WO2019095114A1 - 处理无线链路失败的方法、终端设备和网络设备 - Google Patents

处理无线链路失败的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019095114A1
WO2019095114A1 PCT/CN2017/110947 CN2017110947W WO2019095114A1 WO 2019095114 A1 WO2019095114 A1 WO 2019095114A1 CN 2017110947 W CN2017110947 W CN 2017110947W WO 2019095114 A1 WO2019095114 A1 WO 2019095114A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
srb
rlc entity
secondary carrier
network device
Prior art date
Application number
PCT/CN2017/110947
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201780091611.3A priority Critical patent/CN110710246A/zh
Priority to PCT/CN2017/110947 priority patent/WO2019095114A1/zh
Publication of WO2019095114A1 publication Critical patent/WO2019095114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present application relates to the field of communications, and more particularly to a method, terminal device and network device for handling failure of a wireless link.
  • a User Equipment (UE) to Acknowledged Mode Data Protocol (Acknowledged Mode Data Protocol) in a Radio Link Control (RLC) layer entity
  • RLF Radio Link Failure
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • the embodiment of the present application provides a method for processing a radio link failure, a terminal device, and a network device. After determining that an RLF is generated on a secondary carrier that transmits a signaling radio bearer, the terminal device transmits a signaling radio bearer (Signaling radio bearers, The path of the SRB is switched to the RLC entity corresponding to the primary carrier, so that the SRB can be normally transmitted after the RLF of the secondary carrier is generated, and the signaling overhead caused by the RRC connection reconfiguration is avoided.
  • the embodiment of the present application provides a method for processing a radio link failure, where the method is applied to data transmission in a carrier aggregation CA scenario, and the method includes:
  • the terminal device switches the path for transmitting the SRB to the radio link layer control protocol RLC entity corresponding to the primary carrier;
  • the RLC entity corresponding to the primary carrier is different from the RLC entity corresponding to the at least one secondary carrier.
  • the terminal device switches the path for transmitting the SRB to the RLC entity corresponding to the primary carrier, thereby ensuring After the RLF of the secondary carrier occurs, the SRB can transmit normally, avoiding the signaling overhead caused by the RRC connection reconfiguration.
  • the terminal device switches the path for transmitting the SRB to the RLC entity corresponding to the primary carrier, including:
  • the packet data convergence protocol PDCP layer entity transmitting the SRB in the terminal device switches the path for transmitting the SRB to the RLC entity corresponding to the primary carrier.
  • the terminal device determines that the RLF is generated by the at least one secondary carrier that transmits the SRB, including:
  • the terminal device determines that the RLF is generated by the at least one secondary carrier transmitting the SRB.
  • the maximum number of retransmissions is pre-configured.
  • the SRB is transmitted by using a duplicate data transmission function.
  • the method includes:
  • the terminal device suspends transmitting the SRB on the RLC entity corresponding to the at least one secondary carrier.
  • the method includes:
  • the terminal device maintains the media access control MAC layer entity to work normally.
  • the method includes:
  • the terminal device triggers radio resource control RRC connection reconfiguration.
  • the method includes:
  • the terminal device sends indication information to the network device, where the indication information is used to indicate that the RLF occurs on the at least one secondary carrier.
  • the method is applied to CA data transmission of a primary cell group MCG and/or CA data transmission of a secondary cell group SCG in a dual connectivity scenario.
  • the embodiment of the present application provides a method for processing a radio link failure, where the method is applied to data transmission in a carrier aggregation CA scenario, and the method includes:
  • the network device receives the indication information sent by the terminal device, where the indication information is used to indicate that the radio link failure RLF occurs on the at least one secondary carrier of the transmission signaling radio bearer SRB;
  • the network device stops transmitting the SRB on the radio link layer control protocol RLC entity corresponding to the at least one secondary carrier according to the indication information.
  • the network device may transmit the SRB by using an RLC entity corresponding to the primary carrier.
  • the network device stops transmitting the SRB on the RLC entity corresponding to the at least one secondary carrier after obtaining the RLF of the at least one secondary carrier transmitting the SRB, thereby ensuring After the RLF of the secondary carrier occurs, the SRB can transmit normally, avoiding the signaling overhead caused by the RRC connection reconfiguration.
  • the method further includes:
  • the network device releases a mapping relationship between the at least one secondary carrier and its corresponding RLC entity.
  • the method further includes:
  • the network device configures a first secondary carrier for the RLC entity that releases the mapping relationship with the at least one secondary carrier, where the first secondary carrier is used to transmit the SRB.
  • the method further includes:
  • the network device deletes the RLC entity corresponding to the at least one secondary carrier.
  • the SRB is transmitted by using a duplicate data transmission function.
  • the network device receives the indication information sent by the terminal device, including:
  • the network device receives the indication information sent by the terminal device.
  • the method is applied to CA data transmission of a primary cell group MCG and/or CA data transmission of a secondary cell group SCG in a dual connectivity scenario.
  • the embodiment of the present application provides a terminal device, which can execute the module or unit of the method in the first aspect or any optional implementation manner of the first aspect.
  • the embodiment of the present application provides a network device, which can execute the module or unit of the method in any of the optional implementations of the second aspect or the second aspect.
  • a terminal device including a processor, a memory, and a Letter interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a network device comprising a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer storage medium storing program code for instructing a computer to perform the method of any of the first aspect or the first aspect of the first aspect. instruction.
  • a computer storage medium storing program code for instructing a computer to perform the method in any one of the possible implementation manners of the second aspect or the second aspect instruction.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of replication data transmission in a CA scenario in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a dual connectivity system architecture applied in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for processing a radio link failure according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another method for processing a radio link failure according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for processing a radio link failure provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the present application describes various embodiments in connection with an access network device.
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, where the network device may be an evolved base station (Evolutional NodeB, eNB or eNodeB) in the LTE system, or may be a cloud wireless access network (Cloud A radio controller in a Radio Access Network (CRAN) scenario, or the access network device may be a relay station, an access point, an in-vehicle device, a wearable device, a Next Generation Evolutional NodeB (NG-eNB), and
  • the embodiment of the present application is not limited to an access network device (for example, gNB) in a 5G network or an access network device in a publicly available public land mobile network (PLMN) network.
