
步骤502:根据所述配置信息接收所述参考信号。
本申请实施例中,所述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
本申请实施例中,所述方法还包括:
基于小区标识确定所述参考信号在时域和/或频域的位置。
本申请实施例中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
本申请实施例中,所述配置信息包括:工作模式和特殊子帧配置信息;
1)如果所述工作模式为保护带工作模式,且特殊子帧下行时隙包括N个下行符号,则在所述N个下行符号上接收所述参考信号。
2)如果所述工作模式为带内工作模式,且特殊子帧下行时隙包括H个下行符号,则在所述H个下行符号上T个下行符号接收所述参考信号,T小于H。
本申请实施例中,所述配置信息包括:静默指示信息;当静默指示信息指示静默时,在发送所述参考信号的OFDM符号上除所述参考信号所在资源元素之外的资源元素为静默资源元素,其中,所述静默资源元素上不 进行数据映射或数据发送。
本申请实施例中,所述承载参考信号的子帧包括无效子帧,所述无效子帧是指:不发送数据信号的子帧,其中,数据信号包括公共信号和单用户数据;所述公共信号至少包括:同步信号、广播消息、系统消息。
本申请实施例中,所述基于小区标识确定所述参考信号的在时域和/或频域的位置,包括以下之一:
将小区的标识与第一预设值进行取余操作,得到第一余数;基于所述第一余数确定所述参考信号的频域位置;
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第一余数确定所述参考信号的频域位置,基于所述第二余数确定所述参考信号的时域位置;
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第二余数确定所述参考信号的频域位置,基于所述第一余数确定所述参考信号的时域位置。
上述取余操作和计算操作仅是表征如何通过小区标识来得到第一余数和第二余数,具体实现可有多种方式,例如表格映射,只要表格映射的实际结果和本申请取余和计算操作得到的结果相同,也属于本申请保护的范围。
本申请实施例中,所述第一预设值为3的整数倍,所述第二预设值为2的整数倍,或者,所述第一预设值为2的整数倍,所述第二预设值为3的整数倍。
本申请实施例中,对于带内操作模式,在所述无效子帧上接收的参考信号在时域上位于不包括CRS的OFDM符号上。
本申请实施例中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非PDCCH符号上包括的CRS而确定,其中,所述非PDCCH 符号是指:不包括PDCCH的OFDM符号。
本申请实施例中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
本申请实施例中,所述方法还包括:
所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
或者,
所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
本申请实施例中,所述方法还包括:
根据如下公式选取所述正交扩展序列(OCC序列):floor(小区标识/(X×Y))mod Z,其中,Y为1或2的整数倍,X为1或3的整数倍,Z为正交扩展序列数量。
图7为本申请实施例的信号发送方法的流程示意图二,如图7所示,所述信号发送方法包括:
步骤701:将码字映射扩展在预设数目的子帧或资源单元上进行发送。
本申请实施例中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
本申请实施例中,当数据编码码率大于第一阈值和/或当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
或者,
当数据编码码率大于第一阈值时,将码字映射扩展在预设数目的子帧 或资源单元上;
或者,
当调制编码信令取值大于第三阈值时,将码字映射扩展在预设数目的子帧或资源单元上。
本申请实施例中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
图8为本申请实施例的信号接收方法的流程示意图二,如图8所示,所述信号接收方法包括:
步骤801:在预设数目的子帧或资源单元上接收扩展映射后的码字。
本申请实施例中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
本申请实施例中,所述方法还包括:
当数据编码码率大于第一阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
或者,
当数据编码码率大于第一阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值时,所述码字映射扩展在预设数目的子帧或资源单元上。
本申请实施例中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
以下结合具体应用示例对本申请实施例的技术方案做进一步详细描述。
应用示例一
本实施例主要用于配置数据静默模式,来降低小区间的干扰。
(1):通过用户专有的RRC配置信令为UE配置数据静默模式。所述用户专用的RRC配置信令包括如表1或表2所示的字段:
Figure PCTCN2018108381-appb-000003
表1
Figure PCTCN2018108381-appb-000004
表2
在数据静默模式下,窄带参考信号(NRS)所在OFDM符号上除参考信号所在资源元素之外的资源元素置为静默资源元素;静默资源元素上不进行数据映射或数据发送,如图9所示。
(2):UE在收到数据静默模式的RRC配置信令后根据数据静默模式来接收单播控制信道(单播搜索空间USS上的NPDCCH)和/或下行数据信道(NPDSCH)。
应用示例二
本实施例主要用于配置码字映射扩展模式,来降低小区间的干扰。
(1):通过用户专有的RRC信令为UE配置码字映射扩展模式。所述用户专用的RRC配置信令包括如表2所示的字段:
0 不做速率匹配扩展/码字映射扩展
1 速率匹配扩展/码字映射扩展
表3
在干扰消除增强模式下,当数据重复发送(repetition)时,根据重复次数将码字映射扩展在2N SF或2 n×N SF个子帧上,即速率匹配在2N SF或2 n×N SF个子帧上进行,N SF是下行控制信息中资源分配指示的子帧数。n为大于1的整数。当编码码率大于一个阈值或当重复次数大于一个门限值时,则使能码字映射扩展;所述编码码率阈值或重复次数门限值可预定义或可通过RRC信令配置或DCI配置或通过DCI中的信息隐含指示。
比如,所述编码码率的门限值为1,所述重复次数的门限值为2或4;或者,根据DCI中的调制编码方案(MCS)字段来隐含确定编码码率阈值,比如MCS=3作为编码码率阈值。
