WO2019091130A1 - 次/超同步谐振/振荡的系统级保护系统及方法 - Google Patents

次/超同步谐振/振荡的系统级保护系统及方法 Download PDF

Info

Publication number
WO2019091130A1
WO2019091130A1 PCT/CN2018/094238 CN2018094238W WO2019091130A1 WO 2019091130 A1 WO2019091130 A1 WO 2019091130A1 CN 2018094238 W CN2018094238 W CN 2018094238W WO 2019091130 A1 WO2019091130 A1 WO 2019091130A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
synchronous
impedance
sub
protection
Prior art date
Application number
PCT/CN2018/094238
Other languages
English (en)
French (fr)
Inventor
谢小荣
刘威
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019091130A1 publication Critical patent/WO2019091130A1/zh
Priority to US16/701,305 priority Critical patent/US11476670B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/262Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of switching or blocking orders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/263Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/242Arrangements for preventing or reducing oscillations of power in networks using phasor measuring units [PMU]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution

Definitions

  • the present invention relates to the field of power system protection technologies, and in particular, to a system/level protection system and method for secondary/super synchronous resonance/oscillation.
  • renewable energy power generation such as wind power, photovoltaic power generation, etc.
  • the grid connection problem of renewable energy power generation has brought new challenges to the stable operation of power systems. For example, sub/super-synchronous resonance/oscillation caused by the interaction between a converter-based wind turbine and an AC grid may cause large-area fans to be off-grid and even seriously threaten the stable operation of power equipment and the entire system.
  • protection methods based on voltage, current or power have major drawbacks because they do not accurately measure the impact of a wind turbine or a wind farm on the overall system, and sub/super synchronization Resonance/oscillation is the dynamic behavior of the whole system. Therefore, the protection should also be based on the whole system. Only the local information is used to judge the protection behavior, the accuracy is poor, the reliability and security are low, and it needs to be improved.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • Another object of the present invention is to provide a system level protection method for sub/super synchronous resonance/oscillation.
  • an embodiment of the present invention provides a system-level protection system for secondary/super-synchronous resonance/oscillation, including: a centralized protection coordinator disposed in a control center and multiple devices disposed in a substation or a wind farm A distributed protection relay, wherein each distributed protection relay of the plurality of distributed protection relays collects three-phase voltages and currents at corresponding device ports, acquires time-domain waveforms of voltage and current, and filters through rated frequency notch filters In addition to the power frequency signal, the sub/super-synchronization signal is obtained by modal filtering, and the sub-/super-synchronous phasor of voltage and current is obtained by frequency domain transformation to obtain the sub/super synchronous impedance, and the sub/super synchronous component is larger than a local protection action is triggered when a preset threshold is received or a system level protection signal is received; the centralized protection coordinator acquires a secondary/super synchronous impedance of the wind farm measured by the plurality of distributed protection relays, according to a
  • the system-level protection system of the sub/super-synchronous resonance/oscillation can determine the wind turbines that need to be cut by different wind farms by calculating the sensitivity of the entire system aggregate impedance to the number of wind turbines in different wind farms. Quantity to eliminate system secondary/super-synchronous resonance/oscillation, and to provide an accurate, fast, and reliable protection method to minimize the number of cutters while maintaining system stability to minimize losses and effectively improve the system Safety and reliability to better ensure the stability of the system.
  • system level protection system of the secondary/super-synchronous resonance/oscillation may further have the following additional technical features:
  • the centralized protection coordinator is specifically configured to obtain an impedance value of a wind farm from each of the distributed protection relays, and according to the impedance value and the line impedance of the wind farm.
  • the grid impedance and the circuit topology obtain the sub/super synchronous aggregate impedance of the entire system by an impedance calculation formula, and the impedance calculation formula is:
  • Z Wi(sub) /Z Wi(sup) , Z L(sub) /Z L(sup) and Z G(sub) /Z G(sup) are the secondary/super synchronous impedance of the wind farm, respectively, and the transmission line
  • the secondary/super-synchronous impedance and the secondary/super-synchronous impedance of the grid are ⁇ solved for the sub/super-synchronous aggregate impedance according to the circuit topology.
  • the protection action is triggered, including: for the sub-synchronization and super that do not satisfy the stable condition Synchronous oscillation mode, respectively obtain corresponding sensitivity; obtain candidate wind farm set, select sub-synchronous / or super-synchronous resistance is negative and the corresponding sensitivity is positive wind farm as a candidate wind farm for protection cutting machine; like a wind field
  • the subsynchronization and supersynchronization sensitivities are both positive, then the sum of the two or the weighted sum is used as the sensitivity of the same wind field as a whole, and each candidate wind farm is assigned a weight according to the overall sensitivity of the wind field;
  • the post-synchronization and/or super-synchronous aggregation resistance is not less than the stability margin as a constraint, constitutes an optimization problem, and solves the cutter ratio; the number of cutters for the candidate wind field is obtained, and the number of cutters for each candidate wind farm is obtained.
  • the sensitivity is calculated as:
  • n i and ⁇ n Ti are the number of the i-th wind farm wind turbine and the number of the i-th wind farm wind turbine excision respectively
  • Z ⁇ (n i ) and Z ⁇ (n i - ⁇ n Ti ) are respectively
  • the i-th wind farm cuts off the value of the previous synchronization and/or supersynchronous aggregate impedance and the value of the post-synchronization and/or supersynchronous aggregate impedance of the ⁇ n Ti-stage wind turbine, i is the wind farm number.
  • the formula for solving the cutter ratio is:
  • ⁇ n Ti is the number of cutters for the candidate wind field
  • N T is the set of the number of cuts for all candidate wind farms
  • I T is the set of candidate wind farms
  • Z ⁇ (N T ) is the candidate wind farm
  • N T the value of the sub-synchronous and/or super-synchronous aggregate impedance of the whole system
  • R th is the stability margin represented by the resistance
  • is the cut ratio
  • w i is the cutter weight of the i-th wind farm.
  • N i is the total number of wind turbines of the i-th wind farm.
  • another embodiment of the present invention provides a system-level protection method for secondary/super-synchronous resonance/oscillation, including the following steps: multiple distributed protection relays collect three-phase voltages and currents at corresponding device ports. Obtaining a time domain waveform of the voltage and current; each of the distributed protection relays filters the power frequency signal by a rated frequency notch filter, and obtains a secondary/super synchronization signal by modal filtering; each of the distributed protection relays passes The frequency domain transform obtains a secondary/super-synchronous phasor of voltage and current to obtain a secondary/super-synchronous impedance to trigger a local protection action when the secondary/super-synchronous component is greater than a preset threshold or receives a system-level protection signal; The centralized protection coordinator obtains a secondary/super-synchronous impedance of the wind farm measured by the plurality of distributed protection relays; the centralized protection coordinator obtains a sub/super synchronous aggregate impedance of the system according to a preset circuit topology, and
  • the system-level protection method of the secondary/super-synchronous resonance/oscillation can determine the wind turbines that need to be cut by different wind farms by calculating the sensitivity of the entire system aggregate impedance to the number of wind turbines in different wind farms. Quantity to eliminate system secondary/super-synchronous resonance/oscillation, and to provide an accurate, fast, and reliable protection method to minimize the number of cutters while maintaining system stability to minimize losses and effectively improve the system Safety and reliability to better ensure the stability of the system.
  • system level protection method of the secondary/super-synchronous resonance/oscillation may further have the following additional technical features:
  • the centralized protection coordinator obtains the sub/super synchronous aggregate impedance of the system according to a preset circuit topology, and further includes: obtaining a wind farm from each of the distributed protection relays
  • the impedance value, and the sub/super-synchronous aggregate impedance of the entire system is obtained by an impedance calculation formula according to the impedance value of the wind farm, the line impedance, the grid impedance, and the circuit topology, and the impedance calculation formula is:
  • Z Wi(sub) /Z Wi(sup) , Z L(sub) /Z L(sup) and Z G(sub) /Z G(sup) are the secondary/super synchronous impedance of the wind farm, respectively, and the transmission line