  • Evolutional NodeB, eNB or eNodeB evolved base station
  • Cloud A radio controller in a Radio Access Network (CRAN) scenario or the access network device may be a relay station, an access point, an in-
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Functional handheld device computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, terminal device in a 5G network or terminal in a future evolved public land mobile network (PLMN)
  • PLMN public land mobile network
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include a network controller and a mobility management entity.
  • Other network entities such as the Mobility Management Entity (MME) and the Access and Mobility Management Function (AMF), are not limited in this embodiment of the present application.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • FIG. 2 is a schematic diagram of replication data transmission in a CA scenario in the embodiment of the present application.
  • the terminal device may send the same PDCP layer data to the network device through two carriers according to a carrier aggregation manner.
  • a Packet Data Convergence Protocol service data unit (PDCP SDU) entity is bound to two RLC entities.
  • the terminal device performs duplication of the first PDCP PDU to be sent to obtain a second PDCP PDU.
  • the terminal device delivers the first PDCP PDU to one of the two RLC entities, RLC 1, and delivers the second PDCP PDU to another RLC entity RLC 2 of the two RLC entities.
  • the two RLC entities respectively process the received PDCP PDU and send the first PDCP PDU and the second PDCP PDU to the network device through two different carriers.
  • the terminal device may perform the reverse process of the data transmission process as shown in FIG. 2 when receiving data transmitted by the network device or other terminal device.
  • FIG. 3 is a schematic diagram of a dual connectivity system architecture applied in an embodiment of the present application.
  • multiple network nodes Cell Groups, CGs
  • data can be copied between cell groups and terminal devices. transmission.
  • the CG may be equivalent to a network node or a network device or the like.
  • the copy data transmission method adopts a protocol structure of a split bearer.
  • the Packet Data Convergence Protocol (PDCP) is located in a certain CG (Master CG (MCG) or Secondary CG (SCG)), which is the "anchor" CG. (anchor CG).
  • MCG Master CG
  • SCG Secondary CG
  • the PDCP copies the PDCP Protocol Data Unit (PDU) into the same two copies, such as one PDCP PDU and one Duplicated PDCP PDU.
  • the two PDCP PDUs are controlled by different CG radio links (Radio Link).
  • PDCP layer monitors two The PDCPs are the same duplicate version, that is, one of them is discarded, and the other is submitted to the upper layer.
  • the two bearers respectively connected to the RLC and the MAC under the PDCP are called a fork bearing.
  • Split bearer if the PDCP is in the MCG, it is the MCG Split Bearer, and if the PDCP is in the SCG, it is the SCG Split Bearer.
  • the terminal device can maintain the MCG bearer and the MCG offload bearer at the master node (MN), and maintain the SCG bearer and the SCG offload bearer at the slave node (SN).
  • the MCG bearers the connection MN PDCP 1, the MN RLC 1 and the MN Media Access Control (MAC), the MCG offload bearer connects the MN PDCP 2, the MN RLC2 and the MN MAC, and the MCG offload bearer also connects the MN PDCP 2, the SN RLC 3 And SN MAC, MN PDCP 2 and SN RLC 3 are connected through the X2 interface.
  • the SCG bearer connects SN PDCP 1, SN RLC 1 and SN MAC, the SCG offload bearer connects SN PDCP 2, SN RLC 2 and SN MAC, and the SCG offload bearer also connects SN PDCP 2, MN RLC 3 and MN MAC, SN PDCP 2 and MN RLC 3 is connected through the X2 interface.
  • MN PDCP 1 and MN PDCP 2 are only differentiated for convenience of description, and the actual deployment is not necessarily differentiated as shown in FIG. 3, and MN RLC 1, MN RLC 2, and MN RLC 3 are the same.
  • MN RLC 1, MN RLC 2, and MN RLC 3 are the same.
  • SN PDCP 1 and SN PDCP 2 are the same, and SN RLC 1, SN RLC 2 and SN RLC 3 are the same.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 4 is a schematic flow diagram of a method 200 of processing a wireless link failure in accordance with an embodiment of the present application.
  • the method 200 is optionally applicable to the system shown in FIG. 1, the replication data transmission in the CA scenario shown in FIG. 2, and the dual connectivity system architecture shown in FIG. 3, but is not limited thereto.
  • the method 200 includes at least some of the following.
  • the terminal device determines that at least one secondary carrier transmitting the SRB has an RLF.
  • the SRB is transmitted using a duplicate data transmission function.
  • the path for transmitting the SRB may be a transmission path from the PDCP layer to the RLC layer to the MAC layer.
  • one PDCP may correspond to two RLC layer entities, and each RLC layer entity respectively maps different physical layer carrier sets, that is, there may be two transmission paths, for example, RLC 1 path and RLC 2 path (replicating SRB).
  • a carrier set containing PCELL and a carrier set not including PCELL (all SCELL).
  • SCELL a, SCELL b, and SCELL c correspond to the transport SRB path of RLC 1
  • PCELL, SCELL d, and SCELL e correspond to the transport SRB path of RLC 2.
  • the duplicated data (PDCP PDU and the copied PDCP PDU) generated by the PDCP are respectively transmitted to two different RLC entities, and the two RLC entities are mapped to different physical layers.
  • Carrier set PDCP PDU and the copied PDCP PDU generated by the PDCP are respectively transmitted to two different RLC entities, and the two RLC entities are mapped to different physical layers.
  • the terminal device Determining that the at least one secondary carrier transmitting the SRB has an RLF.
  • the maximum number of retransmissions is pre-configured.
  • a Radio Link Control (RLC) layer belongs to a data link layer for providing segmentation and retransmission services for user and control data.
  • RLC Radio Link Control
  • An RLC entity can be configured in any of the following three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
  • the AM mode provides all the RLC functions, which can effectively improve the reliability of data transmission through error detection and retransmission.
  • the maximum number of retransmissions of a PDU in the AM mode can trigger the RLF.
  • the terminal device switches the path for transmitting the SRB to the RLC entity corresponding to the primary carrier.
  • the RLC entity corresponding to the primary carrier can normally transmit the SRB.
  • the RLC entity corresponding to the primary carrier is different from the RLC entity corresponding to the at least one secondary carrier.
  • the terminal device transmits the path corresponding to the primary carrier.
  • the PDCP layer entity that transmits the SRB in the terminal device switches the path that transmits the SRB to the RLC entity corresponding to the primary carrier.
  • the terminal device may suspend transmitting the SRB on the RLC entity corresponding to the at least one secondary carrier.
  • the terminal device can keep the Media Access Control (MAC) layer entity working normally.
