WO2019092820A1 - Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns - Google Patents

Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns Download PDF

Info

Publication number
WO2019092820A1
WO2019092820A1 PCT/JP2017/040318 JP2017040318W WO2019092820A1 WO 2019092820 A1 WO2019092820 A1 WO 2019092820A1 JP 2017040318 W JP2017040318 W JP 2017040318W WO 2019092820 A1 WO2019092820 A1 WO 2019092820A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
slider
cylinder
friction
reducing device
Prior art date
Application number
PCT/JP2017/040318
Other languages
French (fr)
Japanese (ja)
Inventor
巌 岩澤
Original Assignee
株式会社東京マルイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京マルイ filed Critical 株式会社東京マルイ
Priority to JP2019551813A priority Critical patent/JP7006965B2/en
Priority to PCT/JP2017/040318 priority patent/WO2019092820A1/en
Priority to EP17931574.2A priority patent/EP3708943A4/en
Priority to TW107139337A priority patent/TWI795459B/en
Publication of WO2019092820A1 publication Critical patent/WO2019092820A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/70Details not provided for in F41B11/50 or F41B11/60
    • F41B11/73Sealing arrangements; Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • F41B11/62Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas with pressure supplied by a gas cartridge

Definitions

  • the present invention relates to a friction reducing device for reducing friction between a piston and a cylinder in a gas simulated gun.
  • a gas gun which fires a bullet by filling a cylinder body with compressed gas into the gun body and injecting it into the bullet.
  • a so-called blowback for moving the slide backward so as to load the next bullet with the firing of the bullet in order to make a motion resembling a real gun.
  • a blowback gas gun in which prevents the leakage of compressed gas and allows the blowback retraction operation to be performed quickly. This is in a playback blow gas gun in which the piston fixed to the slide is retracted along the inner circumference of the cylinder by the pressure of compressed gas supplied into the cylinder in front of the piston when firing a projectile.
  • a shaft is projected at the front end of the piston housed with clearance on the inner periphery of the cylinder, and a collar is mounted on the outer periphery of the shaft, and an elastic piston is mounted in an annular groove formed on the outer periphery of the collar.
  • a piston packing that slides in the cylinder by allowing the collar to move in the circumferential direction by a clearance around the shaft by fitting the packing and further connecting the piston head to the front end of the shaft of the piston.
  • the axis of the shaft coincides with the axis of the cylinder.
  • the present invention has been made in view of the above situation, and its object is to reduce the friction between a piston and a cylinder.
  • the friction reducing device for reducing the friction between the piston and the cylinder comprises a piston which receives gas and retracts to load the next bullet, a cylinder which movably stores the piston, and the piston And a piston rolling element rotatably disposed, and when the piston moves backward, the piston rolling element rotatably disposed on the piston contacts the inside of the cylinder, whereby the piston rolling element Will rotate.
  • the friction reducing device for reducing friction between a piston and a cylinder according to the second aspect of the present invention is characterized in that, in the first aspect, the piston rolling elements are disposed at both ends of a horizontally disposed rotatable axle portion And a wheel portion.
  • the piston rolling elements are arranged horizontally and a second axle part as an axis and a second axle part And a second axle portion disposed at the center of the second wheel portion.
  • the friction reducing device for reducing friction between the piston and the cylinder in the fourth aspect comprises: a piston which moves in for a gas to move backward to move the next bullet; and a slider integrally connected to the piston; A cylinder having a piston movably accommodated therein and a slider rolling element rotatably disposed on the slider, wherein the piston moves backward and the slider integrally coupled to the piston moves backward.
  • the slider rolling element rotatably disposed on the slider contacts the outside of the cylinder, thereby reducing friction between a piston and a cylinder integrally coupled to the slider while the slider rolling body rotates. It is said that.
  • the friction reducing device for reducing friction between the piston and the cylinder according to the fifth aspect of the present invention is characterized in that, in the fourth aspect, the slider rolling element is disposed at both ends of the rotatable slider axle portion disposed in the horizontal direction And a slider wheel portion.
  • a friction reducing device for reducing friction between a piston and a cylinder according to a sixth aspect of the present invention is the fourth aspect according to the present invention, wherein the slider rolling element is disposed horizontally and serves as an axis a second slider axle portion and a second slider And a second slider wheel portion disposed at an axle portion, and a second slider axle portion serving as an axis of the second slider wheel portion is disposed at the center of the second slider wheel portion.
  • a blowout gas simulated gun including the friction reducing device for reducing friction between a piston and a cylinder according to the first to third aspects.
  • a blowout gas simulated gun comprises the pistons of the fourth to sixth aspects and a friction reducing device for reducing friction between the cylinder and the piston.
  • a blowout gas simulated gun includes the friction reducing device for reducing friction between the piston of the first aspect to the third aspect, the cylinder, the piston of the fourth aspect to the sixth aspect, and the cylinder And a friction reducing device for reducing friction between the two.
  • the present invention is configured and operates as described above, the friction between the piston and the cylinder can be reduced.
  • FIG. A is a general sectional view of a gas simulated gun having a friction reducing device in a first embodiment with a projectile fired.
  • FIG. A is an overall cross-sectional view of a gas simulated gun having a friction reducing device in the first embodiment with the projectile fired and the piston moved backward.
  • B is an enlarged sectional view of the friction reducing device in the first embodiment in the state of A.
  • FIG. A is a general sectional view of a gas simulated gun having a friction reducing device in the first embodiment in which the next bullet is placed.
  • B is an enlarged sectional view of the friction reducing device in the first embodiment in the state of A.
  • FIG. A is a partial enlarged view of a gas type simulated gun having a friction reducing device in a second embodiment.
  • B is a 7B line partial cross-sectional view of A.
  • A is the elements on larger scale of the gas simulation gun which has a friction reduction device in a 3rd example.
  • B is a 8B line partial cross-sectional view of A.
  • A is an overall sectional view of a gas simulated gun having a friction reducing device in a third embodiment in which a bullet moves in a barrel.
  • B is an enlarged sectional view of the friction reducing device of the third embodiment in the state of A.
  • FIG. A is a general sectional view of a gas simulated gun having a friction reducing device in a third embodiment with a projectile fired.
  • B is an enlarged sectional view of the friction reducing device of the third embodiment in the state of A.
  • A is an overall sectional view of a gas simulated gun having a friction reducing device according to a third embodiment of the present invention in which the projectile is fired and the piston is moved rearward.
  • B is an enlarged sectional view of the friction reducing device of the third embodiment in the state of A.
  • FIG. A is a general sectional view of a gas simulated gun having a friction reducing device in a third embodiment in a state where the next bullet is disposed.
  • B is an expanded sectional view of a friction reducing device of three examples in a state of A.
  • FIG. A is a partial enlarged view of a gas type simulated gun having a friction reducing device in a fourth embodiment.
  • B is a partial cross-sectional view taken along line 13B of A.
  • the friction reducing device in the first example will be described below with reference to the illustrated embodiment.
  • the friction reducing device 10A in the first embodiment is disposed in the blow-back gas simulation gun 100, and the piston 20 moves in a direction in which compressed gas flows in and retracts to load the next bullet. It has the cylinder 30 which accommodates the piston 20 movably, and the piston rolling element 40 rotatably arrange
  • the blowback is to automatically load a bullet B1 to be fired next to the fired bullet B and is an operation performed in a real gun. Also in the gas type simulated gun 100, the real gun and its configuration are different from each other in appearance, and the effect of mounting the next bullet, which is a bullet to be fired next, is simulated.
  • the gas simulated gun 100 is a simulated gun called a so-called gas gun, which fires a bullet B from the muzzle 110 by releasing a so-called compressed gas, which will be described in detail later.
  • the friction reducing device 10A will be described.
  • the piston 20 is disposed in the cylinder 30 so as to be able to move backward (meaning to move to the right in FIG. 1) in response to the pressure of compressed gas as described later.
  • the piston 20 has a piston body 21, a resiliently arranged piston packing 22 which is arranged at the tip thereof and has a ring shape, and a screw portion 23 fixing the piston packing 22 to the piston body 21.
  • Airtightness between the piston 20 and the cylinder 30 is secured by the piston packing 22.
  • a piston rolling element holding portion 24 rotatably holding the piston rolling element 40 and a fixing portion 25 for fixing the piston rolling element holding portion 24 to the piston main body 21 are provided.
  • fixed part 25 can use a screw.
  • the inside of the cylinder 30 has a tubular shape. Further, the gas discharged into the flow path 123 described later flows into the cylinder 30, thereby moving the piston 20 stored therein in a direction to retract.
  • the piston rolling element 40 rotates in response to the movement of the piston 20, and so to say, the rotatable axle portion 41 horizontally disposed like a train wheel and the wheel portions disposed at both ends thereof 42 and 42, and is rotatably fixed to the piston main body 21 in the piston rolling element holding portion 24.
  • the surfaces 43, 43 of the wheel portions 42, 42 in contact with the cylinder 30 have a curved surface shape so as to follow the inner peripheral surface of the cylinder 30. Accordingly, the wheel portions 42, 42 are in surface contact with the inner peripheral surface of the cylinder 30 (see FIGS. 2A and 2B).
  • the operation of the gas simulated gun 100 and the operation of the friction reducing device 10A having the above-described configuration will be described together.
  • the bullet B that is first fired is engaged with the engagement portion 127 by performing a so-called cocking operation.
  • the first on-off valve 122 which has been closed is moved by a member not shown, whereby the liquefied gas previously filled in the tank 121 is vaporized, and the gas is The fluid is discharged from the first on-off valve 122 into the flow passage 123.
  • the spring 124 biases the second on-off valve 125 in the direction (right direction in the drawing) opposite to the muzzle 110. That is, the second on-off valve 125 is biased to be open. In this state, the gas discharged into the flow path 123 passes through the second on-off valve 125 in the open state, passes through the inside of the nozzle 126, and is jetted to the bullet B engaged with the engaging portion 127.
  • the engaging portion 127 is elastic.
  • the projectile B from which the gas is injected has a cylindrical structure and moves rapidly in the barrel 128 for firing the projectile B. At that time, the piston 20 is disposed in the cylinder 30, and the piston 20 is disposed in the cylinder 30 in the left direction in the drawing (see FIGS. 3A and 3B).
  • the bullet B from which the gas is jetted has a cylindrical structure, passes through the barrel 128 for firing the bullet B, and the bullet B is fired from the muzzle 110.
  • the second on-off valve 125 is against the biasing force of the spring 124 along the gas flow. And move in the direction of the muzzle 110. Since the second on-off valve 125 is adjusted to be closed when the bullet B moves away from the muzzle 110, the second on-off valve 125 is closed when the bullet B is fired from the muzzle 110. Therefore, since the second on-off valve 125 is closed, the gas does not flow into the barrel 128, but this time, the gas flows into the cylinder 30.
  • the gas flows into the cylinder 30, whereby the piston 20 moves in the right direction in the drawing (see FIGS. 5A and 5B).
  • the piston rolling element 40 further rotates.
  • the piston 20 retracts further (moves to the right in the drawing) than the rear end opening 31 of the cylinder 30 at the maximum retraction thereof.
  • the piston 20 and the slider 130 are integrally coupled at the rear portion. Accordingly, the slider 130 is retracted as well as the piston 20.
  • the main body spring 151 is compressed by retracting the gun main body 150 integrally coupled with the slider 130. Further, the nozzle 126 integrally coupled to the slider 130 is also retracted (see FIGS. 5A and 5B).
  • the bullet opening 140 is opened, and the bullet B1 located at the top of the plurality of bullets B biased to ascend by the bullet spring 141 and then fired and the next bullet is further elevated.
  • the slider 130 moves forward (in the left direction in the drawing), that is, in the direction of the muzzle 110, and the piston rolling element 40 reversely rotates, and the piston 20 moves in the left direction in the drawing.
  • Move to see FIG. 6A, B).
  • the bullet B1 positioned at the top of the plurality of bullets B is moved toward the muzzle 110 of the nozzle 126 so that the bullet B1 is pushed to the nozzle 126 and the bullet B1 engages with the engaging portion 127 .
  • the so-called blowback is loaded with the next bullet, the bullet B1.
  • the above operation is repeated.
  • the above operation is repeated each time the projectile B is fired, and since the operation is instantaneous, the friction reducing device 10A in this embodiment is rotated with the piston 20 by the rotation of the piston rolling element 40.
  • the friction generated with the cylinder 30 can be reduced as much as possible, and wear thereby can be prevented.
  • by having the piston rolling element 40 so-called misalignment between the piston 20 and the cylinder 30 is prevented.
  • the configuration of the gas simulation gun 100 other than the friction reducing device 10B is the same as that described above, and thus the description thereof is omitted.
