WO2019093511A1 - 面光源装置および表示装置 - Google Patents

面光源装置および表示装置 Download PDF

Info

Publication number
WO2019093511A1
WO2019093511A1 PCT/JP2018/041830 JP2018041830W WO2019093511A1 WO 2019093511 A1 WO2019093511 A1 WO 2019093511A1 JP 2018041830 W JP2018041830 W JP 2018041830W WO 2019093511 A1 WO2019093511 A1 WO 2019093511A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
source device
light source
disposed
Prior art date
Application number
PCT/JP2018/041830
Other languages
English (en)
French (fr)
Inventor
崇宏 井澤
恭平 山田
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2019093511A1 publication Critical patent/WO2019093511A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/08Refractors for light sources producing an asymmetric light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures

Definitions

  • the present invention relates to a surface light source device and a display device.
  • a direct type surface light source device may be used as a backlight.
  • a direct-type surface light source device having a plurality of light emitting elements as a light source has come to be used.
  • the direct-type surface light source device includes a substrate, a plurality of light emitting elements, a plurality of light flux controlling members (lenses), and a light diffusing member.
  • the light emitting element is, for example, a light emitting diode (LED) such as a white light emitting diode.
  • the plurality of light emitting elements are arranged in a matrix on the substrate (for example, a plurality of lines including a plurality of light emitting elements are arranged).
  • a luminous flux control member is disposed on each of the light emitting elements to spread the light emitted from each of the light emitting elements in the surface direction of the substrate.
  • the light emitted from the light flux controlling member is diffused by the light diffusing member and illuminates the irradiated member (for example, a liquid crystal panel) in a plane.
  • FIG. 1 is a view showing a configuration of a backlight module 10 (surface light source device) of Patent Document 1.
  • the backlight module 10 of Patent Document 1 is disposed in a housing 20 with an open side of the LCD panel (not shown) and in the housing 20 so that the inclination becomes larger toward the LCD panel side.
  • a light emitting diode array 40 arranged at the bottom of the light reflecting plate 30 and having a plurality of light emitting diode chips (not shown) and a plurality of light emitting diode lenses 40a.
  • the light emitting diode array 40 (hereinafter also referred to as “light emitting device”) as disclosed in Patent Document 1, most of the light emitted from the light emitting diode chip (hereinafter also referred to as “light emitting element”) is The light is emitted in a direction (horizontal direction) substantially perpendicular to the optical axis of the light emitting element.
  • the present invention has been made in view of the above-mentioned circumstances, and the variation of the brightness of the edge region of the surface light source device and the brightness of the intermediate region between the region immediately above the light emitting device and the edge region of the surface light source device It is an object of the present invention to provide a surface light source device and a display device capable of reducing luminance unevenness and reducing the luminance unevenness.
  • a surface light source device includes a bottom surface, two first inclined reflecting surfaces disposed to sandwich the bottom surface, and an opening disposed to face the bottom surface and the two first inclined reflecting surfaces. And a light emitting device disposed on the bottom surface, the light emitting element, and a light flux control member for emitting light emitted from the light emitting element toward the two first inclined reflection surfaces.
  • a light diffusion plate disposed so as to close the opening, for diffusing and transmitting light, and disposed between the two first inclined reflection surfaces and the light emitting device; (1)
  • a configuration is adopted, which has two second inclined reflecting surfaces that reflect part of the light emitted toward the first inclined reflecting surface toward the light diffusion plate.
  • a display device includes the surface light source device according to the present invention, and a display member to which light emitted from the surface light source device is irradiated.
  • the variation in the brightness of the edge region of the surface light source device and the brightness of the intermediate region between the region immediately above the light emitting device and the edge region of the surface light source device is reduced to reduce the brightness unevenness.
  • FIG. 1 is a diagram showing the configuration of a conventional light emitting device.
  • 2A to 2C are diagrams showing the configuration of the surface light source device according to the present embodiment.
  • FIGS. 3A and 3B are diagrams showing the configuration of the surface light source device according to the present embodiment.
  • 4A to 4E are diagrams showing the configuration of the light flux controlling member according to the present embodiment.
  • FIG. 5 is an optical path diagram of a surface light source device for comparison.
  • FIG. 6 is an optical path diagram of the surface light source device according to the present embodiment.
  • FIG. 7 is a graph showing the results of the illuminance distribution on the light diffusion plate of the surface light source device.
  • 8A to 8C are optical path diagrams of the surface light source device according to the modification.
  • FIG. 9 is a partial enlarged cross-sectional view showing the configuration of a surface light source device according to a modification.
  • FIGS. 2A to 2C and FIGS. 3A and 3B show the configuration of the surface light source device 100 according to the present embodiment.
  • FIG. 2A is a plan view of the surface light source device 100
  • FIG. 2B is a side view
  • FIG. 2C is a front view.
  • FIG. 3A is a plan view of FIG. 2A with the light diffusion plate 140 removed
  • FIG. 3B is a partially enlarged cross-sectional view taken along line AA of FIG. 2A.
  • the size of the light emitting device 130 is displayed large, and hatching of some members is omitted.
  • the surface light source device 100 includes a housing 110, a substrate 120, a plurality of light emitting devices 130, and a light diffusion plate 140. Further, as shown in FIG. 2C, the surface light source device 100 can also be used as a display device 100 'by being combined with a display member (irradiated member) 160 such as a liquid crystal panel.
  • a display member irradiated member
  • the housing 110 is a box that is at least partially open for housing the substrate 120 and the plurality of light emitting devices 130 therein.
  • the housing 110 is disposed so as to sandwich the bottom surface 111 and the bottom surface 111, and is disposed so as to sandwich the two first inclined reflection surfaces 112 inclined toward the light diffusion plate 140 and the bottom surface 111, and the light diffusion plate There are two third inclined reflecting surfaces 113 inclined toward 140.
  • the bottom surface 111 may be a horizontal surface. Note that a portion (first bottom surface 111 a) of the bottom surface 111 closer to the first inclined reflective surface 112 than the light emitting device 130 may be inclined in the opposite direction to the first inclined reflective surface 112. In addition, a part (second bottom surface 111 b) of the bottom surface 111 on the other side of the first inclined reflective surface 112 than the light emitting device 130 may be inclined in the opposite direction to the other first inclined reflective surface 112.
  • the inclinations of the two first inclined reflecting surfaces 112 are formed such that the normals of the two first inclined reflecting surfaces 112 intersect at the front side (the light diffusion plate 140 side) of the surface light source device 100
  • the inclinations of the first bottom surface 111 a and the second bottom surface 111 b may be formed such that the normals of the first bottom surface 111 a and the second bottom surface 111 b intersect at the back side of the surface light source device 100.
  • the two first inclined reflecting surfaces 112 and the two third inclined reflecting surfaces 113 are disposed so as to sandwich the bottom surface 111, and are inclined so as to approach the light diffusion plate 140 as they move away from the optical axis OA of the light emitting element 131. It is a face.
  • the two first inclined reflecting surfaces 112 and the two third inclined reflecting surfaces 113 reflect the light emitted in the substantially horizontal direction from the light emitting device 130 toward the light diffusion plate 140 and are emitted from the light emitting device 130 Light can be easily collected to the light diffusion plate 140.
  • the first inclined reflective surface 112 and the third inclined reflective surface 113 may be flat or curved respectively. In the present embodiment, the first inclined reflective surface 112 and the third inclined reflective surface 113 are both flat.
  • the inclination angle of the first inclined reflecting surface 112 with respect to the bottom surface 111 is, for example, 6 to 9 °
  • the inclination angle of the third inclined reflecting surface 113 with respect to the bottom surface 111 is, for example, 40 to 50 °.
  • the inclination angle of the first inclined reflection surface 112 (or the third inclined reflection surface 113) with respect to the bottom surface 111 is the angle formed by the first inclination reflection surface 112 (or the third inclination reflection surface 113) and the bottom surface 111. The smaller angle is said.
  • the inclination angle with respect to the bottom surface 111 means the inclination angle with respect to the horizontal portion of the bottom surface 111.
  • the inclination angle of the first inclined reflective surface 112 (or the third inclined reflective surface 113) with respect to the bottom surface 111 is the first virtual In the cross section, the smaller one of the angles formed by the bottom surface 111 and the tangent of the curve in the first virtual cross section of the first inclined reflective surface 112 (or the third inclined reflective surface 113) is meant.
  • the thickness of the outer edge of the surface light source device 100 is reduced, and the apparent thickness of the surface light source device 100 is reduced. You can also.
  • the side facing the bottom surface 111 of the housing 110, the two first inclined reflecting surfaces 112, and the two third inclined reflecting surfaces 113 is an opening (see FIG. 3A).
  • the size of the opening of the housing 110 corresponds to the size of the light emitting area formed in the light diffusion plate 140, and is, for example, 400 mm ⁇ 700 mm (32 inches).
  • the opening is closed by the light diffusion plate 140.
  • the height (space thickness) from the surface of the bottom surface 111 to the light diffusion plate 140 is not particularly limited, but is about 10 to 40 mm.
  • the housing 110 is made of, for example, a resin such as polymethyl methacrylate (PMMA) or polycarbonate (PC), or a metal such as stainless steel or aluminum.
  • the substrate 120 is a flat plate disposed on the bottom surface 111 of the housing 110 for disposing a plurality of light emitting devices 130 at predetermined intervals in the housing 110.
  • the surface of the substrate 120 reflects the light arriving from the light emitting device 130 toward the light diffusion plate 140.
  • the plurality of light emitting devices 130 are arranged in a line on the substrate 120.
  • the number of light emitting devices 130 disposed on the substrate 120 is not particularly limited.
  • the number of light emitting devices 130 disposed on the substrate 120 is appropriately set based on the size of the light emitting area (light emitting surface) defined by the opening of the housing 110.
  • Each of the plurality of light emitting devices 130 has a light emitting element 131 and a light flux controlling member 132 (see FIG. 3B).
  • the plurality of light emitting devices 130 are disposed such that the optical axis of the light emitting element 131 (optical axis OA of the light emitting element 131 described later) is along the normal to the surface of the substrate 120 and the light emitted from the light emitting element 131 Are directed toward the two first inclined reflecting surfaces 112 respectively.
  • the light emitting element 131 is a light source of the surface light source device 100 (and the light emitting device 130).
  • the light emitting element 131 is disposed on the substrate 120.
  • the light emitting element 131 is, for example, a light emitting diode (LED).
  • the color of the light emitted from the light emitting element 131 can be set as appropriate.
  • the color of the light emitted from the light emitting element 131 may be white or blue. In the present embodiment, the color of the light emitted from the light emitting element 131 is white.
  • the light flux controlling member 132 controls the light distribution of the light emitted from the light emitting element 131.
  • the light flux controlling member 132 is disposed on the light emitting element 131 such that the central axis CA thereof coincides with the optical axis OA of the light emitting element 131 (see FIG. 3B).
  • the “optical axis OA of the light emitting element 131” means a light beam at the center of a three-dimensional light flux emitted from the light emitting element 131.