根据UE版本或能力确定码字映射扩展模式配置;对于旧版本终端(legacy UE),不进行码字映射扩展模式配置。
(2)UE在收到码字映射扩展的RRC配置信令后根据码字扩展映射模式来接收单播控制信道(单播搜索空间USS上的NPDCCH)和/或下行数据信道(NPDSCH)。
应用示例三
本实施例主要用于在NB-IoT嵌入LTE操作模式下(也即inband mode),配置参考信号在无效子帧发送,来降低小区间的干扰。
(1)通过系统消息或用户专有的RRC信令配置参考信号在无效子帧发送。
这里,在无效子帧上发送参考信号。所述参考信号包括小区专有参考信号和/或用户专有参考信号。参考信号的图样(即参考信号在时域和/或频域的位置)和小区标识有关。所述无效子帧为闲置的无效子帧。所述闲置 的无效子帧指的是不发送同步信号、广播消息,或系统消息等公共信号并且配置为无效子帧的子帧。在无效子帧上发送参考信号可以通过用户专有的RRC信令配置或SIB配置。所述系统消息或用户专用的RRC信令中发送的配置信息包括参考信号是参考信号发送的配置信息。参考信号发送的配置信息包括以下参数中的至少之一:子帧位置、发送周期、发送间隔、时域偏移值、频域偏移值、参考信号的基本图样的序号。
如果所述无效子帧包括小区专有参考信号,所述NRS参考信号图样基于图10(a)的基本图样,在时域和频域上根据小区标识进行图样偏移,即具体的NRS参考信号图样根据小区标识确定。在频域上根据小区标识mod X进行参考信号图样的频域偏移,在时域上根据(小区标识/X)mod Y进行参考信号图样的时域偏移。X为3或6,Y可选取为2。当(小区标识/X)mod Y=0时,参考信号的时域位置和图10(a)基本图样中的相同。当(小区标识/X)mod Y=1时,参考信号的时域位置和图10(b)图样中的相同。
在一实施方式中,所述在无效子帧发送的窄带参考信号的端口可和现有窄带参考信号的端口相同或不同。
在一实施方式中,所述参考信号的序列重用LTE CRS序列,所述参考序列的长度为2,为LTE CRS序列的截短序列。
应用示例四
本实施例主要用于在NB-IoT嵌入LTE操作模式下(也即inband mode),配置参考信号在无效子帧发送的发送图样。
若配置参考信号在无效子帧发送,无效子帧上发送的参考信号在时域上位于不包括CRS的OFDM符号上。。在频域上根据小区标识基于基本图样进行偏移,即具体的参考信号在频域上的位置根据小区标识确定。在频域上根据小区标识mod X进行参考信号图样的频域偏移;X为3或6。
在一实施方式中,参考信号的基本图样可根据无效子帧中非PDCCH符 号上包括CRS的情况确定。为了保证解调或测量的性能,参考信号在尽量多的OFDM符号上发送。如图11(a)或图11(b)所示。
在一实施方式中,对于非PDCCH符号上不包括CRS的无效子帧中参考信号的基本图样,参考信号在时域上的分布特征为:在PDCCH符号之外的其他符号上等间隔分布或均匀分布,如图11(c)所示。
在一实施方式中,对于非PDCCH符号上不包括CRS的无效子帧中参考信号的基本图样,参考信号在时域上的分布特征为:为了保证解调或测量的性能,参考信号在尽量多的OFDM符号上发送,如图11(d)所示。
其中,参考信号是否在符号#2,#3上发送由具体的PDCCH占据的符号数确定。
在一实施方式中,所述参考信号的序列重用LTE CRS序列,所述参考序列的长度为2,为LTE CRS序列的截短序列。
在一实施方式中,所述在无效子帧发送的窄带参考信号的端口可和现有窄带参考信号的端口相同或不同。
所述闲置的无效子帧指的是不发送同步信号、广播消息,或系统消息等公共信号的子帧。
应用示例五
本实施例主要用于在NB-IoT嵌入LTE操作模式下(也即inband mode),配置参考信号在无效子帧发送的发送图样。
若配置参考信号在无效子帧发送,所述NRS参考信号图样在时域上的位置在不包括CRS的OFDM符号上,所述NRS参考信号同一端口在时域上占用连续的两个时域符号;在频域上根据小区标识进行图样偏移,即具体的NRS参考信号在频域上的位置根据小区标识确定。在频域上根据小区标识mod X进行参考信号图样的频域偏移;X为3或6。
在一实施方式中,根据所在的无效子帧中非LTE PDCCH符号上包括 CRS的情况来基本图样如图12(a)。
在一实施方式中,对于非PDCCH符号上不包括CRS的无效子帧中参考信号的基本图样,参考信号在时域上的分布特征为:在PDCCH符号之外的其他符号上等间隔分布或均匀分布,如图12(b)所示。在时域上根据(小区标识/X)mod Y进行参考信号图样的时域偏移;Y为2或4或6或8或10或12。
在一实施方式中,对于非PDCCH符号上不包括CRS的无效子帧中参考信号的基本图样,参考信号在时域上的分布特征为:在PDCCH符号之外的所有不包括CRS的OFDM符号上发送,如图12(c)所示。
不同小区间的参考信号进一步通过OCC序列进行正交扩展,根据(小区标识/(X×Y)mod Z来进行OCC序列的选取(若没有时域偏移,则Y为1);其中,Z=2;当(小区标识/(X×Y)mod Z=0,则OCC序列为[1 1];当(小区标识/(X×Y)mod Z=1,则OCC序列为[1-1]。
在一实施方式中,所述在无效子帧发送的窄带参考信号的端口可和现有窄带参考信号的端口相同或不同。
在一实施方式中,所述参考信号的序列重用LTE CRS序列,所述参考序列的长度为2,为LTE CRS序列的截短序列。
应用示例六
本实施例主要用于在NB-IoT保护带操作模式(guard band mode)或独立操作模式下(standalone mode),配置参考信号在无效子帧发送的图样。
若配置参考信号在无效子帧发送,所述NRS参考信号在时域上占用时域符号的数量为4或6或8或12或14,如图13所示,在频域上根据小区标识(cell ID)进行图样偏移,即具体的NRS参考信号图样根据小区标识确定。在频域上根据小区标识mod X进行参考信号图样的频域偏移;X为3或6。
对于NRS参考信号在时域上占用时域符号的数量为4或6或8的情况,如图13中的(a),(b)或(c),在时域上根据(小区标识/X)mod Y进行参考信号图样的时域偏移;Y为2或4或6或8或10或12。
在一实施方式中,所述在无效子帧发送的窄带参考信号的端口可和现有窄带参考信号的端口相同或不同。
在一实施方式中,所述参考信号的序列重用LTE CRS序列,所述参考序列的长度为2,为LTE CRS序列的截短序列。
所述闲置的无效子帧指的是不发送同步信号、广播消息,或系统消息等公共信号的子帧。
应用示例七
本实施例主要用于在NB-IoT保护带操作模式(guard band mode)或独立操作模式下(standalone mode),配置参考信号在无效子帧发送的另一种图样。
若配置参考信号在无效子帧发送,所述NRS参考信号同一端口在时域上占用连续的两个时域符号,如图14所示,在频域上根据小区标识进行图样偏移,即具体的NRS参考信号图样根据小区标识确定。在频域上根据小区标识mod X进行参考信号图样的频域偏移,X为3或6。