  • the friction reducing device 10B is arranged between the second piston 200 and the second cylinder 300 by arranging the second piston rolling element 400 rotating between the second piston 200 and the second cylinder 300 for blowback. To reduce friction.
  • the second piston 200 is not pressed, so the lower portion 200a of the second piston 200 is relatively the second
  • the gap between the second piston 200 and the second cylinder 300 can be obtained by providing the second piston rolling element 400.
  • the second piston 200 is disposed in the second cylinder 300 movably in the direction (the drawing right direction in FIG. 7A) in which it receives the pressure of the compressed gas and retracts similarly to the piston 20 described above. Ru. Further, the second piston 200 is provided with a second piston body 210, a second piston packing 220 which is disposed at the tip and has elasticity, and has a ring shape for receiving compressed gas, and the second piston packing 220. And a second screw portion 230 fixing the piston to the second piston main body 210. Furthermore, a second piston rolling element holding portion 240 for holding the second piston rolling element 400 rotatably and a second fixing portion for fixing the second piston rolling element holding portion 240 to the second piston main body 210 It has 250. In addition, the 2nd fixing
  • the second cylinder 300 is similar to the cylinder 30 in the friction reducing device 10A, but to be on the assumption, it has a cylindrical shape, and the gas discharged into the flow path 123 described later is contained in the second cylinder 300. By flowing in, the second piston 200 is moved in the backward direction.
  • the second piston rolling element 400 rotates in response to the movement of the second piston 200, and is disposed horizontally like the wheel of a single wheel, so to speak, with the second axle portion 410 serving as the shaft. , And a substantially circular second wheel portion 420 disposed on the second axle portion 410 and rotating therewith.
  • the 2nd axle part 410 and the 2nd wheel part 420 which become a shaft may not rotate together, but may rotate independently, respectively.
  • a state in which the second axle portion 410 serving as the axis thereof is disposed at the center of the substantially circular second wheel portion 420 is exhibited, and the second axle portion 410 in which the second wheel portion 420 is disposed in the horizontal direction.
  • the second piston rolling element holding portion 240 is rotatably disposed as described in FIG. 7B.
  • the second piston rolling element holding portion 240 is rotatably fixed to the second piston main body 210 by the second piston rolling element fixing portion 250 so that the second wheel portion 420 can rotate. Further, the surface 430 of the second wheel 420 in contact with the second cylinder 300 has a curved surface so as to follow the inner circumferential surface of the second cylinder 300 (see FIG. 7B). Therefore, the second wheel portion 420 is in contact with the inner circumferential surface of the second cylinder 300 with its curved surface.
  • the friction reducing device 10B according to the second embodiment of the above configuration can reduce as much as possible the friction generated between the second piston 200 and the second cylinder 300 by rotation of the second piston rolling element 400. , It can prevent wear. In addition, it is needless to say that the so-called misalignment between the second piston 200 and the second cylinder 300 can be prevented by having the second piston rolling element 400 as described above.
  • the friction reducing device 10C in the third embodiment will be described.
  • the friction reducing device 10C in the third embodiment is disposed in another gas-type simulated gun 101, and the direction in which compressed gas flows in and then retracts to load the next bullet, which is a bullet to be fired next.
  • a third slider 600 integrally joined at the rear with the third piston 500 and moving backward according to the movement of the third piston 500 in the backward direction, and the third piston 500 movably accommodated
  • the third piston 500 integrally coupled to the third slider 600 by disposing the third cylinder 700 and the slider rolling element 800 rotating between the third slider 600 and the third cylinder 700;
  • the friction of the third cylinder 700 is reduced to thereby reduce the wear of the third cylinder 700.
  • the third cylinder 700 is pressed upward, but the third piston 500 is not pressed, so the third lower portion 500a of the third piston 500 is relative As a result, the third cylinder 700 approaches the third cylinder 700, and the gap between the third piston 500 and the third cylinder 700 narrows.
  • the gap between the third slider 600 and the third cylinder 700 is optimized, and the third As described above, by solving the so-called misalignment which optimizes the gap between the third piston 500 and the third cylinder 700 integrally coupled to the slider 600, as described above, the third piston 500 and the third cylinder 700 To reduce the friction between them and thereby reduce the wear of the third cylinder 700.
  • the blowback is as described above.
  • the difference between the other gas simulation guns 101 and the gas simulation gun 100 is that the friction reduction device 10C of the third embodiment is included instead of the friction reduction device 10A of the first embodiment. It is.
  • the third piston 500 receives the pressure of the compressed gas and moves backward (means moving to the right in the drawing in FIG. 8A) as described later. It is arranged.
  • the third piston 500 has a third piston main body 501, a third piston packing 502 which is disposed at its tip end and has elasticity, and exhibits a ring shape, and the third piston packing 502 as a third piston main body 501.
  • a third screw portion 503 fixed to the Airtightness with the third cylinder 700 is secured by the third piston packing 502.
  • it has the slider rolling element holding part 804 which hold
  • the inside of the third cylinder 700 has a tubular shape. Further, the gas discharged into the flow path 123 described later flows into the third cylinder 700, thereby moving the third piston 500 accommodated therein in a direction to retract it.
  • the third slider 600 is integrally coupled to the above-described third piston 500 at its rear portion, and the third slider 600 is also moved rearward by the rearward movement of the third piston 500.
  • the third slider 600, the third piston 500, and the rear portion are integrally connected, and at the front portion, the third cylinder 700 is vertically moved by the third piston 500 and the third slider 600. It is configured to be sandwiched between.
  • the slider rolling element 800 is rotated according to the movement of the third piston 500 as described above, and is disposed at both ends of the rotatable slider axle portion 801 horizontally disposed like the wheels of a train and so on
  • the slider rolling elements 800 are rotatably fixed to the slider rolling element holding section 804 to the third slider 600.
  • slider wheel surfaces 803 and 803 in contact with the third cylinder 700 in the slider wheel portions 802 and 802 have a curved surface shape. Therefore, the slider wheel surfaces 803 and 803 in the slider wheel portions 802 and 802 are in surface contact with the outer peripheral surface of the third cylinder 700 (see FIGS. 8A and 8B).
  • the first on-off valve 122 which has been closed is moved by a member not shown, whereby the liquefied gas previously filled in the tank 121 is vaporized, and the gas is The fluid is discharged from the first on-off valve 122 into the flow passage 123.
  • the spring 124 biases the second on-off valve 125 in the direction opposite to the muzzle 110 (right direction in the drawing of FIG. 9A). That is, the second on-off valve 125 is biased to be open. In this state, the gas discharged into the flow path 123 passes through the second on-off valve 125 in the open state, passes through the inside of the nozzle 126, and is jetted to the bullet B engaged with the engaging portion 127.
  • the engaging portion 127 is elastic.
  • the projectile B from which the gas is injected has a cylindrical structure and moves rapidly in the barrel 128 for firing the projectile B.
  • the third piston 500 is disposed in the third cylinder 700, and the third piston 500 is disposed in the third cylinder 700 in the left direction in the drawing (see FIGS. 9A and 9B). ).
  • the bullet B from which the gas is jetted has a cylindrical structure, passes through the barrel 128 for firing the bullet B, and the bullet B is fired from the muzzle 110.
  • the second on-off valve 125 is against the biasing force of the spring 124 along the gas flow. And move in the direction of the muzzle 110. Since the second on-off valve 125 is adjusted to be closed when the bullet B moves away from the muzzle 110, the second on-off valve 125 is closed when the bullet B is fired from the muzzle 110. Therefore, since the second on-off valve 125 is closed, no gas flows into the barrel 128, and this time, the gas flows into the third cylinder 700.
  • the gas flows into the third cylinder 700, whereby the third piston 500 moves in the right direction in the drawing (see FIGS. 10A and 10B). As the third piston 500 moves, the slider rolling element 800 rotates.
  • the gas flows into the third cylinder 700, whereby the third piston 500 moves in the right direction in the drawing (see FIGS. 11A and 11B).
  • the slider rolling element 800 disposed on the third slider 600 further rotates.
  • the third piston 500 retracts further than the third rear end opening 701 of the third cylinder 700 at its maximum retraction.
  • the third slider 600 also retracts in the same manner as the third piston 500.
  • the main body spring 151 is compressed by retracting the gun main body 150 integrally coupled with the third slider 600.
  • the nozzle 126 integrally coupled to the third slider 600 is also retracted.
  • the bullet opening 140 is opened, and the bullet B1 positioned at the top of the plurality of bullets B biased to ascend by the bullet spring 141 is fired next, and the bullet B1 to be the next bullet further rises.
  • the third slider 600 moves in the direction of the muzzle 110, and the slider rolling element 800 disposed on the third slider 600 also reversely rotates, and the third piston 500 Moves in the left direction of the drawing (see FIGS. 12A and 12B).
  • the bullet B1 positioned at the top of the plurality of bullets B is moved toward the muzzle 110 of the nozzle 126 so that the bullet B1 is pushed to the nozzle 126 and the bullet B1 engages with the engaging portion 127 .
  • the so-called blowback is loaded with the next bullet, the bullet B1.
  • the above operation is repeated.
  • the above operation is repeated each time the projectile B is fired, and since the operation is instantaneous, the friction generated between the third piston 500 and the third slider 600 is The rotation of the moving body 800 can reduce it as much as possible, thereby preventing wear. Also for this, as described above, by having the slider rolling element 800, the gap between the third slider 600 and the third cylinder 700 is optimized, and the third slider 600 is integrally coupled to the third slider 600. It is needless to say that the so-called misalignment is prevented by optimizing the gap between the three piston 500 and the third cylinder 700.
  • a friction reducing device 10D according to a fourth embodiment will be described.
  • the configuration of the gas simulation gun 101 other than the friction reducing device 10C in the third embodiment is the same as that described above, and thus the description thereof will be omitted.
  • the difference between the friction reducing device 10D in the fourth embodiment and the friction reducing device 10C in the third embodiment is the difference in configuration between the slider rolling element 800 and the second slider rolling element 900. Therefore, by arranging the second slider rolling element 900 that rotates between the third slider 600 and the third cylinder 700, which are integrally coupled at the rear portion and the third piston 500 for blowback,
  • the third embodiment is the same as the third embodiment for reducing the friction between the third slider 600 and the third cylinder 700.
  • the second slider rolling element 900 rotates in response to the movement of the third slider 600 as described above, and is disposed horizontally like a wheel of a single wheel, and serves as an axis of the second slider axle 910 as an axis. And a substantially circular second slider wheel portion 920 which rotates with it.
  • the second slider axle unit 910 and the second slider wheel unit 920 as the shafts may not rotate together, but may rotate independently.
  • a second slider axle 910 serving as an axis is disposed at the center of the substantially circular second slider wheel 920, and the second slider axle 920 is disposed horizontally in the second slider axle 910.
  • the second slider rolling element holding portion 940 is rotatably disposed as described in FIG. 13B.
  • the second slider rolling element 900 is rotatably fixed to the third slider 600 by the second slider rolling element holder 940.
  • the second slider wheel surface 930 which is a surface of the second slider wheel 920 in contact with the third cylinder 700, has a curved surface (see FIG. 13B).
  • the above-mentioned third piston 500 is disposed in the third cylinder 700 movably in the direction (the right direction in the drawing in FIG. 13A) of receiving the pressure of the compressed gas.
  • the third cylinder 700 is the same as the cylinder 30 in the friction reducing device 10A, but to be on the assumption, it has a cylindrical shape, and the gas discharged into the flow path 123 described later is contained in the second cylinder 300. By flowing in, the third piston 500 is moved in the backward direction.
  • the friction reducing device 10D having such a configuration is repeated each time the projectile B is fired, and since the operation is instantaneous, conventionally between the third piston 500 and the third slider 600 according to the prior art.
  • the friction generated in the second slider rolling element 900 can be reduced as much as possible by the rotation of the second slider rolling element 900, and the wear thereby can be prevented.
  • the position between the third slider 600 and the third cylinder 700 is optimized, and the third slider 600 is integrally coupled to the third slider 600. It goes without saying that so-called misalignment can be prevented by optimizing the gap between the three piston 500 and the third cylinder 700.
  • either of the friction reducing device 10A in the first embodiment and the friction reducing device 10B in the second embodiment can be provided in the gas simulation gun 100.
  • either of the friction reducing device 10C in the third embodiment and the friction reducing device 10D in the fourth embodiment can be provided in the gas simulation gun 101.
  • any one of the friction reducing device 10A in the first embodiment and the friction reducing device 10B in the second embodiment, the friction reducing device 10C in the third embodiment, and the friction reducing device in the fourth embodiment Either 10D can be placed on the gas simulant simultaneously (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Valve Device For Special Equipments (AREA)
  • Braking Arrangements (AREA)

