WO2019088527A2 - Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar - Google Patents

Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar Download PDF

Info

Publication number
WO2019088527A2
WO2019088527A2 PCT/KR2018/012339 KR2018012339W WO2019088527A2 WO 2019088527 A2 WO2019088527 A2 WO 2019088527A2 KR 2018012339 W KR2018012339 W KR 2018012339W WO 2019088527 A2 WO2019088527 A2 WO 2019088527A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
zinc oxide
nanostar
pathogen
mixture
Prior art date
Application number
PCT/KR2018/012339
Other languages
French (fr)
Korean (ko)
Other versions
WO2019088527A3 (en
Inventor
신용
리우후이팡
Original Assignee
울산대학교 산학협력단
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단, 재단법인 아산사회복지재단 filed Critical 울산대학교 산학협력단
Priority to US16/759,366 priority Critical patent/US11603526B2/en
Priority to EP18874738.0A priority patent/EP3705581A4/en
Priority claimed from KR1020180124184A external-priority patent/KR102090877B1/en
Publication of WO2019088527A2 publication Critical patent/WO2019088527A2/en
Publication of WO2019088527A3 publication Critical patent/WO2019088527A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor

Definitions

  • the present invention relates to a method for extracting pathogenic bacteria and nucleic acids using zinc oxide nanostars.
  • Nucleic acid is an important analytical tool for identifying disease states, and DNA biomarkers, such as single nucleotide polymorphism (SNP), mutation or DNA methylation, And provides an important clue to providing a great opportunity for prognosis and surveillance as well as diagnosing and monitoring the condition of the disease during the early stages of the disease.
  • SNP single nucleotide polymorphism
  • nucleic acids such as DNA are present at very low physiological concentrations compared to other components such as proteins (e.g., tens of nanograms of DNA versus a few tens of micrograms of protein per microliter of whole blood), DNA is effectively extracted from clinical samples Preconcentration is very important for subsequent processes such as amplification and detection.
  • nucleic acids have been increasing in various fields such as biotechnology, diagnostic medicine, pharmacology, and metabolism. Therefore, efforts are being made to separate nucleic acids more rapidly and neatly from various biological samples.
  • nucleic acid adsorbing materials are a carrier that specifically adsorbs only nucleic acid from various kinds of substances contained in the cell lysis solution such as genomic DNA, plasmid DNA, messenger RNA, protein.
  • An object of the present invention is to provide a gentle composition for a pathogen including a zinc oxide nanostar, a pathogen ligation method and kit using the same, A composition for extracting nucleic acid including zinc oxide nanostar, a nucleic acid extraction method and kit using the same, and a kit.
  • the present invention provides a germicidal composition for a pathogen comprising zinc oxide nanostar.
  • the present invention also provides a kit for a pathogen comprising the composition.
  • the present invention provides a pathogen method comprising contacting a zinc oxide nanostar with a sample containing a pathogen.
  • the present invention also provides a composition for extracting nucleic acid comprising zinc oxide nanostar.
  • the present invention also provides a kit for nucleic acid extraction comprising the above composition.
  • the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; And a second step of extracting the nucleic acid from the mixture.
  • the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; Adding diatomite modified with a silane compound to the mixture and adding the mixture to a mixture of dimethyl adipimidate (DMA), dimethylpimelimidate (DMP), dimethyl suberimidate (DMS) and dimethyl
  • DMA dimethyl adipimidate
  • DMP dimethylpimelimidate
  • DMS dimethyl suberimidate
  • a second step of preparing a reaction mixture by adding at least one selected from the group consisting of 3,3'-dithiobispropionimidate (DTBP), 3,3'-dithiobispropionimidate (DTBP);
  • DTBP 3,3'-dithiobispropionimidate
  • DTBP 3,3'-dithiobispropionimidate
  • the nucleic acid extraction method using the zinc oxide nanostructure of the present invention can extract the nucleic acid by dissolving the cells of the pathogen without using a lysis buffer and is capable of extracting nucleic acid from a variety of substances including a high concentration of salts contained in the lysis buffer Thereby preventing nucleic acid degradation and fragmentation caused by the nucleic acid degradation.
  • the zinc oxide nanostar (200 to 900 nm) of the present invention is superior to conventional zinc oxide nanoparticles (20 to 50 nm) in cell solubility to increase nucleic acid extraction efficiency and can be extracted at room temperature without heating It can be used as a field diagnostic method.
  • FIG. 3 compares the solubility and nucleic acid extraction efficiency of zinc oxide nanostars using brucella bacteria with zinc oxide nanoparticles and a conventional nucleic acid extraction kit (Qiagen).
  • FIG. 4 compares the solubility and nucleic acid extraction efficiency of zinc oxide nanostars using Brucella, Escherichia coli, Staphylococcus aureus, and Bacillus cereus with a conventional nucleic acid extraction kit (Qiagen).
  • FIG. 5 confirms that nucleic acid extraction is possible by combining zinc oxide nanostar with a column of a conventional nucleic acid extraction kit (Qiagen).
  • FIG. 6 shows that the zinc oxide nanostar is combined with diatomaceous earth or the same type 2 functional imidoester to extract nucleic acid.
  • FIG. 8 is a graph comparing (A) DNA extraction and (B) RNA extraction efficiency of a conventional nucleic acid extraction kit (Qiagen), zinc oxide nanostar, and zinc oxide nanoparticles using HCT116 as a colon cancer cell line.
  • the inventors of the present invention have developed an extraction method capable of dissolving a pathogen and extracting a nucleic acid, and the ZnO nanostar (ZnO NS) of the present invention is superior to conventional zinc oxide nanoparticles in dissolving a cell membrane and nucleus of a pathogen
  • the nucleic acid extracting method using the zinc oxide nanostar of the present invention is capable of extracting nucleic acid of high concentration and high concentration without lysis buffer and heating step,
  • the present invention has been accomplished on the basis of the finding that nucleic acid can be extracted and an immediate on-the-spot diagnosis is possible.
  • the present invention provides a mycelial composition for pathogen comprising zinc oxide nanostar.
  • the zinc oxide nanostructure refers to a nanoparticle in which a plurality of sharp projections are annularly arranged.
  • the zinc oxide nanostars have an average particle diameter of 200 to 900 nm, preferably an average particle diameter of 350 to 900 nm, more preferably an average particle diameter of 500 nm, but are not limited thereto Specify.
  • the pathogen is a microorganism and the microorganism may be, but is not limited to, a virus, a bacterium, a fungus, a protozoa, a ricketta or a spirotherte.
  • the present invention also provides a kit for a pathogen comprising the composition.
  • the present invention provides a pathogen method comprising contacting a zinc oxide nanostar with a sample containing a pathogen.
  • the sample containing the pathogenic agent may be used as a sample of a subject suspected of being infected with a pathogen such as feces, urine, tears, saliva, external secretion of skin, external secretion of the respiratory tract, external secretion of the intestinal tract, external secretion of the digestive tract, Spinal fluid, lymph fluid, body fluids, and tissue, but is not limited thereto.
  • a pathogen such as feces, urine, tears, saliva, external secretion of skin, external secretion of the respiratory tract, external secretion of the intestinal tract, external secretion of the digestive tract, Spinal fluid, lymph fluid, body fluids, and tissue, but is not limited thereto.
  • the pathogen is a microorganism and the microorganism may be, but is not limited to, a virus, a bacterium, a fungus, a protozoa, a ricketta or a spirotherte.
  • the present invention also provides a composition for extracting nucleic acid comprising zinc oxide nanostar.
  • the zinc oxide nanostructure refers to a nanoparticle in which a plurality of sharp projections are annularly arranged.
  • the zinc oxide nanostars have an average particle diameter of 200 to 900 nm, preferably an average particle diameter of 350 to 900 nm, more preferably an average particle diameter of 500 nm, but are not limited thereto Specify.
  • the nucleic acid may be DNA or RNA.
  • the present invention also provides a kit for nucleic acid extraction comprising the above composition.
  • the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; And a second step of extracting the nucleic acid from the mixture.
  • the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; Adding diatomite modified with a silane compound to the mixture and adding the mixture to a mixture of dimethyl adipimidate (DMA), dimethylpimelimidate (DMP), dimethyl suberimidate (DMS) and dimethyl
  • DMA dimethyl adipimidate
  • DMP dimethylpimelimidate
  • DMS dimethyl suberimidate
  • a second step of preparing a reaction mixture by adding at least one selected from the group consisting of 3,3'-dithiobispropionimidate (DTBP), 3,3'-dithiobispropionimidate (DTBP);
  • DTBP 3,3'-dithiobispropionimidate
  • DTBP 3,3'-dithiobispropionimidate
  • the silane compound may be a compound represented by the following general formula (1), but is not limited thereto.
  • R 1 to R 3 may be the same or different and are any one of C 1 to C 4 alkyl or C 1 to C 4 alkoxy
  • R 4 is amino (C 1 to C 10) alkyl, 3- (2 amino (C1 to C4) alkylamino] (C1 to C4) alkyl or 3- [2- (2-amino (C1 to C4) alkylamino) (C1 to C4) alkylamino] (C1 to C4) alkyl.
  • the silane compound may be at least one selected from the group consisting of (3-aminopropyl) triethoxysilane (APTES), (3-aminopropyl) trimethoxysilane, (1-aminomethyl) triethoxysilane, (2-aminoethyl) triethoxysilane, (4-aminobutyl) triethoxysilane, (5-aminopentyl) triethoxysilane, (6-aminohexyl) triethoxysilane, 3-aminopropyl (diethoxy) methylsilane 3-aminopropyl (diethoxy) methylsilane; APDMS), N- [3- (trimethoxysilyl) propyl] ethylenediamine, N- [3- (trimethoxysilyl ) Propyl] diethylenetriamine, [3- (2-aminoethylamino) propyl] trimethoxysilane ([3
  • the present invention also relates to a process for preparing a mixture by adding zinc nitrate hexahydrate and hexadecyltrimethylammonium bromide to water; A second step of heating the mixture at 85 to 95 ⁇ for 30 to 80 minutes to prepare a reaction mixture; And a third step of adding a solution of ammonium hydroxide to the reaction mixture to prepare a colloidal solution.
  • Zinc nitrate hexahydrate Zn NO 3 * 6H 2 O, 98%), ammonium hydroxide solution (28% NH 3 in H 2 O, 99.99% trace metals), (3-aminopropyl (3-aminopropyl) triethoxysilane (APTES, 98%) was purchased from Sigma-Aldrich (St Louis, MO, USA).
  • Hexadecyltrimethylammonium bromide (CTAB) C 19 H 42 BrN,> 98%) was purchased from Tokyo Chemical Industry.
  • Commercial zinc oxide nanoparticles (dispersion, 20 wt% in size less than 40 nm in H 2 O) were used as controls.
  • biomaterials of diatomaceous earth were purchased from Sigma-Aldrich.
  • Milli-Q water, 99% ethyl alcohol, phosphate buffered saline (PBS, 10x, pH 7.4) and streptavidin conjugated magnetic beads (Dynabeads® MyOne TM Streptavidin C1) Respectively.
  • FE-SEM field-emission scanning electron microscopy
  • XRD X-ray diffraction
  • FT-IR Fastier transform infrared
  • a centrifuge (CF-5, 100 to 240 Vas, 50/60 Hz, 8 W), Vortex Mixer (T5AL, 60 Hz, 30 W, 250 V) and MSH- .
  • the Ariamx real-time PCR system (Agilent technologies), the Gene Amp PCR system 9700 (LSK), the Submerge-Mini, the gel documentation system and the Nanodrop 2000 (PeqLab) Respectively.
  • the cells used in the experiment were HCT116 (ATCC CCL-247), a colon cancer cell line.
  • Brucella ovis ATCC 25840
  • Escherichia coli E coli, ATCC 25922
  • Staphylococcus aureus Staphylococcus aureus S. aureus
  • Bacillus cereus B cereus
  • Zno nanostar (Zno NS) crystals were synthesized by hydrothermal method in alkaline medium.
  • reaction temperature, reaction time and stirring speed were controlled for uniform production of zinc oxide nanostars.
  • the reaction flask of the ice box was immediately taken out and centrifuged, dried at room temperature and washed with Milli-Q water. All syntheses were carried out without any special treatment, and finally the samples were stored in ethanol (99%).
  • zinc oxide nanostar has a particle size of 200 to 600 nm on average and shows a particle shape in which a plurality of sharp projections are annularly arranged
  • zinc oxide nanoparticles have an average of 20 ≪ / RTI > to 60 nm and exhibits an irregular spherical particle morphology.
  • the structures of zinc oxide nanostars and zinc oxide nanoparticles are different from each other by the Raman technique.
  • the zinc oxide nanostructure of the present invention has a particle size larger than that of the conventional zinc oxide nanoparticles and has a particle shape in which a plurality of sharp projections are annularly arranged to more easily dissolve cell membranes and nuclei of pathogenic bacteria Respectively.
  • the commercialization kit was used for comparative analysis of dissolution characteristics of zinc oxide nanostars.
  • the amount and purity of the extracted nucleic acid was measured with Ariamx real-time PCR system, Gene Amp PCR system 9700, electrophoresis apparatus, electrophoresis gel recording apparatus and Nanodrop 2000.
  • FIG. 3 and the following Table 1 show the results of using the conventional nucleic acid extraction kit (Qiagen) + lysis buffer, zinc oxide nanoparticles + dissolution buffer unused, zinc oxide nanostar + dissolution buffer unused, conventional nucleic acid extraction kit
  • Qiagen nucleic acid extraction kit
  • FIG. 3 and the following Table 1 show the results of using the conventional nucleic acid extraction kit (Qiagen) + lysis buffer, zinc oxide nanoparticles + dissolution buffer unused, zinc oxide nanostar + dissolution buffer unused, conventional nucleic acid extraction kit
  • dissolution characteristics of zinc oxide nanostar were comparatively analyzed using Brucella, Escherichia coli, Staphylococcus aureus and Bacillus cereus as in the above method.
  • the zinc oxide nanostar of the present invention was superior to the conventional nucleic acid extraction kit in solubility and nucleic acid extraction in all four kinds of bacteria.
  • FIG. 5 is an analysis of whether the zinc oxide nanostar of the present invention is capable of nucleic acid extraction by grafting into a conventional nucleic acid extraction kit (Qiagen) column. As a result of comparing nucleic acid extraction efficiencies with different conditions as shown in Table 2 below, it was confirmed that zinc oxide nanostar could efficiently extract nucleic acid even at room temperature without heating.
  • Qiagen nucleic acid extraction kit
  • A1 A2 B1 B2 C1 C2 Nucleic acid extract composition Qiagen Qiagen Qiagen + zinc oxide nanostar Qiagen + zinc oxide nanostar Qiagen Qiagen Dissolution buffer use use unused unused unused unused Temperature (°C) 56 Room temperature 56 Room temperature 56 Room temperature Time (minutes) 10 10 10 10 10 10 10
  • the diatomite pore structure can accommodate a variety of molecules, and the high density silanol groups on the walls are beneficial in linking with functional amine groups, so the washed diatomite is functionalized with APTES.
  • the detailed experimental procedure is as follows.
  • diatomite functionalized with APTES was dispersed in distilled water at a concentration of 50 mg / ml.
  • the characteristics of APTES - functionalized diatomite and pure diatomite were analyzed by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman microscopy system.
  • nucleic acid was extracted by adding diatomaceous earth functionalized with APTES and an imidoester crosslinking agent (Dimethyl suberimidate. 2 HCl, DMS) to a 5 ml tube containing the prepared biological sample.
  • an imidoester crosslinking agent Dimethyl suberimidate. 2 HCl, DMS
  • RNA extraction 100 ⁇ l of the sample solution was added to a 1.5 ml tube containing 10 ⁇ l of protease K and 10 ⁇ l of a lysis buffer (M-SDS lysis buffer or zinc oxide nanostar solution), mixed using a pipette, Min. ≪ / RTI > 10 [mu] l of DNase was added for RNA extraction.
  • M-SDS lysis buffer or zinc oxide nanostar solution a pipette, Min. ≪ / RTI &gt
  • 10 [mu] l of DNase was added for RNA extraction.
  • the cells were incubated at 56 ° C for 10 minutes for M-SDS lysis or mixed with a pipette for zinc oxide nanostar dissolution and cultured at room temperature for 2 minutes.
  • the amount and purity of the extracted nucleic acid was measured with Ariamx real-time PCR system, Gene Amp PCR system 9700, electrophoresis apparatus, electrophoresis gel recording apparatus and Nanodrop 2000.
  • the zinc oxide nanostar of the present invention is a diatomaceous earth functionalized with APTES and a homobifunctional imidoester [DMA (Dimethyl adipimidate), Dimethyl pimelimidate (DMP) (DMS) or dimethyl 3,3'-dithiobispropionimidate (DTBP)], as shown in Table 1 below.
  • DMA Dimethyl adipimidate
  • DMP Dimethyl pimelimidate
  • DTBP dimethyl 3,3'-dithiobispropionimidate
  • the zinc oxide nanostar of the present invention was grafted together with diatomite and DMS functionalized with APTES and the nucleic acid extraction efficiency was compared according to the conditions as shown in Table 3. As a result, Extraction was possible. In addition, since it does not use a lysis buffer, it can be applied to the detection technique through the final PCR by giving less damage to the nucleic acid.
  • the extraction efficiency of the nucleic acid according to the particle size was compared, and the extraction efficiency of the nucleic acid of the zinc oxide nanostar having the particle size of 350 to 900 nm was the best, Zinc oxide nanostar with particle size of.
  • Example 7 Nucleic acid extraction method using zinc oxide nanostar
  • Zinc oxide nanostar was synthesized by hydrothermal method on alkaline medium.
  • reaction temperature, reaction time and stirring speed were controlled for uniform production of zinc oxide nanostars.
  • the zinc oxide nanostar solution was added to a 1.5 ml tube containing 100 ⁇ ⁇ of brucellosis (CFU: 10 ⁇ 5 / ml), and gently mixed with a pipette within 10 minutes at room temperature.
  • CFU brucellosis
  • the prepared sample was transferred to a Qiagen column, washed, and then the DNA was eluted with 60 Q of Qiagen elution buffer.
  • diatomite-APTES 2 mg / ml 50 mg / ml, 40 [mu] l was added and then 100 [mu] l of a 100 mg / ml DMS solution was added. After mixing, the cells were incubated at 56 ° C for 10 minutes for M-SDS lysis, or mixed with a pipette for zinc oxide nanostar dissolution and cultured at room temperature for 2 minutes.
  • optical strip lid was placed in the well, being careful not to cross-contaminate and stain the surface of the lid.
  • Step 1 95 ° C, 10 min
  • Step 2 95 ⁇ , 10 seconds; 60 ⁇ , 20 seconds; 72 ° C, 20 seconds (40 to 45 cycles)
  • Step 3 72 ° C, 10 min
  • Example 8 Solubility test of zinc oxide nanostar using eukaryotic cells
  • HCT116 cells In order to verify the usefulness of zinc oxide nanostars in eukaryotic cells, HCT116 cells, a colon cancer cell line, were serially diluted to a concentration of 1 to 10 4 cells / 100 ⁇ l, and then zinc oxide nanostar, zinc oxide nano- And extraction efficiency of DNA and RNA was analyzed using a conventional nucleic acid extraction kit (Qiagen).
  • zinc oxide nanostars were able to detect DNA and RNA 1 to 1.5 cycles earlier than zinc oxide nanoparticles (20 nm) .
  • zinc oxide nanostar extracts nucleic acids at a higher concentration and purity than conventional nucleic acid extraction kits, and even in a small number of cells, high concentrations and high purity (3.5 ⁇ 2.3 ng / ⁇ l and 1.73 ⁇ 0.26 at 10 1 cells / ).
  • Zinc oxide nanostars enable rapid cell lysis at room temperature without the use of lysis buffers in various types of cells, making them useful as diagnostic systems in clinical settings.