  • MAC Media Access Control
  • the terminal device can keep the medium access control MAC layer entity working normally.
  • the terminal device triggers an RRC connection reconfiguration.
  • the terminal device sends the indication information to the network device, where the indication information is used to indicate that the RLF occurs on the at least one secondary carrier.
  • the terminal device sends the indication information to the network device.
  • the method 200 is applied to CA data transmission of the MCG and/or CA data transmission of the SCG in the dual connectivity scenario.
  • the terminal device switches the path for transmitting the SRB to the RLC entity corresponding to the primary carrier, thereby ensuring After the RLF of the secondary carrier occurs, the SRB can transmit normally, avoiding the signaling overhead caused by the RRC connection reconfiguration.
  • FIG. 5 is a schematic flowchart of a method 300 for processing a radio link failure according to an embodiment of the present application.
  • the method 300 is optionally applicable to the system shown in FIG. 1, the replication data transmission in the CA scenario shown in FIG. 2, and the dual connectivity system architecture shown in FIG. 3, but is not limited thereto.
  • the method 300 includes at least a portion of the following.
  • the network device receives the indication information sent by the terminal device, where the indication information is used to indicate that the radio link failure RLF occurs on the at least one secondary carrier of the transmission signaling radio bearer SRB.
  • the SRB is transmitted using a duplicate data transmission function.
  • the network device receives the indication information sent by the terminal device.
  • the network device stops transmitting the SRB on the radio link layer control protocol RLC entity corresponding to the at least one secondary carrier according to the indication information.
  • the party 300 further includes:
  • the network device releases a mapping relationship between the at least one secondary carrier and its corresponding RLC entity.
  • the method 300 further includes:
  • the network device configures a first secondary carrier for the RLC entity that releases the mapping relationship with the at least one secondary carrier, where the first secondary carrier is used to transmit the SRB.
  • the method 300 further includes:
  • the network device deletes the RLC entity corresponding to the at least one secondary carrier.
  • the method 300 is applied to CA data transmission of a primary cell group MCG and/or CA data transmission of a secondary cell group SCG in a dual connectivity scenario.
  • the network device stops transmitting the SRB on the RLC entity corresponding to the at least one secondary carrier after obtaining the RLF of the at least one secondary carrier transmitting the SRB, thereby ensuring After the RLF of the secondary carrier occurs, the SRB can transmit normally, avoiding the signaling overhead caused by the RRC connection reconfiguration.
  • FIG. 6 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application. As shown in FIG. 6, the terminal device 400 is applied to data transmission in a CA scenario, and the terminal device 400 includes:
  • the processing unit 410 is configured to determine that at least one secondary carrier transmitting the signaling radio bearer SRB has a radio link failure RLF;
  • the processing unit 410 is further configured to switch the path for transmitting the SRB to a radio link layer control protocol RLC entity corresponding to the primary carrier;
  • the RLC entity corresponding to the primary carrier is different from the RLC entity corresponding to the at least one secondary carrier.
  • the terminal device 400 further includes:
  • a packet data convergence protocol PDCP layer entity unit 420 for cutting a path for transmitting the SRB Switch to the RLC entity corresponding to the primary carrier.
  • processing unit 410 is specifically configured to:
  • the RLC entity corresponding to the at least one secondary carrier is determined to be The RLF is generated by the at least one secondary carrier transmitting the SRB.
  • the maximum number of retransmissions is pre-configured.
  • the SRB is transmitted using a duplicate data transmission function.
  • the processing unit 410 is further configured to suspend transmitting the SRB on the RLC entity corresponding to the at least one secondary carrier.
  • processing unit 410 is further configured to keep the media access control MAC layer entity working normally.
  • the processing unit 410 is further configured to trigger radio resource control RRC connection reconfiguration.
  • the terminal device 400 further includes:
  • the sending unit 430 is configured to send, to the network device, indication information, where the indication information is used to indicate that the RLF occurs on the at least one secondary carrier.
  • the terminal device is applied to CA data transmission of the primary cell group MCG and/or CA data transmission of the secondary cell group SCG in the dual connectivity scenario.
  • terminal device 400 may correspond to the terminal device in the method 200 of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 400 respectively implement the method 200 shown in FIG.
  • the corresponding process of the terminal device is not described here for brevity.
  • FIG. 7 is a schematic block diagram of a network device 500 in accordance with an embodiment of the present application. As shown in FIG. 7, the network device 500 is applied to data transmission in a CA scenario, and the network device 500 includes:
  • the receiving unit 510 is configured to receive the indication information that is sent by the terminal device, where the indication information is used to indicate that the radio link failure RLF occurs on the at least one secondary carrier of the transmission signaling radio bearer SRB;
  • the processing unit 520 is configured to stop transmitting the SRB on the radio link layer control protocol RLC entity corresponding to the at least one secondary carrier according to the indication information.
  • processing unit 520 is further configured to release a mapping relationship between the at least one secondary carrier and its corresponding RLC entity.
  • the processing unit 520 is further configured to release, between the at least one secondary carrier
  • the RLC entity of the mapping relationship configures a first secondary carrier, and the first secondary carrier is used to transmit the SRB.
  • the processing unit 520 is further configured to delete the RLC entity corresponding to the at least one secondary carrier.
  • the SRB is transmitted using a duplicate data transmission function.
  • the receiving unit 510 is specifically configured to:
  • the indication information sent by the terminal device is received.
  • the network device is applied to CA data transmission of the primary cell group MCG and/or CA data transmission of the secondary cell group SCG in the dual connectivity scenario.
  • the network device 500 may correspond to the network device in the method 300 of the present application, and the foregoing and other operations and/or functions of the respective units in the network device 500 respectively implement the method 300 shown in FIG.
  • the corresponding process of the network device is not described here for brevity.
  • FIG. 8 is a schematic block diagram of an apparatus 600 for processing a radio link failure according to an embodiment of the present application.
  • the apparatus 600 includes:
  • a memory 610 configured to store a program, where the program includes code
  • the transceiver 620 is configured to communicate with other devices;
  • the processor 630 is configured to execute program code in the memory 610.
  • the transceiver 620 is configured to perform specific signal transceiving under the driving of the processor 630.
  • the processor 630 can implement various operations performed by the terminal device in the method 200 in FIG. 4, and details are not described herein for brevity.
  • the device 600 may be a terminal device (for example, a mobile phone).
