WO2018131826A1 - Method and composition for isolating plasmid dna using amine-coated magnetic nanoparticle - Google Patents

Method and composition for isolating plasmid dna using amine-coated magnetic nanoparticle Download PDF

Info

Publication number
WO2018131826A1
WO2018131826A1 PCT/KR2017/015682 KR2017015682W WO2018131826A1 WO 2018131826 A1 WO2018131826 A1 WO 2018131826A1 KR 2017015682 W KR2017015682 W KR 2017015682W WO 2018131826 A1 WO2018131826 A1 WO 2018131826A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
plasmid dna
coated magnetic
magnetic nanoparticle
insoluble aggregates
Prior art date
Application number
PCT/KR2017/015682
Other languages
French (fr)
Korean (ko)
Inventor
문성은
오명석
안국환
Original Assignee
주식회사 바이오팩트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오팩트 filed Critical 주식회사 바이오팩트
Publication of WO2018131826A1 publication Critical patent/WO2018131826A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the present invention relates to amine-coated magnetic nanoparticles for plasmid DNA separation, and more specifically, to insoluble aggregates such as protein-denatured aggregates, bacterial genomic DNA and cell debris produced during nucleic acid purification. Rather than removing by using a magnetic field using a water-soluble amine-coated magnetic nanoparticles (hydrophilic amine-coated magnetic nanoparticles), the plasmid DNA as a nucleic acid binding magnetic particles to the nucleic acid purification using a magnetic particle separation device
  • the present invention relates to a composition and a method thereof.
  • Plasmid DNA is cloned independently in the cell and possesses a specific antibiotic resistance gene, which can be selected after introduction into a host, thereby inducing cloning, library construction and screening, protein expression, genetic modification and manipulation, and specific gene expression. It is widely used in various fields such as the production of genetically modified organisms (GMO).
  • GMO genetically modified organisms
  • Bacterial plasmid DNA purification generally involves four steps: (a) cell suspension; (b) cell lysis; (c) neutralization and binding; And (d) washing and elution.
  • the most necessary solution is denatured protein aggregates, cell debris and bacterial genomic DNA generated during the neutralization step after cell lysis.
  • Removal of insoluble aggregates such as bacterial genomic DNA or chromosomal DNA.
  • a method for removing insoluble aggregates a method using a filter (glass fiber filter, nylon filter, silica, etc.) or a method using a high-speed centrifugation method is used to remove the insoluble aggregates, thus simplifying the conventional plasmid DNA purification process. And methods for solving the process are needed to improve the efficiency.
  • Korean Patent No. 10-1193765 Ultra High Speed Nucleic Acid Purification Method discloses a non-powerless nucleic acid purification method using a paper chromatography method, but has a limitation of sample volume, automation, and mass production.
  • US Patent Publication No. 5665554 Magnetic bead precipitation method discloses a method of removing aggregates using ferrite magnetic particles (FMP), but FMP itself is not effective in removing aggregates, and the surface is easily oxidized in the air, so storage stability This has a falling problem.
  • FMP ferrite magnetic particles
  • Another object of the present invention to provide a composition for separating plasmid DNA in cells.
  • Another object of the present invention is to provide a method for removing insoluble aggregates.
  • Another object of the present invention is to provide a method for separating plasmid DNA in cells.
  • the present invention provides an amine-coated magnetic nanoparticle for removing an insoluble aggregate for intracellular plasmid DNA separation, wherein the amine-coated magnetic nanoparticle is a functionalized amine group on the surface of the magnetic nanoparticle.
  • An amine-coated magnetic nanoparticle is provided.
  • the inventors have developed a material compatible with existing commercially available plasmid DNA purification buffers while efficiently removing insoluble aggregates such as protein denatured aggregates, genomic DNA and cell debris generated during the purification of plasmid DNA. I tried to As a result, it was confirmed that when the amine-coated magnetic nanoparticles functionalized with the amine group were added to the plasmid DNA purification buffer, the insoluble aggregates could be effectively removed to separate the plasmid DNA.
  • the present invention adds the amine-coated magnetic nanoparticles of the present invention to a buffer for plasmid DNA separation.
  • the main feature is the removal of the insoluble aggregates through a magnetic field.
  • magnetic refers to the magnetic properties represented by a material. All materials interact with the magnetic field to generate an attractive or repulsive force. That is, when a magnetic field is applied to a material, it is magnetized, and the magnetic material is classified into a ferromagnetic material, a paramagnetic material, a diamagnetic material, a ferrimagnetic material, and the like.
  • nanoparticle refers to a structure or material having a size in nanometers (nm).
  • the nanometer size is a micron meter ( 10-6 ) scaled down to a thousandth of a millimeter.
  • the size of the material When the size of the material is reduced to nanometers, it exhibits a variety of unique physical, chemical, mechanical and electronic properties.
  • the nanoparticles generally have an average size of 1 to 1000 nm, for example 1 to 10 nm, 10 to 50 nm, 50 to 100 nm, 100 to 250 nm, 250 to 500 nm, 500 to 750 nm, or 50 To 1000 nm.
  • the nanoparticles of the present invention may be prepared from 50 to 500 nm, 100 to 400 nm, 100 to 300 nm or 100 to 200 nm.
  • the size of the nanoparticles is 500 nm or more, the settling speed is increased, causing inconvenience in use, and dispersing agents such as glucose, sucrose, glycerolol, polyethyleneamine, and bitine should be used to prevent sedimentation.
  • the dispersant is not necessary at the nanoparticle size of 250 nm or less, and the magnetic property is weak at 50 nm or less, which leads to a long separation time in the magnetic field. not.
  • magnetic nanoparticle refers to a nanometer-sized structure or material that is magnetic.
  • the magnetic nanoparticles may be prepared by solution synthesis, co-precipitation, sol-gel method, high energy pulverization, hydrothermal synthesis, microemulsion synthesis, pyrolysis or sonic chemical synthesis, but is not limited thereto.
  • the magnetic nanoparticles may be selected from one or two or more selected from the group consisting of iron, cobalt, nickel, oxides thereof and alloys thereof, but is not limited thereto.
  • the magnetic nanoparticles of the present invention are magnetic nanoparticles made of iron.
  • amine-coated magnetic nanoparticle refers to magnetic nanoparticles in which an amine group is functionalized on a surface.
  • Functionalization of the amine group is amine additives such as aminopropyltriethoxysilane (APTES), polylysine, glycidoxypropyltrimethoxysilane (GPTS), triethoxy
  • APTES aminopropyltriethoxysilane
  • GPTS glycidoxypropyltrimethoxysilane
  • the treatment may be carried out by treating one or two or more selected from the group consisting of silane unethcanoic acid (TETU) and 4-trimethoxysilyl benzaldehyde.
  • TETU silane unethcanoic acid
  • 4-trimethoxysilyl benzaldehyde 4-trimethoxysilyl benzaldehyde.
  • the term 'functionalization' means modifying the surface to impart physical, chemical or biological properties to the surface of the material.
  • the term 'functionalization of an amine group' means to impart an amine group by functionalizing the surface of the magnetic nanoparticles with a compound having an amine group.
  • the amine-coated magnetic nanoparticles may be prepared to functionalize an amine group by treating an amine additive on the surface of the magnetic nanoparticles, or finally to functionalize the amine group on the surface of the magnetic nanoparticles by treating the final coating with the amine additive on the magnetic nanoparticles.