Abstract

The present invention relates to a pathogen lysis and nucleic acid extraction method using a zinc oxide nanostar. A nucleic acid extraction method using a zinc oxide nanostar according to the present invention enables the extraction of nucleic acid through cell lysis of pathogens without using a lysis buffer and allows for the extraction of nucleic acids at high purity and high concentration by preventing nucleic acid degradation and fragmentation attributed to various materials in a lysis buffer, including a high concentration of salts. In addition, zinc oxide nanostars (200 to 900 nm) according to the present invention, which are superior conventional zinc oxide nanoparticles (20 to 50 nm) in terms of cell lysis potential, improve nucleic acid extraction efficiency thanks to their cell lysis potential and allow extraction at room temperature without a heating step, thus finding application as a diagnostic method in the field.

Description

산화아연 나노스타를 이용한 병원체 용균 및 핵산 추출 방법Method of extracting pathogenic bacteria and nucleic acid using zinc oxide nanostar
본 발명은 산화아연 나노스타를 이용한 병원체 용균 및 핵산 추출 방법에 관한 것이다.The present invention relates to a method for extracting pathogenic bacteria and nucleic acids using zinc oxide nanostars.
핵산은 질병 상태를 확인하기 위한 중요한 분석 수단이며, DNA 생체표지자 (biomarker) 예를 들어, 단일염기다형성 (single nucleotide polymorphism; SNP), 돌연변이 또는 DNA 메틸화 (DNA methylation)는 연구자가 암의 원인을 찾도록 돕고 질병의 초기 단계 동안 질병의 상태를 진단하고 관찰하는 것은 물론 예후와 감시에 대한 큰 기회를 제공하는 데 중요한 실마리를 제공한다. Nucleic acid is an important analytical tool for identifying disease states, and DNA biomarkers, such as single nucleotide polymorphism (SNP), mutation or DNA methylation, And provides an important clue to providing a great opportunity for prognosis and surveillance as well as diagnosing and monitoring the condition of the disease during the early stages of the disease.
DNA와 같은 핵산은 단백질과 같은 다른 성분에 비해 매우 낮은 생리적 농도로 존재하기 때문에 (예를 들어, 전혈 마이크로리터 당 수십 나노그람의 DNA 대 수십 마이크로그람의 단백질), 임상 시료로부터 DNA를 효과적으로 추출하고 예비 농축하는 것은 증폭 및 검출과 같은 이후의 공정에 매우 중요하다.Since nucleic acids such as DNA are present at very low physiological concentrations compared to other components such as proteins (e.g., tens of nanograms of DNA versus a few tens of micrograms of protein per microliter of whole blood), DNA is effectively extracted from clinical samples Preconcentration is very important for subsequent processes such as amplification and detection.
최근 들어 생명공학을 비롯한 진단의학, 약물의학, 대사의학 등 다양한 분야에서 고순도로 정제된 핵산의 사용량이 늘어남에 따라 다양한 생물 시료로부터 보다 신속하고 순수하게 핵산을 분리하고자 하는 노력이 계속되고 있다.In recent years, the use of high purity purified nucleic acids has been increasing in various fields such as biotechnology, diagnostic medicine, pharmacology, and metabolism. Therefore, efforts are being made to separate nucleic acids more rapidly and neatly from various biological samples.
그러나 현재까지 핵산의 분리 방법에 있어 가장 크게 발전한 부분은 유전체 DNA, 플라스미드 DNA, 메신저 RNA, 단백질, 세포 잔해 입자 등 세포 용해 용액 내에 포함된 여러 종류의 물질들로부터 특이적으로 핵산만을 흡착시키는 담체에 관한 기술 등 거의 모든 연구의 초점은 핵산을 흡착시키는 물질에 관한 연구와 개발에 집중되어 있는 한계가 있었다.However, the most significant part of the method for separating nucleic acids to date is a carrier that specifically adsorbs only nucleic acid from various kinds of substances contained in the cell lysis solution such as genomic DNA, plasmid DNA, messenger RNA, protein, Have focused on the research and development of nucleic acid adsorbing materials.
이에, 다양한 생물 시료로부터 보다 신속하고 순수하게 핵산을 분리하기 위하여 무엇보다 세포 잔해 입자와 단백질 변성 응집물, 기타 다양한 세포 분해 물질들로부터 신속하게 원하는 핵산만을 분리할 수 있는 기술의 개발이 절실한 실정이다.Accordingly, in order to separate nucleic acids more rapidly and purely from various biological samples, it is necessary to develop a technology capable of rapidly separating only desired nucleic acids from cell debris particles, protein denatured aggregates, and various cell degradation materials.
본 발명의 목적은 산화아연 나노스타를 포함하는 병원체 용균용 조성물, 이를 이용한 병원체 용균 방법 및 키트; 산화아연 나노스타를 포함하는 핵산 추출용 조성물, 이를 이용한 핵산 추출 방법 및 키트;를 제공하는 데에 있다.An object of the present invention is to provide a gentle composition for a pathogen including a zinc oxide nanostar, a pathogen ligation method and kit using the same, A composition for extracting nucleic acid including zinc oxide nanostar, a nucleic acid extraction method and kit using the same, and a kit.
상기 목적을 달성하기 위하여, 본 발명은 산화아연 나노스타를 포함하는 병원체 용균용 조성물을 제공한다.In order to achieve the above object, the present invention provides a germicidal composition for a pathogen comprising zinc oxide nanostar.
또한, 본 발명은 상기 조성물을 포함하는 병원체 용균용 키트를 제공한다.The present invention also provides a kit for a pathogen comprising the composition.
또한, 본 발명은 산화아연 나노스타를 병원체가 함유된 시료에 접촉시키는 단계를 포함하는 병원체 용균 방법을 제공한다.In addition, the present invention provides a pathogen method comprising contacting a zinc oxide nanostar with a sample containing a pathogen.
또한, 본 발명은 산화아연 나노스타를 포함하는 핵산 추출용 조성물을 제공한다.The present invention also provides a composition for extracting nucleic acid comprising zinc oxide nanostar.
또한, 본 발명은 상기 조성물을 포함하는 핵산 추출용 키트를 제공한다.The present invention also provides a kit for nucleic acid extraction comprising the above composition.
또한, 본 발명은 산화아연 나노스타를 핵산 시료에 첨가하고 반응시켜 혼합물을 제조하는 제 1단계; 및 상기 혼합물로부터 핵산을 추출하는 제 2단계;를 포함하는 핵산 추출 방법을 제공한다.In addition, the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; And a second step of extracting the nucleic acid from the mixture.
또한, 본 발명은 산화아연 나노스타를 핵산 시료에 첨가하고 반응시켜 혼합물을 제조하는 제 1단계; 상기 혼합물에 실란 화합물로 개질된 규조토를 첨가하고, 디메틸 아디프이미데이트(dimethyl adipimidate; DMA), 디메틸 피멜리미데이트(dimethyl pimelimidate; DMP), 디메틸 수베르이미데이트(Dimethyl suberimidate; DMS) 및 디메틸 3,3'-디티오비스프로피온이미데이트(Dimethyl 3,3'-dithiobispropionimidate; DTBP)로 이루어진 군에서 선택된 어느 하나 이상을 첨가하여 반응 혼합물을 제조하는 제 2단계; 및 상기 반응 혼합물로부터 핵산을 추출하는 제 3단계;를 포함하는 핵산 추출 방법을 제공한다.In addition, the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; Adding diatomite modified with a silane compound to the mixture and adding the mixture to a mixture of dimethyl adipimidate (DMA), dimethylpimelimidate (DMP), dimethyl suberimidate (DMS) and dimethyl A second step of preparing a reaction mixture by adding at least one selected from the group consisting of 3,3'-dithiobispropionimidate (DTBP), 3,3'-dithiobispropionimidate (DTBP); And a third step of extracting a nucleic acid from the reaction mixture.
본 발명의 산화아연 나노스타를 이용한 핵산 추출 방법은 용해 완충액 (lysis buffer)의 사용 없이 병원체의 세포를 용해하여 핵산을 추출할 수 있으며, 용해 완충액에 함유되어 있는 높은 농도의 염을 비롯한 다양한 물질에 의한 핵산 분해 (degradation) 및 단편화 (fragmentation)를 방지함으로써 고순도 및 고농도의 핵산 추출을 가능하게 한다. 또한, 본 발명의 산화아연 나노스타 (200 내지 900 nm)는 종래 산화아연 나노입자 (20 내지 50 nm)에 비하여 세포 용해능이 우수하여 핵산 추출 효율을 증가시키며, 가열 단계 없이 상온에서 추출이 가능하여 현장 진단 방법으로 활용이 가능하다.The nucleic acid extraction method using the zinc oxide nanostructure of the present invention can extract the nucleic acid by dissolving the cells of the pathogen without using a lysis buffer and is capable of extracting nucleic acid from a variety of substances including a high concentration of salts contained in the lysis buffer Thereby preventing nucleic acid degradation and fragmentation caused by the nucleic acid degradation. In addition, the zinc oxide nanostar (200 to 900 nm) of the present invention is superior to conventional zinc oxide nanoparticles (20 to 50 nm) in cell solubility to increase nucleic acid extraction efficiency and can be extracted at room temperature without heating It can be used as a field diagnostic method.
도 1은 (A) 산화아연 나노스타 및 (B) 산화아연 나노입자의 크기 및 형태를 비교한 것이다.1 compares the sizes and shapes of (A) zinc oxide nanostars and (B) zinc oxide nanoparticles.
도 2는 산화아연 나노스타 및 산화아연 나노입자의 구조를 라만 기법으로 비교한 것이다.2 compares the structures of zinc oxide nanostar and zinc oxide nanoparticles using the Raman technique.
도 3은 브루셀라균을 이용한 산화아연 나노스타의 용해능 및 핵산 추출 효율을 산화아연 나노입자 및 종래 핵산 추출 키트 (Qiagen)와 비교한 것이다.FIG. 3 compares the solubility and nucleic acid extraction efficiency of zinc oxide nanostars using brucella bacteria with zinc oxide nanoparticles and a conventional nucleic acid extraction kit (Qiagen).
도 4는 브루셀라균, 대장균, 황색포도상구균 및 바실러스 세레우스균을 이용한 산화아연 나노스타의 용해능 및 핵산 추출 효율을 종래 핵산 추출 키트 (Qiagen)와 비교한 것이다.FIG. 4 compares the solubility and nucleic acid extraction efficiency of zinc oxide nanostars using Brucella, Escherichia coli, Staphylococcus aureus, and Bacillus cereus with a conventional nucleic acid extraction kit (Qiagen).
도 5는 산화아연 나노스타를 종래 핵산 추출 키트 (Qiagen)의 컬럼과 접목시켜 핵산 추출이 가능함을 확인한 것이다.FIG. 5 confirms that nucleic acid extraction is possible by combining zinc oxide nanostar with a column of a conventional nucleic acid extraction kit (Qiagen).