  • the processor 630 can implement various operations performed by the network device in the method 300 in FIG. 5, and details are not described herein for brevity.
  • the device 600 can be a network device (eg, a base station).
  • the processor 630 may be a central processing unit (CPU), and the processor 630 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 610 can include a read only memory and a random access memory, and is directed to the processor 630. Provide instructions and data. A portion of the memory 610 may also include a non-volatile random access memory. For example, the memory 610 can also store information of the device type.
  • the transceiver 620 can be used to implement signal transmission and reception functions, such as frequency modulation and demodulation functions or upconversion and down conversion functions.
  • At least one step of the above method may be completed by an integrated logic circuit of hardware in the processor 630, or the integrated logic circuit may be driven by an instruction in a software form to complete the at least one step.
  • the device 600 that handles the failure of the wireless link can be a chip or chipset.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor 630 reads the information in the memory and completes the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • FIG. 9 is a schematic structural diagram of a system chip 700 according to an embodiment of the present application.
  • the system chip 700 of FIG. 9 includes an input interface 701, an output interface 702, a processor 703, and a memory 704 that can be connected by an internal communication connection line.
  • the processor 703 is configured to execute code in the memory 704.
  • the processor 703 implements a method performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • the processor 703 when the code is executed, the processor 703 implements a method performed by a network device in a method embodiment. For the sake of brevity, it will not be repeated here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种处理无线链路失败的方法、终端设备和网络设备,终端设备在确定传输SRB的辅载波发生了RLF之后,将传输SRB的路径切换至主载波对应的RLC实体,从而,保证在辅载波发生了RLF之后,SRB可以正常传输,避免因RRC连接重配置而造成的信令开销。该方法应用于CA场景下的数据传输,该方法包括:终端设备确定传输SRB的至少一个辅载波发生了RLF;该终端设备将传输该SRB的路径切换至主载波对应的RLC实体;其中,该主载波对应的RLC实体与该至少一个辅载波对应的RLC实体不同。

Description

处理无线链路失败的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种处理无线链路失败的方法、终端设备和网络设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,终端设备(User Equipment,UE)对无线链路层控制协议(Radio Link Control,RLC)层实体中的确认模式数据协议数据单元(Acknowledged Mode Data Protocol Data Unit,AMD PDU)所发生的最大重传次数都触发无线链路失败(Radio Link Failure,RLF),同时,在终端设备确定主载波或者辅载波发生了RLF之后,都会发生无线资源控制(Radio Resource Control,RRC)连接释放,或者RRC连接重配置。然而,在载波聚合(Carrier Aggregation,CA)场景下,若辅载波(Secondary Cell,SCELL)发生RLF时,主载波(Primary Cell,PCELL)也进行RRC连接释放,或者RRC连接重配置,会影响到主载波的正常传输。
发明内容
本申请实施例提供了一种处理无线链路失败的方法、终端设备和网络设备,终端设备在确定传输信令无线承载的辅载波发生了RLF之后,将传输信令无线承载(Signaling radio bearers,SRB)的路径切换至主载波对应的RLC实体,从而,保证在辅载波发生了RLF之后,SRB可以正常传输,避免因RRC连接重配置而造成的信令开销。
第一方面,本申请实施例提供了一种处理无线链路失败的方法,该方法应用于载波聚合CA场景下的数据传输,该方法包括:
终端设备确定传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
该终端设备将传输该SRB的路径切换至主载波对应的无线链路层控制协议RLC实体;
其中,该主载波对应的RLC实体与该至少一个辅载波对应的RLC实体不同。
因此,在本申请实施例的处理无线链路失败的方法中,终端设备确定传输SRB的至少一个辅载波发生了RLF之后,将传输该SRB的路径切换至主载波对应的RLC实体,从而,保证在辅载波发生了RLF之后,SRB可以正常传输,避免因RRC连接重配置而造成的信令开销。
可选地,可以存在多个传输SRB的辅载波和一个传输SRB的主载波。
可选地,在第一方面的一种实现方式中,该终端设备将传输该SRB的路径切换至主载波对应的RLC实体,包括:
该终端设备中传输该SRB的分组数据汇聚协议PDCP层实体将传输该SRB的路径切换至该主载波对应的RLC实体。
可选地,在第一方面的一种实现方式中,该终端设备确定传输SRB的至少一个辅载波发生了RLF,包括:
在该至少一个辅载波对应的RLC实体中存在至少一个确认模式数据协议数据单元AMD PDU的重传次数达到了最大重传次数,以及该主载波对应的RLC实体中的AMD PDU正常传输时,该终端设备确定传输该SRB的该至少一个辅载波发生了RLF。
可选地,在第一方面的一种实现方式中,该最大重传次数为预配置的。
可选地,在第一方面的一种实现方式中,该SRB采用复制数据传输功能进行传输。
可选地,在第一方面的一种实现方式中,该方法包括:
该终端设备暂停在该至少一个辅载波对应的RLC实体上传输该SRB。
可选地,在第一方面的一种实现方式中,该方法包括:
该终端设备保持媒体接入控制MAC层实体正常工作。
可选地,在第一方面的一种实现方式中,该方法包括:
该终端设备触发无线资源控制RRC连接重配置。
可选地,在第一方面的一种实现方式中,该方法包括:
该终端设备向网络设备发送指示信息,该指示信息用于指示该至少一个辅载波发生了RLF。
可选地,在第一方面的一种实现方式中,该方法应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
第二方面,本申请实施例提供了一种处理无线链路失败的方法,该方法应用于载波聚合CA场景下的数据传输,该方法包括:
网络设备接收终端设备发送的指示信息,该指示信息用于指示传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
该网络设备根据该指示信息,停止在该至少一个辅载波对应的无线链路层控制协议RLC实体上传输该SRB。
可选地,该网络设备可以通过主载波对应的RLC实体传输该SRB。
因此,在本申请实施例的处理无线链路失败的方法中,网络设备在获知传输SRB的至少一个辅载波发生了RLF之后,停止在至少一个辅载波对应的RLC实体上传输SRB,从而,保证在辅载波发生了RLF之后,SRB可以正常传输,避免因RRC连接重配置而造成的信令开销。
可选地,可以存在多个传输SRB的辅载波和一个传输SRB的主载波。
可选地,在第二方面的一种实现方式中,该方法还包括:
该网络设备释放该至少一个辅载波与其所对应的RLC实体之间的映射关系。
可选地,在第二方面的一种实现方式中,该方法还包括:
该网络设备为释放了与该至少一个辅载波之间的映射关系的RLC实体配置第一辅载波,该第一辅载波用于传输该SRB。
可选地,在第二方面的一种实现方式中,该方法还包括:
该网络设备删除该至少一个辅载波对应的RLC实体。
可选地,在第二方面的一种实现方式中,该SRB采用复制数据传输功能进行传输。
可选地,在第二方面的一种实现方式中,该网络设备接收终端设备发送的指示信息,包括:
在无线资源控制RRC重配置过程中,该网络设备接收该终端设备发送的该指示信息。
可选地,在第二方面的一种实现方式中,该方法应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
第三方面,本申请实施例提供了一种终端设备,可以执行第一方面或第一方面的任一可选的实现方式中的方法的模块或者单元。
第四方面,本申请实施例提供了一种网络设备,可以执行第二方面或第二方面的任一可选的实现方式中的方法的模块或者单元。
第五方面,提供了一种终端设备,该终端设备包括处理器、存储器和通 信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法的指令。
第八方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示计算机执行上述第二方面或第二方面的任一种可能的实现方式中的方法的指令。
第九方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是本申请实施例中CA场景下复制数据传输的示意图。
图3是本申请实施例应用的双连接系统架构的示意图。
图4是根据本申请实施例的一种处理无线链路失败的方法的示意性流程图。
图5是根据本申请实施例的另一种处理无线链路失败的方法的示意性流程图。
图6是根据本申请实施例的终端设备的示意性框图。
图7是根据本申请实施例的网络设备的示意性框图。
图8示出了本申请实施例提供的处理无线链路失败的设备的示意性框图。
图9是根据本申请实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G通信系统等。
本申请结合接入网设备描述了各个实施例。本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备、下一代演进型基站(Next Generation Evolutional NodeB,NG-eNB)以及5G网络中的接入网设备(例如,gNB)或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的接入网设备等,本申请实施例并不限定。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动性管理实体 (Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
图2是本申请实施例中CA场景下复制数据传输的示意图。如图2所示,终端设备可以基于载波聚合的方式,通过两个载波向网络设备发送相同的PDCP层数据。具体地,如图2所示,一个分组数据汇聚协议服务数据单元(Packet Data Convergence Protocol service data unit,PDCP SDU)实体与两个RLC实体绑定。该终端设备将待发送的第一PDCP PDU进行复制(duplication),得到第二PDCP PDU。终端设备将该第一PDCP PDU下发到该两个RLC实体中的一个RLC实体RLC 1,将该第二PDCP PDU下发到该两个RLC实体中的另一个RLC实体RLC 2。该两个RLC实体分别对收到的PDCP PDU进行处理,并通过两个不同的载波将该第一PDCP PDU和该第二PDCP PDU发送至网络设备。
应理解,终端设备在接收网络设备或其他终端设备发送的数据时,可以执行如图2所示的数据发送过程的逆过程。
图3是本申请实施例应用的双连接系统架构的示意图。如图3所示,在双连接(Dual Connection,DC)场景下,多个网络节点(小区组(Cell Group,CG))可以为终端设备服务,小区组和终端设备之间可以进行复制数据的传输。
可选地,CG可以等同于网络节点或网络设备等。
复制数据传输方式采用采用的是分叉承载(split bearer)的协议架构。对于上下行来说,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)位于某一个CG(主CG(Master CG,MCG)或者辅CG(Secondary CG,SCG)),该CG为“锚点”CG(anchor CG)。PDCP将PDCP协议数据单元(Protocol Data Unit,PDU)复制为相同的两份,比如一个是PDCP PDU,一个是复制(Duplicated)PDCP PDU,两份PDCP PDU经过不同CG的无线链路控制(Radio Link Control,RLC)层以及媒体接入控制(Media Access Control,MAC)层,在经过空口到达终端(下行)或者基站(上行)相应的MAC以及RLC层,最后再汇聚到PDCP,PDCP层监测到两个PDCP为相同的复制版本,即丢弃其中一个,将另外一个递交到高层。可选地,本申请实施例中将PDCP下面分别连接RLC和MAC的这两个承载称为分叉承 载(split bearer),如果PDCP位于MCG,则为MCG Split Bearer,如果PDCP位于SCG,则为SCG Split Bearer。
如图3所示,终端设备可以在主节点(Master Node,MN)保持MCG承载和MCG分流承载,在从节点(Slave Node,SN)保持SCG承载和SCG分流承载。MCG承载连接MN PDCP 1、MN RLC 1和MN媒体接入控制(Media Access Control,MAC),MCG分流承载连接MN PDCP 2、MN RLC2和MN MAC,MCG分流承载还连接MN PDCP 2、SN RLC 3和SN MAC,MN PDCP 2与SN RLC 3之间通过X2接口进行连接。SCG承载连接SN PDCP 1、SN RLC 1和SN MAC,SCG分流承载连接SN PDCP 2、SN RLC 2和SN MAC,SCG分流承载还连接SN PDCP 2、MN RLC 3和MN MAC,SN PDCP 2与MN RLC 3之间通过X2接口进行连接。
应理解,上述图3中,MN PDCP 1和MN PDCP 2仅仅只是为了方便描述而进行的区分,实际部署中并不一定如图3一样进行区分,MN RLC 1、MN RLC 2和MN RLC 3同理,SN PDCP 1和SN PDCP 2同理,SN RLC 1、SN RLC 2和SN RLC 3同理。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图4是根据本申请实施例的处理无线链路失败的方法200的示意性流程 图。该方法200可选地可以应用于图1所示的系统、图2所示的CA场景下复制数据传输和图3所示的双连接系统架构,但并不限于此。该方法200包括以下内容中的至少部分内容。