  • the amine-coated magnetic nanoparticles of the invention are prepared by functionalizing amine groups on silica coated magnetic nanoparticles.
  • insoluble aggregate refers to protein aggregates, cell debris, genomic DNA, and the like, produced during the isolation of plasmid DNA.
  • the insoluble aggregate is a concept encompassing an inclusion body.
  • Removal of insoluble aggregates using the amine-coated magnetic nanoparticles of the invention can be performed on any cell comprising plasmid DNA known in the art.
  • said cells are bacteria or yeast.
  • the amine-coated magnetic nanoparticles of the present invention can be treated in a buffer for plasmid DNA isolation to remove insoluble aggregates.
  • the method for separating the plasmid DNA can be divided into the following four steps. Preparing a cell suspension; Lysis, protein aggregation and DNA denaturation of cells 2; Neutralizing cellular DNA; And obtaining plasmid DNA 4.
  • the surfactant contained in the buffer of step 2 removes the phospholipids and proteins contained in the cell membranes, and induces the release of cellular components by bursting the cell membranes.
  • NaOH also denatures plasmid DNA, genomic DNA, and proteins.
  • Potassium acetate contained in the buffer of step 3 regenerates the denatured plasmid DNA into double strands, and more complex genomic DNA is not double stranded and forms insoluble DNA complex with the protein.
  • Buffer 1 used in step 1 may include 1 to 50 mM of Tris-Cl, 1 to 10 mM of ethylenediaminetetraacetic acid (EDTA) and 0.01 to 0.2 mg / ml of RNaseA.
  • the concentration of Tris-Cl is 10 to 50 mM, 20 to 50 mM, 30 to 50 mM or 40 to 50 mM
  • the concentration of EDTA is 2 to 10 mM, 4 to 10 mM, 6 to 10 mM or 8 to 8 10 mM and the concentration of RNaseA may be 0.03 to 0.17 mg / ml, 0.06 to 0.14 mg / ml, or 0.09 to 0.11 mg / ml.
  • Buffer 2 used in step 2 may include 0.05 to 0.2 N NaOH and 0.5 to 5% of sodium dodecyl sulfate (SDS).
  • concentration of NaOH is 0.08 to 0.2 N, 0.12 to 0.2 N or 0.16 to 0.2 N
  • concentration of the SDS may be 0.5 to 4.5%, 1.5 to 4.0% or 1.5 to 3.5%.
  • Buffer 3 used in step 3 may include guanidine hydrochloride 2 to 5 M, potassium acetate 0.1 to 1.0 mM, acetic acid 0.5 to 3 M.
  • concentration of guanidine hydrochloride is 2.5 to 4.5 M, 3.0 to 4.5 M or 3.5 to 4.5 M
  • concentration of potassium acetate is 0.2 to 0.9 mM, 0.3 to 0.8 mM, 0.4 to 0.8 mM, 0.5 to 0.8 mM or 0.6 to 0.8 mM
  • the concentration of acetic acid may be 1.0 to 3.0 M, 1.5 to 3.0 M or 2.0 to 3.0 M.
  • Compounds included in the buffers 1 to 3 may be replaced with other compounds having the same function, and may be included in the buffer at an appropriate concentration in some cases.
  • the optimal conditions for the removal of insoluble aggregates or the intracellular plasmid DNA separation method using the amine-coated nanoparticles of the present invention are shown in Buffer 1 (50 mM Tris-Cl (pH 8.0), 10). mM EDTA, 0.1 mg / ml RNase A), Buffer 2 (0.2N NaOH, 2% SDS) and Buffer 3 (4 M guanidine, 750 mM potassium acetate, 2.5 M acetic acid, 60 mg / ml amine-coated magnetic nanoparticles) )to be.
  • Buffer 1 50 mM Tris-Cl (pH 8.0), 10
  • mM EDTA 0.1 mg / ml RNase A
  • Buffer 2 0.2N NaOH, 2% SDS
  • Buffer 3 4 M guanidine, 750 mM potassium acetate, 2.5 M acetic acid, 60 mg / ml amine-coated magnetic nanoparticles
  • the buffer of step 2 may further include a yeast cell wall lysing agent such as a zymolyase to decompose the yeast cell wall.
  • the amine-coated magnetic nanoparticles of the present invention are compatible with the buffer used in steps 1 to 3 above. That is, the amine-coated magnetic nanoparticles of the present invention may be added to the buffer, and after step 3, the insoluble aggregate may be removed using a magnetic field.
  • the amine-coated magnetic nanoparticles may be treated with a cell suspension, cell lysate or a reactant in which insoluble aggregates are formed by neutralizing the cell lysate.
  • the amine-coated magnetic nanoparticles may be added at a concentration of 1 to 100 mg / ml. According to another embodiment of the invention, the amine-coated magnetic nanoparticles are 10 to 90 mg / ml, 20 to 80 mg / ml, 30 to 70 mg / ml, 40 to 70 mg / ml or 50 to 70 mg / May be added in ml.
  • the present invention provides a composition for separating plasmid DNA in cells comprising the amine-coated magnetic nanoparticles.
  • the intracellular plasmid DNA separation composition is a buffer for plasmid DNA separation of the amine-coated magnetic nanoparticles of the present invention.
  • composition for isolating intracellular plasmid DNA of the present invention includes the amine-coated magnetic nanoparticles, the common content between the two is omitted in order to avoid excessive complexity of the present specification.
  • the invention provides a method for removing an insoluble aggregate comprising the following steps:
  • the invention provides a method for separating plasmid DNA in cells comprising the following steps:
  • the present invention provides an amine-coated magnetic nanoparticle for removing insoluble aggregates for plasmid DNA separation in cells and a plasmid DNA separation method using the same.
  • the amine-coated magnetic nanoparticles of the present invention have the advantage of being compatible with buffers used in conventional plasmid DNA separation procedures.
  • the amine-coated magnetic nanoparticles of the present invention are added in the buffer of the plasmid DNA separation process to further simplify the plasmid DNA separation process by removing the insoluble aggregates using a magnetic field rather than the conventional centrifugation or filtration process. Improve efficiency
  • Figure 1a is an electrophoresis picture of the results of plasmid DNA purification using two water-soluble magnetic particles.
  • Figure 1b is a schematic diagram showing the plasmid purification process according to the present invention.
  • Figure 2 is an electrophoresis picture of the purification results using a water-soluble amine magnetic material prepared by using two different amine coating method.
  • Figure 3a is an electrophoresis picture of restriction enzyme treatment and PCR for plasmid DNA purification results according to the use of chloroform.
  • Figure 3b shows the result of restriction enzyme treatment of plasmid DNA purified according to the use of chloroform of Figure 3a.
  • Figure 4 is an electrophoresis picture of the results of small and large scale purification using the method and composition presented in the present invention.
  • buffer solution 2 0.2N NaOH, 2% SDS
  • 200 ⁇ l chloroform were added and allowed to stand for 1 minute to dissolve
  • buffer 3 containing amine-coated magnetic nanoparticles (4 M guanidine hydrochloride, 750 mM potassium acetate, 2.5 M acetic acid, 60 mg / ml lysine coated magnetic nanoparticles or APTES coated magnetic nanoparticles) was shaken up and down 5-6 times after the addition of 350 ⁇ l.
