WO2019093660A2 - Procédé de fabrication de maghémite - Google Patents

Procédé de fabrication de maghémite Download PDF

Info

Publication number
WO2019093660A2
WO2019093660A2 PCT/KR2018/011948 KR2018011948W WO2019093660A2 WO 2019093660 A2 WO2019093660 A2 WO 2019093660A2 KR 2018011948 W KR2018011948 W KR 2018011948W WO 2019093660 A2 WO2019093660 A2 WO 2019093660A2
Authority
WO
WIPO (PCT)
Prior art keywords
maghemite
lithium
heat treatment
lepidocrocite
inert gas
Prior art date
Application number
PCT/KR2018/011948
Other languages
English (en)
Korean (ko)
Other versions
WO2019093660A3 (fr
Inventor
한승훈
문정미
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2019093660A2 publication Critical patent/WO2019093660A2/fr
Publication of WO2019093660A3 publication Critical patent/WO2019093660A3/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing maghemite which can be used as an electrode catalyst for a lithium-sulfur secondary battery.
  • the secondary battery is composed of an anode, a cathode, a separator, and an electrolyte, and the cost of the anode is the highest in the cost of various materials.
  • the cathode material of a lithium secondary battery generally has a high energy density at the time of charging and discharging. At the same time, the structure should not be destroyed by intercalation or deintercalation of reversible lithium ions, and the chemical stability of an organic solvent used as an electrolyte is high It should be high. Further, it is preferable that the material is low in manufacturing cost and minimizes environmental pollution problem.
  • sulfur has been attracting attention as a cathode active material capable of exhibiting a high energy capacity in a lithium ion battery.
  • Sulfur has a high theoretical capacity of about 1675 mAh / g and a high energy density of 2600 Wh / Kg, Because it has a nature without toxicity.
  • maghemite has been used to improve the discharge capacity and lifetime characteristics of lithium-
  • there has been a growing interest in the technology for producing maghemite but research on the manufacturing technology of maghemite suitable as an electrode material of lithium-sulfur secondary battery has been actively carried out It is a fact that it does not support.
  • Patent Document 1 Korean Registered Patent No. 10-0482279 (March 31, 2005), “Iron Oxide Nanopowder and Method for Producing the Same”
  • an object of the present invention is to provide a process for producing high purity maghemite through a simple process.
  • M 1 is any one selected from Li, Na, Mg, K and Ca, and X is 1 or 2.
  • the step (2) may be a state in which an inert gas atmosphere or an inert gas is continuously introduced.
  • the inert gas may be selected from the group consisting of nitrogen, argon, helium, and mixtures thereof.
  • the heat treatment may be performed at 250 to 600 ° C.
  • the heat treatment may be performed for 1 to 4 hours.
  • a high purity maghemite (? -Fe 2 O 3 ) can be produced by a simple process including a step of reacting NaBH 4 with Fe (NO 3 ) 3 .9H 2 O and a heat treatment .
  • the morphology and purity of the produced ⁇ -Fe 2 O 3 can be controlled by controlling the reaction temperature and the reaction time in the reaction of NaBH 4 and Fe (NO 3 ) 3 .9H 2 O.
  • the discharge capacity of the lithium-sulfur secondary battery can be increased.
  • SEM scanning electron microscope
  • FIG. 3 is a graph showing the results of XRD (X-ray diffraction spectroscopy) analysis of lepidocrocite and maghemite prepared in Production Examples and Examples, respectively.
  • FIG. 4 is a graph showing discharge capacity test results of a lithium-sulfur secondary battery to which lepidocrocite and maghemite, which are respectively prepared in Production Examples and Examples, are applied.
  • the present invention relates to a method for producing maghemite, and more particularly, to a method for manufacturing a maghemite having a shape and physical properties capable of improving discharge capacity by being applied to a cathode material of a lithium-sulfur secondary battery will be.
  • the process for producing the maghemite according to the present invention comprises
  • heat treatment may be performed in an inert gas atmosphere.
  • M 1 is any one selected from Li, Na, Mg, K and Ca, and X is 1 or 2.
  • the Fe (NO 3 ) 3 .9H 2 O and the reducing agent represented by the formula (1) may all be in the form of an aqueous solution, and the Fe (NO 3 ) 3 .9H 2 O aqueous solution is added to the aqueous solution of the reducing agent represented by the formula Followed by mixing and reacting.
  • the purity of the produced lepidocrocite may be lowered. That is, when the aqueous solution of the reducing agent represented by Formula 1 is added to the Fe (NO 3 ) 3 .9H 2 O aqueous solution and mixed and reacted, the purity of the prepared red precipitant may be lowered.
  • the aqueous solution of Fe (NO 3 ) 3 .9H 2 O may be 0.04 to 0.08 M, preferably 0.05 to 0.06 M, and if it is less than 0.04 M, the yield of lepidocrocite production may be lowered.
  • the physical properties of the manufactured maghemite may not be suitable for application as a cathode material of a lithium-sulfur secondary battery.
  • the reducing agent aqueous solution represented by the formula 1 may be 0.2 to 0.5 M, preferably 0.3 to 0.4 M. If less than 0.2 M, lepidocrocite is not produced, and if it is more than 0.5 M, the reaction may not proceed.
  • the reducing agent represented by Formula 1 may be NaBH 4 .
  • lepidocrocite can be naturally synthesized in an aqueous solution after the conversion of the Fe 3 + cation into the Fe metal form.
  • the mixing of the Fe (NO 3 ) 3 .9H 2 O and the reducing agent represented by the above formula (1) may be performed within a short time, and may be performed within 10 to 120 seconds, preferably 50 to 80 seconds. If the mixing time is less than 10 seconds, the mixing may occur excessively and the gas may be generated all at once, so that the reaction may proceed unevenly. If the mixing time is more than 120 seconds, the mixing speed is slow, The phase of the material may be different.
  • the reaction temperature may be 10 to 60 ° C, preferably 20 to 50 ° C, more preferably 20 to 25 ° C. If the reaction temperature is less than 10 ° C, the reaction may not proceed, and if it is more than 60 ° C The physical properties of the lepidocrocite to be produced may be denatured. Further, it may be preferable to conduct the reaction while maintaining the temperature at 20 to 25 DEG C for controlling the reaction rate.
