WO2019090920A1 - 一种光致变色光学材料及其制备方法 - Google Patents

一种光致变色光学材料及其制备方法 Download PDF

Info

Publication number
WO2019090920A1
WO2019090920A1 PCT/CN2017/117714 CN2017117714W WO2019090920A1 WO 2019090920 A1 WO2019090920 A1 WO 2019090920A1 CN 2017117714 W CN2017117714 W CN 2017117714W WO 2019090920 A1 WO2019090920 A1 WO 2019090920A1
Authority
WO
WIPO (PCT)
Prior art keywords
photochromic
coating
zinc sulfide
spiropyran
coating liquid
Prior art date
Application number
PCT/CN2017/117714
Other languages
English (en)
French (fr)
Inventor
王明华
乔振安
张鹤军
纪立军
范为正
张倩
司云凤
王志飞
刘洋
薛晓花
吴潇
郑永华
Original Assignee
江苏视科新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711110837.1A external-priority patent/CN107778510B/zh
Priority claimed from CN201711110839.0A external-priority patent/CN107779072B/zh
Priority claimed from CN201711110840.3A external-priority patent/CN107722027B/zh
Priority claimed from CN201711112631.2A external-priority patent/CN107722028B/zh
Priority claimed from CN201711113657.9A external-priority patent/CN107903889B/zh
Priority claimed from CN201711110838.6A external-priority patent/CN107828268B/zh
Application filed by 江苏视科新材料股份有限公司 filed Critical 江苏视科新材料股份有限公司
Priority to EP17912346.8A priority Critical patent/EP3508554B1/en
Publication of WO2019090920A1 publication Critical patent/WO2019090920A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/94Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Definitions