Abstract

[Problem] To provide a friction reduction device to reduce friction between a piston and a cylinder. [Solution] A friction reduction device to reduce friction between a piston and a cylinder has a piston into which a gas flows and that retracts in order to load the next bullet, a cylinder that accommodates the piston so same can move, and a piston rolling body that is rotatably disposed in the piston. The piston rolling body is rotated by the piston rolling body rotatably disposed in the piston being in contact with the interior of the cylinder when the piston is retracting.

Description

ガス式模擬銃におけるピストンとシリンダとの間の摩擦を軽減する摩擦軽減装置Friction reduction device to reduce friction between piston and cylinder in gas simulant gun
 本発明は、ガス式模擬銃におけるピストンとシリンダとの間の摩擦を軽減する摩擦軽減装置に関するものである。 The present invention relates to a friction reducing device for reducing friction between a piston and a cylinder in a gas simulated gun.
 従来の模擬銃においては、ボンベ入りの圧縮ガスを銃本体に充填しそれを弾丸に噴射することで弾丸を発射するいわゆるガス銃が存在する。さらにその際に実銃を模した動きをさせるため弾丸の発射と共に次弾を装填させるために、スライドを後方に移動させるいわゆるブローバックさせる模擬銃が存在する。 In a conventional simulated gun, there is a so-called gas gun which fires a bullet by filling a cylinder body with compressed gas into the gun body and injecting it into the bullet. In addition, there is a so-called blowback for moving the slide backward so as to load the next bullet with the firing of the bullet in order to make a motion resembling a real gun.
 たとえば、特開2014-240722号公報によると、遊戯用のブローバックガスガンにおいて、ピストンがスライドに固定された状態でシリンダの内部を摺動する際、シリンダとピストンパッキンの軸芯を一致させることにより圧縮ガスの漏洩を防止し、ブローバックの後退動作を迅速に行うことができるようにしたブローバックガスガンが開示されている。これは、弾丸を発射する際、ピストンの前方のシリンダ内に供給された圧縮ガスの圧力によって、スライドに固定したピストンがシリンダの内周に沿って後退するようにした遊戯用ブローバックガスガンにおいて、シリンダの内周にクリアランスをあけて収納したピストンの前端に軸部を突出形成し、該軸部の外周にクリアランスをあけてカラーを装着し、該カラーの外周に形成した環状溝に弾性のピストンパッキンを嵌合し、さらにピストンの軸部の前端にピストン頭部を結合することによって、軸部の周りのクリアランスだけカラーを周方向に移動可能としたことにより、シリンダ内を摺動するピストンパッキンの軸芯がシリンダの軸芯と一致するようにしたものである。 For example, according to Japanese Patent Application Laid-Open No. 2014-240722, in a play-back blowback gas gun, when sliding the inside of a cylinder in a state where the piston is fixed to a slide, A blowback gas gun is disclosed that prevents the leakage of compressed gas and allows the blowback retraction operation to be performed quickly. This is in a playback blow gas gun in which the piston fixed to the slide is retracted along the inner circumference of the cylinder by the pressure of compressed gas supplied into the cylinder in front of the piston when firing a projectile. A shaft is projected at the front end of the piston housed with clearance on the inner periphery of the cylinder, and a collar is mounted on the outer periphery of the shaft, and an elastic piston is mounted in an annular groove formed on the outer periphery of the collar. A piston packing that slides in the cylinder by allowing the collar to move in the circumferential direction by a clearance around the shaft by fitting the packing and further connecting the piston head to the front end of the shaft of the piston. The axis of the shaft coincides with the axis of the cylinder.
 しかしながら、上記発明では、シリンダとピストンの隙間を適正化するいわゆる芯ずれを防止すると言うよりも、圧縮ガスの漏洩を防止するというものである。従って、それらのずれを防止することができず、特に長年の使用によりガス式模擬銃において、次弾を装てんさせるために後退移動するピストンと、そのピストンと接するシリンダとの間で摩擦が生じ、シリンダが磨耗する場合がある。とくに、シリンダが合成樹脂製であることから、その傾向がある。 However, in the above-described invention, leakage of compressed gas is prevented rather than preventing so-called misalignment which makes the gap between the cylinder and the piston appropriate. Therefore, these displacements can not be prevented, and friction is generated between the piston moving backward to load the next bullet and the cylinder in contact with that piston, particularly in a gas-type simulated gun over many years of use, The cylinder may wear out. In particular, this is because the cylinder is made of synthetic resin.
特開2014-240722号公報JP, 2014-240722, A
 本発明は前記の実情に鑑みてなされたもので、その課題は、ピストンと、シリンダとの間の摩擦を軽減することである。 The present invention has been made in view of the above situation, and its object is to reduce the friction between a piston and a cylinder.
 第1観点におけるピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置は、ガスが流入し、次弾を装てんさせるために後退移動するピストンと、ピストンを移動可能に収納するシリンダと、ピストンに、回転可能に配置されたピストン転動体と、を有し、ピストンが、後退移動する際に、ピストンに回転可能に配置されたピストン転動体が、シリンダの内部に接することで、ピストン転動体が回転するというものである。 The friction reducing device for reducing the friction between the piston and the cylinder according to the first aspect of the present invention comprises a piston which receives gas and retracts to load the next bullet, a cylinder which movably stores the piston, and the piston And a piston rolling element rotatably disposed, and when the piston moves backward, the piston rolling element rotatably disposed on the piston contacts the inside of the cylinder, whereby the piston rolling element Will rotate.
 第2観点におけるピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置は、第1観点において、ピストン転動体は、水平方向に配置された回転可能な車軸部と、その両端に配置された車輪部と、を有するものである。 The friction reducing device for reducing friction between a piston and a cylinder according to the second aspect of the present invention is characterized in that, in the first aspect, the piston rolling elements are disposed at both ends of a horizontally disposed rotatable axle portion And a wheel portion.
 第3観点におけるピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置は、第1観点において、ピストン転動体は、水平方向に配置され、軸となる第2車軸部と、第2車軸部に配置した第2車輪部と、を有し、第2車輪部の中心にその軸となる第2車軸部を配置したというものである。 In a friction reducing device for reducing friction between a piston and a cylinder according to a third aspect of the present invention, in the first aspect, the piston rolling elements are arranged horizontally and a second axle part as an axis and a second axle part And a second axle portion disposed at the center of the second wheel portion.
 第4観点におけるピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置は、ガスが流入し、次弾を装てんさせるために後退移動するピストンと、ピストンと一体に結合されているスライダと、ピストンを移動可能に収納するシリンダと、スライダに、回転可能に配置されたスライダ転動体と、を有し、ピストンが、後退移動し、ピストンと一体に結合されているスライダが後退移動する際に、スライダに回転可能に配置された前記スライダ転動体が、前記シリンダの外部に接することで、スライダ転動体が回転すると共にスライダと一体に結合されているピストンとシリンダとの間の摩擦を軽減するというものである。 The friction reducing device for reducing friction between the piston and the cylinder in the fourth aspect comprises: a piston which moves in for a gas to move backward to move the next bullet; and a slider integrally connected to the piston; A cylinder having a piston movably accommodated therein and a slider rolling element rotatably disposed on the slider, wherein the piston moves backward and the slider integrally coupled to the piston moves backward. The slider rolling element rotatably disposed on the slider contacts the outside of the cylinder, thereby reducing friction between a piston and a cylinder integrally coupled to the slider while the slider rolling body rotates. It is said that.
 第5観点におけるピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置は、第4観点において、スライダ転動体は、水平方向に配置された回転可能なスライダ車軸部と、その両端に配置されたスライダ車輪部と、を有するというものである。 The friction reducing device for reducing friction between the piston and the cylinder according to the fifth aspect of the present invention is characterized in that, in the fourth aspect, the slider rolling element is disposed at both ends of the rotatable slider axle portion disposed in the horizontal direction And a slider wheel portion.
 第6観点におけるピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置は、第4観点において、スライダ転動体は、水平方向に配置され、軸となる第2スライダ車軸部と、第2スライダ車軸部に配置した第2スライダ車輪部と、を有し、第2スライダ車輪部の中心にその軸となる第2スライダ車軸部を配置したというものである。 A friction reducing device for reducing friction between a piston and a cylinder according to a sixth aspect of the present invention is the fourth aspect according to the present invention, wherein the slider rolling element is disposed horizontally and serves as an axis a second slider axle portion and a second slider And a second slider wheel portion disposed at an axle portion, and a second slider axle portion serving as an axis of the second slider wheel portion is disposed at the center of the second slider wheel portion.
 第7観点におけるブローバックするガス式模擬銃は、第1観点から第3観点のピストンとシリンダとの間の摩擦を軽減する摩擦軽減装置と、を有するというものである。 According to a seventh aspect of the present invention, there is provided a blowout gas simulated gun including the friction reducing device for reducing friction between a piston and a cylinder according to the first to third aspects.
 第8観点におけるブローバックするガス式模擬銃は、第4観点から第6観点のピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置と、を有するというものである。 A blowout gas simulated gun according to an eighth aspect comprises the pistons of the fourth to sixth aspects and a friction reducing device for reducing friction between the cylinder and the piston.
 第9観点におけるブローバックするガス式模擬銃は、第1観点から第3観点のピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置と、第4観点から第6観点のピストンと、シリンダとの間の摩擦を軽減する摩擦軽減装置と、を有するというものである。 A blowout gas simulated gun according to a ninth aspect includes the friction reducing device for reducing friction between the piston of the first aspect to the third aspect, the cylinder, the piston of the fourth aspect to the sixth aspect, and the cylinder And a friction reducing device for reducing friction between the two.
 本発明は以上のように構成され、かつ、作用するものであるから、ピストンと、シリンダとの間の摩擦を軽減することができる。 Since the present invention is configured and operates as described above, the friction between the piston and the cylinder can be reduced.