210,终端设备确定传输SRB的至少一个辅载波发生了RLF。
可选地,该SRB采用复制数据传输功能进行传输。
可选地,传输SRB的路径可以是由PDCP层到RLC层再到MAC层的一个传输路径。
可选地,可以存在多个传输SRB的辅载波和一个传输SRB的主载波。可选地,该SRB采用复制数据传输功能进行传输时,一个PDCP可以对应两个RLC层实体,每个RLC层实体分别映射不同的物理层载波集合,即,可以有两条传输路径,例如,RLC 1路径和RLC 2路径(复制SRB)。
例如,包含PCELL的载波集合和不包含PCELL(全部都是SCELL)的载波集合。
例如,SCELL a、SCELL b和SCELL c对应RLC 1的传输SRB路径,PCELL、SCELL d和SCELL e对应RLC 2的传输SRB路径。
可选地,在SRB采用复制数据传输功能进行传输时,PDCP所生成的复制数据(PDCP PDU和复制的PDCP PDU)分别传输到两个不同的RLC实体,两个RLC实体映射到不同的物理层载波集合,
可选地,在该至少一个辅载波对应的RLC实体中存在至少一个AMD PDU的重传次数达到了最大重传次数,以及该主载波对应的RLC实体中的AMD PDU正常传输时,该终端设备确定传输该SRB的该至少一个辅载波发生了RLF。
可选地,该最大重传次数为预配置的。
可选地,无线链路层控制协议(Radio Link Control,RLC)层属于数据链路层,用于为用户和控制数据提供分段和重传业务。具体地,RLC层的功能是由RLC实体来实现的。一个RLC实体可以配置成以下3种模式中的任意一种:透明模式确认(Transparent Mode,TM),非确认模式(Unacknowledged Mode,UM)和确认模式(Acknowledged Mode,AM)。
可选地,AM模式提供了所有的RLC功能,能够通过出错检测和重传,有效提高数据传输的可靠性。
可选地,AM模式下的某一个PDU达到最大重传次数能够触发RLF。
220,该终端设备将传输该SRB的路径切换至主载波对应的RLC实体。
应理解,在该至少一个辅载波发生了RLF的时候,该主载波所对应的RLC实体可以正常传输SRB。
可选地,该主载波对应的RLC实体与该至少一个辅载波对应的RLC实体不同。
可选地,在该终端设备将传输该SRB的路径切换至主载波对应的RLC实体之后,此时,该终端设备通过主载波对应的这一条路径进行传输。
可选地,该终端设备中传输该SRB的PDCP层实体将传输该SRB的路径切换至该主载波对应的RLC实体。
可选地,该终端设备可以暂停在该至少一个辅载波对应的RLC实体上传输该SRB。
可选地,该终端设备可以保持媒体访问控制(Media Access Control,MAC)层实体正常工作。
应理解,两个不同的RLC实体(主载波对应的RLC实体与辅载波对应的RLC实体)共用一个MAC层实体,因此,该终端设备可以保持媒体接入控制MAC层实体正常工作。
可选地,该终端设备触发RRC连接重配置。
可选地,该终端设备向网络设备发送指示信息,该指示信息用于指示该至少一个辅载波发生了RLF。
可选地,在RRC连接重配置过程中,该终端设备向该网络设备发送该指示信息。
可选地,该方法200应用于双连接场景下的MCG的CA数据传输和/或SCG的CA数据传输。
因此,在本申请实施例的处理无线链路失败的方法中,终端设备确定传输SRB的至少一个辅载波发生了RLF之后,将传输该SRB的路径切换至主载波对应的RLC实体,从而,保证在辅载波发生了RLF之后,SRB可以正常传输,避免因RRC连接重配置而造成的信令开销。
图5是根据本申请实施例的处理无线链路失败的方法300的示意性流程图。该方法300可选地可以应用于图1所示的系统、图2所示的CA场景下复制数据传输和图3所示的双连接系统架构,但并不限于此。该方法300包括以下内容中的至少部分内容。
310,网络设备接收终端设备发送的指示信息,该指示信息用于指示传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF。
可选地,该SRB采用复制数据传输功能进行传输。
可选地,在RRC重配置过程中,该网络设备接收该终端设备发送的该指示信息。
320,该网络设备根据该指示信息,停止在该至少一个辅载波对应的无线链路层控制协议RLC实体上传输该SRB。
可选地,该方300还包括:
该网络设备释放该至少一个辅载波与其所对应的RLC实体之间的映射关系。
可选地,该方法300还包括:
该网络设备为释放了与该至少一个辅载波之间的映射关系的RLC实体配置第一辅载波,该第一辅载波用于传输该SRB。
可选地,该方法300还包括:
该网络设备删除该至少一个辅载波对应的RLC实体。
可选地,该方法300应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
因此,在本申请实施例的处理无线链路失败的方法中,网络设备在获知传输SRB的至少一个辅载波发生了RLF之后,停止在至少一个辅载波对应的RLC实体上传输SRB,从而,保证在辅载波发生了RLF之后,SRB可以正常传输,避免因RRC连接重配置而造成的信令开销。
图6是根据本申请实施例的终端设备400的示意性框图。如图6所示,该终端设备400应用于CA场景下的数据传输,该终端设备400包括:
处理单元410,用于确定传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
该处理单元410,还用于将传输该SRB的路径切换至主载波对应的无线链路层控制协议RLC实体;
其中,该主载波对应的RLC实体与该至少一个辅载波对应的RLC实体不同。
可选地,该终端设备400还包括:
分组数据汇聚协议PDCP层实体单元420,用于将传输该SRB的路径切 换至该主载波对应的RLC实体。
可选地,该处理单元410具体用于:
在该至少一个辅载波对应的RLC实体中存在至少一个确认模式数据协议数据单元AMD PDU的重传次数达到了最大重传次数,以及该主载波对应的RLC实体中的AMD PDU正常传输时,确定传输该SRB的该至少一个辅载波发生了RLF。
可选地,该最大重传次数为预配置的。
可选地,该SRB采用复制数据传输功能进行传输。
可选地,该处理单元410,还用于暂停在该至少一个辅载波对应的RLC实体上传输该SRB。
可选地,该处理单元410,还用于保持媒体接入控制MAC层实体正常工作。
可选地,该处理单元410,还用于触发无线资源控制RRC连接重配置。
可选地,该终端设备400还包括:
发送单元430,用于向网络设备发送指示信息,该指示信息用于指示该至少一个辅载波发生了RLF。
可选地,该终端设备应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
应理解,根据本申请实施例的终端设备400可对应于本申请方法200中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图7是根据本申请实施例的网络设备500的示意性框图。如图7所示,该网络设备500应用于CA场景下的数据传输,该网络设备500包括:
接收单元510,用于接收终端设备发送的指示信息,该指示信息用于指示传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
处理单元520,用于根据该指示信息,停止在该至少一个辅载波对应的无线链路层控制协议RLC实体上传输该SRB。
可选地,该处理单元520,还用于释放该至少一个辅载波与其所对应的RLC实体之间的映射关系。
可选地,该处理单元520,还用于为释放了与该至少一个辅载波之间的 映射关系的RLC实体配置第一辅载波,该第一辅载波用于传输该SRB。
可选地,该处理单元520,还用于删除该至少一个辅载波对应的RLC实体。
可选地,该SRB采用复制数据传输功能进行传输。
可选地,该接收单元510具体用于:
在无线资源控制RRC重配置过程中,接收该终端设备发送的该指示信息。
可选地,该网络设备应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
应理解,根据本申请实施例的网络设备500可对应于本申请方法300中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图8示出了本申请实施例提供的处理无线链路失败的设备600的示意性框图,该设备600包括:
存储器610,用于存储程序,该程序包括代码;
收发器620,用于和其他设备进行通信;