  • the invention belongs to the field of photochromic technology, and in particular relates to a photochromic nano composite microsphere and a coating, a coating and a photochromic optical material prepared therefrom.
  • Photochromism refers to the fact that certain compounds change in the molecular structure of a material with a certain wavelength and intensity of light. As the absorption spectrum changes, the absorbance and color of the material change, and the change is generally reversible. A functional material that automatically returns to its original state when the light is stopped. As a new material in the field of optical material subdivision, it is important in high-tech fields such as optical lens, optical information storage, molecular switch, and anti-counterfeiting recognition. Value. Humans have discovered photochromism for more than a hundred years.
  • the photochemical fatigue degree is deteriorated due to the influence of strength, temperature, and substrate environment, and the degradation is deteriorated after repeated repeated irradiation, and the reversible photochromic performance is lost, or the color change response time is prolonged, and the chromaticity is weakened. Fading recovery time is slow and so on.
  • the light stability of the color changing compound is one of the important problems in the practical application of the color changing compound.
  • Photochromism mechanism studies have shown that the cause of fatigue is mainly photooxidative degradation of compounds during photoisomerization and fatigue. Therefore, antioxidant research has become the main way for compounds to improve fatigue resistance.
  • the following methods are mainly used to improve the fatigue resistance: one is to add a light stabilizer or an antioxidant in a polymer medium containing a color changing compound; the other is to directly type an antioxidant group on the compound molecule;
  • the aryl group is introduced into the side chain of the compound molecule; the fourth is to increase the fatigue resistance by adding a mono-group too oxygen quencher or by using a spin-trapping agent.
  • Patent ZL200810057392 discloses a method for preparing a photochromic microcapsule, which can improve the acid and alkali resistance and fatigue resistance of the photochromic material. Extended service life.
  • the patent ZL201410195430.3 discloses a preparation method of a polyurethane-chitosan double-shell photochromic microcapsule, which can further improve the coverage and fatigue resistance of the photochromic compound. Therefore, the development of compounds and composite materials with good photochromic properties has become one of the research hotspots of photochromic materials in recent years, especially the development of color-changing materials with superior fatigue resistance, good thermal stability and high spectral response. More popular use value.
  • photochromic properties are often affected by polymer molecules, other chemical auxiliaries in the matrix, microstructure, polymerization environment, etc.
  • the color-changing compound is greatly affected by the UV absorber in the polymer, because the ultraviolet ray is in the polymer.
  • the absorption of the light absorbing agent causes the discoloration of the color changing compound to be greatly restricted by the ultraviolet spectrum, resulting in low discoloration efficiency; at the same time, the presence of diopter causes the edge thickness and the center thickness of the lens to be inconsistent, in which case, the body is still used.
  • the method of adding a color changing compound results in a color depth chromatic aberration in a different thickness of the lens. Therefore, some domestic manufacturers use spin coating to produce color-changing lenses.
  • the spin coating method is to add the discolored solution to the spin coater after the substrate is prepared. After fully mixing, the substrate is fixed on a spin coater for centrifugal rotation and solidified to form a color change effect.
  • the spin coating method has the advantages of high technical content, theoretically can be made into any product, and the color difference of the product is small.
  • the disadvantage is that the space of the color changing coating is relatively reduced, the color changing space is reduced, and the ambient temperature is increased.
  • the change of color change efficiency is not high, so the development of photochromic high efficiency lens coating technology is an important development direction in the future.
  • the nanocomposite microsphere core is sodium acetate/zinc sulfide nanoparticle
  • the outer shell is coated with polyurethane
  • the spiropyran photochromic compound is in an intermediate layer between the inner core and the outer shell to form a composite multi-layer core-shell structure.
  • the material can be prepared as a photochromic coating or incorporated into a resin optical material to form an optically variable material.
  • the material can change from colorless to colored under ultraviolet irradiation, and after the ultraviolet light disappears, it can quickly fade to colorless, and has the advantages of strong fatigue resistance, good stability, and fast discoloration speed.
  • the present invention provides the following technical solutions:
  • Photochromic nanocomposite microspheres which are a three-layer composite core-shell structure of polyurethane/spirol/zinc sulfide, the core of which is zinc sulfide mesoporous nanospheres, and the middle layer is photo-induced by pyrrolium compounds.
  • the color changing layer has a polyurethane outer shell; the outer diameter of the composite microsphere is 50-350 nm, wherein the zinc sulfide mesoporous nano microsphere has a diameter of 30-250 nm, the intermediate layer has a thickness of 5-25 nm, and the outer shell has a thickness of 5-25 nm. 25nm.
  • the photochromic nanocomposite microspheres as described above preferably, the zinc sulfide mesoporous nanospheres are monodisperse zinc sulfide mesoporous nanospheres composed of zinc sulfide nanocrystals, and the intermediate layer is The ruthenium compound nanoparticles are uniformly dispersed on the surface or the gap of the zinc sulfide mesoporous nanosphere to form a nanocomposite mesoporous structure.
  • the spiropyran compound is selected from the group consisting of compounds of formula (I), formula (II) or formula (III):
  • the polyurethane is formed by polymerizing an isocyanate monomer compound containing two or more isocyanate groups and an alcohol compound.
  • the isocyanate monomer compound is selected from the group consisting of toluene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,6-hexamethylene diisocyanate, and At least one of benzene dimethylene diisocyanate, naphthalene-1.5-diisocyanate, methylcyclohexyl diisocyanate, dicyclohexylmethane diisocyanate, tetramethylbenzene dimethylene diisocyanate, and isophorone diisocyanate Species
  • the alcohol compound is at least one of n-butanol, polytetrahydrofuran ether glycol, pentaerythritol, ethylene glycol, propylene glycol, butanediol, hexanediol, neopentyl glycol, and trimethylolpropane.
  • the present invention provides a method of preparing a photochromic nanocomposite microsphere as described above, the method comprising the steps of:
  • the spiropyran-coated zinc sulfide mesoporous nanospheres and the isocyanate monomer compound prepared in the step a are added to the solvent, and after stirring uniformly, the alcohol compound and the dispersing agent are sequentially added; wherein the spiropyran is coated with the zinc sulfide mesoporous nanometer.
  • the ball, isocyanate monomer compound, alcohol compound, dispersant and solvent mass ratio are: (0.5-1.2): (0.5-1.2): (0.5-0.9): (1.2-2.2): 100; the temperature is maintained at 15- Prepolymerization at 25 ° C for 45-60 min to obtain a prepolymer solution; the chain extender and catalyst are added to the prepolymer solution, and the mass ratio of the chain extender, the catalyst and the isocyanate monomer compound is (6- 15): (0.1-0.3): (9-11), heating to 45-90 ° C under stirring to carry out polymerization and chain extension reaction for 10-15 min, to form a polyurethane coating precipitate, the precipitate is filtered, washed and dried to obtain polyurethane / Spiropyran/zinc sulfide three-layer composite core-shell structure photochromic nanocomposite microspheres.
  • the solvent is chloroform, acetone, propyl acetate, butyl acetate, ethyl acetate, dibutyl phthalate, petroleum ether.
  • the catalyst is dibutyltin dilaurate.
  • the alcohol compound is a mixture of n-butanol and polytetrahydrofuran ether glycol, and the mass ratio of n-butanol to polytetrahydrofuran ether glycol is (1) 3): (9-11).
  • the dispersing agent is at least one of Tween 20, Tween 80, Span 20, Span 60, and Span 80;
  • the chain extender is at least one of ethylene glycol, propylene glycol, ethylene diamine, propylene diamine, and diethylamine;
  • the chain extender is a mixture of ethylene glycol and ethylene diamine, and the mass ratio of ethylene glycol to ethylenediamine is (2-3): (0.6-1.5).
  • the present invention is a photochromic nanocomposite microsphere prepared by the method described above.
  • the present invention provides a photochromic coating liquid containing the photochromic nanocomposite microspheres as described above.
  • the coating liquid is composed of the component A and the component B in the following parts by weight:
  • the photochromic coating liquid as described above preferably, the polythiourethane monomer is 2,2'-dimercaptoethyl sulfide, 2,2'-dimercaptoethylthioethane At least one of 2,3-dimercaptoethylthiopropanethiol or 1,2,3-tridecylethylthiopropane;
  • the isocyanate type curing agent is a toluene diisocyanate curing agent, a diphenylmethane-4,4'-diisocyanate curing agent, and hexamethylene diisocyanate curing.
  • a solvent a m-xylylene diisocyanate curing agent, a methylcyclohexyl diisocyanate curing agent, and an isophorone diisocyanate curing agent;
  • the photochromic coating liquid as described above, preferably, the catalyst is dibutyltin dilaurate.
  • the diluent is dichloromethane, butyl acetate, methyl acetate, ethanol, butanol, acetone, toluene, xylene, diethyl ether and polytetrahydrofuran ether glycol. At least one of them;
  • the wetting and dispersing agent is a BYK polyurethane type special wetting and dispersing agent or a F420 type wetting and dispersing agent;
  • the leveling agent is an oily F300 type leveling agent, a F309 type leveling agent, a F309 type leveling agent or a F320 type leveling agent;
  • the antifoaming agent is an XPJ01F type modified silicone oil defoaming agent.
  • the present invention provides a method for preparing a photochromic coating liquid as described above, the preparation method comprising the following steps:
  • a component adding polythiourethane monomer, diluent, polyurethane/spirol/zinc sulfide photochromic composite microsphere, wetting dispersing agent and leveling agent according to the ratio In the container, stir evenly at room temperature for 15-30 minutes to obtain a component A;
  • Component B The isocyanate type curing agent, antifoaming agent and catalyst are added to the container in the above ratio, and uniformly stirred at room temperature for 3-5 minutes to obtain a component B.
  • the present invention provides a photochromic coating comprising the photochromic nanocomposite microspheres as described above.
  • the present invention provides a method of preparing a photochromic coating, the method comprising: using a photochromic coating solution as described above for preparing a color-changing coating of an optical substrate, the component And the component B is uniformly mixed in a mass ratio (70-100):(12-19) ratio, the viscosity is adjusted by adding a diluent, and then coated on the surface of the optical substrate to form a coating layer, by light irradiation or It is heated to cure it to form a photochromic coating.
  • the present invention provides a photochromic optical material comprising a resin optical substrate and a photochromic coating as described above coated on the surface thereof.
  • the resin optical substrate is a thermosetting plastic or a thermoplastic.
  • the resin optical substrate is a polymethyl methacrylate resin, a propylene diglycol carbonate resin, a polycarbonate resin, a urethane resin, and One of sulfur epoxy resins.
  • the resin optical substrate is a resin lens.
  • the present invention provides a method of preparing a photochromic optical material as described above, the method comprising the steps of: applying the photochromic coating liquid to a resin by spin coating, spraying or dip coating On the optical substrate, an optical material having a photochromic coating on its surface is formed.
  • the method of preparing a photochromic optical material as described above preferably, the method comprises the steps of:
  • the component A and the component B are uniformly mixed in a mass ratio (70-100):(12-19), and the viscosity is adjusted to 20-350 cp (25 ° C) by adding a diluent to obtain light.
  • Achromic coating liquid
  • Optical substrate pretreatment one or more pretreatments of the resin optical substrate: alkaline aqueous solution or acidic aqueous solution chemical treatment, grinding treatment, plasma treatment at different pressures, corona discharge treatment, UV ozone treatment And hardened;
  • Coating spin-coating, spraying or dip coating the pretreated resin optical substrate with the photochromic coating liquid prepared in step II to form a photochromic coating on the substrate, that is, obtaining Spiropyran photochromic optical material.
  • the first photochromic coating liquid having a viscosity of 60 to 250 cp and the second photochromic having a viscosity of 50 to 200 cp are separately prepared in the step II.
  • the step IV adopts a dip coating method, and the specific operation is as follows: the pretreated resin optical substrate is immersed in the first photochromic coating liquid, soaked at room temperature for 3-5 minutes, and then the resin optical substrate is slowly extracted. From the coating liquid, move to the oven, set the temperature at 35-65 ° C, bake for 45-90 minutes to form a first photochromic coating; then immerse the resin optical substrate into the second photochromic liquid, Soak for 3-5 minutes at room temperature, then slowly lift the lens away from the coating solution, move it to the oven, set the temperature at 35-65 ° C, bake for 45-90 minutes, form a second photochromic coating, and obtain photo-induced Color changing optical material.
  • the total thickness of the photochromic coating layer is from 5 to 100 ⁇ m.
  • the method of producing a photochromic optical material as described above may further comprise subjecting the surface of the optical material to a hardening and/or anti-reflective surface coating treatment after the coating step IV.
  • the spiropyran photochromic compound of the present invention may be any of the known spiropyran photochromic compounds, preferably a spiropyran photochromic compound (I), a spiropyran photochromic compound ( II), spiropyran photochromic compound (III), which can be synthesized by the following method, but is not limited to the following method.
  • reaction solution After refluxing for 5-6 hours, the reaction solution is poured into ice and stirred to obtain a lavender emulsion. After standing still, the water and ethanol are distilled off, the viscous material is recrystallized from methanol, and dried by suction filtration to obtain lavender.
  • a solid powder that is, an alkyl spiropyran photochromic compound (I).
  • 2-Hydroxy-1-naphthaldehyde is dissolved in absolute ethanol in a mass ratio (0.8-1.2):(15-30), under nitrogen, heated to 45-78 ° C, and an ethanol solution containing PS02 is added dropwise thereto.
  • the mass ratio of PS02 ethanol solution to 2-hydroxy-1-naphthaldehyde is (2-3):1, wherein the mass ratio of PS02 to absolute ethanol is (1-2):(3-9), and the stable reflux is continued 8- 10h, cooled to room temperature, the solvent was concentrated to 40-50%, sealed and placed in 0-min 5 ° C ice bath for 10-20 hours, a large amount of white solid precipitated, suction filtration, crude column chromatography (petroleum ether: ethyl acetate 1:1 elution), vacuum drying, to give alkyl-naphthalene cyclopyran photochromic compound (II), the specific reaction formula is as follows:
  • the second step mixing tetrahydrofuran with 5-hydroxy-2,3-dimethoxy-7H-benzo[c]indole-7-one by mass ratio (0.6-1):1, but to -10 ⁇
  • a concentration of 3.0 M methyl magnesium chloride was added dropwise, and the mass ratio of methyl magnesium chloride to 5-hydroxy-2,3-dimethoxy-7H-benzo[c]indole-7-one was (0.6- 1.2): (0.7-1.2), the control temperature does not exceed -10 °C during the addition.
  • the reaction is maintained at -10 to -15 ° C for 90-120 minutes, and the reaction is quenched by adding a saturated ammonium chloride solution.
  • the mass ratio of ammonium chloride to methylmagnesium chloride is (1-3):1, liquid separation, water layer was extracted with ethyl acetate, the organic layers were combined, dried over anhydrous Na 2 SO 4, the solvent was distilled off under reduced pressure, the crude product was purified by column chromatography to give 2,3-dimethoxy-7-methyl-benzo -7H- [ c] ⁇ -5,7-diol;
  • the third step 2,3-dimethoxy-7-methyl-7H-benzo[c]indole-5,7-diol, toluene, 1,1-bis(4-methoxyphenyl 2-propyn-1-ol and p-toluenesulfonic acid (TsOH) are uniformly mixed at a mass ratio of (0.7-1.0):(4-6):(0.6-1.0):(0.1-0.3).
  • the main reaction process is 4-hydroxy-6,7-dimethoxy-1-phenyl-2-naphthoic acid cyclized under acidic conditions to give the intermediate 5-hydroxy-2.3-dimethoxy-7H- Benzo[c]indole-7-one; and reacted with methyl format reagent-magnesium chloride to give 2,3-dimethoxy-7-methyl-7H-benzo[c]indole-5,7-diol And the 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol is catalyzed by p-toluenesulfonic acid to form a spiropyran photochromic compound (III).
  • the specific reaction formula is as follows: :
  • the acid in the reaction is acetic acid, trifluoroacetic acid, phosphoric acid, sulfuric acid or polyphosphoric acid, preferably polyphosphoric acid.
  • the photochromic nanocomposite microspheres in the invention are a polyurethane/spirol/zinc sulfide three-layer composite core-shell structure, and the inner core thereof is zinc sulfide mesoporous nano microspheres.