第1の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。BRIEF DESCRIPTION OF THE DRAWINGS The whole sectional view of the gas type simulation gun which has a friction reduction device in a 1st example. Aは、第1の実施例における摩擦軽減装置を有するガス式模擬銃の部分拡大図。Bは、Aの2B線部分断面図。A is the elements on larger scale of the gas type simulation gun which has a friction reduction device in a 1st example. B is a 2B line partial cross-sectional view of A. Aは、弾丸が銃身内を移動する状態の第1の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態の第1の実施例における摩擦軽減装置の拡大断面図。A is a general sectional view of a gas simulated gun having a friction reducing device in a first embodiment in which a bullet moves in a barrel. B is an enlarged sectional view of the friction reducing device in the first embodiment in the state of A. FIG. Aは、弾丸を発射した状態の第1の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態の第1の実施例における摩擦軽減装置の拡大断面図。A is a general sectional view of a gas simulated gun having a friction reducing device in a first embodiment with a projectile fired. B is an enlarged sectional view of the friction reducing device in the first embodiment in the state of A. FIG. Aは、弾丸を発射し、ピストンが後方に移動した状態の第1の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態の第1の実施例における摩擦軽減装置の拡大断面図。A is an overall cross-sectional view of a gas simulated gun having a friction reducing device in the first embodiment with the projectile fired and the piston moved backward. B is an enlarged sectional view of the friction reducing device in the first embodiment in the state of A. FIG. Aは、次弾が配置された状態の第1の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態の第1の実施例における摩擦軽減装置の拡大断面図。A is a general sectional view of a gas simulated gun having a friction reducing device in the first embodiment in which the next bullet is placed. B is an enlarged sectional view of the friction reducing device in the first embodiment in the state of A. FIG. Aは、第2の実施例における摩擦軽減装置を有するガス式模擬銃の部分拡大図。Bは、Aの7B線部分断面図。A is a partial enlarged view of a gas type simulated gun having a friction reducing device in a second embodiment. B is a 7B line partial cross-sectional view of A. Aは、第3の実施例における摩擦軽減装置を有するガス式模擬銃の部分拡大図。Bは、Aの8B線部分断面図。A is the elements on larger scale of the gas simulation gun which has a friction reduction device in a 3rd example. B is a 8B line partial cross-sectional view of A. Aは、弾丸が銃身内を移動する状態の第3の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態における第3の実施例の摩擦軽減装置の拡大断面図。A is an overall sectional view of a gas simulated gun having a friction reducing device in a third embodiment in which a bullet moves in a barrel. B is an enlarged sectional view of the friction reducing device of the third embodiment in the state of A. FIG. Aは、弾丸を発射した状態の第3の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態における第3の実施例の摩擦軽減装置の拡大断面図。A is a general sectional view of a gas simulated gun having a friction reducing device in a third embodiment with a projectile fired. B is an enlarged sectional view of the friction reducing device of the third embodiment in the state of A. FIG. Aは、弾丸を発射し、ピストンが後方に移動した状態の第3の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態における第3の実施例の摩擦軽減装置の拡大断面図。A is an overall sectional view of a gas simulated gun having a friction reducing device according to a third embodiment of the present invention in which the projectile is fired and the piston is moved rearward. B is an enlarged sectional view of the friction reducing device of the third embodiment in the state of A. FIG. Aは、次弾が配置された状態の第3の実施例における摩擦軽減装置を有するガス式模擬銃の全体断面図。Bは、Aの状態における3の実施例の摩擦軽減装置の拡大断面図。A is a general sectional view of a gas simulated gun having a friction reducing device in a third embodiment in a state where the next bullet is disposed. B is an expanded sectional view of a friction reducing device of three examples in a state of A. FIG. Aは、第4の実施例における摩擦軽減装置を有するガス式模擬銃の部分拡大図。Bは、Aの13B線部分断面図。A is a partial enlarged view of a gas type simulated gun having a friction reducing device in a fourth embodiment. B is a partial cross-sectional view taken along line 13B of A.
 以下図示の実施形態を参照して第1の実施例における摩擦軽減装置について説明する。第1実施例における摩擦軽減装置10Aは、ブローバックするガス式模擬銃100に配置されているもので、圧縮ガスが流入し、次弾を装てんするために後退する方向に移動するピストン20と、そのピストン20を移動可能に収納するシリンダ30と、ピストン20に回転可能に配置されたピストン転動体40と、を有する。このピストン転動体40が回転することによって、ピストン20とシリンダ30との間の摩擦を軽減させ、それによりシリンダ30の磨耗を軽減させるためのものである。すなわち、弾丸Bを有するマガジンをガス式模擬銃100に装てんするとシリンダ30は上方に押圧されるものの、ピストン20は、押圧されないのでピストン20の下部20aが相対的にシリンダ30と接近し、ピストン20とシリンダ30との隙間が狭まるという問題が生じるものの、上記ピストン転動体40を有することで、ピストン20とシリンダ30との隙間を適正化する、いわゆるピストン20とシリンダ30との間の芯ずれをも解決することで、上記のとおり、ピストン20とシリンダ30との間の摩擦を軽減させ、それによりシリンダ30の磨耗を軽減させるためのものである。ここで、ブローバックとは、発射した弾丸Bの次に発射をする弾丸B1の装填を自動的に行うというものであり、実銃において行われている動作である。なお、ガス式模擬銃100においても、実銃とその構成は異なるものの外見上の動作と次に発射をする弾丸である次弾を装てんするという効果を模擬的に実現したものである。 The friction reducing device in the first example will be described below with reference to the illustrated embodiment. The friction reducing device 10A in the first embodiment is disposed in the blow-back gas simulation gun 100, and the piston 20 moves in a direction in which compressed gas flows in and retracts to load the next bullet. It has the cylinder 30 which accommodates the piston 20 movably, and the piston rolling element 40 rotatably arrange | positioned at the piston 20. As shown in FIG. The rotation of the piston rolling element 40 is intended to reduce the friction between the piston 20 and the cylinder 30, thereby reducing the wear of the cylinder 30. That is, when the magazine having the bullet B is loaded on the gas simulation gun 100, the cylinder 30 is pressed upward, but the piston 20 is not pressed, so the lower portion 20a of the piston 20 relatively approaches the cylinder 30, There is a problem that the gap between the piston 20 and the cylinder 30 is narrowed, but having the piston rolling element 40 makes the gap between the piston 20 and the cylinder 30 appropriate, so-called misalignment between the piston 20 and the cylinder 30 The solution is also to reduce the friction between the piston 20 and the cylinder 30 and thereby reduce the wear of the cylinder 30, as described above. Here, the blowback is to automatically load a bullet B1 to be fired next to the fired bullet B and is an operation performed in a real gun. Also in the gas type simulated gun 100, the real gun and its configuration are different from each other in appearance, and the effect of mounting the next bullet, which is a bullet to be fired next, is simulated.
 ここで、ガス式模擬銃100について、詳細は後述するが、いわゆる圧縮ガスを放出することによって弾丸Bを銃口110から発射する、いわゆるガスガンと呼ばれる模擬銃である。 Here, the gas simulated gun 100 is a simulated gun called a so-called gas gun, which fires a bullet B from the muzzle 110 by releasing a so-called compressed gas, which will be described in detail later.
 摩擦軽減装置10Aについて説明すると、ピストン20は後述するとおり圧縮ガスの圧力を受けて後退移動(図1において図面右方向に移動することをいう)可能にシリンダ30内に配置されている。また、ピストン20は、ピストン本体21と、その先端に配置され弾性を有し、かつ、リング状を呈するピストンパッキン22と、そのピストンパッキン22をピストン本体21に固定している螺子部23を有する。このピストンパッキン22によって、ピストン20とシリンダ30との気密を確保している。さらに、ピストン転動体40を回転可能に保持するピストン転動体保持部24と、そのピストン転動体保持部24をピストン本体21に固定するための固定部25を有する。なお、固定部25は螺子を使用することができる。 The friction reducing device 10A will be described. The piston 20 is disposed in the cylinder 30 so as to be able to move backward (meaning to move to the right in FIG. 1) in response to the pressure of compressed gas as described later. Further, the piston 20 has a piston body 21, a resiliently arranged piston packing 22 which is arranged at the tip thereof and has a ring shape, and a screw portion 23 fixing the piston packing 22 to the piston body 21. . Airtightness between the piston 20 and the cylinder 30 is secured by the piston packing 22. Further, a piston rolling element holding portion 24 rotatably holding the piston rolling element 40 and a fixing portion 25 for fixing the piston rolling element holding portion 24 to the piston main body 21 are provided. In addition, the fixing | fixed part 25 can use a screw.
 シリンダ30の内部は、筒状を呈するものである。また、後述する流路123内に排出されたガスが、シリンダ30内に流入することによって、その内部に収納されたピストン20を後退する方向に移動させるものである。 The inside of the cylinder 30 has a tubular shape. Further, the gas discharged into the flow path 123 described later flows into the cylinder 30, thereby moving the piston 20 stored therein in a direction to retract.
 ピストン転動体40は、上記のとおりピストン20の移動に応じて回転するものであり、言わば列車の車輪のように水平方向に配置された回転可能な車軸部41とその両端に配置された車輪部42、42とを有し、上記ピストン転動体保持部24に回転可能にピストン本体21に固定されている。また車輪部42、42におけるシリンダ30に接する面43、43は、シリンダ30の内周面に倣うように曲面状を呈している。従って、車輪部42、42は、シリンダ30の内周面に面で接している(図2A、B参照)。 As described above, the piston rolling element 40 rotates in response to the movement of the piston 20, and so to say, the rotatable axle portion 41 horizontally disposed like a train wheel and the wheel portions disposed at both ends thereof 42 and 42, and is rotatably fixed to the piston main body 21 in the piston rolling element holding portion 24. The surfaces 43, 43 of the wheel portions 42, 42 in contact with the cylinder 30 have a curved surface shape so as to follow the inner peripheral surface of the cylinder 30. Accordingly, the wheel portions 42, 42 are in surface contact with the inner peripheral surface of the cylinder 30 (see FIGS. 2A and 2B).
 ここで、ガス式模擬銃100の動作と、上記構成の摩擦軽減装置10Aの動作について併せて説明する。図2の状態から、いわゆるコッキング動作をすることにより、最初に発射をする弾丸Bを、係合部127に係合させる。次に、トリガー120を、引くことにより、図示しない部材により、閉じられていた第1開閉弁122が移動することで、タンク121内にあらかじめ充填されていた液化ガスが気化し、そのガスが、その第1開閉弁122から流路123に排出される。 Here, the operation of the gas simulated gun 100 and the operation of the friction reducing device 10A having the above-described configuration will be described together. From the state of FIG. 2, the bullet B that is first fired is engaged with the engagement portion 127 by performing a so-called cocking operation. Next, by pulling the trigger 120, the first on-off valve 122 which has been closed is moved by a member not shown, whereby the liquefied gas previously filled in the tank 121 is vaporized, and the gas is The fluid is discharged from the first on-off valve 122 into the flow passage 123.
 バネ124は、第2開閉弁125を、銃口110とは反対の方向(図面右方向)に付勢している。すなわち、その第2開閉弁125が開く状態に付勢している。この状態において、流路123に排出されたガスが、その開いた状態の第2開閉弁125を通過し、ノズル126内を通り、係合部127に係合している弾丸Bに噴射する。なお、係合部127は弾性を有するものである。 The spring 124 biases the second on-off valve 125 in the direction (right direction in the drawing) opposite to the muzzle 110. That is, the second on-off valve 125 is biased to be open. In this state, the gas discharged into the flow path 123 passes through the second on-off valve 125 in the open state, passes through the inside of the nozzle 126, and is jetted to the bullet B engaged with the engaging portion 127. The engaging portion 127 is elastic.