对于NRS参考信号在时域上占用时域符号的数量为4或6或8的情况,如图14中的(a),(b)或7(c),在时域上根据(小区标识/X)mod Y进行参考信号图样的时域偏移;X为3或6;Y为2或4或6或8。
不同小区间的参考信号进一步通过OCC序列进行正交扩展,根据(小区标识/(X×Y)mod Z来进行OCC序列的选取,其中,Z=2;当(小区标识/(X×Y)mod Z=0(若没有时域偏移,则Y为1),则OCC序列为[1 1];当(小区标识/(X×Y)mod Z=1,则OCC序列为[1-1]。
在一实施方式中,所述在无效子帧发送的窄带参考信号的端口可和现 有窄带参考信号的端口相同或不同。
所述闲置的无效子帧指的是不发送同步信号、广播消息,或系统消息等公共信号的子帧。
应用示例八
本实施例主要用于配置参考信号特殊子帧发送模式,来降低小区间的干扰。
(1)通过系统消息或用户专有的RRC配置信令为参考信号特殊子帧发送模式。所述系统消息或用户专用的RRC配置信令包括如表4所示的字段:
0 测量参考信号不在特殊子帧发送
1 测量参考信号在特殊子帧发送
表4
对于TDD系统的保护带工作模式下,当配置参考信号在特殊子帧发送模式,则在参考信号特殊子帧发送模式下,如果特殊子帧中下行时隙仅包括3个下行符号,则所述3个符号用于发送参考信号。所述特殊子帧的下行时隙包括3个下行符号情况下的参考信号基本图样可采用如图15所示的几种图样。具体参考信号的图样在基本图样的基础上根据小区标识在频域进行图样偏移。在频域上根据小区标识mod Y进行参考信号图样的频域偏移,Y为小于等于6的整数,根据图样中的参考信号密度优选6或3。对于单个天线端口,如果一个OFDM符号上包括两个参考信号资源元素,则Y优选6,如果大于两个参考信号资源元素,则优选3。对于单个天线端口,一个OFDM符号上的参考信号序列由LTE CRS序列中心的N个元素构成,其中N是一个OFDM符号上包括的参考信号资源元素的数目。
根据UE版本或能力确定参考信号特殊子帧发送模式配置;对于legacy UE,不进行参考信号特殊子帧发送模式配置。
(2)UE在收到参考信号特殊子帧发送模式配置的RRC配置信令后根据参考信号特殊子帧发送模式配置,通过特殊子帧配置信息在相应的特殊子帧上进行测量。
应用示例九
对于TDD系统的保护带工作模式下,如果特殊子帧中下行时隙(DwPTS)仅包括3个下行符号,则所述3个符号用于发送参考信号。
特殊子帧的下行时隙包括3个下行符号情况下的参考信号基本图样可采用如图15所示的几种图样。具体参考信号的图样在基本图样的基础上根据小区标识在频域进行图样偏移。在频域上根据小区标识mod Y进行参考信号图样的频域偏移,Y为小于等于6的整数,根据图样中的参考信号密度优选6或3。对于单个天线端口,如果一个OFDM符号上包括两个参考信号资源元素,则Y优选6,如果大于两个参考信号资源元素,则优选3。对于单个天线端口,一个OFDM符号上的参考信号序列由LTE CRS序列中心的N个元素构成,其中N是一个OFDM符号上包括的参考信号资源元素的数目。
根据UE版本或能力确定参考信号特殊子帧发送模式配置;对于legacy UE,不进行参考信号特殊子帧发送模式配置。
图16为本申请实施例的信号发送装置的结构组成示意图一,如图16所述,所述装置包括:
配置信息发送单元1601,配置为发送参考信号的配置信息;
参考信号发送单元1602,配置为根据所述配置信息发送所述参考信号。
本申请实施例中,所述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
本申请实施例中,所述装置还包括:确定单元1603,配置为基于小区标识确定所述参考信号在时域和/或频域的位置。
本申请实施例中,所述装置还包括:
指示单元1604,配置为通过用户专用的RRC信令或系统消息发送所述参考信号的配置信息,其中:
所述配置信息发送单元1601,还用于通过用户专用的RRC信令或系统消息发送所述参考信号的配置信息。
本申请实施例中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
本申请实施例中,所述配置信息包括:工作模式和特殊子帧配置信息;
所述发送单元,还配置为如果所述工作模式为保护带工作模式,且特殊子帧下行时隙包括N个下行符号,则在所述N个下行符号上发送所述参考信号。
所述发送单元,还配置为如果所述工作模式为带内工作模式,且特殊子帧下行时隙包括H个下行符号,则在所述H个下行符号上T个下行符号发送所述参考信号,T小于H。
本申请实施例中,所述配置信息包括静默指示信息;当静默指示信息指示静默时,在发送所述参考信号的OFDM符号上除所述参考信号所在资源元素之外的资源元素为静默资源元素,其中,所述静默资源元素上不进行数据映射或数据发送。
本申请实施例中,所述承载参考信号的子帧包括无效子帧,所述无效子帧是指:不发送数据信号的子帧,其中,数据信号包括公共信号和单用户数据;所述公共信号至少包括:同步信号、广播消息、系统消息。
本申请实施例中,所述确定单元1603,具体用于:
将小区的标识与第一预设值进行取余操作,得到第一余数;基于所述第一余数确定所述参考信号的频域位置;
或,
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第一余数确定所述参考信号的频域位置,基于所述第二余数确定所述参考信号的时域位置;
或,
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第二余数确定所述参考信号的频域位置,基于所述第一余数确定所述参考信号的时域位置。
上述取余操作和计算操作仅是表征如何通过小区标识来得到第一余数和第二余数,具体实现可有多种方式,例如表格映射,只要表格映射的实际结果和本申请取余和计算操作得到的结果相同,也属于本申请保护的范围。
本申请实施例中,所述第一预设值为3的整数倍,所述第二预设值为2的整数倍;或者,所述第一预设值为2的整数倍,所述第二预设值为3的整数倍。
本申请实施例中,对于带内操作模式,所述参考信号在时域上位于不包括CRS的OFDM符号上。
本申请实施例中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非PDCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
本申请实施例中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
本申请实施例中,所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
或者,
所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
