WO2019093760A1 - 전자 초점화를 이용한 생체 시료 염색 방법 및 염색 장치 - Google Patents

전자 초점화를 이용한 생체 시료 염색 방법 및 염색 장치 Download PDF

Info

Publication number
WO2019093760A1
WO2019093760A1 PCT/KR2018/013472 KR2018013472W WO2019093760A1 WO 2019093760 A1 WO2019093760 A1 WO 2019093760A1 KR 2018013472 W KR2018013472 W KR 2018013472W WO 2019093760 A1 WO2019093760 A1 WO 2019093760A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological sample
dyeing
electrode
reagent
sample
Prior art date
Application number
PCT/KR2018/013472
Other languages
English (en)
French (fr)
Inventor
장성호
나명수
Original Assignee
(주)크레용테크놀러지즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)크레용테크놀러지즈 filed Critical (주)크레용테크놀러지즈
Publication of WO2019093760A1 publication Critical patent/WO2019093760A1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Definitions

  • the present invention relates to a biological sample dyeing method and dyeing apparatus using a conductive hydrogel and an electronic focusing technique.
  • the transparentized tissue has large and small pores inside the structure, it can theoretically be immunostained because the fluorescent antibody can pass through it.
  • the immunostaining time is exponentially increased in proportion to the thickness of the immunostaining, so that substantial immunostaining is impossible.
  • related researches have been continuing, but they have not achieved satisfactory results in terms of efficiency and effectiveness.
  • Immunostaining techniques for biopsy samples that have been used or recently developed include:
  • the diffusion method is a passive staining method in which the tissue is immersed in a solution containing the immune antibody to allow the antibody to diffuse into the tissue.
  • Diffusion method is the simplest and easiest method.
  • a method of moving the immune antibody into the sample using centrifugal force can be mentioned.
  • the method using centrifugal force as described above can move the antibody to a relatively thick biological sample.
  • the centrifugal force causes damage to the tissue, there is a limitation in observing the shape of the whole tissue have.
  • Non-Patent Document l Structure and molecular interrogation ' of intact biological systems
  • Chung et al. MATURE, Vol. 497 No. 6, 2013, 332-337
  • Non-Patent Document 2 "ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3D imaging", Lee et al., Scientific Report, Vol 18631. 2016.
  • Non-Patent Document 3 Stochastic electro transport selectively enhances the transport of highly electrorabolic molecules ", Kim et al, PNAS, Vol.
  • Non-Patent Document 4 “Optimization of CLARITY for clearing whole brain and other intact organ”, Jonathan et al, eNeuro, 2015
  • the present invention uses a conductive hydrogel to prevent the direct contact between the dye reagent and the electrode for a biological sample to prevent physicochemical modification and breakage of the dye, And concentrating the electric current in a predetermined region to concentrate the antibody only in the direction in which the biological sample is placed,
  • a biological sample dyeing method capable of performing dyeing of a sample, and a dyeing apparatus for a biological sample to which the above-described technique is applied.
  • a method of dyeing a biological sample includes the steps of: ( a ) forming an electric field such that current flows through a conductive hydrogel to a dye reagent for a biological sample and a biological sample, (b) Or (c) both steps (a) and (b). At this time, the biological sample is separated from the living body.
  • the electric current is applied to the electrode in the polarity opposite to that of the polarity electrode, the conductive hydrogel, the dyeing reagent for the biological sample, the biological sample and the dyeing reagent for the biological sample in the forward, To form an electric field so as to flow sequentially to the first electrode.
  • the step of forming the electric field of the step (a) or (b) may include applying a voltage such that a current of 60 to 100 mA flows for 1 to 5 hours.
  • the step of applying the voltage may be performed so as to change the direction of the current at intervals of 5 to 20 minutes.
  • the step of applying the electric field may further include a step of leaving for 10 minutes to 2 hours.
  • the washing step may be carried out for a further 1 to 3 hours.
  • the conductive hydrogel may comprise an acrylamide gel.
  • the staining reagent for the biological sample may be a target binding protein or a target binding nucleic acid molecule.
  • the staining reagent for the biological sample may be labeled with a fluorescent label.
  • the biological sample may be a tissue having a thickness of 0.5 to 10 mm.
  • the biological sample may be a fixed sample using formaldehyde (HCHO).
  • the biological sample may be a tissue including cubic (CUBIC), clariant It may be a transparent sample.
  • CBIC cubic
  • clariant It may be a transparent sample.
  • Cooling step may be further included.
  • the step of cooling is i, can include, or both for exchanging the electrode buffer, conductive hydrogel circulate cooling water to the outside.
  • a chip for dyeing a biological sample comprising: a conductive hydrogel body having a dyeing reagent portion for a biological sample, a biological sample fixing portion, and a buffer portion aligned in a first direction in an internal space; And may include a biological sample loading body capable of holding a biological sample.
  • the biological sample loading body may include a biological sample loading having a hole therein and a mesh located on both sides of the hole.
  • a non-conductive outer wall formed with a pair of opposed side surfaces in the first direction of the electroconductive hydrogel body.
  • the pair of nonconductive outer walls may have holes of different sizes.
  • the volume of the dye reagent portion for the biological sample may be larger than the volume of the buffer portion.
  • a biological sample dyeing apparatus is characterized in that the biological sample dyeing chip and the system one electrode located outside a pair of side faces of the biological sample dyeing chip in the first direction, And an electrode portion including two electrodes.
  • a focusing selection plate movable in a second direction intersecting with the first direction and having holes of different sizes may be positioned between the bio-sample dyeing chip and the system first electrode and the second electrode, respectively.
  • a magnetic body positioned outside a pair of side surfaces facing in a second direction intersecting with the first direction of the bio sample dyeing chip and being movable in the first direction.
  • the magnetic body is inclined at a predetermined angle with respect to the first direction Can be located.
  • the biological sample dyeing apparatus further includes a perfusion chamber in which the biological sample dyeing chip is inserted into the open space partially separated from the intermediate space of the lateral wall by the lateral wall and separated into the crab 1 and crab 2 spaces
  • the first electrode may be located in the first space
  • the second electrode may be located in the second space.
  • a buffer fluid pressure port communicating with the first space or the second space of the perfusion chamber and positioned at a lower end of the ' perfusion chamber ' , and discharging the fluid from the first space or the second space of the perfusion chamber to the outside And a buffer outlet opening upwardly from an upper end of each space.
  • a denaturing reagent for example, an antibody
  • a biological sample is transferred to a thick tissue sample using an electric force, and the denaturing of the antibody is performed using a conductive hydrogel. Protection, and to provide the possibility for variations in biological samples of various types and sizes by using a high variability of the hydrogel, the practicality and versatility: it is possible to establish.
  • the electric force by using the electric force, the movement of the antibody is accelerated, the dyeing of the sample is accelerated, and the movement of the armature is restricted to other parts except the sample by using the electric focusing technique, thereby enabling efficient dyeing using the minimum antibody .
  • cooling around the hydrogel can minimize the degeneration of the antibody responsible for staining and the damage of the biotissue tissue stained.
  • the biological sample dyeing technique provided in the present specification enables internal dyeing of a thick biological sample, significantly shortens the time required for dyeing a biological sample, and even when a small amount of a dye reagent for a biological sample is used, It has an advantage of enabling dyeing.
  • FIG. 1 is a schematic diagram showing a biological sample staining process through an EFKX Electro-Focused Immuno-Chemistry according to an embodiment.
  • FIG. 2A is a schematic diagram showing a side view of a biological sample dyeing apparatus according to one embodiment.
  • FIG. 2B is a schematic diagram showing a plane of a biological sample dyeing apparatus according to one embodiment.
  • FIG. 2A is a schematic diagram showing a side view of a biological sample dyeing apparatus according to one embodiment.
  • FIG. 2B is a schematic diagram showing a plane of a biological sample dyeing apparatus according to one embodiment.
  • FIG. 3 is a schematic diagram showing a buffer supply unit of a biological sample dyeing apparatus in one embodiment.
  • FIG. 4 is a schematic diagram showing a biological sample analyzer in which a lens and a fluorescence device are added to a biological sample dyeing apparatus of one embodiment.
  • FIG. 5 is a schematic diagram illustrating a biological sample dyeing apparatus using an electric field and magnetic focusing according to another embodiment.
  • FIG. 6A and 6B are perspective views of a biological sample dyeing apparatus according to one embodiment.
  • FIG. 6A shows a state before the biological sample loading body is inserted into the biological sample holder
  • FIG. 6B shows a state in which the biological sample loading body is inserted into the biological sample holder.
  • FIG. 7 is a perspective view showing a structure of a blank for making a dyeing chip of a biological sample dyeing apparatus according to an embodiment.
  • FIGS. 8A to 8C are perspective views illustrating a process of fabricating a dyeing chip of a biological sample dyeing apparatus according to an embodiment.
  • FIG. 9A is an exploded perspective view showing a biological sample dyeing apparatus according to another embodiment
  • FIG. 9B is a combined perspective view.
  • FIG. 10 is a perspective view showing a driving state of an electric field focusing actuator of the biological sample dyeing apparatus shown in FIG. 9A.
  • FIG. 11 is a perspective view showing a driving state of a magnetic focusing actuator of the biological sample dyeing apparatus shown in Fig. 9A.
  • FIG. 12 is a perspective view showing the flow path of the cooling buffer in the per fusion chamber of the biological sample dyeing apparatus shown in FIG. 9A.
  • FIG. 12 is a perspective view showing the flow path of the cooling buffer in the per fusion chamber of the biological sample dyeing apparatus shown in FIG. 9A.
  • Fig. 13 is a front view showing the top cover of the biological sample dyeing apparatus shown in Fig. 9A. Fig.
  • FIG. 14 is a fluorescence image showing the result obtained by dying a transparent sample of brain tissue of a GFP-expressing transgenic mouse with a biological sample with an antibody through EFIC (Electro-Focused I sleep uno-Chemistry).
  • EFIC Electro-Focused I sleep uno-Chemistry
  • FIG. 15 is a fluorescence image showing the result obtained by dying a transparent sample of a brain tissue of a non-transformed mouse with a biological sample with an antibody through EFIC.
  • FIG. 16 shows CLARITY samples of the cerebral cortex (above) and hippocampal tissues (below) of GFP-expressing transgenic mice were obtained by staining a biological sample with an antibody through EFIC It is a fluorescence image showing the result.
  • FIG. 17 is a fluorescence image (scale bar: lOOum) showing the result obtained by dyed biotransformation of a hippocampal tissue of a transgenic mouse expressing GFP with Lectin through EFIC.
  • FIG. 18 is a fluorescence image showing the result obtained by dying a transparent sample of human brain tissue with a biological sample with an antibody through EFIC.
  • FIG. 19 shows the results obtained by performing passive biological sample dyeing with 6% (w / v) Aery 1 amide Gel samples and biological sample staining with EFIC, thereby confirming the difference in efficiency of biological sample dyeing.
  • FIG. 20 is an image comparing the results of an electronic focusing and staining method in the case where a magnetic substance is additionally used.
  • FIG. 21 is an image obtained by comparing the transmittance in the result of the electron-focusing dyeing method with or without a magnetic substance.
  • FIG. 22 is an image showing the result of an experiment of GFP-TG mouse antibody staining using magnetic EFIC.
  • One embodiment of the present invention provides a method of dyeing a biological sample using an electric field, comprising the steps of:
  • a charge dyeing reagent for a biological sample moves in the electric field and contacts the biological sample to dye the target biomaterial of the biological sample.
  • the penetration efficiency and speed of the dyeing reagent in the sample are excellent as compared with passive bio-sample dyeing depending on diffusion.
  • an electric current is flowed by using a conductive hydrogel to control the movement of the dye reagent for the biological sample, while preventing the degeneration of the dye reagent for the biological sample due to the direct contact between the electrode and the dye reagent for the biological sample Lt; / RTI > More specifically, the step of applying an electric field (applying a voltage) such that the electric current of the step (a) passes through the conductive hydrogel to flow into the dye reagent for biological sample and the biological sample,
  • a conductive hydrogel may be used as the conductive material which can physically separate the biological sample. This makes it possible to secure the fluidity of U and improve the usability and optical accessibility.
  • the conductive hydrogel does not pass a dye reagent (for example, an antibody) for a biological sample while passing an electric current, so that the direct contact between the dye reagent for a biological sample and the electrode can be blocked. It is possible to prevent the external loss of the dye reagent for biological samples.
  • a dye reagent for example, an antibody
  • the conductive hydrogel blocks the movement of the buffer, and thus the semipermeable membrane used for blocking the migration of the dye reagent (for example, antibody) for biological samples in the conventional dyeing of the biological sample using the electric field, It is impossible to block the osmotic phenomenon in which the external buffer enters the sample chamber due to the concentration, and it is possible to solve the problem of impossibility of incomplete dyeing and reuse due to dilution of the dye reagent (for example, antibody) for biological samples, The structure of the electrode is easily broken by the heat of the electrode, thereby solving the problem of leaking the dyeing reagent to the external buffer.
  • the dye reagent for example, antibody
  • the electric current is applied to an electrode (first electrode) such as a dye for a biological sample, a conductive hydrogel, a dye reagent for a biological sample, a biological sample, Two electrodes) (for example, forward And / or in a reverse direction).
  • an electrode such as a dye for a biological sample, a conductive hydrogel, a dye reagent for a biological sample, a biological sample, Two electrodes (for example, forward And / or in a reverse direction).
  • the step (b) of forming the electric field so as to cause the electronic focusing can be performed by arranging the first and second electrodes and the biological sample therebetween in a straight line and making the area of the second electrode narrower than the area of the first electrode And applying a voltage.
  • current may flow through the conductive hydrogel to allow the current to flow more concentratedly.
  • steps (a) and (b) are performed, they may be performed in separate steps, respectively, or may be performed together in one step.
  • the steps (a) and (b), which are performed together in the one step may be performed by placing the first and second electrodes and the biological sample therebetween in a straight line, and between the first and second electrodes and the biological sample And a step of applying a voltage such that the area of the low-12 electrode is narrower than the area of the first electrode and the current passes through the conductive hydrogel and flows to the dyeing reagent for the biological sample and the biological sample .
  • a voltage is applied so that a current flows sequentially (for example, in a forward direction and / or a reverse direction) to a large area of a gate electrode, a conductive hydrogel, a dye reagent for a biological sample, a biological sample, and a low- Step < / RTI >
  • FIG. 1 is a schematic diagram showing a biological sample staining process through an EFKX Electro-Focused Immuno-Chemistry according to an embodiment.
  • the electric field forming step is a step of providing a power to move (penetrate) the dyeing reagent for a biological sample into the biological sample by an electric field so that the dyeing reagent for the biological sample is injected into the biological sample, A voltage of about 60 to about 100 mA, about 70 to about 90 mA, or about 75 to about 85 mA for about 5 hours, about 1 to about 3 hours, or about 1 to about 2 hours, (See step 1 in Fig. 1). At this time, the electric field forming step may change the direction of the electric current from about 5 About 20 minutes, about 5 to about 15 minutes, or about 8 to about 12 minutes.
  • the dye reagent for a living body sample which has passed through the biological sample in the unpaired state can be returned to its original position (to the same electrode side).
  • the dyeing reagent for the bio-bio sample By repeatedly contacting the dye sample for bio-sample with the bio sample, have.
  • the biological sample dyeing method is preferably performed after the electric field forming step (step (a), (b), or (D) for about 10 minutes to about 2 hours, or for about 10 minutes to about 1 hour (without applying a voltage), so as to counteract the staining reagent for the biological sample (Fig. 1 (See step 2 of FIG.
  • the biological sample dyeing method may further comprise: an electric field forming step
  • washing step for removing the dyeing reagent for a bioproduction sample after the step of reacting the dyeing reagent for the biological sample (a), (b) or (c) (See step 3 of FIG. 1).
  • the washing step may be performed for about 1 to about 3 hours or about 1 to about 2 hours.
  • Another embodiment of the present invention is a method of analyzing a signal generated by the staining of a biological sample together with the staining of the biological sample (step (a), (b), or (c) .
  • the biological sample dyeing step may be performed as described above in the biological sample dyeing method, optionally d) leaving the dyeing reagent for the biological sample and the biological sample untreated without applying an electric field, and / or (e) dyeing the bioanalyte And a cleaning step for removing and / or recovering the reagent.
  • the step of measuring the signal is performed by measuring a fluorescence signal and / or an emission signal generated according to the dyeing reagent for a biological sample used by appropriate measurement means.
  • the measurement may include signal acquisition, signal visualization and / (Quantification) of signal strength and / or signal area (signal portion).
  • the measuring means may be selected from any means capable of visualizing and / or quantifying the fluorescence signal and / or the emission signal, and may be any type of fluorescence microscope (e.g., an optical microscope, a laser microscope, etc.) A light emission measuring device, a fluorescence camera, a digitizing (quantifying) device of a light emitting signal, and the like.
  • the analytical method using the biological sample staining may be any method for visualizing or quantifying the biomaterial (for example, protein, etc.) which is the target of the staining reagent for the biological sample.
  • the method may include the presence or absence of the target biomaterial in the tissue, Shape and / or steric distribution ' position, and / or any method of visualizing or quantifying tissue content.
  • the step of forming the electric field may be performed by applying a voltage to both electrodes.
  • the thermal energy generated by applying a voltage to both the electrodes increases the temperature of the semi-greenhouse, which may cause a problem that the dye reagent (for example, a protein reagent such as an antibody) is denatured for a biological sample.
  • the biological sample dyeing method may further include a step of cooling the semi-insoluble body in which the biological sample dyeing or the biological sample analysis is performed.
  • the cooling may be performed by exchanging the electrode buffer and / or by cooling the buffer supply portion 28 of the conductive hydrogel and / or electrode portion and / or the electrode portion (see FIG. 3).
  • the cooling step may comprise the steps of: exchanging the electrode buffer; and / or removing the conductive hydrogel exterior (e.g., a side of the conductive hydrogel (e.g., a pair of opposing sides where no electrode is located) Circulating the cooling water to the outside and / or the inside of the supply part 28 of the buffer solution supplied to the outside and / or the electrode part).
  • the cooling step may be performed continuously or intermittently so that the temperature of the semi-insulated system maintains the temperature at which the dye reagent for biological samples is not denatured.
  • the biological sample if you are using a protein of the antibody such as dyeing, reagent, temperature which does not denature the above-mentioned biological sample staining reagent is a temperature at which the denaturation of the protein does not occur, for example, less than, 35 ° 37 ° C C
  • the temperature may be below 30 ° C, below 25 ° C, below 20 ° C, below 15 ° C, below 10 ° C, or below 5 ° C (the lower limit of this temperature range is the buffer and / Of freezing point).
  • the cooling Since the temperature of the buffer and / or the cooling water used at this time is regulated and circulated in a temperature range in which the dye reagent for a biological sample is not denatured, the temperature of the semi- Range.
  • the biological sample dyeing method may be performed by a conventional method (for example, a pressure (for example, atmospheric pressure range), pH (for example, neutral range pH 6 To 8), etc.).
  • a pressure for example, atmospheric pressure range
  • pH for example, neutral range pH 6 To 8
  • the biological sample dyeing method of the biological sample may further include the step of recovering the dyeing reagent for the uni-body bio-sample after the termination of the repellency, before, during and / or after the recovering step, And washing the sample.