  • the secondary/super-synchronous impedance and the secondary/super-synchronous impedance of the grid are ⁇ solved for the sub/super-synchronous aggregate impedance according to the circuit topology.
  • triggering the protection action further includes: for the case that the stable condition is not satisfied Synchronous and super-synchronous oscillation modes respectively obtain corresponding sensitivities; obtain candidate wind farm sets, select wind powers with negative sub-synchronization and super-synchronous resistance and positive sensitivity as candidate wind farms for protection cutting machine;
  • the subsynchronization and supersynchronization sensitivity of the wind field are both positive, then the sum or weighted sum of the two is used as the sensitivity of the same wind field as a whole, and each candidate wind farm is assigned a weight according to the overall sensitivity of the wind field;
  • the optimization problem is solved, and the cutting ratio is solved; the number of cutting machines of the candidate wind field is obtained, and each candidate wind farm is obtained.
  • the number of cutters constitutes the system level protection signal sent to the distributed protection relay.
  • the sensitivity is calculated as:
  • n i and ⁇ n Ti are the number of the i-th wind farm wind turbine and the number of the i-th wind farm wind turbine excision respectively
  • Z ⁇ (n i ) and Z ⁇ (n i - ⁇ n Ti ) are respectively
  • the i-th wind farm cuts off the value of the previous synchronization and/or supersynchronous aggregate impedance and the value of the post-synchronization and/or supersynchronous aggregate impedance of the ⁇ n Ti-stage wind turbine, i is the wind farm number.
  • the formula for solving the cutter ratio is:
  • ⁇ n Ti is the number of cutters for the candidate wind field
  • N T is the set of the number of cuts for all candidate wind farms
  • I T is the set of candidate wind farms
  • Z ⁇ (N T ) is the candidate wind farm
  • N T the value of the sub-synchronous and/or super-synchronous aggregate impedance of the whole system
  • R th is the stability margin represented by the resistance
  • is the cut ratio
  • w i is the cutter weight of the i-th wind farm.
  • N i is the total number of wind turbines of the i-th wind farm.
  • FIG. 1 is a schematic structural diagram of a system level protection system for secondary/super-synchronous resonance/oscillation according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a system level protection method for implementation of a distributed protection relay in accordance with one embodiment of the present invention
  • FIG. 3 is a flow diagram of a system level protection method for implementation of a centralized protection coordinator in accordance with one embodiment of the present invention
  • FIG. 4 is a flow chart of a system level protection method for sub/super-synchronous resonance/oscillation in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a system level protection system of a sub/super synchronous resonance/oscillation according to an embodiment of the present invention.
  • the sub-super-synchronous resonance/oscillation system-level protection system 10 includes a centralized protection coordinator 100 and a plurality of distributed protection relays (such as a distributed protection relay 201 and a distributed protection relay 202).
  • the centralized protection coordinator 100 is disposed in the control center, and the plurality of distributed protection relays are disposed in the substation or the wind farm.
  • each distributed protection relay of the plurality of distributed protection relays collects the three-phase voltage and current at the corresponding device port, acquires the time domain waveform of the voltage and current, and filters the power frequency signal through the rated frequency notch, and passes The modal filtering obtains the sub/super-synchronization signal, and the sub-/super-synchronous phasor of voltage and current is obtained by frequency domain transformation to obtain the sub/super synchronous impedance, and the sub/super synchronization component is greater than the preset threshold or the system is received.
  • the local protection action is triggered; the centralized protection coordinator 100 acquires the secondary/super synchronous impedance of the wind farm measured by the plurality of distributed protection relays to obtain the sub/super synchronous aggregation of the system according to the preset circuit topology. Impedance, and when the sub/super-synchronous aggregate impedance does not meet the stability conditions, the best cut strategy is obtained to generate a system-level protection signal.
  • the system 10 of the embodiments of the present invention can provide accurate, fast, and reliable protection measures, thereby effectively improving the stability and security of the system to minimize losses.
  • the distributed protection relay of the embodiment of the present invention can first sample the three-phase voltage and current at the corresponding device port, and obtain the time-domain waveform of the voltage and current through analog-to-digital conversion; secondly, The rated frequency trap is used to filter out the power frequency signal (generally 50Hz or 60Hz), and then modal filtering to obtain the corresponding sub/super-synchronous signal, thereby passing the frequency domain transform (such as DFT (Discrete Fourier Transform) Liye transform)) to get the secondary/super synchronized phasor of voltage and current
  • the embodiment of the present invention can update the modal filtering, extract the secondary/super synchronization signal to calculate the phasor, and finally calculate the secondary/super synchronous impedance.
  • the calculation method of the secondary/super-synchronous impedance can refer to the calculation method in the related art, and the redundancy is not reduced in detail.
  • the distributed protection relay detects a secondary/super-synchronous component that exceeds the threshold, a local protection action will be triggered and the measured data will be sent to the centralized protection coordinator 100; if a system level from the centralized protection coordinator 100 is received The protection signal will control the disconnection of the circuit breaker according to the protection logic to complete the protection action.
  • the centralized protection coordinator 100 is specifically configured to obtain the impedance value of the wind farm from each distributed protection relay, and according to the impedance value of the wind farm, the line impedance, the grid impedance, and the circuit.
  • the topology obtains the sub/super synchronous aggregate impedance of the whole system through the impedance calculation formula.
  • the impedance calculation formula is:
  • Z Wi(sub) /Z Wi(sup) , Z L(sub) /Z L(sup) and Z G(sub) /Z G(sup) are the secondary/super synchronous impedance of the wind farm, respectively, and the transmission line
  • the secondary/super-synchronous impedance and the secondary/super-synchronous impedance of the grid are ⁇ solved for the sub/super-synchronous aggregate impedance according to the circuit topology.
  • the protection action is triggered, including: for sub-synchronization and super-synchronous oscillation that do not satisfy the stable condition.
  • Modal respectively obtain the corresponding sensitivity; obtain the candidate wind farm set, select the secondary synchronization / or super-synchronous resistance is negative and the corresponding sensitivity is positive wind farm as a candidate wind farm for protection cutting; like a wind field sub-synchronization And the super-synchronization sensitivity is positive, then the sum of the two or the weighted sum is used as the overall sensitivity of the same wind field, and each candidate wind farm is assigned a weight according to the overall sensitivity of the wind field; after the machine is synchronized and/or
  • the super-synchronous polymerization resistance is not less than the stability margin as a constraint condition, which constitutes an optimization problem, and solves the cutter ratio; the number of cutters of the candidate wind farm is obtained, and the number of cutters of each candidate wind farm constitutes a system-level protection signal transmission. To multiple distributed protection relays.
  • the sensitivity is calculated as:
  • n i and ⁇ n Ti are the number of the i-th wind farm wind turbine and the number of the i-th wind farm wind turbine excision respectively
  • Z ⁇ (n i ) and Z ⁇ (n i - ⁇ n Ti ) are respectively
  • the i-th wind farm cuts off the value of the previous synchronization and/or supersynchronous aggregate impedance and the value of the post-synchronization and/or supersynchronous aggregate impedance of the ⁇ n Ti-stage wind turbine, i is the wind farm number.
  • the formula for solving the cutter ratio is:
  • ⁇ n Ti is the number of cutters for the candidate wind field
  • N T is the set of the number of cuts for all candidate wind farms
  • I T is the set of candidate wind farms
  • Z ⁇ (N T ) is the candidate wind farm
  • N T the value of the sub-synchronous and/or super-synchronous aggregate impedance of the whole system
  • R th is the stability margin represented by the resistance
  • is the cut ratio
  • w i is the cutter weight of the i-th wind farm.
  • N i is the total number of wind turbines of the i-th wind farm.
  • the system level protection method implemented by the centralized protection coordinator of one embodiment of the present invention includes the following steps:
  • the centralized protection coordinator 100 can obtain the impedance value of the wind farm from each distributed protection relay, and combine the impedance of the known line and the impedance of the power grid to calculate the entire system according to the topology structure of the system.
  • Sub/super synchronous impedance Z ⁇ (sub) /Z ⁇ (sup) :