  • the “central axis CA of the light flux controlling member 132” means, for example, a symmetry axis of 2-fold symmetry.
  • the light flux controlling member 132 causes the light emitted from the light emitting element 131 to be emitted from the two emission surfaces 153 described later toward the two first inclined reflection surfaces 112 (the two emission surfaces 153 described later , And so as to face the two first inclined reflective surfaces 112 respectively.
  • a light emission center of the light emitting element 131 is the origin
  • an axis parallel to the optical axis OA of the light emitting element 131 is the Z axis
  • a virtual including the light emission center of the light emitting element 131 In a plane, an axis parallel to the direction in which the plurality of light emitting devices 130 are arranged is taken as a Y axis, and in the virtual plane, an axis orthogonal to the Y axis is taken as an X axis.
  • a cross section obtained by cutting the light emitting device 130 along a first virtual plane (XZ plane) including the optical axis OA and the X axis is taken as a first virtual cross section
  • a second virtual plane (YZ) including the optical axis OA and the Y axis Let the cross section cut by plane be the 2nd virtual cross section, and let the cross section cut by the 3rd virtual plane (XY plane) containing X axis and Y axis be the 3rd virtual cross section.
  • the light flux controlling member 132 is plane symmetric with respect to the first virtual plane (XZ plane) and the second virtual plane (YZ plane).
  • the light flux controlling member 132 is an object having a substantially rotational symmetry, with the optical surface (the incident surface 151, the reflecting surface 152 and the emitting surface 153 described later) being an axis parallel to the X axis. It is a part.
  • the material of the light flux controlling member 132 is not particularly limited as long as it can pass light of a desired wavelength.
  • the material of the light flux controlling member 132 is a light transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), epoxy resin (EP), or glass.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • EP epoxy resin
  • glass glass
  • the light diffusion plate 140 is arranged to close the opening of the housing 110.
  • the light diffusion plate 140 is a plate-like member having a light transmitting property and a light diffusing property, and diffuses and transmits the outgoing light from the outgoing surface 153 of the light flux controlling member 132.
  • the light diffusion plate 140 can be, for example, a light emitting surface of the surface light source device 100.
  • the material of the light diffusion plate 140 can be appropriately selected as long as the light emitted from the light emission surface 153 of the light flux controlling member 132 can be diffused and transmitted.
  • Examples of the material of the light diffusion plate 140 include light transmitting resins such as poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), and styrene / methyl methacrylate copolymer resin (MS).
  • PMMA poly (methyl methacrylate)
  • PC polycarbonate
  • PS polystyrene
  • MS styrene / methyl methacrylate copolymer resin
  • fine irregularities are formed on the surface of the light diffusion plate 140, or light diffusers such as beads are dispersed inside the light diffusion plate 140.
  • the surface light source device 100 further has two second inclined reflective surfaces 114 disposed respectively between the two first inclined reflective surfaces 112 and the light emitting device 130. .
  • the two second inclined reflective surfaces 114 are respectively disposed between the two first inclined reflective surfaces 112 and the light emitting device 130, and the light diffusion plate 140 is separated as it is separated from the optical axis OA of the light emitting element 131. It is a reflective surface inclined to approach.
  • the two second inclined reflective surfaces 114 are a part of light emitted from the light emitting device 130 toward the first inclined reflective surface 112 (in particular, light directed near the boundary between the bottom surface 111 and the first inclined reflective surface 112) Is reflected toward the light diffusion plate 140.
  • the second inclined reflective surface 114 may be a flat surface or a curved surface. In the present embodiment, the second inclined reflective surface 114 is a flat surface.
  • the position of the second inclined reflective surface 114 and the inclination angle with respect to the bottom surface 111 are the regions directly above the light emitting device 130 when the illuminance distribution on the light diffusion plate 140 of the surface light source device without the second inclined reflective surface 114 is analyzed.
  • Light may be set to reach a dark area between the light diffusion plate 140 and the edge area of the light diffusion plate 140.
  • the second inclined reflective surface 114 be disposed closer to the first inclined reflective surface 112 among the first inclined reflective surface 112 and the light emitting device 130.
  • the inclination angle of the second inclined reflection surface 114 with respect to the bottom surface 111 is preferably equal to or larger than the inclination angle of the first inclined reflection surface 112 with respect to the bottom surface 111.
  • the second inclined reflection surface 114 and the first inclined reflection surface 112 are not It is arranged continuously. Discontinuous means the upper end of the second inclined reflective surface 114 (the end on the first inclined reflective surface 112 side) and the lower end of the first inclined reflective surface 112 (the end on the second inclined reflective surface 114) It means that they are not in contact with each other and they are separated.
  • the inclination angle of the second inclined reflection surface 114 with respect to the bottom surface 111 refers to the smaller one of the angles formed by the second inclination reflection surface 114 and the bottom surface 111. Also, as described above, when the bottom surface 111 is partially inclined, the inclination angle with respect to the bottom surface 111 means the inclination angle with respect to the horizontal portion of the bottom surface 111. When the second inclined reflective surface 114 is a curved surface, the inclination angle of the second inclined reflective surface 114 with respect to the bottom surface 111 is the first virtual cross section of the bottom surface 111 and the second inclined reflective surface 114 in the first virtual cross section. Means the smaller of the angles made with the tangent of the curve in.
  • the maximum height from the bottom surface 111 of the second inclined reflective surface 114 is not particularly limited, it is preferably 2 to 20% of the height from the bottom surface 111 to the light diffusion plate 140, and is 3 to 10%. Is more preferred. If the maximum height from the bottom surface 111 of the second inclined reflective surface 114 is 2% or more, a predetermined amount or more of the light emitted from the light emitting device 130 toward the first inclined reflective surface 112 is first reflected The light diffusion plate 140 can be made closer to the center (closer to the region immediately above the light emitting device 130) in the first virtual plane than being reflected by the surface 112.
  • the maximum height from the bottom surface 111 of the second inclined reflective surface 114 is 20% or less, the amount of light reaching the first inclined reflective surface 112 from the light emitting device 130 is not too small. There is not too much light reaching the area.
  • the second inclined reflective surface 114 may be provided integrally with the housing 110 or may be provided separately. In the present embodiment, the second inclined reflective surface 114 is a part of the reflective structure 150 provided separately from the housing 110.
  • the shape of the reflective structure 150 is not particularly limited, but in the present embodiment, it is a triangular prism extending in the Y-axis direction.
  • the light emitted from each light emitting element 131 is directed especially to the first inclined reflection surface 112 so as to illuminate a wide range of the light diffusion plate 140 by the light flux controlling member 132 ( Alternatively, the light is emitted in the direction substantially perpendicular to the optical axis OA of the light emitting element 131 and in two directions (the X axis direction in FIG. 3A) which are substantially opposite to each other.
  • the light emitted from each light flux controlling member 132 is further reflected by the first inclined reflecting surface 112 and the second inclined reflecting surface 114 to reach the light diffusing plate 140, and then diffused and emitted to the outside.
  • light can be spread over the entire surface of the surface light source device 100.
  • FIG. 4A to 4E show the configuration of the light flux controlling member 132.
  • FIG. 4A is a plan view of the light flux controlling member 132
  • FIG. 4B is a front view
  • FIG. 4C is a bottom view
  • FIG. 4D is a side view
  • FIG. 4E is shown in FIG. 4A. It is a sectional view of an AA line.
  • the substrate 120 side (the light emitting element 131 side) is referred to as the “back side”
  • the light diffusion plate 140 side is referred to as the “front side”.
  • the light flux controlling member 132 controls the light distribution of the light emitted from the light emitting element 131. As shown in FIGS. 4A-E, the light flux controlling member 132 has an incident surface 151, two reflecting surfaces 152 and two emitting surfaces 153, two ridges 154 and four legs 155.
  • the incident surface 151 makes light emitted from the light emitting element 131 incident.
  • the incident surface 151 is disposed on the back surface 156 (surface on the back side) of the light flux controlling member 132 so as to intersect the optical axis OA.
  • the shape of the incident surface 151 is not particularly limited as long as the above function can be exhibited.
  • the shape of the incident surface 151 may be a plane, or may be the inner surface of the recess 157 opened on the back surface 156. In the present embodiment, the incident surface 151 is an inner surface of the recess 157 opened on the back surface 156.
  • the shape of the recess 157 is also not particularly limited.
  • the inner surface (incident surface 151) of the concave portion 157 includes an inner top surface 157a (first incident surface) and an inner side surface 157b (second incident surface) opposed in the X-axis direction across the inner top surface 157a.
  • the numbers of the inner top surface 157a (the first incident surface) and the inner surfaces 157b (the second incident surface) are not particularly limited, and may be one or two or more. In the present embodiment, the number of inner top surfaces 157a is two, and the number of inner surfaces 157b is two.
  • the inner top surface 157a (first incident surface) and the inner surface 157b (second incident surface) may be flat surfaces or curved surfaces.
  • the inner top surface 157a is a curved surface that is convex on the back side in the first virtual cross section from the viewpoint of facilitating the incident light to reach the reflection surface 152, and the like
  • the inner side surface 157b is a flat surface. It is.
  • the inner surface (incident surface 151) of the recess 157 may further have another surface.
  • the two reflecting surfaces 152 are disposed at positions (front side) facing the light emitting element 131 with the incident surface 151 interposed therebetween.
  • the two reflecting surfaces 152 direct at least a part of the light incident on at least the inner top surface 157a in the direction toward the two first inclined reflecting surfaces 112 (specifically, substantially the optical axis OA of the light emitting element 131 It is reflected in two directions which are vertical and substantially opposite to each other.
  • the two reflecting surfaces 152 are respectively formed to be away from the X axis as being away from the optical axis OA in the first virtual cross section.
  • the two reflective surfaces 152 have a tangential inclination gradually decreasing from the optical axis OA of the light emitting element 131 toward the end (the output surface 153) (X axis Are formed respectively).
  • the two emission surfaces 153 are disposed to face each other (in the X-axis direction) across the two reflection surfaces 152.
  • the two emission surfaces 153 are incident on the inner top surface 157 a, and the light reflected on the reflection surface 152 and the light incident on the inner side surface 157 b and directly reached are directed toward the two first inclined reflection surfaces 112. Let go.
  • the emitting surface 153 may be a flat surface or a curved surface.
  • the emission surface 153 is a plane substantially parallel to the optical axis OA (or a plane parallel to the second virtual cross section) in the first virtual cross section.
  • substantially parallel to the optical axis OA means that the smaller one of the angles formed by the optical axis OA and the exit surface 153 is 3 ° or less in the first virtual cross section.
  • the exit surface 153 is a curved surface
  • the smaller one of the angles formed by the optical axis OA and the exit surface 153 is the optical axis OA and the first virtual of the exit surface 153 in the first virtual cross section. It means the smaller one of the angles made with the tangent of the curve in the cross section.
