WO2019095404A1 - 一种由合成气与芳烃直接制取对二甲苯的方法 - Google Patents

一种由合成气与芳烃直接制取对二甲苯的方法 Download PDF

Info

Publication number
WO2019095404A1
WO2019095404A1 PCT/CN2017/112109 CN2017112109W WO2019095404A1 WO 2019095404 A1 WO2019095404 A1 WO 2019095404A1 CN 2017112109 W CN2017112109 W CN 2017112109W WO 2019095404 A1 WO2019095404 A1 WO 2019095404A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
molecular sieve
inert carrier
oxide material
weight
Prior art date
Application number
PCT/CN2017/112109
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘中民
刘勇
陈之旸
刘红超
马现刚
刘世平
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP17932310.0A priority Critical patent/EP3712124A4/en
Priority to EA202091180A priority patent/EA202091180A1/ru
Priority to US16/763,015 priority patent/US11225443B2/en
Publication of WO2019095404A1 publication Critical patent/WO2019095404A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for the direct preparation of para-xylene from syngas and aromatic hydrocarbons.
  • WO 2004/043593 discloses a process for the selective production of para-xylene by reacting an aromatic hydrocarbon with a feed comprising carbon monoxide and hydrogen in the presence of a selectively activated catalyst, and a catalyst used in the process, said catalyst comprising an acidic silicate Base material and catalytically active metal or metal oxide.
  • Chinese patent application CN104945219A discloses a process for the one-step preparation of toluene and p-xylene from benzene and synthesis gas and a catalyst used therein, the catalyst comprising a metal oxide component and a solid acid component.
  • a catalyst comprising at least one of a highly dispersed metal oxide material, an acidic molecular sieve, and optionally a graphite powder and a dispersant, which are inert carrier-limited, is very suitable for the direct preparation of para-xylene from syngas and aromatic hydrocarbons.
  • the process for directly preparing para-xylene from syngas and aromatics using the catalyst can achieve high feedstock conversion and para-xylene selectivity and is environmentally friendly.
  • the present invention has been completed on the basis of the above findings.
  • the reaction conditions include: a reaction temperature of 300 to 450 ° C, a reaction pressure of 0.5 to 10.0 MPa, a molar ratio of hydrogen to carbon monoxide in the synthesis gas of 1:9 to 9:1, 0.01 to 20 h - aromatic hydrocarbon weight hourly space velocity of 1, and the volume hourly space velocity of synthesis gas under the standard condition of 1000 ⁇ 20000h -1.
  • the present invention provides a process for the direct preparation of para-xylene from syngas and aromatics, the process comprising:
  • the metal oxide in the inert support-limited high dispersion metal oxide material is an oxide that removes at least one of aluminum and a metal other than the radioactive element.
  • the metal oxide in the inert carrier-limited high-dispersion metal oxide material is an oxide of at least one of zinc, chromium, zirconium, copper, manganese, platinum, and palladium. More preferably, the metal oxide in the inert carrier-limited high-dispersion metal oxide material is an oxide of at least one of zinc, chromium, and zirconium.
  • zirconium composite oxide material has a metal oxide mass fraction generally greater than 80%, has a significant metal oxide characteristic XRD diffraction peak, and has a specific surface area generally less than 100 m 2 /g.
  • the inert carrier-limited high dispersion metal oxide material has an average particle size of less than or equal to 5 mm, preferably less than or equal to 1 mm, more preferably less than or equal to 0.5 mm, still more preferably less than or equal to 0.1 mm. Still more preferably less than or equal to 0.05 mm.
  • the inert support limited high dispersion metal oxide material can be prepared by a coprecipitation-calcination process.
  • the inert carrier-limited high-dispersion metal oxide material can be prepared as follows: a salt of a catalytically active metal and an aluminum salt are mixed into a mixed metal salt aqueous solution; The mixed metal salt aqueous solution is contacted with the aqueous solution of the precipitating agent to coprecipitate the metal ions in the mixed metal salt aqueous solution; aging; and the precipitate is washed, dried, and calcined.
  • precipitating agents include, but are not limited to, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium hydrogencarbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide, and mixtures thereof.
  • the inert carrier-limited high-dispersion metal oxide material is prepared by formulating a salt of an aluminum salt and a catalytically active metal to a total metal ion concentration of from 0.1 mol/L to 3.5 mol/L.
  • the mixed metal salt aqueous solution is contacted with a precipitating aqueous solution having a molar concentration of 0.1 mol/L to 3.5 mol/L at a temperature of 0 ° C to 90 ° C under stirring to coprecipitate the metal salt
  • the metal ions are then aged for a period of time, the pH of the solution during the coprecipitation may be 7.0 to 8.5, and the aging time is not less than 1 hour; the obtained precipitate is filtered and washed and calcined at a temperature of, for example, 300 ° C to 700 ° C.
  • a highly dispersed metal oxide material having an inert carrier confinement is obtained.
  • the kind of the aluminum salt and the salt of the catalytically active metal is water-soluble, for example, having a water solubility of more than 1 g/L at 25 °C.
  • the aluminum salt and the salt of the catalytically active metal include, but are not limited to, hydrochloride, sulfate, and nitrate.
  • the contacting can be accomplished by cocurrent, feed or reverse feed.
  • the inert carrier-limited, highly dispersed metal oxide material can be prepared by a sol-gel process.
  • the inert carrier-limited high-dispersion metal oxide material can be prepared as follows: an aqueous solution of a salt of a catalytically active metal is added to a silicon oxychloride together with an aqueous solution of a precipitant. In the alkyl compound, and allowing the coprecipitation and the sol-gel reaction to proceed, the obtained gel is washed, dried, and calcined to obtain an inert carrier-limited high-dispersion metal oxide material.
  • the precipitating agent include, but are not limited to, one or more of ammonium carbonate, aqueous ammonia, ammonium hydrogencarbonate, ammonium dihydrogen phosphate, and urea.
  • the siloxane-based compound is an alkyl orthosilicate, examples of which include, but are not limited to, methyl orthosilicate, tetraethyl orthosilicate, n-propyl orthosilicate, orthosilicate Propyl ester, n-butyl orthosilicate, isobutyl orthosilicate, tert-butyl orthosilicate, and mixtures thereof.
  • the modification of the acidic molecular sieve is one or more of phosphorus modification, boron modification, silicon modification, alkaline earth metal modification, and rare earth metal modification.
  • the acidic molecular sieve may be impregnated with, for example, H 3 PO 4 , NH 4 H 2 PO 4 or an aqueous solution of (NH 4 ) 2 HPO 4 , and then the impregnated acidic molecular sieve is dried and then calcined.
  • a phosphorus-modified acidic molecular sieve containing 0.5 to 10.0% by weight of phosphorus based on the weight of the modified molecular sieve is obtained.
  • the acidic molecular sieve may be impregnated with, for example, an aqueous solution of H 3 BO 3 , and then the impregnated acidic molecular sieve is dried and then calcined to obtain 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Boron modified acidic molecular sieves of boron are examples of Boron modified acidic molecular sieves of boron.
  • the silicon modified acidic molecular sieve can be prepared by treatment with a siloxane compound by liquid phase deposition and/or treatment with a silane compound by vapor deposition.
  • the siloxane compound and the silane compound which can be used are respectively represented by the following structural formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a C 1-10 alkyl group.
  • An example of the siloxane compound is tetraethyl orthosilicate, and an example of the silane compound is tetramethylsilane.