  • Z Wi(sub) /Z Wi(sup) , Z L(sub) /Z L(sup) and Z G(sub) /Z G(sup) are the secondary/super synchronous impedance of the wind farm, respectively, and the transmission line
  • the secondary/super-synchronous impedance and the secondary/super-synchronous impedance of the grid are ⁇ solved for the sub/super-synchronous aggregate impedance according to the circuit topology.
  • step S303 for the subsynchronous and supersynchronous oscillation modes that cannot meet the stability requirement, the sensitivity S i is calculated respectively, and the calculation method is:
  • n i and ⁇ n Ti are the number of i-th wind farm wind generators and the number of cuts, usually ⁇ n Ti is an integer between 1% and 20%*n i ; Z ⁇ (n i ) and Z ⁇ ( n i - ⁇ n Ti ) are the values of the pre-synchronization and/or supersynchronous aggregate impedance of the i-th wind farm excision and the values of the post-synchronization and/or supersynchronous aggregate impedance of the ⁇ n Ti- station wind turbine, respectively.
  • Formula (2) is an algorithm of sensitivity, and there are many algorithms for sensitivity, and no specific limitation is imposed here.
  • step S304 the candidate wind farm set I T is determined, and the wind farm with the secondary synchronization/or super-synchronous resistance being negative and the corresponding sensitivity is positive is selected as the candidate wind farm for protecting the cutter:
  • step S305 if the subsynchronization and supersynchronization sensitivity of one wind field are both positive, the sum of the two (or weighted sum) is used as the sensitivity of the entire wind field, and each candidate wind farm is assigned a weight according to the sensitivity:
  • step S306 the optimization problem is formed by taking the after-synchronization and/or super-synchronous polymerization resistance R ⁇ not less than the stability margin R th as a constraint condition, and the cutter ratio ⁇ is solved.
  • step S307 the number of cutters of the candidate wind field is determined to be ⁇ n Ti .
  • step S308 the number of cutters ⁇ n Ti of each candidate wind farm constitutes a system protection signal to the distributed protection relay.
  • system level protection system of the sub/super synchronous resonance/oscillation can be designed in the following manner:
  • Distributed protection relays are set up in each substation or wind farm.
  • the distributed protection relay corresponding to each wind farm can control the closing and closing of the circuit breaker at each wind turbine port in the wind farm; and establish a centralized protection coordinator.
  • the distributed protection relay and the centralized protection coordinator 100 can perform data transmission according to a set protocol.
  • the distributed protection relay collects the output current and voltage at each wind turbine port of the wind farm, and processes the data (filtering, frequency domain transformation, etc.) to obtain the sub/super-synchronous component in the voltage and current.
  • the wind farm sub/super synchronous impedance is calculated, and the collected data (including the time series) and the calculation result are sent to the centralized protection coordinator, and the measured sub/super synchronization component is compared with the set threshold. If it is greater than the set threshold, local protection is activated.
  • the centralized protection coordinator 100 solves the sub/super synchronous aggregation of the entire system according to the secondary/super synchronous impedance of each wind farm transmitted by the distributed protection relay, the known line sub/super synchronous impedance, the grid sub/super synchronous impedance, and the system topology. impedance.
  • the centralized protection coordinator 100 generates a system level protection signal according to the calculation result of the specific protection scheme and sends it to each distributed protection relay, and each distributed protection relay controls the corresponding number of wind power generator circuit breakers according to the system level protection signal. Open, to achieve the corresponding number of wind turbines removed from the system.
  • the system-level protection system of the sub/super-synchronous resonance/oscillation can determine the wind power that needs to be cut off by different wind farms by calculating the sensitivity of the entire system aggregate impedance to the number of wind turbines in different wind farms.
  • the security and reliability of the system ensure better system stability.
  • FIG. 4 is a flow chart of a system level protection method for sub/super synchronous resonance/oscillation according to an embodiment of the present invention.
  • the system level protection method of the sub/super synchronous resonance/oscillation includes the following steps:
  • each of the distributed protection relays of the plurality of distributed protection relays collects three-phase voltages and currents at the device ports, and acquires a time domain waveform of the voltage and current.
  • each distributed protection relay filters out the power frequency signal through the rated frequency notch, and obtains the secondary/super synchronization signal through modal filtering.
  • each distributed protection relay obtains a secondary/super-synchronous phasor of voltage and current through frequency domain transformation to obtain a secondary/super-synchronous impedance, so that the secondary/super-synchronous component is greater than a preset threshold or receives the system.
  • the local protection action is triggered when the level protects the signal.
  • step S404 the centralized protection coordinator acquires the secondary/super synchronous impedance of the wind farm measured by the plurality of distributed protection relays.
  • step S405 the centralized protection coordinator obtains the secondary/super-synchronous aggregate impedance of the system according to a preset circuit topology, and obtains an optimal cutter strategy to generate an optimal cut-off strategy when the secondary/super-synchronous aggregate impedance does not satisfy the stable condition.
  • System level protection signal the centralized protection coordinator
  • step S406 the distributed protection relay receives a system level protection signal from the centralized protection coordinator, triggering a local protection action.
  • the centralized protection coordinator obtains the sub/super synchronous aggregate impedance of the system according to a preset circuit topology, and further includes: obtaining a resistance value of the wind farm from each distributed protection relay, According to the impedance value of the wind farm, line impedance, grid impedance and circuit topology, the sub/super-synchronous aggregate impedance of the whole system is obtained by the impedance calculation formula.
  • the impedance calculation formula is:
  • Z Wi(sub) /Z Wi(sup) , Z L(sub) /Z L(sup) and Z G(sub) /Z G(sup) are the secondary/super synchronous impedance of the wind farm, respectively, and the transmission line
  • the secondary/super-synchronous impedance and the secondary/super-synchronous impedance of the grid are ⁇ solved for the sub/super-synchronous aggregate impedance according to the circuit topology.
  • the protection action is triggered, further comprising: for sub-synchronization and super-synchronization that do not satisfy the stable condition
  • the oscillating mode obtains the corresponding sensitivities respectively; obtains the candidate wind farm set, selects the wind farm with the subsynchronous/or supersynchronous resistance as negative and the corresponding sensitivity is positive as the candidate wind farm for the protection cutter; like the second wind farm Synchronization and super-synchronization sensitivity are positive, then the sum of the two or the weighted sum is taken as the overall sensitivity of the same wind field, and each candidate wind farm is assigned a weight according to the overall sensitivity of the wind field; Or the super-synchronous polymerization resistance is not less than the stability margin as a constraint condition, constitutes an optimization problem, and solves the cutter ratio; obtains the number of cutters of the candidate wind farm, and forms the number of cutters of each candidate wind farm to form a system-
  • the sensitivity is calculated as:
  • n i and ⁇ n Ti are the number of the i-th wind farm wind turbine and the number of the i-th wind farm wind turbine excision respectively
  • Z ⁇ (n i ) and Z ⁇ (n i - ⁇ n Ti ) are respectively
  • the i-th wind farm cuts off the value of the previous synchronization and/or supersynchronous aggregate impedance and the value of the post-synchronization and/or supersynchronous aggregate impedance of the ⁇ n Ti-stage wind turbine, i is the wind farm number.
  • the formula for solving the cutter ratio is:
  • ⁇ n Ti is the number of cutters for the candidate wind field
  • N T is the set of the number of cuts for all candidate wind farms
  • I T is the set of candidate wind farms
  • Z ⁇ (N T ) is the candidate wind farm
  • N T the value of the sub-synchronous and/or super-synchronous aggregate impedance of the whole system
  • R th is the stability margin represented by the resistance
  • is the cut ratio
  • w i is the cutter weight of the i-th wind farm.
  • N i is the total number of wind turbines of the i-th wind farm.
  • the system-level protection method for sub/super-synchronous resonance/oscillation can determine the wind power that needs to be cut off by different wind farms by calculating the sensitivity of the entire system's aggregate impedance to the number of wind turbines in different wind farms.
  • the security and reliability of the system ensure better system stability.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种次/超同步谐振/振荡的系统级保护系统及方法,其中,系统包括:集中式保护协调器与多个分布式保护继电器,多个分布式保护继电器的每个分布式保护继电器采集对应设备端口的三相电压、电流,获取电压电流的时域波形,获取次/超同步阻抗,以及在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作;集中式保护协调器获取多个分布式保护继电器测得的风电场的次/超同步阻抗,以根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成系统级保护信号,该系统可以提供准确、快速、可靠的保护措施,从而有效提高系统的稳定性和安全性,以将损失降到最低。