处理器630,用于执行存储器610中的程序代码。
可选地,收发器620用于在处理器630的驱动下执行具体的信号收发。
可选地,当该代码被执行时,该处理器630可以实现图4中的方法200中终端设备执行的各个操作,为了简洁,在此不再赘述。此时,该设备600可以为终端设备(例如,手机)。
可选地,当该代码被执行时,该处理器630可以实现图5中的方法300中网络设备执行的各个操作,为了简洁,在此不再赘述。此时,该设备600可以为网络设备(例如,基站)。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central Processing Unit,CPU),该处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器610可以包括只读存储器和随机存取存储器,并向处理器630 提供指令和数据。存储器610的一部分还可以包括非易失性随机存取存储器。例如,存储器610还可以存储设备类型的信息。
收发器620可以是用于实现信号发送和接收功能,例如频率调制和解调功能或叫上变频和下变频功能。
在实现过程中,上述方法的至少一个步骤可以通过处理器630中的硬件的集成逻辑电路完成,或该集成逻辑电路可在软件形式的指令驱动下完成该至少一个步骤。因此,处理无线链路失败的设备600可以是个芯片或者芯片组。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器630读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图9是根据本申请实施例的系统芯片700的示意性结构图。图9的系统芯片700包括输入接口701、输出接口702、处理器703以及存储器704之间可以通过内部通信连接线路相连,该处理器703用于执行该存储器704中的代码。
可选地,当该代码被执行时,该处理器703实现方法实施例中由终端设备执行的方法。为了简洁,在此不再赘述。
可选地,当该代码被执行时,该处理器703实现方法实施例中由网络设备执行的方法。为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种处理无线链路失败的方法,其特征在于,所述方法应用于载波聚合CA场景下的数据传输,所述方法包括:
    终端设备确定传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
    所述终端设备将传输所述SRB的路径切换至主载波对应的无线链路层控制协议RLC实体;
    其中,所述主载波对应的RLC实体与所述至少一个辅载波对应的RLC实体不同。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备将传输所述SRB的路径切换至主载波对应的RLC实体,包括:
    所述终端设备中传输所述SRB的分组数据汇聚协议PDCP层实体将传输所述SRB的路径切换至所述主载波对应的RLC实体。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定传输SRB的至少一个辅载波发生了RLF,包括:
    在所述至少一个辅载波对应的RLC实体中存在至少一个确认模式数据协议数据单元AMD PDU的重传次数达到了最大重传次数,以及所述主载波对应的RLC实体中的AMD PDU正常传输时,所述终端设备确定传输所述SRB的所述至少一个辅载波发生了RLF。
  4. 根据权利要求3所述的方法,其特征在于,所述最大重传次数为预配置的。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述SRB采用复制数据传输功能进行传输。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法包括:
    所述终端设备暂停在所述至少一个辅载波对应的RLC实体上传输所述SRB。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法包括:
    所述终端设备保持媒体接入控制MAC层实体正常工作。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法 包括:
    所述终端设备触发无线资源控制RRC连接重配置。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法包括:
    所述终端设备向网络设备发送指示信息,所述指示信息用于指示所述至少一个辅载波发生了RLF。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
  11. 一种处理无线链路失败的方法,其特征在于,所述方法应用于载波聚合CA场景下的数据传输,所述方法包括:
    网络设备接收终端设备发送的指示信息,所述指示信息用于指示传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
    所述网络设备根据所述指示信息,停止在所述至少一个辅载波对应的无线链路层控制协议RLC实体上传输所述SRB。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备释放所述至少一个辅载波与其所对应的RLC实体之间的映射关系。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备为释放了与所述至少一个辅载波之间的映射关系的RLC实体配置第一辅载波,所述第一辅载波用于传输所述SRB。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备删除所述至少一个辅载波对应的RLC实体。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述SRB采用复制数据传输功能进行传输。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述网络设备接收终端设备发送的指示信息,包括:
    在无线资源控制RRC重配置过程中,所述网络设备接收所述终端设备发送的所述指示信息。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述方法应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG 的CA数据传输。
  18. 一种终端设备,其特征在于,所述终端设备应用于载波聚合CA场景下的数据传输,所述终端设备包括:
    处理单元,用于确定传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
    所述处理单元,还用于将传输所述SRB的路径切换至主载波对应的无线链路层控制协议RLC实体;
    其中,所述主载波对应的RLC实体与所述至少一个辅载波对应的RLC实体不同。
  19. 根据权利要求18所述的终端设备,其特征在于,所述终端设备还包括:
    分组数据汇聚协议PDCP层实体单元,用于将传输所述SRB的路径切换至所述主载波对应的RLC实体。
  20. 根据权利要求18或19所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述至少一个辅载波对应的RLC实体中存在至少一个确认模式数据协议数据单元AMD PDU的重传次数达到了最大重传次数,以及所述主载波对应的RLC实体中的AMD PDU正常传输时,确定传输所述SRB的所述至少一个辅载波发生了RLF。
  21. 根据权利要求20所述的终端设备,其特征在于,所述最大重传次数为预配置的。
  22. 根据权利要求18至21中任一项所述的终端设备,其特征在于,所述SRB采用复制数据传输功能进行传输。
  23. 根据权利要求18至22中任一项所述的终端设备,其特征在于,所述处理单元,还用于暂停在所述至少一个辅载波对应的RLC实体上传输所述SRB。
  24. 根据权利要求18至23中任一项所述的终端设备,其特征在于,所述处理单元,还用于保持媒体接入控制MAC层实体正常工作。
  25. 根据权利要求18至24中任一项所述的终端设备,其特征在于,所述处理单元,还用于触发无线资源控制RRC连接重配置。
  26. 根据权利要求18至25中任一项所述的终端设备,其特征在于,所 述终端设备还包括:
    发送单元,用于向网络设备发送指示信息,所述指示信息用于指示所述至少一个辅载波发生了RLF。