  • the liquid phase deposition process is carried out by dissolving a silicone compound in an inert organic solvent to provide a solution of the siloxane compound, then soaking or impregnating the acidic molecular sieve with the solution, drying and then calcining A silicon modified acidic molecular sieve is obtained.
  • the silicon-modified acidic molecular sieve may have a silicon loading of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve, and the silicon loading does not include the original silicon in the acidic molecular sieve.
  • the inert organic solvent may be any solvent that does not react with the siloxane compound and the molecular sieve, such as n-hexane or cyclohexane. Alkane, n-heptane.
  • the vapor deposition process is carried out by passing a silane compound gas through an acidic molecular sieve and then calcining the treated acidic molecular sieve to obtain a silicon-modified acidic molecular sieve.
  • the silicon-modified acidic molecular sieve may have a silicon loading of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve. The silicon loading does not include the original silicon in the acidic molecular sieve.
  • the acidic molecular sieve may be impregnated with an alkaline earth or a rare earth metal salt aqueous solution, and then the impregnated acidic molecular sieve is filtered, dried and calcined to obtain a weight of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Alkaline earth or rare earth metal modified acidic molecular sieve of alkaline earth or rare earth metal may be impregnated with an alkaline earth or a rare earth metal salt aqueous solution, and then the impregnated acidic molecular sieve is filtered, dried and calcined to obtain a weight of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Alkaline earth or rare earth metal modified acidic molecular sieve of alkaline earth or rare earth metal Alkaline earth or rare earth metal modified acidic molecular sieve of alkaline earth or rare earth metal.
  • the acidic molecular sieve has an average particle size of less than or equal to 5 mm, preferably less than or equal to 0.5 mm, more preferably less than or equal to 0.1 mm, still more preferably less than or equal to 0.05 mm.
  • the dispersing agent is selected from the group consisting of alumina, silica, and mixtures thereof.
  • alumina, silica or alumina-silica which can be used as a dispersant, and they are commercially available from many suppliers.
  • the graphite powders usable in the present invention there are no particular limitations on the graphite powders usable in the present invention, and they are commercially available from many suppliers.
  • the graphite powder has an average particle size of from 0.05 to 5 microns.
  • the catalyst used in the process of the invention may be prepared by a process comprising the following steps:
  • the catalyst of the present invention comprises 0 to 10% by weight, such as 0 to 8% by weight, 0 to 7% by weight, 0 to 6% by weight, or 0 to 5% by weight, based on the weight of the catalyst. meter.
  • the catalyst of the present invention comprises 10 to 90% by weight of an inert carrier-limited high-dispersion metal oxide material, 10 to 90% by weight of an acidic molecular sieve, 0 to 10% by weight of graphite powder, and 0 to 40% by weight of the dispersant, wherein the total content of the inert carrier-limited high-dispersion metal oxide material and the acidic molecular sieve is from 60 to 100% by weight, based on the total weight of the catalyst.
  • a feedstock comprising a synthesis gas and an aromatic hydrocarbon other than p-xylene is contacted with a catalyst in a reaction zone under reaction conditions sufficient to convert at least a portion of the feedstock to provide a paraxylene-containing reaction.
  • Reaction effluent Reaction effluent.
  • syngas is used as one of the raw materials.
  • the term "combination” as used in this article "Gas” means a mixture of hydrogen and carbon monoxide.
  • the molar ratio of hydrogen to carbon monoxide in the synthesis gas feed may be from 1:9 to 9:1, preferably from 1:9 to 1:1.
  • an aromatic hydrocarbon other than p-xylene is also used as one of the raw materials.
  • the aromatic hydrocarbon other than para-xylene is at least one aromatic hydrocarbon having the following general formula:
  • starting aromatics examples include, but are not limited to, benzene, toluene, ethylbenzene, meta-xylene, o-xylene, cumene, mesitylene, tetramethylbenzene, biphenyl, and mixtures thereof.
  • the starting aromatics comprise toluene.
  • the reaction conditions include: a reaction temperature of 320 to 400 ° C, a molar ratio of hydrogen to carbon monoxide in the synthesis gas of 1:9 to 1:1, a reaction pressure of 5.0 to 10.0 MPa, 0.5 to the aromatic hydrocarbon weight hourly space velocity of 3h -1, and 1000 ⁇ 4000h -1 standard state of the volume hourly space velocity of the synthesis gas.
  • the beneficial effects of the invention include: compared with the method for alkylating toluene with methanol to produce para-xylene, the method of the invention has long catalyst life, less waste water, low raw material cost, wide source of raw materials, and energy consumption. Low advantage.
  • the inert carrier-limited high-dispersion metal oxide material used in the method of the invention has a large surface area, high catalytic activity, relatively expensive active metal oxide component content, and is prepared. The process has less heavy metal ion emissions and is easier to form into an industrial catalyst.
  • Figure 2 shows an XRD pattern of material REF-1 in Comparative Example 1.
  • Carbon monoxide conversion [( moles of carbon monoxide carbon in the feed) - (molar carbon monoxide carbon in the discharge)] ⁇ (moles of carbon monoxide in the feed) ⁇ 100%
  • Paraxylene ratio (p-xylene carbon moles in the discharge) ⁇ (carbon moles of all xylene in the discharge) ⁇ 100%
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then immersed in an equal volume at room temperature for 24 hours using an aqueous solution of (NH 4 ) 2 HPO 4 (the content of P in the aqueous solution was 5% by mass), and dried. Then, it was calcined at 550 ° C for 4 hours in an air atmosphere to obtain an acidic ZSM-5 molecular sieve containing 4% by mass of P, and numbered G.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then immersed in an equal volume at room temperature for 24 hours using an aqueous solution of H 3 BO 3 (the content of B in the aqueous solution was 10% by mass), dried, and then Calcination at 550 ° C for 4 h in an air atmosphere gave an acidic ZSM-5 molecular sieve containing 8 mass% B, numbered H.
  • the ammonium type ZSM-11 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then immersed in an equal volume at room temperature for 24 hours using an aqueous solution of H 3 BO 3 (the content of B in the aqueous solution was 10% by mass), dried, and then Calcination at 550 ° C for 4 h in an air atmosphere gave an acidic ZSM-11 molecular sieve containing 8 mass % B, numbered I.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 hours in an air atmosphere, and then treated with a cyclohexane solution of tetraethyl orthosilicate (the content of Si in the solution was 10% by mass) at 50 ° C for 4 hours.
  • reaction mixture was evaporated to dryness, and then calcined at 550 ° C for 4 hr in an air atmosphere to obtain an acidic ZSM-5 molecular sieve containing 8% by mass of Si (excluding the original Si of the molecular sieve), No. J.
  • 500 g of the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then treated with 1 L/min of nitrogen to carry 5% by volume of tetramethylsilane at 200 ° C for 3 hours, and then calcined at 550 ° C in an air atmosphere. 4h, an acidic ZSM-5 molecular sieve containing 2% by mass of Si (excluding the original Si of the molecular sieve) was obtained, numbered K.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then impregnated at room temperature with an aqueous solution of magnesium nitrate and cerium nitrate (contents of Mg and Ce in the aqueous solution were respectively 5% by mass and 1.3% by mass). After 24 hours, after drying, it was calcined at 550 ° C for 4 h in an air atmosphere to obtain an acidic ZSM-5 molecular sieve containing 4% by mass of Mg and 1% by mass of Ce, numbered L.