Description

次/超同步谐振/振荡的系统级保护系统及方法
相关申请的交叉引用
本申请要求清华大学于2017年11月09日提交的、发明名称为“次/超同步谐振/振荡的系统级保护系统及方法”的、中国专利申请号“201711108495.X”的优先权。
技术领域
本发明涉及电力系统保护技术领域,特别涉及一种次/超同步谐振/振荡的系统级保护系统及方法。
背景技术
近些年来,可再生能源发电(如风力发电、光伏发电等)得到迅速发展,然而,可再生能源发电的并网问题给电力系统的稳定运行带来了新的挑战。例如,基于变流器的风力发电机和交流电网之间的相互作用引发的次/超同步谐振/振荡,可能导致大面积风机脱网,甚至严重威胁到电力设备及整个系统的稳定运行。
针对汽轮发电机组的次/超同步谐振/振荡保护,相关技术大多采用轴系转速作为输入,不能适用于风力发电机组的次/超同步谐振/振荡的保护。少数保护使用端电压或端电流中的次/超同步分量作为保护动作的依据,这种基于电压电流次/超同步分量为依据的保护方法也可以通过简单修改后用来检测风力发电系统不稳定的次/超同步谐振/振荡,在满足一定条件下,进一步触发风力发电机组的保护动作。然而,以电压、电流或功率作为保护依据的保护方法还存在着较大缺陷,因为这些量并不能精确地衡量某台风力发电机或某个风电场对整个系统的影响,并且次/超同步谐振/振荡是整个系统的动态行为,因此保护也应该是基于全系统的,仅使用局部信息判断保护行为的准确性较差,可靠性和安全性较低,亟待改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种次/超同步谐振/振荡的系统级保护系统,该系统可以提供准确、快速、可靠的保护措施,从而有效提高系统的稳定性和安全性,以将损失降到最低。
本发明的另一个目的在于提出一种次/超同步谐振/振荡的系统级保护方法。
为达到上述目的,本发明一方面实施例提出了一种次/超同步谐振/振荡的系统级保护系统,包括:设置于控制中心的集中式保护协调器与设置于变电站或风场的多个分布式保护继电器,其中,所述多个分布式保护继电器的每个分布式保护继电器采集对应设备端口处的三相电压、电流,获取电压电流的时域波形,并且通过额定频率陷波器滤除工频信号,并通过模态滤波得到次/超同步信号,并通过频域变换得到电压、电流的次/超同步相量,以获取次/超同步阻抗,以及在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作;所述集中式保护协调器获取所述多个分布式保护继电器测得的风电场的次/超同步阻抗,以根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在所述次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成所述系统级保护信号。
本发明实施例的次/超同步谐振/振荡的系统级保护系统,可以通过计算整个系统聚合阻抗对不同风电场中风力发电机数量的敏感度,来确定不同风电场需要切除的风力发电机的数量,以消除系统次/超同步谐振/振荡,并且能够提供准确、快速、可靠的保护方法,从而在保障系统稳定的条件下使切机数量最小,以将损失降到最低,有效提高系统的安全性和可靠性,更好地保证系统的稳定性。
另外,根据本发明上述实施例的次/超同步谐振/振荡的系统级保护系统还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述集中式保护协调器具体用于从所述每个分布式保护继电器得到风电场的阻抗值,并根据所述风电场的阻抗值、线路阻抗、电网阻抗和所述电路拓扑通过阻抗计算公式得到整个系统的所述次/超同步聚合阻抗,所述阻抗计算公式为:
Figure PCTCN2018094238-appb-000001
其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合阻抗。
进一步地,在本发明的一个实施例中,在R Σ(sub)<R th或R Σ(sup)<R th时,触发保护动作,包括:对于不满足所述稳定条件的次同步和超同步振荡模态,分别获取相应的灵敏度;获取候选风电场集合,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切机的候选风电场;如同一个风场的次同步和超同步灵敏度均为正,则两者之和或者加权和作为所述同一个风场整体的灵敏度,并根据所述风场整体的灵敏度给每个候选风电场分配权重;以切机后次同步和/或超同步聚合电阻不小于稳定裕度为约束条件,构成优化问 题,并解出切机比;获取候选风场的切机数量,并将每个候选风电场的切机数量构成所述系统级保护信号发送至分布式保护继电器。
进一步地,在本发明的一个实施例中,所述灵敏度的计算公式为:
Figure PCTCN2018094238-appb-000002
其中,n i和Δn Ti分别为第i个风电场风力发电机的数量和第i个风电场风力发电机切除的数量,Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值,i为风电场序号。
进一步地,在本发明的一个实施例中,解出所述切机比的公式为:
minα
s.t.α>0;
Re{Z Σ(N T)}≥R th,N T={Δn Ti},
Δn Ti=Round{αw iN i},i∈I T
其中,Round表示四舍五入到整数,Δn Ti为候选风场的切机数量,N T为所有候选风电场切机数量构成的集合,I T为候选风电场集合,Z Σ(N T)为候选风电场切机数量为N T时,整个系统次同步和/或超同步聚合阻抗的值,R th为电阻表示的稳定裕度,α为切机比,w i为第i个风电场切机权重,N i为第i个风电场风力发电机总数。
为达到上述目的,本发明另一方面实施例提出了一种次/超同步谐振/振荡的系统级保护方法,包括以下步骤:多个分布式保护继电器采集对应设备端口处的三相电压、电流,获取电压电流的时域波形;所述每个分布式保护继电器通过额定频率陷波器滤除工频信号,并通过模态滤波得到次/超同步信号;所述每个分布式保护继电器通过频域变换得到电压、电流的次/超同步相量,以获取次/超同步阻抗,以在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作;所述集中式保护协调器获取所述多个分布式保护继电器测得的风电场的次/超同步阻抗;所述集中式保护协调器根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在所述次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成所述系统级保护信号;所述分布式保护继电器接收到来自所述集中式保护协调器的系统级保护信号,触发本地保护动作。
本发明实施例的次/超同步谐振/振荡的系统级保护方法,可以通过计算整个系统聚合阻抗对不同风电场中风力发电机数量的敏感度,来确定不同风电场需要切除的风力发电机的数量,以消除系统次/超同步谐振/振荡,并且能够提供准确、快速、可靠的保护方法,从而在保障系统稳定的条件下使切机数量最小,以将损失降到最低,有效提高系统的安全 性和可靠性,更好地保证系统的稳定性。
另外,根据本发明上述实施例的次/超同步谐振/振荡的系统级保护方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述集中式保护协调器根据预设的电路拓扑得到系统的次/超同步聚合阻抗,进一步包括:从所述每个分布式保护继电器得到风电场的阻抗值,并根据所述风电场的阻抗值、线路阻抗、电网阻抗和所述电路拓扑通过阻抗计算公式得到整个系统的所述次/超同步聚合阻抗,所述阻抗计算公式为:
Figure PCTCN2018094238-appb-000003
其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合阻抗。