本申请实施例中,根据如下公式选取所述正交扩展序列OCC序列:floor(小区标识/(X×Y))mod Z,其中,Y为1或2的整数倍,X为1或3的整数倍,Z为正交扩展序列数量。
本领域技术人员应当理解,图16所示的信号发送装置中的各单元的实现功能可参照前述信号发送方法的相关描述而理解。图16所示的信号发送装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
在实际应用中,所述信号发送装置中的各个单元所实现的功能,均可由位于信号发送装置中的中央处理器(CPU,Central Processing Unit)、或微处理器(MPU,Micro Processor Unit)、或数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等实现。
图17为本申请实施例的信号接收装置的结构组成示意图一,如图17所述,所述装置包括:
配置信息接收单元1701,配置为接收参考信号的配置信息;
参考信号接收单元1702,配置为根据所述配置信息接收所述参考信号。
本申请实施例中,述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
本申请实施例中,所述装置还包括:
确定单元1703,配置为基于小区标识确定所述参考信号在时域和/或频域的位置。
本申请实施例中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、 子帧内频域位置信息、参考信号的基本图样的序号。
本申请实施例中,所述配置信息包括:工作模式和特殊子帧配置信息;
如果所述工作模式为保护带工作模式,且特殊子帧下行时隙包括N个下行符号,则在所述N个下行符号上接收所述参考信号。
如果所述工作模式为带内工作模式,且特殊子帧下行时隙包括H个下行符号,则在所述H个下行符号上T个下行符号接收所述参考信号,T小于H。
本申请实施例中,所述配置信息包括:静默指示信息;当静默指示信息指示静默时,在发送所述参考信号的OFDM符号上除所述参考信号所在资源元素之外的资源元素为静默资源元素,其中,所述静默资源元素上不进行数据映射或数据发送。
本申请实施例中,所述承载参考信号的子帧包括无效子帧,所述无效子帧是指:不发送数据信号的子帧,其中,数据信号包括公共信号和单用户数据;所述公共信号至少包括:同步信号、广播消息、系统消息。
本申请实施例中,所述确定单元1703,还配置为
将小区的标识与第一预设值进行取余操作,得到第一余数;基于所述第一余数确定所述参考信号的频域位置;
或,
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第一余数确定所述参考信号的频域位置,基于所述第二余数确定所述参考信号的时域位置;
或,
将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第二余数确定所述参考信号的频域位置,基于所述第一余数确定所述参考信号的时域位置。
上述取余操作和计算操作仅是表征如何通过小区标识来得到第一余数和第二余数,具体实现可有多种方式,例如表格映射,只要表格映射的实际结果和本申请取余和计算操作得到的结果相同,也属于本申请保护的范围。
本申请实施例中,所述第一预设值为3的整数倍,所述第二预设值为2的整数倍,或者,所述第一预设值为2的整数倍,所述第二预设值为3的整数倍。
本申请实施例中,对于带内操作模式,在所述无效子帧上接收的参考信号在时域上位于不包括CRS的OFDM符号上。
本申请实施例中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非PDCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
本申请实施例中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
本申请实施例中,所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
或者,
所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
本申请实施例中,根据如下公式选取所述正交扩展序列(OCC序列):floor(小区标识/(X×Y))mod Z,其中,Y为1或2的整数倍,X为1或3的整数倍,Z为正交扩展序列数量。
本领域技术人员应当理解,图17所示的信号接收装置中的各单元的实现功能可参照前述信号接收方法的相关描述而理解。图17所示的信号接收装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具 体的逻辑电路而实现。
在实际应用中,所述信号发送装置中的各个单元所实现的功能,均可由位于信号发送装置中的CPU、或MPU、或DSP、或FPGA等实现。
图18为本申请实施例的信号发送装置的结构组成示意图二,如图18所述,所述装置包括:
扩展单元1801,配置为将码字映射扩展在预设数目的子帧或资源单元上;
发送单元1802,配置为发送映射扩展在预设数目的子帧或资源单元上的码子。
本申请实施例中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
本申请实施例中,所述扩展单元1801,还配置为
当数据编码码率大于第一阈值和/或当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
或者,
当数据编码码率大于第一阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值时,将码字映射扩展在预设数目的子帧或资源单元上。
本申请实施例中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
本领域技术人员应当理解,图18所示的信号发送装置中的各单元的实现功能可参照前述信号发送方法的相关描述而理解。图18所示的信号发送装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
在实际应用中,所述信号发送装置中的各个单元所实现的功能,均可由位于信号发送装置中的CPU、或MPU、或DSP、或FPGA等实现。
图19为本申请实施例的信号接收装置的结构组成示意图二,如图19所述,所述装置包括:
接收单元1901,配置为在预设数目的子帧或资源单元上接收扩展映射后的码字。
本申请实施例中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
本申请实施例中,当数据编码码率大于第一阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
或者,
当数据编码码率大于第一阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