  • reaction temperature (T) 400 ° C
  • reaction pressure (P) 7.0 MPa
  • GHSV gas volumetric space velocity
  • WHSV tonnage mass space velocity
  • Example 25 was repeated, but the catalyst M in Example 25 was replaced with the catalyst N-R.
  • the reaction results are shown in Table 2.
  • Example 25 was repeated, but the catalyst M in Example 25 was replaced with the catalyst REF-2.
  • the reaction results are shown in Table 2.
  • Catalyst S 5g was placed in a stainless steel reaction tube having an inner diameter of 8 mm, and activated with 50 ml/min of hydrogen at 300 ° C for 4 h.
  • the product was analyzed by gas chromatography, and the reaction results are shown in Table 3.
  • reaction temperature (T) 400 ° C
  • reaction pressure (P) 4.0 MPa
  • GHSV syngas volume space velocity
  • V(H 2 )% 40%
  • WHSV toluene mass space velocity
  • Example 25 The catalyst deactivated in Example 25 was treated at 550 ° C for 10 h with a mixture of 2 vol% oxygen and 98 vol% nitrogen to regenerate the catalyst for one round. The reaction was then carried out under the conditions of Example 25. A total of five rounds were regenerated in the same way. The catalytic activity data after 500 h of each reaction was selected for comparison. The results are shown in Table 4.
  • Example 31 The catalyst after deactivation in Example 31 was utilized from 2% by volume of oxygen and 98% by volume of nitrogen. The composition of the mixture was treated at 550 ° C for 10 h to allow the catalyst to be regenerated for one round. Then, the reaction was carried out under the conditions of Example 31. A total of five rounds were regenerated in the same way. The catalytic activity data after 500 h of each reaction was selected for comparison. The results are shown in Table 5.
  • Example 25 was repeated except that the starting material toluene was replaced with other aromatic hydrocarbons.
  • the reaction results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种由合成气与芳烃直接制取对二甲苯的方法,该方法包括使包含合成气和除对二甲苯以外的芳烃的原料与催化剂在反应区中在足以转化至少部分原料的反应条件下接触,以得到包含对二甲苯的反应流出物;和从所述反应流出物中分离对二甲苯,其中所述催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计,和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。

Description

一种由合成气与芳烃直接制取对二甲苯的方法 技术领域
本发明涉及一种由合成气与芳烃直接制取对二甲苯的方法。
背景技术
对二甲苯(PX)是重要的基本化工原料,主要用来制备对二苯甲酸(PTA),进而生产聚对苯二甲酸乙二醇酯(PET)。目前,对二甲苯主要由芳烃联合装置得到,其中由石脑油通过重整、芳烃抽提、芳烃分馏、歧化和烷基转移,二甲苯异构化以及吸附分离得到高纯度PX产品。因热力学限制,对二甲苯在三个二甲苯中比例不到25%,物料循环处理量大,能耗高,投资高。利用甲醇对甲苯进行烷基化制对二甲苯能够突破热力学限制得到高比例的对二甲苯,是一个有前景的PX生产路线。
众所周知,甲醇一般以合成气为原料进行生产。如果利用合成气与甲苯反应直接制取对二甲苯,这样的方法可以缩短反应路径、节约能耗、减少污水排放以及降低固定投资。
WO2004/043593公开了通过使芳烃与包含一氧化碳和氢气的进料在选择性活化的催化剂存在下反应来选择性生产对二甲苯的方法以及该方法中使用的催化剂,所述催化剂包含酸性硅酸盐基材料和有催化活性的金属或金属氧化物。
中国专利申请CN104945219A公开了苯与合成气一步制备甲苯和对二甲苯的方法及其中使用的催化剂,所述催化剂包含金属氧化物组分和固体酸组分。
美国专利号4,487,984公开了通过使芳族化合物与合成气在烷基化条件下在双功能催化剂存在下反应制备烷基芳族化合物的方法,所述双功能催化剂包含铜、锌和铝或铬的复合氧化物和硅铝酸盐。
仍然需要开发新的合成气与芳烃直接制取对二甲苯的方法,该方法可以实现高的原料转化率和对二甲苯选择性,并且是环境友好的。
发明内容
为了克服现有技术中存在的问题,本发明人进行了勤勉的研究。结果发现,一种包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一的催化剂非常适合由合成气和芳烃直接制备对二甲苯的方法,使用所述催化剂的、由合成气和芳烃直接制备对二甲苯的方法可以实现高的原料转化率和对二甲苯选择性,并且是环境友好的。在上述发现基础上完成了本发明。
因此,本发明的一个目的是提供一种由合成气和芳烃直接制备对二甲苯的方法,该方法包括:
使包含合成气和除对二甲苯以外的芳烃的原料与催化剂在反应区中在足以转化至少部分原料的反应条件下接触,以得到包含对二甲苯的反应流出物;和
从所述反应流出物中分离对二甲苯,
其中所述催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计,和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一个实施方案中,所述反应区含有一个固定床反应器,或串联和/或并联的多个固定床反应器。
在一个实施方案中,所述反应条件包括:300~450℃的反应温度,0.5~10.0MPa的反应压力,1∶9~9∶1的合成气中氢气与一氧化碳的摩尔比,0.01~20h-1的芳烃重时空速,和1000~20000h-1的标准状态下合成气体积小时空速。
优选实施方案的描述
在第一方面,本发明提供了一种由合成气和芳烃直接制备对二甲苯的方法,该方法包括:
使包含合成气和除对二甲苯以外的芳烃的原料与催化剂在反应区中在足以转化至少部分原料的反应条件下接触,以得到包含对二甲苯的反应流出物;和
从所述反应流出物中分离对二甲苯,
其中所述催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计,和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
用于对二甲苯生产的催化剂