  • the emission surface 153 may be a surface formed so as to be directed to the back side as it is separated from the optical axis OA in the first virtual cross section. In that case, the smaller one of the angles formed by the optical axis OA and the exit surface 153 is 5 ° or less. As described above, the emission surface 153 is formed to be directed to the back side as it is away from the optical axis OA in the first virtual cross section, whereby the light flux controlling member 132 is easily released when it is manufactured by injection molding. .
  • the two ridges 154 are disposed so as to protrude in the Y-axis direction with respect to the optical axis OA between the two reflecting surfaces 152 in the vicinity of the optical axis OA.
  • the collar 154 facilitates the handling and alignment of the light flux control member 132.
  • the shape of the collar part 154 may be a shape which can control and radiate
  • the four legs 155 are substantially cylindrical members protruding from the back surface 156.
  • the legs 155 support the light flux controlling member 132 at an appropriate position with respect to the light emitting element 131 (see FIG. 3B).
  • the leg portion 155 may be fitted in a hole formed in the substrate 120 and used for positioning. Further, it is sufficient that the light beam control member 132 can be stably fixed to the substrate 120 after considering that the leg portion 155 has no optical adverse effect, and the position, shape and number of the leg portion 155 are appropriately set. Ru.
  • a total of four legs 155 are disposed on the back surface 156 around the incident surface 151.
  • a slight R-shape may be imparted to the product in terms of mold production, molding, or optical characteristics in the edge portion where the surface and the surface are in contact.
  • a portion indicated by a line segment intersecting with the optical axis OA of the light emitting element 131 becomes dark immediately above the light emitting device 130. It is preferable to provide an R shape of about 05 to 0.07.
  • FIG. 5 is an optical path diagram of the surface light source device 20 for comparison. As shown in FIG. 5, the surface light source device 20 for comparison is configured in the same manner as the surface light source device 100 according to the present embodiment except that the second inclined reflective surface 114 is not provided.
  • FIG. 6 is an optical path diagram of the surface light source device 100 according to the present embodiment. In FIGS. 5 and 6, hatching of members other than the reflective structure 150 is omitted to show the optical path.
  • the incident surface 151 As shown in FIGS. 5 and 6, in the surface light source device 20 for comparison and the surface light source device 100 according to the present embodiment, light emitted from the light emitting element 131 is incident on the incident surface 151.
  • a part of the light incident on the incident surface 151 (for example, the light incident on the inner top surface 157a) is reflected on the two reflective surfaces 152 and directed to the two first inclined reflective surfaces 112 (the light of the light emitting element 131 Proceeding in two directions which are substantially perpendicular to the axis OA and substantially opposite to each other, the two exit faces 153 are reached.
  • the other part of the light incident on the incident surface 151 (for example, the light incident on the inner side surface 157 b) directly reaches the two emission surfaces 153. Then, the light reaching the two emission surfaces 153 is emitted from the two emission surfaces 153 toward the two first inclined reflection surfaces 112, respectively.
  • the light traveling toward the vicinity of the boundary between the first inclined reflective surface 112 and the first inclined reflective surface 112 is reflected by the first inclined reflective surface 112 and reaches the edge region of the light diffusion plate 140.
  • the light is likely to reach the edge region of the light diffusion plate 140 and become a bright part, while the middle region between the region immediately above the light emitting device 130 and the edge region of the light diffusion plate 140 is Light does not reach easily and tends to be dark. As a result, uneven brightness tends to occur in the surface light source device 20.
  • the surface light source device 100 As shown in FIG. 6, light is emitted from the two emission surfaces 153 of the light flux controlling member 132 toward the two first inclined reflection surfaces 112. Of the light, light traveling toward the vicinity of the boundary between the bottom surface 111 and the first inclined reflective surface 112 does not reach the first inclined reflective surface 112 and It is reflected at an angle close to the optical axis OA to reach an intermediate region between the region immediately above the light emitting device 130 and the edge region of the light diffusion plate 140. That is, in the surface light source device 20 for comparison, a part of the light reaching the first inclined reflective surface 112 is reflected by the second inclined reflective surface 114 in the surface light source device 100 according to the present embodiment.
  • an intermediate region between the region directly above the light emitting device 130 and the edge region of the light diffusion plate 140 can be reached.
  • the light does not reach the edge region of the light diffusion plate 140 too much and does not become too bright, and the light in the intermediate region between the region immediately above the light emitting device 130 and the edge region of the light diffusion plate 140
  • it will be moderately bright because it will be moderately easy to reach.
  • it is possible to reduce the uneven brightness in the surface light source device 100.
  • the illuminance distribution on the light diffusion plate 140 of the surface light source device 100 was analyzed.
  • the analysis of the illuminance distribution on the light diffusion plate 140 was performed on the surface light source device 100 in which only one light emitting element 131 was lit.
  • the illuminance distribution on the light diffusing plate 140 of the surface light source device 20 for comparison was also analyzed for comparison.
  • the simulation parameters were set as follows.
  • FIG. 7 is a graph showing the analysis results of the illuminance distribution on the light diffusion plate 140 of the surface light source device 100 according to the present embodiment and the surface light source device 20 for comparison.
  • the horizontal axis indicates the distance (mm) in the X-axis direction from the optical axis OA of the light emitting element 131 on the light diffusion plate 140, and the vertical axis indicates the maximum illuminance of 100 on the light diffusion plate 140.
  • the relative illuminance at each position is shown.
  • the solid line shows the analysis result in the surface light source device 100 according to the present embodiment, and the dotted line shows the analysis result in the surface light source device 20 for comparison.
  • the edge area (around 200 to 330 mm from the optical axis OA) of the light diffusion plate 140 tends to be a bright portion, while the area immediately above the light emitting device 130 and the end of the light diffusion plate 140
  • An intermediate area between the edge area (approximately 150 to 200 mm from the optical axis OA) tends to be a dark part.
  • uneven illuminance or uneven brightness
  • the bottom surface 111 and the first of the light emitted from the two emission surfaces 153 of the light flux controlling member 132 toward the two first inclined reflection surfaces 112 The light traveling toward the vicinity of the boundary with the first inclined reflective surface 112 is reflected by the second inclined reflective surface 114 without reaching the first inclined reflective surface 112, and the region immediately above the light emitting device 130 and the end of the light diffusion plate 140 The intermediate area between the edge area is reached. Therefore, as shown in FIG.
  • the edge region (near 200 to 330 mm from the optical axis OA) of the light diffusion plate 140 is not too bright, and the region immediately above the light emitting device 130 and the edge region of the light diffusion plate 140 And the intermediate region between them (approximately 150 to 200 mm from the optical axis OA) is appropriately brightened. Thereby, illuminance unevenness (or luminance unevenness) can be suppressed.
  • the second inclined reflective surfaces 114 are respectively provided between the two first inclined reflective surfaces 112 and the light emitting device 130. Thereby, a part of the light emitted from the two emission surfaces 153 of the light flux controlling member 132 toward the first inclined reflective surface 112 is reflected by the second inclined reflective surface 114, and the middle region of the light diffusion plate 140 is Can be reached. Thereby, it is possible to reduce variations in the brightness of the edge region of the surface light source device 100 and the brightness of the intermediate region between the region immediately above the light emitting device 130 and the edge region of the surface light source device 100. Can be reduced.
  • the height from the bottom surface 111 of the upper end portion of the second inclined reflective surface 114 and the height from the bottom surface 111 of the lower end portion of the first inclined reflective surface 112 are different.
  • the height from the bottom surface 111 of the upper end portion of the second inclined reflective surface 114 may be the same as the height from the bottom surface 111 of the lower end portion of the first inclined reflective surface 112, without limitation.
  • FIGS. 8A and 8B are optical path diagrams of surface light source devices 200 and 300 according to the modification.
  • hatching of members other than the reflective structure 150 is omitted in order to make the second inclined reflective surface 114 intelligible.
  • the second inclined reflective surface 114 in the second inclined reflective surface 114, the upper end of the second inclined reflective surface 114 and the lower end of the first inclined reflective surface 112 are in contact with each other via another surface 115 (for example, a horizontal surface). It may be located at As shown in FIG. 8B, the second inclined reflective surface 114 is disposed (continuously) such that the upper end portion of the second inclined reflective surface 114 and the lower end portion of the first inclined reflective surface 112 are in direct contact with each other. It is also good. 8A and 8B show an example in which the second inclined reflecting surface 114 is a part of the reflecting structure 150 provided separately from the housing 110 (the first inclined reflecting surface 112 of the housing 110). However, the present invention is not limited to this, and may be an inclined reflective surface provided integrally with the housing 110.
  • two second inclined reflective surfaces 114 are arranged (one each between two first inclined reflective surfaces 112 and the light emitting device 130). It may be arranged four or more (two or more each between the two first inclined reflective surfaces 112 and the light emitting device 130).
  • FIG. 8C is an optical path diagram of a surface light source device 400 according to a modification.
  • hatching other than the reflective structure 150 is omitted.
  • four second inclined reflective surfaces 114 may be disposed (two each between the two first inclined reflective surfaces 112 and the light emitting device 130).
  • the angles and maximum heights of the plurality of second inclined reflective surfaces 114 may be the same as or different from each other.
  • the maximum height of the second inclined reflective surface 114 disposed closer to the light emitting device 130 Preferably, the height is smaller than the maximum height of the second inclined reflective surface 114 disposed on the side far from the device 130.
  • the present invention is not limited to this, and it may be an inclined reflective surface provided integrally with the housing 110.
  • FIG. 9 is a partially enlarged cross-sectional view showing the configuration of a surface light source device 500 according to a modification.
  • bottom surfaces 111 on both sides in the X-axis direction sandwiching the substrate 120 and the first inclined reflective surfaces 112 bottom surfaces 111 on the side of the first inclined reflective surfaces 112 on the one side of the substrate 120 and first
  • the reflecting sheet 170 may be disposed on the inclined reflecting surface 112 and the bottom surface 111 on the other side of the first inclined reflecting surface 112 than the substrate 120 and the other first inclined reflective surface 112). In that case, it is preferable that the reflective sheet 170 be held down by the reflective structure 150 having the second inclined reflective surface 114.
  • the light flux controlling member 132 is a part of a substantially rotationally symmetric object in which the optical surface is an axis of rotation parallel to the X axis.
  • the object may be a rotationally symmetric (circularly symmetric) object with the central axis CA as the rotation axis.
  • one light emitting device 130 may be disposed on the bottom surface 111, for example.
  • the first inclined reflective surface 112 may be disposed to surround the bottom surface 111.
  • the second inclined reflective surface 114 may be arranged to surround the light emitting device 130 between the light emitting device 130 and the first inclined reflective surface 112.
  • the surface light source device having the light flux controlling member according to the present invention can be applied to, for example, a backlight of a liquid crystal display device, a signboard, and general lighting.