或者,
当调制编码信令取值大于第三阈值时,所述码字映射扩展在预设数目的子帧或资源单元上。
本申请实施例中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
本领域技术人员应当理解,图19所示的信号接收装置中的各单元的实现功能可参照前述信号接收方法的相关描述而理解。图19所示的信号接收装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
在实际应用中,所述信号发送装置中的各个单元所实现的功能,均可由位于信号发送装置中的CPU、或MPU、或DSP、或FPGA等实现。
本申请实施例上述业务信令跟踪的装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
相应地,本申请实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本申请实施例的信号发送/接收方法。
尽管为示例目的,已经公开了本申请的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本申请的范围应当不限于上述实施例。

Claims (68)

  1. 一种信号发送方法,所述方法包括:
    发送参考信号的配置信息;
    根据所述配置信息发送所述参考信号。
  2. 根据权利要求1所述的方法,其中,所述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    基于小区标识确定所述参考信号在时域和/或频域的位置。
  4. 根据权利要求1所述的方法,其中,所述发送参考信号的配置信息,包括:
    通过用户专用的无线资源控制RRC信令或系统消息发送所述参考信号的配置信息。
  5. 根据权利要求4所述的方法,其中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
  6. 根据权利要求4所述的方法,其中,所述配置信息包括:工作模式和特殊子帧配置信息。
  7. 根据权利要求6所述的方法,其中,如果所述工作模式为保护带工作模式,且特殊子帧下行时隙包括N个下行符号,则在所述N个下行符号上发送所述参考信号。
  8. 根据权利要求6所述的方法,其中,如果所述工作模式为带内工作模式,且特殊子帧下行时隙包括H个下行符号,则在所述H个下行符号上T个下行符号发送所述参考信号,T小于H。
  9. 根据权利要求4所述的方法,其中,所述配置信息包括静默指示 信息;当静默指示信息指示静默时,所述静默资源元素上不进行数据映射或数据发送。
  10. 根据权利要求1或4所述的方法,其中,所述承载参考信号的子帧包括无效子帧。
  11. 根据权利要求3或4所述的方法,其中,所述基于小区标识确定所述参考信号在时域和/或频域的位置,包括以下之一:
    将小区的标识与第一预设值进行取余操作,得到第一余数;基于所述第一余数确定所述参考信号的频域位置;
    将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第一余数确定所述参考信号的频域位置,基于所述第二余数确定所述参考信号的时域位置;
    将小区的标识除以第一预设值,并将计算结果与第二预设值进行取余操作,得到第二余数;基于所述第二余数确定所述参考信号的频域位置,基于所述第一余数确定所述参考信号的时域位置。
  12. 根据权利要求11所述的方法,其中,所述第一预设值为3的整数倍,所述第二预设值为2的整数倍;或者,所述第一预设值为2的整数倍,所述第二预设值为3的整数倍。
  13. 根据权利要求1所述的方法,其中,对于带内操作模式,所述参考信号在时域上位于不包括小区参考信号CRS的OFDM符号上。
  14. 根据权利要求1至9任一项所述的方法,其中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非物理下行控制信道PDCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
  15. 根据权利要求1所述的方法,其中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符 号。
  16. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
    或者,
    所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    根据如下公式选取所述正交扩展序列OCC序列:floor(小区标识/(X×Y))mod Z,其中,Y为1或2的整数倍,X为1或3的整数倍,Z为正交扩展序列数量。
  18. 一种信号接收方法,所述方法包括:
    接收参考信号的配置信息;
    根据所述配置信息接收所述参考信号。
  19. 根据权利要求18所述的方法,其中,所述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
  20. 根据权利要求18所述的方法,其中,所述方法还包括:
    基于小区标识确定所述参考信号在时域和/或频域的位置。
  21. 根据权利要求18所述的方法,其中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
  22. 根据权利要求18所述的方法,其中,所述配置信息包括:工作模式和特殊子帧配置信息。
  23. 根据权利要求18所述的方法,其中,所述配置信息包括:静默 指示信息;当静默指示信息指示静默时,所述静默资源元素上不进行数据映射或数据发送。
  24. 根据权利要求18所述的方法,其中,所述承载参考信号的子帧包括无效子帧。
  25. 根据权利要求18所述的方法,其中,对于带内操作模式,在所述无效子帧上接收的参考信号在时域上位于不包括CRS的OFDM符号上。
  26. 根据权利要求18至23任一项所述的方法,其中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非PDCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
  27. 根据权利要求18所述的方法,其中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
  28. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
    或者,
    所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
  29. 一种信号发送方法,所述方法包括:
    将码字映射扩展在预设数目的子帧或资源单元上进行发送。