如上所述,本发明方法中使用的催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计,和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料中的金属氧化物是除去铝和放射性元素外的金属中至少一种的氧化物。优选地,所述惰性载体限域的高分散金属氧化物材料中的金属氧化物为锌、铬、锆、铜、锰、铂和钯中的至少一种的氧化物。更优选地,所述惰性载体限域的高分散金属氧化物材料中的金属氧化物为锌、铬、锆中的至少一种的氧化物。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料中金属氧化物的以金属计的含量低于或等于10重量%;优选低于或等于5重量%;更优选低于或等于2重量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计。除非另外指明,本文中使用的术语“金属氧化物的 含量”不包括氧化铝的含量,如果存在氧化铝的话。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料中金属氧化物的平均颗粒尺度小于或等于100nm,优选小于或等于50nm,更优选小于或等于20nm。
在一个优选的实施方案中,所述惰性载体限域的高分散金属氧化物材料的X射线粉末衍射图不显示所述金属氧化物的特征衍射峰。
所述惰性载体限域的高分散金属氧化物材料与本领域已知的常规金属复合氧化物材料不同。例如,前者具有高的金属氧化物分散度(无金属氧化物的特征XRD衍射峰)、小的金属氧化物质量分数(一般小于10%)和小的金属氧化物平均颗粒尺寸(一般小于100nm),并且通常具有大的比表面积(一般大于400m2/g)。常规复合金属氧化物材料如本领域已知的、用于低温甲醇合成的铜锌铝复合氧化物材料(CuZnAlOx)、用于高温甲醇合成的锌铬铝复合氧化物材料(ZnCrAlOx)以及锌锆复合氧化物材料(ZnZrOx)具有一般大于80%的金属氧化物质量分数,具有显著的金属氧化物特征XRD衍射峰,并且具有一般低于100m2/g的比表面积。
不希望局限于任何特定的理论,据信在本发明的惰性载体限域的高分散金属氧化物材料中大量存在的惰性载体既能提供大的比表面积,又能因限域效应起到稳定用作催化活性组分的金属氧化物的作用。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料的平均粒径小于或等于5mm,优选小于或等于1mm,更优选小于或等于0.5mm,仍更优选小于或等于0.1mm,仍更优选小于或等于0.05mm。
在一些实施方案中,所述惰性载体限域的高分散金属氧化物材料可以通过共沉淀-煅烧方法制备。例如,在使用氧化铝作为载体的情况下,所述惰性载体限域的高分散金属氧化物材料可以如下所述制备:将催化活性金属的盐与铝盐配成混合金属盐水溶液;使所述混合金属盐水溶液和沉淀剂水溶液接触,以使所述混合金属盐水溶液中的金属离子共沉淀;老化;和将沉淀物洗涤、干燥后煅烧。所述的沉淀剂的实例包括但不限于碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾、碳酸氢铵、氨水、氢氧化钠、氢氧化钾和它们的混合物。
在一个实施方案中,所述共沉淀过程中温度为0℃至90℃,共沉淀过 程中pH值为7.0至8.5,老化时间不低于1小时,煅烧温度为300℃至700℃。
在一个具体的实施方案中,所述惰性载体限域的高分散金属氧化物材料如下制备:将铝盐和催化活性金属的盐配成总金属离子浓度为0.1mol/L至3.5mol/L的混合金属盐水溶液;然后使所述混合金属盐水溶液与摩尔浓度为0.1mol/L至3.5mol/L的沉淀剂水溶液在0℃至90℃的温度下在搅拌下接触以共沉淀金属盐中的金属离子并且然后老化一段时间,共沉淀过程中溶液pH值可以为7.0至8.5,老化时间不低于1小时;将所得到的沉淀物过滤和洗涤后在例如300℃至700℃的温度下煅烧,制得惰性载体限域的高分散金属氧化物材料。
对所述铝盐和所述催化活性金属的盐的种类没有特殊的限制,只要它们是水溶性的,例如在25℃下具有大于1g/L的水溶解度。所述铝盐和所述催化活性金属的盐的实例包括但不限于盐酸盐、硫酸盐和硝酸盐。
对所述混合金属盐水溶液与所述沉淀剂水溶液的接触方式没有特殊的限制。在一个具体的实施方案中,所述接触可以采取并流加料、正加料或反加料的方式完成。
在另外一些实施方案中,所述惰性载体限域的高分散金属氧化物材料可以通过溶胶-凝胶方法制备。例如,在使用至少二氧化硅作为载体的情况下,所述惰性载体限域的高分散金属氧化物材料可以如下所述制备:将催化活性金属的盐的水溶液与沉淀剂水溶液一起加入到硅氧烷基化合物中,并允许共沉淀和溶胶凝胶反应进行,然后将所得到的凝胶洗涤、干燥后煅烧,制得惰性载体限域的高分散金属氧化物材料。所述的沉淀剂的实例包括但不限于碳酸铵、氨水、碳酸氢铵、碳酸二氢铵、尿素中的一种或多种。
在一个实施方案中,所述硅氧烷基化合物为正硅酸烷基酯,其实例包括但不限于正硅酸甲酯、正硅酸乙酯、正硅酸正丙酯、正硅酸异丙酯、正硅酸正丁酯、正硅酸异丁酯、正硅酸叔丁酯和它们的混合物。
本发明催化剂中的酸性分子筛组分选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一些实施方案中,酸性分子筛的改性是磷改性、硼改性、硅改性、碱土金属改性和稀土金属改性中的一种或多种。
在一些实施方案中,所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原 子比为Si/Al=3~200,优选Si/Al=100~150。
在一些实施方案中,所述酸性ZSM-5与ZSM-11分子筛的晶体是微米尺度或纳米尺度,晶体中含有微孔结构或介孔-微孔结构。所述改性的酸性分子筛可商购得到,或者可以通过本质上已知的方法制备。对制备所述改性的酸性分子筛的具体方法没有特殊的限制。例如,可以通过对可商购得到的上述酸性ZSM-5分子筛或酸性ZSM-11分子筛进行改性处理得到所述改性的酸性分子筛。
在一个具体实施方案中,可以通过用例如H3PO4,NH4H2PO4或(NH4)2HPO4水溶液浸渍酸性分子筛,然后将所述浸渍过的酸性分子筛烘干和然后煅烧,得到基于改性分子筛的重量计含0.5~10.0重量%的磷的磷改性酸性分子筛。
在另一个具体实施方案中,可以通过用例如H3BO3水溶液浸渍酸性分子筛,然后将所述浸渍过的酸性分子筛烘干和然后煅烧,得到基于改性分子筛的重量计含0.5~10.0重量%的硼的硼改性酸性分子筛。
在又一个具体实施方案中,可以通过用硅氧烷化合物经液相沉积法处理和/或用硅烷化合物经气相沉积法处理来制备硅改性的酸性分子筛。可以使用的硅氧烷化合物和硅烷化合物分别由以下结构式表示:
Figure PCTCN2017112109-appb-000001
其中R1、R2、R3、R4、R5、R6、R7和R8各自独立地为C1-10烷基。所述硅氧烷化合物的一个实例为正硅酸乙酯,和所述硅烷化合物的一个实例为四甲基硅烷。
在一个具体实施方案中,所述液相沉积法如下进行:将硅氧烷化合物溶解到惰性有机溶剂中以提供硅氧烷化合物溶液,然后用所述溶液浸泡或浸渍酸性分子筛,干燥和然后煅烧,得到硅改性的酸性分子筛。基于改性分子筛的重量计,该硅改性的酸性分子筛中硅负载量可以为0.5~10.0重量%,所述硅负载量不包括酸性分子筛中原有的硅。所述的惰性有机溶剂可以是任何不与硅氧烷化合物以及分子筛反应的溶剂,例如正己烷、环己 烷、正庚烷。
在一个具体实施方案中,所述气相沉积法如下进行:使硅烷化合物气体通过酸性分子筛,然后煅烧处理过的酸性分子筛,得到硅改性的酸性分子筛。基于改性分子筛的重量计,该硅改性的酸性分子筛中硅负载量可以为0.5~10.0重量%。所述硅负载量不包括酸性分子筛中原有的硅。
在一个具体实施方案中,可以通过用碱土或稀土金属盐水溶液浸渍酸性分子筛,然后将浸渍过的酸性分子筛过滤、烘干和煅烧,得到基于改性分子筛的重量计含0.5~10.0重量的%的碱土或稀土金属的碱土或稀土金属改性酸性分子筛。
在一个实施方案中,所述酸性分子筛的平均粒径小于或等于5mm,优选小于或等于0.5mm,更优选小于或等于0.1mm,仍更优选小于或等于0.05mm。
在一些实施方案中,所述分散剂选自氧化铝、二氧化硅和它们的混合物。对可用作分散剂的氧化铝、二氧化硅或氧化铝-二氧化硅没有特殊的限制,并且它们可从很多供应商处商购得到。
对于可用于本发明中的石墨粉没有特殊的限制,并且它们可从很多供应商处商购得到。在一些实施方案中,所述石墨粉具有0.05~5微米的平均颗粒大小。
在一个实施方案中,本发明方法中使用的所述催化剂可以通过包括以下步骤的方法制备:
(1)提供惰性载体限域的高分散金属氧化物材料;
(2)提供改性的酸性分子筛;
(3)混合由步骤(1)得到的惰性载体限域的高分散金属氧化物材料、由步骤(2)得到的改性的酸性分子筛以及任选的石墨粉和分散剂中至少之一,并将所得到的混合物模制成型。