  • the zinc sulfide intercalation The preparation route of the pore nano-microspheres is: condensation of ethylene glycol to acetaldehyde under high temperature conditions, acetaldehyde provides a hydrogen atom, as a reducing agent, S element becomes S 2- , and then Zn 2+ released by zinc nitrate hexahydrate Combined with S 2- to form a ZnS crystal nucleus, the crystal nucleus continues to grow based on the diffusion mechanism, so that the initial particles of the reaction, that is, the zinc sulfide nanocrystals, gradually aggregate to form secondary particles, namely zinc sulfide nanospheres; nucleation reaches a certain stage At this time, mercaptoethanol plays an important role in the reaction process.
  • the zinc sulfide nanospheres thus prepared are formed during the nucleation process of zinc sulfide nanocrystals, and monodisperse zinc sulfide mesoporous nanospheres composed of many small nanocrystals, the zinc sulfide nanospheres having a mesoporous structure
  • the larger specific surface area and higher surface energy, and thus its adsorption in the alcohol solvent is enhanced.
  • spiropyran color changing compound is uniformly dispersed in the form of nanoparticles on the surface and gap of the zinc sulfide microspheres.
  • polyurethane is coated as an outer shell to form a nanocomposite core-shell structure.
  • the photochromic nanocomposite microspheres have a spherical appearance, wherein the darker core is composed of a plurality of uniform-sized, monodisperse zinc sulfide nanospheres, and the light-colored outer layer is a spiropyran color-changing compound. Since the outer shell of the polyurethane is a colorless transparent material, it cannot be displayed and resolved in the transmission electron microscope photograph.
  • the invention has the beneficial effects that the photochromic nanocomposite microspheres of the invention are a three-layer composite core-shell structure of polyurethane/spirol/zinc sulfide, and the spiropyran as a color-changing compound is between the outer shell and the inner core, that is, the middle layer.
  • the three-dimensional space is in the nanometer scale, and the energy level changes and the energy gap are widened by the quantum size effect.
  • this unique structure can protect the color-changing compound from the polyurethane shell with relatively stable properties, and protect the color-changing compound from the external environment; on the other hand, due to the stable support of the core zinc sulfide nano-mesopor structure, the van der Waals region of the color-changing molecule
  • the conjugated system is enlarged, the space of the molecule is increased, the space between the molecules and the molecules is increased, so that the space for the isomerization reaction of the molecules is greatly increased, the activity of the color changing body is enhanced, the color changing open body and the colorless color are obtained.
  • the conversion between the closed-loop bodies is reduced, the conversion time is shortened, the speed is increased, the spectral response is more sensitive, and the color change effect is good.
  • the polyurethane shell itself can absorb part of the light, and part of the incident ultraviolet rays are absorbed by the zinc sulfide core, and the light intensity on the surface of the spiropyran color-changing compound is lower than that directly irradiated on the surface of the spiropyran color-changing compound.
  • Light intensity; at the same time, the irradiation intensity and irradiation residence time required to excite the spiropyran color are not affected, and the remaining ultraviolet rays will be absorbed by the zinc sulfide core. Therefore, the oxidation resistance and fatigue resistance of the polyurethane/spirol/zinc sulfide nanocomposite microspheres are significantly enhanced.
  • the photochromic coating or optical material prepared by the photochromic nanocomposite microsphere can change from colorless to colored under ultraviolet irradiation, and after the ultraviolet light disappears, it can quickly fade to colorless and has anti-fatigue Strong, stable, and fast color change.
  • Example 1 is a normal environmental absorption spectrum of the polyurethane/spirol/zinc sulfide nanocomposite microsphere prepared in Example 1.
  • Example 2 is a graph showing the absorption spectrum of a polyurethane/spirol/zinc sulfide nanocomposite microsphere prepared in Example 1 in a high temperature environment.
  • Fig. 3 is a normal environmental absorption spectrum of the spiropyran photochromic compound (III).
  • Fig. 4 is a high temperature environmental absorption spectrum of the spiropyran photochromic compound (III).
  • Figure 5 is a graph showing the normal environmental absorption spectra of the polyurethane/spirolpyran nanocomposite microspheres prepared in Comparative Example 2.
  • FIG. 6 is a graph showing the absorption spectrum of a polyurethane/spirolpyran nanocomposite microsphere prepared in Comparative Example 2 in a high temperature environment.
  • Example 7 is a transmission electron micrograph of the photochromic nanocomposite microspheres prepared in Example 1.
  • Example 8 is an infrared spectrum of the photochromic nanocomposite microspheres prepared in Example 1 and pure zinc sulfide, spiropyran color changing compound III, and polyurethane.
  • spiropyran photochromic compounds in the following examples and comparative examples were prepared by the following methods:
  • First step 90g of 4-hydroxy-6,7-dimethoxy-1-phenyl-2-naphthoic acid, 170g of o-xylene, and 85g of polyphosphoric acid are stirred and mixed uniformly, heated to 145 ° C, and reacted for 90 minutes. , the reaction solution is poured into water and filtered, and dried in vacuo to give 5-hydroxy-2,3-dimethoxy-7H-benzo[c]indole-7-one;
  • the second step taking 75g of tetrahydrofuran, 95g of 5-hydroxy-2,3-dimethoxy-7H-benzo[c]indole-7-one, mixing, cooling to -12 ° C, adding a concentration of 3.0M 80 g of methylmagnesium chloride, and reacted at -10 ° C for 100 minutes, 150 g of saturated ammonium chloride solution was added, and the aqueous layer was extracted with ethyl acetate (170 mL ⁇ 3), and the organic layer was combined, dried over anhydrous Na 2 SO 4 , the crude product is subjected to column chromatography to obtain 2,3-dimethoxy-7-methyl-7H-benzo[c]indole-5,7-diol;
  • the third step 40g of 2,3-dimethoxy-7-methyl-7H-benzo[c]indole-5,7-diol, 250g of toluene, 42g 1,1-di(4-methoxy
  • the mixture was heated to 75 ° C for 15 hours, and toluene was distilled off under reduced pressure.
  • the reaction was quenched by adding 110 g of saturated sodium hydrogencarbonate solution.
  • the aqueous layer was extracted with ethyl acetate (90 mL ⁇ 3).
  • the organic layer was combined, dried over anhydrous Na 2 SO 4 and evaporated.
  • Example 1 Preparation of Photochromic Nanocomposite Microspheres, Photochromic Coating Liquid, and Photochromic Lenses
  • the product prepared in the step (2) was observed by a JEM-2100 transmission electron microscope, as shown in Fig. 7, and the appearance was spherical, wherein the darker core was composed of many uniform, monodisperse vulcanizations.
  • the zinc nanosphere is composed of a light-colored outer layer which is a shell formed by a spiropyran color-changing compound and a polyurethane, which can be attributed to a zinc sulfide nanosphere having a large specific surface area and pore volume adsorbing the spiropyran color-changing compound material and being coated with a polyurethane
  • the core-shell composite microspheres formed by the coating are not visible and resolved in the transmission electron microscope photograph because the outer shell of the polyurethane is a colorless transparent material.
  • step (2) The product prepared in step (2) was tested by Fourier transform infrared spectroscopy (FT-IR), and the infrared spectrum of the spectrum of pure zinc sulfide, spiropyran color changing compound III and polyurethane was carried out. Compared. The results are shown in Figure 8, wherein the a curve is the infrared spectrum of zinc sulfide; the b curve is the infrared spectrum of the spiropyran compound III; the c curve is the infrared spectrum of the polyurethane material; and the d curve is the photochromic nanocomposite prepared in the first embodiment. Microsphere infrared spectrum.
  • the absorption peak at 3251-3480 is the stretching vibration peak of the urethane hydroxy-OH; the strong absorption peak at 2270 cm -1 is generated by the stretching vibration of the -N CO group, and other groups are generated. No absorption occurs at this peak, which is a characteristic absorption peak of isocyanate.
  • the infrared spectrum of the photochromic nanocomposite microspheres of Example 1 not only possesses the characteristic absorption peak of the spiropyran color changing compound, but also contains the characteristic absorption peak of the polyurethane, indicating the photochromic nanocomposite prepared in Example 1.
  • the microspheres are not a single zinc sulfide material, but also contain spiropyran color changing compounds and polyurethane materials.
  • Configure polyurethane component 675g 2,3-dimercaptoethylthiopropanethiol (BES) monomer, 120g dichloromethane, 35g polyurethane/spirol/zinc sulfide nanocomposite microspheres, 15g F420 Wetting and dispersing agent (product of Foshan Ona Polymer Co., Ltd.), 5g F300 leveling agent (product of Foshan Ona Polymer Co., Ltd.) was added to the container, and evenly stirred at room temperature for 25 minutes to obtain a component A;
  • BES 2,3-dimercaptoethylthiopropanethiol
  • the urethane optical lens substrate after NaOH cleaning treatment is immersed in the first photochromic coating liquid, immersed for 3 minutes at room temperature, and then the lens is slowly pulled up, the pulling speed is 1.0 mm/s, and the speed is increased after 85 s. To 1.3 mm/s, move to an oven, set the temperature at 45 ° C, and bake for 80 minutes; spray the lens with a second photochromic solution to obtain a spiropyran photochromic lens.
  • the coating thickness was 45 ⁇ m.
  • the JEM-2100 transmission electron micrograph of the product is similar to that of Figure 7.
  • Configure polyurethane component 610g 1,2,3-trimercaptoethylthiopropane (TES) monomer, 100g dichloromethane, 40g polyurethane/spirol/zinc sulfide nanocomposite microspheres, 10g F420 Wetting and dispersing agent, 5g F320 leveling agent (product of Foshan Ona Polymer Co., Ltd.) was added to the container, and uniformly stirred at room temperature for 20 minutes to obtain a component A;
  • TES 1,2,3-trimercaptoethylthiopropane
  • Disposing the photochromic coating liquid uniformly mixing the component A and the component B, and then dispensing into the A and B containers, wherein 600 g of the A container is the first photochromic coating liquid; 324 g of the B container. 20 g of dichloromethane was added to the B container to obtain a second photochromic coating liquid.
  • the hardened polyurethane optical lens substrate is immersed in the first photochromic coating liquid, immersed for 3 minutes at room temperature, and then the lens is slowly pulled up, the pulling speed is 1.0 mm/s, and the speed is increased after 85 s.
  • the temperature was set at 45 ° C and baked for 70 minutes; the lens was sprayed with a second photochromic liquid to obtain a spiropyran photochromic lens.
  • the coating thickness was 43 ⁇ m.
  • the JEM-2100 transmission electron micrograph of the product is similar to that of Figure 7.
  • Disposing the photochromic coating liquid uniformly mixing the component A and the component B, and then dispensing into the A and B containers, wherein 600 g of the A container is the first photochromic coating liquid; 469 g of the B container, 30 g of dichloromethane was added to the B vessel to obtain a second photochromic coating liquid.
  • the pickled polyurethane optical lens substrate is immersed in the first photochromic coating liquid, immersed for 3 minutes at room temperature, and then the lens is slowly pulled up, the pulling speed is 1.0 mm/s, and the speed is increased after 90 s.
  • the coating thickness was 45 ⁇ m.
  • the JEM-2100 transmission electron micrograph of the product is similar to that of Figure 7.
  • Disposing the photochromic coating liquid uniformly mixing the component A and the component B, and then dispensing into the containers A and B, wherein 600 g of the A container is the first photochromic coating liquid; 513 g of the B container, 30 g of dichloromethane was added to the B vessel to obtain a second photochromic coating liquid.
  • the hardened polyurethane optical lens substrate is immersed in the first photochromic coating liquid, soaked at room temperature for 3 minutes, and then the lens is slowly pulled up, the pulling speed is 0.9 mm/s, and the speed is increased after 95 s. Move to the oven at 1.4mm/s, set the temperature at 50 ° C, and bake for 75 minutes; then immerse the lens in the second photochromic coating solution in the same way as the first dip coating. Spiropyran photochromic lenses. The coating thickness was 44 ⁇ m.
  • the JEM-2100 transmission electron micrograph of the product is similar to that of Figure 7.
  • Disposing the photochromic coating liquid uniformly mixing the component A and the component B, and then dispensing into the containers A and B, wherein 700 g of the A container is the first photochromic coating liquid; 223 g of the B container, 15 g of dichloromethane was added to the B vessel to obtain a second photochromic coating liquid.
  • the hardened polyurethane optical lens substrate is immersed in the first photochromic coating liquid, immersed for 3 minutes at room temperature, and then the lens is slowly pulled up, the pulling speed is 1.1 mm/s, and the speed is increased after 85 s.
  • the coating thickness was 43 ⁇ m.
  • Ether diol 12g Tween80, temperature maintained at 25 ° C, prepolymerization at 500r / min for 60min, adding 7g chain extender (ethylene glycol 5.5g, ethylene diamine 1.5g), 0.1g DBTL, heated to 70 ° C
  • the polymerization chain extension reaction was carried out for 15 min, the stirring speed was 1500 r/min, and the solid matter was filtered, washed, and dried to obtain a polyurethane/spirol/zinc sulfide nanocomposite microsphere. The yield was 73%.
  • the JEM-2100 transmission electron micrograph of the product is similar to that of Figure 7.
  • Disposing the photochromic coating liquid uniformly mixing the component A and the component B, and then dispensing into the containers A and B, wherein 600 g of the A container is the first photochromic coating liquid; 367 g of the B container, 17 g of dichloromethane was added to the B vessel to obtain a second photochromic coating liquid.
  • the hardened polyurethane optical lens substrate is immersed in the first photochromic coating liquid, immersed for 4 minutes at room temperature, and then the lens is slowly pulled up, the pulling speed is 0.9 mm/s, and the speed is increased after 80 s. Move to the oven at 1.4mm/s, set the temperature at 60 ° C, and bake for 60 minutes; then immerse the lens in the second photochromic coating solution in the same way as the first dip coating. Spiropyran photochromic lenses.
  • the coating thickness was 45 ⁇ m.
  • the photochromic coating liquid and the photochromic lens were prepared under the same operating conditions as those in the steps (2) and (3) of Example 1, except that the spiropyran photochromic compound was used in the preparation of the photochromic coating liquid (III). Instead of polyurethane/spirol/zinc sulfide nanocomposite microspheres.
  • the photochromic coating liquid and the photochromic lens are prepared under the same operating conditions as those in the steps (2) and (3) of the first embodiment, but are obtained by the above step (1) in the process of preparing the photochromic coating liquid.
  • the polyurethane/spirolpyran nanocomposite microspheres replace the polyurethane/spirol/zinc sulfide nanocomposite microspheres.
  • Example 7 Antioxidation performance test of photochromic materials prepared in Example 1 and Comparative Example 1-2, respectively
  • each of the polyurethane/spirol/zinc sulfide nanocomposite microspheres prepared in Example 1 and 5 g of the spiropyran photochromic compound (III), and the polyurethane/spirol prepared in the comparative example 2 were prepared.
  • 5g of nanocomposite microspheres were placed in three crucibles, and then the crucible was transferred to a muffle furnace, and the temperature was raised to 200 ° C, and at this temperature for 28 hours; the photochromic compound was taken out and dissolved separately.
  • 9mL of tetrahydrofuran was poured into a plurality of glass beakers, and each part was placed in a sunlight simulation box for irradiation detection.
  • the absorption spectra of the solution before irradiation and after irradiation were recorded, and the test results are shown in Fig. 2, Fig. 4, Fig. 6, and Table 2.
  • Detection steps and methods The photochromic lenses prepared in Examples 1-6 and Comparative Examples 1-2 were respectively subjected to irradiation anti-aging performance experiments, and the experimental equipment was selected from ZN-P type ultraviolet aging test of Wuxi Zhongtian Engineering Technology Co., Ltd. The box is set at a temperature of 60 ° C, and the irradiation intensity is selected to limit the irradiation conditions. After the identification, the radiation is irradiated for 15 minutes and 48 hours respectively, and the transmittance data before irradiation and after irradiation are recorded. The test results are shown in Table 3.
  • the fatigue resistance of photochromic materials is mostly reflected by the change of absorbance or transmittance after discoloration. Therefore, the fatigue resistance is measured by the change of absorbance value before and after irradiation and the change of transmittance.
  • Example 8 Photochromic response test of resin lenses prepared in Examples 1-6 and Comparative Examples 1-2, respectively
  • Detection steps and methods The photochromic lenses prepared in Examples 1-6 and Comparative Examples 1-2 were respectively placed in a test box, and the solar light simulator light source was turned on to record the time required for the lens to change from colorless to colored reaction; After 10 minutes, the analog light source was turned off, and the time required for the lens to return from color to colorless state was recorded.
  • the test results are shown in Table 5.
  • the optical material and the lens containing the polyurethane/spirol/zinc sulfide nanocomposite microspheres produced by the invention have the advantages of short photochromic response time and high spectral response sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optical Filters (AREA)
  • Eyeglasses (AREA)