  30. 根据权利要求29所述的方法,其中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
  31. 根据权利要求29所述的方法,其中,所述方法还包括:
    当数据编码码率大于第一阈值和/或当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当数据编码码率大于第一阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值时,将码字映射扩展在预设数目的子帧或资源单元上。
  32. 根据权利要求31所述的方法,其中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
  33. 一种信号接收方法,所述方法包括:
    在预设数目的子帧或资源单元上接收扩展映射后的码字。
  34. 根据权利要求33所述的方法,其中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
  35. 根据权利要求33所述的方法,其中,所述方法还包括:
    当数据编码码率大于第一阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当数据编码码率大于第一阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值时,所述码字映射扩展在预设数目的子帧或资源单元上。
  36. 根据权利要求35所述的方法,其中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
  37. 一种信号发送装置,所述装置包括:
    配置信息发送单元,配置为发送参考信号的配置信息;
    参考信号发送单元,配置为根据所述配置信息发送所述参考信号。
  38. 根据权利要求37所述的装置,其中,所述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
  39. 根据权利要求37所述的装置,其中,所述装置还包括:确定单元,配置为基于小区标识确定所述参考信号在时域和/或频域的位置。
  40. 根据权利要求37所述的装置,其中,所述发送单元,还配置为
    通过用户专用的RRC信令或系统消息发送所述参考信号的配置信息。
  41. 根据权利要求40所述的装置,其中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
  42. 根据权利要求40所述的装置,其中,所述配置信息包括:工作模式和特殊子帧配置信息。
  43. 根据权利要求40所述的装置,其中,所述配置信息包括静默指 示信息;当静默指示信息指示静默时,所述静默资源元素上不进行数据映射或数据发送。
  44. 根据权利要求37所述的装置,其中,所述承载参考信号的子帧包括无效子帧。
  45. 根据权利要求37所述的装置,其中,对于带内操作模式,所述参考信号在时域上位于不包括CRS的OFDM符号上。
  46. 根据权利要求37至42任一项所述的装置,其中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非PDCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
  47. 根据权利要求37所述的装置,其中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
  48. 根据权利要求37所述的装置,其中,
    所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
    或者,
    所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
  49. 一种信号接收装置,所述装置包括:
    配置信息接收单元,配置为接收参考信号的配置信息;
    参考信号接收单元,配置为根据所述配置信息接收所述参考信号。
  50. 根据权利要求49所述的装置,其中,述参考信号包括以下至少之一:小区专有参考信号、用户专有参考信号。
  51. 根据权利要求49所述的装置,其中,所述装置还包括:
    确定单元,配置为基于小区标识确定所述参考信号在时域和/或频域的位置。
  52. 根据权利要求49所述的装置,其中,所述配置信息包括以下参数中的至少之一:承载参考信号的子帧的位置信息、发送周期、发送间隔、子帧内时域位置信息、子帧内频域位置信息、参考信号的基本图样的序号。
  53. 根据权利要求49所述的装置,其中,所述配置信息包括:工作模式和特殊子帧配置信息。
  54. 根据权利要求49所述的装置,其中,所述配置信息包括:静默指示信息;当静默指示信息指示静默时,所述静默资源元素上不进行数据映射或数据发送。
  55. 根据权利要求49所述的装置,其中,所述承载参考信号的子帧包括无效子帧。
  56. 根据权利要求49所述的装置,其中,对于带内操作模式,在所述无效子帧上接收的参考信号在时域上位于不包括CRS的OFDM符号上。
  57. 根据权利要求49所述的装置,其中,所述参考信号的时域位置根据所述传输所述参考信号子帧上的非PDCCH符号上包括的CRS而确定,其中,所述非PDCCH符号是指:不包括PDCCH的OFDM符号。
  58. 根据权利要求49所述的装置,其中,对于保护带操作模式和独立带操作模式,所述参考信号的同一端口在时域上占用连续两个时域符号。
  59. 根据权利要求49所述的装置,其中,
    所述参考信号的序列包括正交扩展序列和伪随机序列,根据小区标识确定所述正交扩展序列和所述伪随机序列;
    或者,
    所述参考信号的序列包括伪随机序列,根据小区标识确定所述伪随机序列。
  60. 一种信号发送装置,所述装置包括:
    扩展单元,配置为将码字映射扩展在预设数目的子帧或资源单元上;
    发送单元,配置为发送映射扩展在预设数目的子帧或资源单元上的码子。
  61. 根据权利要求60所述的装置,其中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
  62. 根据权利要求60所述的装置,其中,所述扩展单元,还配置为
    当数据编码码率大于第一阈值和/或当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当数据编码码率大于第一阈值时,将码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值时,将码字映射扩展在预设数目的子帧或资源单元上。