  • the reaction solution was left in a magnetic particle separation stand for 1 minute to separate insoluble aggregates into amine-coated magnetic particles, and the remaining supernatant (except chloroform layer) was recovered and transferred to a new tube.
  • silica-coated magnetic nanoparticles 30 mg / ml was added to the supernatant, combined with plasmid DNA, and then left for 1 minute in a magnetic particle separation stand to recover the remaining solution.
  • the plasmid DNA collected on the silica-coated magnetic nanoparticles was washed in the same manner by adding 800 ⁇ l of 80% ethanol and then left at 55 for 10 minutes to dry until residual ethanol was removed. After drying, plasmid DNA was eluted from silica-coated magnetic nanoparticles by adding 100-200 ⁇ l TE buffer solution (10 mM Tris-Cl (pH 8.0), 1 mM EDTA) or sterile water and placed on a magnetic particle separation stand. Was attached to recover only the eluted plasmid DNA.
  • Silica-coated magnetic particles were prepared using Stober method (Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range.J Colloid Interface Sci. 1968; 28: 62-9.). The surface of Fe 3 O 4 was coated with silica (SiO 2 ) to produce hydrolysis.
  • An amine-coated magnetic nanoparticle was prepared by coating an amine group on the surface of the silica coated magnetic particle.
  • amines There are various methods of coating the surface with amines, but representative methods include L-lysine (amino acid) and coating method using APTES ((3-Aminopropyl) triethoxysilane).
  • L-lysine amino acid
  • APTES ((3-Aminopropyl) triethoxysilane).
  • the removal efficiency of the insoluble aggregates of the magnetic nanoparticles prepared using these two amine coating methods and the purity of nucleic acid purification were compared.
  • Surface modification of amines using lysine was carried out using Zehra et al. The method proposed by the group (l-lysine coated magnetite nanoparticles: synthesis, structural and conductivity characterization. J alloys Compd 484: 371-376) was performed.
  • the surface modification method using APTES was performed by Cao et. al. It was performed using the method proposed by the group (Fabrication of Cyclodextrin Functionalized Superparamagnetic Fe3O4 / Amino-Silane Core-Shell Nanoparticles via Layer-by-Layer Method.Applied Surface Science, 255, 7974-7980.).
  • the amine coating method using L-lysine disperses 100 g of silica-coated magnetic particles in sterile water to add L-lysine to a final concentration of 34 mM, and then adds ammonia to a final concentration of 2.8%. The reaction was produced at room temperature for 24 hours.
  • the amine coating method using APTES was produced by dispersing 100 g of silica-coated magnetic particles in 80% ethanol, adding 1.5% APTES to the final mixture, adding ammonia to a final concentration of 0.56%, and reacting at room temperature for 24 hours.
  • Electrophoresis and PCR results and restriction enzyme treatment results did not show a significant difference as shown in Figure 3a and 3b.
  • Example 1 the plasmid was purified from the cell culture medium in a small amount of culture solution (0.5-2 ml). Plasmid DNA purification was performed by the method described in Example 1 after collecting cells from 50-200 ml of bulk culture using the compositions and methods disclosed herein. Specifically, cells were collected from 50-100 ml culture medium containing the high cloning plasmid pUC19-B1 vector, and then 2.5 ml suspension buffer, 2.5 ml lysis buffer, 3 ml chloroform and 3.5 ml amine. Neutralization buffer containing a coating magnetic material (neutralization buffer + amine coated magnetic nanoparticle) was treated in the same manner as in Example 1 and purified plasmid DNA (Fig. 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides an amine-coated magnetic nanoparticle for removing non-soluble aggregates to isolate plasmid DNA from cells and a method for isolating plasmid DNA using the same. An amine-coated magnetic nanoparticle of the present invention has the advantage of being interchangeable with a buffer used in the conventional procedure of plasmid DNA isolation and can be added to a buffer for use in plasmid DNA isolation to remove non-soluble aggregates with the aid of a magnetic field rather than by use of a conventional centrifugation or filtration process, thereby further simplifying a plasmid DNA isolation procedure and improving efficiency.

Description

아민-코팅 자성 나노입자를 이용한 플라스미드 DNA 정제 방법 및 조성물Plasmid DNA Purification Method and Composition Using Amine-Coated Magnetic Nanoparticles
본 특허출원은 2017년 01월 16일에 대한민국 특허청에 제출된 대한민국 특허출원 제 10-2017-0007041 호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application claims priority to Korean Patent Application No. 10-2017-0007041 filed with the Korean Intellectual Property Office on January 16, 2017, the disclosure of which is incorporated herein by reference.
본 발명은 플라스미드 DNA 분리용 아민-코팅 자성 나노입자에 관한 것으로서, 상세하게는, 핵산 정제과정에서 생성되는 단백질 변성 응집물, 박테리아 지노믹 DNA 및 세포 잔해와 같은 비용해성 응집체를, 기존 원심분리기나 필터를 이용한 제거가 아닌, 수용성 아민-코팅 자성 나노입자(hydrophilic amine-coated magnetic nanoparticle)를 이용하여 자기장에 의해 제거 한 후, 핵산 결합용 자성입자로 플라스미드 DNA를 자성입자 분리장치를 이용하여 핵산정제에 관한 조성물 및 그 방법에 관한 것이다.The present invention relates to amine-coated magnetic nanoparticles for plasmid DNA separation, and more specifically, to insoluble aggregates such as protein-denatured aggregates, bacterial genomic DNA and cell debris produced during nucleic acid purification. Rather than removing by using a magnetic field using a water-soluble amine-coated magnetic nanoparticles (hydrophilic amine-coated magnetic nanoparticles), the plasmid DNA as a nucleic acid binding magnetic particles to the nucleic acid purification using a magnetic particle separation device The present invention relates to a composition and a method thereof.
플라스미드 DNA는 세포 내에서 독립적으로 복제과정을 거치며 특정 항생제 내성유전자를 보유하여 숙주에 도입 후 선별이 가능한 특성을 가지고 있어 클로닝, 라이브러리 제작 및 스크리닝, 단백질 발현, 유전자 변형 및 조작, 특정 유전자 발현을 유도하는 형질전환 유기체(GMO, genetically modified organism) 제작 등과 같이 다양한 분야에서 광범위하게 이용되고 있다.Plasmid DNA is cloned independently in the cell and possesses a specific antibiotic resistance gene, which can be selected after introduction into a host, thereby inducing cloning, library construction and screening, protein expression, genetic modification and manipulation, and specific gene expression. It is widely used in various fields such as the production of genetically modified organisms (GMO).
이러한 이유로, 고순도 및 고수율의 플라스미드 DNA 분리정제 방법이 많이 개발되었으며, 대용량 처리용 자동화기기(HTS, high throughput automation system)를 이용한 핵산 정제장비도 개발되었다.For this reason, high purity and high yield plasmid DNA separation and purification methods have been developed, and nucleic acid purification equipment using a high throughput automation system (HTS) has been developed.