  • the reaction time may be 10 minutes to 20 hours, preferably 40 minutes to 2 hours. When the reaction time is less than 10 minutes, the reedocrocite may not be formed. When the reaction time exceeds 20 hours, The shape of the mite may not be suitable for the cathode material of the lithium-sulfur secondary battery. In particular, when the reaction is performed for 40 minutes to 2 hours, the desired properties of the redeposited material can be maintained without losing.
  • filtration and drying may be further carried out.
  • the filtration step may be performed by a filtration process commonly used in the art, for example, a filter paper may be used.
  • the drying may be carried out at 70 to 90 ° C for 6 to 12 hours.
  • the drying temperature is less than 70 ° C or less than 6 hours, the particles may not be completely dried to obtain the granular form of lepidocrocite. If the drying temperature exceeds 90 ° C or exceeds 12 hours, the remaining water may boil, The physical properties may be denatured.
  • the lepidocrocite prepared by the above-mentioned method may be? -FeOOH, and specifically may be crystalline? -FeOOH.
  • the maghemite may be produced by heat treating the lepidocrocite prepared in the step (1) in an inert gas atmosphere, and may be produced through the following reaction formula (1).
  • the inert gas atmosphere may be (i) under an inert gas atmosphere in which the gas inside the reactor is replaced with an inert gas, or (ii) continuously undergoes a continuous flow of inert gas to continuously replace the gas inside the reactor .
  • the flow rate of the inert gas may be 1 to 500 mL / min, specifically 10 to 200 mL / min, more specifically 50 to 100 mL / min.
  • the inert gas may be selected from the group consisting of nitrogen, argon, helium, and mixtures thereof.
  • the heat treatment according to the present invention may be performed at 250 to 600 ° C. If the temperature is lower than the above range, it may not be converted to marmerite from lepidocrocite, and if it exceeds the above range, the particle structure of the maghemite may collapse and the sintering may cause undesired Particles, and since lepidocrocite is converted into ⁇ -Fe 2 O 3 or the like to produce desired maghemite, it is suitably adjusted within the above range.
  • the heat treatment may be performed for 1 to 4 hours and at a temperature raising rate of 0.1 ° C per minute to 10 ° C per minute. If the heat treatment time is less than the above range, the temperature for producing the maghemite can not be reached, so that the maghemite can not be produced. If the time exceeds the above time, the heat treatment temperature rises too much, Can be collapsed, can be transformed into particles of undesired size due to sintering, and ⁇ -Fe 2 O 3 other than maghemite can be generated, so that it is appropriately controlled within the above range.
  • the prepared lepidocrocite can be converted to at least 80% of the hemihydrate, preferably at least 90% of the hemihydrate through the heat treatment step in an inert gas atmosphere .
  • the XRD analysis of the maghemite revealed that the XRD peak of lepidocrocite was not detected and that it was converted to 90% or more of the maghemite.
  • the prepared maghemite may be in the form of secondary particles formed by lumps of maghemite primary particles in the form of a plate, wherein the secondary particles may be spherical.
  • the shape of the prepared maghemite can be controlled as needed by controlling the reaction time, and they can be applied to the cathode material of a lithium-sulfur secondary battery.
  • the prepared primary particles of the plate-like type may have a particle diameter of more than 1 nm but not more than 1000 nm, preferably 50 to 500 nm.
  • the secondary particle having the primary particles aggregated therein may have a particle diameter of 1 to 50 ⁇ , preferably 1 to 20 ⁇ .
  • the particle size of the secondary particles decreases within the above range, it is suitable as the cathode material of the lithium-sulfur secondary battery.
  • the particle size of the secondary particles exceeds the above range, the particle size is large and is not suitable as the cathode material of the lithium- .
  • maghemite such as crystalline ⁇ -Fe 2 O 3 produced by the above-described method for producing a maghemite
  • the lithium- The polysulfide can be adsorbed and the performance of the lithium-sulfur secondary battery can be improved.
  • NaBH 4 is a product of TCI and has a purity of > 95%
  • Fe (NO 3 ) 3 .9H 2 O may be a product of Aldrich, having a purity of > 98%.
  • the lepidocrocite powder prepared in Preparation Example 1 was subjected to heat treatment at 400 DEG C for 1 hour by flowing nitrogen gas at a flow rate of 100 mL / min.
  • the heating rate for the heat treatment was 10 ° C per minute.
  • Magnesite was prepared through the heat treatment.
  • XRD analysis (D4 Endeavor from Bruker) was performed on the lepidocrocite and the maghemite, respectively, prepared in the preparation examples and the examples.
  • FIG. 3 is a graph showing the XRD analysis results of lepidocrocite and maghemite produced in Production Examples and Examples, respectively.
  • the post-discharge capacity of the anode and the cathode of the lithium-sulfur secondary battery was measured as shown in Table 1 below.
  • Carbon composite the anode of Experimental Example (1) includes a sulfur-carbon composite and the preparation of repidocrocite, and the anode of Experimental Example (2) contains a sulfur-carbon composite and a mag- Mite.
  • the measurement current was 0.1 C and the voltage range was 1.8 to 2.5 V. The results are shown in Table 1 and FIG.
  • Lithium-sulfur secondary battery Discharge capacity (mAh / g) cathode anode Comparative Experimental Example Metallic lithium Sulfur-carbon composite + conductive material + binder (90: 5: 5, weight ratio) 1,088 Experimental Example (1) Metallic lithium Sulfur-carbon composite material + conductive material + binder + repidocrocite (90: 5: 5: 10, weight ratio) 1,189 Experimental Example (2) Metallic lithium Sulfur-carbon composite + + conductive material + binder + maghemite (10 parts by weight) (90: 5: 5: 10, 1,187
  • maghemite produced in the examples was excellent in the discharge capacity effect when added to the positive electrode of the lithium-sulfur secondary battery.