  • the step of washing the biological sample may change the current direction
  • a biological sample having a thickness larger than 0.5 mm, 0.75 mm, 1 mm, 1.25 mm, 1.5 mm, 1.75 mm, (the upper limit value which may be a living body, the thickness of the engine belongs to the organization, or 10 ⁇ , 7.5 ⁇ , 5mm, 4 ⁇ , 3 ⁇ or 2.5 ⁇ ) in addition to the internal Fig dyeing and / or analysis effectively in), (For example, about 1 to about 3 mm in thickness or about 1.5 to about 2.5 mm in thickness) with about 1 to 2 ul of a dyeing reagent (for example, an antibody) (E.g., CLARITY brain tissue, etc.) having a diameter of about 5 mm to about 10 mm and a diameter of about 5 mm to about 10 mm.
  • a dyeing reagent for example, an antibody
  • the biological sample dyeing method can remarkably shorten the dyeing time of a biological sample by high dyeing efficiency of a biological sample.
  • the time for the dyeing reagent for a biological sample to be added to the biological sample (about 1 to about 5 hours, about 1 to about 3 hours, or about 1 to about 2 hours) Time (between the dyeing reagent for the biological sample and the target biomaterial Antagonistic (binding) time; About 10 hours to about 2 hours, or about 10 minutes to about 1 hour), and a cleaning time (about 1 to about 3 hours or about 1 to about 2 hours)
  • the biological sample staining can be completed (at least about 2 hours or 2.5 hours) (see FIG. 1). This is remarkably shortened in comparison with passive biological sample staining by conventional diffusion, which takes at least 90 hours, for example, 96 to 120 hours, to complete the staining of biological samples.
  • FIG. 2A is a schematic diagram showing a side view of a biological sample dyeing apparatus (semi-step system) according to an embodiment
  • FIG. 2B is a schematic diagram showing a plane.
  • the steps (a) and (b) in the biological sample dyeing method are the same as in the first embodiment except that the conductive hydrogel 11, the dyeing reagent for the biological sample in the conductive hydrogel 11 (R), a biological sample (S) immobilized in the conductive hydrogel (11), and the conductive hydrogel (11) contained in the part (15) U electrode 21 and the second electrode 22 located on the opposite sides of the pair.
  • the antimagnetic system may be filled with a conductive medium 24 (e.g., a conventional buffer solution).
  • the conductive hydrogel 11 may be in the form of an open top surface and the biological sample S may have a wide cross section facing the electrodes 21 and 22 Can be immobilized in the conductive hydrogel 11 and the dyeing reagent R for the biological sample can be immobilized on the surface of the biological sample S by the electric field, It can be supplied with power for penetration into the sample.
  • the areas of the electrodes 21 and 22 are determined depending on the sizes of the holes 25a and 26a formed in the nonconductive outer walls 25 and 26 . Since the nonconductive outer walls 25 and 26 having the holes 25a and 26a having different sizes are designed to allow the dye reagent for the living body sample to concentrate on the living body sample and therefore the nonconductive outer wall 25 having the large hole 25a Is located outside the side of the side of the dye reagent part 15 for the biological sample and the nonconductive outer wall 26 having the small hole 26a can be located outside the side of the buffer part 16 side.
  • the first electrode 21 and the second electrode 22 include a conductive medium 24 (for example, a conventional buffer solution) on the side surface of the conductive hydrogel 11, Lt; / RTI >
  • the electrode unit is provided with a first electrode 21 having the same polarity as the charge of the dye reagent for the biological sample and a second electrode 21 having a polarity opposite to that of the buffer unit 16 (For example, when a substance having negative charges such as an antibody is used as a staining reagent for a biological sample), the second electrode 22 may have a polarity opposite to that of the dye for the biological sample A negative electrode is formed on the side of the dye reagent for the biological sample, and an anode is formed on the opposite side).
  • a cooling water circulation channel (not shown) is added to the outside of the conductive hydrogel 11 in order to prevent denaturation of a dye reagent (for example, an antibody or the like) for a biological sample due to heat generated in the electrodes 21 and 22 .
  • the cooling water circulation channel may be located on a side surface, a lower surface, and / or an upper surface excluding the pair of side surfaces where the electrodes 21 and 22 of the conductive hydrogel 11 are located, and the conductive hydrogel 11,
  • the cooling water circulation channels may be located in contact with each other with an interval of about 0 to 0.5 mm or less so that there is no loss of electric field, but the present invention is not limited thereto.
  • the shape of the conductive hydrogel 11 is not particularly limited and may be a rectangular parallelepiped shape having a hollow space therein for the sake of ease of use and / or manufacturing, or a rectangular parallelepiped shape having an open side (upper surface) , But is not limited thereto.
  • the conductive hydrogel 11 is in the form of a rectangular parallelepiped having one surface (upper surface) opened, the electrode portion is located on both end surfaces of the major axis of the rectangular parallelepiped, and the cooling water circulation channel is located on both sides and /
  • the biological sample loading body 18 is fixed to the biological specimen fixing unit, and then the cooling water circulation channel is covered on the upper surface of the conductive hydrogel 11.
  • the biological sample dyeing apparatus may further include a buffer supply unit and / or a cooling water supply unit.
  • the buffer supply unit 28 (see FIG. 3) circulates the buffer of the electrode unit to prevent temperature rise due to heat generated in the electrode.
  • the buffer supply unit 28 may be connected to the electrode unit to supply a temperature-controlled buffer.
  • FIG. 3 is a schematic diagram showing a buffer supply unit of a biological sample dyeing apparatus in one embodiment.
  • the electrode units 201 and 202 located on both surfaces of the conductive hydrogel 11 have a buffer inlet 24a and a buffer outlet 24b, respectively,
  • the buffer inlet may include a buffer inlet at the lower side of one side of each of the electrode units 201 and 202 and a buffer outlet at the upper side of the opposite side thereof
  • the buffer supply unit 28 may include the buffer inlet 24a, And the buffer outlet 24b.
  • a cooling water circulation channel may be additionally provided outside and / or inside the buffer supply unit 28 to control the temperature of the buffer supply unit 28, thereby supplying the cooled buffer solution to the electrode units 201 and 202 Can be done.
  • the cooling water supply unit 29 supplies temperature-controlled cooling water to the outside of the conductive hydrogel 11 and / or the buffer supply unit 28 and / or the interior thereof to lower the bath temperature (i.e., the bath temperature is used as a dye reagent for biological samples And / or below the biological sample denaturation temperature), and may be connected to the cooling water circulation channel.
  • the bath temperature i.e., the bath temperature is used as a dye reagent for biological samples And / or below the biological sample denaturation temperature
  • the biological sample dyeing apparatus may further include a visualization and / or quantification device for a signal (e.g., a fluorescence signal) generated by the reaction between the dye reagent for biological sample and the biological sample for real- .
  • the signal visualization and / or quantification device may be at least one selected from the group consisting of a light source, a lens, an imaging device, a computing device, and the like.
  • a fluorescence microscope for example, A display (monitor), a computer, and the like, but the present invention is not limited thereto.
  • FIG. 4 is a schematic diagram showing a biological sample analyzer in which a lens and a fluorescence device are added to a biological sample dyeing apparatus of one embodiment.
  • a fluorescence device 32 and a lens 34 may be attached to one side of a biological sample dyeing apparatus so as to be adjacent to a biological sample to be reacted, and the added lens 34 is connected to a computer 35 So that an image which is confirmed by the lens 34 can be stored in the computer 35.
  • the biological sample dyeing apparatus may further include a cover capable of sealing the conductive hydrogel.
  • FIG. 5 is a schematic diagram illustrating a biological sample dyeing apparatus using an electric field and magnetic focusing according to another embodiment.
  • the electrodes 21 and 22 are disposed before and after the conductive hydrogel 11,
  • the magnetic body 30 is disposed.
  • the longitudinal direction of the conductive hydrogel 11 may be defined as a first direction parallel to the direction in which the electrodes 21 and 22 having different polarities face each other, and a lateral direction may be defined as a second direction orthogonal to the longitudinal direction .
  • the first electrode 21, the dyeing reagent portion 15 for a biological sample, the biological sample S, the buffer portion 16 and the crab two-electrode 22 are arranged in the first direction
  • the magnetic body 30 is disposed on the left and right sides of the conductive hydrogel 11 adjacent to the biological sample S.
  • the conductive hydrogel 11 is made of a hydrogel structure and is exposed to a smaller area of the area of the second electrode 22 than the area of the first electrode 21, As a result, the concentration of the electric field can be induced.
  • the magnetic body 30 is positioned adjacent to the biological sample S to the left and right, thereby forming a magnetic field during the process of dyeing to induce magnetic focusing.
  • the magnetic bodies 30 may be positioned adjacent to the biological sample S and each of the magnetic bodies 30 located on the right and left sides of the conductive hydrogel 11 may be parallel to each other along the crab 1 direction.
  • the magnetic bodies 30 positioned on the right and left sides of the conductive hydrogel 11 may be arranged to be inclined toward each other by an angle set with respect to the first direction.
  • each magnet 30 of the left and right magnet 30 left with respect to the first direction will tilt 15 ° clockwise to the right side magnet 30 are when disposed inclined 15 ° in the counterclockwise direction further increase the magnetic focusing effect .
  • the present invention is not limited to this angle.
  • FIG. 6A and 6B are perspective views of a biological sample dyeing apparatus according to one embodiment.
  • FIG. 6A shows a state before the biological sample loading body is inserted into the biological sample holder
  • FIG. 6B shows a state in which the biological sample loading body is inserted into the biological sample holder.
  • the biological sample dyeing apparatus 110 includes a biological sample dyeing chip 120 to which a biological sample loading body 130 is inserted and fixed, and a bio-sample dyeing chip 120 U electrode 141 and a second electrode 142 having different polarities from each other are arranged on the front and rear sides of the first electrode 141 and the second electrode 142, respectively.
  • a voltage is applied to the first electrode 141 and the second electrode 142, an electric field is formed therebetween, so that a chip 120 for dyeing a living body sample, which is located between the pair of electrodes 141 and 142, As the electric field is formed, a current can flow into the inside thereof.
  • the forward and backward directions of the biometric sample dyeing chip 120 are defined as one direction parallel to the direction in which the electrodes 141 and 142 having different polarities face each other, and the second direction perpendicular to the forward and backward direction .
  • the bio-material dyeing chip 120 includes a body 121 made of a conductive hydrogel having an inner space, and the conductive hydrogel body 121 is conductive.
  • the hydrogel structure (formed body) may be a shape having an open top surface.
  • the space formed inside the conductive hydrogel body 121 may include a dye reagent portion 12 5 for a biological sample, a buffer portion 126, and a biological sample fixing portion 127 as an empty space.
  • the biological sample fixing part 127 is located between the dyeing reagent part 125 for the biological sample and the buffer part 126.
  • the dye reagent portion 125 for a biological sample is a space to contain a dyeing reagent
  • the buffer portion 126 is a space to contain a buffer solution.
  • the dyeing reagent portion 125 for a biological sample may have a volume (volume) that can carry a dyeing reagent for a biological sample to such an extent that the biological sample to be loaded can be dyed layer by layer.
  • the buffer unit 126 is a space into which the buffer solution is to be filled, and is a space in which the dyeing reagent for a living body sample that has passed through the hole (mesh position) of the biological sample loading body 130 or the biological sample loaded therein is collected.
  • the buffer unit 126 may be a space capable of separating the inner wall of the conductive hydrogel body 121 located in parallel with the long axis of the biological sample fixing unit 127 and the biological sample fixing unit 127.
  • the thickness of a side of the pair of opposing sides of the conductive hydrogel body 121 where the electrodes 141 and 142 are located is close to the side of the dye reagent portion 125 for the biological sample,
  • the movement distance and / or the movement time of the current between the electrodes 141 and 142 and the staining reagent for the biological sample can be made to be stratified.
  • the thickness of a side of the pair of opposing sides of the conductive hydrogel body 121 where the electrodes 141 and 142 are located and the side nearer to the buffer part 126 can be structurally supporting the conductive hydrogel body 121
  • the thickness of the layer is about the thickness.
  • the biological sample fixing unit 127 is an internal space of the conductive hydrogel body 121 to which the biological sample loading body 130 carrying the biological sample is immobilized (fitted).
  • the biological sample loading body 130 includes a biological sample loading 132 having a hole 132a therein and a mesh 135 located on both sides of the hole 132a to cover the hole 132a.
  • the biological sample loading is carried out through the hole 132a of the sample 132,
  • the biological sample is loaded in the space between the meshes 135.
  • the mesh 135 located on both sides may be all or part of the circumference (for example, 1 ⁇ 2 or more or 3 ⁇ 4 or more of the circumference) of the mesh 135 may be removably attached to the biological sample loading 132 have.
  • one of the meshes 135 positioned on both sides of the hole 132a of the biological specimen loading 132 is attached to the whole of the perimeter of the perimeter of the hole 132a of the biological specimen loading 132 to form a surface onto which the biological specimen can be loaded, It is possible to load the biological sample between the mesh 135 on both sides when the biological sample is loaded and then the mesh 135 on the opposite surface is covered and a part or all of the periphery is attached to the loading 132.
  • the mesh 135 is located on both surfaces contacting with a wide-area cross-section of the biological sample to be carried, and has pores through which a dye reagent (for example, an antibody, etc.) for a biological sample can pass.
  • the thickness and the pore size of the biological sample loading 132 may be determined according to the size of the biological sample to be loaded and may be, for example, 1 to 1.5 times the average thickness of the loaded biological sample and / 1.4 times, 1 . To 1.3 times, from 1 to 1.2 times, from 1 to 1.1 times, or from 1 to 1.05 times the thickness and / or pore size.
  • the biological sample loading body 130 is provided with a biological sample holder and a biological sample holder such that a wide area cross section of the biological sample holder is positioned parallel to the longitudinal axis of the biological sample holder 127 in the conductive hydrogel body 121 (Embedded) in the inside of the housing 127.
  • the biological sample fixing part 127 has a thickness capable of fitting the biological sample loading body 132 and can be, for example, 1 to 1.5 times, 1 to 1.4 times, 1 to 1.3 times, 1.2 times, 1 to 1.1 times, or 1 to 1.05 times the thickness of the substrate.
  • the biological specimen fixing section 127 is fixed to the biological sample fixing section 127 to stably fix the biological specimen loading body 132 and separate (block) the staining reagent section 125 and the buffer section 126 for the biological specimen.
  • the conductive hydrogel body 121 having the opposite ends thereof is formed with a groove in the inner wall of a pair of opposing side faces thereof and has a space in which the inner wall of the conductive hydrogel body 121 extends toward the outer wall have.
  • the biological sample loading 132 may be a dyeing reagent for electrical and biological samples and, if necessary, a material that does not pass through the buffer.
  • the staining reagent for a biological sample to move, by the formation of the electric field only three through a mesh 135 which is located in holes in the biological matrix rodingreul 132 when passing through the biological sample loading body 130 So that it can be more concentrated on the biological sample loaded between the meshes 135.
  • Conductive outer walls 123 and 124 having holes 123a and 124a of different sizes on the outer sides of the pair of opposite sides of the conductive hydrogel body 121 in the first direction, .
  • the bio-material dyeing chip 120 may be defined as including a bio-sample loading body 130.
  • the bio-sample loading body 130 may include a bio-sample loading body 130 with or without a bio- (132).
  • FIG. 7 is a perspective view showing the structure of a structure for making a dyeing chip of a biological sample dyeing apparatus according to an embodiment.
  • FIGS. 8A to 8C are views showing a structure of a biological sample dyeing apparatus according to an embodiment. Is a perspective view showing a process of fabricating a dyeing chip.
  • a chip 120 for dyeing a biological sample having a substantially rectangular parallelepiped shape and a fabricating device 150 for fabricating the same.
  • the chip 120 for dyeing a living body sample can be positioned in contact with the bottom surface and the long axis of the conductive hydrogel body 121 in a substantially rectangular parallelepiped shape and the non-conductive roots 123 and 124 on both end surfaces.
  • the conductive hydrogel body 121 may be divided into a living body dyeing reagent part 125, a biological sample fixing part 127 and a buffer part 126 by forming a groove extending downward from the opened upper end.
  • non-conductive outer walls 123 and 124 which are in close contact with both ends of the major axis and the bottom surface, are inserted into the groove formed in the lower portion of the substrate 150 in the lower portion of the substrate 150, and the hydrogel is connected to the non- And then the upper portion of the substrate 150 is covered with the substrate 152 (see FIG. 8 (A)).
  • the upper portion 152 may have a protrusion 152a that is inserted into the hydrogel and a slot 152b that fits into the nonconductive outer walls 123 and 124. After the hydrogel has hardened after a certain period of time, the upper portion 152 can be pulled out and separated (see FIG. 8 (B)). Then, the hydrogel body 121 surrounded by the nonconductive outer walls 123 and 124 is separated from the lower portion 151 to obtain a chip 120 for dyeing a living body sample (see FIG. 8C).
  • the bio-material dyeing chip 120 minimizes denaturation or does not cause denaturation of the dyeing reagent for a biological sample by using a conductive hydrogel and / or maintaining the temperature of the sample through a cooling water circulation channel, It is possible to recover and reuse dyeing reagent for biomaterials which is not counteracting biomaterials. Therefore, the dye reagent portion 125 and / or the buffer portion 126 of the bio-material sample dyeing chip 120 may be provided with a dye reagent collecting portion for the bio sample (for example, (Not shown).
  • the bioimage dyeing chip has a major axis length of 3 to 10 cm, 4 to 10 cm, 3 to 8 cm, 4 to 8 cm, 3 to 6 cm, or 4 to 6 cm, and the minor axis length and / 1 to 3 cm, or 1.5 to 2.5 cm, and the diameter of the small hole of the nonconductive outer wall is 1 to 4.5 mm, 1 to 3 mm, or 1 to 2 mm, and the diameter of the nonconductive outer wall Wherein the diameter of the large hole is 5 to 15 mm, 5 to 12.5 thigh, 7.5 to 15 mm, or 7.5 to 12.5 mm and the diameter of the hole of the biological sample loading is 1 to 20 mm, 1 to 15 mm, 1 to 12.5 mm,
  • the thickness of one side where the electrode of the dyeing reagent portion for the biological sample of the conductive hydrogel is located is 1/3 to 2/3 of the total length of the long axis, But are not limited to, the biological sample analysis plan La can be properly controlled.
  • FIG. 9A is an exploded perspective view showing a biological sample dyeing apparatus according to another embodiment
  • FIG. 9B is a combined perspective view.
  • the biological sample dyeing apparatus 200 includes a perfusion chamber 210, a chip 220 for dyeing a living body sample to be fixed thereto, and electrodes 241 and 242, And an upper cover 230 covering an upper portion of the upper case 210. Focusing plates 245 and 246 for selecting the size of the hole in the forward and backward directions of the bio sample dyeing chip 220 are positioned and the magnetic body 260 is positioned in the left and right direction of the bio sample dyeing chip 220.
  • the forward and backward direction of the biometric sample dyeing chip 220 is defined as a first direction parallel to the direction in which the electrodes 241 and 242 having different polarities are opposite to each other, and the left and right direction is defined as a second direction orthogonal to the forward and backward directions .
  • the bio-material dyeing chip 220 may be a hydrogel structure as described above. That is, a non-conductive outer wall may be located at least on the outer side in the longitudinal direction of the conductive hydrogel body, and the non- Holes may be formed in the side surfaces opposite to the electrodes 241 and 242.
  • the conductive hydrogel body may be provided with a dyeing reagent part for a biological sample, a biological sample fixing part, and a buffer part, and a biological sample loading body containing a biological sample may be inserted into the biological sample fixing part. Since the structure and function of the biometric sample dyeing chip 220 constructed as described above are the same as those described with reference to FIGS. 6A to 8, detailed descriptions and explanations thereof will be omitted. However, the aspect ratio of the structure may vary depending on the configuration of the entire apparatus, but such variations are within the scope of ordinary skill in the art.