Abstract

一种光致变色纳米复合微球和由其制备的涂料、涂层和光致变色光学材料。该光致变色纳米复合微球为三层复合核壳结构,其内核为硫化锌介孔纳米微球,中间层为螺吡喃类化合物构成的光致变色层,外壳为聚氨酯;该复合微球的外径为50-350nm,其中,硫化锌介孔纳米微球的直径为30~250nm,中间层的厚度为5~25nm,外壳的厚度为5~25nm。该光致变色复合微球可以制备成光致变色涂层或者参杂入树脂光学材料中制成光学变色材料。该材料在紫外线照射下,能从无色变为有色,而紫外线消失后,又能快速褪变为无色,具有抗疲劳性强、稳定性好、变色速度快等优点。

Description

一种光致变色光学材料及其制备方法 技术领域
本发明属于光致变色技术领域,具体涉及一种光致变色纳米复合微球及由其制备的涂料、涂层和光致变色光学材料。
背景技术
光致变色指的是某些化合物在一定的波长和强度的光作用下,随着吸收光谱的变化,材料的分子结构改变,从而导致材料吸光度和颜色发生变化,且这种改变一般是可逆的,当光照停止后又能自动恢复到原来状态的一种功能性材料,作为光学材料细分领域内一种新材料,在光学透镜、光信息存储、分子开关、防伪识别等高技术领域具有重要应用价值。人类发现光致变色现象已有一百多年的历史。第一个成功的商业应用,始于20世纪60年代,美国的Corning工作室的两位材料学家Amistead和Stooky首先制备了含卤化银玻璃的光致变色材料,随后人们对其机理和应用作了大量研究,并开发出了新型变色眼镜。但由于其较高的成本及复杂的加工技术,不适于制作大面积光色玻璃,限制了其在建筑领域的商业应用。此后,光致变色的应用重心转向了价格便宜且质量较轻的聚合物基材料,将光致变色化合物加入透明树脂中,制成光敏变色材料,可以用于树脂眼镜片,国内外在变色眼镜方面已开始应用。由于卤化银光致变色材料不适用于树脂眼镜,已逐步被淘汰。目前有机光致变色化合物在树脂镜片上的应用主要包含以下几类:螺吲哚啉萘并噁嗪、萘并吡喃、俘精酸酐光致变色化合物等。尽管在实际应用方面取得了重要的成果,但还存在着变色化合物光稳定性差、光致变色响应值低、热稳定性不足等弊端,如:光致变色化合物容易受到pH值、氧化作用、光照强度、温度、基体环境等的影响而导致其光化学疲劳度变差,并且在受到多次反复辐照后发生降解劣变而失去可逆的光致变色性能,或者变色响应时间延长、色度减弱、褪色恢复时间迟缓等情况。
变色化合物光稳定性,也即抗疲劳性,是变色化合物在实际应用中存在的重要问题之一。光致变色机理研究表明,引发疲劳的原因主要是化合物在光异构化反应时发生光氧化降解,出现疲劳现象。因此,抗氧化研究已成为化合物提高抗疲劳性能的主要途径。目前,主要利用如下方法提高抗疲劳性能:一是在含有变色化合物的聚合物介质中加入光稳定剂或抗氧剂;二是在化合物分子上直接键入抗氧基团;三是将富电杂芳基团引入到化合物分子侧链上;四是通过加入单基太氧淬灭剂,或者采用诱捕试剂(spin-trapping agent)来提高抗疲劳性。故有研究者通过将变色化合物微胶囊化来提升性能,如:专利ZL200810057392公开了一种光致变色微胶囊的制备方法,该方法可提高光致变色材料的耐酸碱性及耐疲劳性,延长使用寿命。ZL201410195430.3专利公开了一种聚氨酯-壳聚糖双壳光致变色微胶囊的制备方法,双层包覆可以进一步提高光致变色化合物的包覆率和耐疲劳性等。因此,开发具有良好的光致变色性能的化合物及复合材料已成为近年来光 致变色材料的研究热点之一,特别是开发抗疲劳性能优越、热稳定性好、光谱响应值高的变色材料,更具有推广使用价值。
另外,光致变色性能也常常受到聚合物分子、基体中的其它化学助剂、微观结构、聚合环境等影响,例如:变色化合物受聚合物中紫外吸收剂影响较大,由于紫外线被聚合物中光吸收剂吸收,使得变色化合物受紫外光谱激发变色受到了很大的限制,导致变色效率低;同时,屈光度的存在导致镜片的边缘厚度和中心厚度不一致,在这种情况下,如仍采用本体添加变色化合物的方法会导致镜片厚薄不同地方的颜色深度色差。所以,国内有部分制造商采用旋涂法来生产变色镜片。旋涂法是在基片制成后,即将配好的变色溶液加入旋涂机槽中,充分混合后,使基片固定在旋涂机上进行离心旋转运动,并将其固化,形成有变色效果的制品,旋涂法与基片法相比,优点是技术含量高,理论上可以制成任何产品,产品色差小,缺点是由于变色涂层空间相对缩小,变色空间减小,随着外界环境温度的变化,变色效率不高,因此开发光致变色效率高的镜片涂层技术是未来一个重要的发展方向。
发明内容
本发明的目的是提供一种聚氨酯/螺吡喃/硫化锌光致变色纳米复合微球和由其制备的涂料、涂层和光致变色光学材料。该纳米复合微球内核为醋酸钠/硫化锌纳米颗粒,外壳包覆聚氨基甲酸酯,螺吡喃类光致变色化合物处于内核与外壳之间的中间层,形成复合多层核壳结构。该材料可以制备成光致变色涂层或者参杂入树脂光学材料中制成光学变色材料。该材料在紫外线照射下,能从无色变为有色,而紫外线消失后,又能快速褪变为无色,具有抗疲劳性强、稳定性好、变色速度快等优点。
为实现上述目的,本发明提供以下技术方案:
一种光致变色纳米复合微球,其是聚氨酯/螺吡喃/硫化锌三层复合核壳结构,其内核为硫化锌介孔纳米微球,中间层为螺吡喃类化合物构成的光致变色层,外壳为聚氨酯;该复合微球的外径为50-350nm,其中,硫化锌介孔纳米微球的直径为30~250nm,中间层的厚度为5~25nm,外壳的厚度为5~25nm。
如上所述的光致变色纳米复合微球,优选地,所述硫化锌介孔纳米微球是由硫化锌纳米晶粒组成的单分散硫化锌介孔纳米球,所述中间层是由螺吡喃类化合物纳米颗粒均匀分散在该硫化锌介孔纳米球的表面或缝隙,形成纳米复合介孔结构。
如上所述的光致变色纳米复合微球,优选地,所述螺吡喃类化合物选自式(I)、式(II)或式(III)化合物:
Figure PCTCN2017117714-appb-000001
其中R=C 16H 33
Figure PCTCN2017117714-appb-000002
其中R=C 16H 33
Figure PCTCN2017117714-appb-000003
如上的光致变色纳米复合微球,优选地,所述聚氨酯是由含有二个或二个以上的异氰酸酯基团的异氰酸酯单体化合物与醇类化合物聚合而成。
如上所述的光致变色纳米复合微球,优选地,所述异氰酸酯单体化合物选自:甲苯二异氰酸酯、二苯基甲烷-4,4’-二异氰酸酯、1,6-己二异氰酸酯、间苯二亚甲基二异氰酸酯、萘-1.5-二异氰酸酯、甲基环己基二异氰酸酯、二环己基甲烷二异氰酸酯、四甲基苯二亚甲基二异氰酸酯和异佛尔酮二异氰酸酯中的至少一种;
所述醇类化合物为正丁醇、聚四氢呋喃醚二醇、季戊四醇、乙二醇、丙二醇、丁二醇、己二醇、新戊二醇、三羟甲基丙烷中的至少一种。
另一方面,本发明提供如上所述的光致变色纳米复合微球的制备方法,该方法包括如下步骤:
a.制备螺吡喃包覆硫化锌纳米球:
向乙二醇中加入硝酸锌,搅拌均匀后加入硫粉,升温到140-160℃反应20-24小时;冷却至40-60℃,滴加巯基乙醇稳定剂并搅拌;加入螺吡喃类化合物,激烈搅拌20-40分钟,冷却至室温,反应液逐渐分层沉淀,过滤收集沉淀,洗涤,干燥,得到螺吡喃包覆硫化锌介孔纳米球;其中,硝酸锌、硫粉、巯基乙醇与乙二醇四者质量比为(0.3-0.6)∶(0.1-0.2)∶(4-7)∶(90-110),硝酸锌与螺吡喃化合物质量比为1∶(0.5-1);
b.制备聚氨酯/螺吡喃/硫化锌光致变色纳米复合微球:
将步骤a制备的螺吡喃包覆硫化锌介孔纳米球、异氰酸酯单体化合物加入到溶剂中,搅拌均匀后,依次加入醇类化合物和分散剂;其中螺吡喃包覆硫化锌介孔纳米球、异氰酸酯单体化合物、醇类化合物、分散剂与溶剂质量比为:(0.5-1.2)∶(0.5-1.2)∶(0.5-0.9)∶(1.2-2.2)∶100;温度保持在15-25℃,搅拌下预聚反应45-60min,得到预聚物溶液;将 扩链剂、催化剂添加到预聚物溶液中,扩链剂、催化剂和异氰酸酯单体化合物三者质量比为(6-15)∶(0.1-0.3)∶(9-11),加热至45-90℃搅拌下进行聚合扩链反应10-15min,生成聚氨酯包覆物沉淀,将沉淀过滤、洗涤,干燥,得到聚氨酯/螺吡喃/硫化锌三层复合核壳结构光致变色纳米复合微球。
如上所述的光致变色纳米复合微球的制备方法,优选地,所述溶剂为三氯甲烷、丙酮、乙酸丙酯、乙酸丁酯、乙酸乙酯、邻苯二甲酸二丁酯、石油醚中的至少一种,所述催化剂为二月桂酸二丁基锡。
如上所述的光致变色纳米复合微球的制备方法,优选地,所述醇类化合物为正丁醇和聚四氢呋喃醚二醇的混合物,正丁醇与聚四氢呋喃醚二醇质量比为(1-3)∶(9-11)。
如上所述的光致变色纳米复合微球的制备方法,优选地,所述分散剂为吐温20、吐温80、司盘20、司盘60、司盘80中的至少一种;
所述扩链剂为乙二醇、丙二醇、乙二胺、丙二胺、二乙胺中的至少一种;
优选地,所述扩链剂为乙二醇与乙二胺混合物,乙二醇与乙二胺质量比为(2-3)∶(0.6-1.5)。
又一方面,本发明一种光致变色纳米复合微球,其是采用如上所述的方法制备的。
又一方面,本发明提供一种光致变色涂层液,该涂层液中含有如上所述的光致变色纳米复合微球。
如上所述的光致变色涂层液,优选地,所述涂层液由甲组份和乙组份按以下重量份构成:
(1)甲组分:
Figure PCTCN2017117714-appb-000004
(2)乙组分:
异氰酸酯型固化剂                               12-17
催化剂                                         0-1
消泡剂                                         0-1。
如上所述的光致变色涂层液,优选地,所述聚硫代氨基甲酸酯单体为2,2′-二巯基乙硫醚、2,2′-二巯基乙基硫代乙烷、2,3-二巯基乙基硫代丙硫醇或1,2,3-三巯基乙基硫代丙烷中的至少一种;
如上所述的光致变色涂层液,优选地,所述异氰酸酯型固化剂是甲苯二异氰酸酯固化剂、二苯基甲烷-4,4’-二异氰酸酯固化剂、1,6-己二异氰酸酯固化剂、间苯二亚甲基二异氰酸酯固化剂、甲基环己基二异氰酸酯固化剂和异佛尔酮二异氰酸酯固化剂中的至少一种;
如上所述的光致变色涂层液,优选地,所述催化剂为二月桂酸二丁基锡。
如上所述的光致变色涂层液,优选地,所述稀释剂为二氯甲烷、乙酸丁酯、乙酸甲酯、乙醇、丁醇、丙酮、甲苯、二甲苯、乙醚和聚四氢呋喃醚二醇中的至少一种;
如上所述的光致变色涂层液,优选地,所述润湿分散剂为BYK聚氨酯型专用润湿分散剂或F420型润湿分散剂;
如上所述的光致变色涂层液,优选地,所述流平剂为油性F300型流平剂、F309型流平剂、F309型流平剂或F320型流平剂;
如上所述的光致变色涂层液,优选地,所述消泡剂为XPJ01F型改性硅油消泡剂。
又一方面,本发明提供如上所述光致变色涂层液的制备方法,该制备方法包含以下操作步骤:
(1)甲组分:按所述比例分别将聚硫代氨基甲酸酯单体、稀释剂、聚氨酯/螺吡喃/硫化锌光致变色复合微球、润湿分散剂、流平剂加入容器里,室温下均匀搅拌15-30分钟,得到甲组分;
(2)乙组分:按所述比例将异氰酸酯型固化剂、消泡剂、催化剂加入容器里,室温下均匀搅拌3-5分钟,得到乙组分。
又一方面,本发明提供一种光致变色涂层,该涂层中含有如上所述的光致变色纳米复合微球。
又一方面,本发明提供一种光致变色涂层的制备方法,该方法包括:将如上所述的光致变色涂层液用于制备光学基材的变色涂层,将所述甲组分和乙组分按质量比(70-100)∶(12-19)比例均匀混合,通过添加稀释剂来调节粘度,然后涂布在光学基材的表面上而形成涂覆层,通过光照射或加热使其固化,制成光致变色涂层。
又一方面,本发明提供一种光致变色光学材料,其是由树脂光学基材及其表面上涂覆的如上所述的光致变色涂层组成。
如上所述的光致变色光学材料,优选地,所述树脂光学基材为热固性塑料或热塑性塑料。
如上所述的光致变色光学材料,优选地,所述树脂光学基材为聚甲基丙烯酸甲酯类树脂、丙烯基二甘醇碳酸酯类树脂、聚碳酸酯类树脂、氨基甲酸类树脂及硫环氧类树脂中的一种。
如上所述的光致变色光学材料,优选地,所述树脂光学基材为树脂镜片。
又一方面,本发明提供如上所述的光致变色光学材料的制备方法,该方法包括以下步骤:将所述光致变色涂层液采用旋转涂覆、喷涂或浸涂的方式涂覆于树脂光学基材上,形成表面具有光致变色涂层的光学材料。
如上所述的光致变色光学材料的制备方法,优选地,该方法包括以下步骤:
I.按照如上所述的方法配制甲、乙两种组分的涂层液;
II.涂布时,将甲组分和乙组分按质量比(70-100)∶(12-19)比例均匀混合,通过添加稀释剂来调节粘度为20~350cp(25℃),得到光致变色涂层液;
III.光学基材预处理:对树脂光学基材进行以下一项或多项预处理:碱性水溶液或 酸性水溶液化学处理、研磨处理、不同气压的等离子体处理、电晕放电处理、UV臭氧处理和加硬处理;
IV.涂覆:用步骤II制备的光致变色涂层液对预处理后的树脂光学基材进行旋转涂覆、喷涂或浸涂,在基材上形成一层光致变色涂层,即获得螺吡喃类光致变色光学材料。
如上所述的光致变色光学材料的制备方法,优选地,所述步骤II中分别制备粘度为60~250cp的第一光致变色涂层液,和粘度为50~200cp的第二光致变色涂层液;
所述步骤IV采用浸涂方法,具体操作如下:将预处理后的树脂光学基材浸入到第一光致变色涂层液中,室温下浸泡3-5分钟,然后将树脂光学基材缓慢提离涂层液,移动至烘箱中,设置温度在35-65℃,烘烤45-90分钟,形成第一光致变色涂层;然后将树脂光学基材浸入到第二光致变色液中,室温下浸泡3-5分钟,然后将镜片缓慢提离涂层液,移动至烘箱中,设置温度在35-65℃,烘烤45-90分钟,形成第二光致变色涂层,得到光致变色光学材料。
如上所述的光致变色光学材料的制备方法,优选地,所述光致变色涂层的总厚度为5~100μm。
如上所述的光致变色光学材料的制备方法,优选地,所述方法还可包括在涂覆步骤IV之后对光学材料表面进行加硬和/或抗反射表面涂布处理。
本发明所述的螺吡喃类光致变色化合物可以是已知的任一螺吡喃类光致变色化合物,优选为螺吡喃光致变色化合物(I)、螺吡喃光致变色化合物(II)、螺吡喃光致变色化合物(III),这三个化合物可以采用如下方法合成,但不限于如下方法。
(1)螺吡喃光致变色化合物(I)的合成:
I.将2,3,3-三甲基吲哚、碘代十六烷加入到带有回流装置的三氯甲烷溶剂里,其中2,3,3-三甲基吲哚、碘代十六烷、三氯甲烷三者质量比为(25-35)∶(80-110)∶(350-400),常压下加热回流16-24小时,蒸除溶剂后,加入无水乙醚,即有大量淡黄色固体出现,抽滤,乙醚充分洗涤,真空干燥,得十六烷-2,3,3-三甲基吲哚(PS01);
II.将PS01分散于水中,水与碘代十六烷质量比为(1-2)∶1,不断搅拌并滴加25-35%的NaOH溶液,直到固体完全消失后停止滴加,液面上有淡黄色油状粘稠物质生成,下层澄清,用乙醚萃取,水洗,过滤,旋蒸除去乙醚,得淡黄色透明液体3,3-二甲基-1′-十六烷基-2-亚甲基吲哚(PS02);