 ガスが噴射された弾丸Bは、筒状構造を有し弾丸Bを発射させるための銃身128内を急速に移動する。なお、その時点においては、ピストン20は、シリンダ30内に配置され、そのピストン20は、シリンダ30内において、図面左方向に配置されている(図3A、B参照)。 The projectile B from which the gas is injected has a cylindrical structure and moves rapidly in the barrel 128 for firing the projectile B. At that time, the piston 20 is disposed in the cylinder 30, and the piston 20 is disposed in the cylinder 30 in the left direction in the drawing (see FIGS. 3A and 3B).
 ガスが噴射された弾丸Bは、筒状構造を有し弾丸Bを発射させるための銃身128を通過し、銃口110からその弾丸Bが発射される。なお、上記のとおり、流路123に排出されたガスが、その開いた状態の第2開閉弁125を通過する時点でガス流にのって第2開閉弁125がバネ124の付勢力に反して、銃口110の方向に移動する。弾丸Bが銃口110から離れるタイミングで第2開閉弁125が閉じられるように調整されているので、銃口110からその弾丸Bが発射されるときに第2開閉弁125が閉じられる。従って、第2開閉弁125が閉じられているので、銃身128内にガスは流入することはなく、今度はシリンダ30内にガスが流入することになる。 The bullet B from which the gas is jetted has a cylindrical structure, passes through the barrel 128 for firing the bullet B, and the bullet B is fired from the muzzle 110. As described above, when the gas discharged into the flow path 123 passes through the second on-off valve 125 in the open state, the second on-off valve 125 is against the biasing force of the spring 124 along the gas flow. And move in the direction of the muzzle 110. Since the second on-off valve 125 is adjusted to be closed when the bullet B moves away from the muzzle 110, the second on-off valve 125 is closed when the bullet B is fired from the muzzle 110. Therefore, since the second on-off valve 125 is closed, the gas does not flow into the barrel 128, but this time, the gas flows into the cylinder 30.
 シリンダ30内にガスが流入することによって、ピストン20は、図面右方向に移動する(図4A、B参照)。そのピストン20の移動に伴って、ピストン転動体40が回転する。 By the gas flowing into the cylinder 30, the piston 20 moves in the right direction in the drawing (see FIGS. 4A and 4B). In accordance with the movement of the piston 20, the piston rolling element 40 is rotated.
 さらに、シリンダ30内にガスが流入することによって、ピストン20は、図面右方向に移動する(図5A、B参照)。そのピストン20の移動に伴って、ピストン転動体40がさらに回転する。ピストン20はその最大後退時にシリンダ30の後端開口31よりもさらに後退(図面右方向に移動)する。なお、ピストン20とスライダ130とはその後部で一体に結合されている。従って、ピストン20と同様にスライダ130も後退する。またそれと同時にスライダ130と一体に結合されている銃本体150が後退することにより、本体バネ151が圧縮される。また、スライダ130と一体に結合されているノズル126も後退する(図5A、B参照)。 Further, the gas flows into the cylinder 30, whereby the piston 20 moves in the right direction in the drawing (see FIGS. 5A and 5B). Along with the movement of the piston 20, the piston rolling element 40 further rotates. The piston 20 retracts further (moves to the right in the drawing) than the rear end opening 31 of the cylinder 30 at the maximum retraction thereof. The piston 20 and the slider 130 are integrally coupled at the rear portion. Accordingly, the slider 130 is retracted as well as the piston 20. At the same time, the main body spring 151 is compressed by retracting the gun main body 150 integrally coupled with the slider 130. Further, the nozzle 126 integrally coupled to the slider 130 is also retracted (see FIGS. 5A and 5B).
 そのときに弾丸開口部140が開き、弾丸バネ141によって上昇するように付勢された複数の弾丸Bのうち最上部に位置し、次に発射され次弾となる弾丸B1がさらに上昇する。 At that time, the bullet opening 140 is opened, and the bullet B1 located at the top of the plurality of bullets B biased to ascend by the bullet spring 141 and then fired and the next bullet is further elevated.
 圧縮された本体バネ151が、自然長に復元するに従い、スライダ130が前方(図面左方向)すなわち銃口110の方向に移動すると共に、ピストン転動体40も逆回転し、ピストン20が、図面左方向に移動する(図6A、B参照)。そのときに複数の弾丸Bのうち最上部に位置する弾丸B1がノズル126の銃口110方向の移動により、そのノズル126に弾丸B1が突き動かされ、係合部127にその弾丸B1が係合する。このように、いわゆるブローバックすることで次弾である弾丸B1が装てんされる。このように弾丸Bを発射するたびごとに上記動作が繰り返される。 As the compressed body spring 151 restores to its natural length, the slider 130 moves forward (in the left direction in the drawing), that is, in the direction of the muzzle 110, and the piston rolling element 40 reversely rotates, and the piston 20 moves in the left direction in the drawing. Move to (see FIG. 6A, B). At that time, the bullet B1 positioned at the top of the plurality of bullets B is moved toward the muzzle 110 of the nozzle 126 so that the bullet B1 is pushed to the nozzle 126 and the bullet B1 engages with the engaging portion 127 . In this way, the so-called blowback is loaded with the next bullet, the bullet B1. Thus, each time the bullet B is fired, the above operation is repeated.
 ここで上記動作は、弾丸Bの発射のたびに繰り返され、その動作は瞬間的なものであるために、本実施例における摩擦軽減装置10Aは、ピストン転動体40が回転することによりピストン20とシリンダ30との間に生じる摩擦を可及的に軽減することができ、それによる磨耗を防止することができる。なお、上記のとおり、ピストン転動体40を有することで、ピストン20とシリンダ30とのいわゆる芯ずれを防止することは言うまでもない。 Here, the above operation is repeated each time the projectile B is fired, and since the operation is instantaneous, the friction reducing device 10A in this embodiment is rotated with the piston 20 by the rotation of the piston rolling element 40. The friction generated with the cylinder 30 can be reduced as much as possible, and wear thereby can be prevented. Needless to say, as described above, by having the piston rolling element 40, so-called misalignment between the piston 20 and the cylinder 30 is prevented.
 つぎに第2実施例における摩擦軽減装置10Bについて説明する。なお、摩擦軽減装置10B以外のガス式模擬銃100の構成は上記と同様であるのでその説明は省略する。摩擦軽減装置10Bは、ブローバックさせるための第2ピストン200と第2シリンダ300との間に回転する第2ピストン転動体400を配置することによって、第2ピストン200と第2シリンダ300との間の摩擦を軽減させるためのものである。すなわち、弾丸Bを有するマガジンをガス式模擬銃100に装てんすると第2シリンダ300は上方に押圧されるものの、第2ピストン200は、押圧されないので第2ピストン200の下部200aが相対的に第2シリンダ300と接近し、第2ピストン200と第2シリンダ300との隙間が狭まるという問題が生じるものの、上記第2ピストン転動体400を有することで、第2ピストン200と第2シリンダ300との隙間を適正化する、いわゆる第2ピストン200と第2シリンダ300との間の芯ずれをも解決することで、上記のとおり、第2ピストン200と第2シリンダ300との間の摩擦を軽減させ、それにより第2シリンダ300の磨耗を軽減させるためのものである。 Next, the friction reducing device 10B in the second embodiment will be described. The configuration of the gas simulation gun 100 other than the friction reducing device 10B is the same as that described above, and thus the description thereof is omitted. The friction reducing device 10B is arranged between the second piston 200 and the second cylinder 300 by arranging the second piston rolling element 400 rotating between the second piston 200 and the second cylinder 300 for blowback. To reduce friction. That is, although the second cylinder 300 is pressed upward when the magazine having the bullet B is loaded on the gas simulation gun 100, the second piston 200 is not pressed, so the lower portion 200a of the second piston 200 is relatively the second Although the problem occurs that the gap between the second piston 200 and the second cylinder 300 is narrowed by approaching the cylinder 300, the gap between the second piston 200 and the second cylinder 300 can be obtained by providing the second piston rolling element 400. By reducing the friction between the second piston 200 and the second cylinder 300, as described above, by solving the misalignment between the so-called second piston 200 and the second cylinder 300. Thereby, the wear of the second cylinder 300 is reduced.
 摩擦軽減装置10Bについて説明すると、第2ピストン200は上記のピストン20と同様に圧縮ガスの圧力を受けて後退する方向(図7Aにおいて図面右方向)に移動可能に第2シリンダ300内に配置される。また、第2ピストン200は、第2ピストン本体210と、その先端に配置され弾性を有し、かつ、圧縮ガスを受けとめるためのリング状を呈する第2ピストンパッキン220と、その第2ピストンパッキン220をピストン第2本体210に固定している第2螺子部230を有する。さらに、第2ピストン転動体400を回転可能に保持するための第2ピストン転動体保持部240と、その第2ピストン転動体保持部240を第2ピストン本体210に固定するための第2固定部250を有する。なお、第2固定部250は螺子を使用することができる。 In the friction reducing device 10B, the second piston 200 is disposed in the second cylinder 300 movably in the direction (the drawing right direction in FIG. 7A) in which it receives the pressure of the compressed gas and retracts similarly to the piston 20 described above. Ru. Further, the second piston 200 is provided with a second piston body 210, a second piston packing 220 which is disposed at the tip and has elasticity, and has a ring shape for receiving compressed gas, and the second piston packing 220. And a second screw portion 230 fixing the piston to the second piston main body 210. Furthermore, a second piston rolling element holding portion 240 for holding the second piston rolling element 400 rotatably and a second fixing portion for fixing the second piston rolling element holding portion 240 to the second piston main body 210 It has 250. In addition, the 2nd fixing | fixed part 250 can use a screw.
 また、第2シリンダ300は、摩擦軽減装置10Aにおけるシリンダ30と同様であるが念のため説明すると、筒状を呈し、後述する流路123内に排出されたガスが、第2シリンダ300内に流入することによって、第2ピストン200を後退する方向に移動させるものである。 The second cylinder 300 is similar to the cylinder 30 in the friction reducing device 10A, but to be on the assumption, it has a cylindrical shape, and the gas discharged into the flow path 123 described later is contained in the second cylinder 300. By flowing in, the second piston 200 is moved in the backward direction.
 第2ピストン転動体400は、上記のとおり第2ピストン200の移動に応じて回転するものであり、言わば1輪車の車輪のように水平方向に配置され、軸となる第2車軸部410と、その第2車軸部410に配置され、かつ、それと共に回転するほぼ円形の第2車輪部420と、を有するものである。もっとも、軸となる第2車軸部410と第2車輪部420とは、共に回転せず、それぞれが独立して回転するものであっても良い。また、ほぼ円形の第2車輪部420の中心にその軸となる第2車軸部410が配置された状態を呈しており、第2車輪部420が水平方向に配置されたその第2車軸部410に対して第2ピストン転動体保持部240が、図7Bに記載しているように回転可能に配置されている。 As described above, the second piston rolling element 400 rotates in response to the movement of the second piston 200, and is disposed horizontally like the wheel of a single wheel, so to speak, with the second axle portion 410 serving as the shaft. , And a substantially circular second wheel portion 420 disposed on the second axle portion 410 and rotating therewith. However, the 2nd axle part 410 and the 2nd wheel part 420 which become a shaft may not rotate together, but may rotate independently, respectively. In addition, a state in which the second axle portion 410 serving as the axis thereof is disposed at the center of the substantially circular second wheel portion 420 is exhibited, and the second axle portion 410 in which the second wheel portion 420 is disposed in the horizontal direction. On the other hand, the second piston rolling element holding portion 240 is rotatably disposed as described in FIG. 7B.