도 6은 산화아연 나노스타를 규조토 또는 동형2기능성 이미도에스터와 접목시켜 핵산 추출이 가능함을 확인한 것이다.FIG. 6 shows that the zinc oxide nanostar is combined with diatomaceous earth or the same type 2 functional imidoester to extract nucleic acid.
도 7은 대장암 세포주인 HCT116을 이용하여 입자 크기에 따른 산화아연 나노스타의 핵산 추출 효율을 산화아연 나노입자와 비교한 것이다.7 compares the efficiency of nucleic acid extraction of zinc oxide nanostars with zinc oxide nanoparticles according to particle size using HCT116, a colon cancer cell line.
도 8은 대장암 세포주인 HCT116을 이용하여 종래 핵산 추출 키트 (Qiagen), 산화아연 나노스타, 산화아연 나노입자의 (A) DNA 추출 및 (B) RNA 추출 효율을 비교한 것이다.FIG. 8 is a graph comparing (A) DNA extraction and (B) RNA extraction efficiency of a conventional nucleic acid extraction kit (Qiagen), zinc oxide nanostar, and zinc oxide nanoparticles using HCT116 as a colon cancer cell line.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 발명자들은 병원체 용해 및 핵산을 추출할 수 있는 추출 방법을 개발하였으며, 본 발명의 산화아연 나노스타 (ZnO nanostar; ZnO NS)는 종래 산화아연 나노입자와 비교하여 병원체의 세포막 및 핵의 용해능을 증가시킬 수 있는 크기 및 형태를 가짐으로써 고농도의 핵산을 추출할 수 있으며, 또한, 본 발명의 산화아연 나노스타를 이용한 핵산 추출 방법은 용해 완충액 (lysis buffer) 및 가열 단계 없이 고순도 및 고농도의 핵산을 추출하여 현장 즉시형 진단이 가능함을 밝혀내며 본 발명을 완성하였다.The inventors of the present invention have developed an extraction method capable of dissolving a pathogen and extracting a nucleic acid, and the ZnO nanostar (ZnO NS) of the present invention is superior to conventional zinc oxide nanoparticles in dissolving a cell membrane and nucleus of a pathogen The nucleic acid extracting method using the zinc oxide nanostar of the present invention is capable of extracting nucleic acid of high concentration and high concentration without lysis buffer and heating step, The present invention has been accomplished on the basis of the finding that nucleic acid can be extracted and an immediate on-the-spot diagnosis is possible.
본 발명은 산화아연 나노스타를 포함하는 병원체 용균용 조성물을 제공한다.The present invention provides a mycelial composition for pathogen comprising zinc oxide nanostar.
상기 산화아연 나노스타는 복수 개의 뾰족한 돌기가 환상으로 배열된 나노입자를 의미한다.The zinc oxide nanostructure refers to a nanoparticle in which a plurality of sharp projections are annularly arranged.
상기 산화아연 나노스타는 200 내지 900 nm의 평균 입경을 가지며, 바람직하게는, 350 내지 900 nm의 평균 입경을 가지며, 더욱 바람직하게는 500 nm의 평균 입경을 가질 수 있으나, 이에 제한되는 것은 아님을 명시한다.The zinc oxide nanostars have an average particle diameter of 200 to 900 nm, preferably an average particle diameter of 350 to 900 nm, more preferably an average particle diameter of 500 nm, but are not limited thereto Specify.
상기 병원체는 미생물이며, 상기 미생물은 바이러스, 세균, 진균, 원충, 리케차 또는 스피로헤타일 수 있으나, 이에 제한되는 것은 아님을 명시한다. The pathogen is a microorganism and the microorganism may be, but is not limited to, a virus, a bacterium, a fungus, a protozoa, a ricketta or a spirotherte.
또한, 본 발명은 상기 조성물을 포함하는 병원체 용균용 키트를 제공한다.The present invention also provides a kit for a pathogen comprising the composition.
또한, 본 발명은 산화아연 나노스타를 병원체가 함유된 시료에 접촉시키는 단계를 포함하는 병원체 용균 방법을 제공한다.In addition, the present invention provides a pathogen method comprising contacting a zinc oxide nanostar with a sample containing a pathogen.
상기 병원체가 함유된 시료는 병원체에 감염된 것으로 의심되는 객체의 분변, 소변, 눈물, 타액, 피부의 외부 분비물, 호흡관의 외부 분비물, 장관의 외부 분비물, 소화관의 외부 분비물, 혈장, 혈청, 혈액, 척수액, 림프액, 체액 및 조직으로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The sample containing the pathogenic agent may be used as a sample of a subject suspected of being infected with a pathogen such as feces, urine, tears, saliva, external secretion of skin, external secretion of the respiratory tract, external secretion of the intestinal tract, external secretion of the digestive tract, Spinal fluid, lymph fluid, body fluids, and tissue, but is not limited thereto.
상기 병원체는 미생물이며, 상기 미생물은 바이러스, 세균, 진균, 원충, 리케차 또는 스피로헤타일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The pathogen is a microorganism and the microorganism may be, but is not limited to, a virus, a bacterium, a fungus, a protozoa, a ricketta or a spirotherte.
또한, 본 발명은 산화아연 나노스타를 포함하는 핵산 추출용 조성물을 제공한다.The present invention also provides a composition for extracting nucleic acid comprising zinc oxide nanostar.
상기 산화아연 나노스타는 복수 개의 뾰족한 돌기가 환상으로 배열된 나노입자를 의미한다.The zinc oxide nanostructure refers to a nanoparticle in which a plurality of sharp projections are annularly arranged.
상기 산화아연 나노스타는 200 내지 900 nm의 평균 입경을 가지며, 바람직하게는, 350 내지 900 nm의 평균 입경을 가지며, 더욱 바람직하게는 500 nm의 평균 입경을 가질 수 있으나, 이에 제한되는 것은 아님을 명시한다.The zinc oxide nanostars have an average particle diameter of 200 to 900 nm, preferably an average particle diameter of 350 to 900 nm, more preferably an average particle diameter of 500 nm, but are not limited thereto Specify.
상기 핵산은 DNA 또는 RNA일 수 있다.The nucleic acid may be DNA or RNA.
또한, 본 발명은 상기 조성물을 포함하는 핵산 추출용 키트를 제공한다.The present invention also provides a kit for nucleic acid extraction comprising the above composition.
또한, 본 발명은 산화아연 나노스타를 핵산 시료에 첨가하고 반응시켜 혼합물을 제조하는 제 1단계; 및 상기 혼합물로부터 핵산을 추출하는 제 2단계;를 포함하는 핵산 추출 방법을 제공한다.In addition, the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; And a second step of extracting the nucleic acid from the mixture.
또한, 본 발명은 산화아연 나노스타를 핵산 시료에 첨가하고 반응시켜 혼합물을 제조하는 제 1단계; 상기 혼합물에 실란 화합물로 개질된 규조토를 첨가하고, 디메틸 아디프이미데이트(dimethyl adipimidate; DMA), 디메틸 피멜리미데이트(dimethyl pimelimidate; DMP), 디메틸 수베르이미데이트(Dimethyl suberimidate; DMS) 및 디메틸 3,3'-디티오비스프로피온이미데이트(Dimethyl 3,3'-dithiobispropionimidate; DTBP)로 이루어진 군에서 선택된 어느 하나 이상을 첨가하여 반응 혼합물을 제조하는 제 2단계; 및 상기 반응 혼합물로부터 핵산을 추출하는 제 3단계;를 포함하는 핵산 추출 방법을 제공한다.In addition, the present invention provides a method for producing a zinc nanostructure comprising: a first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting the mixture to prepare a mixture; Adding diatomite modified with a silane compound to the mixture and adding the mixture to a mixture of dimethyl adipimidate (DMA), dimethylpimelimidate (DMP), dimethyl suberimidate (DMS) and dimethyl A second step of preparing a reaction mixture by adding at least one selected from the group consisting of 3,3'-dithiobispropionimidate (DTBP), 3,3'-dithiobispropionimidate (DTBP); And a third step of extracting a nucleic acid from the reaction mixture.
상기 실란 화합물은 하기 화학식 1로 표시되는 화합물일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The silane compound may be a compound represented by the following general formula (1), but is not limited thereto.
[화학식 1][Chemical Formula 1]
Figure PCTKR2018012339-appb-I000001
Figure PCTKR2018012339-appb-I000001
상기 식에서, R1 내지 R3는 각각 같거나 다를 수 있으며, C1 내지 C4의 알킬 또는 C1 내지 C4의 알콕시 중 어느 하나이고, R4는 아미노(C1 내지 C10)알킬, 3-(2아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬 또는 3-[2-(2-아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬아미노](C1 내지 C4)알킬 중 어느 하나임.Wherein R 1 to R 3 may be the same or different and are any one of C 1 to C 4 alkyl or C 1 to C 4 alkoxy, R 4 is amino (C 1 to C 10) alkyl, 3- (2 amino (C1 to C4) alkylamino] (C1 to C4) alkyl or 3- [2- (2-amino (C1 to C4) alkylamino) (C1 to C4) alkylamino] (C1 to C4) alkyl.
상기 실란 화합물은 (3-아미노프로필)트리에톡시실란((3-aminopropyl)triethoxysilane; APTES), (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane), (1-아미노메틸)트리에톡시실란((1-aminomethyl)triethoxysilane), (2-아미노에틸)트리에톡시실란((2-aminoethyl)triethoxysilane), (4-아미노부틸)트리에톡시실란((4-aminobutyl)triethoxysilane), (5-아미노펜틸)트리에톡시실란((5-aminopentyl)triethoxysilane), (6-아미노헥실)트리에톡시실란((6-aminohexyl)triethoxysilane), 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS), N-[3-(트리메톡시실릴)프로필]에틸렌디아민(N-[3-(trimethoxysilyl)propyl]ethylenediamine), N-[3-(트리메톡시실릴)프로필]디에틸렌트리아민(N-[3-(trimethoxysilyl)propyl]diethylenetriamine), [3-(2-아미노에틸아미노)프로필]트리메톡시실란([3-(2-aminoethylamino)propyl]trimethoxysilane; AEAPTMS) 및 3-[(트리메톡시실릴)프로필]디에틸렌트리아민(3-[(trimethoxysilyl)propyl]diethylenetriamine; TMPTA)로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아님을 명시한다.The silane compound may be at least one selected from the group consisting of (3-aminopropyl) triethoxysilane (APTES), (3-aminopropyl) trimethoxysilane, (1-aminomethyl) triethoxysilane, (2-aminoethyl) triethoxysilane, (4-aminobutyl) triethoxysilane, (5-aminopentyl) triethoxysilane, (6-aminohexyl) triethoxysilane, 3-aminopropyl (diethoxy) methylsilane 3-aminopropyl (diethoxy) methylsilane; APDMS), N- [3- (trimethoxysilyl) propyl] ethylenediamine, N- [3- (trimethoxysilyl ) Propyl] diethylenetriamine, [3- (2-aminoethylamino) propyl] trimethoxysilane ([3- (2-aminoethylamino) propyl] trimethoxysilane; AEAPTMS) and 3 - [(tri (Trimethoxysilyl) propyl] diethylenetriamine; TMPTA), but it is not limited to these.