III.分别配置含有PS02的乙醇溶液和含有4-羟-1,3-苯二甲醛的乙醇溶液,其中PS02与乙醇质量比为(1-2)∶(3-9),PS02乙醇溶液与4-羟-1,3-苯二甲醛质量比为(2-3)∶1,4-羟-1,3-苯二甲醛与乙醇质量比为(2-3)∶(50-100)混合;氮气保护下油浴加热4-羟-1,3-苯二甲醛的乙醇溶液45-78℃至回流,向其中滴加新制的含有PS02的乙醇溶液,其中反应液很快变为紫色,继续加热回流5-6小时,冷却室温后将反应液倒入冰中搅拌,得淡紫色乳状液,充分静置后,蒸除水和乙醇,粘稠物用甲醇重结晶,抽滤干燥,得淡紫色固体粉末,即烷基螺吡喃类光致变色化合物(I)。
具体反应式如下:
Figure PCTCN2017117714-appb-000005
(2)螺吡喃光致变色化合物(II)的合成:
将2-羟基-1-萘甲醛按质量比(0.8-1.2)∶(15-30)溶于无水乙醇,氮气保护下,加热至45-78℃回流,向其中滴加含有PS02的乙醇溶液,PS02乙醇溶液与2-羟基-1-萘甲醛质量比为(2-3)∶1,其中PS02与无水乙醇质量比为(1-2)∶(3-9),继续稳定回流8-10h,冷却至室温,溶剂浓缩至40-50%,密封放置于0-零下5℃冰浴10-20小时,有大量白色固体析出,抽滤,粗品经柱层析(石油醚∶乙酸乙酯1∶1洗脱),真空干燥,得到烷基-萘环螺吡喃光致变色化合物(II),具体反应式如下:
Figure PCTCN2017117714-appb-000006
(3)螺吡喃光致变色化合物(III)的合成:
第一步:将4-羟基-6,7-二甲氧基-1-苯基-2-萘甲酸、邻二甲苯、多聚磷酸按质量比(0.8-1.2)∶(1.5-2.5)∶(0.8-1.2),加热至120-160℃,反应1-2h,将反应液倒入水中过滤,真空干燥后,得到5-羟基-2,3-二甲氧基-7H-苯并[c]芴-7-酮;
第二步:将四氢呋喃与5-羟基-2,3-二甲氧基-7H-苯并[c]芴-7-酮按质量比为(0.6-1)∶1混合,却至-10~-20℃,滴加浓度为3.0M的甲基氯化镁,甲基氯化镁与5-羟基-2,3-二甲氧基-7H-苯并[c]芴-7-酮质量比为(0.6-1.2)∶(0.7-1.2),滴加过程中控制温度不超过-10℃。滴加完毕后,保持-10~-15℃反应90-120分钟,加入饱和氯化铵溶液淬灭反应,氯化铵与甲基氯化镁质量比为(1-3)∶1,分液,水层用乙酸乙酯萃取,合并有机层,无水Na 2SO 4 干燥,减压蒸出溶剂,粗品经柱层析得到2,3-二甲氧基-7-甲基-7H-苯并[c]芴-5,7-二醇;
第三步:将2,3-二甲氧基-7-甲基-7H-苯并[c]芴-5,7-二醇、甲苯、1,1-二(4-甲氧基苯基)-2-丙炔-1-醇、对甲基苯磺酸(TsOH)按质量比:(0.7-1.0)∶(4-6)∶(0.6-1.0)∶(0.1-0.3)均匀混合,加热至65-95℃反应10-16h,减压蒸出甲苯,加入饱和碳酸氢钠溶液进行淬灭反应,碳酸氢钠溶液与对甲苯质量比为(0.3-0.6)∶1,分液,水层乙酸乙酯萃取,合并有机层,无水Na 2SO 4干燥,减压蒸出溶剂,粗品经柱层析(石油醚∶乙酸乙酯=15∶1洗脱),得到螺吡喃光致变色化合物(III)。
其主要反应过程为4-羟基-6,7-二甲氧基-1-苯基-2-萘甲酸在酸性条件下发生环合得到中间体5-羟基-2.3-二甲氧基-7H-苯并[c]芴-7-酮;并与甲基格式试剂-氯化镁反应得到2,3-二甲氧基-7-甲基-7H-苯并[c]芴-5,7-二醇;再与1,1-二(4-甲氧基苯基)-2-丙炔-1-醇在对甲苯磺酸催化作用下生成螺吡喃光致变色化合物(III),具体反应式如下:
Figure PCTCN2017117714-appb-000007
反应中所述酸为醋酸、三氟乙酸、磷酸、硫酸或多聚磷酸,优选多聚磷酸。
本发明中的光致变色纳米复合微球为聚氨酯/螺吡喃/硫化锌三层复合核壳结构,其内核为硫化锌介孔纳米微球,在本发明的优选技术方案中,硫化锌介孔纳米微球的制备路 线为:高温条件下乙二醇缩合生成乙醛,乙醛提供一个氢原子,作为还原剂使S单质变成S 2-,随后六水合硝酸锌释放出的Zn 2+与S 2-结合形成ZnS晶核,晶核基于扩散机制继续长大,使反应的初始粒子也就是硫化锌纳米晶逐步聚集,形成了次级粒子,即硫化锌纳米球;成核到达一定阶段,此时,巯基乙醇在反应过程中发挥了重要作用,一方面它有效阻止了大量粒子的团聚,另一方面限制了颗粒的继续生长,伴随着离子浓度的降低,纳米晶的成核逐渐终止,具体成核反应方程式如下:
HOCH 2CH 2OH→CH 3CHO+H 2O                 (1)
S+2CH 3CHO→CH 3CO-OCCH 3+S 2-+2H +          (2)
Zn 2++S 2-→ZnS(s)                        (3)
由此制备的硫化锌纳米微球是硫化锌纳米晶成核过程中形成的,由许多小纳米晶组成的单分散硫化锌介孔纳米球,这种具有介孔结构的硫化锌纳米球由于具有更大的比表面积和较高的表面能,因而其在醇类溶剂里的吸附力增强。
随后加入的螺吡喃变色化合物以纳米颗粒的形式均匀分散在硫化锌微球的表面和缝隙。最后,采用聚氨基甲酸酯作为外壳包覆,构成纳米复合核壳结构。
如图7所示,光致变色纳米复合微球外观形貌呈球形,其中颜色较深的内核由许多尺寸均一、单分散的硫化锌纳米球组成,浅色的外层为螺吡喃变色化合物,由于聚氨酯外层壳为无色透明材料,因而在透射电镜照片中无法显示与分辨。
本发明的有益效果在于:本发明所述的光致变色纳米复合微球为聚氨酯/螺吡喃/硫化锌三层复合核壳结构,螺吡喃作为变色化合物处于外壳与内核之间即中间层,空间三维都在纳米尺度范围内,量子尺寸效应带来的能级改变、能隙变宽。这种独特结构一方面可以使变色化合物受到性质相对稳定的聚氨酯外壳保护,使变色化合物免受外界环境影响;另一方面由于内核硫化锌纳米介孔结构的稳定支撑作用,使变色分子的范德华区域增大,共轭体系增大,分子的空间体积增大,分子与分子间的空隙增大,从而使分子发生异构化反应的空间大大增加,变色体活性增强,变色开环体和无色闭环体之间的转换阻碍减少,转换时间缩短,速度加快,光谱响应更趋灵敏,变色效果好。此外,在光照条件下,聚氨酯外壳本身可吸收部分光,入射紫外线一部分又被硫化锌内核吸收,照射在螺吡喃变色化合物表面上的光强度低于直接照射在螺吡喃变色化合物表面上的光强度;同时,激发螺吡喃变色所需的辐照强度和辐照停留时间不受影响,剩余紫外线将被硫化锌内核吸收。因此,聚氨酯/螺吡喃/硫化锌纳米复合微球的抗氧化性及抗疲劳性能有显著增强。
由该光致变色纳米复合微球制备的光致变色涂层或光学材料,在紫外线照射下,能从无色变为有色,而紫外线消失后,又能快速褪变为无色,具有抗疲劳性强、稳定性好、变色速度快等优点。
附图说明
图1为实施例1制备的聚氨酯/螺吡喃/硫化锌纳米复合微球正常环境吸收光谱图。
图2为实施例1制备的聚氨酯/螺吡喃/硫化锌纳米复合微球高温环境吸收光谱图。
图3螺吡喃类光致变色化合物(III)正常环境吸收光谱图。
图4螺吡喃类光致变色化合物(III)高温环境吸收光谱图。
图5为对比例2制备的聚氨酯/螺吡喃纳米复合微球正常环境吸收光谱图。
图6为对比例2制备的聚氨酯/螺吡喃纳米复合微球高温环境吸收光谱图。
图7为实施例1制备的光致变色纳米复合微球的透射电子显微镜照片。
图8为实施例1制备的光致变色纳米复合微球与纯的硫化锌、螺吡喃变色化合物III、聚氨酯的红外光谱图。
具体实施方式
下面通过具体实施例对本发明作进一步说明,但并不意味着对本发明保护范围的限制。
以下各实施例和比较例中的螺吡喃类光致变色化合物是采用以下方法制备的:
(1)制备螺吡喃光致变色化合物(I):
A.将29g 2,3,3-三甲基吲哚、95g碘代十六烷加入到400g三氯甲烷溶剂里,常压下加热回流20小时,蒸除溶剂后,加入70g无水乙醚,分层后抽滤,乙醚充分洗涤,真空干燥,得十六烷-2,3,3-三甲基吲哚(PS01);将PS01分散于170g水中,搅拌并滴加26%的NaOH溶液,固体完全消失后停止滴加,分层后乙醚萃取,水洗,过滤,旋蒸除去乙醚,得3,3-二甲基-1′-十六烷基-2-亚甲基吲哚(PS02);
B.氮气保护下油浴加热575g 4-羟-1,3-苯二甲醛的乙醇溶液(溶液中含25g乙醇)至回流,加热至温度65℃,滴加63g含有PS02的乙醇溶液(溶液中含18g乙醇),颜色变紫后,继续加热回流6小时,冷却至室温后将反应液倒入冰中搅拌,待冰完全融化后,得淡紫色乳状液,充分静置后,蒸除水和乙醇,粘稠物用甲醇重结晶,抽滤干燥,得淡紫色固体粉末,即烷基螺吡喃光致变色化合物(I)。
(2)制备螺吡喃光致变色化合物(II):
氮气保护下油浴加热230g含2-羟基-1-萘甲醛的乙醇溶液(溶液中含10g乙醇)加热到60℃至回流,滴加24g PS02的乙醇溶液(溶液中含5g乙醇),继续回流9小时,冷却至室温,蒸除溶剂浓缩至40%,密封放置于零下2℃冰浴15小时,抽滤,粗品用石油醚∶乙酸乙酯1∶1洗脱,真空干燥,得到烷基-萘环螺吡喃光致变色化合物(II)
(3)制备螺吡喃光致变色化合物(III):
第一步:将90g 4-羟基-6,7-二甲氧基-1-苯基-2-萘甲酸、170g邻二甲苯、85g多聚磷酸搅拌混合均匀,加热至145℃,反应90分钟,将反应液倒入水中过滤,真空干燥后,得到5-羟基-2,3-二甲氧基-7H-苯并[c]芴-7-酮;
第二步:取75g四氢呋喃、95g 5-羟基-2,3-二甲氧基-7H-苯并[c]芴-7-酮进行混合,冷却至-12℃,滴加浓度为3.0M的甲基氯化镁80g,-10℃反应100分钟,加入150g饱和氯化铵溶液,水层用乙酸乙酯(170mL×3)萃取,合并有机层,无水Na 2SO 4干燥,减压蒸出溶剂, 粗品经柱层析得到2,3-二甲氧基-7-甲基-7H-苯并[c]芴-5,7-二醇;
第三步:把40g 2,3-二甲氧基-7-甲基-7H-苯并[c]芴-5,7-二醇、250g甲苯、42g 1,1-二(4-甲氧基苯基)-2-丙炔-1-醇、9g对甲基苯磺酸搅拌混合均匀后,加热至75℃反应15小时,减压蒸出甲苯,加入110g饱和碳酸氢钠溶液淬灭反应,水层乙酸乙酯(90mL×3)萃取,合并有机层,无水Na 2SO 4干燥,减压蒸出溶剂,粗品经柱层析,得到螺吡喃光致变色化合物(III)。
实施例1:制备光致变色纳米复合微球、光致变色涂层液和光致变色镜片
(一)制备光致变色纳米复合微球:
(1)向1600g乙二醇中加入9.7g六水合硝酸锌,搅拌均匀后,加入1.6g升华硫粉,升温到150℃保温反应24小时,冷却至55℃,滴加85g巯基乙醇并搅拌;再加入6.7g式III所示的螺吡喃光致变色化合物,激烈搅拌30分钟,继续冷却至室温,将沉淀过滤洗涤,在65℃的真空干燥箱中干燥8小时,得到螺吡喃包覆硫化锌纳米球;
(2)取8g螺吡喃包覆硫化锌纳米球、8.2g二苯基甲烷-4,4’-二异氰酸酯(MDI)加入到1000g乙酸丁酯溶剂中,搅拌均匀后,分别加入7g混合反应剂(1.2g正丁醇、5.8g聚四氢呋喃醚二醇)、18g Tween80,温度保持在20℃,500r/min转速预聚反应60min,添加9.2g扩链剂(乙二醇6g、乙二胺3.2g)、0.1g催化剂二月桂酸二丁基锡(DBTL),加热至60℃进行聚合扩链反应15min,搅拌速度1200r/min,将固体物质过滤、洗涤、干燥,得到聚氨酯/螺吡喃/硫化锌纳米复合微球。产率为75%。
(3)将步骤(2)制备的产品用JEM-2100型透射电子显微镜观察,如图7所示,看出外观形貌呈球形,其中颜色较深的内核由许多尺寸均一、单分散的硫化锌纳米球组成,浅色的外层为螺吡喃变色化合物和聚氨酯形成的外壳,可以归结为具有较大比表面积和孔容的硫化锌纳米球吸附了螺吡喃变色化合物材料并经聚氨酯包覆而进而形成的核壳结构复合微球,由于聚氨酯外层壳为无色透明材料,因而在透射电镜照片中无法显示与分辨。值得注意的是有些纳米球的中间有很多纳米大小的白点,说明纳米球由许多小颗粒聚集组成,白点为颗粒与颗粒之间的空隙而形成的孔容,通过谢乐公式(D=K/βcos θ)和Zeta电位分析计算,得出硫化锌平均晶体粒度和纳米复合微球的直径,其中硫化锌纳米晶粒径约为4nm,螺吡喃变色材料与聚氨酯包覆外壳厚度约在15nm,硫化锌纳米球内核约在65nm,整个复合微球直径在95nm左右。
(4)步骤(2)制备的产品进行了傅里叶变换红外光谱(FT-IR)的测试,并且将光谱图与纯的硫化锌、螺吡喃变色化合物III、聚氨酯的红外光谱图进行了对比。结果详见图8,其中a曲线为硫化锌红外光谱图;b曲线为螺吡喃化合物III红外光谱图;c曲线为聚氨酯材料红外光谱图;d曲线为实施例1制备的光致变色纳米复合微球红外光谱图。
从图中a曲线分析可知,3421cm -1处较宽的吸收峰是O-H伸缩振动峰,1620cm -1处的吸收峰是H-O-H的弯曲振动峰,均为水的特征吸收峰,可以归结为ZnS粉末表面的吸附水,在900-4000cm -1范围内基本无吸收峰,表明ZnS粉末具有良好的红外透过率。
从图中b曲线分析可知,3430cm -1处为-OH的伸缩振动吸收峰,2960cm -1处为-CH 3伸缩振动吸收峰,1640-1477cm -1归属为苯环的振动吸收峰,1366cm -1为-CH 3弯曲振动吸收峰,960cm -1处为-CH 3伸缩振动吸收峰,820cm -1为苯环邻二取代的振动吸收峰。
从图中c曲线分析可知,3251-3480处的吸收峰为聚氨酯羟基-OH的伸缩振动峰;2270cm -1处存在的强吸收峰,为-N CO基团的伸缩振动产生的,其它基团在此波峰处不产生吸收,此峰为异氰酸酯特征吸收峰。
从图中d曲线分析可知,3430cm -1处为-OH的伸缩振动吸收峰,2270cm -1处的振动吸收峰消失表明-NCO基团不存在,是因为MDI单体完全参加反应,异氰酸酯己与含弱活泼氢原子的化合物反应,生成氨基甲酸酯,1706cm -1处的吸收峰代表了聚氨酯中-C=O的振动吸收峰;1460cm -1处的吸收峰是CH 2基团(亚甲基)的振动吸收峰或者CH 3的(甲基)振动吸收峰,尽管与螺吡喃分子吸收的波数(1366cm -1)不符,可能是由于螺吡喃分子吸附于ZnS纳米粒子后,由于不同分子间的相互作用,使吸收光谱发生了偏移;1224cm -1处的吸收峰是醚键-C-O-C-的振动吸收峰。
通过对比可见,实施例1备光致变色纳米复合微球的红外光谱图不仅拥有螺吡喃变色化合物的特征吸收峰,还包含聚氨酯的特征吸收峰,说明实施例1制备的光致变色纳米复合微球不是单一的硫化锌物质,还包含螺吡喃变色化合物和聚氨酯物质。
(二)制备光致变色涂层液:
1.配置聚氨酯甲组分:将675g 2,3-二巯基乙基硫代丙硫醇(BES)单体、120g二氯甲烷、35g聚氨酯/螺吡喃/硫化锌纳米复合微球、15g F420润湿分散剂(佛山市奥纳聚合物有限公司产品)、5g F300流平剂(佛山市奥纳聚合物有限公司产品)加入到容器里,室温下均匀搅拌25min,得到甲组分;
2.配置聚氨酯乙组分:将145g间苯二亚甲基二异氰酸酯固化剂、4g XPJ01F消泡剂(江苏赛欧信越消泡剂有限公司产品)、1g DBTL催化剂加入到容器里,室温下均匀搅拌5分钟,得到乙组分;
3.配置光致变色涂层液:将甲组分和乙组分均匀混合后,分装到A、B容器中,其中A容器600g,为第一光致变色涂层液;B容器400g,往B容器中添加二氯甲烷26g,得到第二光致变色涂层液。
(三)制备光致变色镜片:
把NaOH清洗处理后的聚氨酯光学镜片基材浸入到上述第一光致变色涂层液中,室温下浸泡3分钟,然后将镜片缓慢提拉,提拉速度为1.0mm/s,85s后速度提升到1.3mm/s,移动至烘箱中,设置温度在45℃,烘烤80分钟;用第二光致变色液对该镜片进行喷涂,固化后得到螺吡喃光致变色镜片。其中涂层厚度为45μm。