  • the focusing selection plates 245 and 246 are positioned on the front and rear sides of the bio-material dyeing chip 220 and can be moved in the lateral direction to change the size of the hole.
  • the focusing selection plates 245 and 246 are connected to the electric field focusing actuators 255 and 256, .
  • the electric field focusing actuators 255 and 256 are positioned at the upper end of the upper cover 230 in the engaged state and the connection arms extend to the interior of the fussion chamber 210 and are connected to the focusing selection plates 245 and 246.
  • the magnetic body 260 is positioned on the right and left sides of the bio-material dyeing chip 220 and can be moved in the forward and backward directions to change the position at which the magnetic field is formed.
  • the magnetic body 260 can be connected to and driven by the magnetic focusing actuator 261.
  • the magnetic focusing actuator 261 is positioned at the upper end of the upper cover 230 in the engaged state and the connection arm extends to the inside of the fusion chamber 210 and connected to the magnetic body 260.
  • the electric field focusing actuators 255 and 256 and the magnetic focusing actuator 261 may be positioned in different layers so as not to interfere with each other.
  • 9A and 9B illustrate an embodiment in which the magnetic focusing actuator 261 is located above the electric field focusing actuator 255, 256.
  • the upper lid 230 covers the perforation chamber 210 and the upper end of the upper lid 230 It can be seen that the electric field focusing actuators 255 and 256 and the magnetic focusing actuator 261 are positioned.
  • FIG. 10 is a perspective view showing a driving state of an electric field focusing actuator of the biological sample dyeing apparatus shown in FIG. 9A.
  • the focusing selection plates 245 and 246 are composed of a front focusing selection plate 245 and a rear focusing selection plate 246, which are arranged on the front and back sides, respectively, on the basis of the bio-material dyeing chip 220.
  • Each of the focusing selection plates 245 and 246 has at least two through-holes having different diameters,
  • the through holes may be installed so as to be mutually different in size. That is, the large through-hole of the front focusing selection plate 245 and the small through-hole of the rear focusing selection plate 246 are opposed to each other, and the small through hole of the front focusing selection plate 245 and the large through hole of the rear focusing selection plate 246
  • the through holes can be aligned correspondingly.
  • the present invention is not limited thereto, and it is possible to arrange them in other combinations as required.
  • the focusing selection plates 245 and 246 are connected to the electric field focusing actuators 255 and 256 through connection arms 245a and 246a and the electric field focusing actuators 255 and 256 may provide a driving force for moving in the second direction.
  • the first combination can be set by selecting a large through-hole in the front focusing selection plate 245 and selecting a small through-hole in the rear focusing selection plate 246.
  • the second combination can also be set by selecting a small through hole in the front focusing selection plate 245 and a large through hole in the rear focusing selection plate 246.
  • the front and rear focusing selection plates 245, The selection of the through holes of the focusing selection plates 245 and 246 can be selected by moving the focusing selection plates 245 and 246 in the second direction by driving the electric field focusing actuators 255 and 256 connected thereto.
  • FIG. 11 is a perspective view showing a driving state of a magnetic focusing actuator of the biological sample dyeing apparatus shown in Fig. 9A.
  • the magnetic body 260 is a biological sample. And is connected to the magnetic focusing actuator 261 through a connection arm 260a.
  • the connection arm 260a extending from the magnetic focusing actuator 261 is connected to a magnetic body 260 extended downward by the height of the chip 220 for dyeing a living body sample,
  • the magnetic focusing actuator 261 can provide a driving force for moving the magnetic body 220 in the first direction and the magnetic body 260 can be disposed at the left and right positions of the biometric sample dyeing chip 220 in the forward and backward directions .
  • FIG. 12 is a perspective view showing the flow path of the cooling buffer in the per fusion chamber of the biological sample dyeing apparatus shown in FIG. 9A.
  • FIG. 12 is a perspective view showing the flow path of the cooling buffer in the per fusion chamber of the biological sample dyeing apparatus shown in FIG. 9A.
  • the perfusion chamber 210 of the biological sample dyeing apparatus is divided into two spaces by the transverse wall 215 and divided into a first space 211 and a second space 212 .
  • the first electrode 241 is located in the first space 211 and the second electrode 242 is located in the second space 212.
  • the middle portion of the transverse wall 215 forms a partially open opening 215a,
  • the space 211 and the second space 212 are communicated with each other.
  • the width of the opening 215a is wide enough to oppose the width of the chip 220 for dyeing a living body sample.
  • the first space 211 and the second space 212 may be disconnected from each other when the biometric sample dyeing chip 220 is inserted into the opening 215a of the transverse wall 215.
  • the fusing chamber 210 includes two inlets 211a and 212a and four outlets 211b and 212b.
  • the inlet includes a first inlet 211a communicating with the first space 211 and a second inlet 212a communicating with the second space 212.
  • the inlet 211a and the inlet 212a communicate with the second inlet 212a of the purifier chamber 210, And a cooling buffer is supplied to each of the spaces 211 and 212 while being positioned at the lower end.
  • the outlets 211b and 212b include two first outlets 211b communicating with the first space 211 and two second outlets 212b communicating from the second space 212 to the outside.
  • the discharge ports 211b and 212b are open upward from the upper ends of the spaces 211 and 212 of the perimeter chamber 210, respectively. Accordingly, the cooling buffers flowing into the inlet ports 211a and 212a fill the respective spaces of the purge chamber 210 and then overflow into the respective outlet ports 211b and 212b to exit the holes.
  • Fig. 13 is a front view showing the top cover of the biological sample dyeing apparatus shown in Fig. 9A. Fig.
  • a system 1 electrode 241 and a system 2 electrode 242 are fixed to the lower portion of the upper lid 230 of the biological sample dyeing apparatus according to the present embodiment and extend downward.
  • a portion of the upper lid 230 corresponding to the gap between the first electrode 241 and the second electrode 242 is opened to form an opening 230a.
  • the connecting arms 245a and 246a of the electric field focusing actuators 255 and 256 and the connecting arm 260a of the magnetic focusing actuator 261 pass through the opening 230a of the upper lid 230 and pass through the perimeter chamber 210, And is connected to the focusing selection plates 245 and 246 and the magnetic body 260, respectively.
  • the electric field focusing actuators 255 and 256 and the magnetic focusing actuator 261 may be positioned in different layers so as not to interfere with each other.
  • the biological sample described herein can be used in an animal such as a vertebrate such as a stratum corneum, a genopus, a zebrafish, a mammal (for example, a horse, a cow, a sheep, a dog, a cat, a murine rodent,
  • the cells or their cultures, tissues, and S isolated from invertebrates can be, but are not limited to, organs.
  • the biological sample may be a living entity (e.g., a biopsy Sample), or may be collected from dead individuals (e. G. Autopsy or autopsy samples).
  • the organism may be selected from any and all of the tissue types and organs and may be selected from the group consisting of hematopoietic, nerve (central or peripheral), gliosis, mesenchyme, skin, mucosa, epilepsy, muscle (skeletal, Can be selected from the tissues and organs of the endothelium, epithelium, endothelium, liver, kidney, pancreas, stomach, lung, fibroblast.
  • the biological sample may be, but is not limited to, the vertebral body of a brain tissue or rodent separated from a vertebrate animal such as a mammal, including a human.
  • the biological sample separated from the living body contains various substances in addition to the biological substance to be analyzed, it is an obstacle to obtaining accurate analysis results. Therefore, the biological sample is a biological substance other than the biological substance (for example, protein and / , For example, a sample in which a biomaterial such as lipid which is an obstacle to analysis (for example, optical analysis, etc.) is removed.
  • a biological substance other than the biological substance for example, protein and / .
  • a sample in which a biomaterial such as lipid which is an obstacle to analysis for example, optical analysis, etc.
  • Applicable biological samples of the present invention may be those separated from living bodies.
  • the present invention has the advantage of being applicable to a comparatively thick biological sample, and from this viewpoint, the biological sample has a thickness of 0.2 mm or more, 0.3 mm or more, 0.5 mm or more, 0.75 mm or more, 1 mm or more, 1.25 mm or more, (The upper limit value may be the thickness of the organ to which the living tissue belongs, or 10 mm, 7.5 mm, 5 mm, 4 mm, 3 mm, or 2.5 mm), but not limited thereto , But it may be applied to a biological sample thinner than the above range.
  • the cross section of the biological sample may be a shape close to a circle having a diameter of about 5 to 10 mm, but is not limited thereto, and can be appropriately determined depending on the size and / or shape of the biological sample loading.
  • the dyeing reagent for a biological sample described in the present specification is a reagent for targeting a specific biomolecule (for example, protein, sugar, nucleic acid (DNA or RNA), etc.) in a biological sample (e.g., biological tissue)
  • a biological sample e.g., biological tissue
  • Target binding nucleic acid molecules such as a target binding protein, aptamer, antisense RNA, siRNA, and shNA
  • a chemical dye for example, an organic compound having a chromophore that binds to a target biomaterial by electrostatic bonding
  • the dye reagent for a biological sample may be charged.
  • the site to be stained by the biological sample dyeing technique provided herein is not particularly limited and may be one or more selected from the group consisting of cell membrane, cytoplasm, nucleus, nuclear membrane, various intracellular organelles, etc.
  • a dyeing reagent for a biological sample can be selected.
  • the labeling substance may be at least one selected from all substances which generate a detectable signal (for example, fluorescence).
  • the fluorescent material may be at least one selected from the group consisting of, but not limited to,
  • Fluorescent proteins green fluorescent protein (GFP), yellow fluorescent protein (YFP), orange fluorescent protein (0FP), cyan fluorescent protein (CFP), blue fluorescent protein (BFP), red fluorescent protein Red fluorescent protein, near infrared fluorescent protein,
  • Fluorescent protein variants Emerald (Invitrogen, Carlsbad, Calif.), EGFP (Clontech, Palo Alto, Calif.), Ami-Green (MBL International, Woburn, Mass.), Aede (MBL International, Woburn, Mass.
  • GFP variants such as', ZsGreenl (Clontech, Palo Alto , Calif), CopGFP (Evrogen / Axxora, LLC, San Diego, Calif)..; (2004)), mCFP (Wang et al., PNAS USA 101 (48): 16745-9 (2004)), AmCyanl (Clontech, Palo Alto, Calif), MiCy (MBL International, Woburn, Mass.), CyPet (Nguyen and Daugherty, Nat Biotechnol.
  • BFP variants such as EBFP (Clontech, Palo Alto, Calif.); 20 (1): < / RTI > 87 (3): 357-60 (2005)), Venus (Nagai et al., Nat. Biotechnol. YFP variants such as ZsYellow (Clontech, Palo Alto, Calif), mCitrine (Wang et al., PNAS USA 101 (48): 16745-9 (2004)); 0FP variants such as cOFP (Strategene, La Jolla, Calif.), mKO (MBL International, Woburn, Mass.),
  • non-protein organic fluorescent dye 'Xanthene derivatives, such as fluorescein, rhodamine, Oregon green, eosin , Texas red; cyanine, i ndo carbocyanine, oxacarbocyanine, thiacarbocyanine, and merocyanine Cyanine derivatives; Squaraine derivatives such as Seta, SeTau and Square dyes, and ring-displaced squaraines; Naphthalene derivatives ' (dansyl and prodan derivatives); Coumarin derivatives; oxadiazole derivatives such as pyridyloxazole, nitr o Whyzoxad i azo 1 e, and benzoxadiazole; ant hraqui nones, including DRAQ5, DRAQ7, and CyTRAK Orange; pyrene derivatives such as cascade blue; oxazine derivatives such as Nile red, Nile blue, cresyl violet, and
  • the conductive hydrogel described in the present specification provides a fluidity structure to a chip and does not pass a buffer solution and a dye reagent for a biological sample while passing electricity
  • the nonconductive outer wall, and biological sample loading may be made of a solid material that does not pass through the buffer and immunostaining reagent.
  • the nonconductive outer wall and the biological sample loading may be of a transparent material in order to avoid the obstruction caused by refraction, scattering and dispersion of light during optical analysis.
  • the nonconductive outer wall and the biological sample loading may be of the same or different materials, and may be independently selected from the group consisting of acrylic, glass, plastic, rubber, ceramics, Or more.
  • the cooling water circulation channel may be any type of structure in which all sides except the cooling water inlet and outlet are closed, and there is no particular restriction on the material, and the heat conduction is excellent and the liquid is not lost A material that can be circulated is sufficient.
  • the mesh included in the biological sample loading may be one or more materials selected from the group consisting of silk, linen (E), and petroleum-derived fibers, but is not limited thereto.
  • the mesh may have pores of a size that can not pass through the biological sample loaded while passing the dye reagent for biological sample.
  • the antibody when an antibody is used as a staining reagent for a biological sample, the antibody may have pores having an average diameter of about 30 nm or more, about 50 nm or more, about 70 nm or more, about 100 nm or more, or about lum or more, (The maximum value of the pore diameter may be less than the size of the loaded biopsy sample so that it does not pass through and the loading is held in place).
  • the mesh has an average diameter of from 30 nm to 100 um, 50 nm to 100 um, 70 nm to 100 um, 100 nm to 100 um, lum to 100 um, 30 nm to 10 um, 50 nm to 10 um, 70 nm to 10 um, but it is not limited thereto.
  • the inner space and the electrode portion of the conductive hydrogel may be filled with a buffer solution that is conventionally used.
  • the buffer solution may be selected from buffer solutions comprising an ionization providing material (electrolyte).
  • the ionization providing material is not particularly limited and may be at least one selected from the group consisting of lithium hydroxide, sodium chloride, potassium chloride, sodium hydroxide, and the like, but is not limited thereto and may be any ionizable material.
  • the buffer solution may be selected from the group consisting of borate buffer, phosphate buffalazine (PBS), phosphate buffer, Tyrode buffer, Tris buffer, Buffers, citrate buffers, and acetate buffers.
  • PBS phosphate buffalazine
  • Tris buffer Tris buffer
  • Buffers citrate buffers
  • acetate buffers acetate buffers.
  • the buffer solution may comprise, but is not limited to, 50 mM lithium hydroxide.
  • the present invention will be described in more detail with reference to Examples. In the following examples, immuno-staining using antibodies to biological sample staining is performed. These examples are only for explaining the present invention more specifically, and the scope of the present invention is not limited by these examples. And will be apparent to those skilled in the art to which the present invention pertains.
  • Transparent cerebral gating samples were prepared by conventional internal CLARITY methods using the brain of transformed mice such that GFP was specifically expressed in neurons (" Structural and molecular interrogation of intact biologic cal systems ", Chung et al. MATURE, Vol. 497 No. 6, 2013, 332-337).
  • Thyl-GFP Transgeni c mouse C57BL6 mouse, Korea Research Institute of Brain Science (KBRI) was used and the blood of the brain microvessel was extracted through the heart perfusion. Brains were extracted from the mice and the cells were treated with 4% (w / v) acrylamide, 0.25% (w / v) VA-044 and 4% (w / v) paraformaldehyde in phosphate buffered saline monomer solution and incubated at 4 ° C for 2 days.
  • the brain was raised to 37 ° C using a specially-fabricated machine (CLARITY Easy-Imbedding, LCI) and vacuumed for 2 to 4 hours in an incubation condition. '
  • the slices were then processed using the CLARITY Easy-Clear (LCI) instrument (thickness: 500 ⁇ m, 1 mm, 1.5 mm 2 mm, 5 mm, diameter 5 mm, -Tissue Clear ing (ETC) was performed. At this time, a buffer solution containing 4% SDS, 50 mM LiOH, 25 mM Boric acid was used. Clear ing was carried out at 50-70V and 35 ° C for 1 to 5 days depending on the size of the sample.
  • LCI CLARITY Easy-Clear
  • ETC -Tissue Clear ing
  • the chip for dyeing the prepared biological sample is connected to a buffer supply unit connected to a power supply unit, both electrode units (each electrode unit has a buffer inlet at one side lower end and a buffer outlet at the opposite side upper end) (Borate buf fer; 50 mM LiOH, 25 mM Boric Acid), and a cooler connected to the buffer supply unit.
  • both sides of the chip nonconductive outer wall were positioned so that the larger hole was located on the cathode.
  • the apparatus includes a cooling water circulation channel having an inner space capable of circulating the cooling water while being in contact with the other two side surfaces, the lower surface, and the upper surface of the side of the chip for dyeing a living body sample, And a cooling water supply unit connected to the cooling water circulation channel.
  • a cooling water circulation channel having an inner space capable of circulating the cooling water while being in contact with the other two side surfaces, the lower surface, and the upper surface of the side of the chip for dyeing a living body sample
  • a cooling water supply unit connected to the cooling water circulation channel.
  • CLARITY samples of brain tissues transformed to express neurons specifically with GFP obtained in Example 1 were analyzed using anti-GFP ant ibody-647 (Thermo Fi sher, MA, USA) tagged with Alexa-647 Immunohistochemical staining was performed with EFIC (Electro-Focused I un uno-Chemistry) and the distribution of neurons in tissues was analyzed.
  • EFIC Electro-Focused I un uno-Chemistry
  • Borate buf fer 50 mM LiOH, 25 mM Bori c Acid
  • GFP ant ibody-647 Thermo Fi sher, MA, USA
  • the cooling water was circulated through the circulation channel to cool the layer.
  • the power was supplied for 120 minutes while the current was set at 80 mA.
  • the voltage was redirected at 10-minute intervals to return the antibodies that were passed back into place.
  • the antibody was allowed to stand for 30 minutes to 1 hour so that the antibody could bind to the target protein in a layered manner.
  • an 80 mA current was applied for 60 minutes in the opposite direction to remove unbound antibody.
  • Example 3 With reference to the method of Example 3, the cerebral cortex samples (10 mm ⁇ 1.5 mm) and hippocampal tissue samples (10 ⁇ 1.5 mm) of brain tissues transformed to express neurons specifically in GFP obtained in Example 1 mm) were imaged and imaged.
  • EFIC was performed in the same manner as in Example 3 except that lectin staining reagent (Lectin-594, Vector, USA) was used instead of anti-GFP antibody-647, and the obtained results were imaged.
  • CLARITY was performed on human brain tissue stored in formalin for a long time.
  • Electn) -Tissue Clearing was performed for 7 days at 100-120V and 40-45 ° C. Then, it was immersed in borate buffer (50 mM LiOH, 25 mM Boric Acid) at 37 ° C for 1 day to remove residual SDS.
  • borate buffer 50 mM LiOH, 25 mM Boric Acid
  • BSA-FITC bovine serum albumin, abeled wi th Fluorescein isothiocyanate
  • 6wt Aery 1 amide A piece of gel with a diameter of 1 cm and thickness of 2 was prepared.
  • the prepared 6wt acrylamide gel slice was immersed in a 2 ml buffer containing 10.0 g / ml of BSA-FITC for 3 hours to perform passive immunostaining.
  • 6wt Acrylamide Gel was prepared and the passage of BSA-FITC passing through it was observed, and a test was conducted to determine the distribution of the electric field depending on the presence or absence of the magnetic material.
  • a rectangular gel of 6 wt% Aery 1 amide Gel (2.5 cm x 1.7 cm x 1.7 cm) was prepared. Thereafter, three holes were drilled in the left part of the gel, such as a diameter of 0.5 cm and a depth of 1 cm. Then, the buffer containing BSA-FITC at a concentration of 10 ⁇ g / ml was placed in each well of the flask at a rate of 200 ⁇ l. These settings were performed simultaneously on the devices that the magnetic body was in and on the devices that did not. Experiments were conducted at 80 mA for 30 minutes. Imaging was then performed in the upper direction through the fluorescent lamp and filter.
  • FIG. 20 when there is no magnetic body, a relatively weak focusing phenomenon is found. In this case, EFIC is caused by focusing due to physical barrier. On the other hand, when using a magnetic body, a phenomenon of stronger focus is found. As a result, when the magnetic material is used, the focusing phenomenon is further intensified.
  • Example 10 Comparison of transmittance according to presence or absence of magnetic material
  • the basic experimental method is the same as in the eighth embodiment. 6wt Aery 1 amide gel with 2 cm of lcm diameter and 2 ml of lOug / ml. The dye was stained with EFIC as a buffer. Then, we compared the time when there was a magnetic body and the time when there was no magnetic body.
  • FIG. This photograph is a comparative photograph of the permeability of BSA-FITC with respect to thickness. In a short time of 20 minutes, it was not stained to deep place in EFIC without magnetic body. On the other hand, it was confirmed that EFIC staining was performed for 20 minutes in the device having a magnetic body, and stained to the inner side. It has been found that the presence of the magnetic substance significantly increases the transmission of the dye.
  • Example 3 and Fig Similarly, when the experiment was carried out on a living body sample, it was confirmed that fluorescence staining was completed in 1 ⁇ of Rat brain sample with a shortened time of 40 minutes instead of 120 minutes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