또한, 본 발명은 질산아연 6수화물 (zinc nitrate hexahydrat) 및 헥사데실트리메틸암모늄 브로마이드 (hexadecyltrimethylammonium bromide)를 물에 첨가하여 혼합물을 제조하는 제 1단계; 상기 혼합물을 85 내지 95℃에서 30 내지 80분 동안 가열하여 반응 혼합물을 제조하는 제 2단계; 및 상기 반응 혼합물에 수산화 암모늄을 적가하여 콜로이드 용액을 제조하는 제 3단계;를 포함하는 산화아연 나노스타의 제조방법을 제공한다.The present invention also relates to a process for preparing a mixture by adding zinc nitrate hexahydrate and hexadecyltrimethylammonium bromide to water; A second step of heating the mixture at 85 to 95 캜 for 30 to 80 minutes to prepare a reaction mixture; And a third step of adding a solution of ammonium hydroxide to the reaction mixture to prepare a colloidal solution.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .
실시예 1 : 화학 물질 및 시약Example 1: Chemicals and reagents
모든 시약은 분석 등급으로 정제없이 사용하였다. 질산아연 6수화물 (zinc nitrate hexahydrate; Zn NO3 * 6H2O, 98%), 수산화 암모늄 용액 (ammonium hydroxide solution; H2O 중 28% NH3, 99.99% 미량 금속 기준), (3-아미노프로필)트리에톡시실란 ((3-aminopropyl)triethoxysilane; APTES, 98%)은 Sigma-Aldrich (St Louis, MO, USA)에서 구매하였다. 헥사데실트리메틸암모늄 브로마이드 (hexadecyltrimethylammonium bromide = cetyltrimethylammonium bromide; CTAB) (C19H42BrN, > 98%)는 Tokyo Chemical Industry에서 구매하였다. 상업용 산화아연 나노입자 (분산액, H2O 중 40 nm 미만의 사이즈 20 wt%)는 대조군으로 사용하였다. 새로운 핵산 추출 시스템을 설계하기 위해, Sigma-Aldrich에서 생체 적합성 규조토 (diatomaceous earth) 분말을 구매하였다. 또한, 18 MΩ 보다 큰 저항값을 가지는 Milli-Q 물, 99% 에틸 알코올, 인산완충식염수 (PBS, 10x, pH 7.4) 및 스트랩타비딘 (streptavidin) 결합 자성 비드 (Dynabeads® MyOne ™ Streptavidin C1)를 사용하였다.All reagents were analytically graded and used without purification. Zinc nitrate hexahydrate (Zn NO 3 * 6H 2 O, 98%), ammonium hydroxide solution (28% NH 3 in H 2 O, 99.99% trace metals), (3-aminopropyl (3-aminopropyl) triethoxysilane (APTES, 98%) was purchased from Sigma-Aldrich (St Louis, MO, USA). Hexadecyltrimethylammonium bromide (CTAB) (C 19 H 42 BrN,> 98%) was purchased from Tokyo Chemical Industry. Commercial zinc oxide nanoparticles (dispersion, 20 wt% in size less than 40 nm in H 2 O) were used as controls. To design a new nucleic acid extraction system, biomaterials of diatomaceous earth were purchased from Sigma-Aldrich. In addition, Milli-Q water, 99% ethyl alcohol, phosphate buffered saline (PBS, 10x, pH 7.4) and streptavidin conjugated magnetic beads (Dynabeads® MyOne ™ Streptavidin C1) Respectively.
실시예 2 : 실험 기기Example 2: Experimental apparatus
시료의 형태학 (morphology)은 주사 전자 현미경 (field-emission scanning electron microscopy; FE-SEM, JEOL JSM-7500F)을 이용하여 분석하였다. 산화아연 나노물질의 결정 구조를 분석하기 위해, 연속 스캔 2θ 모드로 40 kV 전압 및 30 mA 전류에서 X-선 회절 (X-ray diffraction; XRD, Scintag-SDS 2000)을 수행하였고, 시료의 화학적 특성을 분석하기 위해, 푸리에 변환 적외선 분광학 (Fourier transform infrared (FT-IR) spectroscopy, Nicolet 6700)을 수행하였다. 라만 (raman) 측정은 Via 라만 현미경 시스템 (Renishaw, UK)의 Renishaw를 이용하여 수행하였다. 또한, DNA 추출을 위해, 상업용 QIAamp DNA/RNA 미니 키트 (Spin Colum)를 사용하였다. 원심 분리기 (CF-5, 100 내지 240 Vas, 50/60 Hz, 8 W), 볼텍서 (Vortex Mixer, T5AL, 60 Hz, 30 W, 250 V) 및 MSH-30d 교반-가열기는 Dortan Scientific Co에서 구매하였다. Ariamx 실시간 PCR 시스템 (Agilent technologies), Gene Amp PCR 시스템 9700 (LSK), 전기영동 장치 (Submerge-Mini), 전기영동 겔 기록장치 (Gel documentation system) 및 Nanodrop 2000 (PeqLab)은 핵산 검출 실험을 위해 사용하였다.The morphology of the sample was analyzed using field-emission scanning electron microscopy (FE-SEM, JEOL JSM-7500F). X-ray diffraction (XRD, Scintag-SDS 2000) was performed at 40 kV voltage and 30 mA current in a continuous scan 2θ mode to analyze the crystal structure of the zinc oxide nanomaterial, (Fourier transform infrared (FT-IR) spectroscopy, Nicolet 6700) was performed to analyze the fluorescence intensity. Raman measurements were performed using Renishaw, a Via Raman microscope system (Renishaw, UK). For the DNA extraction, a commercial QIAamp DNA / RNA mini kit (Spin Colum) was used. A centrifuge (CF-5, 100 to 240 Vas, 50/60 Hz, 8 W), Vortex Mixer (T5AL, 60 Hz, 30 W, 250 V) and MSH- . The Ariamx real-time PCR system (Agilent technologies), the Gene Amp PCR system 9700 (LSK), the Submerge-Mini, the gel documentation system and the Nanodrop 2000 (PeqLab) Respectively.
실시예 3 : 세포 및 병원균Example 3: Cells and Pathogens
실험에 사용된 세포는 대장암 세포주인 HCT116 (ATCC CCL-247)을 사용하였고, 병원균으로는 브루셀라균 (Brucella ovis, ATCC 25840), 대장균 (Escherichia coli; E coli, ATCC 25922), 황색포도상구균 (Staphylococcus aureus; S. aureus) 및 바실러스 세레우스균 (Bacillus cereus; B cereus)을 사용하였다.The cells used in the experiment were HCT116 (ATCC CCL-247), a colon cancer cell line. Brucella ovis (ATCC 25840), Escherichia coli (E coli, ATCC 25922), Staphylococcus aureus Staphylococcus aureus (S. aureus) and Bacillus cereus (B cereus) were used.
실시예 4 : 산화아연 나노스타의 합성 및 형태학 분석Example 4 Synthesis and Morphological Analysis of Zinc Oxide Nanostar
산화아연 나노스타 (Zno nanostar; Zno NS) 결정체는 알칼리성 배지에서 수열 법 (hydrothermal method)으로 합성하였다.Zno nanostar (Zno NS) crystals were synthesized by hydrothermal method in alkaline medium.
1 M의 질산아연 6수화물 1 ㎖과 1 M의 CTAB 1 ㎖를 Milli-Q 물 98 ㎖이 담긴 플라스크에 적정한 순서로 첨가하고, 90℃에서 50분 동안 가열하면서 교반 (500 rpm) 하였다. 이후, 안정한 교반 조건 하에서, 수산화 암모늄 용액 2 ㎖를 반응 혼합물에 적가하고, 유백색 콜로이드 용액이 생성될 때까지 몇 분간 교반하였다. 1 M zinc nitrate hexahydrate 1 ml and 1 M CTAB 1 ml were added to the flask containing 98 ml of Milli-Q water in the proper order and stirred (500 rpm) while heating at 90 占 폚 for 50 minutes. Then, under stable stirring conditions, 2 ml of ammonium hydroxide solution was added dropwise to the reaction mixture and stirred for several minutes until a milky colloidal solution was formed.
산화아연 나노스타의 균일한 생성을 위해, 반응 온도, 반응 시간 및 교반 속도를 조절하였다. 산화아연 나노스타의 생성을 조절하기 위해, 얼음 상자의 반응 플라스크를 바로 꺼내어 원심 분리하고, 실온에서 건조시킨 후, Milli-Q 물로 세척하였다. 모든 합성은 특별한 처리없이 수행하였고, 마지막으로 시료는 에탄올 (99 %)에 보관하였다.The reaction temperature, reaction time and stirring speed were controlled for uniform production of zinc oxide nanostars. To control the production of zinc oxide nanostars, the reaction flask of the ice box was immediately taken out and centrifuged, dried at room temperature and washed with Milli-Q water. All syntheses were carried out without any special treatment, and finally the samples were stored in ethanol (99%).
도 1을 참조하여 보면, (A) 산화아연 나노스타는 평균 200 내지 600 nm의 입자 크기를 가지며 복수 개의 뾰족한 돌기가 환상으로 배열된 입자 형태를 나타내었으며, (B) 산화아연 나노입자는 평균 20 내지 60 nm의 입자 크기를 가지며 불규칙한 구형의 입자 형태를 나타내는 것을 확인하였다.1, (A) zinc oxide nanostar has a particle size of 200 to 600 nm on average and shows a particle shape in which a plurality of sharp projections are annularly arranged, and (B) zinc oxide nanoparticles have an average of 20 ≪ / RTI > to 60 nm and exhibits an irregular spherical particle morphology.
또한, 도 2를 참조하여 보면, 산화아연 나노스타와 산화아연 나노입자의 구조가 서로 상이한 것을 라만 기법으로 확인하였다.Also, referring to FIG. 2, the structures of zinc oxide nanostars and zinc oxide nanoparticles are different from each other by the Raman technique.
따라서, 본 발명의 산화아연 나노스타는 종래의 산화아연 나노입자에 비해 큰 입자 크기를 가지며, 복수 개의 뾰족한 돌기가 환상으로 배열된 모양의 입자 형태를 가져 병원균의 세포막 및 핵을 더 용이하게 용해할 수 있음을 확인하였다. Therefore, the zinc oxide nanostructure of the present invention has a particle size larger than that of the conventional zinc oxide nanoparticles and has a particle shape in which a plurality of sharp projections are annularly arranged to more easily dissolve cell membranes and nuclei of pathogenic bacteria Respectively.
실시예 5 : 산화아연 나노스타의 용해능 검증Example 5: Solubility test of zinc oxide nanostar
상용화 키트는 산화아연 나노스타의 용해 특성을 비교 분석하는데 사용하였다. The commercialization kit was used for comparative analysis of dissolution characteristics of zinc oxide nanostars.
먼저, 시료 (브루셀라균)를 용해하기 위해, 시료 1.5 ㎖에 AL 완충액을 첨가하고, DNA 추출을 위해 56℃에서 10분 동안 배양한 후, RNA 추출을 위해 상온에서 1분간 배양하였다. 준비된 시료를 Qiagen 컬럼으로 옮기고, 세척 및 용출 단계를 수행하였다.First, in order to dissolve the sample (brucellosis), 1.5 ml of the sample was added with AL buffer, and incubated at 56 ° C for 10 minutes for DNA extraction, followed by incubation at room temperature for 1 minute for RNA extraction. The prepared sample was transferred to a Qiagen column, and washing and elution steps were performed.
반면, 본 발명에서는 상용화 AL 완충액 대신 산화아연 나노스타를 이용하여 대량으로 고품질의 핵산을 추출하기 위한 조건을 최적화하였고, 추출 방법을 단순화하였다. On the other hand, in the present invention, conditions for extracting high quality nucleic acid in a large amount by using zinc oxide nanostar instead of commercial AL buffer were optimized, and the extraction method was simplified.