최근, 자성 입자를 이용하여 생물학적 시료로부터 핵산이나 단백질의 분리 정제뿐만 아니라, 특이적인 항체와 결합된 자성입자를 이용하여 바이러스 시료의 농축 및 검출에 효율적으로 수행하기 위한 기술이 개발됨에 따라 로슈(Roche), 퀴아젠(Qiagen), 써모사이언티픽(Thermoscientific) 등과 같은 글로벌 바이오기업들에서 자성입자를 이용한 HTS 핵산정제 장치도 많이 개발 되었다.Recently, as a technique for separating and purifying nucleic acids or proteins from biological samples using magnetic particles, and efficiently performing concentration and detection of viral samples using magnetic particles bound to specific antibodies, Roche (Roche) has been developed. HTS nucleic acid purification devices using magnetic particles have also been developed by global bio companies such as Qiagen and Thermomoscientific.
박테리아의 플라스미드 DNA 정제과정은 일반적으로 다음의 4단계를 포함한다: (a) 세포 현탁(suspension); (b) 세포 용해(lysis); (c) 중화 및 결합(neutralization and binding); 및 (d) 세척 및 용출 (washing and elution).Bacterial plasmid DNA purification generally involves four steps: (a) cell suspension; (b) cell lysis; (c) neutralization and binding; And (d) washing and elution.
상기 과정 중 HTS 기기를 이용한 플라스미드 DNA의 정제과정에서, 효율성 및 경제성을 높이기 위해서 가장 해결해야 할 부분은 세포 용해 후 중화 단계에서 생성되는 변성 단백질 응집물(denatured protein aggregates), 세포 파편, 박테리아 지노믹 DNA(bacterial genomic DNA or chromosomal DNA) 등과 같은 비용해성 응집체 제거과정이다. 일반적으로. 비용해성 응집체를 제거하기 위한 방법으로는 필터를 이용한 방법(유리섬유 필터, 나일론 필터, 실리카 등)을 이용하거나, 고속 원심분리 방법을 이용하여 제거하는 방법을 취하기 때문에, 종래 플라스미드 DNA 정제과정의 단순화 및 효율성을 향상시키기 위해서는 상기 과정을 해결할 방법들이 필요하다.In the process of purifying plasmid DNA using the HTS device, in order to increase the efficiency and economic efficiency, the most necessary solution is denatured protein aggregates, cell debris and bacterial genomic DNA generated during the neutralization step after cell lysis. Removal of insoluble aggregates, such as bacterial genomic DNA or chromosomal DNA. Generally. As a method for removing insoluble aggregates, a method using a filter (glass fiber filter, nylon filter, silica, etc.) or a method using a high-speed centrifugation method is used to remove the insoluble aggregates, thus simplifying the conventional plasmid DNA purification process. And methods for solving the process are needed to improve the efficiency.
플라스미드 DNA 정제과정에서 비용해성 응집체에 대한 문제를 해결하기 위한 방법으로 다양한 기술들이 개발되었다. 대한민국 등록특허 제10-1193765호(초고속 핵산의 정제방법)에서는 페이퍼 크로마토그래피법(paper chromatography) 기법을 이용한 무동력 핵산 정제법을 개시하고 있으나, 시료량의 한계, 자동화 및 대량화의 한계점을 지니고 있다.Various techniques have been developed to solve the problem of insoluble aggregates during plasmid DNA purification. Korean Patent No. 10-1193765 (Ultra High Speed Nucleic Acid Purification Method) discloses a non-powerless nucleic acid purification method using a paper chromatography method, but has a limitation of sample volume, automation, and mass production.
미국 공개특허 US 5665554(Magnetic bead precipitation method)는 FMP(ferrite magnetic particle)을 이용한 응집물 제거 방법을 개시하고 있으나, FMP 자체로 응집물 제거는 효율적이지 못하며, 표면이 공기 중에 쉽게 산화되는 특성이 있어 보관 안정성이 떨어지는 문제를 갖는다.US Patent Publication No. 5665554 (Magnetic bead precipitation method) discloses a method of removing aggregates using ferrite magnetic particles (FMP), but FMP itself is not effective in removing aggregates, and the surface is easily oxidized in the air, so storage stability This has a falling problem.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
본 발명자들은 플라스미드 DNA의 정제과정에서 생성되는 단백질 변성 응집물, 지노믹 DNA 및 세포 잔해물과 같은 비용해성 응집체(insoluble aggregate)를 효율적으로 제거하면서, 기존의 상용화된 플라스미드 DNA 정제용 완충액에 호환가능한 물질을 개발하고자 노력하였다. 그 결과, 아민기가 기능화된 아민-코팅 자성 나노입자를 플라스미드 DNA 정제용 완충액에 첨가하는 경우, 상기 비용해성 응집체를 효과적으로 제거하여 플라스미드 DNA를 분리할 수 있음을 확인함으로써 본 발명은 완성하였다.We efficiently remove insoluble aggregates such as protein denatured aggregates, genomic DNA and cell debris generated during the purification of plasmid DNA, while providing a material compatible with existing commercially available plasmid DNA purification buffers. Efforts have been made to develop. As a result, when the amine-coated magnetic nanoparticles functionalized with the amine group were added to the plasmid DNA purification buffer, the present invention was completed by confirming that the insoluble aggregates could be effectively removed to separate the plasmid DNA.
따라서, 본 발명의 목적은 아민-코팅 자성 나노입자를 제공하는 데 있다.Accordingly, it is an object of the present invention to provide amine-coated magnetic nanoparticles.
본 발명의 다른 목적은 세포 내 플라스미드 DNA 분리용 조성물을 제공하는 데 있다.Another object of the present invention to provide a composition for separating plasmid DNA in cells.
본 발명의 또 다른 목적은 비용해성 응집체의 제거 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for removing insoluble aggregates.
본 발명의 다른 목적은 세포 내 플라스미드 DNA 분리 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for separating plasmid DNA in cells.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 세포 내 플라스미드 DNA 분리를 위한 비용해성 응집체 제거용 아민-코팅 자성 나노입자로, 상기 아민-코팅 자성 나노입자는 자성 나노입자의 표면에 아민기가 기능화된 것을 특징으로 하는 아민-코팅 자성 나노입자를 제공한다.According to an aspect of the present invention, the present invention provides an amine-coated magnetic nanoparticle for removing an insoluble aggregate for intracellular plasmid DNA separation, wherein the amine-coated magnetic nanoparticle is a functionalized amine group on the surface of the magnetic nanoparticle. An amine-coated magnetic nanoparticle is provided.
본 발명자들은 플라스미드 DNA의 정제과정에서 생성되는 단백질 변성 응집물, 지노믹 DNA 및 세포 잔해물과 같은 비용해성 응집체(insoluble aggregate)를 효율적으로 제거하면서 기존의 상용화된 플라스미드 DNA 정제용 완충액에 호환가능한 물질을 개발하고자 노력하였다. 그 결과, 아민기가 기능화된 아민-코팅 자성 나노입자를 플라스미드 DNA 정제용 완충액에 첨가하는 경우, 상기 비용해성 응집체를 효과적으로 제거하여 플라스미드 DNA를 분리할 수 있음을 확인하였다.The inventors have developed a material compatible with existing commercially available plasmid DNA purification buffers while efficiently removing insoluble aggregates such as protein denatured aggregates, genomic DNA and cell debris generated during the purification of plasmid DNA. I tried to As a result, it was confirmed that when the amine-coated magnetic nanoparticles functionalized with the amine group were added to the plasmid DNA purification buffer, the insoluble aggregates could be effectively removed to separate the plasmid DNA.