进一步地,在本发明的一个实施例中,在R Σ(sub)<R th或R Σ(sup)<R th时,触发所述保护动作,进一步包括:对于不满足所述稳定条件的次同步和超同步振荡模态,分别获取相应的灵敏度;获取候选风电场集合,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切机的候选风电场;如同一个风场的次同步和超同步灵敏度均为正,则两者之和或者加权和作为所述同一个风场整体的灵敏度,并根据所述风场整体的灵敏度给每个候选风电场分配权重;以切机后次同步和/或超同步聚合电阻不小于稳定裕度为约束条件,构成优化问题,并解出切机比;获取候选风场的切机数量,并将每个候选风电场的切机数量构成所述系统级保护信号发送至分布式保护继电器。
进一步地,在本发明的一个实施例中,所述灵敏度的计算公式为:
Figure PCTCN2018094238-appb-000004
其中,n i和Δn Ti分别为第i个风电场风力发电机的数量和第i个风电场风力发电机切除的数量,Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值,i为风电场序号。
进一步地,在本发明的一个实施例中,解出所述切机比的公式为:
minα
s.t.α>0;
Re{Z Σ(N T)}≥R th,N T={Δn Ti},
Δn Ti=Round{αw iN i},i∈I T
其中,Round表示四舍五入到整数,Δn Ti为候选风场的切机数量,N T为所有候选风电场切机数量构成的集合,I T为候选风电场集合,Z Σ(N T)为候选风电场切机数量为N T时,整个系统次同步和/或超同步聚合阻抗的值,R th为电阻表示的稳定裕度,α为切机比,w i为第i个风电场切机权重,N i为第i个风电场风力发电机总数。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的次/超同步谐振/振荡的系统级保护系统的结构示意图;
图2为根据本发明一个实施例的分布式保护继电器的实施的系统级保护方法的流程图;
图3为根据本发明一个实施例的集中式保护协调器的实施的系统级保护方法的流程图;
图4为根据本发明实施例的次/超同步谐振/振荡的系统级保护方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的次/超同步谐振/振荡的系统级保护系统及方法,首先将参照附图描述根据本发明实施例提出的次/超同步谐振/振荡的系统级保护系统。
图1是本发明实施例的次/超同步谐振/振荡的系统级保护系统的结构示意图。
如图1所示,该次/超同步谐振/振荡的系统级保护系统10包括:集中式保护协调器100、多个分布式保护继电器(如分布式保护继电器201和分布式保护继电器202)。
其中,集中式保护协调器100设置于控制中心,多个分布式保护继电器设置于变电站或风场。其中,多个分布式保护继电器的每个分布式保护继电器采集对应设备端口处的三相电压、电流,获取电压电流的时域波形,并且通过额定频率陷波器滤除工频信号,并通过模态滤波得到次/超同步信号,并通过频域变换得到电压、电流的次/超同步相量,以获取次/超同步阻抗,以及在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作;集中式保护协调器100获取多个分布式保护继电器测得的风电场的次/超同 步阻抗,以根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成系统级保护信号。本发明实施例的系统10可以提供准确、快速、可靠的保护措施,从而有效提高系统的稳定性和安全性,以将损失降到最低。
可以理解的是,如图2所示,本发明实施例的分布式保护继电器首先可以对对应设备端口处的三相电压电流进行采样,并且通过模数转换得到电压电流的时域波形;其次,经过额定频率陷波器滤除工频信号(一般为50Hz或60Hz),再经过模态滤波,以得到相应的次/超同步信号,从而通过频域变换(如DFT(Discrete Fourier Transform,离散傅里叶变换))得到电压、电流的次/超同步相量
Figure PCTCN2018094238-appb-000005
如果有需要,本发明实施例可以更新模态滤波,提取次/超同步信号计算相量;最后计算其次/超同步阻抗。其中,次/超同步阻抗的计算方法可以参考相关技术中的计算方法,为减少冗余,在此不做详细赘述。
若分布式保护继电器检测到超过阈值的次/超同步分量,将会触发本地保护动作,并且将所测数据发送给集中式保护协调器100;若接收到来自集中式保护协调器100的系统级保护信号,将根据保护逻辑控制断路器的断开,完成保护动作。
本发明实施例的集中式保护协调器100可以接收各个分布式保护继电器的数据,并且根据已知的电路拓扑,计算整个系统的次/超同步聚合阻抗Z Σ=R Σ+jX Σ,若次/超同步未达到稳定要求(即R Σ<R th),则需要启动保护。集中式保护协调器100可以计算得到最佳的切机策略,并向分布式保护继电器发送保护信号。
进一步地,在本发明的一个实施例中,集中式保护协调器100具体用于从每个分布式保护继电器得到风电场的阻抗值,并根据风电场的阻抗值、线路阻抗、电网阻抗和电路拓扑通过阻抗计算公式得到整个系统的次/超同步聚合阻抗,阻抗计算公式为:
Figure PCTCN2018094238-appb-000006
其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合阻抗。
进一步地,在本发明的一个实施例中,在R Σ(sub)<R th或R Σ(sup)<R th时,触发保护动作,包括:对于不满足稳定条件的次同步和超同步振荡模态,分别获取相应的灵敏度;获取候选风电场集合,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切 机的候选风电场;如同一个风场的次同步和超同步灵敏度均为正,则两者之和或者加权和作为同一个风场整体的灵敏度,并根据风场整体的灵敏度给每个候选风电场分配权重;以切机后次同步和/或超同步聚合电阻不小于稳定裕度为约束条件,构成优化问题,并解出切机比;获取候选风场的切机数量,并将每个候选风电场的切机数量构成系统级保护信号发送至多个分布式保护继电器。
其中,在本发明的一个实施例中,灵敏度的计算公式为:
Figure PCTCN2018094238-appb-000007
其中,n i和Δn Ti分别为第i个风电场风力发电机的数量和第i个风电场风力发电机切除的数量,Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值,i为风电场序号。
其中,在本发明的一个实施例中,解出切机比的公式为:
minα
s.t.α>0;
Re{Z Σ(N T)}≥R th,N T={Δn Ti},
Δn Ti=Round{αw iN i},i∈I T
其中,Round表示四舍五入到整数,Δn Ti为候选风场的切机数量,N T为所有候选风电场切机数量构成的集合,I T为候选风电场集合;Z Σ(N T)为候选风电场切机数量为N T时,整个系统次同步和/或超同步聚合阻抗的值,R th为电阻表示的稳定裕度,α为切机比,w i为第i个风电场切机权重,N i为第i个风电场风力发电机总数。
可以理解的是,如图3所示,本发明一个实施例的集中式保护协调器实施的系统级保护方法包括以下步骤:
在步骤S301和S302中,集中式保护协调器100可以从各个分布式保护继电器得到风电场的阻抗值,并结合已知线路的阻抗、电网的阻抗,根据系统的拓扑结构,计算出整个系统的次/超同步阻抗Z Σ(sub)/Z Σ(sup)
Figure PCTCN2018094238-appb-000008
其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合 阻抗。
若R Σ(sub)<R th或R Σ(sup)<R th,将会引发保护动作,转至步骤S303.
在步骤S303中,对于不能达到稳定性要求的次同步和超同步振荡模态,分别计算其灵敏度S i,计算方法为:
Figure PCTCN2018094238-appb-000009
其中,n i和Δn Ti是第i个风电场风力发电机的数量和切除的数量,通常Δn Ti为1%~20%*n i之间的整数;Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值。
公式(2)是灵敏度的一种算法,并且灵敏度的算法有很多,在此不做具体限制。