추출된 핵산의 양 및 순도는 Ariamx 실시간 PCR 시스템, Gene Amp PCR 시스템 9700, 전기영동 장치, 전기영동 겔 기록장치 및 Nanodrop 2000으로 측정하였다.The amount and purity of the extracted nucleic acid was measured with Ariamx real-time PCR system, Gene Amp PCR system 9700, electrophoresis apparatus, electrophoresis gel recording apparatus and Nanodrop 2000.
도 3 및 하기 표 1은 브루셀라균의 핵산 추출에 있어서, 종래의 핵산 추출 키트 (Qiagen) + 용해 완충액 사용, 산화아연 나노입자 + 용해 완충액 미사용, 산화아연 나노스타 + 용해 완충액 미사용, 종래 핵산 추출 키트 (Qiagen) + 용해 완충액 미사용 조건으로 핵산을 추출하여 용해능을 비교한 결과로, 본 발명의 산화아연 나노스타의 핵산 추출이 가장 우수한 것을 확인하였다.FIG. 3 and the following Table 1 show the results of using the conventional nucleic acid extraction kit (Qiagen) + lysis buffer, zinc oxide nanoparticles + dissolution buffer unused, zinc oxide nanostar + dissolution buffer unused, conventional nucleic acid extraction kit As a result of comparing the solubility of the nucleic acid extracted under the unused condition of (Qiagen) + lysis buffer, it was confirmed that the nucleic acid extraction of the zinc oxide nanostar of the present invention was the most excellent.
Cq (△R)Cq (DELTA R) Tm Product 1 (-R'(T))Tm Product 1 (-R '(T)) 10^5 브루셀라균 (RT) 10 ^ 5 Brucella (RT)
23.7423.74 81.581.5 Qiagen + 용해 완충액Qiagen + lysis buffer
25.3825.38 81.581.5 산화아연 나노입자 (RT)Zinc oxide nanoparticles (RT)
21.521.5 81.581.5 산화아연 나노스타 (RT)Zinc oxide nanostar (RT)
25.4525.45 8181 QiagenQiagen
35.435.4 83.583.5 음성 대조군Negative control group
또한, 상기 방법과 동일하게, 브루셀라균, 대장균, 황색포도상구균 및 바실러스 세레우스균을 이용하여 산화아연 나노스타의 용해 특성을 비교 분석하였다. Also, dissolution characteristics of zinc oxide nanostar were comparatively analyzed using Brucella, Escherichia coli, Staphylococcus aureus and Bacillus cereus as in the above method.
그 결과, 도 4를 참조하여 보면, 상기 4종류의 균 모두에서 본 발명의 산화아연 나노스타가 종래의 핵산 추출 키트보다 용해능 및 핵산 추출이 우수한 것을 확인하였다.As a result, referring to FIG. 4, it was confirmed that the zinc oxide nanostar of the present invention was superior to the conventional nucleic acid extraction kit in solubility and nucleic acid extraction in all four kinds of bacteria.
또한, 도 5는 본 발명의 산화아연 나노스타가 종래의 핵산 추출 키트 (Qiagen) 컬럼에 접목하여 핵산 추출이 가능한지를 분석한 것이다. 하기 표 2와 같이 조건을 달리하여 핵산 추출 효율을 비교한 결과, 산화아연 나노스타는 가열 단계 없이 상온에서도 효율적인 핵산 추출이 가능함을 확인하였다.Further, FIG. 5 is an analysis of whether the zinc oxide nanostar of the present invention is capable of nucleic acid extraction by grafting into a conventional nucleic acid extraction kit (Qiagen) column. As a result of comparing nucleic acid extraction efficiencies with different conditions as shown in Table 2 below, it was confirmed that zinc oxide nanostar could efficiently extract nucleic acid even at room temperature without heating.
A1A1 A2A2 B1B1 B2B2 C1C1 C2C2
핵산 추출 조성물Nucleic acid extract composition QiagenQiagen QiagenQiagen Qiagen +산화아연 나노스타Qiagen + zinc oxide nanostar Qiagen +산화아연 나노스타Qiagen + zinc oxide nanostar QiagenQiagen QiagenQiagen
용해 완충액Dissolution buffer 사용use 사용use 미사용unused 미사용unused 미사용unused 미사용unused
온도 (℃)Temperature (℃) 5656 상온Room temperature 5656 상온Room temperature 5656 상온Room temperature
시간 (분)Time (minutes) 1010 1010 1010 1010 1010 1010
실시예 6 : 단일 튜브 핵산 추출을 위한 기능화된 규조토 및 광학 산화아연 나노스타의 용해능 검증Example 6: Validation of solubility of functionalized diatomite and optical zinc oxide nanostar for single tube nucleic acid extraction
산화아연 나노스타의 용해 특성을 추가적으로 분석하기 위해, 단일 튜브 핵산 추출 시스템을 사용하였으며, 이는 이전 논문 (Biosensors and Bioelectronics 99 (2018) 443-449.)을 참고하여 수행하였다. To further analyze the dissolution characteristics of zinc oxide nanostars, a single tube nucleic acid extraction system was used, which was performed with reference to a previous paper (Biosensors and Bioelectronics 99 (2018) 443-449.).
간략하게, (1) 규조토의 기공 구조는 다양한 분자를 수용할 수 있고, 벽에 있는 고밀도의 실라놀기 (silanol group)는 기능성 아민기와 연결하는데 유리하기 때문에, 세척한 규조토를 APTES로 기능화하였다. 상세한 실험 과정은 하기와 같다.Briefly, (1) the diatomite pore structure can accommodate a variety of molecules, and the high density silanol groups on the walls are beneficial in linking with functional amine groups, so the washed diatomite is functionalized with APTES. The detailed experimental procedure is as follows.
i) APTES 2 ㎖를 95% 에탄올 용액 100 ㎖에 적가하고 상온에서 400 rpm으로 3분 동안 교반하였다. i) 2 ml of APTES was added dropwise to 100 ml of a 95% ethanol solution and stirred at 400 rpm for 3 minutes at room temperature.
ii) 세척한 규조토 500 ㎎을 상기 용액에 600 rpm으로 4시간 동안 분산시켰다. ii) 500 mg of washed diatomite was dispersed in the solution at 600 rpm for 4 hours.
iii) 개질 후, 유리 실라놀을 제거하기 위해, 침전물을 에탄올로 2회 세척하였다. iii) After the reforming, the precipitate was washed twice with ethanol to remove the free silanol.
iv) 원심 분리하여 APTES로 기능화된 규조토를 획득하고, 진공 하에 상온에서 밤새 건조시켰다. iv) centrifuged to obtain diatomaceous earth functionalized with APTES and dried overnight at room temperature under vacuum.
v) 마지막으로 APTES로 기능화된 규조토를 증류수에 50 ㎎/㎖ 농도로 분산시켰다. v) Finally, diatomite functionalized with APTES was dispersed in distilled water at a concentration of 50 mg / ml.
APTES로 기능화된 규조토 및 순수한 규조토의 특성은 전계 방출 주사 전자 현미경, 푸리에 변환 적외선 분광학 및 라만 현미경 시스템으로 분석하였다.The characteristics of APTES - functionalized diatomite and pure diatomite were analyzed by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman microscopy system.
(2) 상기 개질에 기초하여, APTES로 기능화된 규조토 및 이미도에스터 가교제 (Dimethyl suberimidateㆍ2 HCl, DMS)를 준비된 생물학적 시료가 담긴 5 ㎖ 튜브에 첨가하여 핵산을 추출하였다. 상세한 실험 과정은 하기와 같다.(2) Based on the modification, nucleic acid was extracted by adding diatomaceous earth functionalized with APTES and an imidoester crosslinking agent (Dimethyl suberimidate. 2 HCl, DMS) to a 5 ml tube containing the prepared biological sample. The detailed experimental procedure is as follows.
i) 시료 용액 100 ㎕를 프로테아제 K 10 ㎕와 용해 완충액 (M-SDS 용해 완충액 또는 산화아연 나노스타 용액) 10 ㎕가 담긴 1.5 ㎖ 튜브에 첨가하고, 파이펫을 이용하여 섞어준 후, 상온에서 1분 동안 배양하였다. DNase 10 ㎕는 RNA 추출을 위해 첨가하였다.i) 100 μl of the sample solution was added to a 1.5 ml tube containing 10 μl of protease K and 10 μl of a lysis buffer (M-SDS lysis buffer or zinc oxide nanostar solution), mixed using a pipette, Min. ≪ / RTI > 10 [mu] l of DNase was added for RNA extraction.
ii) 이후, 규조토-APTES 2 ㎎/㎖를 첨가한 다음 100 ㎎/㎖ 농도의 DMS 용액 100 ㎕를 첨가하였다. ii) After adding 2 mg / ml of diatomaceous earth-APTES, 100 占 of a 100 mg / ml DMS solution was added.
iii) 혼합 후, M-SDS 용해를 위해 56℃에서 10분 동안 배양하거나 산화아연 나노스타 용해를 위해 파이펫으로 섞어주며 상온에서 2분 동안 배양하였다. iii) After mixing, the cells were incubated at 56 ° C for 10 minutes for M-SDS lysis or mixed with a pipette for zinc oxide nanostar dissolution and cultured at room temperature for 2 minutes.
iv) 배양 후, 상층액을 제거하고 침전물을 PBS 200 ㎕로 2회 세척하였다. iv) After incubation, the supernatant was removed and the precipitate was washed twice with 200 μl of PBS.
v) 마지막으로, 용출 완충액 (pH ~ 10.6 NaHCO3) 60 ㎕를 첨가하고 실온에서 1분 동안 배양하였다. v) and finally, the addition of elution buffer (pH ~ 10.6 NaHCO 3) 60 ㎕ and incubated for 1 min at room temperature.
vi ) 원심 분리한 후, 상등액을 1.5 ㎖ 튜브로 옮기고, 추출된 DNA 또는 RNA 는 -20 ℃에서 보관하였다. vi) After centrifugation, the supernatant was transferred to a 1.5-ml tube and the extracted DNA or RNA was stored at -20 ° C.
추출된 핵산의 양 및 순도는 Ariamx 실시간 PCR 시스템, Gene Amp PCR 시스템 9700, 전기영동 장치, 전기영동 겔 기록장치 및 Nanodrop 2000으로 측정하였다.The amount and purity of the extracted nucleic acid was measured with Ariamx real-time PCR system, Gene Amp PCR system 9700, electrophoresis apparatus, electrophoresis gel recording apparatus and Nanodrop 2000.
도 6은 본 발명의 산화아연 나노스타가 APTES로 기능화된 규조토 및 동형2기능성 이미도에스터 [디메틸 아디프이미데이트 (Dimethyl adipimidate; DMA), 디메틸 피멜리미데이트 (Dimethyl pimelimidate; DMP), 디메틸 수베르이미데이트 (Dimethyl suberimidate; DMS) 또는 디메틸 3.3'-디티오비스프로피온이미데이트 (Dimethyl 3,3'-dithiobispropionimidate; DTBP)]와 접목이 가능한지를 분석한 것이다. 6 shows that the zinc oxide nanostar of the present invention is a diatomaceous earth functionalized with APTES and a homobifunctional imidoester [DMA (Dimethyl adipimidate), Dimethyl pimelimidate (DMP) (DMS) or dimethyl 3,3'-dithiobispropionimidate (DTBP)], as shown in Table 1 below.
본 발명의 산화아연 나노스타를 APTES로 기능화된 규조토 및 DMS와 함께 접목시키고, 하기 표 3과 같이, 조건을 달리하여 핵산 추출 효율을 비교한 결과, 산화아연 나노스타는 가열 단계 없이 상온에서도 효율적인 핵산 추출이 가능함을 확인하였다. 또한, 용해 완충액을 사용하지 않기 때문에, 핵산에 손상을 적게 주어, 최종적인 PCR 등을 통한 검출 기법에 활용할 수 있을 것으로 사료된다.The zinc oxide nanostar of the present invention was grafted together with diatomite and DMS functionalized with APTES and the nucleic acid extraction efficiency was compared according to the conditions as shown in Table 3. As a result, Extraction was possible. In addition, since it does not use a lysis buffer, it can be applied to the detection technique through the final PCR by giving less damage to the nucleic acid.