종래의 세포 내 플라스미드 DNA 분리를 위해 원심분리 또는 필터를 이용하여 여과함으로써 비용해성 응집체를 제거하는 방법과 달리, 본 발명은 플라스미드 DNA 분리를 위한 완충액에 본 발명의 아민-코팅 자성 나노입자를 첨가하고 자기장을 통해 상기 비용해성 응집체를 제거하는 주요한 특징을 갖는다.Unlike conventional methods for removing insoluble aggregates by filtration using centrifugation or filters for intracellular plasmid DNA separation, the present invention adds the amine-coated magnetic nanoparticles of the present invention to a buffer for plasmid DNA separation. The main feature is the removal of the insoluble aggregates through a magnetic field.
본 명세서에서 사용된, 용어 “자성”은 물질이 나타내는 자기적인 성질을 의미한다. 모든 물질은 자기장(magnetic field)과 상호작용하여 인력(attractive force) 또는 척력(repulsive force)이 발생된다. 즉, 물질에 자기장을 가하면 자화(magnetization)되고, 상기 물체가 자화되는 양상에 따라 강자성체, 상자성체, 반자성체, 페리자성체 등으로 구분된다.As used herein, the term "magnetic" refers to the magnetic properties represented by a material. All materials interact with the magnetic field to generate an attractive or repulsive force. That is, when a magnetic field is applied to a material, it is magnetized, and the magnetic material is classified into a ferromagnetic material, a paramagnetic material, a diamagnetic material, a ferrimagnetic material, and the like.
본 명세서에서 사용된, 용어 “나노입자”는 나노미터(nm)의 크기를 갖는 구조 또는 물질을 의미한다. 나노미터의 크기란 마이크론 미터(10-6) 크기를 1,000 분의 1로 축소한 것으로, 물질의 크기가 나노미터 수준으로 작아지면 다양하고 특이한 물리적, 화학적, 기계적 및 전자적 특성을 나타내게 된다.As used herein, the term “nanoparticle” refers to a structure or material having a size in nanometers (nm). The nanometer size is a micron meter ( 10-6 ) scaled down to a thousandth of a millimeter. When the size of the material is reduced to nanometers, it exhibits a variety of unique physical, chemical, mechanical and electronic properties.
상기 나노입자는 일반적으로 평균 크기가 1 내지 1000 nm, 예를 들면, 1 내지 10 nm, 10 내지 50 nm, 50 내지 100 nm, 100 내지 250 nm, 250 내지 500 nm, 500 내지 750 nm, 또는 50 내지 1000 nm 범위일 수 있다.The nanoparticles generally have an average size of 1 to 1000 nm, for example 1 to 10 nm, 10 to 50 nm, 50 to 100 nm, 100 to 250 nm, 250 to 500 nm, 500 to 750 nm, or 50 To 1000 nm.
본 발명의 일 구현예에 따르면, 본 발명의 나노입자는 50 내지 500 nm, 100 내지 400 nm, 100 내지 300 nm 또는 100 내지 200 nm로 제조될 수 있다. 나노입자의 크기가 500 nm 이상인 경우에는 침강 속도가 빨라져 사용상 불편함을 초래하여 침강 방지를 위해 글루코스, 슈크로스, 클리세롤, 폴리에틸렌아민, 비테인 등과 같은 분산제를 사용하여야 한다. 나노입자의 크기가 250 nm 이하에서는 상기 분산제가 필요치 않으며 50 nm 이하에서는 자성이 약하여 자기장에서 분리 시간이 오래 걸려 정제과정에서 자성 나노입자가 소실될 문제가 생기므로 고속 정제용 플라스미드 DNA 정제에 적합하지 않다.According to one embodiment of the present invention, the nanoparticles of the present invention may be prepared from 50 to 500 nm, 100 to 400 nm, 100 to 300 nm or 100 to 200 nm. When the size of the nanoparticles is 500 nm or more, the settling speed is increased, causing inconvenience in use, and dispersing agents such as glucose, sucrose, glycerolol, polyethyleneamine, and bitine should be used to prevent sedimentation. The dispersant is not necessary at the nanoparticle size of 250 nm or less, and the magnetic property is weak at 50 nm or less, which leads to a long separation time in the magnetic field. not.
본 명세서에서 사용된, 용어 “자성 나노입자”는 자성을 띄는 나노미터 크기의 구조 또는 물질을 의미한다.As used herein, the term “magnetic nanoparticle” refers to a nanometer-sized structure or material that is magnetic.
상기 자성 나노입자는 용액 합성, 공동 침전, 졸-겔 방법, 고 에너지 분쇄, 수열 합성, 마이크로에멀젼 합성, 열분해에 의한 합성 또는 음파화학적 합성에 의해 제조될 수 있으나, 이에 한정되는 것은 아니다.The magnetic nanoparticles may be prepared by solution synthesis, co-precipitation, sol-gel method, high energy pulverization, hydrothermal synthesis, microemulsion synthesis, pyrolysis or sonic chemical synthesis, but is not limited thereto.
상기 자성 나노입자는 철, 코발트, 니켈, 그의 산화물 및 그들의 합금으로 이루어진 군으로부터 선택된 1종 또는 2종 이상 선택될 수 있으나, 이에 한정되는 것은 아니다.The magnetic nanoparticles may be selected from one or two or more selected from the group consisting of iron, cobalt, nickel, oxides thereof and alloys thereof, but is not limited thereto.
본 발명의 일 구현예에 따르면, 본 발명의 자성 나노입자는 철로 이루어진 자성 나노입자이다.According to one embodiment of the invention, the magnetic nanoparticles of the present invention are magnetic nanoparticles made of iron.
본 명세서에서 사용된, 용어 “아민-코팅 자성 나노입자”는 표면에 아민기가 기능화된(functionalized) 자성 나노입자를 의미한다. 상기 아민기의 기능화는 아민 첨가제(amine additives), 예컨대, 아미노프로필트리에톡시실란(aminopropyltriethoxysilane; APTES), 폴리라이신(polylysine), 글리시독시프로필트리메톡시실란(glycidoxypropyltrimethoxysilane; GPTS), 트리에톡시실란 운데칸산(triethoxysilane undecanoic acid; TETU), 및 4-트리메톡시실릴벤즈알데히드(4-trimethoxysilylbezaldehyde)로 이루어진 군으로부터 선택되는 1종 또는 2종 이상을 처리하여 실시할 수 있다.As used herein, the term “amine-coated magnetic nanoparticle” refers to magnetic nanoparticles in which an amine group is functionalized on a surface. Functionalization of the amine group is amine additives such as aminopropyltriethoxysilane (APTES), polylysine, glycidoxypropyltrimethoxysilane (GPTS), triethoxy The treatment may be carried out by treating one or two or more selected from the group consisting of silane unethcanoic acid (TETU) and 4-trimethoxysilyl benzaldehyde.
본 명세서에서 사용된, 용어 '기능화'는 물질의 표면에 물리적, 화학적 또는 생물학적 특성을 부여하기위해 표면을 변형(modification)시키는 것을 의미한다.As used herein, the term 'functionalization' means modifying the surface to impart physical, chemical or biological properties to the surface of the material.
본 명세서에서 사용된, 용어 '아민기의 기능화'는 자성 나노입자의 표면을 아민기를 갖는 화합물로 기능화하여 아민기를 부여하는 것을 의미한다.As used herein, the term 'functionalization of an amine group' means to impart an amine group by functionalizing the surface of the magnetic nanoparticles with a compound having an amine group.