实施例2:
(一)制备光致变色纳米复合微球:
(1)向1600g乙二醇中加入6.5g硝酸锌,搅拌均匀后,加入1.7g升华硫粉,升温 到150℃保温反应24小时,冷却至55℃,滴加70g巯基乙醇并搅拌;再加入3.5g螺吡喃光致变色化合物(I),激烈搅拌30分钟,冷却至室温,将沉淀过滤洗涤,在65℃的真空干燥箱中干燥8小时,得到螺吡喃包覆硫化锌纳米球;
(2)取5.5g螺吡喃包覆硫化锌纳米球,5g MDI加入到1000g乙酸丁酯溶剂中,搅拌均匀后,依次加入5.5g混合反应剂(1.0g正丁醇、4.5g聚四氢呋喃醚二醇)、20g Tween80,温度保持在25℃,500r/min转速预聚反应50min,添加6g扩链剂(乙二醇4.5g、乙二胺1.5g)、0.1g DBTL,加热至65℃进行聚合扩链反应15min,搅拌速度1000r/min,将固体物质过滤、洗涤、干燥,得到聚氨酯/螺吡喃/硫化锌纳米复合微球。产率为74%。
产品的JEM-2100型透射电子显微镜照片与图7相似。
(二)制备光致变色涂层液:
1.配置聚氨酯甲组分:将610g 1,2,3-三巯基乙基硫代丙烷(TES)单体、100g二氯甲烷、40g聚氨酯/螺吡喃/硫化锌纳米复合微球、10g F420润湿分散剂、5g F320流平剂(佛山市奥纳聚合物有限公司产品)加入到容器里,室温下均匀搅拌20min,得到甲组分;
2.配置聚氨酯乙组分:将150g间苯二亚甲基二异氰酸酯固化剂、6g XPJ01F消泡剂、3g DBTL催化剂加入到容器里,室温下均匀搅拌5分钟,得到乙组分;
3.配置光致变色涂层液:将甲组分和乙组分均匀混合后,分装到A、B容器中,其中A容器600g,为第一光致变色涂层液;B容器324g,往B容器中添加二氯甲烷20g,得到第二光致变色涂层液。
(三)制备光致变色镜片:
将加硬处理后的聚氨酯光学镜片基材浸入到上述第一光致变色涂层液中,室温下浸泡3分钟,然后将镜片缓慢提拉,提拉速度为1.0mm/s,85s后速度提升到1.3mm/s,移动至烘箱中,设置温度在45℃,烘烤70分钟;用第二光致变色液对该镜片进行喷涂,固化后得到螺吡喃光致变色镜片。其中涂层厚度为43μm。
实施例3:
(一)制备光致变色纳米复合微球:
(1)向1600g乙二醇中加入11g六水合硝酸锌,搅拌均匀后,加入3g硫粉,升温到145℃保温反应24小时,冷却至50℃,滴加92g巯基乙醇并搅拌;再加入8g螺吡喃光致变色化合物(I),激烈搅拌35分钟,继续冷却至室温,将沉淀过滤洗涤,在60℃的真空干燥箱中干燥9小时,得到螺吡喃包覆硫化锌纳米球;
(2)取10g螺吡喃包覆硫化锌纳米球、10.8g间苯二亚甲基二异氰酸酯(XDI)加入到1000g乙酸丁酯溶剂中,搅拌均匀后,依次加入7.4g混合反应剂(1.0g正丁醇、6.4g聚四氢呋喃醚二醇)、16g Tween80、温度保持在25℃,600r/min转速预聚反应60min,添加8g扩链剂(乙二醇5.5g、乙二胺2.5g)、0.2g DBTL,加热至60℃进行聚合扩链反应15min,搅拌速度1300r/min,将固体物质过滤、洗涤、干燥,得到聚氨酯/螺吡喃/硫化锌纳米复合微球。产率为73%。
产品的JEM-2100型透射电子显微镜照片与图7相似。
(二)制备光致变色涂层液:
1.配置聚氨酯甲组分:将710g TES单体、130g二氯甲烷、50g聚氨酯/螺吡喃/硫化锌纳米复合微球、18g F420润湿分散剂、10g F320流平剂加入到容器里,室温下均匀搅拌25min,得到甲组分;
2.配置聚氨酯乙组分:将140g间甲苯二异氰酸酯固化剂、6g XPJ01F消泡剂、5g DBTL催化剂加入到容器里,室温下均匀搅拌5分钟,得到乙组分;
3.配置光致变色涂层液:将甲组分和乙组分均匀混合后,分装到A、B容器中,其中A容器600g,为第一光致变色涂层液;B容器469g,往B容器中添加30g二氯甲烷,得到第二光致变色涂层液。
(三)制备光致变色镜片:
将酸洗处理后的聚氨酯光学镜片基材浸入到上述第一光致变色涂层液中,室温下浸泡3分钟,然后将镜片缓慢提拉,提拉速度为1.0mm/s,90s后速度提升到1.3mm/s,移动至烘箱中,设置温度在45℃,烘烤70分钟;再次将该镜片浸入到第二光致变色涂层液中,方法与第一次浸涂相同,固化后得到螺吡喃光致变色镜片。其中涂层厚度为45μm。
实施例4:
(一)制备光致变色纳米复合微球:
(1)向1600g乙二醇中加入14g六水合硝酸锌,搅拌均匀后,加入2g升华硫粉,升温到150℃保温反应23小时,冷却至50℃,滴加100g巯基乙醇并搅拌;再加入12g螺吡喃光致变色化合物(II),激烈搅拌35分钟,继续冷却至室温,将沉淀过滤洗涤,在60℃的真空干燥箱中干燥9小时,得到螺吡喃包覆硫化锌纳米球;
(2)取12g螺吡喃包覆硫化锌纳米球、11.5g XDI加入到1000g乙酸丁酯溶剂中,搅拌均匀后,依次加入8.5g混合反应剂(1g正丁醇、7.5g聚四氢呋喃醚二醇)、20gTween80、温度保持在20℃,650r/min转速预聚反应60min,添加8g扩链剂(乙二醇5.5g、乙二胺2.5g)、0.2g DBTL,加热至60℃进行聚合扩链反应15min,搅拌速度1200r/min,将固体物质过滤、洗涤、干燥,得到聚氨酯/螺吡喃/硫化锌纳米复合微球。产率为72%。
产品的JEM-2100型透射电子显微镜照片与图7相似。
(二)制备光致变色涂层液:
1.配置聚氨酯甲组分:将750g 2,2′-二巯基乙硫醚(MES)单体、150g二氯甲烷、50g聚氨酯/螺吡喃/硫化锌纳米复合微球、20g F420润湿分散剂、10g F300流平剂加入到容器里,室温下均匀搅拌25min,得到甲组分;
2.配置聚氨酯乙组分:将120g甲基环己基二异氰酸酯固化剂、7g XPJ01F消泡剂、6g DBTL催化剂加入到容器里,室温下均匀搅拌5分钟,得到乙组分;
3.配置光致变色涂层液:将甲组分和乙组分均匀混合后,分装到A、B容器中,其中A容器600g,为第一光致变色涂层液;B容器513g,往B容器中添加30g二氯甲烷,得到第 二光致变色涂层液。
(三)制备光致变色镜片:
将加硬处理后的聚氨酯光学镜片基材浸入到上述第一光致变色涂层液中,室温下浸泡3分钟,然后将镜片缓慢提拉,提拉速度为0.9mm/s,95s后速度提升到1.4mm/s,移动至烘箱中,设置温度在50℃,烘烤75分钟;再将该镜片浸入到第二光致变色涂层液中,方法与第一次浸涂相同,固化后得到螺吡喃光致变色镜片。其中涂层厚度为44μm。
实施例5:
(一)制备光致变色纳米复合微球:
(1)向1600g乙二醇中加入8g六水合硝酸锌,搅拌均匀后,加入2.5g升华硫粉,升温到150℃保温反应23小时,冷却至50℃,滴加82g巯基乙醇并搅拌;再加入5.2g螺吡喃光致变色化合物(III),激烈搅拌35分钟,冷却至室温,将沉淀过滤洗涤,在60℃的真空干燥箱中干燥9小时,得到螺吡喃包覆硫化锌纳米球;
(2)取6.6g螺吡喃包覆硫化锌纳米球、5.6g甲苯二异氰酸酯(TDI)加入到1000g乙酸丁酯溶剂中,搅拌均匀后,依次加入6.3g混合反应剂(0.9g正丁醇、5.4g聚四氢呋喃醚二醇)、14g Tween80,温度保持在25℃,700r/min转速预聚反应60min,添加5.5g扩链剂(乙二醇4.5g、乙二胺1g)、0.1g DBTL,加热至60℃进行聚合扩链反应15min,搅拌速度1500r/min,将固体物质过滤、洗涤、干燥,得到聚氨酯/螺吡喃/硫化锌纳米复合微球。产率为74%。
产品的JEM-2100型透射电子显微镜照片与图7相似。
(二)制备光致变色涂层液:
1.配置聚氨酯甲组分:将640g BES单体、110g二氯甲烷、25g聚氨酯/螺吡喃/硫化锌纳米复合微球、17g F420润湿分散剂、5g F309流平剂加入到容器里,室温下均匀搅拌25min,得到甲组分;
2.配置聚氨酯乙组分:将110g间苯二亚甲基二异氰酸酯固化剂、9g XPJ01F消泡剂、7g DBTL催化剂加入到容器里,室温下均匀搅拌5分钟,得到乙组分;
3.配置光致变色涂层液:将甲组分和乙组分均匀混合后,分装到A、B容器中,其中A容器700g,为第一光致变色涂层液;B容器223g,往B容器中添加15g二氯甲烷,得到第二光致变色涂层液。
(三)制备光致变色镜片:
将加硬处理后的聚氨酯光学镜片基材浸入到上述第一光致变色涂层液中,室温下浸泡3分钟,然后将镜片缓慢提拉,提拉速度为1.1mm/s,85s后速度提升到1.34mm/s,移动至烘箱中,设置温度在45℃,烘烤70分钟;用第二光致变色液对该镜片进行喷涂,固化后得到螺吡喃光致变色镜片。其中涂层厚度为43μm。
实施例6:
(一)制备光致变色纳米复合微球:
(1)向1600g乙二醇中加入8g六水合硝酸锌,搅拌均匀后,加入2.7g升华硫粉,升温到150℃保温反应23小时,冷却至45℃,滴加80g巯基乙醇并搅拌;再加入5.9g螺吡喃光致变色化合物(II),激烈搅拌35分钟,继续冷却至室温,将沉淀过滤洗涤,在60℃的真空干燥箱中干燥9小时,得到螺吡喃包覆硫化锌纳米球;
(2)取7.2g螺吡喃包覆硫化锌纳米球、6.9g TDI加入到1000g乙酸丁酯溶剂中,搅拌均匀后,依次加入6.5g混合反应剂(1.5g正丁醇、5.0g聚四氢呋喃醚二醇)、12g Tween80,温度保持在25℃,500r/min转速预聚反应60min,添加7g扩链剂(乙二醇5.5g、乙二胺1.5g)、0.1g DBTL,加热至70℃进行聚合扩链反应15min,搅拌速度1500r/min,将固体物质过滤、洗涤、干燥,得到聚氨酯/螺吡喃/硫化锌纳米复合微球。产率为73%。
产品的JEM-2100型透射电子显微镜照片与图7相似。
(二)制备光致变色涂层液:
1.配置聚氨酯甲组分:将660g MES单体、140g二氯甲烷、30g聚氨酯/螺吡喃/硫化锌纳米复合微球、16g F420润湿分散剂、5g F320流平剂加入到容器里,室温下均匀搅拌25min,得到甲组分;
2.配置聚氨酯乙组分:将100g二苯基甲烷-4,4’-二异氰酸酯固化剂、8g XPJ01F消泡剂、8g DBTL催化剂加入到容器里,室温下均匀搅拌5分钟,得到乙组分;
3.配置光致变色涂层液:将甲组分和乙组分均匀混合后,分装到A、B容器中,其中A容器600g,为第一光致变色涂层液;B容器367g,往B容器中添加17g二氯甲烷,得到第二光致变色涂层液。
(三)制备光致变色镜片:
将加硬处理后的聚氨酯光学镜片基材浸入到上述第一光致变色涂层液中,室温下浸泡4分钟,然后将镜片缓慢提拉,提拉速度为0.9mm/s,80s后速度提升到1.4mm/s,移动至烘箱中,设置温度在60℃,烘烤60分钟;再将该镜片浸入到第二光致变色涂层液中,方法与第一次浸涂相同,固化后得到螺吡喃光致变色镜片。其中涂层厚度为45μm。
对比例1:
采用与实施例1步骤(二)、(三)相同的操作条件制备光致变色涂层液和光致变色镜片,只是在制备光致变色涂层液过程中用螺吡喃光致变色化合物(III)代替聚氨酯/螺吡喃/硫化锌纳米复合微球。
对比例2:
(1)采用与实施例1步骤(一)-(2)相同的操作条件,只是用螺吡喃光致变色化合物(III)代替螺吡喃包覆硫化锌纳米球,得到聚氨酯/螺吡喃纳米复合微球。
(2)采用与实施例1步骤(二)、(三)相同的操作条件制备光致变色涂层液和光致变色镜片,只是在制备光致变色涂层液过程中用上述步骤(1)得到的聚氨酯/螺吡喃纳 米复合微球代替聚氨酯/螺吡喃/硫化锌纳米复合微球。
实施例7:分别对实施例1和对比例1-2制备的光致变色材料进行抗氧化性能试验
(一)将实施例1制备的聚氨酯/螺吡喃/硫化锌纳米复合微球、螺吡喃类光致变色化合物(III)、对比例2制备的聚氨酯/螺吡喃纳米复合微球分别进行吸收光谱检测;
(1)检测步骤:各取上述材料5克,溶于9mL四氢呋喃,分装倒入多只玻璃烧杯中,标记后各一份分别放到太阳光模拟箱中进行辐照检测,常温下辐照15min,溶液与光源距离为16CM,辐射量hv=2Eg,记录溶液辐照前与辐照后吸收光谱差值,检测结果如图1、图3、图5和表一所示。
表一 正常环境下溶液吸收光谱差值(ΔOD)
Figure PCTCN2017117714-appb-000008
(2)检测步骤:各取实施例1制备的聚氨酯/螺吡喃/硫化锌纳米复合微球5g、螺吡喃类光致变色化合物(III)5g、对比例2制备的聚氨酯/螺吡喃纳米复合微球5g分别放于三只坩埚中,再将坩埚转移至马弗炉中,均升温至200℃,并在该温度下28小时;再将上述光致变色化合物取出后,分别溶于9mL四氢呋喃,分装倒入多只玻璃烧杯中,标记后各一份分别放到太阳光模拟箱中进行辐照检测,常温下辐照15min,溶液与光源距离为16CM,辐射量hv=2Eg,记录溶液辐照前与辐照后吸收光谱差值,检测结果如图2、图4、图6和表二所示。
表二 高温环境下溶液吸收光谱差值(ΔOD)
Figure PCTCN2017117714-appb-000009
(二)对实施例1-6、对比例1-2制备的光致变色镜片分别进行抗老化检测
检测步骤及方法:对实施例1-6和对比例1-2制备的光致变色镜片分别进行辐照抗老化性能实验,实验设备选用无锡中天工程技术有限公司ZN-P型紫外光老化试验箱,设置温度60℃,辐照强度选择极限辐照条件,标识后分别辐照15分钟、48小时,将辐照前及辐照后透射比数据记录,检测结果见表三。
表三 光致变色镜片透射比(%)
Figure PCTCN2017117714-appb-000010
测试结论:(一)含有聚氨酯/螺吡喃/硫化锌纳米复合微球的溶液在正常环境和高温环境下,吸收光谱没有变化(无差值);而对比例1-2制备的光致变色溶液在正常环境和高温环境下,吸收光谱发生了改变,550nm处变化值达到0.9、750nm处变化值达到1;(二)含有聚氨酯/螺吡喃/硫化锌纳米复合微球涂层的光致变色镜片辐照前和辐照后透射比数据无差值,而对比例1-2制备的光致变色镜片辐照前和辐照后透射比数据有较大差值,变化值分别达到15、16。
光致变色材料的抗疲劳性多由吸光度或变色后透过率的改变来体现,故用辐照前后吸光度值的变化及透过率的变化来衡量抗疲劳性能,通过试验数据对比得出以下结论:含有聚氨酯/螺吡喃/硫化锌纳米复合微球的光学材料的抗疲劳性较强。
实施例8:分别对实施例1-6和对比例1-2制备的树脂镜片进行光致变色响应试验
(一)光致变色响应值试验
检测步骤及方法:被测样品在褪色状态下的光透射比tV(0)和经过不同光照时间(1-15min)变色状态下的光透射比tV(1)之间的比值,即:光谱响应值=tV(0)÷tV(1),以确定被测样品在不同温度下的光致变色响应值。将太阳模拟器辐射强度衰减25%后,以中等光照强度照射样品,温度设置为23℃,检测结果见表四。
表四 检测样品光致变色响应值情况
Figure PCTCN2017117714-appb-000011
Figure PCTCN2017117714-appb-000012
(二)光致变色光谱响应时间检测
检测步骤及方法:将实施例1-6和对比例1-2制备的光致变色镜片分别放入测试箱,打开太阳光模拟器光源,记录镜片从无色变成有色反应所需时间;照射10分钟后关闭模拟光源,记录镜片从有色到恢复无色状态所需时间,检测结果见表五。
表五 检测样品光谱响应时间情况
Figure PCTCN2017117714-appb-000013
综上所述:本发明制造的含有聚氨酯/螺吡喃/硫化锌纳米复合微球的光学材料及镜片具有光致变色响应时间短,光谱响应灵敏度高等优点。