QiagenQiagen A1A1 A2A2 A3A3 B1B1 B2B2 B3B3
용해 완충액Dissolution buffer 사용use 사용use 산화아연 나노스타Zinc oxide nanostar 미사용unused 사용use 산화아연 나노스타Zinc oxide nanostar 미사용unused
온도(℃)Temperature (℃) 5656 5656 5656 5656 상온Room temperature 상온Room temperature 상온Room temperature
시간(분)Time (minutes) 1010 1010 1010 1010 22 22 22
또한, 도 7 및 하기 표 4를 참조하여 보면, 입자 크기에 따른 핵산 추출 효율을 비교한 것으로, 350 내지 900 nm의 입자 크기를 가지는 산화아연 나노스타의 핵산 추출 효율이 가장 우수하였으며, 특히 500 nm의 입자 크기를 가지는 산화아연 나노스타가 최적의 조건임을 확인하였다.In addition, referring to FIG. 7 and Table 4, the extraction efficiency of the nucleic acid according to the particle size was compared, and the extraction efficiency of the nucleic acid of the zinc oxide nanostar having the particle size of 350 to 900 nm was the best, Zinc oxide nanostar with particle size of.
Cq (△R)Cq (DELTA R) Tm Product 1 (-R'(T))Tm Product 1 (-R '(T)) HCT 116 10^4/ml 100 ㎕ (60 ㎕ DNA)HCT 116 10 ^ 4 / ml 100 [mu] l (60 [mu] l DNA)
26.6326.63 8585 ∼20 nm 산화아연 나노입자~ 20 nm zinc oxide nanoparticles
26.226.2 8585 ∼100 nm 산화아연 나노스타~ 100 nm zinc oxide nanostar
25.7525.75 9090 ∼350 nm 산화아연 나노스타~ 350 nm zinc oxide nanostar
25.2125.21 85.585.5 ∼500 nm 산화아연 나노스타~ 500 nm zinc oxide nanostar
25.2525.25 85.585.5 ∼900 nm 산화아연 나노스타~ 900 nm zinc oxide nanostar
27.2127.21 8585 ∼1000 nm 산화아연 나노스타~ 1000 nm zinc oxide nanostar
30.7830.78 8585 음성 대조군Negative control group
실시예 7 : 산화아연 나노스타를 이용한 핵산 추출 방법Example 7: Nucleic acid extraction method using zinc oxide nanostar
7-1. 산화아연 나노스타의 합성7-1. Synthesis of zinc oxide nanostar
산화아연 나노스타는 알칼리성 배지에서 수열 법으로 합성하였다. Zinc oxide nanostar was synthesized by hydrothermal method on alkaline medium.
i) 1 M의 질산아연 6수화물 1 ㎖과 1M의 CTAB 1 ㎖를 Milli-Q 물 98 ㎖이 담긴 플라스크에 적정한 순서로 첨가하고, 90℃에서 50분 동안 가열하면서 교반 (500 rpm) 하였다. i) 1 ml of 1 M zinc nitrate hexahydrate and 1 ml of 1 M CTAB were added to a flask containing 98 ml of Milli-Q water in the proper order and stirred (500 rpm) while heating at 90 占 폚 for 50 minutes.
ii) 이후, 안정한 교반 조건 하에서, 수산화 암모늄 용액 2 ㎖를 반응 혼합물에 적가하고, 유백색 콜로이드 용액이 생성될 때까지 몇 분간 교반하였다. ii) Subsequently, under stable stirring conditions, 2 ml of ammonium hydroxide solution was added dropwise to the reaction mixture and stirred for several minutes until a milky colloidal solution was formed.
산화아연 나노스타의 균일한 생성을 위해, 반응 온도, 반응 시간 및 교반 속도를 조절하였다. The reaction temperature, reaction time and stirring speed were controlled for uniform production of zinc oxide nanostars.
iii) 산화아연 나노스타의 생성을 조절하기 위해, 얼음 상자의 반응 플라스크를 바로 꺼내어 원심 분리하고, 실온에서 건조시킨 후, Milli-Q 물로 세척하였다. 모든 합성은 특별한 처리없이 수행하였고, 마지막으로 시료는 에탄올 (99 %)에 보관하였다.iii) To control the production of zinc oxide nanostar, the reaction flask of the ice box was immediately taken out, centrifuged, dried at room temperature and washed with Milli-Q water. All syntheses were carried out without any special treatment, and finally the samples were stored in ethanol (99%).
7-2. 산화아연 나노스타 및 Qiagen kit를 이용한 핵산 추출 방법7-2. Nucleic acid extraction method using zinc oxide nanostar and Qiagen kit
i) 산화아연 나노스타 용액을 브루셀라균 (CFU: 10^ 5/㎖) 100 ㎕가 담겨 있는 1.5 ㎖ 튜브에 첨가하고, 파이펫을 이용하여 상온에서 10분 이내로 부드럽게 섞어주었다.i) The zinc oxide nanostar solution was added to a 1.5 ml tube containing 100 占 퐇 of brucellosis (CFU: 10 ^ 5 / ml), and gently mixed with a pipette within 10 minutes at room temperature.
ii) 이어서, 준비된 시료를 Qiagen 컬럼에 옮기고, 세척한 후 DNA를 Qiagen 용출 완충액 60 ㎕으로 용출시켰다.ii) Next, the prepared sample was transferred to a Qiagen column, washed, and then the DNA was eluted with 60 Q of Qiagen elution buffer.
7-3. 산화아연 나노스타, 규조토-APTES 및 이미도에스터를 이용한 핵산 추출 방법7-3. Nucleic acid extraction method using zinc oxide nanostar, diatomaceous earth-APTES and imidoesters
i) 브루셀라균 100 ㎕를 프로테아제 K 10 ㎕와 용해 완충액 (M-SDS 용해 완충액 또는 산화아연 나노스타 용액) 10 ㎕가 담긴 1.5 ㎖ 튜브에 첨가하고, 파이펫을 이용하여 섞어준 후, 상온에서 1분 동안 배양하였다. DNase 10 ㎕는 RNA 추출을 위해 첨가하였다.i) 100 μl of Brucella strain was added to a 1.5 ml tube containing 10 μl of protease K and 10 μl of a lysis buffer (M-SDS lysis buffer or zinc oxide nanostar solution), mixed using a pipette, Min. ≪ / RTI > 10 [mu] l of DNase was added for RNA extraction.
ii) 이후, 규조토-APTES 2 ㎎/㎖ (50 ㎎/㎖, 40 ㎕)를 첨가한 다음 100 ㎎/㎖ 농도의 DMS 용액 100 ㎕를 첨가하였다. 혼합 후, M-SDS 용해를 위해 56℃에서 10분 동안 배양하거나 산화아연 나노스타 용해를 위해 파이펫으로 섞어주며 상온에서 2분 동안 배양하였다. ii) Thereafter, diatomite-APTES 2 mg / ml (50 mg / ml, 40 [mu] l) was added and then 100 [mu] l of a 100 mg / ml DMS solution was added. After mixing, the cells were incubated at 56 ° C for 10 minutes for M-SDS lysis, or mixed with a pipette for zinc oxide nanostar dissolution and cultured at room temperature for 2 minutes.
iii) 배양 후, 상층액을 제거하고 침전물을 PBS 200 ㎕로 2회 세척하였다. iii) After incubation, the supernatant was removed and the precipitate was washed twice with 200 [mu] l PBS.
iv) 마지막으로, 용출 완충액 (pH ~ 10.6 NaHCO3) 60 ㎕를 첨가하고 실온에서 1분 동안 배양하였다. iv) and finally, the addition of an elution buffer solution (pH ~ 10.6 NaHCO 3) 60 ㎕ and incubated for 1 min at room temperature.
7-4. DNA 추출 효율 분석을 위한 실시간 PCR7-4. Real-time PCR for DNA extraction efficiency analysis
템플렛 (NA) 5 ㎕를 이용하여 96 웰 플레이트 (96 Well Plate)에서 수행하였다.Was performed in a 96 well plate (96 Well Plate) using 5 [mu] l of template (NA).
i) 멀티 채널 파이펫을 이용하여 96 웰 플레이트의 각 웰에 master mix 20 ㎕를 분주하였다.i) 20 μl of master mix was dispensed into each well of a 96-well plate using a multi-channel pipet.
ii) 상기 master mix에 템플렛 (NA) 5 ㎕를 넣고 파이펫으로 잘 섞어주었다.ii) Add 5 μl of template (NA) to the master mix and mix well with a pipette.
iii) 교차 오염을 방지하고 뚜껑의 표면을 얼룩지게하지 않도록 주의하면서 웰에 광학 스트립 뚜껑을 놓았다.iii) The optical strip lid was placed in the well, being careful not to cross-contaminate and stain the surface of the lid.
iv) 96 웰 플레이트를 2000 rpm으로 1분간 원심 분리하였다.iv) The 96-well plate was centrifuged at 2000 rpm for 1 minute.
v) qPCR 기계에 96 웰 플레이트를 올바른 방향으로 놓고 하기 조건으로 실시간 PCR을 수행하였다.v) Real-time PCR was performed under the following conditions by placing a 96-well plate in the correct orientation on a qPCR machine.
1 단계 : 95℃, 10분   Step 1: 95 ° C, 10 min
2 단계 : 95℃, 10초; 60℃, 20초; 72℃, 20초 (40 내지 45 사이클)   Step 2: 95 캜, 10 seconds; 60 캜, 20 seconds; 72 ° C, 20 seconds (40 to 45 cycles)
3 단계 : 72℃, 10분   Step 3: 72 ° C, 10 min
vi) 데이터 분석을 수행하였다.vi) Data analysis was performed.
실시예 8: 진핵 세포를 이용한 산화아연 나노스타의 용해능 검증Example 8: Solubility test of zinc oxide nanostar using eukaryotic cells
진핵 세포에서 산화아연 나노스타의 유용성을 검증하기 위해, 대장암 세포주인 HCT116 세포를 1~104 세포/100 ㎕의 농도가 되도록 연속 희석 (serial dilution) 한 후, 산화아연 나노스타, 산화아연 나노입자 및 종래 핵산 추출 키트 (Qiagen)를 이용하여 DNA 및 RNA를 추출 효율을 분석하였다.In order to verify the usefulness of zinc oxide nanostars in eukaryotic cells, HCT116 cells, a colon cancer cell line, were serially diluted to a concentration of 1 to 10 4 cells / 100 μl, and then zinc oxide nanostar, zinc oxide nano- And extraction efficiency of DNA and RNA was analyzed using a conventional nucleic acid extraction kit (Qiagen).
그 결과, 도 8을 참조하여 보면, 최적화된 조건으로 본 발명의 산화아연 나노스타를 이용한 경우, DNA 및 RNA가 모두 1 세포/㎖까지 검출되는 것을 확인할 수 있었다. 산화아연 나노스타의 검출 한계는 종래 핵산 추출 키트보다 DNA의 경우 100배, RNA의 경우 10배 우수하였다.As a result, referring to FIG. 8, it was confirmed that DNA and RNA were detected up to 1 cell / ml when the zinc oxide nanostructure of the present invention was used under optimized conditions. The detection limits of zinc oxide nanostars were 100 times higher for DNA and 10 times higher for RNA than conventional nucleic acid extraction kits.
또한, 산화아연 나노스타와 산화아연 나노입자의 세포 용해능을 비교한 결과, 산화아연 나노스타가 산화아연 나노입자 (20 nm) 보다 DNA 및 RNA를 1~1.5 사이클 더 빨리 검출하는 것을 확인할 수 있었다.In addition, comparing the cell solubility of zinc oxide nanostars and zinc oxide nanoparticles, it was confirmed that zinc oxide nanostars were able to detect DNA and RNA 1 to 1.5 cycles earlier than zinc oxide nanoparticles (20 nm) .
더불어, 산화아연 나노스타는 종래 핵산 추출 키트 보다 고농도 및 고순도로 핵산을 추출하였으며, 심지어 적은 수의 세포에서도 RNA를 고농도 및 고순도(101 세포/100 ㎕에서 3.5 ± 2.3 ng/㎕ 및 1.73 ± 0.26)로 추출하였다.In addition, zinc oxide nanostar extracts nucleic acids at a higher concentration and purity than conventional nucleic acid extraction kits, and even in a small number of cells, high concentrations and high purity (3.5 ± 2.3 ng / μl and 1.73 ± 0.26 at 10 1 cells / ).
산화아연 나노스타는 다양한 유형의 세포에서 용해 완충액의 사용 없이 상온에서 신속한 세포 용해를 가능하게 하는 바, 임상 환경에서 진단 시스템으로 유용하게 활용될 수 있다.Zinc oxide nanostars enable rapid cell lysis at room temperature without the use of lysis buffers in various types of cells, making them useful as diagnostic systems in clinical settings.
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