Abstract

本発明の面光源装置は、筐体と、発光装置と、光拡散板と、2つの第2傾斜反射面とを有する。筐体は、底面と、底面を挟むように配置された2つの第1傾斜反射面と、底面および2つの第1傾斜反射面と対向するように配置された開口部とを有する。発光装置は、底面上に配置され、発光素子と、発光素子から出射された光を2つの第1傾斜反射面に向かって出射させる光束制御部材とを有する。光拡散板は、開口部を塞ぐように配置され、光を拡散させつつ透過させる。2つの第2傾斜反射面は、2つの第1傾斜反射面と発光装置との間にそれぞれ配置され、光束制御部材から第1傾斜反射面に向かって出射される光の一部を光拡散板に向けて反射させる。

Description

面光源装置および表示装置
 本発明は、面光源装置および表示装置に関する。
 液晶表示装置などの透過型画像表示装置では、バックライトとして直下型の面光源装置を使用することがある。近年、光源として複数の発光素子を有する、直下型の面光源装置が使用されるようになってきている。
 たとえば、直下型の面光源装置は、基板、複数の発光素子、複数の光束制御部材(レンズ)および光拡散部材を有する。発光素子は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。複数の発光素子は、基板上に、マトリクス状に配置(例えば複数の発光素子を含む列が複数列配置)されている。各発光素子の上には、各発光素子から出射された光を基板の面方向に拡げる光束制御部材が配置されている。光束制御部材から出射された光は、光拡散部材により拡散され、被照射部材(例えば液晶パネル)を面状に照らす。
 近年では、大型の面光源装置を安価に製造する観点から、発光素子の数を少なくすること(例えば複数の発光素子を含む列の数を少なくすること)が求められている。すなわち、複数の発光素子を含む列の数を少なくしても、面光源装置の隅々まで光を到達させることが求められている。
 図1は、特許文献1のバックライトモジュール10(面光源装置)の構成を示す図である。図1に示されるように、特許文献1のバックライトモジュール10は、LCDパネル(不図示)側が開口したハウジング20と、該ハウジング20内に配置され、LCDパネル側へ向かうにつれて傾斜が大きくなるように配置された反射板30と、反射板30の最底部に配置され、複数の発光ダイオードチップ(不図示)と複数の発光ダイオードレンズ40aとを有する発光ダイオードアレイ40とを有する。
 特許文献1のバックライトモジュール10では、発光ダイオードアレイ40から発光素子の光軸に対して略垂直な方向(水平方向)に出射される光は、反射板30でLCD側に反射されることで、LCDパネルに向かって進む。それにより、LCDパネルに光を照らすようになっている。
特開2006-54407号公報
 このように、特許文献1に示されるような発光ダイオードアレイ40(以下、「発光装置」ともいう)では、発光ダイオードチップ(以下、「発光素子」ともいう)から出射される光の多くは、発光素子の光軸に対して略垂直な方向(水平方向)に出射される。
 発光素子の光軸に対して略垂直な方向(水平方向)に出射される光(特に反射板30の最底部に近い傾斜面に向かう光)は、反射板30で反射されて、被照射面の端縁領域に到達しやすい。このように、被照射面の端縁領域には光が到達しやすいため、明部となりやすく、発光装置の直上領域と被照射面の端縁領域(隅部)との間の中間領域には光が到達しにくいため、暗部となりやすい。それにより、面光源装置において輝度のばらつき(輝度ムラ)が生じやすいという問題があった。
 本発明は上記事情を鑑みてなされたものであり、面光源装置の端縁領域の輝度と、発光装置の直上領域と面光源装置の端縁領域との間の中間領域の輝度とのばらつきを少なくし、輝度ムラを低減することができる面光源装置および表示装置を提供することを目的とする。
 本発明に係る面光源装置は、底面と、前記底面を挟むように配置された2つの第1傾斜反射面と、前記底面および前記2つの第1傾斜反射面と対向するように配置された開口部とを有する筐体と、前記底面上に配置され、発光素子と、前記発光素子から出射された光を前記2つの第1傾斜反射面に向かって出射させる光束制御部材とを有する発光装置と、前記開口部を塞ぐように配置され、光を拡散させつつ透過させる光拡散板と、前記2つの第1傾斜反射面と前記発光装置との間にそれぞれ配置され、前記光束制御部材から前記第1傾斜反射面に向かって出射される光の一部を前記光拡散板に向けて反射させる2つの第2傾斜反射面とを有する、構成を採る。
 本発明に係る表示装置は、本発明に係る面光源装置と、前記面光源装置から出射された光が照射される表示部材と、を有する、構成を採る。
 本発明によれば、面光源装置の端縁領域の輝度と、発光装置の直上領域と面光源装置の端縁領域との間の中間領域の輝度とのばらつきを少なくし、輝度ムラを低減することができる面光源装置および表示装置を提供することができる。
図1は、従来の発光装置の構成を示す図である。 図2A~Cは、本実施の形態に係る面光源装置の構成を示す図である。 図3A、Bは、本実施の形態に係る面光源装置の構成を示す図である。 図4A~Eは、本実施の形態に係る光束制御部材の構成を示す図である。 図5は、比較用の面光源装置における光路図である。 図6は、本実施の形態に係る面光源装置における光路図である。 図7は、面光源装置の光拡散板上における照度分布の結果を示すグラフである。 図8A~Cは、変形例に係る面光源装置における光路図である。 図9は、変形例に係る面光源装置の構成を示す部分拡大断面図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (面光源装置の構成)
 図2A~Cおよび図3A、Bは、本実施の形態に係る面光源装置100の構成を示す図である。図2Aは、面光源装置100の平面図であり、図2Bは、側面図であり、図2Cは、正面図である。図3Aは、図2Aにおいて光拡散板140を外した平面図であり、図3Bは、図2AのA-A線における部分拡大断面図である。なお、図3Bでは、第2傾斜反射面114と発光装置130との関係を分かりやすくするために、発光装置130の大きさを大きく表示するとともに、一部の部材のハッチングを省略している。
 図2A~Cおよび図3A、Bに示されるように、面光源装置100は、筐体110、基板120、複数の発光装置130、および光拡散板140を有する。また、図2Cに示されるように、面光源装置100は、液晶パネルなどの表示部材(被照射部材)160と組み合わせることで、表示装置100’としても使用できる。
 筐体110は、その内部に基板120および複数の発光装置130を収容するための、少なくとも一部が開口した箱である。筐体110は、底面111、底面111を挟むように配置され、かつ光拡散板140に向かって傾斜した2つの第1傾斜反射面112、および底面111を挟むように配置され、かつ光拡散板140に向かって傾斜した2つの第3傾斜反射面113を有する。
 底面111は、水平面でありうる。なお、発光装置130よりも一方の第1傾斜反射面112側の底面111の一部(第1底面111a)は、一方の第1傾斜反射面112とは逆向きに傾斜していてもよい。また、発光装置130よりも他方の第1傾斜反射面112側の底面111の一部(第2底面111b)は、他方の第1傾斜反射面112とは逆向きに傾斜していてもよい。すなわち、2つの第1傾斜反射面112の傾きは、2つの第1傾斜反射面112のそれぞれの法線が面光源装置100の表側(光拡散板140側)で交わるように形成されるが、第1底面111aおよび第2底面111bの傾きは、第1底面111aおよび第2底面111bのそれぞれの法線が面光源装置100の裏側で交わるように形成されてもよい。そのように構成することにより、発光装置130近傍が明るくなりすぎるのを抑制することができる。
 2つの第1傾斜反射面112および2つの第3傾斜反射面113は、底面111を挟むように配置され、かつ発光素子131の光軸OAから離れるにつれて光拡散板140に近づくように傾斜した反射面である。2つの第1傾斜反射面112および2つの第3傾斜反射面113は、発光装置130から略水平方向に出射される光を光拡散板140に向けて反射させて、発光装置130から出射される光を光拡散板140に集めやすくできる。
 第1傾斜反射面112および第3傾斜反射面113は、それぞれ平面であってもよいし、曲面であってもよい。本実施の形態では、第1傾斜反射面112および第3傾斜反射面113は、いずれも平面である。
 第1傾斜反射面112の底面111に対する傾斜角は、例えば6~9°であり、第3傾斜反射面113の底面111に対する傾斜角は、例えば40~50°である。なお、第1傾斜反射面112(または第3傾斜反射面113)の底面111に対する傾斜角とは、第1傾斜反射面112(または第3傾斜反射面113)と底面111とのなす角度のうち小さいほうの角度をいう。また、前述のように、底面111の一部が傾斜している場合、底面111に対する傾斜角は、底面111の水平部に対する傾斜角を意味する。また、第1傾斜反射面112(または第3傾斜反射面113)が曲面である場合、第1傾斜反射面112(または第3傾斜反射面113)の底面111に対する傾斜角とは、第1仮想断面において、底面111と、第1傾斜反射面112(または第3傾斜反射面113)の第1仮想断面における曲線の接線とのなす角度のうち小さいほうの角度を意味する。