在一些实施方案中,本发明的催化剂包含10~90重量%的惰性载体限域的高分散金属氧化物材料。惰性载体限域的高分散金属氧化物材料的含量的下限可以是12,15,18,20,22,25,28,30,32,35,38,40,42,45,48,或50重量%,并且上限可以是88,85,82,80,78,75,72,70,68,65,62,60,58,55,52或50重量%,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含10~90重量%的酸性分子筛。酸性分子筛的含量的下限可以是12,15,18,20,22,25,28,30,32,35,38,40,42,45,48,或50重量%,并且上限可以是88,85,82,80,78,75,72,70,68,65,62,60,58,55,52,或50重量%,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含0~10重量%,例如0~8重量%,0~7重量%,0~6重量%,或0~5重量%的石墨粉,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含0~40重量%,例如0~38重量%,0~35重量%,0~30重量%,或0~25重量%的分散剂,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含10~90重量%的惰性载体限域的高分散金属氧化物材料,10~90重量%的酸性分子筛,0~10重量%的石墨粉,和0~40重量%的分散剂,其中惰性载体限域的高分散金属氧化物材料和酸性分子筛的总含量为60~100重量%,所述重量百分数基于催化剂的总重量计。在一些优选的实施方案中,本发明的催化剂包含20~80重量%的惰性载体限域的高分散金属氧化物材料,20~80重量%的酸性分子筛,0~3重量%的石墨粉,和0~30重量%的分散剂,所述重量百分数基于催化剂的总重量计。
对所述催化剂的形状没有特殊的限制,只有其适合意图应用的工艺。在一个具体实施方案中,所述催化剂的颗粒形状可以为球形、条形、圆柱形、半圆柱形、棱柱形、三叶草形、环形、丸形、规则或不规则颗粒性或片状。
在本发明中,术语“粉末”、“颗粒”和“粉状颗粒”可以互换使用。
由合成气和芳烃制备对二甲苯的方法
如前所述,在本发明的方法中,包含合成气和除对二甲苯以外的芳烃的原料与催化剂在反应区中在足以转化至少部分原料的反应条件下接触,以得到包含对二甲苯的反应流出物。
在本发明的方法中,使用合成气作为原料之一。本文中使用的术语“合 成气”是指氢气与一氧化碳的混合气。在所述合成气原料中,氢气与一氧化碳的摩尔比可以为1∶9-9∶1,优选为1∶9-1∶1。
在本发明的方法中,还使用除对二甲苯以外的芳烃作为原料之一。在一个实施方案中,所述除对二甲苯以外的芳烃是至少一种具有以下通式的芳烃:
Figure PCTCN2017112109-appb-000002
其中R9、R10、R11、R12、R13和R14各自独立地为氢,或C1-C10烃基,优选C1-C6烃基,例如甲基、乙基、丙基、异丙基、苯基。
可用于本发明方法的所述原料芳烃的实例包括但不限于:苯、甲苯、乙苯、间二甲苯、邻二甲苯、异丙苯、均三甲苯、均四甲苯、联苯和它们的混合物。在一个优选的实施方案中,所述原料芳烃包含甲苯。
在本发明的方法中,所述反应区可以为一个或多个固定床反应器。所述固定床反应器可以采用连续模式操作。当采用多个固定床反应器时,所述多个反应器可以呈串联、并联、或者串联与并联相结合的构型。
在本发明的方法中,所述反应条件包括:300~450℃的反应温度,0.5~10.0MPa的反应压力,1∶9~9∶1的合成气中氢气与一氧化碳的摩尔比,0.01~20h-1的芳烃重时空速,和1000~20000h-1的标准状态下合成气体积小时空速。
在一个优选的实施方案中,所述反应条件包括:320~400℃的反应温度,1∶9~1∶1的合成气中氢气与一氧化碳的摩尔比,5.0~10.0MPa的反应压力,0.5~3h-1的芳烃重时空速,和1000~4000h-1的标准状态下合成气体积小时空速。
不希望局限于任何具体理论,据信合成气与芳烃反应制取对二甲苯的反应过程非常复杂,并且包括一系列的反应过程,例如:
1)合成气直接制取芳烃反应(以直接制取甲苯为例)
Figure PCTCN2017112109-appb-000003
2)合成气与芳烃的烷基化反应(以合成气与甲苯烷基化反应为例)
Figure PCTCN2017112109-appb-000004
3)烷基转移反应(以间二甲苯制对二甲苯反应以及均三甲苯与苯制对二甲苯为例)
Figure PCTCN2017112109-appb-000005
CO中的氧原子主要进入了CO2中,因此反应过程废水产生很少。
反应流出物的分离
在本发明的方法中,从所述包含对二甲苯的反应流出物中分离对二甲苯产物可以按照本质上已知的方法。
本发明能产生的有益效果包括:与用甲醇对甲苯进行烷基化制对二甲苯的方法相比,本发明的方法具有催化剂寿命长,产生废水少,原料成本低,原料来源广泛,能耗低的优点。与常规金属复合氧化物材料相比,本发明方法中使用的惰性载体限域的高分散金属氧化物材料具有比表面大、催化活性高、相对较贵的活性金属氧化物组分含量低、制备过程中重金属离子排放少和更容易成型为工业催化剂的优点。
附图说明
图1显示了实施例1中材料A的XRD图。
图2显示了对比例1中材料REF-1的XRD图。
具体实施方式
下面结合实施例详述本发明,但本发明并不局限于这些实施例。
除非另外指明,本发明的实施例中的原料均通过商业途径购买。
在实施例中,利用带有气体自动进样器、连接TDX-1填充柱的TCD检测器以及连接FFAP与PLOT-Q毛细管柱的FID检测器的两台Agilent7890气相色谱仪进行气体组成自动分析。
在实施例中,转化率和选择性基于碳摩尔数进行计算:
一氧化碳转化率=[(进料中的一氧化碳碳摩尔数)-(出料中的一氧化碳碳摩尔数)]÷(进料中的一氧化碳碳摩尔数)×100%
甲苯转化率=[(进料中的甲苯碳摩尔数)-(出料中的甲苯碳摩尔数)]÷(进料中的甲苯碳摩尔数)×100%二甲苯选择性=(出料中的二甲苯碳摩尔数)÷(出料中的所有烃类产物的碳摩尔数-原料甲苯的碳摩尔数)×100%
对二甲苯比例=(出料中的对二甲苯碳摩尔数)÷(出料中的所有二甲苯的碳摩尔数)×100%
当原料芳烃为其他芳烃时,计算方法与甲苯一致。
惰性载体限域的高分散金属氧化物材料
实施例1
配制含0.05mol/L Zn2+与1.0mol/L Al3+的混合硝酸盐水溶液1L,将0.5mol/L的氨水溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.2,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌氧化物材料,编号为A。A含8.3重量%的锌,XRD图如图1所示。
实施例2
配制含0.02mol/L Zn2+、0.02mol/L Cr3+与1.0mol/L Al3+的混合硝酸盐水溶液1L,将1.0mol/L的碳酸铵溶液缓慢加入其中,同时控制共沉淀反 应温度为70℃和控制pH值为7.5,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌铬氧化物材料,编号为B。B含3.1重量%的锌和2.5重量%的铬。
实施例3
配制含0.01mol/L Zn2+、0.01mol/L Zr4+与1.0mol/L Al3+的混合硝酸盐水溶液1L,将1.2mol/L的碳酸钠溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.3,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌锆氧化物材料,编号为C。C含1.5质量%的锌和2.1质量%的锆。
实施例4
配制含0.01mol/L Zn2+、0.02mol/L Cu2+与1.0mol/L Al3+的混合硝酸盐水溶液1L,将1.5mol/L的碳酸钾溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.9,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌铜氧化物材料,编号为D。D含1.5质量%的锌和3.1质量%的铜。
实施例5
配制含0.2mol/L Zn2+与0.2mol/L Cr3+的混合硝酸盐水溶液100mL,配制1.0mol/L的尿素水溶液100mL。将上述两种溶液滴加入1mol的正硅酸乙酯中,室温反应24h,获得凝胶。将所述凝胶用去离子水洗涤,在100℃干燥,500℃煅烧4h,得到二氧化硅作为惰性载体限域的高分散锌铬氧化物材料,编号为E。E含1.8质量%的锌和1.5质量%的铬。
实施例6
配制含0.2mol/L Zn2+与0.2mol/L Zr4+的混合硝酸盐水溶液100mL,配制1.0mol/L的尿素水溶液100mL。将上述两种溶液滴加入1mol的正硅酸乙酯中,室温反应24h,获得凝胶。将所述凝胶用去离子水洗涤,在100℃干燥,500℃煅烧4h,得到氧化硅作为惰性载体限域的高分散锌锆氧化物材料,编号为F。F含1.8质量%的锌和2.5质量%的锆。
对比例1