상기 아민-코팅 자성 나노입자는 자성 나노입자 표면에 아민 첨가제를 처리하여 아민기를 기능화 하거나, 상기 자성 나노입자에 최종 코팅을 아민 첨가제로 처리함으로써 최종적으로 자성 나노입자 표면에 아민기가 기능화 되도록 제조할 수 있다.The amine-coated magnetic nanoparticles may be prepared to functionalize an amine group by treating an amine additive on the surface of the magnetic nanoparticles, or finally to functionalize the amine group on the surface of the magnetic nanoparticles by treating the final coating with the amine additive on the magnetic nanoparticles. have.
본 발명의 일 구현예에 따르면, 본 발명의 아민-코팅 자성 나노입자는 실리카 코팅된 자성 나노입자 상에 아민기를 기능화하여 제조한다.According to one embodiment of the invention, the amine-coated magnetic nanoparticles of the invention are prepared by functionalizing amine groups on silica coated magnetic nanoparticles.
본 명세서에서 사용된, 용어 “비용해성 응집체”는 플라스미드 DNA의 분리 과정 중 생성되는 단백질 응집체, 세포 잔해물 및 지노믹(genomic) DNA 등을 의미한다. 상기 비용해성 응집체는 인클루젼 바디(inclusion body)를 포괄하는 개념이다.As used herein, the term “insoluble aggregate” refers to protein aggregates, cell debris, genomic DNA, and the like, produced during the isolation of plasmid DNA. The insoluble aggregate is a concept encompassing an inclusion body.
본 발명의 아민-코팅 자성 나노입자를 이용한 비용해성 응집체의 제거는 당업계에 공지된 플라스미드 DNA를 포함하는 임의의 세포를 대상으로 실시할 수 있다.Removal of insoluble aggregates using the amine-coated magnetic nanoparticles of the invention can be performed on any cell comprising plasmid DNA known in the art.
본 발명의 일 구현예에 따르면, 상기 세포는 박테리아 또는 효모이다.According to one embodiment of the invention, said cells are bacteria or yeast.
본 발명의 아민-코팅 자성 나노입자는 비용해성 응집체를 제거하기 위해 플라스미드 DNA 분리를 위한 완충액에 처리될 수 있다.The amine-coated magnetic nanoparticles of the present invention can be treated in a buffer for plasmid DNA isolation to remove insoluble aggregates.
상기 플라스미드 DNA를 분리하기 위한 방법은 다음의 4단계로 나눌 수 있다. 세포 현탁물을 제조하는 단계1; 세포의 용해, 단백질 응집 및 DNA 변성의 단계2; 세포 DNA를 중화시키는 단계3; 및 플라스미드 DNA를 수득하는 단계4.The method for separating the plasmid DNA can be divided into the following four steps. Preparing a cell suspension; Lysis, protein aggregation and DNA denaturation of cells 2; Neutralizing cellular DNA; And obtaining plasmid DNA 4.
상기 단계2의 완충액에 함유된 계면활성제는 세포막에 포함되어 있는 인지질과 단백질을 제거하여 세포막을 터뜨림으로써 세포 성분의 방출을 유도한다. 또한 NaOH는 플라스미드 DNA, 지노믹 DNA, 단백질을 변성시킨다. 상기 단계3의 완충액에 함유된 아세트산칼륨은 변성된 플라스미드 DNA를 이중가닥으로 재생시키며 이보다 복잡한 지노믹 DNA는 이중가닥으로 복구되지 못하고 단백질과 더불어 비용해성의 복잡한 DNA 구조를 형성하게 된다.The surfactant contained in the buffer of step 2 removes the phospholipids and proteins contained in the cell membranes, and induces the release of cellular components by bursting the cell membranes. NaOH also denatures plasmid DNA, genomic DNA, and proteins. Potassium acetate contained in the buffer of step 3 regenerates the denatured plasmid DNA into double strands, and more complex genomic DNA is not double stranded and forms insoluble DNA complex with the protein.
상기 단계1에 이용되는 완충액1은 Tris-Cl 1 내지 50 mM, EDTA(Ethylenediaminetetraacetic acid) 1 내지 10 mM 및 RNaseA 0.01 내지 0.2 ㎎/㎖를 포함할 수 있다. 상기 Tris-Cl의 농도는 10 내지 50 mM, 20 내지 50 mM, 30 내지 50 mM 또는 40 내지 50 mM이고, 상기 EDTA의 농도는 2 내지 10 mM, 4 내지 10 mM, 6 내지 10 mM 또는 8 내지 10 mM이며, 상기 RNaseA의 농도는 0.03 내지 0.17 ㎎/㎖, 0.06 내지 0.14 ㎎/㎖ 또는 0.09 내지 0.11 ㎎/㎖일 수 있다. Buffer 1 used in step 1 may include 1 to 50 mM of Tris-Cl, 1 to 10 mM of ethylenediaminetetraacetic acid (EDTA) and 0.01 to 0.2 mg / ml of RNaseA. The concentration of Tris-Cl is 10 to 50 mM, 20 to 50 mM, 30 to 50 mM or 40 to 50 mM, and the concentration of EDTA is 2 to 10 mM, 4 to 10 mM, 6 to 10 mM or 8 to 8 10 mM and the concentration of RNaseA may be 0.03 to 0.17 mg / ml, 0.06 to 0.14 mg / ml, or 0.09 to 0.11 mg / ml.
상기 단계2에 이용되는 완충액2는 NaOH 0.05 내지 0.2 N 및 SDS(Sodium dodecyl sulfate) 0.5 내지 5%를 포함할 수 있다. 상기 NaOH의 농도는 0.08 내지 0.2 N, 0.12 내지 0.2 N 또는 0.16 내지 0.2 N이고, 상기 SDS의 농도는 0.5 내지 4.5%, 1.5 내지 4.0% 또는 1.5 내지 3.5%일 수 있다. Buffer 2 used in step 2 may include 0.05 to 0.2 N NaOH and 0.5 to 5% of sodium dodecyl sulfate (SDS). The concentration of NaOH is 0.08 to 0.2 N, 0.12 to 0.2 N or 0.16 to 0.2 N, the concentration of the SDS may be 0.5 to 4.5%, 1.5 to 4.0% or 1.5 to 3.5%.
상기 단계3에 이용되는 완충액3은 염산구아니딘 2 내지 5 M, 아세트산칼륨 0.1 내지 1.0 mM, 아세트산 0.5 내지 3 M를 포함할 수 있다. 상기 염산구아니딘의 농도는 2.5 내지 4.5 M, 3.0 내지 4.5 M 또는 3.5 내지 4.5 M이고, 상기 아세트산칼륨의 농도는 0.2 내지 0.9 mM, 0.3 내지 0.8 mM, 0.4 내지 0.8 mM, 0.5 내지 0.8 mM 또는 0.6 내지 0.8 mM이며, 상기 아세트산의 농도는 1.0 내지 3.0 M, 1.5 내지 3.0 M 또는 2.0 내지 3.0 M일 수 있다.Buffer 3 used in step 3 may include guanidine hydrochloride 2 to 5 M, potassium acetate 0.1 to 1.0 mM, acetic acid 0.5 to 3 M. The concentration of guanidine hydrochloride is 2.5 to 4.5 M, 3.0 to 4.5 M or 3.5 to 4.5 M, and the concentration of potassium acetate is 0.2 to 0.9 mM, 0.3 to 0.8 mM, 0.4 to 0.8 mM, 0.5 to 0.8 mM or 0.6 to 0.8 mM, the concentration of acetic acid may be 1.0 to 3.0 M, 1.5 to 3.0 M or 2.0 to 3.0 M.