在步骤S304中,确定候选风电场集合I T,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切机的候选风电场:
I T={i|R i<0且S i>0},(3)
在步骤S305中,如同一个风场的次同步和超同步灵敏度均为正,则两者之和(或加权和)作为该风场整体的灵敏度,根据灵敏度给每个候选风电场分配一个权重:
Figure PCTCN2018094238-appb-000010
在步骤S306中,以切机后次同步和/或超同步聚合电阻R Σ不小于稳定裕度R th为约束条件,构成优化问题,解出切机比α:
minα
s.t.α>0;
Re{Z Σ(N T)}≥R th,N T={Δn Ti},(5)
Δn Ti=Round{αw iN i},i∈I T
其中,Round表示四舍五入到整数。
在步骤S307中,求出候选风场的切机数量为Δn Ti
在步骤S308中,将每个候选风电场的切机数量Δn Ti构成系统保护信号发送至分布式保护继电器。
每次保护动作完成后,持续检测次/超同步聚合电阻是否同时满足R Σ≥R th,若不满足,则再次运行保护算法,相应保护动作启动;若满足,则表示系统稳定,保护无需动作。
在本发明的一个具体实施例中,本发明实施例的次/超同步谐振/振荡的系统级保护系 统可以通过以下方式来设计:
首先,进行保护系统的构建:
在各个变电站或风电场设立分布式保护继电器,每个风电场对应的分布式保护继电器可以控制风电场内每台风力发电机端口处断路器的闭合和关断;并建立一个集中式保护协调器100,分布式保护继电器和集中式保护协调器100之间可以按照设定协议进行数据传输。
其次,进行分布式保护继电器的数据采集与计算和集中式保护协调器100的次/超同步聚合阻抗的计算:
分布式保护继电器采集风电场各个风力发电机端口处的输出电流和电压,并处理数据(滤波,频域变换等)得到电压、电流中的次/超同步分量。同时,计算风电场次/超同步阻抗,并将采集的数据(包括时间序列)和计算结果发送至集中式保护协调器,并将测得的次/超同步分量与设定阈值进行比较。若大于设定阈值,则启动本地保护。
集中式保护协调器100根据分布式保护继电器传输的各个风电场的次/超同步阻抗、已知线路次/超同步阻抗、电网次/超同步阻抗和系统拓扑求解整个系统的次/超同步聚合阻抗。
再次,进行次/超同步稳定性的判断:
若R Σ≥R th,保护不动作;若集中式保护协调器计算的次/超同步聚合电阻R Σ小于设定的稳定阈值R th,则进行后续步骤,即启动保护。
进而进行具体保护方案的计算
计算出每个风电场次/超同步阻抗对于风力发电机数量的灵敏度S i,并根据上述公式(3)确定候选风电场集合I T;根据公式(4)确定每个候选风电场中需要切除的风力发电机数量。
最后,指定风力发电机的切除:
集中式保护协调器100根据具体保护方案的计算结果生成系统级保护信号并将其发至各个分布式保护继电器,每个分布式保护继电器按照系统级保护信号控制相应数量的风力发电机断路器断开,实现相应数量风力发电机从系统中切除。
根据本发明实施例提出的次/超同步谐振/振荡的系统级保护系统,可以通过计算整个系统聚合阻抗对不同风电场中风力发电机数量的敏感度,来确定不同风电场需要切除的风力发电机的数量,以消除系统次/超同步谐振/振荡,并且能够提供准确、快速、可靠的保护方法,从而在保障系统稳定的条件下使切机数量最小,以将损失降到最低,有效提高系统的安全性和可靠性,更好地保证系统的稳定性。
其次参照附图描述根据本发明实施例提出的次/超同步谐振/振荡的系统级保护方法。
图4是本发明实施例的次/超同步谐振/振荡的系统级保护方法的流程图。
如图4所示,该次/超同步谐振/振荡的系统级保护方法包括以下步骤:
在步骤S401中,多个分布式保护继电器的每个分布式保护继电器采集设备端口处的三相电压、电流,获取电压电流的时域波形。
在步骤S402中,每个分布式保护继电器通过额定频率陷波器滤除工频信号,并通过模态滤波得到次/超同步信号。
在步骤S403中,每个分布式保护继电器通过频域变换得到电压、电流的次/超同步相量,以获取次/超同步阻抗,以在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作。
在步骤S404中,集中式保护协调器获取多个分布式保护继电器测得的风电场的次/超同步阻抗。
在步骤S405中,集中式保护协调器根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成系统级保护信号。
在步骤S406中,分布式保护继电器接收到来自集中式保护协调器的系统级保护信号,触发本地保护动作。
进一步地,在本发明的一个实施例中,集中式保护协调器根据预设的电路拓扑得到系统的次/超同步聚合阻抗,进一步包括:从每个分布式保护继电器得到风电场的阻抗值,并根据风电场的阻抗值、线路阻抗、电网阻抗和电路拓扑通过阻抗计算公式得到整个系统的次/超同步聚合阻抗,阻抗计算公式为:
Figure PCTCN2018094238-appb-000011
其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合阻抗。
进一步地,在本发明的一个实施例中,在R Σ(sub)<R th或R Σ(sup)<R th时,触发保护动作,进一步包括:对于不满足稳定条件的次同步和超同步振荡模态,分别获取相应的灵敏度;获取候选风电场集合,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切机的候选风电场;如同一个风场的次同步和超同步灵敏度均为正,则两者之和或者加权和作为同一个风场整体的灵敏度,并根据风场整体的灵敏度给每个候选风电场分配权重;以切机后次同步和/或超同步聚合电阻不小于稳定裕度为约束条件,构成优化问题,并 解出切机比;获取候选风场的切机数量,并将每个候选风电场的切机数量构成系统级保护信号发送至分布式保护继电器。
进一步地,在本发明的一个实施例中,灵敏度的计算公式为:
Figure PCTCN2018094238-appb-000012
其中,n i和Δn Ti分别为第i个风电场风力发电机的数量和第i个风电场风力发电机切除的数量,Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值,i为风电场序号。
进一步地,在本发明的一个实施例中,解出切机比的公式为:
minα
s.t.α>0;
Re{Z Σ(N T)}≥R th,N T={Δn Ti},
Δn Ti=Round{αw iN i},i∈I T
其中,Round表示四舍五入到整数,Δn Ti为候选风场的切机数量,N T为所有候选风电场切机数量构成的集合,I T为候选风电场集合,Z Σ(N T)为候选风电场切机数量为N T时,整个系统次同步和/或超同步聚合阻抗的值,R th为电阻表示的稳定裕度,α为切机比,w i为第i个风电场切机权重,N i为第i个风电场风力发电机总数。
需要说明的是,前述对次/超同步谐振/振荡的系统级保护系统实施例的解释说明也适用于该实施例的次/超同步谐振/振荡的系统级保护方法,此处不再赘述。
根据本发明实施例提出的次/超同步谐振/振荡的系统级保护方法,可以通过计算整个系统聚合阻抗对不同风电场中风力发电机数量的敏感度,来确定不同风电场需要切除的风力发电机的数量,以消除系统次/超同步谐振/振荡,并且能够提供准确、快速、可靠的保护方法,从而在保障系统稳定的条件下使切机数量最小,以将损失降到最低,有效提高系统的安全性和可靠性,更好地保证系统的稳定性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要 性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种次/超同步谐振/振荡的系统级保护系统,其特征在于,包括:设置于控制中心的集中式保护协调器与设置于变电站或风场的多个分布式保护继电器,其中,
    所述多个分布式保护继电器的每个分布式保护继电器采集对应设备端口处的三相电压、电流,获取电压电流的时域波形,并且通过额定频率陷波器滤除工频信号,并通过模态滤波得到次/超同步信号,并通过频域变换得到电压、电流的次/超同步相量,以获取次/超同步阻抗,以及在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作;