본 발명의 일 예에 따른 생체 시료 염색 방법은, (a) 전류가 전도성 하이드로젤을 통하여 생체 시료용 염색 시약 및 생체 시료로 흐르도록 전기장을 형성하는 단계, (b) 전자 초점화가 일어나도록 전기장을 형성하는 단계, 또는 (c) 상기 단계 (a) 및 (b) 모두를 포함할 수 있다. 이 때, 상기 생체 시료는 생체로부터 분리된 것이다.

Description

【명세서】
【발명의 명칭】
전자초점화를 이용한 생체 시료 염색 방법 및 염색 장치
【기술분야】
본 기재는 생체 시료 염색 방법 및 염색 장치에 관한 것으로, 보다 상세하게는 전도성 하이드로젤 및 전자 초점화 기술을 사용하는 생체 시료 염색 방법과 염색 장치에 관한 것이다.
[배경기술】
두꺼운 생체 조직 시료를 현미경 등의 광학 기기로 관측시에 빛의 산란이 심하게 일어나고, 기하학적으로 해상력이 저하된다는 문제가 있어서 두꺼운 생체 조직 시료의 안쪽 조직을 이미징 하는 것이 곤란하였다. 이러한 한계를 극복하기 위하여, 조직의 투명화 기술이 계속적으로 연구되고 있다.
투명화된 조직은 그 구조 내부에 크고 작은 구멍이 형성되기 때문에, 형광 항체가 통과할 수 있어 이론적으로 면역염색이 가능하지만, 전통적으로 사용되고 있는 수동적인 확산을 통한 면역염색 방법을 이용할 시, 투명화된 조직의 두께에 비례하여 면역염색 시간이 기하급수적으로 증가하여 실질적인 면역염색이 불가능한 상태이다. 최근 들어 이와 관련된 연구들이 지속되고 있지만, 효율성과 실효성 면에서 만족할만한 성과를 거두지 못하는 실정이다.
현재까지 사용되어 오거나 최근 개발된 생체 조직 시료의 면역염색 기술은 다음과 같다:
첫 번째는, 상기 기술한 바와 같이, 가장 보편적인 조직 염색 기술로서 확산 방법을 들 수 있다. 확산 방법은 조직을 면역 항체가 들어 있는 용액에 침지시켜 놓음으로써 항체가 조직 내부에 확산되도록 하는 방법으로 수동적 염색법이다. 확산 방법은 가장 간편하고 쉬운 방법이지만, 생체 조직 시료의 두께가 50~100um 이상일 경우, 확산만으로 조직 내부까지 염색하기에 상당히 오랜 시간이 소요되며, 고농도의 다량의 항체가 필요하기에 상용화가 불가능하다. 두 번째로, 두꺼운 생체 시료를 염색하기 위해 고안된 기술로서 원심력을 이용하여 시료 내부로 면역 항체를 이동시키는 방법을 들 수 있다. 이와 같이 원심력을 이용하는 방법은 비교적 두꺼운 생체 시료 내부로 항체를 이동시킬 수 있지만, 원심력에 의하여 조직에 손상이 가해져서 온전한 조직의 형태를 관측하기에 한계가 있다.
세 번째로, 전기장을 형성하여 면역 염색을 수행하는 기술로서, 직선화된 전기장으로 구 중심에 가장 높은 저항이 걸리고, 이로 인하여 항체염색이 가장자리와 중심부분에서 큰 차이를 보여 균일한 염색이 불가능 한 점, Nano-pore membrane을 사용하여 시료의 이동을 제한하나, 염색이 진행되면서 삼투압으로 인하여 용액의 유입으로 항체 농도가 희석된다는 점, 를이 고정적이기 때문에 다양한 형태나 크기의 조직을 염색하는데 물리적 한계가 존재한다는 점, 한번의 염색을 진행하기 위해 많은 양의 면역 항체를사용하여야 한다는 점에서, 효율성과 실용성에 한계가 존재한다. 조직의 손상을 최소화 하면서, 효율성과 접근성이 우수하고, 다양한 형태의 시료에 사용할 수 있는 유연성을 지니며, 최소한의 시간 내에 최소량의 면역 항체의 사용으로 생체조직을 면역 염색할 수 있는 기술의 개발이 필요하다.
【선행기술문헌】
【비특허문헌]
(비특허문헌 l)"Structural and molecular interrogation' of intact biological systems", Chung et al . , MATURE, Vol. 497 No. 6, 2013, 332-337,
(비특허문헌 2) "ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3ᅳ dimensional (3D) imaging" , Lee et al., Scientific Report , Vol 18631. 2016.
(비특허문헌 3) "Stochastic electro transport selectively enhances the transport of highly electroraobi le molecules" , Kim et al , PNAS, Vol 112 no.46, 2015.
(비특허문헌 4) "Optimization of CLARITY for clearing whole- brain and other intact organ" , Jonathan et al, eNeuro, 2015
【발명의 상세한 설명】
【기술적 과제]
본 발명은 전도성 하이드로젤을 이용하여 생체 시료용 염색 시약과 전극의 직접적인 접촉을 막아 염색시약의 물리화학적 변성 및 파손을 방지하고, 외부 버퍼와의 흔합을 방지하여 염색 과정 동안 항체농도를 일정하게 유지하고, 전기적 흐름을 일정한 구역으로 집중시켜 항체를 생체 시료가 위치한 방향으로만 집중 이동시킴으로써 효과적이고 빠르게 생체 시료의 염색을 수행할 수 있는 생체 시료 염색 방법 및 상기 기술을 적용한 생체 시료의 염색 장치를 제공하고자 한다.
【기술적 해결방법]
본 발명의 일 예에 따른 생체 시료 염색 방법은, (a) 전류가 전도성 하이드로젤을 통하여 생체 시료용 염색 시약 및 생체 시료로 흐르도록 전기장을 형성하는 단계, (b) 전자 초점화가 일어나도록 전기장을 형성하는 단계, 또는 (c) 상기 단계 (a) 및 (b) 모두를 포함할 수 있다. 이 때, 상기 생체 시료는 생체로부터 분리된 것이다.
상기 단계 (a)는 전류가 생체 시료용 염색 시약과 같은 극성의 전극, 전도성 하이드로젤, 생체 시료용 염색 시약, 생체 시료, 및 생체 시료용 염색 시약과 반대 극성의 전극을 순방향, 역방향, 또는 양방향으로 순차적으로 흐르도록 전기장을 형성하는 단계를 포함할수 있다.
상기 단계 (b)는 양 전극과 생체로부터 분리된 생체 시료를 일직선 상에 위치하도록 하고, 생체 시료용 염색 시약과 반대 극성의 전극 면적을 생체 시료용 염색 시약과 같은 극성의 전극 면적보다 좁게 하여 전기장을 형성하는 단계를 포함할수 있다
상기 단계 (a) 또는 (b)의 전기장을 형성하는 단계는 1 내지 5시간 동안 60 내지 100 mA의 전류가 흐르도록 전압을 인가하는 단계를 포함할 수 있다.
상기 전압을 인가하는 단계는 5 내지 20분 간격으로 전류의 방향이 바뀌도록 수행하는 것일 수 있다.
. 상기 전기장을 인가하는 단계 이후에, 10분 내지 2시간 동안 방치하는 단계를 추가로 포함할 수 있다.
상기 방치하는 단계 이후에 , 세척 단계를 추가로 1 내지 3시간 동안 수행할 수 있다.
상기 전도성 하이드로젤은 아크릴아마이드 젤을 포함할수 있다. 상기 생체 시료용 염색 시약은 표적 결합 단백질 또는 표적 결합 핵산 분자일 수 있다.
상기 생체 시료용 염색 시약은 형광 표지로 표지된 것일 수 있다. 상기 생체 시료는 두께가 0.5隱내지 10mm인 조직일 수 있다.
상기 생체 시료는 포름알데하이드 (Formaldehydeᅳ HCH0)를 이용하여 고정된 시료일 수 있다.
상기 생체 시료는 큐빅 (CUBIC) , 클래리티 (CLARITY)를 포함하는 조직 투명화 시료일 수 있다.
상기 생체 시료 염색에 의하여 발생한 신호를 측정하는 단계를 더 포함할 수 있다. '
냉각시키는 단계를 추가로 포함할수 있다.
상기 냉각시키는 단계는, 전극 버퍼를 교환하는 단계, 전도성 하이드로젤 외부에 냉각수를 순환시키는 단계, 또는 이들 모두를 포함할 수 있다.
미반웅 생체 시료용 염색 시약을 회수하는 단계를 추가로 포함할 수 있다.
본 발명의 다른 일 예에 따른 생체 시료 염색용 칩은, 내부 공간에 제 1 방향으로 정렬된 생체 시료용 염색 시약부, 생체 시료 고정부 및 버퍼부를 갖는 전도성 하이드로젤 몸체, 및 상기 생체 시료 고정부에 고정될 수 있으며, 생체 시료를 담을 수 있는 생체 시료 로딩체를 포함할 수 있다. ―
상기 생체 시료 로딩체는 내부에 구멍을 갖는 생체 시료 로딩를 및 상기 구멍의 양면에 위치하는 메쉬를 포함할 수 있다.
상가 전도성 하이드로젤 몸체의 상기 제 1방향으로 마주보는 한 쌍의 측면에 구멍이 형성된 비전도성 외벽을 더 포함할수 있다.
상기 한 쌍의 비전도성 외벽은 서로 다른 크기의 구멍을 가질 수 있^ ^
상기 생체 시료용 염색 시약부의 체적은 상기 버퍼부의 체적보다 더 크게 형성될 수 있다.
본 발명의 또 다른 일 예에 따른 생체 시료 염색 장치는, 상기 생체 시료 염색용 칩, 및 상기 생체 시료 염색용 칩의 상기 제 1 방향으로 마주보는 한 쌍의 측면 외부에 위치하는 계 1 전극과 제 2 전극을 포함하는 전극부를 포함한다.
상기 생체 시료 염색용 칩과 상기 계 1 전극 및 제 2 전극 각각의 사이에, 상기 제 1 방향과 교차하는 제 2 방향으로 이동 가능하며 서로 다른 크기의 구멍을 갖는 포커싱 선택판이 위치할 수 있다.
상기 생체 시료 염색용 칩의 상기 제 1 방향과 교차하는 제 2 방향으로 마주보는 한 쌍의 측면 외부에 위치하고, 상기 제 1 방향으로 이동 가능한 자성체를 더 포함할 수 있다.
상기 자성체는 상기 제 1 방향에 대하여 기 설정된 각도로 기울어 위치할수 있다.
상기 생체 시료 염색 장치는 가로벽에 의해 게 1 공간과 게 2 공간으로 분리되고, 상기 가로벽의 중간부분에서 부분적으로 개방된 개방부에 상기 생체 시료 염색용 칩이 삽입되는 퍼퓨전 챔버를 더 포함하고, 상기 제 1 전극은 상기 제 1 공간에 위치하고, 상기 제 2 전극은 상기 제 2 공간에 위치할수 있다.
상기 퍼퓨전 챔버의 제 1 공간 또는 제 2 공간 각각으로 통하며 상기 ' 퍼퓨전 챔버의 하단부에 위치하는 버퍼 유압구를 포힘:하고, 상기 퍼퓨전 챔버의 제 1 공간 또는 제 2 공간 각각으로부터 외부로 통하며 각 공간의 상단부에서 상방으로 개구된 버퍼 배출구를 포함할 수 있다.
상기 퍼퓨전 챔버를 덮는 상부 덮개를 더 포함하고, 상기 상부 덮개의 하부에 상기 제 1 전극과 제 2 전극이 고정되어 하방으로.연장될 수 있다.
[발명의 효과]
본 명세서에서 제공되는 생체 시료 염색 방법에 의하면, 두꺼운 조직 시료에 전기의 힘을 이용하여 생체 시료용 염색 시약 (예컨대, 항체)를 이동시키면서, 전도성 하이드로젤을 사용하여 항체의 변성을. 방지하고, 하이드로젤의 높은 가변성을 이용하여 다양한 형태 및 크기의 생체시료에 맞게 변형가능성을 제공하여, 실용성과 다양성을 :확립할 수 있다. 또한 전기력을 이용함으로써, 항체의 이동을 가속화하여, 시료의 염색을 빠르게 하고, 전기초점기술을 이용하여 시료를 제외한 다른 부위에 함체의 이동을 제한하여 최소한의 항체를 이용하여 효율적인 염색을 가능하게 할 수 있다. 아울러 하이드로젤 주위에 냉각을 통하여, 염색을 담당하는 항체의 변성과 염색되는 생체 시료 조직의 피해를 최소화 시킬 수 있다.
즉, 본 명세서에서 제공되는 생체 시료 염색 기술은 두꺼운 생체 시료의 내부 염색이 가능하게 하고, 생체 시료 염색에 소요되는 시간을 현저하게 단축시키며, 소량의 생체 시료용 염색 시약을 사용하여도 효과적인 생체 조직 염색이 가능하게 하는 이점을 갖는다.
【도면의 간단한 설명】
도 1은 일 구현예에 따른 EFKXElectro-Focused Immuno—Chemi stry)를 통한 생체 시료 염색 과정을 나타낸 모식도이다.
도 2a는 일 구현예에 따른 생체 시료 염색 장치의 측면을 도시한 모식도이다. 도 2b는 일 구현예에 따른 생체 시료 염색 장치의 평면을 도시한 모식도아다.
도 3은 일 구현예의 생체 시료 염색 장치의 버퍼 공급부를 도시한 모식도이다.
도 4는 일 구현예의 생체 시료 염색 장치에 렌즈와 형광 장치를 부가한 생체 시료 분석 장치를 도시한 모식도이다.
도 5는 다른 일 구현예에 따른 전기장 및 자성 포커싱을 이용한 생체 시료 염색 장치를 개략적으로 도시한 모식도이다.
도 6a 및 6b는 일 구현예에 따른 생체 시료 염색 장치의 사시도이다. 도 6a는 생체 시료 로딩체를 생체 시료 고정부에 삽입하기 전의 상태를 나타내고, 도 6b는 생체 시료 로딩체를 생체 시료 고정부에 삽입한 상태를 나타낸다.
도 7은 일 구현예에 따른 생체 시료 염색 장치의 염색용 칩을 제작하기 위한 를의 구조를 도시한사시도이다.
도 8의 (A) 내지 (C)는 일 실시예에 따른 생체 시료 염색 장치의 염색용 칩을 제작하는 과정을 도시한사시도이다.
도 9a는 다른 일 실시예에 따른 생체 시료 염색 장치를 도시한 분해 사시도이고, 도 9b는 결합사시도이다.
도 10은 도 9a에 도시한 생체 시료 염색 장치의 전기장 포커싱 액추에이터의 구동 상태를 도시한사시도이다.
도 11은 도 9a에 도시한 생체 시료 염색 장치의 자성 포커싱 액추에이터의 구동 상태를 도시한사시도이다.
도 12는 도 9a에 도시한 생체 시료 염색 장치의 퍼퓨전 (per fusion) 챔버 내에서의 쿨링 버퍼의 유출입 경로를 도시한사시도아다.
도 13은 도 9a에 도시한 생체 시료 염색 장치의 상부 덮개를 도시한 정면도이다.
도 14는 GFP 발현 형질전환 마우스의 뇌조직의 투명화 시료를 EFIC (Electro-Focused I睡 uno-Chemistry)를 통해 항체로 생체 시료 염색하여 얻어진 결과를 보여주는 형광 이미지이다.
도 15는 형질전환되지 않은 마우스의 뇌조직의 투명화 시료를 EFIC를 통해 항체로 생체 시료 염색하여 얻어진 결과를 보여주는 형광 이미지이다. 도 16은 GFP 발현 형질전환 마우스의 대뇌 피질 (위) 및 해마 조직 (아래)의 CLARITY 시료를 EFIC를 통해 항체로 생체 시료 염색하여 얻어진 결과를 보여주는 형광 이미지이다.
도 17은 GFP 발현 형질전환 마우스의 해마 조직의 투명화 시료를 EFIC를 통해 Lect in으로 생체 시료 염색하여 얻어진 결과를 보여주는 형광 이미지이다 (scale bar : lOOum) .
도 18은 인간 뇌조직의 투명화 시료를 EFIC를 통해 항체로 생체 시료 염색하여 얻어진 결과를 보여주는 형광 이미지이다.
도 19는 6%(w/v) Aery 1 amide Gel 시료에 대하여 passive 생체 시료 염색과 EFIC을 통한 생체 시료 염색을 수행하여 얻어진 결과로, 생체 시료 염색 효율의 차이를 비교하여 확인할수 있다.
도 20은 자성체를 추가로 이용한 경우의 전자 초점화 염색방법의 결과를 비교한 이미지이다.
도 21은 자성체 유무에 따른 전자 초점화 염색방법의 결과에서 투과도를 비교한 이미지이다.
도 22는 자성 EFIC를 이용한 GFP-TG mouse 항체 염색 실험 결과를 나타낸 이미지이다.
[발명의 실시를 위한 형태]
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 설명하기 위하여, 이하에서는 본 발명의 바람직한 구현예를 예시하고 이를 참조하여 살펴본다. 먼저, 본 출원에서 사용한 용어는 단지 특정한 구현예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 또한 본 명세서에서, "포함하다" 또는 1 '가지다'' 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한 본 명세서에서, "A 내지 B"로 표현된 수치 범위는 A와 B를 포함하여 A와 B 사이의 모든 수치 (실수)를 의미하며, 균등 범위로 인정되는 A와 B의 근사값도 포함하는 의미로 해석될 수 있다.
본 발명의 일 구현예는 전기장을 이용한 생체 시료 염색에 있어서, 다음의 단계를 포함하는, 생체 시료 염색 방법을 제공한다:
(a) 전류가 전도성 하이드로젤 (hydrogel )을 통하여 생체 시료용 염색 시약 및 생체 시료로 흐르도록 전기장을 형성하는 단계, (b) 전자 초점화 (Electro— focusing)가 일어나도록 전기장을 형성하는 단계, 또는
(c) 상기 단계 (a) 및 (b) 모두.
상기 전기장을 이용한 생체 시료 염색은 전하를 띠는 생체 시료용 염색 시약이 전기장 내에서 이동하면서 생체 시료와 접촉하여 생체 시료의 표적 생체 물질을 염색하는 것이다. 전기장을 통하여 생체 시료용 염색 시약을 강제적으로 이동시킴으로써, 확산에 의존하는 수동적인 (passive) 생체 시료 염색과 비교하여 염색 시약의 시료 내부 침투 효율과 속도가 우수하다.
상기 단계 (a)는 전도성 하이드로젤을 이용하여 전류를 흐르게 함으로써 생체 시료용 염색 시약의 이동을 제어하면서도 전극과 생체 시료용 염색 시약의 직접적인 접촉으로 인한 생체 시료용 염색 시약의 변성을 방지하는 이점을 가질 수 있다. 보다 구체적으로, 상기 단계 (a)의 전류가 전도성 하이드로젤을 통과하여 생체 시료용 염색 시약 및 생체 시료로 흐르도록 전기장을 형성하는 (전압을 인가하는) 단계는, 전극과 생체 시료용 염색 시약 및 생체 시료를 물리적으로 분리시킬 수 있는 를로서 전도성 하이드로젤을 사용할 수 있다. 이로써, 를의 유동성을 확보하고, 웅용성과 광 접근성을 높일 수 있다. 또한, 상기 전도성 하이드로젤은 전류를 통과시키면서 생체 시료용 염색 시약 (예컨대, 항체)은 통과시키지 않아서, 생체 시료용 염색 시약과 전극과의 직접적인 접촉을 차단할 수 있다ᅳ 이로써 생체 시료용 염색 시약의 변성을 막을 수 있는 동시에 생체 시료용 염색 시약의 외부 손실을 막을 수 있다. 뿐만 아니라, 상기 전도성 하이드로젤은 버퍼의 이동도 차단하여, 기존에 전기장을 이용한 생체 시료 염색에서 생체 시료용 염색 시약 (예컨대, 항체)의 이동을 차단하기 위하여 사용하던 반투성 멤브레인이, 염색시약의 높은 농도에 의해 외부 버퍼가 시료 챔버 내부로 들어오는 삼투압 현상을 차단하지 못하여, 생체 시료용 염색 시약 (예컨대, 항체)의 희석으로 인한 염색의 불완전성 및 재사용을 불가능하게 하던 문제를 해결할 수 있으며, 반투성 멤브레인의 ^은 구조가 전극의 열 둥에 의해 쉽게 파손되어 염색시약을 외부 버퍼로 누출시키는 문제를 해결할수 있다.
보다 구체적으로, 상기 단계 (a)는 전류가 생체 시료용 염색 시약과 같은 전극 (제 1 전극), 전도성 하이드로젤, 생체 시료용 염색 시약, 생체 시료, 및 생체 시료용 염색 시약과 반대 전극 (제 2 전극)을 (예컨대, 순방향 및 /또는 역방향으로) 순차적으로 흐르도록 전압을 인가하는 단계를 포함할 수 있다.
상기 (b) 전자 초점화가 일어나도록 전기장을 형성시키는 단계는, 제 1 및 제 2 전극과 그 사이에 생체 시료를 일직선 상에 위치하도록 하고, 제 2 전극의 면적을 제 1 전극의 면적보다 좁게 하여 전압을 인가하는 단계를 포함할 수 있다. 상기와 같이 전극의 면적을 달리하는 것에 더하여, 전류가 전도성 하이드로젤을 통과하여 흐르도록 함으로써 전류가 보다 집중하여 흐르도록 할 수 있다. 이와 같은 단계 (b)의 전자 초점화에 의하여 생체 시료용 염색 시약의 이동이 생체 시료에 집중되도록 할 수 있다. 이로써 시료 이외의 부분에 생체 시료용 염색 시약이 퍼지는 것을 방지하는 동시에 생체 시료용 염색 시약의 생체 시료 투과 효율을 높일 수 있고, 두께가 일정한 편평한 형태의 시료뿐 아니라 구형 등의 다양한 형태의 시료에도 생체 시료용 염색 시약의 투과성을높일 수 있다. ᅳ
상기 단계 (a)와 (b)가 모두 수행되는 경우, 별개의 단계로 각각 수행되거나 하나의 단계로 함께 수행될 수 있다.
예컨대, 상기 하나의 단계로 함께 수행되는 단계 (a)와 (b)는, 제 1 및 제 2 전극과 그 사이에 생체 시료를 일직선 상에 위치하도록 하고, 제 1 및 제 2 전극과 생체 시료 사이에 전도성 하이드로젤을 위치시키며, 저 12 전극의 면적을 제 1 전극의 면적보다 좁게 하고 전류가 전도성 하이드로젤을 통과하여 생체 시료용 염색 시약 및 생체 시료로 흐르도록 전압을 인가하는 단계에 의하여 수행될 수 있다. 예컨대, 넓은 면적의 게 1 전극, 전도성 하이드로젤, 생체 시료용 염색 시약, 생체 시료, 및 좁은 면적의 저 12 전극을 (예컨대, 순방향 및 /또는 역방향으로) 순차적으로 전류가 흐르도록 전압을 인가하는 단계에 의하여 수행될 수 있다.
도 1은 일 구현예에 따른 EFKXElectro-Focused Immuno—Chemi stry)를 통한 생체 시료 염색 과정을 나타낸 모식도이다.
상기 생체 시료 염색 방법에 있어서, 전기장 형성 단계는 전기장에 의하여 생체 시료용 염색 시약이 생체 시료 내로 이동 (침투)하는 동력을 제공하여, 생체 시료용 염색 시약이 생체 시료 내에 투입하도록 하는 것으로, 약 1 내지 약 5시간, 약 1 내지 약 3시간, 또는 약 1 내지 약 2시간동안 약 60 내지 약 100 mA, 약 70 내지 약 90 mA 또는 약 75 내지 약 85 mA의 전류가 흐르도록 전압을 인가하여, 수행하는 것일 수 있다 (도 1의 step 1 참조) . 이 때, 상기 전기장 형성 단계는 전류의 방향을 약 5 내지 약 20분, 약 5 내지 약 15분, 또는 약 8 내지 약 12분 간격으로 바꿔주면서 수행할 수 있다. 이와 같이 일정 시간 간격으로 전류 방향을 바꾸어 주면서 전압을 인가함으로써, 미반웅 상태로 생체 시료를 통과한 생체 시료용 염색 시약을 다시 원래 위치 (같은 전극 쪽)로 되돌릴 수 있다. 이로써 미반웅 생체 시료용 염색 시약을 재사용할 수 있어서 생체 시료용 염색 시약의 낭비를 막고 총 사용량을 줄일 수 있으며, 생체 시료용 염색 시약을 생체 시료와 반복하여 접촉시킴으로써, 염색 효율을 보다 증진시킬 수 있다.
상기 생체 시료 내로 투입된 생체 시료용 염색 시약이 표적 생체 물질과 충분히 반웅 (결합)하도록 하기 위하여, 상기 생체 시료 염색 방법은, 상기 전기장 형성 단계 (단계 (a) , (b) 또는 (c) ) 이후에, 반웅계를 (d) 약 10분 내지 약 2시간 또는 약 10분 내지 약 1시간 동안 (전압 인가 없이) 방치하여 생체 시료용 염색 시약을 반웅시키는 단계를 추가로 포함할 수 있다 (도 1의 step 2 참조) .