配制含1.0mol/L Zn2+、0.50mol/L Cr3+与0.20mol/L Al3+的混合硝酸盐水溶液1L,将1.0mol/L的碳酸铵溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.5,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到锌铬铝复合氧化物,编号为REF-1。REF-1的XRD图如图2所示。
改性酸性分子筛制备
实施例7
将Si/Al=25(原子比)的钠型ZSM-5(得自南开大学催化剂厂)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20∶1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用(NH4)2HPO4水溶液(水溶液中P的含量为5质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含4质量%P的酸性ZSM-5分子筛,编号为G。
实施例8
将Si/Al=200(原子比)的钠型ZSM-5(得自南开大学催化剂厂)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20∶1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用H3BO3水溶液(水溶液中B的含量为10质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含8质量%B的酸性ZSM-5分子筛,编号为H。
实施例9
将Si/Al=40(原子比)的钠型ZSM-11(得自奥科公司)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20∶1),得到铵型ZSM-11分子筛。将该铵型ZSM-11分子筛在空气气氛下550℃煅烧4h,然后利用H3BO3水溶液(水溶液中B的含量为10质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含8质量%B的酸性ZSM-11分子筛,编号为I。
实施例10
将Si/Al=3(原子比)的钠型ZSM-5(得自奥科公司)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20∶1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用正硅酸乙酯的环己烷溶液(溶液中Si的含量为10质量%)在50℃下处理4小时。将反应混合物蒸干后在空气气氛下550℃煅烧4h,得到含8质量%Si(不包括分子筛原有的Si)的酸性ZSM-5分子筛,编号为J。
实施例11
将Si/Al=80(原子比)的钠型ZSM-5(得自复旭公司)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20∶1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛500g在空气气氛下550℃煅烧4h,然后利用1L/min氮气携带5%体积分数的四甲基硅烷在200℃下处理3小时,再在空气气氛下550℃煅烧4h,得到含2质量%Si(不包括分子筛原有的Si)的酸性ZSM-5分子筛,编号为K。
实施例12
将Si/Al=60(原子比)的钠型ZSM-5(得自南开大学催化剂厂)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20∶1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用硝酸镁与硝酸铈混合水溶液(水溶液中Mg与Ce的含量分别为5质量%和1.3质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含4质量%Mg和1质量%Ce的酸性ZSM-5分子筛,编号为L。
催化剂制备
实施例13
将20质量份得自实施例1的惰性载体限域的高分散金属氧化物材料A、70质量份得自实施例7的酸性分子筛G、5质量份石墨粉和5质量份作为分散剂的氧化硅均匀混合,然后用打片机打片成直径为4mm,高度为4mm的柱状催化剂,编号为M。制备方案汇总见表1。
实施例14~18
制备方法与实施例13相似,具体方案见表1。
对比例2
将20质量份得自对比例1的金属复合氧化物REF-1、70质量份得自实施例7的酸性分子筛G、5质量份石墨粉和5质量份作为分散剂的氧化硅均匀混合,然后用打片机打片成直径为4mm,高度为4mm的柱状催化剂,编号为REF-2。
实施例19
将75质量份得自实施例1的惰性载体限域的高分散金属氧化物材料A与25质量份得自实施例7的酸性分子筛G均匀混合并碾碎成小于0.05mm的粉末,然后压片筛分制成1-2mm颗粒催化剂,编号为S,制备方案汇总见表1。
实施例20~24
制备方法与实施例19相似,具体方案见表1。
对比例3
将75质量份得自对比例1的金属复合氧化物REF-1与25质量份得自实施例7的酸性分子筛G均匀混合并碾碎成小于0.05mm的粉末,然后压片筛分制成1-2mm颗粒催化剂,编号为REF-3。
表1催化剂制备方案
Figure PCTCN2017112109-appb-000006
催化剂性能测试
实施例25
将催化剂M 200g装入内径为28mm的不锈钢反应管内,用1000ml/min氢气在300℃下活化4h。然后将氢气流切换为合成气流并引入甲苯流,并在以下条件下反应:反应温度(T)=400℃,反应压力(P)=7.0MPa,标准状况下气体体积空速(GHSV)=6000h-1,合成气中CO与H2的体积比为1∶1,甲苯质量空速(WHSV)=1.0h-1。反应稳定后,用气相色谱分析产物。反应结果见表2。
实施例26-30
重复实施例25,但是将实施例25中的催化剂M换成催化剂N-R。反应结果见表2。
对比例4
重复实施例25,但是将实施例25中的催化剂M换成催化剂REF-2。反应结果见表2。
表2实施例25-30和对比例4中的催化反应结果
Figure PCTCN2017112109-appb-000007
实施例31
将催化剂S 5g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300在℃下活化4h。然后将氢气流切换为合成气流并引入甲苯流,并在以下条件下反应:反应温度(T)=400℃,反应压力(P)=4.0MPa,标准状况下合成气气体体积空速(GHSV)=4000h-1,合成气中CO与H2的体积比为1.5∶1,甲苯质量空速(WHSV)=0.5h-1。反应500h后,用气相色谱分析产物,反应结果见表3。
实施例32-36
反应条件和反应结果见表3。其他操作同实施例31。
对比例5
将催化剂REF-3 5g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300在℃下活化4h,以下条件下反应:反应温度(T)=400℃,反应压力(P)=4.0MPa,标准状况下合成气体积空速(GHSV)=4000h-1,合成气(CO与H2混合气)中氢气的体积分数V(H2)%=40%,甲苯质量空速(WHSV)=0.5h-1。反应500h后,用气相色谱分析产物,反应结果见表3。
表3实施例31-36和对比例5中的催化反应结果
Figure PCTCN2017112109-appb-000008
催化剂再生性能测试
实施例37
将实施例25中失活后的催化剂利用由2体积%氧气和98体积%氮气组成的混合气在550℃处理10h,使得催化剂再生一轮。然后在实施例25的条件下反应。按照同样的方式总共再生五轮。选取每轮反应500h后的催化活性数据进行比较,结果见表4。
表4实施例37中的催化剂再生性能测试结果
Figure PCTCN2017112109-appb-000009
实施例38
将实施例31中失活后的催化剂利用由2体积%氧气和98体积%氮气 组成的混合气在550℃处理10h,使得催化剂再生一轮。然后在实施例31的条件下反应。按照同样的方式总共再生五轮。选取每轮反应500h后的催化活性数据进行比较,结果见表5。
表5实施例38中的催化剂再生性能测试结果
Figure PCTCN2017112109-appb-000010
实施例39-44
重复实施例25,但是将原料甲苯换为其他芳烃。反应结果见表6。
表6催化反应结果
Figure PCTCN2017112109-appb-000011
以上所述,仅是本发明的几个实施例,并非对本发明做任何形式的限制,虽然本发明以较佳实施例揭示如上,然而并非用以限制本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (13)

  1. 一种由合成气与芳烃直接制备对二甲苯的方法,该方法包括:
    使包含合成气和除对二甲苯以外的芳烃的原料与催化剂在反应区中在足以转化至少部分原料的反应条件下接触,以得到包含对二甲苯的反应流出物;和
    从所述反应流出物中分离对二甲苯,