Abstract

La présente invention concerne un procédé de fabrication de maghémite. Plus spécifiquement, on fait réagir du NaBH4 avec du Fe(NO3)3·9H2O dans des conditions contrôlées de temps de réaction et de température de réaction pour obtenir de la lépidocrocite cristalline (γ-FeOOH) qui est ensuite traitée thermiquement dans un état gazeux non actif pour produire de la maghémite de haute pureté (γ-Fe2O3). L'application de la maghémite sur une cathode d'une batterie secondaire au lithium-soufre peut améliorer la capacité de décharge.
PCT/KR2018/011948 2017-11-07 2018-10-11 Procédé de fabrication de maghémite WO2019093660A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170147143A KR102229451B1 (ko) 2017-11-07 2017-11-07 마그헤마이트의 제조방법
KR10-2017-0147143 2017-11-07

Publications (2)

Publication Number Publication Date
WO2019093660A2 true WO2019093660A2 (fr) 2019-05-16
WO2019093660A3 WO2019093660A3 (fr) 2019-06-27

Family

ID=66438569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011948 WO2019093660A2 (fr) 2017-11-07 2018-10-11 Procédé de fabrication de maghémite

Country Status (2)

Country Link
KR (1) KR102229451B1 (fr)
WO (1) WO2019093660A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700077A (zh) * 2022-04-24 2022-07-05 昆明理工大学 一种三氧化二铁掺杂双相二氧化钛催化剂的制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102229454B1 (ko) 2017-06-20 2021-03-18 주식회사 엘지화학 수산화철(FeOOH)의 제조방법 및 수산화철을 포함하는 리튬-황 전지용 양극
KR102443532B1 (ko) * 2020-09-18 2022-09-14 인하대학교 산학협력단 마그헤마이트의 제조방법 및 이에 의하여 제조되는 마그헤마이트