상기 완충액1 내지 3에 포함되는 화합물은 동일한 기능을 갖는 다른 화합물로 대체될 수 있으며, 경우에 따라 적절한 농도로 완충액 내에 포함될 수 있다.Compounds included in the buffers 1 to 3 may be replaced with other compounds having the same function, and may be included in the buffer at an appropriate concentration in some cases.
하기 실시예에서 입증된 바와 같이, 본 발명의 아민-코팅 나노입자를 이용한 비용해성 응집체의 제거 방법 또는 세포 내 플라스미드 DNA 분리 방법에 최적 조건은 완충액1(50 mM Tris-Cl(pH 8.0), 10 mM EDTA, 0.1 ㎎/㎖ RNase A), 완충액2(0.2N NaOH, 2% SDS) 및 완충액3(4 M 염산구아니딘, 750 mM 아세트산칼륨, 2.5 M 아세트산, 60 ㎎/㎖ 아민-코팅 자성 나노입자)이다.As demonstrated in the examples below, the optimal conditions for the removal of insoluble aggregates or the intracellular plasmid DNA separation method using the amine-coated nanoparticles of the present invention are shown in Buffer 1 (50 mM Tris-Cl (pH 8.0), 10). mM EDTA, 0.1 mg / ml RNase A), Buffer 2 (0.2N NaOH, 2% SDS) and Buffer 3 (4 M guanidine, 750 mM potassium acetate, 2.5 M acetic acid, 60 mg / ml amine-coated magnetic nanoparticles) )to be.
상기 플라스미드 DNA를 분리하고자 하는 세포가 효모인 경우, 단계2의 완충액은 효모 세포벽을 분해하기 위한 자이몰리아제(zymolyase)와 같은 효모 세포벽 용해제를 추가적으로 포함할 수 있다.When the cell to be separated from the plasmid DNA is yeast, the buffer of step 2 may further include a yeast cell wall lysing agent such as a zymolyase to decompose the yeast cell wall.
본 발명의 아민-코팅 자성 나노입자는 상기 단계1 내지 3에 이용되는 완충액과 호환 가능하다. 즉, 상기 완충액에 본 발명의 아민-코팅 자성 나노입자를 첨가하여 실시하고 단계3 이후에 자기장을 이용하여 비용해성 응집체를 제거할 수 있다.The amine-coated magnetic nanoparticles of the present invention are compatible with the buffer used in steps 1 to 3 above. That is, the amine-coated magnetic nanoparticles of the present invention may be added to the buffer, and after step 3, the insoluble aggregate may be removed using a magnetic field.
본 발명의 일 구현예에 따르면, 상기 아민-코팅 자성 나노입자는 세포 현탁물, 세포 용해물 또는 상기 세포 용해물을 중화시켜 비용해성 응집체가 형성된 반응물에 처리될 수 있다.According to one embodiment of the invention, the amine-coated magnetic nanoparticles may be treated with a cell suspension, cell lysate or a reactant in which insoluble aggregates are formed by neutralizing the cell lysate.
본 발명의 일 구현예에 따르면, 상기 아민-코팅 자성 나노입자는 1 내지 100 ㎎/㎖ 농도로 첨가될 수 있다. 본 발명의 다른 구현예에 따르면, 상기 아민-코팅 자성 나노입자는 10 내지 90 ㎎/㎖, 20 내지 80 ㎎/㎖, 30 내지 70 ㎎/㎖, 40 내지 70 ㎎/㎖ 또는 50 내지 70 ㎎/㎖로 첨가될 수 있다.According to one embodiment of the present invention, the amine-coated magnetic nanoparticles may be added at a concentration of 1 to 100 mg / ml. According to another embodiment of the invention, the amine-coated magnetic nanoparticles are 10 to 90 mg / ml, 20 to 80 mg / ml, 30 to 70 mg / ml, 40 to 70 mg / ml or 50 to 70 mg / May be added in ml.
본 발명의 다른 양태에 따르면, 본 발명은 상기 아민-코팅 자성 나노입자를 포함하는 세포 내 플라스미드 DNA 분리용 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a composition for separating plasmid DNA in cells comprising the amine-coated magnetic nanoparticles.
본 발명의 일 구현예에 따르면, 상기 세포 내 플라스미드 DNA 분리용 조성물은 본 발명의 아민-코팅 자성 나노입자를 플라스미드 DNA 분리용 완충액이다.According to one embodiment of the invention, the intracellular plasmid DNA separation composition is a buffer for plasmid DNA separation of the amine-coated magnetic nanoparticles of the present invention.
본 발명의 세포 내 플라스미드 DNA 분리용 조성물은 상기 아민-코팅 자성 나노입자를 포함하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the composition for isolating intracellular plasmid DNA of the present invention includes the amine-coated magnetic nanoparticles, the common content between the two is omitted in order to avoid excessive complexity of the present specification.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 비용해성 응집체(insoluble aggregate)의 제거 방법을 제공한다:According to another aspect of the invention, the invention provides a method for removing an insoluble aggregate comprising the following steps:
(a) 플라스미드 DNA를 포함하는 세포의 현탁물, 용해물 또는 상기 용해물을 중화시켜 비용해성 응집체가 형성된 반응물에 아민-코팅 자성 나노입자를 처리하여 상기 아민-코팅 자성 나노입자 및 비용해성 응집체의 흡착을 유도하는 단계; 및(a) treating amine-coated magnetic nanoparticles and insoluble aggregates by treating amine-coated magnetic nanoparticles with neutralized suspensions, lysates or lysates of cells containing plasmid DNA to form insoluble aggregates. Inducing adsorption; And
(b) 자기장을 이용하여 흡착된 비용해성 응집체를 제거하는 단계.(b) using magnetic fields to remove adsorbed insoluble aggregates.
본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 세포 내 플라스미드 DNA 분리 방법을 제공한다:According to another aspect of the invention, the invention provides a method for separating plasmid DNA in cells comprising the following steps:
(a) 플라스미드 DNA를 포함하는 세포 부유물 또는 이의 용해물에 아민-코팅 자성 나노입자를 처리하여 비용해성 응집체의 흡착을 유도하는 단계;(a) treating the cell suspension comprising plasmid DNA or lysate thereof with amine-coated magnetic nanoparticles to induce adsorption of insoluble aggregates;
(b) 자기장을 이용하여 흡착된 비용해성 응집체를 제거하는 단계;(b) using a magnetic field to remove the adsorbed insoluble aggregates;
(c) 실리카-코팅 자성 나노입자를 처리하여 플라스미드 DNA의 흡착을 유도하는 단계; 및(c) treating silica-coated magnetic nanoparticles to induce adsorption of plasmid DNA; And
(d) 자기장을 이용하여 흡착된 플라스미드 DNA를 분리하는 단계.(d) separating the adsorbed plasmid DNA using a magnetic field.
상기 실리카-코팅 자성 나노입자의 플라스미드 DNA의 분리 용도는 당업계에 공지되어 있다.The use of the separation of plasmid DNA of the silica-coated magnetic nanoparticles is known in the art.