또한, 상기 생체 시료 염색 방법은, 상기 전기장 형성 단계 (단계
(a) , (b) 또는 (c) ) 및 /또는 상기 (d) 생체 시료용 염색 시약을 반응시키는 단계 이후에, (e) 미반웅 생체 시료용 염색 시약을 제거하기 위한 세척 단계를 추가로 포함할 수 있다 (도 1의 step 3 참조) . 상기 세척 단계는 약 1 내지 약 3시간또는 약 1 내지 약 2시간 동안수행될 수 있다.
상기 생체 시료 염색 방법은 전기장 형성 단계, 방치 단계, 및 세척 단계를 모두 포함하여 총 약 10시간 이내, 약 9시간 이내, 약 8시간 이내, 약 7시간 이내, 약 6시간 이내, 또는 약 5시간 이내에 생체 시료 염색을 완료할수 있다 (최소 약 2시간 또는 2.5 시간소요됨) .
한편, 본 발명의 다른 구현예는, 상기 생체 시료 염색 단계 (단계 (a) , (b) 또는 (c) )와 함께 상기 생체 시료 염색에 의하여 발생한 신호를 측정하는 단계를 포함하여 분석 방법으로 활용할 수 있다. 상기 생체 시료 염색 단계는 앞서 생체 시료 염색 방법에서 설명한 바와 같으며, 임의로 (d) 전기장 인가 없이 방치하여 생체 시료용 염색 시약과 생체 시료를 반웅시키는 단계 및 /또는 (e) 미반웅 생체 시료용 염색 시약을 제거 및 /또는 회수하기 위한 세척 단계를 추가로 포함할수 있다.
상기 신호를 측정하는 단계는 사용된 생체 시료용 염색 시약에 따라서 발생한 형광 신호 및 /또는 발광 신호를 적절한 측정 수단에 의하여 측정함으로써 수행된다. 상기 측정은 신호의 수집, 신호의 가시화 및 /또는 신호 강도 및 /또는 신호 면적 (신호 부위 )의 수치화 (정량화)를 포함할 수 있다. 상기 측정 수단은 형광 신호 및 /또는 발광 신호를 가시화 및 /또는 수치화 할 수 있는 모든 수단 중에서 선택될 수 있으며, 예컨대, 통상적으로 사용되는 모든 종류의 형광현미경 (예컨대, 광학현미경, 레이저현미경 등), 발광측정장치, 형광카메라, 발광 신호의 수치화 (정량화) 장치 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 생체 시료 염색을 이용한 분석 방법은 생체 시료용 염색 시약의 표적이 되는 생체 물질 (예컨대, 단백질 등)을 가시화하거나 정량화하는 모든 방법일 수 있으며, 예컨대, 표적 생체 물질의 조직 내의 존재 여부, 입체적 분포 양상 및 /또는 입체적 분포 '위치, 및 /또는 조직 내 함량을 가시화하거나 정량화하는 모든 방법들 중에서 선택된 것일 수 있다.
상기 생체 시료 염색 방법에 있어서, 상기 전기장을 형성하는 단계는 양 전극에 전압을 인가하는 단계에 의하여 수행될 수 있다. 이와 같이 양 전극에 전압을 인가함에 따라 발생하는 열 에너지에 의하여 반웅계의 온도가 높아지고, 이에 따라 생체 시료용 염색 시약 (예컨대, 항체와 같은 단백질 시약)이 변성되는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위하여, 상기 생체 시료 염색 방법은 생체 시료 염색 또는 생체 시료 분석이 수행되는 반웅계를 냉각시키는 단계를 추가로 포함할 수 있다.
상기 냉각시키는 단계는 전극 버퍼를 교환하거나 및 /또는 전도성 하이드로젤 및 /또는 전극부 및 /또는 전극부의 버퍼 공급부 (28)를 냉각시킴으로써 수행할 수 있다 (도 3 참조) . 일 예에서 상기 냉각시키는 단계는, 전극 버퍼를 교환하는 단계, 및 /또는 전도성 하이드로젤 외부 (예컨대, 전도성 하이드로젤의 측면 (예컨대, 전극이 위치하지 않는 한 쌍의 마주보는 측면), 하부면 (바닥), 및 /또는 상부면) 외부 및 /또는 전극부에 공급되는 버퍼용액의 공급부 (28)의 외부 및 /또는 내부에 냉각수를 순환시키는 단계를 포함할 수 있다. 상기 냉각시키는 단계는 반웅계의 온도가 생체 시료용 염색 시약을 변성시키지 않는 온도를 유지하도록 지속적 또는 단속적으로 수행될 수 있다. 일 예에서, 생체 시료용 염색 '시약으로 항체 등의 단백질을 사용하는 경우, 상기 생체 시료용 염색 시약을 변성시키지 않는 온도는 단백질의 변성이 일어나지 않는 온도, 예컨대, 37°C 이하, 35°C 이하, 30°C 이하, 25 °C 이하, 20°C 이하, 15°C 이하, 10°C 이하, 또는 5°C 이하일 수 있다 (상기 온도범위의 하한값은 냉각에 사용되는 버퍼 및 /또는 냉각수의 어는점 이상임) . 상기 냉각시키는 단계는 버퍼 및 /또는 냉각수의 순환에 의하여 수행되므로, 이 때 사용되는 버퍼 및 /또는 냉각수의 온도를 상기한 생체 시료용 염색 시약을 변성시키지 않는 온도 범위로 조절하여 순환시킴으로써 반웅계의 온도를 상기 범위로 조절할 수 있다.
이와 같은 은도 조건 이외에, 상기 생체 시료 염색 방법은 생체 시료용 염색 시약 및 생체 시료가 변성 또는 손상되지 않는 통상적인 반웅 조건 (예컨대, 압력 (예컨대, 상압 범위), pH (예컨대, 중성 범위 (pH 6 내지 8), 등) 하에서 수행될 수 있다.
상기 생체 시료 염색 방법은 전도성 하이드로젤의 사용 및 /또는 반웅 온도 유지를 통하여 생체 시료용 염색 시약의 변성을 최소화시키거나 변성시키지 않으므로, 표적 생체 물질과 반웅하지 않은 미반웅 생체 시료용 염색 시약을 회수하여 재사용 가능하다. 따라서, 상기 생체 시료의 생체 시료 염색 방법은, 반웅 종료 후, 미반웅 생체 시료용 염색 시약을 회수하는 단계를 추가로 포함할 수 있으몌 상기 회수하는 단계 이전, 동시 및 /또는 이후에, 임의로 생체 시료를 세척하는 단계를 추가로 포함할 수 있다. 일 예에서, 상기 생체 시료를 세척하는 단계는 전류 방향을 바꾸어
10분 내지 2시간, 또는 30분 내지 90분 동안 전류를 홀려주는 단계에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 생체 시료 염색 방법에 의하여, 기존의 방법보다 두꺼운 생체 시료 (예컨대, 두께가 0.5mm 이상, 0.75mm 이상, 1mm 이상, 1.25隱 이상, 1.5mm 이상, 1.75mm 이상, 또는 2mm 이상인 생체 조직 (상한 값은 생체' 조직이 속하는 기관의 두께, 또는 10隱, 7.5醒, 5mm, 4 瞧, 3匪또는 2.5瞧일 수 있음) )의 내부도 효과적으로 염색 및 /또는 분석할 수 있을 뿐 아니라, 사용되는 생체 시료용 염색 시약의 양을 현저하게 줄일 수 있다는 이점이 있다 (예컨대, 약 l~2ul의 염색 시약 (예컨대, 항체)로 두께가 약 1匪 내지 약 3 mm 또는 약 1.5隱 내지 약 2.5醒 (예컨대, 약 2mm)이고 지름이 약 5mm 내지 약 10mm인 생체 조직 (예컨대, 투명화 처리 (CLARITY) 뇌조직 등)을 염색할 수 있음) .
또한, 상기 생체 시료 염색 방법은 높은 생체 시료 염색 효율에 의하여 생체 시료 염색 시간을 현저하게 단축시킬 수 있다. 일 예에서, 상기 생체 시료 염색 방법에 의하는 경우, 생체 시료용 염색 시약의 생체 시료 내 투입 시간 (약 1 내지 약 5시간, 약 1 내지 약 3시간, 또는 약 1 내지 약 2시간), 반웅 시간 (생체 시료용 염색 시약과 표적 생체 물질간 반웅 (결합) 시간; 약 10분 내지 약 2시간 또는 약 10분 내지 약 1시간), 및 세척 시간 (약 1 내지 약 3시간 또는 약 1 내지 약 2시간)을 모두 포함하여 총 약 10시간 이내, 약 9시간 이내, 약 8시간 이내, 약 7시간 이내, 약 6시간 이내, 또는 약 5시간 이내에 생체 시료 염색이 완료될 수 있다 (최소 약 2시간 또는 2.5 시간 소요됨) (도 1 참조) . 이는 기존의 확산에 의한 수동적인 (passive) 생체 시료 염색의 경우, 생체 시료 염색이 완료되는데 적어도 90시간 이상, 예컨대, 96시간 내지 120시간이 소요된 것과 비교하여, 현저하게 단축된 것이다.
도 2a는 일 실시예에 따른 생체 시료 염색 장치 (반웅계)의 측면을 도시한 모식도이고, 도 2b는 평면을 도시한모식도이다.
상기 생체 시료 염색 방법에 있어서, 상기 단계 (a) 및 (b)는, 도 2a 및 도 2b에 도시된 바와 같이, 전도성 하이드로젤 (11), 상기 전도성 하이드로젤 (11) 내의 생체 시료용 염색 시약부 (15)에 포함된 생체 시료용 염색 시약 (R), 상기 전도성 하이드로젤 ( 11) 내에 고정된 생체 시료 (S) , 및 상기 전도성 하이드로젤 ( 11)의. 마주보는 한 쌍의 측면에 위치하는 저 U 전극 (21)과 제 2 전극 (22)을 포함하는 반웅계에서 수행되는 것일 수 있다. 상기 반웅계는 전도성 매질 (24) (예컨대, 통상의 버퍼용액)으로 채워질 수 있다. 상기 전도성 하이드로젤 (11)은 일면 (상부)이 개방된 형태일 수 있고, 상기 생체 시료 (S)는 넓은 단면이 양 전극 (21, 22)과 마주보도록 (즉, 양 전극 (21 , 22)이 위치하는 전도성 하이드로젤 ( 11)의 측면과 나란한 방향으로) 전도성 하이드로젤 ( 11) 내부에 고정화될 수 있고, 상기 생체 시료용 염색 시약 (R)은 전기장에 의하여 생체 시료 (S)로의 이동 및 시료 내부로의 침투에 동력을 공급받을 수 있다.
도 2a 및 2b에서, 비전도성 외벽 (25, 26)에 형성된 구멍 (25a, 26a)은 그 크기에 따라서 전극 (21, 22)의 면적 (즉, 전도성 하이드로젤에 인가되는 전극의 면적)이 결정될 수 있다. 상기 크기가 다른 구멍 (25a , 26a)을 갖는 비전도성 외벽 (25, 26)은 생체 시료용 염색 시약이 생체 시료에 집중하여 이동하도록 하기 위한 것이므로, 큰 구멍 (25a)을 갖는 비전도성 외벽 (25)은 생체 시료용 염색 시약부 (15) 쪽 측면의 외부에 위치하고, 작은 구멍 (26a)을 갖는 비전도성 외벽 (26)은 버퍼부 ( 16) 쪽 측면의 외부에 위치할수 있다.
한편, 게 1 전극 (21)과 제 2 전극 (22)은 전도성 하이드로젤 ( 11)의 측면 의부에 전도성 매질 (24) (예컨대, 통상의 버퍼 용액)을 포함하여 전극부로 구성될 수 있다. 상기 전극부는 전도성 하이드로젤 ( 11)의 생체 시료용 염색 시약부 ( 15) 쪽 측면의 외부에 상기 생체 시료용 염색 시약의 전하와 동일한 극성의 제 1 전극 (21)을, 반대쪽인 버퍼부 (16) 쪽 측면의 외부에 생체 시료용 염색 시약의 전하와 반대 극성의 제 2 전극 (22)을 포함할 수 있다 (예컨대, 생체 시료용 염색 시약으로 항체와 같은 음잔하를 띠는 물질을 사용하는 경우 생체 시료용 염색 시약부 쪽에 음극이 형성되고, 반대편에 양극이 형성됨) . '
전극 (21 , 22)에서 발생한 열에 의한 생체 시료용 염색 시약 (예컨대, 항체 등의 단백질)의 변성을 방지하기 위하여, 전도성 하이드로젤 ( 11)의 외부에 냉각수 순환채널 (도시하지 않음)을 추가로 포함할 수 있다. 상기 냉각수 순환 채널은 전도성 하이드로젤 ( 11)의 전극 (21, 22)이 위치하는 한 쌍의 측면을 제외한 측면, 하부면 및 /또는 상부면에 위치할 수 있으며, 상기 전도성 하이드로젤 ( 11)과 냉각수 순환 채널이 약 0 내지 0.5mm 이하 간격을 두고 맞닿아 위치하여, 전기장의 손실이 없도록 할 수 있으나, 이에 제한되는 것은 아니다.
상기 전도성 하이드로젤 (11)의 형상은 특별한 제한이 없으며, 사용상 및 /또는 제작상의 편의를 위해 내부에 빈 공간을 갖는 직육면체 형태 (장축과 나란한 일면 (상부면)이 개방된 직육면체 형태)일 수 있으나, 이에 제한되는 것은 아니다. 상기 전도성 하이드로젤 ( 11)이 일면 (상부면)이 개방된 직육면체 형태인 경우, 전극부는 직육면체의 장축의 양 말단면에 위치하고, 냉각수 순환 채널은 장축과 나란한 양 측면 및 /또는 하부면에 위치할 수 있으며, 임의로, 생체 시료 로딩체 ( 18)를 생체 시료 고정부에 고정시킨 후, 전도성 하이드로젤 (11)의 상부면에 냉각수 순환 채널을 덮도록 할 수 있다.
상기 생체 시료 염색 장치는, 버퍼 공급부 및 /또는 냉각수 공급부를 추가로 포함할 수 있다. 상기 버퍼 공급부 (28, 도 3 참조)는 전극부의 버퍼를 순환시켜, 전극에서 발생하는 열에 의한 온도 상승을 방지하는 역할을 한다. 이를 위하여, 상기 버퍼 공급부 (28)는 상기 전극부에 연결되어 온도 제어된 버퍼를 공급하는 것일 수 있다.
도 3은 일 구현예의 생체 시료 염색 장치의 버퍼 공급부를 도시한 모식도이다.
도 3에 도시된 바와 같이, 상기 전도성 하이드로젤 ( 11)의 양면에 위치하는 전극부 (201, 202)는 각각 버퍼 유입구 (24a)와 버퍼 배출구 (24b)를 포함하며 (일 예에서, 각각의 전극부 (201 , 202)의 일측면 하단에 버퍼 유입구, 반대 측면 상단에 버퍼 배출구를 포함할 수 있음), 상기 버퍼 공급부 (28)는 상기 버퍼 유입구 (24a) 및 버퍼 배출구 (24b)에 연결된 것일 수 있다.
상기 버퍼 공급부 (28)의 온도 제어를 위하여, 상기 버퍼 공급부 (28) 외부 및 /또는 내부에 냉각수 순환 채널을 추가로 할 수 있으며, 이로 인하여 전극부 (201 , 202)에 냉각된 버퍼 용액을 공급할 수 있도록 할 수 있다.
상기 냉각수 공급부 (29)는 전도성 하이드로젤 ( 11) 외부 및 /또는 버퍼 공급부 (28) 외부 및 /또는 내부에 온도 제어된 냉각수를 공급하여 반웅 온도를 낮추는 (즉, 반웅 온도를 생체 시료용 염색 시약 및 /또는 생체 시료 변성 온도 이하로 유지하는) 역할을 하는 것으로, 냉각수 순환채널과 연결된 것일 수 있다.
다른 일 예에서, 상기 생체 시료 염색 장치는 실시간 분석 (실시간 모니터링)을 위하여, 생체 시료용 염색 시약과 생체 시료 간 반웅에 의하여 발생한 신호 (예컨대, 형광 신호)의 가시화 및 /또는 정량화 장치를 추가로 포함할 수 있다. 상기 신호의 가시화 및 /또는 정량화 장치는, 광원, 렌즈, 영상화 장치, 연산장치 등으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 예컨대, 형광현미경 (예컨대, 광학현미경, 레이저현미경 등), 형광카메라, 디스플레이 (모니터), 컴퓨터 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
도 4는 일 구현예의 생체 시료 염색 장치에 렌즈와 형광 장치를 부가한 생체 시료 분석 장치를 도시한 모식도이다. 도 4를 참조하면, 생체 시료 염색 장치의 일측에 반응하는 생체 시료와 인접하도록 형광 장치 (32)와 렌즈 (34)를 부가할 수 있으며, 이렇게 부가된 렌즈 (34)는 컴퓨터 (35)와 연결되어 렌즈 (34)에서 확인되는 이미지를 컴퓨터 (35)에 저장할수 있다.
또 다른 일 예에서, 상기 생체 시료 염색 장치는 전도성 하이드로젤을 밀폐할 수 있는 덮개를 추가로 포함할 수 있다.
도 5는 다른 일 구현예에 따른 전기장 및 자성 포커싱을 이용한 생체 시료 염색 장치를 개략적으로 도시한모식도이다.
도 5를 참조하면, 본 구현예에 따른 생체 시료 염색 장치에서는 전도성 하이드로젤 (11)의 전후에 전극들 (21, 22)이 배치되고, 좌우에 자성체 (30)가 배치된다. 여기서 전도성 하이드로젤 ( 11)의 전후 방향은 서로 다른 극성의 전극 (21 , 22)이 대향하는 방향과 평행한 제 1 방향이고, 좌우 방향은 상기 전후 방향과 직교하는 제 2 방향으로 정의될 수 있다. 본 구현예에 따른 생체 시료 염색 장치에서 제 1 전극 (21), 생체 시료용 염색 시약부 (15), 생체 시료 (S) , 버퍼부 (16) 및 게 2 전극 (22)이 제 1 방향으로 배열되고, 자성체 (30)는 생체 시료 (S)에 인접하여 전도성 하이드로젤 (11)의 좌우 측면에 배치된다. 상기에 설명한 바와 같이, 전도성 하이드로젤 (11)은 하이드로젤 구조물로 이루어지고 제 1 전극 (21)의 면적보다 제 2 전극 (22)의 면적을 더 작게 노출시켜 전압을 인가함으로써, 도 5에 나타낸 바와 같이, 전기장의 집중화를 유도할 수 있다. 이에 더하여 본 구현예에서는 자성.체 (30)를 생체 시료 (S)에 인접하여 좌우에 위치시킴으로써 염색 반웅이 일어나는 과정 동안 자기장을 형성하여 자성 포커싱 ( focusing)을 유도할 수 있다. 이와 같이 전기장 및 자성 포커싱을 함께 이용함으로써 시료 이외의 부분에 생체 시료용 염색 시약이 퍼지는 것을 방지하는 동시에 생체 시료용 염색 시약의 생체 시료 투과 효율을 높일 수 있다.
자성체 (30)는 생체 시료 (S)에 인접하여 전도성 하이드로젤 ( 11)의 좌우에 위치하는 각 자성체 (30)가 게 1 방향을 따라 서로 평행하게 위치할 수 있다. 또는 다른 예로 전도성 하이드로젤 (11)의 좌우에 위치하는 각 자성체 (30)가 상기 제 1 방향에 대하여 설정된 각도만큼 서로를 향해 기울어 배치될 수도 있다. 일례로 좌우의 각 자성체 (30)가 상기 제 1 방향에 대하여 좌측 자성체 (30)는 시계방향으로 15° 기울이고 우측 자성체 (30)는 반시계방향으로 15° 기울여 배치하게 되면 자성 포커싱 효과를 더욱 높일 수 있다. 그러나 본 발명은 상기 각도에 한정되지 않는다.
도 6a 및 6b는 일 구현예에 따른 생체 시료 염색 장치의 사시도이다. 도 6a는 생체 시료 로딩체를 생체 시료 고정부에 삽입하기 전의 상태를 나타내고, 도 6b는 생체 시료 로딩체를 생체 시료 고정부에 삽입한 상태를 나타낸다.
도 6a를 참조하면, 본 구현예에 따른 생체 시료 염색 장치 (110)는 생체 시료 로딩체 ( 130)가 삽입되어 고정되는 생체 시료 염색용 칩 ( 120)을 포함하고, 생체 시료 염색용 칩 (120)의 전후방에 서로 극성이 다른 겨 U 전극 (141) 및 계 2 전극 (142)이 배치된다. 제 1 전극 ( 141) 및 제 2 전극 (142)에 전압을 인가하면 그 사이에 전기장이 형성되고 따라서 이들 한 쌍의 전극들 ( 141 , 142) 사이에 위치한 생체 시료 염색용 칩 (120)에 전기장이 형성되면서 그 내부로 전류가 흐를 수 있다. 여기서 생체 시료 염색용 칩 (120)의 전후 방향은 서로 다른 극성의 전극 (141, 142)이 대향하는 방향과 평행한 게 1 방향이고, 좌우 방향은 상기 전후 방향과 직교하는 제 2 방향으로 정의될 수 있다.
생체 시료 염색용 칩 (120)은 내부 공간을 갖는 전도성 하이드로젤로 이루어지는 몸체 (121)를 포함하고, 전도성 하이드로젤 몸체 (121)는 전도성. 하이드로젤 구조체 (성형체.)로서 상부면이 개방된 형상일 수 있다. 전도성 하이드로젤 몸체 (121) 내부에 형성된 공간은, 빈 공간으로서, 생체 시료용 염색 시약부 (125), 버퍼부 (126), 및 생체 시료 고정부 (127)를 포함할 수 있다. 생체 시료 고정부 (127)는 생체 시료용 염색 시약부 (125)와 버퍼부 (126)의 사이에 위치한다.
생체 시료용 염색 시약부 (125)는 염색 시약이 포함될 공간이고, 버퍼부 (126)는 버퍼 용액이 포함될 공간이다. 생체 시료용 염색 시약부 (125)는 로딩될 생체 시료를 층분히 염색할 수 있을 정도의 생체 시료용 염색 사약을 담지할 수 있는 크기의 공간 (체적)을 갖는 것일 수 있다. 버퍼부 (126)는 버퍼 용액이 채워질 공간으로, 생체 시료 로딩체 (130)의 구멍 (메쉬 위치) 또는 여기에 로딩된 생체 시료를 통과한 생체 시료용 염색 시약이 모이는 공간이다. 버퍼부 (126)는 생체 시료 고정부 (127)와 생체 시료 고정부 (127)의 장축과 나란히 위치하는 전도성 하이드로젤 몸체 (121)의 내벽을 분리 (이격)시킬 수 있는 공간이면 족하다. 전극들 (141, 142)이 위치하는 전도성 하이드로젤 몸체 (121)의 한 쌍의 마주보는 측면 중, 생체 시료용 염색 시약부 (125)와 가까운 측면의 두께가 버퍼부 (126)와 가까운 반대편 측면의 두께보다 두껍게 하여, 전극 (141, 142)과 생체 시료용 염색 시약 사이의 전류의 이동 거리 및 /또는 이동 시간이 층분하도록 할 수 있다. 전극 (141, 142)이 위치하는 전도성 하이드로젤 몸체 (121)의 한 쌍의 마주보는 측면 중, 버퍼부 (126)와 가까운 측면의 두께는 전도성 하이드로젤 몸체 (121)을 구조적으로 지지할 수 있는 정도의 두께면 층분하다.
생체 시료 고정부 (127)는 생체 시료가 담지되는 생체 시료 로딩체 (130)가 고정화되는 (끼워지는) 전도성 하이드로젤 몸체 (121)의 내부 공간이다. 생체 시료 로딩체 (130)는 내부에 구멍 (132a)을 갖는 생체 시료 로딩를 (132)과 구멍 (132a)을 덮도록 구멍 (132a)의 양면에 위치하는 메쉬 (135)를 포함한다. 생체 시료 로딩를 (132)의 구멍 (132a)과 양면의 메쉬 (135) 사이 공간에 생체 시료가 로딩된다. 생체 시료를 로딩하기 위하여, 상기 양면에 위치하는 메쉬 (135)는 그 둘레의 전부 또는 일부 (예컨대, 둘레의 1/2 이상 또는 3/4 이상)가 생체 시료 로딩를 (132)에 탈부착 가능한 것일 수 있다. 예컨대, 생체 시료 로딩를 (132)의 구멍 (132a)의 양면에 위치하는 메쉬 (135) 중 하나는 둘레의 전부가 로딩를 (132)에 부착되어 생체 시료가 로딩될 수 있는 일면을 형성하고, 그 위에 생체 시료를 올려놓은 후 반대 면의 메쉬 (135)를 덮고 둘레의 일부 또는 전부를 로딩를 (132)에 부착시켸 양면의 메쉬 (135) 사이에 생체 시료를 로딩할 수 있다. 이 때, 메쉬 (135)는 담지되는 생체 시료의 넓은 면적의 단면과 접하는 양 면에 위치하며, 생체 시료용 염색 시약 (예컨대, 항체 등)이 통과할 수 있는 세공을 갖는 것을 특징으로 한다. 생체 시료 로딩를 (132)의 두께 및 구멍 크기는 로딩되는 생체 시료의 크기에 따라서 정해질 수 있으며, 예컨대, 로딩되는 생체 시료의 평균 두께 및 /또는 넓은 단면의 평균 지름의 1 내지 1.5배, 1 내지 1.4배, 1 .내지 1.3배 , 1 내지 1.2배, 1 내지 1.1배, 또는 1 내지 1.05배의 두께 및 /또는 구멍 크기를 가질 수 있다.