 上記第2ピストン転動体保持部240は、第2ピストン転動体固定部250によって、第2車輪部420が回転可能に第2ピストン本体210に固定されている。また、第2車輪部420における第2シリンダ300に接する面430は、その第2シリンダ300の内周面に倣うように曲面状を呈している(図7B参照)。従って、第2車輪部420は、第2シリンダ300の内周面にその曲面状の面で接している。 The second piston rolling element holding portion 240 is rotatably fixed to the second piston main body 210 by the second piston rolling element fixing portion 250 so that the second wheel portion 420 can rotate. Further, the surface 430 of the second wheel 420 in contact with the second cylinder 300 has a curved surface so as to follow the inner circumferential surface of the second cylinder 300 (see FIG. 7B). Therefore, the second wheel portion 420 is in contact with the inner circumferential surface of the second cylinder 300 with its curved surface.
 上記構成の第2実施例における摩擦軽減装置10Bは、第2ピストン転動体400が回転することにより第2ピストン200と第2シリンダ300との間に生じる摩擦を可及的に軽減することができ、それによる磨耗を防止することができる。また、これについても、上記のとおり、第2ピストン転動体400を有することで、第2ピストン200と第2シリンダ300とのいわゆる芯ずれを防止することは言うまでもない。 The friction reducing device 10B according to the second embodiment of the above configuration can reduce as much as possible the friction generated between the second piston 200 and the second cylinder 300 by rotation of the second piston rolling element 400. , It can prevent wear. In addition, it is needless to say that the so-called misalignment between the second piston 200 and the second cylinder 300 can be prevented by having the second piston rolling element 400 as described above.
 また、第3の実施例における摩擦軽減装置10Cについて説明する。第3実施例における摩擦軽減装置10Cは、他のガス式模擬銃101に配置されているもので、圧縮ガスが流入し、次に発射をする弾丸である次弾を装てんするために後退する方向に移動する第3ピストン500と、その第3ピストン500と後部で一体に結合されその第3ピストン500の後退方向の移動に従って後退する第3スライダ600と、第3ピストン500を移動可能に収納する第3シリンダ700と、その第3スライダ600と第3シリンダ700との間に回転するスライダ転動体800を配置することによって、第3スライダ600と一体に結合されている第3ピストン500と、第3シリンダ700と、の摩擦を軽減させ、それにより第3シリンダ700の磨耗を軽減させるためのものである。すなわち、弾丸Bを有するマガジンを他のガス式模擬銃101に装てんすると第3シリンダ700は上方に押圧されるものの、第3ピストン500は、押圧されないので第3ピストン500の第3下部500aが相対的に第3シリンダ700と接近し、第3ピストン500と第3シリンダ700との隙間が狭まるという問題が生じる。しかしながら、上記第3スライダ600と第3シリンダ700との間に回転するスライダ転動体800を有することで、第3スライダ600と第3シリンダ700との間の隙間を適正化し、また、その第3スライダ600と一体に結合されている第3ピストン500と第3シリンダ700との隙間を適正化するいわゆる芯ずれをも解決することで、上記のとおり、第3ピストン500と第3シリンダ700との間の摩擦を軽減させ、それにより第3シリンダ700の磨耗を軽減させるためのものである。なお、ブローバックについては上記のとおりである。また、他のガス式模擬銃101についてもガス式模擬銃100との相違は、第1の実施例における摩擦軽減装置10Aではなく、第3の実施例における摩擦軽減装置10Cを有している点である。 The friction reducing device 10C in the third embodiment will be described. The friction reducing device 10C in the third embodiment is disposed in another gas-type simulated gun 101, and the direction in which compressed gas flows in and then retracts to load the next bullet, which is a bullet to be fired next. And a third slider 600 integrally joined at the rear with the third piston 500 and moving backward according to the movement of the third piston 500 in the backward direction, and the third piston 500 movably accommodated The third piston 500 integrally coupled to the third slider 600 by disposing the third cylinder 700 and the slider rolling element 800 rotating between the third slider 600 and the third cylinder 700; The friction of the third cylinder 700 is reduced to thereby reduce the wear of the third cylinder 700. That is, when the magazine having the bullet B is loaded on another gas-type simulated gun 101, the third cylinder 700 is pressed upward, but the third piston 500 is not pressed, so the third lower portion 500a of the third piston 500 is relative As a result, the third cylinder 700 approaches the third cylinder 700, and the gap between the third piston 500 and the third cylinder 700 narrows. However, by having the slider rolling element 800 rotating between the third slider 600 and the third cylinder 700, the gap between the third slider 600 and the third cylinder 700 is optimized, and the third As described above, by solving the so-called misalignment which optimizes the gap between the third piston 500 and the third cylinder 700 integrally coupled to the slider 600, as described above, the third piston 500 and the third cylinder 700 To reduce the friction between them and thereby reduce the wear of the third cylinder 700. The blowback is as described above. Further, the difference between the other gas simulation guns 101 and the gas simulation gun 100 is that the friction reduction device 10C of the third embodiment is included instead of the friction reduction device 10A of the first embodiment. It is.
 さらに、摩擦軽減装置10Cについて説明すると、第3ピストン500は後述するとおり圧縮ガスの圧力を受けて後退移動(図8Aにおいて図面右方向に移動することをいう)するように第3シリンダ700内に配置されている。また、第3ピストン500は、第3ピストン本体501と、その先端に配置され弾性を有し、かつ、リング状を呈する第3ピストンパッキン502と、その第3ピストンパッキン502を第3ピストン本体501に固定している第3螺子部503を有する。この第3ピストンパッキン502によって、第3シリンダ700との気密を確保している。さらに、スライダ転動体800を回転可能に保持するスライダ転動体保持部804を有する(図8B参照)。 Further, the friction reducing device 10C will be described. The third piston 500 receives the pressure of the compressed gas and moves backward (means moving to the right in the drawing in FIG. 8A) as described later. It is arranged. The third piston 500 has a third piston main body 501, a third piston packing 502 which is disposed at its tip end and has elasticity, and exhibits a ring shape, and the third piston packing 502 as a third piston main body 501. And a third screw portion 503 fixed to the Airtightness with the third cylinder 700 is secured by the third piston packing 502. Furthermore, it has the slider rolling element holding part 804 which hold | maintains the slider rolling element 800 rotatably (refer FIG. 8B).
 第3シリンダ700の内部は、筒状を呈するものである。また、後述する流路123内に排出されたガスが、第3シリンダ700内に流入することによって、その内部に収納された第3ピストン500を後退する方向に移動させるものである。 The inside of the third cylinder 700 has a tubular shape. Further, the gas discharged into the flow path 123 described later flows into the third cylinder 700, thereby moving the third piston 500 accommodated therein in a direction to retract it.
 第3スライダ600は、上述の第3ピストン500とその後部において一体に結合され、第3ピストン500の後部方向の移動によりその第3スライダ600も後部方向に移動するものである。また、上記のとおり、第3スライダ600と、第3ピストン500とその後部において一体に結合されていると共に、その前部では、第3シリンダ700を、第3ピストン500と第3スライダ600で上下に挟むように構成されている。 The third slider 600 is integrally coupled to the above-described third piston 500 at its rear portion, and the third slider 600 is also moved rearward by the rearward movement of the third piston 500. In addition, as described above, the third slider 600, the third piston 500, and the rear portion are integrally connected, and at the front portion, the third cylinder 700 is vertically moved by the third piston 500 and the third slider 600. It is configured to be sandwiched between.
 スライダ転動体800は、上記のとおり第3ピストン500の移動に応じて回転するものであり、言わば列車の車輪のように水平方向に配置された回転可能なスライダ車軸部801とその両端に配置されたスライダ車輪部802、802とを有し、上記スライダ転動体800は、スライダ転動体保持部804に回転可能に第3スライダ600に固定されている。また、スライダ車輪部802、802における第3シリンダ700に接するスライダ車輪面803、803は、曲面状を呈している。従って、スライダ車輪部802、802におけるスライダ車輪面803、803は、第3シリンダ700の外周面に面で接している(図8A、B参照)。 The slider rolling element 800 is rotated according to the movement of the third piston 500 as described above, and is disposed at both ends of the rotatable slider axle portion 801 horizontally disposed like the wheels of a train and so on The slider rolling elements 800 are rotatably fixed to the slider rolling element holding section 804 to the third slider 600. Further, slider wheel surfaces 803 and 803 in contact with the third cylinder 700 in the slider wheel portions 802 and 802 have a curved surface shape. Therefore, the slider wheel surfaces 803 and 803 in the slider wheel portions 802 and 802 are in surface contact with the outer peripheral surface of the third cylinder 700 (see FIGS. 8A and 8B).
 ここで、他のガス式模擬銃101の動作と第3の実施例における摩擦軽減装置10Cの動作について併せて説明する。なお、上述のガス式模擬銃100と同様の部分については同じ符号を付して説明する。図8の状態から、いわゆるコッキング動作をすることにより、最初に発射をする弾丸Bを、係合部127に係合させる。 Here, the operation of the other gas simulation gun 101 and the operation of the friction reducing device 10C in the third embodiment will be described together. The same parts as those of the above-described gas type simulated gun 100 will be described with the same reference numerals. From the state of FIG. 8, the bullet B that is fired first is engaged with the engagement portion 127 by performing a so-called cocking operation.
 次に、トリガー120を、引くことにより、図示しない部材により、閉じられていた第1開閉弁122が移動することで、タンク121内にあらかじめ充填されていた液化ガスが気化し、そのガスが、その第1開閉弁122から流路123に排出される。 Next, by pulling the trigger 120, the first on-off valve 122 which has been closed is moved by a member not shown, whereby the liquefied gas previously filled in the tank 121 is vaporized, and the gas is The fluid is discharged from the first on-off valve 122 into the flow passage 123.
 バネ124は、第2開閉弁125を、銃口110とは反対の方向(図9Aにおける図面右方向)に付勢している。すなわち、その第2開閉弁125が開く状態に付勢している。この状態において、流路123に排出されたガスが、その開いた状態の第2開閉弁125を通過し、ノズル126内を通り、係合部127に係合している弾丸Bに噴射する。なお、係合部127は弾性を有するものである。 The spring 124 biases the second on-off valve 125 in the direction opposite to the muzzle 110 (right direction in the drawing of FIG. 9A). That is, the second on-off valve 125 is biased to be open. In this state, the gas discharged into the flow path 123 passes through the second on-off valve 125 in the open state, passes through the inside of the nozzle 126, and is jetted to the bullet B engaged with the engaging portion 127. The engaging portion 127 is elastic.
 ガスが噴射された弾丸Bは、筒状構造を有し弾丸Bを発射させるための銃身128内を急速に移動する。なお、その時点においては、第3ピストン500は、第3シリンダ700内に配置され、その第3ピストン500は、第3シリンダ700内において、図面左方向に配置されている(図9A、B参照)。 The projectile B from which the gas is injected has a cylindrical structure and moves rapidly in the barrel 128 for firing the projectile B. At that time, the third piston 500 is disposed in the third cylinder 700, and the third piston 500 is disposed in the third cylinder 700 in the left direction in the drawing (see FIGS. 9A and 9B). ).