 このように、筐体110に第1傾斜反射面112および第3傾斜反射面113を形成することで、面光源装置100外縁の厚みが薄くなり、面光源装置100の見かけの厚みを薄くすることもできる。
 筐体110、2つの第1傾斜反射面112および2つの第3傾斜反射面113の底面111と対向する側は、開口部となっている(図3A参照)。筐体110の開口部の大きさは、光拡散板140に形成される発光領域の大きさに相当し、例えば400mm×700mm(32インチ)である。この開口部は、光拡散板140により塞がれる。底面111の表面から光拡散板140までの高さ(空間厚さ)は、特に限定されないが、10~40mm程度である。そして、筐体110は、例えば、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)などの樹脂や、ステンレス鋼やアルミニウムなどの金属などから構成される。
 基板120は、筐体110の底面111上に配置された、複数の発光装置130を筐体110内に所定の間隔で配置するための平板である。基板120の表面は、発光装置130から到達した光を光拡散板140に向けて反射させる。
 複数の発光装置130は、基板120上に一列に配置されている。基板120上に配置される発光装置130の数は、特に限定されない。基板120上に配置される発光装置130の数は、筐体110の開口部により規定される発光領域(発光面)の大きさに基づいて適宜設定される。
 複数の発光装置130は、発光素子131と、光束制御部材132とをそれぞれ有する(図3B参照)。複数の発光装置130は、発光素子131の光軸(後述する発光素子131の光軸OA)が、基板120の表面に対する法線に沿うようにそれぞれ配置され、かつ発光素子131から出射される光を2つの第1傾斜反射面112に向けて出射するようにそれぞれ配置されている。
 発光素子131は、面光源装置100(および発光装置130)の光源である。発光素子131は、基板120上に配置されている。発光素子131は、例えば発光ダイオード(LED)である。発光素子131から出射される光の色は、適宜設定できる。発光素子131から出射される光の色は、白色であってもよいし、青色であってもよい。本実施の形態では、発光素子131から出射される光の色は、白色である。
 光束制御部材132は、発光素子131から出射された光の配光を制御する。光束制御部材132は、その中心軸CAが発光素子131の光軸OAに一致するように、発光素子131の上に配置されている(図3B参照)。「発光素子131の光軸OA」とは、発光素子131からの立体的な出射光束の中心の光線を意味する。「光束制御部材132の中心軸CA」とは、例えば2回対称の対称軸を意味する。また、光束制御部材132は、発光素子131から出射される光を、後述する2つの出射面153から2つの第1傾斜反射面112に向かって出射するように(後述する2つの出射面153が、2つの第1傾斜反射面112とそれぞれ対向するように)配置される。
 以下、各発光装置130について、発光素子131の発光中心を原点として、発光素子131の光軸OAに平行な軸をZ軸とし、Z軸と直交し、かつ発光素子131の発光中心を含む仮想平面において、複数の発光装置130が並ぶ方向に平行な軸をY軸とし、前記仮想平面において、Y軸と直交する軸をX軸とする。また、発光装置130を、光軸OAとX軸とを含む第1仮想平面(XZ平面)で切断した断面を第1仮想断面とし、光軸OAとY軸とを含む第2仮想平面(YZ平面)で切断した断面を第2仮想断面とし、X軸とY軸とを含む第3仮想平面(XY平面)で切断した断面を第3仮想断面とする。本実施の形態において、光束制御部材132は、第1仮想平面(XZ平面)および第2仮想平面(YZ平面)に対してそれぞれ面対称である。また、本実施の形態では、光束制御部材132は、光学面(後述する入射面151、反射面152および出射面153)が、X軸と平行な軸を回転軸とした略回転対称の物体の一部である。
 光束制御部材132の材料は、所望の波長の光を通過させ得るものであれば特に限定されない。たとえば、光束制御部材132の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。光束制御部材132の構成については、別途詳細に説明する。
 光拡散板140は、筐体110の開口部を塞ぐように配置されている。光拡散板140は、光透過性および光拡散性を有する板状の部材であり、光束制御部材132の出射面153からの出射光を拡散させつつ透過させる。光拡散板140は、例えば面光源装置100の発光面となりうる。
 光拡散板140の材料は、光束制御部材132の出射面153からの出射光を拡散させつつ透過させ得るものであれば適宜選択できる。光拡散板140の材料の例には、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、スチレン・メチルメタクリレート共重合樹脂(MS)などの光透過性樹脂が含まれる。光拡散性を付与するため、光拡散板140は、光拡散板140の表面に微細な凹凸が形成されているか、または光拡散板140の内部にビーズなどの光拡散子が分散している。
 そして、図3AおよびBに示されるように、面光源装置100は、2つの第1傾斜反射面112と発光装置130との間にそれぞれ配置された、2つの第2傾斜反射面114をさらに有する。
 2つの第2傾斜反射面114は、前述したように、2つの第1傾斜反射面112と発光装置130との間にそれぞれ配置され、かつ発光素子131の光軸OAから離れるにつれて光拡散板140に近づくように傾斜した反射面である。2つの第2傾斜反射面114は、発光装置130から第1傾斜反射面112に向かって出射される光の一部(特に、底面111と第1傾斜反射面112との境界付近に向かう光)を、光拡散板140に向けて反射させる。
 第2傾斜反射面114は、平面であってもよいし、曲面であってもよい。本実施の形態では、第2傾斜反射面114は、平面である。
 第2傾斜反射面114の位置や底面111に対する傾斜角は、第2傾斜反射面114を有しない面光源装置の光拡散板140上における照度分布を解析した際に、発光装置130の直上領域と光拡散板140の端縁領域との間で暗部となる領域に光が到達するように設定されればよい。
 第2傾斜反射面114は、第1傾斜反射面112と発光装置130との間のうち、第1傾斜反射面112に近い側に配置されることが好ましい。
 第2傾斜反射面114の底面111に対する傾斜角は、第1傾斜反射面112の底面111に対する傾斜角と同じであるか、それよりも大きいことが好ましい。それにより、発光装置130から第1傾斜反射面112へ向かって出射される光の一部(特に底面111と第1傾斜反射面112との境界付近に向かう光)を、第1傾斜反射面112に到達する手前において第2傾斜反射面114で光拡散板140へ向かって反射させること、具体的には、第1仮想平面において発光素子131の光軸OAに近づくような方向に反射させ、第1傾斜反射面112で反射させるよりも光拡散板140の中央寄り(発光装置130の直上領域寄り)に到達させることができる。ただし、第2傾斜反射面114の底面111に対する傾斜角が第1傾斜反射面112の底面111に対する傾斜角と同じである場合、第2傾斜反射面114と第1傾斜反射面112とは、非連続的に配置される。非連続的とは、第2傾斜反射面114の上端部(第1傾斜反射面112側の端部)と、第1傾斜反射面112の下端部(第2傾斜反射面114側の端部)とが接しておらず、離れていることを意味する。
 なお、第2傾斜反射面114の底面111に対する傾斜角とは、第2傾斜反射面114と底面111とのなす角度のうち小さいほうの角度をいう。また、前述のように、底面111の一部が傾斜している場合、底面111に対する傾斜角は、底面111の水平部に対する傾斜角を意味する。また、第2傾斜反射面114が曲面である場合、第2傾斜反射面114の底面111に対する傾斜角とは、第1仮想断面において、底面111と、第2傾斜反射面114の第1仮想断面における曲線の接線とのなす角度のうち小さいほうの角度を意味する。
 第2傾斜反射面114の底面111からの最大高さは、特に制限されないが、底面111から光拡散板140までの高さの2~20%であることが好ましく、3~10%であることがより好ましい。第2傾斜反射面114の底面111からの最大高さが2%以上であると、発光装置130から第1傾斜反射面112へ向かって出射される光のうち一定量以上を、第1傾斜反射面112で反射させるよりも第1仮想平面における光拡散板140の中央寄り(発光装置130の直上領域寄り)に到達させることができる。そのため、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域に、十分に光を到達させやすくすることができ、輝度ムラを一層抑制しやすい。第2傾斜反射面114の底面111からの最大高さが20%以下であると、発光装置130から第1傾斜反射面112へ到達する光が少なくなりすぎないため、光拡散板140の端縁領域に到達する光が少なくなりすぎない。