    其中所述催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计,和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
  2. 权利要求1所述的方法,该方法具有以下特征中至少之一:
    -所述反应区包括一个固定床反应器,或者以串联和/或并联方式连接的多个固定床反应器;
    -所述反应条件包括:300~450℃的反应温度,0.5~10.0MPa的反应压力,1:9~9:1的合成气中氢气与一氧化碳的摩尔比,0.01~20h-1的芳烃重时空速,和1000~20000h-1的标准状态下合成气体积小时空速;
    -所述金属氧化物是锌、铬、锆、铜、锰、铂和钯中的至少一种的氧化物;
    -所述惰性载体限域的高分散金属氧化物材料中金属氧化物以金属计的含量低于或等于5重量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计;
    -所述惰性载体限域的高分散金属氧化物材料中金属氧化物的颗粒尺度小于或等于100nm;
    -酸性分子筛的改性是磷改性、硼改性、硅改性、碱土金属改性和稀土金属改性中的一种或多种;
    -所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原子比为Si/Al=3~200;
    -所述催化剂的形状为球形、条形、圆柱形、半圆柱形、棱柱形、三叶草形、环形、丸形、规则或不规则颗粒性或片状;和
    -所述除对二甲苯以外的芳烃是至少一种具有以下通式的芳烃:
    Figure PCTCN2017112109-appb-100001
    其中R9、R10、R11、R12、R13和R14各自独立地为氢,或C1-C10烃基。
  3. 权利要求1所述的方法,其中所述催化剂包含10~90重量%的惰性载体限域的高分散金属氧化物材料,10~90重量%的酸性分子筛,0~10重量%的石墨粉,和0~40重量%的分散剂,其中惰性载体限域的高分散金属氧化物材料和酸性分子筛的总含量为60~100重量%,所述重量百分数基于催化剂的总重量计。
  4. 权利要求1所述的方法,其中所述催化剂包含20~80重量%的惰性载体限域的高分散金属氧化物材料,20~80重量%的酸性分子筛,0~5重量%的石墨粉,和0~30重量%的分散剂,所述重量百分数基于催化剂的总重量计。
  5. 权利要求1所述的方法,其中所述惰性载体限域的高分散金属氧化物材料的平均粒径小于或等于5mm,并且所述酸性分子筛颗粒的平均粒径小于或等于5mm;优选所述惰性载体限域的高分散金属氧化物材料的平均粒径小于或等于0.05mm,并且所述酸性分子筛颗粒的平均粒径小于或等于0.05mm。
  6. 权利要求1所述的方法,其中所述催化剂通过包括以下步骤的方法制备:
    (1)提供惰性载体限域的高分散金属氧化物材料;
    (2)提供改性的酸性分子筛;
    (3)混合由步骤(1)得到的惰性载体限域的高分散金属氧化物材料、由步骤(2)得到的改性的酸性分子筛、以及任选的石墨粉和分散剂中至少之一,并将所得到的混合物模制成型。
  7. 权利要求6所述的方法,其中所述用于制备催化剂的方法具有以下特征中至少之一:
    -在步骤(1)中,通过沉淀-煅烧方法制备所述惰性载体限域的高分散金属氧化物材料,或者通过溶胶-凝胶方法制备所述惰性载体限域的高分散金属氧化物材料;
    -所述改性的酸性分子筛选自磷改性、硼改性、硅改性、碱土金属改性和/或稀土金属改性的ZSM-5分子筛和ZSM-11分子筛;
    -在步骤(3)中,采用挤出方法或模压方法将所述混合物模制成催化剂颗粒。
  8. 权利要求6所述的方法,其中在所述用于制备催化剂的方法的步骤(1)中,通过包括如下步骤的方法提供所述惰性载体限域的高分散金属氧化物材料:将催化活性金属的盐与铝盐配成混合金属盐水溶液;使所述混合金属盐水溶液和沉淀剂水溶液接触,以使所述混合金属盐水溶液中的金属离子共沉淀;老化;和将沉淀物洗涤、干燥后煅烧,制得惰性载体限域的高分散金属氧化物材料。
  9. 权利要求8所述的方法,其具有以下特征中至少之一:
    -所述催化活性金属的盐和所述铝盐选自盐酸盐、硫酸盐和硝酸盐;
    -所述沉淀剂选自碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾、碳酸氢铵、氨水、氢氧化钠、氢氧化钾和它们的混合物;
    -所述共沉淀在0℃至90℃下进行;
    -所述共沉淀过程中pH值为7.0至8.5;
    -所述老化时间不低于1小时;
    -所述煅烧在300℃至700℃下进行。
  10. 权利要求6所述的方法,其中在所述用于制备催化剂的方法的步骤(1)中,通过包括如下步骤的方法提供所述惰性载体限域的高分散金属氧化物材料:将催化活性金属的盐的水溶液与沉淀剂水溶液一起加入到硅氧烷基化合物中,并允许共沉淀和溶胶凝胶反应进行,然后将所得到的凝胶洗涤、干燥后煅烧,制得惰性载体限域的高分散金属氧化物材料。
  11. 权利要求10所述的方法,其具有以下特征中至少之一:
    -所述沉淀剂选自碳酸铵、氨水、碳酸氢铵、碳酸二氢铵、尿素和它 们的混合物;
    -所述硅氧烷基化合物为正硅酸烷基酯,优选选自正硅酸甲酯、正硅酸乙酯、正硅酸正丙酯、正硅酸异丙酯、正硅酸正丁酯、正硅酸异丁酯、正硅酸叔丁酯和它们的混合物。
  12. 权利要求1所述的方法,其中所述除对二甲苯以外的芳烃选自下组:苯、甲苯、乙苯、间二甲苯、邻二甲苯、异丙苯、均三甲苯、均四甲苯、联苯和它们的混合物。
  13. 权利要求1所述的方法,其中所述反应条件包括:320~400℃的反应温度,5.0~10.0MPa的反应压力,1:9~1:1的合成气中氢气与一氧化碳的摩尔比,0.5~3h-1的芳烃质量空速,和1000~4000h-1的标准状态下合成气体积空速。
PCT/CN2017/112109 2017-11-15 2017-11-21 一种由合成气与芳烃直接制取对二甲苯的方法 WO2019095404A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17932310.0A EP3712124A4 (en) 2017-11-15 2017-11-21 PROCESS FOR THE DIRECT PREPARATION OF P-XYLENE FROM SYNTHETIC GAS AND AROMATIC HYDROCARBON
EA202091180A EA202091180A1 (ru) 2017-11-15 2017-11-21 Способ прямого получения п-ксилола из синтез-газа и ароматического углеводорода
US16/763,015 US11225443B2 (en) 2017-11-15 2017-11-21 Method for directly preparing p-xylene from synthetic gas and aromatic hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711133301.1A CN109776249B (zh) 2017-11-15 2017-11-15 一种由合成气与芳烃直接制取对二甲苯的方法
CN201711133301.1 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019095404A1 true WO2019095404A1 (zh) 2019-05-23

Family

ID=66495467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112109 WO2019095404A1 (zh) 2017-11-15 2017-11-21 一种由合成气与芳烃直接制取对二甲苯的方法

Country Status (5)

Country Link
US (1) US11225443B2 (zh)
EP (1) EP3712124A4 (zh)
CN (1) CN109776249B (zh)
EA (1) EA202091180A1 (zh)
WO (1) WO2019095404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646536A (zh) * 2022-10-20 2023-01-31 中国科学院山西煤炭化学研究所 Co2加氢耦合苯/甲苯烷基化用催化剂及其制备与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602540A (zh) * 2020-12-08 2022-06-10 中国石油天然气集团有限公司 一种镁离子改性的酸性分子筛重整催化剂及其制备方法