생체 시료 로딩체 (130)는 내부에 로딩된 생체 시료와 넓은 면적의 단면이 전도성 하이드로젤 몸체 (121) 내의 생체 시료 고정부 (127)의 장축과 평행한 (나란한) 방향으로 위치하도록 생체 시료 고정부 (127) 내부에 고정화된다 (끼워 넣어진다) . 생체 시료 고정부 (127)는 생체 시료 로딩체 (132)가 끼워질 수 있는 두께를 가지며, 예컨대, 생체 시료의 평균 두께의 1 내지 1.5배, 1 내지 1.4배, 1 내지 1.3배, 1.2배, 1 내지 1.1배, 또는 1 내지 1.05배의 두께를 가질 수 있다.
생체 시료 고정부 (127)는 생체 시료 로딩체 (132)를 안정적으로 고정시키고, 생체 시료용 염색 시약부 (125)와 버퍼부 (126)를 분리 (차단)시키기 위하여, 생체 시료 고정부 (127)의 양 끝단이 위치하는 전도성 하이드로젤 몸체 (121)의 마주보는 한 쌍의 측면의 내벽에 홈이 형성되어, 전도성 하이드로젤 몸체 (121)의 내벽이 외벽쪽으로 연장된 형태의 공간을 갖는 것일 수 있다.
생체 시료 로딩를 (132)은 전기 및 생체 시료용 염색 시약, 필요한 경우 버퍼가 통과하지 못하는 재질의 것일 수 있다. 따라서, 전기장의 형성에 의하여 이동하는 생체 시료용 염색 시약은 생체 시료 로딩체 (130)를 통과할 때 생체 시료 로딩를 ( 132 )의 구멍에 위치하는 메쉬 (135)를 통해세만 이동할 수 있으므로, 메쉬 (135) 사이에 로딩된 생체 시료에 보다 집중될 수 있다.
한편, 전도성 하이드로젤 몸체 (121)의 제 1 방향, 즉 전후 방향으로 마주보는 한 쌍의 측면 외부에, 서로 크기가 다른 구멍 (123a, 124a)을 갖는 비전도성 외벽 (123, 124)을 포함할 수 있다.
상기에서 생체 시료 염색용 칩 (120)은 생체 시료 로딩체 (130)를 포함하는 포함하는 것으로 정의될 수 있으며, 이 때 생체 시료 로딩체 (130)는 생체 시료를 포함하거나 포함하지 않은 생체 시료 로딩를 (132)을 포함하는 것일 수 있다.
도 7은 일 실시예에 따른 생체 시료 염색 장치의 염색용 칩을 제작하기 위한 를의 구조를 도시한 사시도이고, 도 8의 (A) 내지 (C)는 일 실시예에 따른 생체 시료 염색 장치의 염색용 칩을 제작하는 과정을 도시한 사시도이다.
도 7을 참조하면, 대략 직육면체 형상의 생체 시료 염색용 칩 (120)과 이를 제작하기 위한 제작 를 (150)이 도시되어 있다. 생체 시료 염색용 칩 (120)은 대략 직육면체 형상의 껀도성 하이드로젤 몸체 (121)의 저면과 장축와 양 말단면에 비전도성 꾀벽 (123 , 124)이 접촉하여 위치할 수 있다. 전도성 하이드로젤 몸체 (121)에는 개방된 상단으로부터 하방으로 연장된 홈이 형성되어 생체시료 염색 시약부 (125), 생체 시료 고정부 (127) 및 버퍼부 (126)로 구획될 수 있다.
도 8을 참조하면, 제작 를 (150)의 하부 를 (151) 내에 형성된 홈에 장축의 양단면과 저면에 밀착되는 비전도성 외벽 (123, 124)을 삽입하고 하이드로젤을 비전도성 외벽 (12 124) 사이의 홈에 부어 홈을 채운 다음 제작 를 (150)의 상부 를 (152)로 덮는다 (도 8의 (A)참조) . 상부 를 (152)은 상기 하이드로젤 내부로 삽입되는 돌출부 (152a)와 비전도성 외벽 (123, 124)에 끼워지는 슬롯 (152b)을 가질 수 있다. 일정 시간 도과 후 하이드로젤이 굳은 후에 상부 를 (152)을 뽑아 내어 분리할 수 있다 (도 8의 (B) 참조) . 그리고 비전도성 외벽 (123, 124)으로 둘러싸인 하이드로젤 몸체 (121)를 하부 를 (151)로부터 분리해 내면 생체 시료 염색용 칩 (120)을 얻을 수 있다 (도 8의 (C) 참조) .
한편, 상기 생체 시료 염색용 칩 (120)은 전도성 하이드로젤의 사용 및 /또는 냉각수 순환 채널을 통한 반웅 온도 유지에 의하여 생체 시료용 염색 시약의 변성을 최소화시키거나 변성이 일어나지 않도록 하므로, 표적 생체 물질과 반웅하지 않은 미반웅 생체 시료용 염색 시약을 회수하여 재사용 가능하다. 따라서, 상기 생체 시료 염색용 칩 ( 120)의 생체 시료용 염색 시약부 ( 125) 및 /또는 버퍼부 ( 126)에 미반웅 생체 시료용 염색 시약의 회수를 위한 생체 시료용 염색 시약 회수부 (도시하지 않음)를 추가로 포함할 수 있다.
일 구체예에서, 상기 생체 시료 염색용 칩은 장축 길이가 3 내지 10cm, 4 내지 10cm, 3 내지 8cm, 4 내지 8cm, 3 내지 6cm, 또는 4 내지 6cm이고, 단축 길이 및 /또는 높이가 각각 독립적으로 1 내지 5cm, 1 내지 4cm, 1 내지 3cm, 또는 1.5 내지 2.5cm이고, 비전도성 외벽의 작은 구멍의 지름이 1 내지 4.5隱, 1 내지 3隱, 또는 1 내지 2腿이고, 비전도성 외벽의 큰 구멍의 지름이 5 내지 15mm, 5 내지 12.5腿, 7.5 내지 15mm, 또는 7.5 내지 12.5瞧이고, 생체 시료 로딩를의 구멍의 지름이 1 내지 20隱, 1 내지 15隱, 1 내지 12.5 mm, 2.5 내지 20mm, 2.5 내지 15mm, 2.5 내지 12.5 mm , 또는 5 내지 10mm이고, 전도성 하이드로젤의 생체 시료용 염색 시약부 쪽의 전극이 위치하는 일 측면의 두께는 전체 장축 길이의 1/3 내지 2/3 정도일 수 있으나, 이에 제한되는 것은 아니며, 생체 시료 분석 계획에 따라 적절하게 조절될 수 있다. 또한, 생체 시료용 염색 시약부의 크기 (체적)은 포함될 생체 시료용 염색 시약의 양에 따라서 적절하게 조절 가능하다.
도 9a는 다른 일 구현예에 따른 생체 시료 염색 장치를 도시한 분해 사시도이고, 도 9b는 결합사시도이다.
도 9a를 참조하면, 본 실시예에 따른 생체 시료 염색 장치 (200)는 퍼퓨전 챔버 (210), 이에 고정되는 생체 시료 염색용 칩 (220), 전극 (241, 242)이 고정되면서 퍼퓨전 챔버 (210)의 상부를 덮는 상부 덮개 (230)를 포함한다. 그리고 생체 시료 염색용 칩 (220)의 전후 방향으로 구멍의 크기를 선택할 수 있는 포커싱 선택판 (245, 246)이 위치하고 생체 시료 염색용 칩 (220)의 좌우 방향으로 자성체 (260)가 위치한다. 여기서 생체 시료 염색용 칩 (220)의 전후 방향은 서로 다른 극성의 전극 (241, 242)이 대향하는 방향과 평행한 제 1 방향이고, 좌우 방향은 상기 전후 방향과 직교하는 제 2 방향으로 정의될 수 있다.
생체 시료 염색용 칩 (220)은 상기에서 설명한 바와 같이 하이드로젤 구조물로 이루어질 수 있다. 즉, 전도성 하이드로젤 몸체의 적어도 전후 방향 외측에 비전도성 외벽이 위치할 수 있으며, 상기 비전도성 외벽에는 전극 (241, 242)과 대향하는 측면에 구멍이 형성될 수 있다. 상기 전도성 하이드로젤 몸체에는 생체 시료용 염색 시약부, 생체 시료 고정부, 버퍼부가 형성될 수 있으며, 생체 시료 고정부에는 생체 시료 로딩를에 생체 시료를 담은 생체 시료 로딩체가 삽입될 수 있다. 이와 같이 구성되는 생체 시료 염색용 칩 (220)의 구조 및 기능은 도 6a 내지 도 8을 참조하여 설명한 바와 같으므로 이하에서 자세한 도시와 설명은 생략한다. 다만 구조물의 종횡비는 전체 장치의 구성에 따라 달라질 수 있으나 이러한 변형은 통상의 기술자의 이해 범위 내에 속한다.
포커싱 선택판 (245 , 246)은 생체 시료 염색용 칩 (220)의 전후에 위치하여 좌우 방향으로 움직이면서 구멍의 크기를 변경할 수 있으며, 이를 위해 전기장 포커싱 액추에이터 (255, 256)에 각각 연결되어 구동될 수 있다. 전기장 포커싱 액추에이터 (255, 256)는 결합 상태에서 상부 덮개 (230)의 상단에 위치하고 연결 암이 퍼퓨전 챔버 (210)의 내부까지 연장되어 포커싱 선택판 (245, 246)에 연결된다. 자성체 (260)는 생체 시료 염색용 칩 (220)의 좌우에 위치하여 전후 방향으로 움직이면서 자기장이 형성되는 위치를 변경할 수 있으며, 이를 위해 자성 포커싱 액추에이터 (261)에 연결되어 구동될 수 있다. 자성 포커싱 엑추에이터 (261)는 결합 상태에서 상부 덮개 (230)의 상단에 위치하고 연결 암이 퍼퓨전 챔버 (210)의 내부까지 연장되어 자성체 (260)에 연결된다. 전기장 포커싱 액추에이터 (255 , 256)와 자성 포커싱 엑추에이터 (261)는 서로 간섭되지 않도록 층을 달리하여 위치할 수 있다. 도 9a 및 9b에서는 자성 포커싱 엑추에이터 (261)가 전기장 포커싱 액추에이터 (255, 256) 상부에 위치하는 구현예를 나타내고 있다. 도 9b를 참조하면 , 본 실시예에 따른 생체 시료 염색 장치 (200)의 구성요소들이 모두 결합된 상태에서는 상부 덮개 (230)로 퍼퓨전 챔버 (210)를 덮고 상부 덮개 (230)의 상단으로는 전기장 포커싱 액추에이터 (255, 256)와 자성 포커싱 액추에이터 (261)가 위치한 상태를 볼 수 있다.
도 10은 도 9a에 도시한 생체 시료 염색 장치의 전기장 포커싱 액추에이터의 구동 상태를 도시한사시도이다.
도 10을 참조하면, 포커싱 선택판 (245, 246)은 생체 시료 염색용 칩 (220)을 기준으로 전후에 하나씩 배치되는 전방 포커싱 선택판 (245)과 후방 포커싱 선택판 (246)으로 구성된다. 각각의 포커싱 선택판 (245 , 246)은 서로 다른 지름을 갖는 적어도 2개의 관통 구멍을 가지며, 정렬 시 관통 구멍의 크기가 서로 다른 것끼리 대웅하도록 설치될 수 있다. 즉, 전방 포커싱 선택판 (245)의 큰 관통 구멍과 후방 포커싱 선택판 (246)의 작은 관통 구멍이 대웅하고, 전방 포커싱 선택판 (245)의 작은 관통 구멍과 후방 포커싱 선택판 (246)의 큰 관통 구멍이 대응하도톡 정렬될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 필요에 따라 다른 조합으로 정렬하는 것도 가능하다.
포커싱 선택판 (245 , 246)은 전기장 포커싱 액추에이터 (255, 256)에 연결 암 (245a, 246a)을 통해서 연결되며 전기장 포커싱 액추에이터 (255, 256)는 제 2 방향으로 움직이는 구동력을 제공할 수 있다. 제 1 조합은 - 전방 포커싱 선택판 (245)에서 큰 관통 구멍을 선택하고, 후방 포커싱 선택판 (246)에서 작은 관통 구멍을 선택하여 설정할 수 있다. 또한 제 2 조합은 전방 포커싱 선택판 (245)에서 작은 관통 구멍을 선택하고, 후방 포커싱 선택판 (246)에서 큰 관통 구멍을 선택하여 설정할 수 있다: 전방 및 후방 포커싱 선택판 (245, 246.)의 관통 구멍의 선택은 각각에 연결된 전기장 포커싱 액추에이터 (255, 256)를 구동하여 포커싱 선택판 (245, 246)을 제 2 방향으로 이동시킴으로써 선택할 수 있다.
도 11은 도 9a에 도시한 생체 시료 염색 장치의 자성 포커싱 액추에이터의 구동 상태를 도시한사시도이다.
도 11을 참조하면, 자성체 (260)는 생체 시료. 염색용 칩 (220)의 좌우에 배치되며, 연결 암 (260a)을 통해 자성 포커싱 액추에이터 (261)에 연결된다. 자성 포커싱 액추에이터 (261)로부터 연장되는 연결 암 (260a)은 좌우로 분기된 각 단부에 하방으로 생체 시료 염색용 칩 (220)의 높이만큼 연장된 자성체 (260)가 연결된다. 자성 포커싱 액추에이터 (261)는 제 1 방향으로 움직이는 구동력을 자성체 (220)에 제공할 수 있으며, 생체 시료 염색용 칩 (220)의 좌우에 전후 방향으로 설정된 위치에 자성체 (260)를 배치할 수 있다.
도 12는 도 9a에 도시한 생체 시료 염색 장치의 퍼퓨전 (per fusion) 챔버 내에서의 쿨링 버퍼의 유출입 경로를 도시한사시도이다.
도 12를 참조하면, 생체 시료 염색 장치의 퍼퓨전 챔버 (210)는 가로벽 (215)에 의해 크게 2개의 공간으로 구획되어 제 1 공간 (211)과 제 2 공간 (212)으로 구분될 수 있다. 제 1 공간 (211)에는 게 1 전극 (241)이 위치하고, 계 2 공간 (212)에는 게 2 전극 (242)이 위치하게 된다. 가로벽 (215)의 중간부분은 부분적으로 개방된 개방부 (215a)를 형성하여 게 1 공간 (211)과 제 2 공간 (212)이 서로 통하도록 되어 있으나, 상기 개방부 (215a)의 폭은 생체 시료 염색용 칩 (220)의 폭에 대웅하는 크기만큼 개방되어 있다. 따라서 생체 시료 염색용 칩 (220)이 상기 가로벽 (215)의 개방부 (215a)에 삽입되면 제 1 공간 (211)과 제 2 공간 (212)은 서로 단절될 수 있다.
퍼퓨전 챔버 (210)에는 2개의 유입구 (211a, 212a)와 4개의 배출구 (211b , 212b)를 포함한다. 유입구는 제 1 공간 (211)으로 통하는 제 1 유입구 (211a)와 제 2 공간 (212)으로 통하는 게 2 유입구 (212a)를 포함하며, 각 유입구 (211a , 212a)는 퍼퓨전 챔버 (210)의 하단부에 위치하면서 쿨링 버퍼 (cool ing buf fer )를 각 공간 (211, 212)으로 공급한다. 배출구 (211b , 212b)는 게 1 공간 (211)으로부터 통하는 2개의 제 1 배출구 (211b)와 제 2 공간 (212)으로부터 외부로 통하는 2개의 게 2 배출구 (212b)를 포함한다. 각 배출구 (211b, 212b)는 퍼퓨전 챔버 (210)의 각 공간 (211, 212)의 상단부에서 상방으로 개구되어 있다. 따라서 유입구 (211a, 212a)로 유입된 쿨링 버퍼는 퍼퓨전 챔버 (210)의 각 공간을 거의 채운 다음 각 배출구 (211b , 212b)로 넘쳐서 홀러 나가는 구조이다.
도 13은 도 9a에 도시한 생체 시료 염색 장치의 상부 덮개를 도시한 정면도이다.
도 13을 참조하면, 본 실시예에 따른 생체 시료 염색 장치의 상부 덮개 (230)의 하부에는 계 1 전극 (241)과 계 2 전극 (242)이 고정되어 하방으로 연장되어 있다. 제 1 전극 (241)과 제 2 전극 (242)의 사이에 해당하는 상부 덮개 (230)의 부분은 개방되어 개구부 (230a)를 형성한다. 전기장 포커싱 액추에이터 (255, 256)의 연결 암 (245a , 246a)과 자성 포커싱 액추에이터 (261)의 연결 암 (260a)은 상부 덮개 (230)의 개구부 (230a)를 통해 통과하여 퍼퓨전 챔버 (210) 내부에 위치하는 포커싱 선택판 (245, 246)과 자성체 (260)에 각각 연결된다. 도 13에서 보는 바와 같이, 전기장 포커싱 액추에이터 (255, 256)와 자성 포커싱 액추에이터 (261)는 서로 간섭되지 않도록 층을 달리하여 위치할수 있다.
한편, 본 명세서 기재된 생체 시료는 동물, 예컨대, 곤층, 제노푸스, 제브라피시, 포유동물 (예컨대 말, 소, 양, 개, 고양이, 뮤린, 설치류, 인간을 제외한 영장류 또는 인간) 등의 척추동물 및 무척추 동물에서 분리된 세포 또는 이의 배양물, 조직, S는 기관일 수 있으나, 이에 제한되는 것은 아니다. 상기 생체 시료는 살아있는 개체 (예컨대, 생검 시료)로부터 수집 (또는 분리)되거나, 또는 죽은 개체 (예컨대, 부검 또는 검시 시료)로부터 수집될 수 있다. 상기 생체은 모든 임의의 조직 유형 및 기관들 중에서 선택될 수 있으며, 예컨대, 조혈, 신경 (중추 또는 말초), 신경교, 간엽, 피부, 점막, 간질, 근육 (골격, 심장, 또는 평활), 비장, 세망내피, 상피, 내피, 간, 신장, 췌장, 위장, 폐, 섬유아세포 둥의 조직 및 기관들 중에서 선택될 수 있다. 일 예에서, 상기 생체 시료는 척추동물, 예컨대 인간을 포함한 포유류로부터 분리된 뇌조직 또는 설치류의 전뇌일 수 있으나 이에 제한되는 것은 아니다.
생체에서 분리된 생체 시료는 분석하고자 하는 생체 물질 이외에 다양한 물질들이 포함되어 있어서 정확한 분석 결과를 얻는데 장애가 되므로, 상기 생체 시료는 분석하고자 하는 생체 물질 (예컨대, 단백질 및 /또는 핵산 분자) 이외의 생체 물질, 예컨대, 분석 (예컨대, 광학 분석 등)에 장애가 되는 지질 등의 생체 물질이 제거된 시료일 수 있다.
본 발명의 적용 가능한 생체 시료는 생체로부터 분리된 것일 수 있다. 본 발명은 비교적 두꺼운 생체 시료에도 적용 가능하다는 이점을 가지며, 이러한 관점에서, 상기 생체 시료는 두께가 0.2隱이상, 0.3mm이상, 0.5mm 이상, 0.75隱 이상, 1mm 이상, 1.25mm 이상, 1.5隱 이상, 1.75醒 이상, 또는 2mm 이상인 생체 조직 (상한 값은 생체 조직이 속하는 기관의 두께, 또는 10mm, 7.5mm, 5mm, 4 mm, 3mm 또는 2.5mm일 수 있음)일 수 있으나 이에 제한되는 것은 아니고, 상기 범위보다 얇은 생체 시료에도 적용될 수 있음은 물론이다. 생체 시료의 단면은 지름이 약 5睡 내지 10mm인 원형에 가까운 형태일 수 있으나, 이에 제한되는 것은 아니며, 생체 시료 로딩를의 크기 및 /또는 형태에 따라서 적절하게 결정될 수 있다.
본 명세서에 기재된 생체 시료용 염색 시약은 생체 시료 (예컨대, 생체 조직) 내의 특정 생체 물질 (예컨대, 단백질, 당, 핵산 (DNA 또는 RNA) 등)을 표적화하는 물질들 (예컨대, 항체, 렉틴 등의 표적 결합 단백질, 압타머, 안티센스 RNA, siRNA, sh NA 등의 표적 결합 핵산 분자, 화학 염료 (smal l molecular chemi cal s ; 예컨대, 정전기적 결합에 의하여 표적 생체 물질과 결합하는, 발색단을 갖는 유기화합물; 예컨대, 메틸렌 블루 (methylene blue) , 를루이딘 블루 (toluidine blue) , 헤마록실린 (hymatoxyl in) , 에오신 (eosin) , 산성 훅신 (acid fuchsin) , 오렌지 G orange G) , DAP I (4 ' , 6-di ami dino-2-phenyl indole) 등으로 이루어진 군에서 선택된 1종 이상) 등)로 이루어진 군에서 선택된 1종 이상이, 필요에 따라서, 통상적인 방법에 따라서 검출 가능한 표지 물질로 표자화된 것을 의미한다 . 일 예에서, 상기 생체 시료용 염색 시약은 전하를 띠는 것일 수 있다.
본 명세서에서 제공되는 생체 시료 염색 기술에 의하여 염색되는 부위는 특별한 제한이 없으며, 세포막, 세포질, 핵, 핵막, 다양한 세포내 소기관 등으로 이루어진 군에서 선택된 하나 이상일 수 있으며 , 염색하고자 하는 부위에 적절한통상적인 생체 시료용 염색 시약을 선택할 수 있다. 상기 표지 물질은 검출 가능한 신호 (예컨대, 형광)을 발생하는 모든 물질들 중에서 선택된 1종 이상일 수 있다. 예컨대, 상기 형광 물질은 다음으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다:
(1) 형광 단백질: 녹색 형광 단백질 (GFP), 황색 형광 단백질 (YFP), 오렌지색 형광 단백질 (0FP), 시안색 형광 단백질 (CFP), 청색 형광 단백질 (BFP) , 적색 형광 단백질 (RFP), 초적색 형광 단백질, 근적외선 형광 단백질 등,
(2) 형광 단백질 변이체: Emerald (Invitrogen, Carlsbad, Calif.), EGFP (Clontech, Palo Alto, Calif), Az ami -Green (MBL International , Woburn, Mass.), aede (MBL International , Woburn , Mass.)', ZsGreenl (Clontech, Palo Alto, Calif.), CopGFP (Evrogen/Axxora, LLC, San Diego, Calif.) 등의 GFP 변이체; Cerulean (Rizzo, Nat Biotechnol. 22(4) :445-9 (2004)), mCFP (Wang et al. , PNAS USA. 101(48): 16745-9 (2004)), AmCyanl (Clontech, Palo Alto, Calif), MiCy (MBL International , Woburn, Mass.), CyPet (Nguyen and Daugherty, Nat Biotechnol. 23(3): 355-60 (2005)) 등의 CFP 변이체; EBFP (Clontech, Palo Alto, Calif.) 등의 BFP 변이체; EYFP (Clontech, Palo Alto, Calif.), YPet (Nguyen and Daugherty, Nat Biotechnol . 23(3): 355-60 (2005)), Venus (Nagai et al . , Nat. Biotechnol. 20(1) :87-90 (2002)), ZsYellow (Clontech, Palo Alto, Calif), mCitrine (Wang et al . , PNAS USA. 101(48): 16745-9 (2004)) 등의 YFP 변이체; cOFP (Strategene, La Jolla, Calif.), mKO (MBL Internat ional , Woburn , Mass.), mOrange등의 0FP 변이체 등,