 第2傾斜反射面114は、筐体110と一体に設けられていてもよいし、別体に設けられていてもよい。本実施の形態では、第2傾斜反射面114は、筐体110とは別体に設けられた反射構造体150の一部である。反射構造体150の形状は、特に制限されないが、本実施の形態では、Y軸方向に延びた三角柱状である。
 本実施の形態に係る面光源装置100では、各発光素子131から出射された光は、光束制御部材132により光拡散板140の広範囲を照らすように、特に第1傾斜反射面112へ向かう光(または発光素子131の光軸OAに対して略垂直方向に、かつ互いに略反対向きである2つの方向(図3AにおけるX軸方向)に向かう光)に変えられて出射される。各光束制御部材132から出射された光は、さらに第1傾斜反射面112および第2傾斜反射面114により反射されて光拡散板140に到達した後、拡散されて外部に出射される。それにより、面光源装置100の面全体に光を行き渡らせることができる。
 (光束制御部材の構成)
 図4A~Eは、光束制御部材132の構成を示す図である。図4Aは、光束制御部材132の平面図であり、図4Bは、正面図であり、図4Cは、底面図であり、図4Dは、側面図であり、図4Eは、図4Aに示されるA-A線の断面図である。なお、以下の説明では、基板120側(発光素子131側)を「裏側」、光拡散板140側を「表側」と称する。
 光束制御部材132は、発光素子131から出射された光の配光を制御する。図4A~Eに示されるように、光束制御部材132は、入射面151、2つの反射面152および2つの出射面153、2つの鍔部154および4つの脚部155を有する。
 入射面151は、発光素子131から出射された光を入射させる。入射面151は、光軸OAと交わるように、光束制御部材132の裏面156(裏側の面)に配置されている。入射面151の形状は、上記の機能を発揮できれば、特に限定されない。入射面151の形状は、平面であってもよいし、裏面156に開口した凹部157の内面であってもよい。本実施の形態では、入射面151は、裏面156に開口した凹部157の内面である。
 凹部157の形状も、特に制限されない。本実施の形態では、凹部157の内面(入射面151)は、内天面157a(第1入射面)と、それを挟んでX軸方向において対向した内側面157b(第2入射面)とを有する。内天面157a(第1入射面)および内側面157b(第2入射面)の数は、特に限定されず、それぞれ1つであってもよいし、2つ以上であってもよい。本実施の形態では、内天面157aの数は2つであり、内側面157bの数は2つである。
 内天面157a(第1入射面)および内側面157b(第2入射面)は、それぞれ平面であってもよいし、曲面であってもよい。本実施の形態では、内天面157aは、入射した光を反射面152に到達させやすくする観点などから、第1仮想断面において裏側に凸となるような曲面であり、内側面157bは、平面である。凹部157の内面(入射面151)は、他の面をさらに有していてもよい。
 2つの反射面152は、入射面151を挟んで発光素子131と対向する位置(表側)に配置されている。また、2つの反射面152は、少なくとも内天面157aで入射した光の少なくとも一部を、2つの第1傾斜反射面112に向かう方向(具体的には、発光素子131の光軸OAと略垂直であり、かつ互いに略反対向きである2つの方向)に反射させる。2つの反射面152は、第1仮想断面において、光軸OAから離れるにつれ、X軸から離れるようにそれぞれ形成されている。具体的には、2つの反射面152は、第1仮想断面において、発光素子131の光軸OAから端部(出射面153)に向かうにつれて、接線の傾きが徐々に小さくなるように(X軸に沿うように)それぞれ形成されている。
 2つの出射面153は、2つの反射面152を挟んで(X軸方向に)対向して配置されている。2つの出射面153は、内天面157aで入射し、反射面152で反射した光と、内側面157bで入射し、直接到達した光とを、それぞれ2つの第1傾斜反射面112に向かって出射させる。
 出射面153は、平面であってもよいし、曲面であってもよい。本実施の形態では、出射面153は、第1仮想断面において、光軸OAと略平行な面(または第2仮想断面と平行な平面)である。「光軸OAと略平行」とは、第1仮想断面において、光軸OAと出射面153とのなす角度のうち小さいほうの角度が3°以下であることを意味する。なお、出射面153が曲面である場合には、光軸OAと出射面153とのなす角度のうち小さいほうの角度は、第1仮想断面において、光軸OAと、出射面153の第1仮想断面における曲線の接線とのなす角度のうち小さいほうの角度を意味する。
 また、出射面153は、第1仮想断面において、光軸OAから離れるにつれて裏側に向かうように形成された面であってもよい。その場合、光軸OAと出射面153とのなす角度のうち小さいほうの角度は、5°以下である。このように、出射面153が、第1仮想断面において、光軸OAから離れるにつれて裏側に向かうように形成されることにより、光束制御部材132を射出成形で製造する場合において、離型しやすくなる。
 2つの鍔部154は、光軸OA近傍の2つの反射面152の間において、光軸OAに対してY軸方向に突出するように配置されている。鍔部154は、光束制御部材132の取り扱いおよび位置合わせを容易にさせる。なお、鍔部154の形状は、鍔部154に入射した光を制御して出射できるような形状にしてもよい。
 4つの脚部155は、裏面156から突出している略円柱状の部材である。脚部155は、発光素子131に対して適切な位置に光束制御部材132を支持する(図3B参照)。脚部155を、基板120に形成した穴部に嵌合させて位置決めに用いてもよい。また、脚部155は、光学的に悪影響が及ばないように考慮された上で、光束制御部材132を基板120に安定して固定できればよく、脚部155の位置、形状および数は適宜設定される。本実施の形態では、脚部155は、裏面156において、入射面151の周囲に合計4つ配置されている。
 なお、面と面とが接するエッジ部分は、金型作製上、成形上、または光学特性上、製品に僅かなR形状が付与されていてもよい。特に、発光素子131の光軸OAと交わる線分で示される箇所は、光学特性上、完全なエッジ(R0)の場合、発光装置130の直上が暗くなるため、明るさを補うために、R0.05~0.07程度のR形状を設けることが好ましい。
 (作用)
 本実施の形態に係る面光源装置100の作用について、図5と図6を対比しながら説明する。
 図5は、比較用の面光源装置20における光路図である。図5に示されるように、比較用の面光源装置20は、第2傾斜反射面114を有しない以外は本実施の形態に係る面光源装置100と同様に構成されている。図6は、本実施の形態に係る面光源装置100における光路図である。図5および6では、光路を示すために、反射構造体150以外の部材のハッチングは省略している。
 図5および6に示されるように、比較用の面光源装置20および本実施の形態に係る面光源装置100では、発光素子131から出射される光は、入射面151で入射する。入射面151で入射した光の一部(例えば内天面157aで入射した光)は、2つの反射面152で反射されて、2つの第1傾斜反射面112に向かう方向(発光素子131の光軸OAと略垂直であり、かつ互いに略反対向きである2つの方向)に進み、2つの出射面153に到達する。一方、入射面151で入射した光の他の一部(例えば内側面157bで入射した光)は、直接、2つの出射面153に到達する。そして、2つの出射面153に到達したこれらの光は、2つの出射面153から2つの第1傾斜反射面112に向かってそれぞれ出射される。
 そして、比較用の面光源装置20では、図5に示されるように、光束制御部材132の2つの出射面153から2つの第1傾斜反射面112に向かって出射される光のうち、底面111と第1傾斜反射面112との境界付近に向かう光は、第1傾斜反射面112で反射されて、光拡散板140の端縁領域に到達する。それにより、光拡散板140の端縁領域には光が到達しやすく、明部となりやすいのに対し、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域には光が到達しにくく、暗部となりやすい。その結果、面光源装置20において輝度ムラが生じやすい。