  27. 根据权利要求18至26中任一项所述的终端设备,其特征在于,所述终端设备应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
  28. 一种网络设备,其特征在于,所述网络设备应用于载波聚合CA场景下的数据传输,所述网络设备包括:
    接收单元,用于接收终端设备发送的指示信息,所述指示信息用于指示传输信令无线承载SRB的至少一个辅载波发生了无线链路失败RLF;
    处理单元,用于根据所述指示信息,停止在所述至少一个辅载波对应的无线链路层控制协议RLC实体上传输所述SRB。
  29. 根据权利要求28所述的网络设备,其特征在于,所述处理单元,还用于释放所述至少一个辅载波与其所对应的RLC实体之间的映射关系。
  30. 根据权利要求29所述的网络设备,其特征在于,所述处理单元,还用于为释放了与所述至少一个辅载波之间的映射关系的RLC实体配置第一辅载波,所述第一辅载波用于传输所述SRB。
  31. 根据权利要求28所述的网络设备,其特征在于,所述处理单元,还用于删除所述至少一个辅载波对应的RLC实体。
  32. 根据权利要求28至31中任一项所述的网络设备,其特征在于,所述SRB采用复制数据传输功能进行传输。
  33. 根据权利要求28至32中任一项所述的网络设备,其特征在于,所述接收单元具体用于:
    在无线资源控制RRC重配置过程中,接收所述终端设备发送的所述指示信息。
  34. 根据权利要求28至33中任一项所述的网络设备,其特征在于,所述网络设备应用于双连接场景下的主小区组MCG的CA数据传输和/或辅小区组SCG的CA数据传输。
PCT/CN2017/110947 2017-11-14 2017-11-14 处理无线链路失败的方法、终端设备和网络设备 WO2019095114A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780091611.3A CN110710246A (zh) 2017-11-14 2017-11-14 处理无线链路失败的方法、终端设备和网络设备
PCT/CN2017/110947 WO2019095114A1 (zh) 2017-11-14 2017-11-14 处理无线链路失败的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110947 WO2019095114A1 (zh) 2017-11-14 2017-11-14 处理无线链路失败的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019095114A1 true WO2019095114A1 (zh) 2019-05-23

Family

ID=66539254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110947 WO2019095114A1 (zh) 2017-11-14 2017-11-14 处理无线链路失败的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN110710246A (zh)
WO (1) WO2019095114A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210098128A (ko) * 2020-01-31 2021-08-10 삼성전자주식회사 무선 통신 시스템에서 사이드링크 보조 캐리어를 제어하는 장치 및 방법
CN114071800B (zh) * 2020-07-27 2024-04-12 上海华为技术有限公司 一种数据传输方法以及相关设备
WO2022160261A1 (zh) * 2021-01-29 2022-08-04 华为技术有限公司 一种数据传输方法及装置
CN116489684A (zh) * 2022-01-13 2023-07-25 展讯通信(上海)有限公司 确定侧行链路发生无线链路失败的方法、装置和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998661A (zh) * 2009-08-13 2011-03-30 大唐移动通信设备有限公司 一种判决无线链路失败的方法和装置
WO2012071704A1 (zh) * 2010-11-30 2012-06-07 富士通株式会社 报告无线链路失败信息的方法、终端设备和基站
CN105376812A (zh) * 2014-08-29 2016-03-02 电信科学技术研究院 上行传输主载波切换及其控制方法、装置、基站及ue
CN106454967A (zh) * 2016-08-31 2017-02-22 西安邮电大学 一种终端设备主载波资源的快速变更与切换方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037389B1 (ko) * 2013-04-05 2019-10-28 주식회사 팬택 이중 연결성을 지원하는 무선 통신 시스템에서 무선링크 제어 방법 및 그 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998661A (zh) * 2009-08-13 2011-03-30 大唐移动通信设备有限公司 一种判决无线链路失败的方法和装置
WO2012071704A1 (zh) * 2010-11-30 2012-06-07 富士通株式会社 报告无线链路失败信息的方法、终端设备和基站
CN105376812A (zh) * 2014-08-29 2016-03-02 电信科学技术研究院 上行传输主载波切换及其控制方法、装置、基站及ue
CN106454967A (zh) * 2016-08-31 2017-02-22 西安邮电大学 一种终端设备主载波资源的快速变更与切换方法

Also Published As

Publication number Publication date
CN110710246A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110999519B (zh) 对为用户设备配置的多个承载执行承载类型改变的方法
CN110603896B (zh) 新型无线电接入技术中的pdcp重复和数据恢复的处理
US11246074B2 (en) Communication method and communications apparatus
TWI762684B (zh) 切換方法、存取網設備和終端設備
WO2018165996A1 (zh) 切换方法和装置
WO2019095114A1 (zh) 处理无线链路失败的方法、终端设备和网络设备
WO2020030154A1 (zh) 一种通知方法、装置及通信系统
EP3661316B1 (en) Method for processing radio link failure, and terminal device
WO2018227555A1 (zh) 用于传输数据的方法、终端设备和网络设备
TWI791033B (zh) 無線通訊的方法、終端設備和網路設備
TWI751346B (zh) 用於傳輸數據的方法、終端設備和網絡設備
WO2019029642A1 (zh) 通信方法、基站、终端设备和系统
WO2014166053A1 (zh) 一种通讯方法和终端
WO2022222783A1 (zh) 数据传输方法及装置
WO2018170856A1 (zh) 无线通信方法和设备
WO2019014916A1 (zh) 处理数据的方法和设备
WO2019076347A1 (zh) 通信方法和通信装置
WO2020088611A1 (zh) 一种重置mac层、数据传输方法及装置
WO2019153209A1 (zh) 处理无线链路失败rlf的方法和终端设备
WO2021169732A1 (zh) 一种切换方法及通信装置
WO2019127289A1 (zh) 传输数据的方法和终端设备
WO2022120744A1 (zh) 数据传输处理方法及相关装置
TW201832503A (zh) 通信方法、終端設備和網絡設備
WO2019153208A1 (zh) 处理无线链路失败rlf的方法和终端设备
WO2022120541A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932057

Country of ref document: EP

Kind code of ref document: A1