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176172A (en) * 1975-12-22 1979-11-27 Pfizer Inc. Particle gamma ferric oxide
KR100482279B1 (ko) 2002-11-06 2005-04-14 한국과학기술연구원 바인더를 이용한 질화붕소 후막의 제조방법
KR100986738B1 (ko) * 2008-05-19 2010-10-08 포항공과대학교 산학협력단 카르보닐계 용매를 이용한 나노 철의 제조방법 및 이로부터제조된 나노 철
US8383085B2 (en) * 2009-05-29 2013-02-26 University Of Manitoba Methods of making iron-containing nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700077A (zh) * 2022-04-24 2022-07-05 昆明理工大学 一种三氧化二铁掺杂双相二氧化钛催化剂的制备方法及其应用

Also Published As

Publication number Publication date
KR102229451B1 (ko) 2021-03-17
WO2019093660A3 (fr) 2019-06-27
KR20190051448A (ko) 2019-05-15

Similar Documents

Publication Publication Date Title
WO2015133692A1 (fr) Matériau actif de cathode, batterie secondaire au lithium le comprenant et son procédé de préparation
WO2019093660A2 (fr) Procédé de fabrication de maghémite
WO2011132932A2 (fr) Procédé de préparation d'un composite d'oxyde de métal de transition et de nanotube de carbone, et composite associé
WO2013005887A1 (fr) Matière active de cathode utilisant un cœur-écorce de silicone-carbone pour une batterie secondaire au lithium et procédé de fabrication de ladite matière
WO2016175426A1 (fr) Procédé de traitement de surface pour le dioxyde de cobalt et de lithium et batterie rechargeable au lithium comprenant ce dernier
WO2013002457A1 (fr) Matière active d'électrode positive, électrode incluant la matière active d'électrode positive et batterie électrochimique au lithium
WO2015060686A1 (fr) Particules d'électrolyte solide, leur procédé de préparation, et batteries rechargeables au lithium les contenant
WO2012165884A2 (fr) Procédé de fabrication d'un composite de carbone-soufre, composite de carbone-soufre ainsi fabriqué et pile au lithium-soufre le contenant
WO2012064053A2 (fr) Oxyde composite de lithium et de manganèse et procédé pour sa préparation
WO2011129636A2 (fr) Procédé pour synthétiser des matériaux de nanoélectrode par utilisation d'un procédé de combustion ultrarapide, et matériaux de nanoélectrode synthétisés par le procédé
WO2011126182A1 (fr) Procédé de production de matériau actif de cathode pour batterie secondaire comprenant un oxyde métallique composite, et matériau actif de cathode pour batterie secondaire comprenant un oxyde métallique composite produit au moyen dudit procédé
WO2016093411A1 (fr) Électrode positive pour une batterie lithium-air, son procédé de fabrication et batterie lithium-air comprenant cette dernière
WO2019112325A1 (fr) Matériau actif d'électrode négative pour batterie secondaire à électrolyte non aqueux et procédé de production correspondant
WO2015174652A1 (fr) Matière active d'électrode positive pour batterie au lithium-ion, contenant du phosphate de zirconium-vanadium-lithium, et batterie au lithium-ion comprenant celle-ci
WO2013085306A1 (fr) Procédé de fabrication d'un matériau actif de cathode destiné à une batterie secondaire au lithium
WO2022080762A1 (fr) Poudre de structure nanocomposite de siliicum pour matériau d'électrode négative, et son procédé de fabrication
WO2014084636A1 (fr) Matériau actif d'anode comprenant un matériau complexe oxyde de silicium poreux-carbone et procédé de préparation associé
WO2019108050A1 (fr) Matériau actif d'anode pour batterie rechargeable à électrolyte non aqueux comprenant un composite à base d'oxyde de silicium et son procédé de production
WO2022039436A1 (fr) Procédé de récupération de métal actif de batterie secondaire au lithium
WO2014025236A1 (fr) Procédé pour préparer une sphère composite de nanoparticule de métal/carbone, sphère composite de nanoparticule de métal/carbone préparée par le procédé, et dispositif électrochimique comprenant la sphère
WO2020013488A1 (fr) Procédé de préparation d'oxyde de fer
WO2013176363A1 (fr) Procédé permettant de préparer un nanocomposite comprenant une nanostructure à plusieurs phases à base d'étain et du carbone amorphe, et matériau actif de cathode contenant ce nanocomposite
WO2021182926A1 (fr) Matériau actif négatif, son procédé de fabrication, et batterie secondaire au lithium ayant un matériau actif négatif
WO2016088923A1 (fr) Anode pour une batterie métal-air, son procédé de fabrication et batterie métal-air comprenant cette dernière
WO2021172846A1 (fr) Procédé de récupération d'un métal actif d'une batterie secondaire au lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877216

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877216

Country of ref document: EP

Kind code of ref document: A2