Claims (17)

  1. 산화아연 나노스타를 포함하는 병원체 용균용 조성물.A composition for a pathogen comprising a zinc oxide nanostar.
  2. 제 1항에 있어서, 상기 산화아연 나노스타는 200 내지 900 nm의 평균 입경을 가지는 것을 특징으로 하는 병원체 용균용 조성물.The antifungal composition according to claim 1, wherein the zinc oxide nanostar has an average particle diameter of 200 to 900 nm.
  3. 제 1항에 있어서, 상기 병원체는 미생물인 것을 특징으로 하는 병원체 용균용 조성물. The antifungal composition according to claim 1, wherein the pathogen is a microorganism.
  4. 제 3항에 있어서, 상기 미생물은 바이러스, 세균, 진균, 원충, 리케차 또는 스피로헤타인 것을 특징으로 하는 병원체 용균용 조성물.[Claim 5] The composition according to claim 3, wherein the microorganism is a virus, a bacterium, a fungus, a protozoa, a ricketta or a spiroheta.
  5. 제 1항 내지 제 4항 중 어느 한 항의 조성물을 포함하는 병원체 용균용 키트.8. A kit for a pathogen, comprising the composition of any one of claims 1 to 4.
  6. 산화아연 나노스타를 병원체가 함유된 시료에 접촉시키는 단계를 포함하는 병원체 용균 방법.Contacting the zinc oxide nanostar with a sample containing the pathogen.
  7. 제 6항에 있어서, 상기 병원체가 함유된 시료는 병원체에 감염된 것으로 의심되는 객체의 분변, 소변, 눈물, 타액, 피부의 외부 분비물, 호흡관의 외부 분비물, 장관의 외부 분비물, 소화관의 외부 분비물, 혈장, 혈청, 혈액, 척수액, 림프액, 체액 및 조직으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 병원체 용균 방법.7. The method according to claim 6, wherein the sample containing the pathogen is selected from the group consisting of feces, urine, tears, saliva, external secretion of the skin, external secretion of the respiratory tract, external secretion of the intestinal tract, Wherein the method is any one selected from the group consisting of plasma, serum, blood, spinal fluid, lymph fluid, body fluids, and tissues.
  8. 제 6항에 있어서, 상기 병원체는 미생물인 것을 특징으로 하는 병원체 용균 방법.[Claim 7] The method according to claim 6, wherein the pathogen is a microorganism.
  9. 제 8항에 있어서, 상기 미생물은 바이러스, 세균, 진균, 원충, 리케차 또는 스피로헤타인 것을 특징으로 하는 병원체 용균 방법.9. The method according to claim 8, wherein the microorganism is a virus, a bacterium, a fungus, an insect, a ricketta or a spiroheta.
  10. 산화아연 나노스타를 포함하는 핵산 추출용 조성물.A composition for extracting nucleic acid comprising zinc oxide nanostar.
  11. 제 10항에 있어서, 상기 산화아연 나노스타는 200 내지 900 nm의 평균 입경을 가지는 것을 특징으로 하는 핵산 추출용 조성물.[Claim 11] The composition for extracting nucleic acid according to claim 10, wherein the zinc oxide nanostar has an average particle diameter of 200 to 900 nm.
  12. 제 10항에 있어서, 상기 핵산은 DNA 또는 RNA인 것을 특징으로 하는 핵산 추출용 조성물.11. The nucleic acid extracting composition according to claim 10, wherein the nucleic acid is DNA or RNA.
  13. 제 10항 내지 제 12항 중 어느 한 항의 조성물을 포함하는 핵산 추출용 키트.A kit for nucleic acid extraction comprising the composition of any one of claims 10 to 12.
  14. 산화아연 나노스타를 핵산 시료에 첨가하고 반응시켜 혼합물을 제조하는 제 1단계; 및A first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting to prepare a mixture; And
    상기 혼합물로부터 핵산을 추출하는 제 2단계;를 포함하는 핵산 추출 방법.And a second step of extracting nucleic acid from the mixture.
  15. 산화아연 나노스타를 핵산 시료에 첨가하고 반응시켜 혼합물을 제조하는 제 1단계;A first step of adding a zinc oxide nanostar to a nucleic acid sample and reacting to prepare a mixture;
    상기 혼합물에 실란 화합물로 개질된 규조토를 첨가하고, 디메틸 아디프이미데이트(dimethyl adipimidate; DMA), 디메틸 피멜리미데이트(dimethyl pimelimidate; DMP), 디메틸 수베르이미데이트(Dimethyl suberimidate; DMS) 및 디메틸 3,3'-디티오비스프로피온이미데이트(Dimethyl 3,3'-dithiobispropionimidate; DTBP)로 이루어진 군에서 선택된 어느 하나 이상을 첨가하여 반응 혼합물을 제조하는 제 2단계; 및 Adding diatomite modified with a silane compound to the mixture and adding the mixture to a mixture of dimethyl adipimidate (DMA), dimethylpimelimidate (DMP), dimethyl suberimidate (DMS) and dimethyl A second step of preparing a reaction mixture by adding at least one selected from the group consisting of 3,3'-dithiobispropionimidate (DTBP), 3,3'-dithiobispropionimidate (DTBP); And
    상기 반응 혼합물로부터 핵산을 추출하는 제 3단계;를 포함하는 핵산 추출 방법.And a third step of extracting nucleic acid from the reaction mixture.
  16. 제 15항에 있어서, 상기 실란 화합물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 핵산 추출 방법:The nucleic acid extracting method according to claim 15, wherein the silane compound is a compound represented by the following formula (1)
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018012339-appb-I000002
    Figure PCTKR2018012339-appb-I000002
    상기 식에서, R1 내지 R3는 각각 같거나 다를 수 있으며, C1 내지 C4의 알킬 또는 C1 내지 C4의 알콕시 중 어느 하나이고, R4는 아미노(C1 내지 C10)알킬, 3-(2아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬 또는 3-[2-(2-아미노(C1 내지 C4)알킬아미노)(C1 내지 C4)알킬아미노](C1 내지 C4)알킬 중 어느 하나임.Wherein R 1 to R 3 may be the same or different and are any one of C 1 to C 4 alkyl or C 1 to C 4 alkoxy, R 4 is amino (C 1 to C 10) alkyl, 3- (2 amino (C1 to C4) alkylamino] (C1 to C4) alkyl or 3- [2- (2-amino (C1 to C4) alkylamino) (C1 to C4) alkylamino] (C1 to C4) alkyl.
  17. 제 16항에 있어서, 상기 실란 화합물은 (3-아미노프로필)트리에톡시실란((3-aminopropyl)triethoxysilane; APTES), (3-아미노프로필)트리메톡시실란((3-aminopropyl)trimethoxysilane), (1-아미노메틸)트리에톡시실란((1-aminomethyl)triethoxysilane), (2-아미노에틸)트리에톡시실란((2-aminoethyl)triethoxysilane), (4-아미노부틸)트리에톡시실란((4-aminobutyl)triethoxysilane), (5-아미노펜틸)트리에톡시실란((5-aminopentyl)triethoxysilane), (6-아미노헥실)트리에톡시실란((6-aminohexyl)triethoxysilane), 3-아미노프로필(디에톡시)메틸실란(3-aminopropyl(diethoxy)methylsilane; APDMS), N-[3-(트리메톡시실릴)프로필]에틸렌디아민(N-[3-(trimethoxysilyl)propyl]ethylenediamine), N-[3-(트리메톡시실릴)프로필]디에틸렌트리아민(N-[3-(trimethoxysilyl)propyl]diethylenetriamine), [3-(2-아미노에틸아미노)프로필]트리메톡시실란([3-(2-aminoethylamino)propyl]trimethoxysilane; AEAPTMS) 및 3-[(트리메톡시실릴)프로필]디에틸렌트리아민(3-[(trimethoxysilyl)propyl]diethylenetriamine; TMPTA)로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 핵산 추출 방법.The method of claim 16, wherein the silane compound is selected from the group consisting of (3-aminopropyl) triethoxysilane (APTES), (3-aminopropyl) trimethoxysilane, (1-aminomethyl) triethoxysilane, (2-aminoethyl) triethoxysilane, (4-aminobutyl) triethoxysilane (( 4-aminobutyl) triethoxysilane, (5-aminopentyl) triethoxysilane, (6-aminohexyl) triethoxysilane, 3-aminopropyl 3-aminopropyl (diethoxy) methylsilane (APDMS), N- [3- (trimethoxysilyl) propyl] ethylenediamine, N- [3 Propyl] diethylenetriamine), [3- (2-aminoethylamino) propyl] trimethoxysilane ([3- (2- aminoethylamino) propyl] trimethoxysilane; AEAPTMS) and 3 - [(trimethoxysilyl) propyl] diethylenetriamine (3 - [(trimethoxysilyl) propyl] diethylenetriamine].
PCT/KR2018/012339 2017-10-30 2018-10-18 Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar WO2019088527A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/759,366 US11603526B2 (en) 2017-10-30 2018-10-18 Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar
EP18874738.0A EP3705581A4 (en) 2017-10-30 2018-10-18 Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0142590 2017-10-30
KR20170142590 2017-10-30
KR1020180124184A KR102090877B1 (en) 2017-10-30 2018-10-18 Method for pathogen lysis and nucleic acid extract using zinc oxide nanostar
KR10-2018-0124184 2018-10-18