    所述集中式保护协调器获取所述多个分布式保护继电器测得的风电场的次/超同步阻抗,以根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在所述次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成所述系统级保护信号。
  2. 根据权利要求1所述的次/超同步谐振/振荡的系统级保护系统,其特征在于,所述集中式保护协调器具体用于从所述每个分布式保护继电器得到风电场的阻抗值,并根据所述风电场的阻抗值、线路阻抗、电网阻抗和所述电路拓扑通过阻抗计算公式得到整个系统的所述次/超同步聚合阻抗,所述阻抗计算公式为:
    Figure PCTCN2018094238-appb-100001
    其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合阻抗。
  3. 根据权利要求2所述的次/超同步谐振/振荡的系统级保护系统,其特征在于,在R Σ(sub)<R th或R Σ(sup)<R th时,所述触发保护动作,包括:
    对于不满足所述稳定条件的次同步和超同步振荡模态,分别获取相应的灵敏度;
    获取候选风电场集合,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切机的候选风电场;
    如同一个风场的次同步和超同步灵敏度均为正,则两者之和或者加权和作为所述同一个风场整体的灵敏度,并根据所述风场整体的灵敏度给每个候选风电场分配权重;
    以切机后次同步和/或超同步聚合电阻不小于稳定裕度为约束条件,构成优化问题,并解出切机比;
    获取候选风场的切机数量,并将每个候选风电场的切机数量构成所述系统级保护信号 发送至分布式保护继电器。
  4. 根据权利要求3所述的次/超同步谐振/振荡的系统级保护系统,其特征在于,所述灵敏度的计算公式为:
    Figure PCTCN2018094238-appb-100002
    其中,n i和Δn Ti分别为第i个风电场风力发电机的数量和第i个风电场风力发电机切除的数量,Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值,i为风电场序号。
  5. 根据权利要求3所述的次/超同步谐振/振荡的系统级保护系统,其特征在于,解出所述切机比的公式为:
    Figure PCTCN2018094238-appb-100003
    其中,Round表示四舍五入到整数,Δn Ti为候选风场的切机数量,N T为所有候选风电场切机数量构成的集合,I T为候选风电场集合,Z Σ(N T)为候选风电场切机数量为N T时,整个系统次同步和/或超同步聚合阻抗的值,R th为电阻表示的稳定裕度,α为切机比,w i为第i个风电场切机权重,N i为第i个风电场风力发电机总数。
  6. 一种次/超同步谐振/振荡的系统级保护方法,其特征在于,包括以下步骤:
    多个分布式保护继电器的每个分布式保护继电器采集对应设备端口处的三相电压、电流,获取电压电流的时域波形;
    所述每个分布式保护继电器通过额定频率陷波器滤除工频信号,并通过模态滤波得到次/超同步信号;
    所述每个分布式保护继电器通过频域变换得到电压、电流的次/超同步相量,以获取次/超同步阻抗,以在次/超同步分量大于预设阈值或接收到系统级保护信号时,触发本地保护动作;
    所述集中式保护协调器获取所述多个分布式保护继电器测得的风电场的次/超同步阻抗;
    所述集中式保护协调器根据预设的电路拓扑得到系统的次/超同步聚合阻抗,并在所述次/超同步聚合阻抗未满足稳定条件时,获取最佳的切机策略,以生成所述系统级保护信号;以及
    所述分布式保护继电器接收到来自所述集中式保护协调器的系统级保护信号,触发本地保护动作。
  7. 根据权利要求6所述的次/超同步谐振/振荡的系统级保护方法,其特征在于,所述集中式保护协调器根据预设的电路拓扑得到系统的次/超同步聚合阻抗,进一步包括:
    从所述每个分布式保护继电器得到风电场的阻抗值,并根据所述风电场的阻抗值、线路阻抗、电网阻抗和所述电路拓扑通过阻抗计算公式得到整个系统的所述次/超同步聚合阻抗,所述阻抗计算公式为:
    Figure PCTCN2018094238-appb-100004
    其中,Z Wi(sub)/Z Wi(sup),Z L(sub)/Z L(sup)和Z G(sub)/Z G(sup)分别为风电场的次/超同步阻抗、输电线路的次/超同步阻抗和电网的次/超同步阻抗,{}为按照电路拓扑求解次/超同步聚合阻抗。
  8. 根据权利要求7所述的次/超同步谐振/振荡的系统级保护方法,其特征在于,在R Σ(sub)<R th或R Σ(sup)<R th时,触发所述保护动作,进一步包括:
    对于不满足所述稳定条件的次同步和超同步振荡模态,分别获取相应的灵敏度;
    获取候选风电场集合,选择次同步/或超同步电阻为负并且对应灵敏度均为正的风电场作为保护切机的候选风电场;
    如同一个风场的次同步和超同步灵敏度均为正,则两者之和或者加权和作为所述同一个风场整体的灵敏度,并根据所述风场整体的灵敏度给每个候选风电场分配权重;
    以切机后次同步和/或超同步聚合电阻不小于稳定裕度为约束条件,构成优化问题,并解出切机比;
    获取候选风场的切机数量,并将每个候选风电场的切机数量构成所述系统级保护信号发送至分布式保护继电器。
  9. 根据权利要求8所述的次/超同步谐振/振荡的系统级保护方法,其特征在于,所述灵敏度的计算公式为:
    Figure PCTCN2018094238-appb-100005
    其中,n i和Δn Ti分别为第i个风电场风力发电机的数量和第i个风电场风力发电机切除的数量,Z Σ(n i)和Z Σ(n i-Δn Ti)分别为第i个风电场切除前次同步和/或超同步聚合阻抗的值和切除Δn Ti台风力发电机后次同步和/或超同步聚合阻抗的值,i为风电场序号。
  10. 根据权利要求8所述的次/超同步谐振/振荡的系统级保护方法,其特征在于,解出所述切机比的公式为:
    Figure PCTCN2018094238-appb-100006
    其中,Round表示四舍五入到整数,Δn Ti为候选风场的切机数量,N T为所有候选风电场切机数量构成的集合;I T为候选风电场集合;Z Σ(N T)为候选风电场切机数量为N T时,整个系统次同步和/或超同步聚合阻抗的值;R th为电阻表示的稳定裕度,α为切机比,w i为第i个风电场切机权重,N i为第i个风电场风力发电机总数。
PCT/CN2018/094238 2017-11-09 2018-07-03 次/超同步谐振/振荡的系统级保护系统及方法 WO2019091130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/701,305 US11476670B2 (en) 2017-11-09 2019-12-03 System-level protection system and method for sub/super-synchronous resonance/oscillation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711108495.XA CN107769172B (zh) 2017-11-09 2017-11-09 次/超同步谐振/振荡的系统级保护系统及方法
CN201711108495.X 2017-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/701,305 Continuation US11476670B2 (en) 2017-11-09 2019-12-03 System-level protection system and method for sub/super-synchronous resonance/oscillation