ガスが噴射された弾丸Bは、筒状構造を有し弾丸Bを発射させるための銃身128を通過し、銃口110からその弾丸Bが発射される。なお、上記のとおり、流路123に排出されたガスが、その開いた状態の第2開閉弁125を通過する時点でガス流にのって第2開閉弁125がバネ124の付勢力に反して、銃口110の方向に移動する。弾丸Bが銃口110から離れるタイミングで第2開閉弁125が閉じられるように調整されているので、銃口110からその弾丸Bが発射されるときに第2開閉弁125が閉じられる。従って、第2開閉弁125が閉じられているので、銃身128内にガスは流入することはなく、今度は第3シリンダ700内にガスが流入することになる。

The bullet B from which the gas is jetted has a cylindrical structure, passes through the barrel 128 for firing the bullet B, and the bullet B is fired from the muzzle 110. As described above, when the gas discharged into the flow path 123 passes through the second on-off valve 125 in the open state, the second on-off valve 125 is against the biasing force of the spring 124 along the gas flow. And move in the direction of the muzzle 110. Since the second on-off valve 125 is adjusted to be closed when the bullet B moves away from the muzzle 110, the second on-off valve 125 is closed when the bullet B is fired from the muzzle 110. Therefore, since the second on-off valve 125 is closed, no gas flows into the barrel 128, and this time, the gas flows into the third cylinder 700.
 第3シリンダ700内にガスが流入することによって、第3ピストン500は、図面右方向に移動する(図10A、B参照)。その第3ピストン500に移動に伴って、スライダ転動体800が回転する。 The gas flows into the third cylinder 700, whereby the third piston 500 moves in the right direction in the drawing (see FIGS. 10A and 10B). As the third piston 500 moves, the slider rolling element 800 rotates.
 さらに、第3シリンダ700内にガスが流入することによって、第3ピストン500は、図面右方向に移動する(図11A、B参照)。その第3ピストン500の移動に伴って、第3スライダ600に配置されたスライダ転動体800がさらに回転する。第3ピストン500はその最大後退時に第3シリンダ700の第3後端開口701よりもさらに後退する。なお、上述のとおり第3ピストン500と第3スライダ600とはその後部で一体に結合されているので、第3ピストン500と同様に第3スライダ600も後退する。またそれと同時に第3スライダ600と一体に結合されている銃本体150が後退することにより、本体バネ151が圧縮される。また、第3スライダ600と一体に結合されているノズル126も後退する。 Further, the gas flows into the third cylinder 700, whereby the third piston 500 moves in the right direction in the drawing (see FIGS. 11A and 11B). Along with the movement of the third piston 500, the slider rolling element 800 disposed on the third slider 600 further rotates. The third piston 500 retracts further than the third rear end opening 701 of the third cylinder 700 at its maximum retraction. As described above, since the third piston 500 and the third slider 600 are integrally connected at the rear portion, the third slider 600 also retracts in the same manner as the third piston 500. At the same time, the main body spring 151 is compressed by retracting the gun main body 150 integrally coupled with the third slider 600. In addition, the nozzle 126 integrally coupled to the third slider 600 is also retracted.
 そのときに弾丸開口部140が開き、弾丸バネ141によって上昇するように付勢された複数の弾丸Bのうち最上部に位置する次に発射され、次弾となる弾丸B1がさらに上昇する。 At that time, the bullet opening 140 is opened, and the bullet B1 positioned at the top of the plurality of bullets B biased to ascend by the bullet spring 141 is fired next, and the bullet B1 to be the next bullet further rises.
 圧縮された本体バネ151が、自然長に復元するに従い、第3スライダ600が銃口110の方向に移動すると共に、第3スライダ600に配置されたスライダ転動体800も逆回転し、第3ピストン500が、図面左方向に移動する(図12A、B参照)。そのときに複数の弾丸Bのうち最上部に位置する弾丸B1がノズル126の銃口110方向の移動により、そのノズル126に弾丸B1が突き動かされ、係合部127にその弾丸B1が係合する。このように、いわゆるブローバックすることで次弾である弾丸B1が装てんされる。このように弾丸Bを発射するたびごとに上記動作が繰り返される。 As the compressed body spring 151 restores to the natural length, the third slider 600 moves in the direction of the muzzle 110, and the slider rolling element 800 disposed on the third slider 600 also reversely rotates, and the third piston 500 Moves in the left direction of the drawing (see FIGS. 12A and 12B). At that time, the bullet B1 positioned at the top of the plurality of bullets B is moved toward the muzzle 110 of the nozzle 126 so that the bullet B1 is pushed to the nozzle 126 and the bullet B1 engages with the engaging portion 127 . In this way, the so-called blowback is loaded with the next bullet, the bullet B1. Thus, each time the bullet B is fired, the above operation is repeated.
 ここで上記動作は、弾丸Bの発射のたびに繰り返され、その動作は瞬間的なものであるために、従来であれば第3ピストン500と第3スライダ600との間に生じる摩擦をスライダ転動体800が回転することにより可及的に軽減することができ、それによる磨耗を、防止することができる。また、これについても、上記のとおり、スライダ転動体800を有することで、第3スライダ600と第3シリンダ700との間の隙間を適正化し、その第3スライダ600と一体に結合されている第3ピストン500と、第3シリンダ700と、の間の隙間を適正化する、いわゆる芯ずれを防止することは言うまでもない。 Here, the above operation is repeated each time the projectile B is fired, and since the operation is instantaneous, the friction generated between the third piston 500 and the third slider 600 is The rotation of the moving body 800 can reduce it as much as possible, thereby preventing wear. Also for this, as described above, by having the slider rolling element 800, the gap between the third slider 600 and the third cylinder 700 is optimized, and the third slider 600 is integrally coupled to the third slider 600. It is needless to say that the so-called misalignment is prevented by optimizing the gap between the three piston 500 and the third cylinder 700.
 つぎに第4実施例における摩擦軽減装置10Dについて説明する。なお、第3実施例における摩擦軽減装置10C以外の他のガス式模擬銃101の構成は上記と同様であるのでその説明は省略する。第4実施例における摩擦軽減装置10Dと、第3実施例における摩擦軽減装置10Cとの相違は、スライダ転動体800と第2スライダ転動体900との構成の相違である。従って、ブローバックさせるための第3ピストン500とその後部で一体に結合されている第3スライダ600と、第3シリンダ700との間に回転する第2スライダ転動体900を配置することによって、第3スライダ600と、第3シリンダ700との間の摩擦を軽減させるためのものである点は、同様である。 Next, a friction reducing device 10D according to a fourth embodiment will be described. The configuration of the gas simulation gun 101 other than the friction reducing device 10C in the third embodiment is the same as that described above, and thus the description thereof will be omitted. The difference between the friction reducing device 10D in the fourth embodiment and the friction reducing device 10C in the third embodiment is the difference in configuration between the slider rolling element 800 and the second slider rolling element 900. Therefore, by arranging the second slider rolling element 900 that rotates between the third slider 600 and the third cylinder 700, which are integrally coupled at the rear portion and the third piston 500 for blowback, The third embodiment is the same as the third embodiment for reducing the friction between the third slider 600 and the third cylinder 700.
 第2スライダ転動体900は、上記のとおり第3スライダ600の移動に応じて回転するものであり、言わば1輪車の車輪のように水平方向に配置され、軸となる第2スライダ車軸部910に配置され、かつ、それと共に回転するほぼ円形の第2スライダ車輪部920と、を有するものである。もっとも、軸となる第2スライダ車軸部910と第2スライダ車輪部920とは、共に回転せず、それぞれが独立して回転するものであっても良い。また、ほぼ円形の第2スライダ車輪部920の中心にその軸となる第2スライダ車軸部910が配置されており、第2スライダ車輪部920が、水平方向に配置されたその第2スライダ車軸部910に対して第2スライダ転動体保持部940が、図13Bに記載しているように回転可能に配置されている。 The second slider rolling element 900 rotates in response to the movement of the third slider 600 as described above, and is disposed horizontally like a wheel of a single wheel, and serves as an axis of the second slider axle 910 as an axis. And a substantially circular second slider wheel portion 920 which rotates with it. However, the second slider axle unit 910 and the second slider wheel unit 920 as the shafts may not rotate together, but may rotate independently. In addition, a second slider axle 910 serving as an axis is disposed at the center of the substantially circular second slider wheel 920, and the second slider axle 920 is disposed horizontally in the second slider axle 910. With respect to 910, the second slider rolling element holding portion 940 is rotatably disposed as described in FIG. 13B.
 上記第2スライダ転動体保持部940によって、第2スライダ転動体900が回転可能に第3スライダ600に固定されている。また、第2スライダ車輪部920における第3シリンダ700に接する面である、第2スライダ車輪面930は、曲面状を呈している(図13B参照)。 The second slider rolling element 900 is rotatably fixed to the third slider 600 by the second slider rolling element holder 940. The second slider wheel surface 930, which is a surface of the second slider wheel 920 in contact with the third cylinder 700, has a curved surface (see FIG. 13B).
 上記の第3ピストン500は、圧縮ガスの圧力を受けて後退する方向(図13Aにおいて図面右方向)に移動可能に第3シリンダ700内に配置される。また、第3シリンダ700は、摩擦軽減装置10Aにおけるシリンダ30と同様であるが念のため説明すると、筒状を呈し、後述する流路123内に排出されたガスが、第2シリンダ300内に流入することによって、第3ピストン500を後退する方向に移動させるものである。 The above-mentioned third piston 500 is disposed in the third cylinder 700 movably in the direction (the right direction in the drawing in FIG. 13A) of receiving the pressure of the compressed gas. The third cylinder 700 is the same as the cylinder 30 in the friction reducing device 10A, but to be on the assumption, it has a cylindrical shape, and the gas discharged into the flow path 123 described later is contained in the second cylinder 300. By flowing in, the third piston 500 is moved in the backward direction.
 このような構成の摩擦軽減装置10Dについては、弾丸Bの発射のたびに繰り返され、その動作は瞬間的なものであるために、従来であれば第3ピストン500と第3スライダ600との間に生じる摩擦を第2スライダ転動体900が回転することにより可及的に軽減することができ、それによる磨耗を、防止することができる。これについても、上記のとおり、第2スライダ転動体900を有することで、第3スライダ600と第3シリンダ700との間の位置を適正化し、その第3スライダ600と一体に結合されている第3ピストン500と第3シリンダ700と間の隙間を適正化することでいわゆる芯ずれを防止することは言うまでもない。 The friction reducing device 10D having such a configuration is repeated each time the projectile B is fired, and since the operation is instantaneous, conventionally between the third piston 500 and the third slider 600 according to the prior art. The friction generated in the second slider rolling element 900 can be reduced as much as possible by the rotation of the second slider rolling element 900, and the wear thereby can be prevented. Also for this, as described above, by having the second slider rolling element 900, the position between the third slider 600 and the third cylinder 700 is optimized, and the third slider 600 is integrally coupled to the third slider 600. It goes without saying that so-called misalignment can be prevented by optimizing the gap between the three piston 500 and the third cylinder 700.
 また、第1の実施例における摩擦軽減装置10Aと、第2の実施例における摩擦軽減装置10Bとのいずれかをガス式模擬銃100に有することもできる。また、第3の実施例における摩擦軽減装置10Cと、第4の実施例における摩擦軽減装置10Dとのいずれかをガス式模擬銃101に有することもできる。さらに、第1の実施例における摩擦軽減装置10Aと、第2の実施例における摩擦軽減装置10Bとのいずれかと、第3の実施例における摩擦軽減装置10Cと、第4の実施例における摩擦軽減装置10Dとのいずれかを同時にガス式模擬銃に配置することもできる(図示せず)。 Further, either of the friction reducing device 10A in the first embodiment and the friction reducing device 10B in the second embodiment can be provided in the gas simulation gun 100. Further, either of the friction reducing device 10C in the third embodiment and the friction reducing device 10D in the fourth embodiment can be provided in the gas simulation gun 101. Furthermore, any one of the friction reducing device 10A in the first embodiment and the friction reducing device 10B in the second embodiment, the friction reducing device 10C in the third embodiment, and the friction reducing device in the fourth embodiment Either 10D can be placed on the gas simulant simultaneously (not shown).
10A 第1の実施例における摩擦軽減装置
10B 第2の実施例における摩擦軽減装置
10C 第3の実施例における摩擦軽減装置
10D 第4の実施例における摩擦軽減装置
20 ピストン
30 シリンダ
40 ピストン転動体
41 車軸部
42 車輪部
100 ガス式模擬銃
101 他のガス式模擬銃
200 第2ピストン
300 第2シリンダ
400 第2ピストン転動体
410 第2車軸部
420 第2車輪部
500 第3ピストン
600 第3スライダ
700 第3シリンダ
800 スライダ転動体
801 スライダ車軸部
802 スライダ車輪部
900 第2スライダ転動体
910 第2スライダ車軸部
920 第2スライダ車輪部
10A Friction reducing device 10B in the first embodiment Friction reducing device 10C in the second embodiment Friction reducing device 10D in the third embodiment Friction reducing device 20 in the fourth embodiment Piston 30 Cylinder 40 Piston rolling element 41 Axle Part 42 Wheel part 100 Gas simulated gun 101 Other gas simulated gun 200 Second piston 300 Second cylinder 400 Second piston rolling element 410 Second axle part 420 Second wheel part 500 Third piston 600 Third slider 700 Third slider 3 cylinder 800 slider rolling element 801 slider axle section 802 slider wheel section 900 second slider rolling element 910 second slider axle section 920 second slider wheel section