  63. 根据权利要求62所述的装置,其中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
  64. 一种信号接收装置,所述装置包括:
    接收单元,配置为在预设数目的子帧或资源单元上接收扩展映射后的码字。
  65. 根据权利要求64所述的装置,其中,所述预设数目为2N或2 n×N其中,其中,N是下行控制信息中资源分配指示的子帧数或资源单元数,n为大于1的整数。
  66. 根据权利要求64所述的装置,其中,
    当数据编码码率大于第一阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值和当数据重复发送次数大于第二阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当数据编码码率大于第一阈值时,所述码字映射扩展在预设数目的子帧或资源单元上;
    或者,
    当调制编码信令取值大于第三阈值时,所述码字映射扩展在预设数目的子帧或资源单元上。
  67. 根据权利要求66所述的装置,其中,所述第一阈值或第二阈值通过信令配置;或者,所述第一阈值或第二阈值通过预设方式确定。
  68. 一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至17任一项所述方法的步骤,或者权利要求18至28任一项所述的方法步骤,或者权利要求29至32任一项所述的方法步骤,或者权利要求33至36任一项所述的方法步骤。
PCT/CN2018/108381 2017-11-17 2018-09-28 一种信号发送方法及装置、计算机存储介质 WO2019095875A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18879724.5A EP3713107A4 (en) 2017-11-17 2018-09-28 METHOD AND APPARATUS FOR SENDING A SIGNAL, AND COMPUTER STORAGE MEDIA
US16/764,908 US11283568B2 (en) 2017-11-17 2018-09-28 Signal sending method and apparatus, signal receiving method and apparatus, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711147938.6A CN108111287B (zh) 2017-11-17 2017-11-17 一种信号发送方法及装置、计算机存储介质
CN201711147938.6 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095875A1 true WO2019095875A1 (zh) 2019-05-23

Family

ID=62206503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108381 WO2019095875A1 (zh) 2017-11-17 2018-09-28 一种信号发送方法及装置、计算机存储介质

Country Status (4)

Country Link
US (1) US11283568B2 (zh)
EP (1) EP3713107A4 (zh)
CN (1) CN108111287B (zh)
WO (1) WO2019095875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803902B (zh) * 2020-07-24 2023-06-01 大陸商大唐移動通信設備有限公司 信號的傳輸方法、裝置、終端、基地台及儲存介質

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111287B (zh) * 2017-11-17 2022-07-19 中兴通讯股份有限公司 一种信号发送方法及装置、计算机存储介质
CN110740020B (zh) * 2018-07-19 2022-12-06 中兴通讯股份有限公司 信号传输方法、装置、设备及计算机存储介质
WO2020032730A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 단말의 측정 성능을 향상시키기 위한 방법 및 이를 위한 장치
US11824637B2 (en) * 2019-05-22 2023-11-21 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission
US20220247537A1 (en) * 2019-07-12 2022-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting physical uplink control channel (pucch) orthogonal cover codes (occ) repetition sequence
WO2021243688A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Reference signal orthogonality

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817210A (zh) * 2015-12-02 2017-06-09 华为技术有限公司 参考信号序列的传输方法和设备
CN108111287A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 一种信号发送方法及装置、计算机存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469059B (zh) * 2010-11-15 2015-10-28 中兴通讯股份有限公司 解调参考信号承载方法及装置
WO2012096476A2 (ko) * 2011-01-10 2012-07-19 엘지전자 주식회사 무선 통신 시스템에서 하향링크 참조 신호 송수신 방법 및 장치
CN103843432B (zh) * 2012-09-13 2018-04-27 华为技术有限公司 通信方法、基站、无线通信节点和用户设备
CN104125643B (zh) * 2013-04-28 2018-01-19 华为技术有限公司 一种降低邻区干扰的方法和节点
US10314077B2 (en) * 2013-05-20 2019-06-04 Qualcomm Incorporated Gating scheme for wireless communication over unlicensed spectrum