Claims (26)

  1. 一种光致变色纳米复合微球,其特征在于,该光致变色纳米复合微球为聚氨酯/螺吡喃/硫化锌三层复合核壳结构,其内核为硫化锌介孔纳米微球,中间层为螺吡喃类化合物构成的光致变色层,外壳为聚氨酯;该复合微球的外径为50-350nm,其中,硫化锌介孔纳米微球的直径为30~250nm,中间层的厚度为5~25nm,外壳的厚度为5~25nm。
  2. 如权利要求1所述的光致变色纳米复合微球,其特征在于,所述硫化锌介孔纳米微球是由硫化锌纳米晶粒组成的单分散硫化锌介孔纳米球,所述中间层是由螺吡喃类化合物纳米颗粒均匀分散在该硫化锌介孔纳米球的表面或缝隙,形成纳米复合介孔结构。
  3. 如权利要求1或2所述的光致变色纳米复合微球,其特征在于,所述螺吡喃类化合物选自式(I)、式(II)或式(III)化合物:
    Figure PCTCN2017117714-appb-100001
    其中R=C 16H 33
    Figure PCTCN2017117714-appb-100002
    其中R=C 16H 33
    Figure PCTCN2017117714-appb-100003
  4. 如权利要求1所述的光致变色纳米复合微球,其特征在于,所述聚氨酯是由含有二个或二个以上的异氰酸酯基团的异氰酸酯单体化合物与醇类化合物聚合而成。
  5. 如权利要求4所述的光致变色纳米复合微球,其特征在于,所述异氰酸酯单体化合物选自:甲苯二异氰酸酯、二苯基甲烷-4,4’-二异氰酸酯、1,6-己二异氰酸酯、间苯二亚甲基二异氰酸酯、萘-1.5-二异氰酸酯、甲基环己基二异氰酸酯、二环己基甲烷二异氰酸酯、四甲基苯二亚甲基二异氰酸酯和异佛尔酮二异氰酸酯中的至少一种;
    所述醇类化合物为正丁醇、聚四氢呋喃醚二醇、季戊四醇、乙二醇、丙二醇、丁二醇、己二醇、新戊二醇、三羟甲基丙烷中的至少一种。
  6. 如权利要求1-5中任一项所述的光致变色纳米复合微球的制备方法,其特征在于,该方法包括如下步骤:
    a.制备螺吡喃包覆硫化锌纳米球:
    向乙二醇中加入硝酸锌,搅拌均匀后加入硫粉,升温到140-160℃反应20-24小时;冷却至40-60℃,滴加巯基乙醇稳定剂并搅拌;加入螺吡喃类化合物,激烈搅拌20-40分钟,冷却至室温,反应液逐渐分层沉淀,过滤收集沉淀,洗涤,干燥,得到螺吡喃包覆硫化锌介孔纳米球;其中,硝酸锌、硫粉、巯基乙醇与乙二醇四者质量比为(0.3-0.6)∶(0.1-0.2)∶(4-7)∶(90-110),硝酸锌与螺吡喃化合物质量比为1∶(0.5-1);
    b.制备聚氨酯/螺吡喃/硫化锌光致变色纳米复合微球:
    将步骤a制备的螺吡喃包覆硫化锌介孔纳米球、异氰酸酯单体化合物加入到溶剂中,搅拌均匀后,依次加入醇类化合物和分散剂;其中螺吡喃包覆硫化锌介孔纳米球、异氰酸酯单体化合物、醇类化合物、分散剂与溶剂质量比为:(0.5-1.2)∶(0.5-1.2)∶(0.5-0.9)∶(1.2-2.2)∶100;温度保持在15-25℃,搅拌下预聚反应45-60min,得到预聚物溶液;将扩链剂、催化剂添加到预聚物溶液中,扩链剂、催化剂和异氰酸酯单体化合物三者质量比为(6-15)∶(0.1-0.3)∶(9-11),加热至45-90℃搅拌下进行聚合扩链反应10-15min,生成聚氨酯包覆物沉淀,将沉淀过滤、洗涤,干燥,得到聚氨酯/螺吡喃/硫化锌三层复合核壳结构光致变色纳米复合微球。
  7. 如权利要求6所述的光致变色纳米复合微球的制备方法,其特征在于,所述溶剂为三氯甲烷、丙酮、乙酸丙酯、乙酸丁酯、乙酸乙酯、邻苯二甲酸二丁酯、石油醚中的至少一种,所述催化剂为二月桂酸二丁基锡。
  8. 如权利要求6所述的光致变色纳米复合微球的制备方法,其特征在于,所述醇类化合物为正丁醇和聚四氢呋喃醚二醇的混合物,其中正丁醇、聚四氢呋喃醚二醇两者质量比为(1-3)∶(9-11)。
  9. 如权利要求7所述的光致变色纳米复合微球的制备方法,其特征在于,所述分散剂为吐温20、吐温80、司盘20、司盘60、司盘80中的至少一种;
    所述扩链剂为乙二醇、丙二醇、乙二胺、丙二胺、二乙胺中的至少一种;
    优选地,所述扩链剂为乙二醇与乙二胺混合物,乙二醇与乙二胺质量比为(2-3)∶(0.6-1.5)。
  10. 一种光致变色纳米复合微球,其特征在于,其是采用权利要求6-9中任一项所述的方法制备的。
  11. 一种光致变色涂层液,其特征在于,该涂层液中含有权利要求1-5和10中任一项所述的光致变色纳米复合微球。
  12. 如权利要求11所述的光致变色涂层液,其特征在于,所述涂层液由甲组份和乙组份按以下重量份构成:
    (1)甲组分:
    Figure PCTCN2017117714-appb-100004
    (2)乙组分:
    异氰酸酯型固化剂                 12-17
    催化剂                           0-1
    消泡剂                           0-1。
  13. 如权利要求12所述的光致变色涂层液,其特征在于,所述聚硫代氨基甲酸酯单体为2,2′-二巯基乙硫醚、2,2′-二巯基乙基硫代乙烷、2,3-二巯基乙基硫代丙硫醇或1,2,3-三巯基乙基硫代丙烷中的至少一种;
    所述异氰酸酯型固化剂是甲苯二异氰酸酯固化剂、二苯基甲烷-4,4’-二异氰酸酯固化剂、1,6-己二异氰酸酯固化剂、间苯二亚甲基二异氰酸酯固化剂、甲基环己基二异氰酸酯固化剂和异佛尔酮二异氰酸酯固化剂中的至少一种;
    所述催化剂为二月桂酸二丁基锡。
  14. 如权利要求12所述的光致变色涂层液,其特征在于,所述稀释剂为二氯甲烷、乙酸丁酯、乙酸甲酯、乙醇、丁醇、丙酮、甲苯、二甲苯、乙醚和聚四氢呋喃醚二醇中的至少一种;
    所述润湿分散剂为BYK聚氨酯型专用润湿分散剂或F420型润湿分散剂;
    所述流平剂为油性F300型流平剂、F309型流平剂、F309型流平剂或F320型流平剂;
    所述消泡剂为XPJ01F型改性硅油消泡剂。
  15. 如权利要求12-14中任一项所述光致变色涂层液的制备方法,该制备方法包含以下操作步骤:
    (1)甲组分:按所述比例分别将聚硫代氨基甲酸酯单体、稀释剂、聚氨酯/螺吡喃/硫化锌光致变色复合微球、润湿分散剂、流平剂加入容器里,室温下均匀搅拌15-30分钟,得到甲组分;
    (2)乙组分:按所述比例将异氰酸酯型固化剂、消泡剂、催化剂加入容器里,室温下均匀搅拌3-5分钟,得到乙组分。
  16. 一种光致变色涂层,其特征在于,该涂层中含有权利要求1-5中任一项所述的光致变色纳米复合微球。
  17. 一种光致变色涂层的制备方法,其特征在于,该制备方法包括:将权利要求12-14中任一项所述的光致变色涂层液用于制备光学基材的变色涂层,将所述甲组分和乙组分按质量比(70-100)∶(12-19)比例均匀混合,通过添加稀释剂来调节粘度,然后涂布在光学基材的表面上而形成涂覆层,通过光照射或加热使其固化,制成光致变色涂层。
  18. 一种光致变色光学材料,其特征在于,其是由树脂光学基材及其表面上涂覆的权利要求16所述的光致变色涂层组成。
  19. 如权利要求18所述的光致变色光学材料,其特征在于,所述树脂光学基材为热固性塑料或热塑性塑料。
  20. 如权利要求18所述的光致变色光学材料,其特征在于,所述树脂光学基材为聚甲基丙烯酸甲酯类树脂、丙烯基二甘醇碳酸酯类树脂、聚碳酸酯类树脂、氨基甲酸类树脂及硫环氧类树脂中的一种。
  21. 如权利要求18-20中任一项所述的光致变色光学材料,其特征在于,所述树脂光学基材为树脂镜片。
  22. 如权利要求18-21中任一项所述的光致变色光学材料的制备方法,其特征在于,该方法包括以下步骤:将所述光致变色涂层液采用旋转涂覆、喷涂或浸涂的方式涂覆于树脂光学基材上,形成表面具有光致变色涂层的光学材料。
  23. 如权利要求22所述的光致变色光学材料的制备方法,其特征在于,该方法包括以下步骤:
    I.按照权利要求15所述的方法配制甲、乙两种组分的涂层液;
    II.涂布时,将甲组分和乙组分按质量比(70-100)∶(12-19)比例均匀混合,通过添加稀释剂来调节粘度为20~350cp(25℃),得到光致变色涂层液;
    III.光学基材预处理:对树脂光学基材进行以下一项或多项预处理:碱性水溶液或酸性水溶液化学处理、研磨处理、不同气压的等离子体处理、电晕放电处理、UV臭氧处理和加硬处理;
    IV.涂覆:用步骤II制备的光致变色涂层液对预处理后的树脂光学基材进行旋转涂覆、喷涂或浸涂,在基材上形成一层光致变色涂层,即获得螺吡喃类光致变色光学材料。
  24. 如权利要求23所述的光致变色光学材料的制备方法,其特征在于,所述步骤II中分别制备粘度为60~250cp的第一光致变色涂层液,和粘度为50~200cp的第二光致变色涂层液;
    所述步骤IV采用浸涂方法,具体操作如下:将预处理后的树脂光学基材浸入到第一光致变色涂层液中,室温下浸泡3-5分钟,然后将树脂光学基材缓慢提离涂层液,移动至烘箱中,设置温度在35-65℃,烘烤45-90分钟,形成第一光致变色涂层;然后将树脂光学基材浸入到第二光致变色液中,室温下浸泡3-5分钟,然后将镜片缓慢提离涂层液,移动至烘箱中,设置温度在35-65℃,烘烤45-90分钟,形成第二光致变色涂层,得到光致变色光学材料。
  25. 如权利要求22-24中任一项所述的光致变色光学材料的制备方法,其特征在于,所述光致变色涂层的总厚度为5~100μm。
  26. 如权利要求22-24中任一项所述的光致变色光学材料的制备方法,其特征在于,所述方法还可包括在涂覆步骤IV之后对光学材料表面进行加硬和/或抗反射表面涂布处理。
PCT/CN2017/117714 2017-11-10 2017-12-21 一种光致变色光学材料及其制备方法 WO2019090920A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17912346.8A EP3508554B1 (en) 2017-11-10 2017-12-21 Photochromic optical material and preparation method therefor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201711110837.1A CN107778510B (zh) 2017-11-10 2017-11-10 螺吡喃类光致变色光学材料及其制备方法
CN201711110837.1 2017-11-10
CN201711110840.3 2017-11-10
CN201711110839.0 2017-11-10
CN201711110839.0A CN107779072B (zh) 2017-11-10 2017-11-10 一种光致变色涂层液及其应用
CN201711110840.3A CN107722027B (zh) 2017-11-10 2017-11-10 螺吡喃类光致变色纳米复合微球的制备方法
CN201711112631.2A CN107722028B (zh) 2017-11-10 2017-11-10 一种光致变色光学材料
CN201711113657.9A CN107903889B (zh) 2017-11-10 2017-11-10 一种光致变色纳米复合微球及其应用
CN201711110838.6 2017-11-10
CN201711113657.9 2017-11-10
CN201711110838.6A CN107828268B (zh) 2017-11-10 2017-11-10 螺吡喃类光致变色涂层及其制备方法
CN201711112631.2 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019090920A1 true WO2019090920A1 (zh) 2019-05-16