Publications (1)

Publication Number Publication Date
WO2019091130A1 true WO2019091130A1 (zh) 2019-05-16

Family

ID=61273433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094238 WO2019091130A1 (zh) 2017-11-09 2018-07-03 次/超同步谐振/振荡的系统级保护系统及方法

Country Status (3)

Country Link
US (1) US11476670B2 (zh)
CN (1) CN107769172B (zh)
WO (1) WO2019091130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969620A (zh) * 2020-07-03 2020-11-20 科诺伟业风能设备(北京)有限公司 直驱风电机组变流器参与电网次超同步振荡抑制的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769172B (zh) * 2017-11-09 2019-03-01 清华大学 次/超同步谐振/振荡的系统级保护系统及方法
CN108667048B (zh) * 2018-05-31 2021-04-27 清华大学 新能源并网系统振荡稳定性的频域判稳方法及装置
CN110569577A (zh) * 2019-08-26 2019-12-13 清华大学 基于频域模式法的新能源系统次同步振荡溯源方法及系统
CN111737919B (zh) * 2020-06-26 2024-05-24 西安热工研究院有限公司 一种适用于次同步振荡分析的直驱式风电场分群方法
CN112039556A (zh) * 2020-08-24 2020-12-04 中国电子科技集团公司第五十四研究所 一种适用于扩频系统的抗窄带干扰频域陷波方法
CN112803468B (zh) * 2021-01-20 2023-03-10 中国南方电网有限责任公司 一种交直流互补谐振抑制控制方法和装置
CN114301055A (zh) * 2022-02-17 2022-04-08 河海大学 基于宽频量测的电力系统间谐波潮流获取方法与系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384246A (en) * 1981-01-30 1983-05-17 General Electric Company Series-thyristor subsynchronous damper for power generators
CN101447675A (zh) * 2008-12-12 2009-06-03 中国电力科学研究院 一种抑制次同步谐振的方法
CN105470970A (zh) * 2015-11-16 2016-04-06 清华大学 电力系统中次同步和超同步振荡的保护方法及系统
CN106300392A (zh) * 2016-10-21 2017-01-04 国网新疆电力公司电力科学研究院 风电场次同步振荡抑制器多机协调控制方法
CN107069811A (zh) * 2017-04-12 2017-08-18 清华大学 基于同步参考坐标系的阻抗网络建模与稳定性分析方法
CN107769172A (zh) * 2017-11-09 2018-03-06 清华大学 次/超同步谐振/振荡的系统级保护系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504302C2 (sv) * 1994-05-30 1996-12-23 Asea Brown Boveri Styrutrustning för en i en elektrisk kraftledning inkopplad seriekondensator
CN102185283B (zh) * 2011-04-01 2014-01-29 南京南瑞继保电气有限公司 发电机次同步电流计算和次同步过电流及发散保护方法
US9383735B2 (en) * 2012-10-04 2016-07-05 Schweitzer Engineering Laboratories, Inc. Distributed coordinated electric power delivery control system using component models
CA2863999A1 (en) * 2013-02-01 2014-08-07 Abb Technology Ag Method and apparatus for mitigating sub-synchronous resonance in power transmission system
CN105515021B (zh) * 2016-01-20 2017-12-19 清华大学 多模式附加次/超同步振荡控制方法和控制系统
CN106021682B (zh) * 2016-05-13 2019-08-09 清华大学 基于阻抗网络模型的次同步振荡分析方法和装置
CN106611957A (zh) * 2016-12-05 2017-05-03 清华大学 电力系统次/超同步振荡广域监测方法和系统
CN106655123A (zh) * 2016-12-29 2017-05-10 北京四方继保自动化股份有限公司 一种次同步/超同步振荡监测保护装置及振荡监测保护方法
CN107086588B (zh) * 2017-05-27 2024-01-16 清华大学 电力电子系统的次同步/超同步振荡分析方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384246A (en) * 1981-01-30 1983-05-17 General Electric Company Series-thyristor subsynchronous damper for power generators
CN101447675A (zh) * 2008-12-12 2009-06-03 中国电力科学研究院 一种抑制次同步谐振的方法
CN105470970A (zh) * 2015-11-16 2016-04-06 清华大学 电力系统中次同步和超同步振荡的保护方法及系统
CN106300392A (zh) * 2016-10-21 2017-01-04 国网新疆电力公司电力科学研究院 风电场次同步振荡抑制器多机协调控制方法
CN107069811A (zh) * 2017-04-12 2017-08-18 清华大学 基于同步参考坐标系的阻抗网络建模与稳定性分析方法
CN107769172A (zh) * 2017-11-09 2018-03-06 清华大学 次/超同步谐振/振荡的系统级保护系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969620A (zh) * 2020-07-03 2020-11-20 科诺伟业风能设备(北京)有限公司 直驱风电机组变流器参与电网次超同步振荡抑制的方法
CN111969620B (zh) * 2020-07-03 2023-08-22 科诺伟业风能设备(北京)有限公司 直驱风电机组变流器参与电网次超同步振荡抑制的方法

Also Published As

Publication number Publication date
CN107769172A (zh) 2018-03-06
US11476670B2 (en) 2022-10-18
CN107769172B (zh) 2019-03-01
US20200106263A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2019091130A1 (zh) 次/超同步谐振/振荡的系统级保护系统及方法
Xie et al. A system-wide protection against unstable SSCI in series-compensated wind power systems
AU2010212454B2 (en) System and method for monitoring power filters and detecting power filter failure in a wind turbine electrical generator
CN102723735B (zh) 孤岛检测方法及系统
CN103412207B (zh) 基于负序电流注入的光伏并网逆变器孤岛检测方法
CN103257298B (zh) 基于参数自适应Sandia频率偏移法的并网逆变器孤岛检测方法
Zhang et al. An integrated wide-area protection scheme for active distribution networks based on fault components principle
CN108493907A (zh) 一种适配有源配电网的幅值比较式保护方法
CN101931219A (zh) 一种基于相位偏移的自抗扰孤岛检测方法
CN110120686A (zh) 一种基于电力系统在线惯量估计的新能源承载力预警方法
CN109038664B (zh) 计及风机涉网保护高频分轮次整定方法
CN107482678B (zh) 一种双馈风电场经柔直并网系统故障穿越控制方法
CN110829388B (zh) 双馈风电场的单相接地故障判定方法及其重合闸方法
CN102646958B (zh) 发电机异步自激振荡保护装置及保护方法
Ahmad et al. Connection of an offshore wind park to HVDC converter platform without using offshore AC collector platforms
Zhang et al. The emergency control strategies of short-run isolated island wind farm
CN107834586A (zh) 一种考虑系统频率可接受能力的送端多直流闭锁策略优化方法
CN110492448A (zh) 适用于新能源场站送出线路的距离保护方法
CN112039130B (zh) 一种考虑电压约束的弱送端电网直流故障后紧急控制方法
CN114696301A (zh) 一种双馈风电场送出线路单相接地保护方法及系统
CN109217334B (zh) 一种功率的控制方法及装置
Wu et al. Impact of high-proportion wind power integration on power angle stability of power system
Singh et al. Islanding detection using Hilbert Transform in a distributed generation environment
Helac et al. Wind farm response on short circuits and longitudinal asymmetries
Chu et al. Sequence impedance modeling of DFIG wind farm via LCC-HVDC Transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876608

Country of ref document: EP

Kind code of ref document: A1