CN112619688B (zh) * 2020-12-31 2022-09-09 西北大学 一种用于合成气与联苯/4-甲基联苯一步法甲基化的催化剂的制备方法和应用
CN114804999B (zh) * 2021-01-21 2023-10-20 中国科学院大连化学物理研究所 一种制备对二甲苯同时联产低碳烯烃的方法
CN113244924B (zh) * 2021-05-25 2023-02-24 南昌航空大学 一种碱金属修饰的金属氧化物催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487984A (en) 1984-02-28 1984-12-11 Uop Inc. Synthesis of alkylaromatic compounds
US6459006B1 (en) * 1999-05-14 2002-10-01 Exxonmobil Chemical Patents Inc. Selective methylation to para-xylene using fuel syngas
US20040097769A1 (en) * 2002-11-14 2004-05-20 Ou John D. Y. Para-xylene production process employing in-situ catalyst selectivation
CN104945219A (zh) 2015-06-04 2015-09-30 华东理工大学 苯与合成气一步制备甲苯和对二甲苯的方法及其催化剂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1332402C (en) * 1989-02-21 1994-10-11 Louise Dufresne Catalytic aromatization of olefins and paraffins
RU2119470C1 (ru) 1997-02-27 1998-09-27 Конструкторско-технологический институт каталитических и адсорбционных процессов на цеолитах "Цеосит" СО РАН Способ алкилирования ароматических углеводородов синтез-газом
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
CN107999118B (zh) * 2016-10-28 2021-08-06 中国石油化工股份有限公司 一种芳烃和合成气烷基化催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487984A (en) 1984-02-28 1984-12-11 Uop Inc. Synthesis of alkylaromatic compounds
US6459006B1 (en) * 1999-05-14 2002-10-01 Exxonmobil Chemical Patents Inc. Selective methylation to para-xylene using fuel syngas
US20040097769A1 (en) * 2002-11-14 2004-05-20 Ou John D. Y. Para-xylene production process employing in-situ catalyst selectivation
WO2004043593A1 (en) 2002-11-14 2004-05-27 Exxonmobil Chemical Patents Inc. Para-xylene production process employing in-situ catalyst selectivation
CN104945219A (zh) 2015-06-04 2015-09-30 华东理工大学 苯与合成气一步制备甲苯和对二甲苯的方法及其催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712124A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646536A (zh) * 2022-10-20 2023-01-31 中国科学院山西煤炭化学研究所 Co2加氢耦合苯/甲苯烷基化用催化剂及其制备与应用
CN115646536B (zh) * 2022-10-20 2024-04-26 中国科学院山西煤炭化学研究所 Co2加氢耦合苯/甲苯烷基化用催化剂及其制备与应用

Also Published As

Publication number Publication date
EP3712124A1 (en) 2020-09-23
CN109776249B (zh) 2021-05-25
EA202091180A1 (ru) 2020-08-06
EP3712124A4 (en) 2021-01-13
US20200270188A1 (en) 2020-08-27
CN109776249A (zh) 2019-05-21
US11225443B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2019095404A1 (zh) 一种由合成气与芳烃直接制取对二甲苯的方法
WO2019095405A1 (zh) 一种由合成气直接制取芳烃并联产低碳烯烃的方法
WO2019095986A1 (zh) 一种由合成气直接制取芳烃的方法
US20110245571A1 (en) Oxidative dehydrogenation of paraffins field of the invention
SA98181066B1 (ar) تركيبة حفزية وعملية للاكلة و/أو التحويلية للمركبات العطرية
WO2019095985A1 (zh) 一种芳烃合成用催化剂及其制备方法
WO2019218488A1 (zh) 一种芳烃合成用催化剂及其制备方法和应用
CN102361840A (zh) 烯烃的制造方法
WO2018076909A1 (zh) 一种用于合成芳烃的催化剂和其制备方法
CN101410354B (zh) 乙苯的转化方法和对二甲苯的制备方法
WO2019218489A1 (zh) 一种对二甲苯合成用催化剂及其制备方法和应用
WO2019095987A1 (zh) 一种由合成气与甲苯直接制取对二甲苯的方法
ES2389046T3 (es) Procedimiento de conversión de etilbenceno y procedimiento para producir p-xileno
US20220281783A1 (en) Processes for Upgrading Alkanes and Alkyl Aromatic Hydrocarbons
US5705723A (en) Hydrogenation catalyst composition and a hydrogenation process
EA040601B1 (ru) Способ прямого получения п-ксилола из синтез-газа и ароматического углеводорода
CN110721737A (zh) 一种轻质芳烃与甲醇高效烷基化的择形催化剂
US9527785B2 (en) Method of forming C5 di-olefins
EA041174B1 (ru) Способ прямого получения ароматических соединений из синтез-газа
JP3009249B2 (ja) モノまたは/およびジアルキルナフタレンの製造方法
JP3465042B2 (ja) アルキル基を持つ芳香族炭化水素の脱水素化触媒及びそれを用いる不飽和炭化水素基を持つ芳香族炭化水素の製造方法
BG100117A (bg) Катализатор и метод за получаване на алкилароматни съединения с дълга верига
JP2022127708A (ja) ベンゼンの製造方法
JP2767997B2 (ja) 2,6―ジメチルナフタレンの濃度を高めたジメチルナフタレン異性体混合物の製造方法
EP0567444B1 (en) Aromatization and isomerization of hydrocarbons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017932310

Country of ref document: EP

Effective date: 20200615