(3) 비단백질 유기 형광 염료: fluorescein, rhodamine, Oregon green, eosin, Texas red 등의' Xanthene 유도체; cyanine, i ndo carbocyanine, oxacarbocyanine, thiacarbocyanine, merocyanine 등의 Cyanine 유도체; Seta, SeTau , Square dyes 등의 Squaraine 유도체 및 고리치환 squaraines; Naphthalene 유도체' (dansyl 및 prodan 유도체); Coumarin 유도체; pyr idyloxazole, n i t r obenzoxad i azo 1 e , benzoxadiazole 등의 oxadiazole 유도체; ant hraqui nones, including DRAQ5, DRAQ7, CyTRAK Orange 등의 Anthracene 유도체; cascade blue 등의 Pyrene 유도체; Nile red, Nile blue, cresyl violet , oxazine 170, 등의 Oxazine 유도체; prof lavin, acr idine orange, acr idine ye 1 low, 등의 Acr idine 유도체; aur amine, crystal violet , malachite green 등의 Arylmethine 유도체; porphin, phthalocyanine, bilirubin 등의 Tetrapyrrole 유도체 유도체 (예컨대, CF dye (Biotium), DRAQ 및 CyTRAK probes (BioStatus), BODIPY (Invitrogen) , Alexa Fluor (Invitrogen) , DyLight Fluor (Thermo Scientific, Pierce) , Atto and Tracy (Sigma Aldrich) , FluoProbes (Interchim) , Abber i or Dyes (Abberior) , DY and MegaStokes Dyes (Dyomics) , Sulfo Cy dyes (Cyandye) , HiLyte Fluor (AnaSpec) , Seta, SeTau and Square Dyes (SETA BioMedicals) , Quasar and Cal Fluor dyes (Biosearch Technologies) , SureLight Dyes (APC, RPEPerCP , Phycobili somes) (Columbia Biosciences), APC, APCXL, RPE, BPE (Phyco- Biotech, Greensea, Prozyme, Flogen) , Vio Dyes (Mi Itenyi Biotec) 등). 본 명세서에 기재된 전도성 하이드로젤은 칩에 유동성 를 구조를 제공하는 것으로, 전기를 통과시키면서 버퍼 용액 및 생체 시료용 염색 시약은 통과시키지 않는 것으로, 광학 분석시 빛의 산란, 반사, 굴절 등의 장애 요소를 발생시키지 않는 투명한 젤일 수 있다 일 예에서, 상기 전도성 하이드로젤은 아크릴아마이드 젤 (예컨대, 아크릴아마이드 단량체를 포함하는 용액으로부터 얻어진 하이드로젤), 그 외의 모든 투명한 전도성 하이드로젤들로 이루어진 군에서 선택된 1종 이상일 수 있다.
예컨대, 상기 아크릴아마이드 젤은 5 내지 20 중량 %, 5 내지 18 중량 %, 5 내지 16 중량 %, 10 내지 20 중량 %, 10 내지 18 중량 %, 10 내지 16 중량 %, 12 내지 20 중량 %, 12 내지 18 중량 %, 12 내지 16 중량 %의 아크릴아마이드 단량체 를 포함하고, 임의로, 0.1 내지 1 중량 %, 0.1 내지 0.7 중량 %, 0.3 내지 1 증량 % 또는 0.3 내지 0.7 중량 %의 비스- 아크릴아마이드를 추가로 포함하는 용액으로부터 얻어진 하이드로젤일 수 있다.
본 명세서에 사용된 비전도성 외벽, 및 생체 시료 로딩를은 전기가 통하지 않고, 버퍼 및 면역 염색 시약도 통과시키지 않는 고형 재질로 된 것일 수 있다. 광학 분석시에 빛의 굴절, 산란, 분산 둥에 의한 장애 요인을 발생시키지 않기 위하여, 비전도성 외벽, 및 생체 시료 로딩를은 투명한 재질의 것일 수 있다. 예컨대, 상기 비전도성 외벽, 및 생체 시료 로딩를은 서로 동일하거나 상이한 재질로 된 것일 수 있으며, 각각 독립적으로, 아크릴, 유리, 플라스틱, 고무, 도자기, 석유화합물 둥 비전도성 물질로 이루어진 군에서 선택된 1종 이상의 재질로 된 것일 수 있다.
냉각수 순환채널은 내부에 연통된 넁각수 순환통로를 갖고 냉각수 유입부와 배출부를 제외한 모든 면이 밀폐된 모든 형태의 구조체일 수 있으며, 재질에는 특별한 제한이 없으며, 열전도성이 우수하고 액체를 손실 없이 순환시킬 수 있는 재질이면 족하다.
상기 생체 시료 로딩를에 포함되는 메쉬는 실크, 린넨 (마), 석유화합물 유래 섬유로 이루어진 군에서 선택된 1종 이상의 재질로 된 것일 수 있으나, 이제 제한되는 것은 아니다. 또한 상기 메쉬는 생체 시료용 염색 시약은 통과하면서 로딩된 생체 시료는 통과할 수 없는 크기의 세공을 갖는 것일 수 있다. 예컨대, 생체 시료용 염색 시약으로 항체를 사용하는 경우, 항체가 통과할 수 있도록 평균 지름이 약 30nm 이상, 약 50nm 이상, 약 70 nm 이상, 약 lOOnm 이상, 또는 약 lum 이상인 세공을 갖는 것일 수 있다 (세공 지름의 최대값은 로딩된 생체 시료가 통과하지 않고 로딩를 안에 버틸 정도의 크기 이하일 수 있다) . 일 구체예에서, 상기 메쉬는 평균 지름이 30nm 내지 lOOum, 50nm 내지 lOOum, 70 nm 내지 lOOum , lOOnm 내지 lOOum, lum 내지 lOOum, 30nm 내지 10um, 50nm 내지 lOum, 70 nm 내지 10um, lOnm 내지 10um, 또는 lum 내지 lOum인 세공을 갖는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 전도성 하이드로젤의 내부 공간 및 전극부는 통상적으로 사용되는 버퍼 용액으로 채워질 수 있다. 일 예에서, 상기 버퍼 용액은 이온화 제공 물질 (전해질)을 포함하는 버퍼 용액들로부터 선택될 수 있다. 상기 이온화 제공 물질은 특별한 제한이 없으며, 예컨대 수산화리튬, 염화나트륨, 염화칼륨, 수산화나트륨 등으로 이루어진 군에서 선택된 1종 이상이 수 있으나, 이에 제한되는 것은 아니며, 이온화 가능한 모든 물질일 수 있다. 상기 버퍼 용액은 보레이트 버퍼, 포스페이트 버파살라인 (PBS) , 포스페이트 버퍼, 타이로드 버퍼 (Tyrode buf fer) , 트리스 버퍼, 글라이신 버퍼, 시트레이트 버퍼, 아세테이트 버퍼로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 일 예에서, 상기 버퍼 용액은 50mM의 수산화리튬을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이하의 실시예는 생체 시료 염색에 항체를 사용하는 면역 염색법을 수행한 것이다ᅳ 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 자명할 것이다.
실시예 1 : 시료의 준비
GFP가 뉴런에 특이적으로 발현되도록 형질전환된 마우스의 뇌를 사용하여 통상적안 CLARITY 방법에 의하여 투명한 뇌초직 시료를 준비하였다 ( "Structural and molecular interrogat ion of intact biologi cal systems" , Chung et al . , MATURE , Vol . 497 No . 6, 2013, 332-337 참조) .
형질전환 마우스로서 Thyl-GFP Transgeni c mouse (C57BL6 mouse 한국 뇌연구원 (KBRI 제공) )을 사용하였으며, Heart perfusion을 통해, 뇌 미세혈관의 피를 빼내었다. 상기 마우스로부터 뇌를 적출하여 4%(w/v) 아크릴아마이드, 0.25%(w/v) VA-044, 4%(w/v) PFA(paraformaldehyde)를 인산버퍼살린 (PBS) 용액에 녹인 hydrogel monomer 용액에 침지시키고 4°C에서 2일간 배양하였다.
이후, 뇌를 특수 제작된 기계 (CLARITY Easy- Imbedding, LCI )를 이용하여 온도를 37°C까지 올리면서, 암혹상태에서 2 내지 4시간 동안 진공 상태를 만들어주었다. '
이후 원하는 시료 크기 (두께: 500um, 1隱, 1.5隱. 2mm, 5腿; 지름: 5隱, 10隱)로 슬라이스를 진행한 뒤, CLARITY 기계 (CLAIRT Easy- Clear ing, LCI )을 이용하여 Electro-Tissue Clear ing(ETC)를 진행하였다. 이 때, 4% SDS, 50mM LiOH, 25mM Bor i c acid를 포함하는 버퍼 용액을 사용하였다. Clear ing은 50-70V, 35 °C의 조건에서 진행하였으며, 시료의 크기에 따라 1~5일 동안수행하였다.
상기와 같이 CLARITY 과정을 마친 조직을 Borate buf fer (50mM LiOH, 25mM Bor i c Acid)에 37°C 조건 하에서 1일간 침지시켜 washing하여, 항체 결합을 방해하는 잔류 SDS를 모두 제거하였다. 실시예 2: EFIC (Electro-Focused I腿 uno-Chemistry)를 통한 생체 시료 염색을 이용한 생체 시료 염색 장치의 준비
아크릴아마이드 흔합액 ( 15wt Acyl amide , 0.5wt% Bi s-Acryl amdie , 및 0.0005wt% TEMED(Tetramethylethylenedi amine) , 및 0. 1wt¾ Amonium Persul fate)을 도 7에 도시된 제작를에 넣고 하이드로젤 내부 공간 쎄작 를을 덮어서 굳힌 후, 를에서 빼내어 내부에 빈 공간을 갖는 하이드로젤을 제작하고, 지름 1.5隱의 구멍을 갖는 아크릴 판과 지름 10隱의 구멍을 갖는 아크릴 판을 상기 하이드로젤의 장축 방향 양 말단 측면의 외부에 장착시켜, 도 6a의 구조를 갖는 생체 시료 염색용 칩을 제작하였다 (도 6a에서 양 전극은 생체 시료 염색 장치에 구비된 것이다) .
상기 제작된 생체 시료 염색용 칩을, 전원 공급부, 양 전극부 (각 전극부는 일측면 하단에 버퍼 유입구, 반대 측면 상단에 버퍼 배출구를 가짐), 상기 양 전극부의 버퍼 유입구 및 버퍼 배출구에 연결된 버퍼 공급부 (Borate buf fer ; 50mM LiOH, 25mM Bor i c Acid) , 상기 버퍼 공급부에 연결된 냉각기가 구비된 장치의 각 전극부 사이에 장착시켰다. 이 때, 칩의 양쪽 측면 (비전도성 외벽) 중 구멍이 큰 쪽이 음극에 위치하도록 하였다. 상기 장치는 생체 시료 염색용 칩의 측면 중 전극부와 접하는 두 측면을 제외한 나머지 두 측면과, 하부면, 및 상부면에 완전 맞닿게 접하여 위치하며 냉각수가 순환할 수 있는 내부 공간을 갖는 냉각수 순환채널 및 상기 냉각수 순환채널에 연결된 냉각수 공급부가구비되어 있다. 실시예 3: EFIC을통한 면역 염색 시험 (항" GFP항체 시험)
실시예 1에서 얻어진 GFP가 뉴런에 특이적으로 발현되도록 형질전환된 마우스의 뇌조직의 CLARITY 시료를 Alexa-647로 태깅된 항 -GFP ant ibody-647 (Thermo Fi sher , MA, USA)를 사용하여 EFIC (Electro-Focused I隱 uno-Chemi stry)을 통해 면역 염색을 수행하고, 조직 내 뉴런 분포를 분석하였다.
실시예 1에서 준비된 지름 및 두께가 각각 10腿 및 1.5mm 인 대뇌 피질 시료를 실시예 2에서 준비된 장치 내의 시료 염색용 칩의 생체 시료 로딩틀에 넣고 생체 시료 고정부 끼워 고정시키고, 전극부와 칩의 각 공간을 Borate buf fer (50mM LiOH, 25mM Bori c Acid)로 채웠다. 생체 시료 고정부의 양쪽 공간 중 음극쪽 공간인 면역 염색 시약부 (항체 공급부)에 항 -GFP ant ibody-647 (Thermo Fi sher , MA, USA)를 1.5ul의 양으로 넣고, 4°C 유지된 냉각수를 순환채널을 통해 순환시켜 층분히 냉각시켰다.
그 후, 80mA로 전류를 맞추며 120분동안 전원을 공급하였다. 이 때, 통과되었던 항체들을 다시 제자리로 돌려놓기 위하여 10분 간격으로 전압의 방향을 바꿔주었다. 그 후, 항체가 조직 시료 내의 표적 단백질에 층분히 결합할 수 있도록 30분 내지 1시간동안 대기하였다. 그 후, 반대 방향으로 60분동안 80mA 전류를 공급하여, 미결합 항체를 제거하였다.
이미징 하기에 앞서, Focus clear (Cel explore l abs co , FC-101) 혹은
87% Glycerol (Sigma) 용액에 담궈 놓아, 시료의 굴절를을 현미경의 렌즈오일과 동일하게 맞추었다. (Refract ive index=1.454. ) 이미징은 공초점현미경 A1모델 (Nikon, Japan) 및 10X Lens (Nikon, Japan)를 사용하여 수행하였다.
상기 얻어진 형광 이미지를 도 14에 나타내었다. 도 14에 나타난 바와 같이 X-Y의 단면뿐 아니라 x-z의 높이를 보았을 때, 전체적으로 항- GFP 항체가 깊은 곳까지 골고루 침투하여 정확한 마우스 뇌 피질 부위 (Cortex)에 염색이 되고 있음을 확인할 수 있다. 실시예 4: 면역 염색 시험 (1차항체 및 2차항체 시험)
실시예 1의 방법을 참조하여, 형질전환되지 않은 랫트 (SD Rat , 4~6주령)의 뇌조직 시료를 준비하였다.
실시예 3을 참조하여, 상기 준비된 시료에 뇌의 Gl ia cel l marker 인 GFAPCGl ial f ibr i l lary acidic protein)를 표적으로 하는 항체 ( Ist Ant ibody, Abeam, UK) 및 상기 1st Ant ibody의 Fc 부분을 표적으로 하고 형광물질로 표지된 항체 (2nd Ant ibody, Alexa-488 , Abeam, UK)를 사용하여 EFIC을 통한 면역 염색을 수행하고, 얻어진 결과를 공초점 현미경 AKNikon, Japan)으로 이미징하였다.
상기 얻어진 결과를 도 15에 나타내었다. 도 15에 나타난 바와 같이, EFIC을 통한 면역 염색이 1st Ant ibody 및 2nd Ant ibody를 사용하는 일반적인 면역 염색에도 효과적으로 적용됨을 확인할 수 있다. 피질 (Cortex) 및 해마 (Hippocampus) 조직의 염색 시험
실시예 3의 방법을 참조하여, 실시예 1에서 얻어진 GFP가 뉴런에 특이적으로 발현되도록 형질전환된 마우스의 뇌조직의 대뇌 피질 시료 (10隱 X 1.5瞧) 및 해마 조직 시료 (10議 X 1.5mm)에 대한 면역 염색을 수행하고 이미징하였다.
상기 얻어진 결과를 도 16에 나타내었다. 도 16에 나타난 바와 같이, 대뇌 피질 (위)과 해마 조직 (아래) 모두에서 면역 염색이 잘 된 것을 확인할 수 있으며, 이는 EFIC을 통한 면역 염색이 뇌의 부위와 상관 없이 다양한 뇌조직에서 효과적으로 이루어질 수 있음을 보여준다. 실시예 6. 렉틴 (Lectin) 시약을사용하는 면역 염색
항 -GFP antibody-647 대신에 렉틴 염색 시약 (Lectin-594, Vector, USA) 을 사용한 것을 제외하고 실시예 3과 동일한 방법으로 EFIC를 수행하고 얻어진 결과를 이미징하였다.
상기 얻어진 결과를 도 17에 나타내었다. 도 8에 나타난 바와 같이, 렉틴 시약을 사용하여 EFIC를 수행하는 경우에도 1 mm 깊이까지 염색이 잘 진행됨을 알 수 있다. 실시예 7: 인간뇌조직의 면역 염색
실시예 1을 참조하여, 포르말린에 장시간 보관한 인간 뇌 조직에 대하여 CLARITY를 진행하였다. 단, Electn)-Tissue Clearing 과정의 조건을 100-120V 및 40~45°C로 하여 7일간 수행하였다. 이후 Borate buffer (50mM Li OH, 25mM Boric Acid)에 37°C 조건 하에서 1일간 침지시켜 잔류 SDS를 제거하였다.
상기 준비된 인간 뇌조직 시료 (10隱 X 1.5睡)에 대하여 실시예 3의 방법을 참조하여 EFIC을 GFAP Ist 면역항체 (Abeam, UK)와 와 상웅하는 Alexa-488 2nd 면역항체 (Abeam, UK)로써 면역염색을 수행하였다 (1:1000 농도). 비교를 위하여, 상기 뇌 조직 시료를 총 12~14일간 침지시켜 확산에 의한 passive 면역 염색 (1:50~100 항체농도)를 수행하였다.
상기 얻어진 결과를 이미징하여 도 18에 나타내었다. 도 18에 나타난 바와 같이, passive 면역 염색과 비교하여, EFIC에 의한 면역 염색시의 사용 항체는 1/20의 양을 사용함에도 불구하고, 염색되는 조직의 깊이가 확연히 깊은 것을 확인할 수 있다. 인간의 뇌의 특성상 혈액을 제거하는 per fusion과정이 불가능하고, 신선한 상태의 샘플을 얻기 어렵기 때문에, 일반적인 면역 염색시에 non¬ signi f i cant binding이 많고 항체의 조직 투과성이 극도로 낮아서 원하는 결과를 얻기가 어렵다.
그러나, EFIC을 통한 면역 염색의 경우에는, non-signi f icant를 획기적으로 줄이고, '항체의 조직 투과성을 passive 면역 염색과 비교하여 10,배 가까이 늘릴 수 있음을 확인할수 있다 (도 18 참조) . 실시예 8: 6% Aery 1 amide Gel의 투과시험
CLARITY 샘플과 조성이 같은 6wt% Aery 1 amide Gel에 대하여 passive 면역 염색과 EFIC을 통한 면역 염색을 수행하여 BSA— FITC (bovine serum albumin l abeled wi th Fluorescein i sothiocyanat )의 투과 정도를 시험하였다.
6wt Aery 1 amide Gel로 지름이 1cm이고 두께가 2腿인 절편을 준비하였다. 상기 준비된 6wt Acrylamide Gel 절편을 BSA— FITC가 lOug/ml 농도로 포함된 2ml 버퍼에 3시간 동안 침지시켜, passive 면역 염색을 수행하였다.
EFIC을 통한 면역 염색은, 실시예 3의 방법을 참조하여, 뇌 조직 시료 대신에 상기 준비된 6wt% Acrylamide Gel 절편을 사용하여 수행하였다. 상기 얻어진 결과를 도 19에 나타내었다. 도 19에서 A는 6wt%
Acrylamide Gel 절편의 염색 전 단면을 보여주고, B는 염색 후의 6wt¾> Acrylamide Gel 절편의 전체 모습을 보여주며, C는 염색 후의 6wt% Acrylamide Gel 절편의 단면 모습을 보여준다. 도 10의 B 및 C에 나타난 바와 같이, passive 면역 염색을 수행한 6wt¾) Acryl amide Gel 절편의 경우에는 BSA-FITC이 표면에만 위치하지만, EFIC을 수행한 6wt% Acrylamide Gel 절편의 경우에는 내부에도 BSA-FTTC가 위치하는 것을 확인할 수 있다. 상기 결과는 EFIC 수행시 1시간만에 BSA-FITC이 젤 절편 내부를 완전히 통과할 수 있음을 보여준다. 실시예 9 : 자성체 유무에 따른 전자초점화 비교 시험
6wt Acrylamide Gel을 준비하여 이를 통과하는 BSA-FITC의 지나가는 길을 관측하여 자성체 유무에 따른 전기장의 분포를 알아보기 위한 시험을 수행하였다. 6wt% Aery 1 amide Gel (2.5cm X 1.7cm X 1.7cm)의 직사각형 젤을 준비하였다. 이후 젤 왼쪽 부분에 지름 0.5 cm 깊이 1cm의 원기등 3개의 구멍을 뚫어 놓았다. 이후 BSA-FITC가 lOug/ml 농도로 포함된 버퍼를 각 기등 구멍에 각각 200ul씩 넣었다. 이러한 세팅은 자성체가 았는 기기와 없는 기기에 동시에 진행하였다. 각 기기에서 실험은 80mA로 30분간 진행하였다. 이후 형광 램프와 필터를 통해 위쪽 방향에서 이미징을 진행하였다.
상기 경과는 도 20에 나타내었다. 보여지는 형광 물질들은 전기장의 분포를 유추하게 해주며, 빨간색 점선은 형광물질 길들의 가상의 선으로 연결해놓아, 초점화를 가식화 시킨 그림이다. 도 20에서 자성체가 없을 때에는 상대적으로 약한 초점화 현상을 발견하였다. 이 경우 EFIC 물리적 격벽에 의한 초점화 현상으로 발생한다. 반면 자성체를 사용하면, 이보다 더 쎈 초점화 현상이 발견된다. 상기 결과로, 자성체를 사용할 경우, 초점화 현상이 더 심화됨을 보여준다.
- 실시예 10: 자성체 유무에 따른투과도 비교
기본적인 실험 방법은 실시예 8과 같다. lcm 지름의 두께가 2隱인 6wt Aery 1 amide gel을 lOug/ml의 2ml. 버퍼로 EFIC을 통한 염색을 진행하였다. 그리고 자성체가 있을 때와 없을 때를 비교하였으며, 시간은 기존 실험과 달리 20분간만 진행하였다.
본 결과는 도 21에서 보여진다. 본사진은 두께에 대하여 BSA-FITC의 투과도에 대한 비교 사진이다. 20분의 짧은 시간에서는 자성체를 사용하지 않은 EFIC에서는 깊숙한 곳까지 염색이 되지 않았다. 반면 자성체가 있는 기기에서는 20분만 EFIC을 통한 염색을 진행하였고, 안쪽까지 층분히 염색됨을 확인하였다. 이는 자성체가 있음으로써, 염색의 투과도를 확연하게 높여주는 것을 발견하였다. 실시예 3번과. 같이 실제 생체 샘플에 실험했을 때에도, 120분 대신 40분이라는 단축된 시간만으로 1隱의 Rat brain sample에서 형광 염색이 완료.됨을 확인하였다. 이러한 결과는 도 22에 나타내었다.
이상을 통해 본 발명의 바람직한 구현예 및 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다. [부호의 설명]
11: 전도성 하이드로젤 15: 생체 시료용 염색 16: 버퍼부 18: 생체 시료 로딩체
R: 생체 시료용 염색 시약 S: 생체 시료
21: 제 1 전극 22: 제 2 전극
24: 전도성 매질 24a: 버퍼 유입구
24b: 버퍼 배출구 25, 26: 비전도성 외벽
28: 버퍼 공급부 29: 냉각수공급부
30: 자성체 32: 형광 장치
34: 렌즈 35: 컴퓨터