 これに対して、本実施の形態に係る面光源装置100では、図6に示されるように、光束制御部材132の2つの出射面153から2つの第1傾斜反射面112に向かって出射される光のうち、底面111と第1傾斜反射面112との境界付近に向かう光は、第1傾斜反射面112に到達することなく、その手前にある第2傾斜反射面114で(発光素子131の光軸OAに近づくような角度で)反射されて、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域に到達する。つまり、比較用の面光源装置20では、第1傾斜反射面112に到達していた光の一部を、本実施の形態に係る面光源装置100では、第2傾斜反射面114で反射させることで、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域に到達させることができる。それにより、光拡散板140の端縁領域には光が到達しすぎないため、明るくなりすぎず、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域には光が適度に到達しやすくなるため、適度に明るくなる。その結果、面光源装置100において輝度ムラを低減することができる。
 (シミュレーション)
 シミュレーションでは、本実施の形態に係る面光源装置100の光拡散板140上における照度分布を解析した。光拡散板140上における照度分布の解析は、1つの発光素子131のみを点灯した面光源装置100について行った。また、比較のため、比較用の面光源装置20の光拡散板140上における照度分布も解析した。シミュレーションのパラメータは、以下のように設定した。
 (パラメータ)
 ・光束制御部材の外径:X軸方向の長さ18mm、Y軸方向の長さ14.3mm
 ・光束制御部材の高さ:6.8mm
 ・発光素子全体の大きさ:一辺1.6mmの略正方形
 ・底面から光拡散板までの高さ:30mm
 ・第1傾斜反射面の底面に対する傾斜角:8°
 ・第2傾斜反射面の底面に対する傾斜角:16°
 ・第2傾斜反射面の底面からの最大高さ:3mm
 図7は、本実施の形態に係る面光源装置100と比較用の面光源装置20の光拡散板140上における照度分布の解析結果を示すグラフである。横軸は、光拡散板140上における、発光素子131の光軸OAからのX軸方向の距離(mm)を示し、縦軸は、光拡散板140上において、最大照度を100としたときの各位置での相対照度を示している。実線は、本実施の形態に係る面光源装置100における解析結果を示し、点線は、比較用の面光源装置20における解析結果を示している。
 前述したように、比較用の面光源装置20では、光束制御部材132の2つの出射面153から2つの第1傾斜反射面112に向かって出射される光のうち、底面111と第1傾斜反射面112との境界付近に向かう光は、第1傾斜反射面112で反射されて、光拡散板140の端縁領域に到達する。そのため、図7に示されるように、光拡散板140の端縁領域(光軸OAから200~330mm近傍)が明部となりやすいのに対し、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域(光軸OAから150~200mm近傍)が暗部となりやすい。それにより、照度ムラ(または輝度ムラ)が生じやすい。
 これに対して、本実施の形態に係る面光源装置100では、光束制御部材132の2つの出射面153から2つの第1傾斜反射面112に向かって出射される光のうち、底面111と第1傾斜反射面112との境界付近に向かう光は、第1傾斜反射面112に到達することなく、第2傾斜反射面114で反射されて、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域に到達する。そのため、図7に示されるように、光拡散板140の端縁領域(光軸OAから200~330mm近傍)が明るくなりすぎることなく、発光装置130の直上領域と光拡散板140の端縁領域との間の中間領域(光軸OAから150~200mm近傍)が適度に明るくなる。それにより、照度ムラ(または輝度ムラ)を抑制することができる。
 (効果)
 以上のように、本実施の形態に係る面光源装置100では、2つの第1傾斜反射面112と発光装置130との間にそれぞれ第2傾斜反射面114を有する。それにより、光束制御部材132の2つの出射面153から第1傾斜反射面112に向かって出射される光の一部を、第2傾斜反射面114で反射させて、光拡散板140の中間領域に到達させることができる。それにより、面光源装置100の端縁領域の輝度と、発光装置130の直上領域と面光源装置100の端縁領域との間の中間領域の輝度とのばらつきを少なくすることができ、輝度ムラを低減することができる。
 (変形例)
 なお、本実施の形態では、第2傾斜反射面114の上端部の底面111からの高さと第1傾斜反射面112の下端部の底面111からの高さが異なる例を示したが、これに限定されず、第2傾斜反射面114の上端部の底面111からの高さと第1傾斜反射面112の下端部の底面111からの高さが同じであってもよい。
 図8AおよびBは、変形例に係る面光源装置200および300における光路図である。図8AおよびBでは、第2傾斜反射面114を分かりやすくするために、反射構造体150以外の部材のハッチングは省略している。
 図8Aに示されるように、第2傾斜反射面114は、第2傾斜反射面114の上端部と第1傾斜反射面112の下端部とが他の面115(例えば水平面)を介して接するように配置されてもよい。図8Bに示されるように、第2傾斜反射面114は、第2傾斜反射面114の上端部と第1傾斜反射面112の下端部とが直接、接するように(連続的に)配置されてもよい。なお、図8AおよびBでは、第2傾斜反射面114が、筐体110(筐体110の第1傾斜反射面112)と別体に設けられた反射構造体150の一部である例を示したが、これに限定されず、筐体110と一体に設けられた傾斜反射面であってもよい。
 また、本実施の形態では、第2傾斜反射面114が、2つ(2つの第1傾斜反射面112と発光装置130との間にそれぞれ1つずつ)配置される例を示したが、これに限定されず、4つ以上(2つの第1傾斜反射面112と発光装置130との間にそれぞれ2つ以上ずつ)配置されてもよい。
 図8Cは、変形例に係る面光源装置400における光路図である。図8Cでは、第2傾斜反射面114を分かりやすくするために、反射構造体150以外のハッチングは省略している。
 図8Cに示されるように、第2傾斜反射面114は、4つ(2つの第1傾斜反射面112と発光装置130との間にそれぞれ2つずつ)配置されてもよい。複数の第2傾斜反射面114の角度や最大高さは、互いに同じであってもよいし、異なっていてもよい。複数の第2傾斜反射面114の角度や最大高さが互いに異なる場合、図8Cに示されるように、発光装置130から近い側に配置される第2傾斜反射面114の最大高さは、発光装置130から遠い側に配置される第2傾斜反射面114の最大高さよりも低いことが好ましい。なお、図8Cでは、第2傾斜反射面114が、筐体110(筐体110の第1傾斜反射面112)と別体に設けられた反射構造体150の一部である例を示したが、これに限定されず、筐体110と一体に設けられた傾斜反射面であってもよい。
 また、本実施の形態では、底面111上に、反射シートを配置していない例を示したが、これに限定されない。
 図9は、変形例に係る面光源装置500の構成を示す部分拡大断面図である。図9に示されるように、基板120を挟んだX軸方向の両側の底面111および第1傾斜反射面112(基板120よりも一方の第1傾斜反射面112側の底面111および一方の第1傾斜反射面112と、基板120よりも他方の第1傾斜反射面112側の底面111および他方の第1傾斜反射面112)に、反射シート170をそれぞれ配置してもよい。その場合、反射シート170は、第2傾斜反射面114を有する反射構造体150によって押さえ付けられていることが好ましい。
 また、本実施の形態では、光束制御部材132が、光学面が、X軸と平行な軸を回転軸とした略回転対称の物体の一部である例を示したが、これに限定されず、中心軸CAを回転軸とした回転対称(円対称)の物体であってもよい。その場合、底面111上に配置される発光装置130は、例えば1つであってもよい。また、第1傾斜反射面112は、底面111の周囲を取り囲むように配置されてもよい。また、第2傾斜反射面114は、発光装置130と第1傾斜反射面112との間において、発光装置130の周囲を取り囲むように配置されてもよい。
 本出願は、2017年11月13日出願の特願2017-218201に基づく優先権を主張する。当該出願明細書及び図面に記載された内容は、すべて本願明細書に援用される。
 本発明に係る光束制御部材を有する面光源装置は、例えば、液晶表示装置のバックライトや看板、一般照明などに適用できる。
 100、200、300、400、500 面光源装置
 100’ 表示装置
 110 筐体
 111 底面
 112 第1傾斜反射面
 113 第3傾斜反射面
 114 第2傾斜反射面
 115 他の面
 120 基板
 130 発光装置
 131 発光素子
 132 光束制御部材
 140 光拡散板
 150 反射構造体
 151 入射面
 152 反射面
 153 出射面
 154 鍔部
 155 脚部
 156 裏面
 157 凹部
 157a 内天面
 157b 内側面
 160 表示部材
 170 反射シート