Publications (2)

Publication Number Publication Date
WO2019088527A2 true WO2019088527A2 (en) 2019-05-09
WO2019088527A3 WO2019088527A3 (en) 2019-07-04

Family

ID=66331463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012339 WO2019088527A2 (en) 2017-10-30 2018-10-18 Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar

Country Status (1)

Country Link
WO (1) WO2019088527A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988456A (en) * 2022-06-21 2022-09-02 深圳市尚维高科有限公司 Zinc oxide composite particle, preparation method and application thereof in virus splitting in nucleic acid detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078399A2 (en) * 2008-12-31 2010-07-08 3M Innovative Properties Company Sampling devices and methods for concentrating microorganisms
SG11201504388XA (en) * 2012-12-13 2015-07-30 Agency Science Tech & Res Label-free methods for isolation and analysis of nucleic acids on solid phase device
KR20150142492A (en) * 2014-06-12 2015-12-22 호서대학교 산학협력단 A composition for treating allergic inflammatory diseases including zinc oxide nanoparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOSENSORS AND BIOELECTRONICS, vol. 99, 2018, pages 443 - 449
See also references of EP3705581A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988456A (en) * 2022-06-21 2022-09-02 深圳市尚维高科有限公司 Zinc oxide composite particle, preparation method and application thereof in virus splitting in nucleic acid detection
CN114988456B (en) * 2022-06-21 2023-10-03 深圳市尚维高科有限公司 Zinc oxide composite particle, preparation method and application thereof in virus splitting in nucleic acid detection

Also Published As

Publication number Publication date
WO2019088527A3 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
KR102090877B1 (en) Method for pathogen lysis and nucleic acid extract using zinc oxide nanostar
CN112980830B (en) Kit for extracting nucleic acid by magnetic bead method, magnetic bead and preparation method thereof
JP5651011B2 (en) Polynucleotide capture material and method of use thereof
KR20080005213A (en) Methods of enhancing isolation of rna from biological samples
JP2008513007A (en) Methods for isolating nucleic acids from biological and cellular materials
WO2019088527A2 (en) Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar
KR20090003205A (en) Methods of extracting rna
WO2010137903A2 (en) Method for screening for a drug candidate substance which inhibits target protein-protein interaction for developing a novel concept drug
KR20090003219A (en) Methods of extracting necleic acids
WO2015199423A1 (en) Method for isolating nucleic acid using magnetic particle
WO2018131826A1 (en) Method and composition for isolating plasmid dna using amine-coated magnetic nanoparticle
JPWO2016152763A1 (en) Nucleic acid recovery method
WO2012002597A1 (en) Diagnostic primer for the hepatitis b virus, probe, kit including same, and method for diagnosing the hepatitis b virus using the kit
WO2009102171A2 (en) Silica magnetic particles having a spherical form and a process for preparing the same
WO2022102885A1 (en) Technique for diagnosing stress associated with atopic dermatitis using exosome-derived mirnas
WO2022097984A1 (en) Method for producing extracellular vesicles derived from three-dimensional spheroid-type cell aggregate
WO2018169307A1 (en) Microbial concentration method using diatomite and nucleic acid extraction method
WO2021141369A1 (en) Single-stranded dna probe-based rna detection method
WO2018048194A1 (en) Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence
WO2021221368A1 (en) Method for filtration of cell-derived vesicle
WO2019088429A1 (en) Method for extracting liquid biopsy-derived biomaterial by using homobifunctional imidoester
WO2011142646A2 (en) Method for detecting hpv (human papilloma virus) and genotype thereof
EP3368690A1 (en) A method for prenatal diagnosis using digital pcr.
WO2017051939A1 (en) Method for extracting and amplifying nucleic acid using magnetic particles
WO2019050222A1 (en) Method for simply and efficiently isolating and purifying chemically labeled oligonucleotides by means of ph control

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874738

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018874738

Country of ref document: EP

Effective date: 20200602