KR20170048314A (ko) * 2014-08-27 2017-05-08 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
CN106470393B (zh) * 2015-08-14 2021-02-02 中兴通讯股份有限公司 一种传递信息的方法和装置
CN106685873A (zh) * 2015-11-05 2017-05-17 夏普株式会社 物理信道的配置方法以及基站和用户设备
US11438872B2 (en) * 2016-02-05 2022-09-06 Intel Corporation Narrowband internet of things devices and method of operation thereof
US10326572B2 (en) * 2016-03-14 2019-06-18 Lg Electronics Enhanced channel estimation method and user equipment performing the same
CN106059978B (zh) * 2016-05-23 2019-05-07 浙江大学 免许可频段下蜂窝移动通信系统和通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817210A (zh) * 2015-12-02 2017-06-09 华为技术有限公司 参考信号序列的传输方法和设备
CN108111287A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 一种信号发送方法及装置、计算机存储介质

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Codebook based UL transmission", 3GPP TSG RAN WG1 MEETING NR#3, R1-1715431, 21 September 2017 (2017-09-21), XP051329360 *
"On long-PUCCH for up to 2 bits", 3GPP TSG RAN WG1 MEETING 90BIS, RL- 1717515, 13 October 2017 (2017-10-13), XP051340702 *
"Remaining details of codeword mapping", 3GPP TSG RAN WG1 MEETING #90BIS, RL-1717416, 13 October 2017 (2017-10-13), XP051340605 *
"Remaining open issues on PDCCH structure", 3GPP TSG RAN WG1 #90BIS, RL-1718554, 13 October 2017 (2017-10-13), XP051341735 *
See also references of EP3713107A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803902B (zh) * 2020-07-24 2023-06-01 大陸商大唐移動通信設備有限公司 信號的傳輸方法、裝置、終端、基地台及儲存介質

Also Published As

Publication number Publication date
CN108111287A (zh) 2018-06-01
EP3713107A4 (en) 2021-08-18
CN108111287B (zh) 2022-07-19
US20200344021A1 (en) 2020-10-29
US11283568B2 (en) 2022-03-22
EP3713107A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2019095875A1 (zh) 一种信号发送方法及装置、计算机存储介质
CN113873621B (zh) 用于接收寻呼消息的方法和无线设备
US10979194B2 (en) Resource indication method, user equipment, and network device
JP6430981B2 (ja) 制御チャネルを受信および送信する方法、ユーザ機器ならびに基地局
CN108809568B (zh) 一种信息发送、接收方法及相关设备
TW201941637A (zh) 新無線電系統實體下行鏈路控制通道設計方法及使用者設備
CN107197521B (zh) 物理共享信道参数的确定机制以及基站和用户设备
US11290981B2 (en) Combined wake-up signal for multiple paging occasions
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
CN108633007B (zh) 传输控制信息的方法、设备和系统
KR102486081B1 (ko) 통신 시스템에서 동기 신호의 송수신 방법
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
US10819388B2 (en) Transmission device, reception device, and communication method
JP6740367B2 (ja) システム情報の伝送方法、基地局及び端末
CN113498598A (zh) 用于功率节省的唤醒信号
JP2019096920A (ja) 受信装置および送信装置
WO2017133676A1 (zh) 参考信号的发送、接收方法、装置及传输系统
JP2019096919A (ja) 送信装置および受信装置
JP2019106564A (ja) 送信装置および受信装置
JP2011530888A (ja) フェムトセル識別のためのシステムおよび方法
WO2020030161A1 (zh) 信号的发送、接收方法、装置、存储介质及电子装置
JP2019500797A (ja) データを伝送するための方法およびデバイス
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2017121413A1 (zh) 资源的使用方法及装置
WO2017054134A1 (zh) 一种确定频率资源的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879724

Country of ref document: EP

Effective date: 20200617