Claims

【청구의 범위】
【청구항 1】
(a) 전류가 전도성 하이드로젤 (hydrogel )을 통하여 생체 시료용 염색 시약 및 생체 시료로 흐르도록 전기장을 형성하는 단계 ,
(b) 전자초점화가 일어나도록 전기장을 형성하는 단계, 또는
(c) 상기 단계 (a) 및 (b) 모두
를 포함하고,
상기 생체 시료는 생체로부터 분리된 것인,
생체 시료 염색 방법 .
【청구항 2】
제 1항에 있어서, 상기 단계 (a)는 전류가 생체 시료용 염색 시약과 같은 극성의 전극, 전도성 하이드로젤, 생체 시료용 염색 시약, 생체 시료, 및 생체 시료용 염색 시약과 반대 극성의 전극을 순방향, 역방향, 또는 양방향으로 순차적으로 흐르도록 전기장을 형성하는 단계를 포함하는 것인, 생체 시료 염색 방법 .
【청구항 3】
거 U항에 있어서, 상기 단계 (b)는 양 전극과 생체로부터 분리된 생체 시료를 일직선 상에 위치하도록 하고, 생체 시료용 염색 시약과 반대 극성의 잔극 면적을 생체 시료용 염색 시약과 같은 극성의 전극 면적보다 좁게 하여 전기장을 형성하는 단계를 포함하는 것인, 생체 시료 염색 방법.
【청구항 4】
저 U항에 있어서, 상기 단계 (a) 또는 (b)의 전기장을 형성하는 단계는 1 내지 5시간 동안 60 내지 100 mA의 전류가 흐르도록 전압을 인가하는 단계를 포함하는 것인, 생체 시료 염색 방법.
【청구항 5】
제 4항에 있어서, 상기 전압을 인가하는 단계는 5 내지 20분 간격으로 전류의 방향이 바뀌도록 수행하는 것인, 생체 시료 염색 방법.
【청구항 6】
제 4항에 있어서, 상기 전기장을 인가하는 단계 이후에, 10분 내지 2시간 동안 방치하는 단계를 추가로 포함하는, 생체 시료 염색 방법 .
【청구항 7】
제 6항에 있어서, 상기 방치하는 단계 이후에,'세척 단계를 추가로 1 내지 3시간 동안 수행하는, 생체 시료 염색 방법.
【청구항 8】
게 1항에 있어서, 상기 전도성 하이드로젤은 아크릴아마이드 젤 (acrylamide gel )을 포함하는 것인, 생체 시료 염색 방법.
【청구항 9】
제 1항 에 있어서, 상기 생체 시료용 염색 시약은 표적 결합 단백질 또는 표적 결합 핵산 분자인, 생체 시료 염색 방법 .
【청구항 10】
게 9항에 있어서, 상기 생체 시료용 염색 시약은 형광 표지로 표지된 것인, 생체 시료 염색 방법.
【청구항 11】
제 1항에 있어서, 상기 생체 시료는두께가 0.5mm 내지 10mm인 조직인 생체 시료 염색 방법.
【청구항 12】
제 1항에 있어서, 상기 생체 시료 염색에 의하여 발생한 신호를 측정하는 단계를 더 포함하는, 생체 시료 염색 방법 .
【청구항 13】
제 1항에 있어서, 냉각시키는 단계를 추가로 포함하는, 생체 시료 염색 방법.
【청구항 14】
제 13항에 있어서, 상기 냉각시키는 단계는
전극 버퍼를 교환하는 단계,
전도성 하이드로젤 외부에 냉각수를 순환시키는 단계, 또는 이들 모두
를 포함하는 것인, 생체 시료 염색 방법.
【청구항 15】
제 1항에 있어서, 미반웅 생체 시료용 염색 시약을 회수하는 단계를 추가로 포함하는, 생체 시료 염색 방법 .
【청구항 16】
내부 공간에 제 1 방향으로 정렬된 생체 시료용 염색 시약부 생체 시료 고정부 및 버퍼부를 갖는 전도성 하이드로젤 몸체; 및
상기 생체 시료 고정부에 고정될 수 있으며, 생체 시료를 담을 수 있는 생체 시료 로딩체
를 포함하는 생체 시료 염색용 칩 .
【청구항 17】
제 16항에 있어서,
상기 생체 시료 로딩체는 내부에 구멍을 갖는 생체 시료 로딩를 및 상기 구멍의 양면에 위치하는 메쉬 (mesh)를 포함하는, 생체 시료 염색용 칩 .
【청구항 18】
제 16항에 있어서,
상기 전도성 하이드로젤 몸체의 상기 게 1 방향으로 마주보는 한 쌍의 측면에 구멍이 형성된 비전도성 외벽을 더 포함하는 생체 시료 염색용 칩.
【청구항 19】
제 18항에 있어서,
상기 한 쌍의 비전도성 외벽은 서로 다른 크기의 구멍을 갖는, 생체 시료 염색용 칩.
【청구항 20】
제 16항에 있어서,
상기 생체 시료용 염색 시약부의 체적은 상기 버퍼부의 체적보다 더 크게 형성된, 생체 '시료 염색용 칩.
【청구항 21】
제 16항 내지 제 20항 중 어느 한 항에 따른 생체 시료 염색용 칩; 및 상기 생체 시료 염색용 칩의 상기 제 1 방향으로 마주보는 한 쌍의 측면 외부에 위치하는 게 1 전극과 제 2 전극을 포함하는 전극부
를 포함하는 생체 시료 염색 장치 .
【청구항 22】
제 21항에 있어서,
상기 생체 시료 염색용 칩과 상기 제 1 전극 및 제 2 전극 각각의 사이에, 상기 제 1 방향과 교차하는 제 2 방향으로 이동 가능하며 적어도 2개의 서로 다른 크기의 구멍을 갖는 포커싱 선택판을 포함하는 생체 시료 염색 장치. ·
【청구항 23】
제 21항에 있어서,
상기 생체 시료 염색용 칩의 상기 제 1 방향과 교차하는 제 2 방향으로 마주보는 한 쌍의 측면 외부에 위치하고, 상기 제 1 방향으로 이동 가능한 자성체를 더 포함하는 생체 시료 염색 장치 .
【청구항 24】 제 23항에 있어서,
상기 자성체는 상기 제 1 방향에 대하여 기 설정된 각도로 기울어 위치하는, 생체 시료 염색 장치.
【청구항 25】
제 21항에 있어서,
가로벽에 의해 제 1 공간과 제 2 공간으로 분리되고, 상기 가로벽의 중간부분에서 부분적으로 개방된 개방부에 상기 생체 시료 염색용 칩이 삽입되는 퍼퓨전 챔버를 더 포함하고,
상기 제 1 전극은 상기 제 1 공간에 위치하고, 상기 제 2 전극은 상기 제 2 공간에 위치하는, 생체 시료 염색 장치 .
【청구항 26】
제 25항에 있어서,
상기 퍼퓨전 챔버의 제 1 공간 또는 제 2 공간 각각으로 통하며 상기 퍼퓨전 챔버의 하단부에 위치하는 버퍼 유입구를 포함하고, 상기 퍼퓨전 챔버의 제 1 공간 또는 제 2 공간 각각으로부터 외부로 통하며 각 공간의 상단부에서 상방으로 개구된 버퍼 배출구를 포함하는 생체 시료 염색 장치 . 【청구항 27】
제 25항에 있어서,
상기 퍼퓨전 챔버를 덮는 상부 덮개를 더 포함하고,
상기 상부 덮개의 하부에 상기 제 1 전극과 제 2 전극이 고정되어 하방으로 연장되는, 생체 시료 염색 장치 .
PCT/KR2018/013472 2017-11-07 2018-11-07 전자 초점화를 이용한 생체 시료 염색 방법 및 염색 장치 WO2019093760A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0147213 2017-11-07
KR20170147213 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019093760A1 true WO2019093760A1 (ko) 2019-05-16

Family

ID=66438943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013472 WO2019093760A1 (ko) 2017-11-07 2018-11-07 전자 초점화를 이용한 생체 시료 염색 방법 및 염색 장치

Country Status (2)

Country Link
KR (1) KR20190051884A (ko)
WO (1) WO2019093760A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038042A (ko) * 2001-11-08 2003-05-16 비오이 하이디스 테크놀로지 주식회사 전기영동 표시장치
JP2006254745A (ja) * 2005-03-16 2006-09-28 Toyohashi Univ Of Technology 巨大dna調製法
JP2007010649A (ja) * 2005-06-02 2007-01-18 Laboratory Of Bio-Informatics Technology ゲルの染脱色方法、ゲルの電気泳動脱色装置及びゲルの染脱色キット
JP2010019722A (ja) * 2008-07-11 2010-01-28 Idenshi Kaihen Kenkyu Kaihatsu:Kk 染色剤処理装置及び染色剤処理方法
KR20150092333A (ko) * 2013-04-30 2015-08-12 시스템 인스트루먼츠 컴퍼니 리미티드 전기영동 방법 및 전기영동 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038042A (ko) * 2001-11-08 2003-05-16 비오이 하이디스 테크놀로지 주식회사 전기영동 표시장치
JP2006254745A (ja) * 2005-03-16 2006-09-28 Toyohashi Univ Of Technology 巨大dna調製法
JP2007010649A (ja) * 2005-06-02 2007-01-18 Laboratory Of Bio-Informatics Technology ゲルの染脱色方法、ゲルの電気泳動脱色装置及びゲルの染脱色キット
JP2010019722A (ja) * 2008-07-11 2010-01-28 Idenshi Kaihen Kenkyu Kaihatsu:Kk 染色剤処理装置及び染色剤処理方法
KR20150092333A (ko) * 2013-04-30 2015-08-12 시스템 인스트루먼츠 컴퍼니 리미티드 전기영동 방법 및 전기영동 장치

Also Published As

Publication number Publication date
KR20190051884A (ko) 2019-05-15

Similar Documents

Publication Publication Date Title
US20210215581A1 (en) Methods and Compositions for Preparing Biological Specimens for Microscopic Analysis
US11624685B2 (en) Method and system for imaging and analysis of a biological specimen
Weiss et al. Tutorial: practical considerations for tissue clearing and imaging
US10221443B2 (en) System and method for laser lysis
US10168259B2 (en) Microfluidic devices, systems, and methods for imaging tissue samples
Gupta et al. Non-reversible tissue fixation retains extracellular vesicles for in situ imaging
Isogai et al. Optimized protocol for imaging cleared neural tissues using light microscopy
US10641782B2 (en) Methods for visualization and quantification of fiber-like structures
US20210018441A1 (en) Quantitative liquid biopsy diagnostic system and methods
KR102340869B1 (ko) 이온 전도성 필름을 이용한 전기 영동 방식의 생체 시료 염색 방법 및 염색 장치
WO2019093760A1 (ko) 전자 초점화를 이용한 생체 시료 염색 방법 및 염색 장치
CN112955260A (zh) 生物样品保持器和处理器
Kochhan et al. Zebrafish as a model to study chemokine function
Li Development of novel imaging technology to study cell signalling
EP4111194A1 (en) Method for extraction of target cells from 3d tissue by optical identification
KR20230168666A (ko) 베시클의 표지 방법 및 이를 이용한 베시클-타겟 단백질 상호작용의 검출 방법
Vasantham et al. Opto-hydrodynamic fiber tweezers for stimulated raman imaging cytometry of leukemic cells
Merighi et al. The evolution of immunocytochemistry in the dissection of neural complexity
CN116148020A (zh) 爬行类动物血液多细胞单步染色的单染料染色试剂和方法
Dubreil et al. New approaches in fluorescent Bio-imaging for tissue & cell investigations
Sugawara et al. Wednesday, February 6, 2013 667a

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875349

Country of ref document: EP

Kind code of ref document: A1