Family

ID=66437451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117714 WO2019090920A1 (zh) 2017-11-10 2017-12-21 一种光致变色光学材料及其制备方法

Country Status (2)

Country Link
EP (1) EP3508554B1 (zh)
WO (1) WO2019090920A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072708A (zh) * 2021-02-20 2021-07-06 浙江理工大学 通过氢键-有机框架包覆提高螺吡喃光致变色性的方法
CN116926947A (zh) * 2023-09-19 2023-10-24 南通北风橡塑制品有限公司 一种基于聚氨酯的耐磨抛光垫及其制备方法
CN117510785A (zh) * 2023-11-02 2024-02-06 廊坊市安鼎新材料科技有限公司 一种可见光致变色和紫外光激发荧光的水性聚氨酯及其制备方法和在防伪油墨中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225296A (zh) * 2008-02-01 2008-07-23 北京服装学院 光致变色微胶囊的制备方法
KR20090124431A (ko) * 2008-05-30 2009-12-03 최아영 광변색성 필름 및 그 제조방법
CN103215029A (zh) * 2013-03-21 2013-07-24 江苏华天通科技有限公司 纳米复合体相光敏变色材料及制备方法
CN103962076A (zh) * 2014-04-28 2014-08-06 江南大学 一种聚氨酯-壳聚糖双壳光致变色微胶囊的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017225A (en) * 1987-12-02 1991-05-21 Japan Capsular Products Inc. Microencapsulated photochromic material, process for its preparation and a water-base ink composition prepared therefrom
US20180244931A1 (en) * 2015-09-03 2018-08-30 Tokuyama Corporation Photochromic coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225296A (zh) * 2008-02-01 2008-07-23 北京服装学院 光致变色微胶囊的制备方法
KR20090124431A (ko) * 2008-05-30 2009-12-03 최아영 광변색성 필름 및 그 제조방법
CN103215029A (zh) * 2013-03-21 2013-07-24 江苏华天通科技有限公司 纳米复合体相光敏变色材料及制备方法
CN103962076A (zh) * 2014-04-28 2014-08-06 江南大学 一种聚氨酯-壳聚糖双壳光致变色微胶囊的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508554A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072708A (zh) * 2021-02-20 2021-07-06 浙江理工大学 通过氢键-有机框架包覆提高螺吡喃光致变色性的方法
CN113072708B (zh) * 2021-02-20 2022-05-24 浙江理工大学 通过氢键-有机框架包覆提高螺吡喃光致变色性的方法
CN116926947A (zh) * 2023-09-19 2023-10-24 南通北风橡塑制品有限公司 一种基于聚氨酯的耐磨抛光垫及其制备方法
CN116926947B (zh) * 2023-09-19 2023-12-12 南通北风橡塑制品有限公司 一种基于聚氨酯的耐磨抛光垫及其制备方法
CN117510785A (zh) * 2023-11-02 2024-02-06 廊坊市安鼎新材料科技有限公司 一种可见光致变色和紫外光激发荧光的水性聚氨酯及其制备方法和在防伪油墨中的应用

Also Published As

Publication number Publication date
EP3508554A1 (en) 2019-07-10
EP3508554A4 (en) 2020-01-22
EP3508554B1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
CN107778510B (zh) 螺吡喃类光致变色光学材料及其制备方法
CN107903889B (zh) 一种光致变色纳米复合微球及其应用
AU2006287758B2 (en) Optical elements that include curable film-forming compositions containing blocked isocyanate adhesion promoters
CN102186897B (zh) 光学材料用聚合性组合物、光学材料及光学材料的制造方法
CN103547608B (zh) 聚合性组合物
KR101753429B1 (ko) 우레탄(메트)아크릴레이트 단량체 및 그의 제조 방법
CN107779072B (zh) 一种光致变色涂层液及其应用
CN107722027B (zh) 螺吡喃类光致变色纳米复合微球的制备方法
TWI541336B (zh) A photochromic composition, and an optical article using the composition
WO2019090920A1 (zh) 一种光致变色光学材料及其制备方法
KR101594407B1 (ko) 맑고 투명한 폴리티올 화합물의 제조방법과 이를 이용한 광학렌즈용 조성물 및 광학렌즈의 제조방법
CN105518492A (zh) 光学材料及其用途
CN113025189B (zh) 一种高折射率变色镜片及其制备方法
CN107828268B (zh) 螺吡喃类光致变色涂层及其制备方法
CN107722028B (zh) 一种光致变色光学材料
CN109716216A (zh) 光致变色透镜及聚合性组合物
CN106433609B (zh) 变色制品、其制备方法及其应用
JP2018062496A (ja) クロメン化合物、及び該クロメン化合物を含む硬化性組成物
EP1287086B1 (de) Hybridpolymermaterial für photochrome beschichtungen und damit beschichtete optische gegenstände und verglasungen
EP4046993A1 (en) Photochromic compound and curable composition including photochromic compound
CN114806392A (zh) 超亲水抗脏污的自修复涂料、涂层的制备方法及涂层
CN114846047A (zh) 湿气固化型聚氨酯组合物及层叠体
EP4163270A1 (en) Compound for optical material, curable composition, cured body, and optical article
JPH03282445A (ja) フォトクロミック成形体
KR20220084022A (ko) 포토크로믹성 히드록시우레탄 화합물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017912346

Country of ref document: EP

Effective date: 20181211

NENP Non-entry into the national phase

Ref country code: DE