Claims (8)

  1.  底面と、前記底面を挟むように配置された2つの第1傾斜反射面と、前記底面および前記2つの第1傾斜反射面と対向するように配置された開口部とを有する筐体と、
     前記底面上に配置され、発光素子と、前記発光素子から出射された光を前記2つの第1傾斜反射面に向かって出射させる光束制御部材とを有する発光装置と、
     前記開口部を塞ぐように配置され、光を拡散させつつ透過させる光拡散板と、
     前記2つの第1傾斜反射面と前記発光装置との間にそれぞれ配置され、前記光束制御部材から前記第1傾斜反射面に向かって出射される光の一部を前記光拡散板に向けて反射させる2つの第2傾斜反射面とを有する、
     面光源装置。
  2.  前記光束制御部材は、
     前記発光素子から出射された光を入射する入射面と、
     前記入射面を挟んで前記発光素子と対向する位置に配置され、前記入射面で入射した光の一部を、前記2つの第1傾斜反射面に向かう方向にそれぞれ反射させる2つの反射面と、
     前記2つの反射面を挟んで互いに対向して配置され、前記2つの反射面で反射された光をそれぞれ前記2つの第1傾斜反射面に向かって出射させる2つの出射面とを有する、
     請求項1に記載の面光源装置。
  3.  前記第2傾斜反射面の前記底面に対する傾斜角は、前記第1傾斜反射面の前記底面に対する傾斜角よりも大きい、
     請求項1または請求項2に記載の面光源装置。
  4.  前記第2傾斜反射面の前記底面に対する傾斜角は、前記第1傾斜反射面の前記底面に対する傾斜角と同じであり、かつ
     前記第2傾斜反射面と前記第1傾斜反射面とは、非連続的に配置されている、
     請求項1または請求項2に記載の面光源装置。
  5.  前記第2傾斜反射面は、前記光束制御部材から出射される光の一部を、前記発光素子の光軸に近づくような方向に反射させる、
     請求項1または請求項2に記載の面光源装置。
  6.  前記第2傾斜反射面の前記底面からの最大高さは、前記底面から前記光拡散板までの高さの10~20%である、
     請求項1~5のいずれか一項に記載の面光源装置。
  7.  前記底面上に配置された反射シートをさらに有し、
     前記第2傾斜反射面は、前記第1傾斜反射面とは別体である反射構造体の一部であり、
     前記反射シートは、前記反射構造体によって押さえ付けられている、
     請求項1~6のいずれか一項に記載の面光源装置。
  8.  請求項1~7のいずれか一項に記載の面光源装置と、
     前記面光源装置から出射された光が照射される表示部材と、を有する、表示装置。
PCT/JP2018/041830 2017-11-13 2018-11-12 面光源装置および表示装置 WO2019093511A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017218201A JP2019091564A (ja) 2017-11-13 2017-11-13 面光源装置および表示装置
JP2017-218201 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093511A1 true WO2019093511A1 (ja) 2019-05-16

Family

ID=66438933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041830 WO2019093511A1 (ja) 2017-11-13 2018-11-12 面光源装置および表示装置

Country Status (2)

Country Link
JP (1) JP2019091564A (ja)
WO (1) WO2019093511A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027884A (ja) * 2006-07-19 2008-02-07 Samsung Electronics Co Ltd バックライトアセンブリ及びこれを含む液晶表示装置
JP2010021040A (ja) * 2008-07-11 2010-01-28 Epson Imaging Devices Corp 照明装置、液晶装置及び電子機器
WO2011148694A1 (ja) * 2010-05-25 2011-12-01 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2013012380A (ja) * 2011-06-29 2013-01-17 Enplas Corp 光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた面光源装置
JP2013143217A (ja) * 2012-01-10 2013-07-22 Sharp Corp 照明装置、表示装置、及びテレビ受信装置
JP2013232644A (ja) * 2012-04-27 2013-11-14 Samsung Electronics Co Ltd 発光装置
JP2015191761A (ja) * 2014-03-28 2015-11-02 船井電機株式会社 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027884A (ja) * 2006-07-19 2008-02-07 Samsung Electronics Co Ltd バックライトアセンブリ及びこれを含む液晶表示装置
JP2010021040A (ja) * 2008-07-11 2010-01-28 Epson Imaging Devices Corp 照明装置、液晶装置及び電子機器
WO2011148694A1 (ja) * 2010-05-25 2011-12-01 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2013012380A (ja) * 2011-06-29 2013-01-17 Enplas Corp 光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた面光源装置
JP2013143217A (ja) * 2012-01-10 2013-07-22 Sharp Corp 照明装置、表示装置、及びテレビ受信装置
JP2013232644A (ja) * 2012-04-27 2013-11-14 Samsung Electronics Co Ltd 発光装置
JP2015191761A (ja) * 2014-03-28 2015-11-02 船井電機株式会社 表示装置

Also Published As

Publication number Publication date
JP2019091564A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2014033985A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP6629601B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
WO2017038810A1 (ja) 光束制御部材、発光装置および面光源装置
JP6316494B1 (ja) 面光源装置および表示装置
JP6294635B2 (ja) 面光源装置および表示装置
JP6858034B2 (ja) 面光源装置および表示装置
EP2884153A1 (en) Surface light source device and display device
WO2018151224A1 (ja) 光束制御部材、発光装置および面光源装置
WO2019093511A1 (ja) 面光源装置および表示装置
WO2019039366A1 (ja) 発光装置、面光源装置および光束制御部材
JP2019040859A (ja) 発光装置、面光源装置および光束制御部材
WO2018135407A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP7409921B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
US11567365B2 (en) Light flux controlling member, light-emitting device, surface light source device and display device
CN111316034A (zh) 光束控制部件、发光装置、面光源装置及显示装置
US11435617B2 (en) Light flux controlling member, light-emitting device, surface light source device and display device
JP7328767B2 (ja) 面光源装置および表示装置
WO2021054377A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
WO2019097985A1 (ja) 面光源装置および表示装置
WO2020196572A1 (ja) 面光源装置および表示装置
JP2022111718A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2022111712A (ja) 光束制御部材、発光装置、面光源装置および表示装置
WO2020071281A1 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2015212792A (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP2022144845A (ja) 発光装置、面光源装置および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877024

Country of ref document: EP

Kind code of ref document: A1