Claims (9)

  1. ガスが流入し、次弾を装てんさせるために後退移動するピストンと、
    前記ピストンを移動可能に収納するシリンダと、
    前記ピストンに、回転可能に配置されたピストン転動体と、を有し、
    前記ピストンが、後退移動する際に、前記ピストンに回転可能に配置された前記ピストン転動体が、前記シリンダの内部に接することで、前記ピストン転動体が回転する前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置。
    A piston that moves in to allow gas to flow in and to load the next bullet;
    A cylinder movably accommodating the piston;
    A piston rolling element rotatably disposed on the piston;
    When the piston moves backward, the piston rolling element rotatably disposed on the piston contacts the inside of the cylinder, whereby the piston rolling body is rotated and between the piston and the cylinder Friction reducing device to reduce friction.
  2. 前記ピストン転動体は、水平方向に配置された回転可能な車軸部と、
    その両端に配置された車輪部と、を有する請求項1記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置。
    The piston rolling element is a horizontally disposed rotatable axle portion;
    2. A friction reducing device for reducing friction between the piston and the cylinder according to claim 1, further comprising: wheel portions disposed at both ends thereof.
  3. 前記ピストン転動体は、水平方向に配置され、軸となる第2車軸部と、
    前記第2車軸部に配置した第2車輪部と、を有し、
    前記第2車輪部の中心にその軸となる前記第2車軸部を配置した請求項1記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置。
    The piston rolling element is disposed in the horizontal direction, and is a second axle portion serving as a shaft;
    And a second wheel portion disposed at the second axle portion,
    The friction reducing device for reducing the friction between the piston and the cylinder according to claim 1, wherein the second axle portion serving as its axis is disposed at the center of the second wheel portion.
  4. ガスが流入し、次弾を装てんさせるために後退移動するピストンと、
    前記ピストンと一体に結合されているスライダと、
    前記ピストンを移動可能に収納するシリンダと、
    前記スライダに、回転可能に配置されたスライダ転動体と、を有し、
    前記ピストンが、後退移動し、前記ピストンと一体に結合されている前記スライダが後退移動する際に、前記スライダに回転可能に配置された前記スライダ転動体が、前記シリンダの外部に接することで、前記スライダ転動体が回転すると共に前記スライダと一体に結合されている前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置。
    A piston that moves in to allow gas to flow in and to load the next bullet;
    A slider integrally coupled to the piston;
    A cylinder movably accommodating the piston;
    A slider roller rotatably disposed on the slider;
    When the piston moves backward and the slider integrally connected to the piston moves backward, the slider rolling element rotatably disposed on the slider contacts the outside of the cylinder. A friction reducing device for reducing friction between the cylinder and the piston which is integrally coupled with the slider while the slider rolling element rotates.
  5. 前記スライダ転動体は、水平方向に配置された回転可能なスライダ車軸部と、
    その両端に配置されたスライダ車輪部と、を有する請求項4記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置。
    The slider rolling element is a horizontally-arranged rotatable slider axle portion;
    5. A friction reducing device for reducing friction between the piston and the cylinder according to claim 4, further comprising slider wheel portions disposed at both ends thereof.
  6. 前記スライダ転動体は、水平方向に配置され、軸となる第2スライダ車軸部と、
    前記第2スライダ車軸部に配置した第2スライダ車輪部と、を有し、
    前記第2スライダ車輪部の中心にその軸となる前記第2スライダ車軸部を配置した請求項4記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置。
    The slider rolling element is disposed in the horizontal direction, and a second slider axle portion serving as an axis;
    And a second slider wheel disposed at the second slider axle.
    5. A friction reducing device for reducing friction between the piston and the cylinder according to claim 4, wherein the second slider axle which is an axis of the second slider wheel is disposed at the center of the second slider wheel.
  7. 前記請求項1から3のいずれか1項記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置と、を有するブローバックするガス式模擬銃。 A blow-back type gas simulation gun comprising a friction reducing device for reducing friction between the piston and the cylinder according to any one of claims 1 to 3.
  8. 前記請求項4から6のいずれか1項記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置と、を有するブローバックするガス式模擬銃。 A blowout gas gun having a friction reducing device for reducing friction between the piston and the cylinder according to any one of claims 4 to 6.
  9. 前記請求項1から3のいずれか1項記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置と、前記請求項4から6のいずれか1項記載の前記ピストンと前記シリンダとの間の摩擦を軽減する摩擦軽減装置と、を有するブローバックするガス式模擬銃。 A friction reducing device for reducing friction between the piston and the cylinder according to any one of claims 1 to 3, the piston according to any one of claims 4 to 6, and the cylinder And a friction reducing device for reducing friction between the blowout and gas simulated guns.
PCT/JP2017/040318 2017-11-08 2017-11-08 Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns WO2019092820A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019551813A JP7006965B2 (en) 2017-11-08 2017-11-08 Friction reduction device that reduces friction between the piston and cylinder in a gas-type simulated gun
PCT/JP2017/040318 WO2019092820A1 (en) 2017-11-08 2017-11-08 Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns
EP17931574.2A EP3708943A4 (en) 2017-11-08 2017-11-08 Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns
TW107139337A TWI795459B (en) 2017-11-08 2018-11-06 Friction reducing device for reducing friction between piston and cylinder and gas type dummy gun for recoil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040318 WO2019092820A1 (en) 2017-11-08 2017-11-08 Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns

Publications (1)

Publication Number Publication Date
WO2019092820A1 true WO2019092820A1 (en) 2019-05-16

Family

ID=66438304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040318 WO2019092820A1 (en) 2017-11-08 2017-11-08 Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns

Country Status (4)

Country Link
EP (1) EP3708943A4 (en)
JP (1) JP7006965B2 (en)
TW (1) TWI795459B (en)
WO (1) WO2019092820A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302196A (en) * 2002-04-08 2003-10-24 Sheriff:Kk Gun
JP2004205053A (en) * 2002-12-20 2004-07-22 Tokyo Marui:Kk Slide device in blowback toy gun
JP2014240722A (en) 2013-06-12 2014-12-25 マルシン工業株式会社 Blowback gas gun

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200975855Y (en) * 2006-11-20 2007-11-14 张驰 Electric air gun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302196A (en) * 2002-04-08 2003-10-24 Sheriff:Kk Gun
JP2004205053A (en) * 2002-12-20 2004-07-22 Tokyo Marui:Kk Slide device in blowback toy gun
JP2014240722A (en) 2013-06-12 2014-12-25 マルシン工業株式会社 Blowback gas gun

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3708943A4

Also Published As

Publication number Publication date
EP3708943A1 (en) 2020-09-16
TW201918685A (en) 2019-05-16
EP3708943A4 (en) 2021-07-07
TWI795459B (en) 2023-03-11
JP7006965B2 (en) 2022-01-24
JPWO2019092820A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
EP3276297B1 (en) Multiple bullet firing-type electric gun
US20070289586A1 (en) Feeder for Air Gun and Air Gun
KR20180011462A (en) Bolt stop shock absorber in gun
JP6557324B2 (en) Displacement system of motor mounting angle in simulated gun
WO2019092820A1 (en) Friction reduction device to reduce friction between piston and cylinder in gas-type replica guns
CN107615001B (en) Centering device for mounting gun barrel
US10323892B2 (en) Pellet loading system
US7500478B2 (en) Paintball gun percussion structure
US9423196B2 (en) Gap seal for projectile launching device
CN112469955B (en) System for loading bullets
JP6145770B2 (en) Blowback gas gun
US463463A (en) Eusvjatically-operated gun-carriage
US1043534A (en) Air pistol or gun.
US748513A (en) Recoil-check for guns.
EP3276296B1 (en) Hop-up adjusting device in imitation gun
JP6649361B2 (en) Supply port opening and closing device for simulated gun
JP5886719B2 (en) Gas gun
US1184065A (en) Breech mechanism for automatic firearms.
JP2023000334A (en) Cartridge for air gun and air gun using the cartridge
US384942A (en) And edward h
JP5368435B2 (en) Needle assembly
US1298907A (en) Ordnance breech mechanism.
EP1698848A1 (en) Feeder for air gun and air gun
GB190917996A (en) Improvements in or relating to Differential Recoil Guns.
WO2015102592A1 (en) Gap seal for projectile launching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017931574

Country of ref document: EP

Effective date: 20200608