본 발명의 비용해성 응집체의 제거 방법 및 세포 내 플라스미드 DNA 분리 방법은 상기 아민-코팅 자성 나노입자와 관련된 설명과 거의 동일하므로, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the method for removing the insoluble aggregates of the present invention and the method for separating plasmid DNA in cells are almost identical to those described for the amine-coated magnetic nanoparticles, the contents in common between the two are described in order to avoid excessive complexity of the present specification. Omit.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 세포 내 플라스미드 DNA 분리를 위한 비용해성 응집체 제거용 아민-코팅 자성 나노입자 및 이를 이용한 플라스미드 DNA 분리 방법을 제공한다.(a) The present invention provides an amine-coated magnetic nanoparticle for removing insoluble aggregates for plasmid DNA separation in cells and a plasmid DNA separation method using the same.
(b) 본 발명의 아민-코팅 자성 나노입자는 종래의 플라스미드 DNA 분리 과정에 이용되는 완충액과 호환 가능한 이점을 갖는다.(b) The amine-coated magnetic nanoparticles of the present invention have the advantage of being compatible with buffers used in conventional plasmid DNA separation procedures.
(c) 본 발명의 아민-코팅 자성 나노입자는 플라스미드 DNA 분리 과정의 완충액 내 첨가되어, 기존의 원심분리 또는 여과 과정이 아닌 자기장을 이용하여 비용해성 응집체를 제거함으로써 플라스미드 DNA 분리 과정을 보다 단순화하여 효율성을 향상시킬 수 있다.(c) The amine-coated magnetic nanoparticles of the present invention are added in the buffer of the plasmid DNA separation process to further simplify the plasmid DNA separation process by removing the insoluble aggregates using a magnetic field rather than the conventional centrifugation or filtration process. Improve efficiency
도 1a는 두 가지 수용성 자성입자를 이용한 플라스미드 DNA 정제 결과에 대한 전기영동 사진이다.Figure 1a is an electrophoresis picture of the results of plasmid DNA purification using two water-soluble magnetic particles.
도 1b는 본 발명에 따른 플라스미드 정제과정을 나타내는 모식도이다Figure 1b is a schematic diagram showing the plasmid purification process according to the present invention.
도 2는 두 가지 서로 다른 아민 코팅법을 이용해 제조된 수용성 아민 자성체를 이용한 정제결과에 대한 전기영동 사진이다.Figure 2 is an electrophoresis picture of the purification results using a water-soluble amine magnetic material prepared by using two different amine coating method.
도 3a는 클로로포름 사용 여부에 따른 플라스미드 DNA 정제 결과에 대한 제한효소 처리 및 PCR 수행에 대한 전기영동 사진이다.Figure 3a is an electrophoresis picture of restriction enzyme treatment and PCR for plasmid DNA purification results according to the use of chloroform.
도 3b는 도 3a의 클로로포름 사용 여부에 따라 정제된 플라스미드 DNA의 제한효소 처리 결과를 나타낸다. Figure 3b shows the result of restriction enzyme treatment of plasmid DNA purified according to the use of chloroform of Figure 3a.
도 4는 본 발명에 제시한 방법과 조성물을 이용한 소량 및 대량 정제 결과에 대한 전기영동 사진이다.Figure 4 is an electrophoresis picture of the results of small and large scale purification using the method and composition presented in the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예 1. 두 가지 수용성 자성체를 이용한 플라스미드 DNA 분리정제 방법Example 1. Purification of Plasmid DNA Isolation Using Two Water-Soluble Magnetic Materials
박테리아로부터 플라스미드 DNA를 추출하기 위하여 다음과 같이 두 가지 플라스미드 DNA가 도입된 박테리아를 이용하였다.In order to extract plasmid DNA from bacteria, two plasmid DNAs were introduced as follows.
고복제수 플라스미드(High copy number plasmid)인 pUC19 벡터(2.9 kb)에 다중 제한효소 클로닝 부위(MCS; multi cloning site)에 2.5 kb 크기의 박테리아 DNA가 도입된 pUC19-B1 플라스미드 DNA를 숙주세포인 대장균(DH5a) 균주에 형질전환하여 실험하였으며, 저복제수 플라스미드(low copy number plasmid)의 경우는 pET28a(5.3 kb) 벡터가 도입된 대장균 DH5a균주를 이용하여 핵산 정제를 수행하였다. pUC19 벡터가 되입된 DH5a는 암피실린(ampicilin)이 함유된 배지에서, pET28a 벡터가 도입된 DH5a는 카나마이신(kanamycine)이 함유된 배지에서 37, 250 rpm으로 16시간 진탕 배양 후 소량정제(miniprep)의 경우 0.5-2 ㎖을 취하여 실험하였으며, 대량정제(Midi/Maxi prep)의 경우 50-200 ㎖의 배양 세포로부터 플라스미드 DNA 정제를 수행하였다.PUC19-B1 plasmid DNA in which 2.5 kb of bacterial DNA was introduced into the multicloning site (MCS) in the pUC19 vector (2.9 kb), which is a high copy number plasmid, is host cell Escherichia coli. (DH5a) strains were transformed and tested. For low copy number plasmids, nucleic acid purification was performed using E. coli DH5a strain into which a pET28a (5.3 kb) vector was introduced. DH5a reloaded with pUC19 vector was in ampicillin-containing medium, and DH5a with pET28a vector was incubated at 37, 250 rpm in kanamycine-containing medium for 16 hours, followed by miniprep. Experiments were taken with 0.5-2 ml and plasmid DNA purification was performed from 50-200 ml of cultured cells for mass purification (Midi / Maxi prep).
구체적으로, 16시간 배양한 형질전환 대장균 2 ㎖을 수확하여 250 ㎕ 완충액 1 (50 mM Tris-Cl(pH 8.0), 10 mM EDTA, 0.1 ㎎/㎖ RNase A)으로 분산시켰다. 분산 후 250 ㎕ 완충액 2(0.2N NaOH, 2% SDS)와 200 ㎕ 클로로포름을 넣고 1분간 방치시켜 용해시킨 다음 아민-코팅 자성나노입자가 포함된 완충액 3(4 M 염산구아니딘, 750 mM 아세트산칼륨, 2.5 M 아세트산, 60 ㎎/㎖ 라이신 코팅 자성 나노입자 또는 APTES 코팅 자성 나노입자)를 350 ㎕ 첨가 후 5-6회 위 아래로 흔들어 주었다. 상기 반응액을 자성입자 분리 스탠드에 1분 동안 방치하여 비용해성 응집체를 아민-코팅 자성입자로 분리시켜 남은 상층액을(클로로포름층 제외) 회수하여 새로운 튜브에 옮겼다. 상기 상층액에 실리카 코팅 자성 나노입자(30 ㎎/㎖)를 100 ㎕ 첨가하여 플라스미드 DNA와 결합 시킨 다음 자성입자 분리 스탠드에 1분 동안 두어 회수한 후 남은 용액을 제거하였다. 실리카 코팅 자성 나노입자에 포집된 플라스미드 DNA를 80% 에탄올 800 ㎕를 첨가하여 상기와 같은 방법으로 세척한 다음 55에서 10분 동안 방치하여 잔류 에탄올이 제거될 때까지 건조시켰다. 건조 후 100-200 ㎕ TE 완충용액(10 mM Tris-Cl(pH 8.0), 1 mM EDTA) 또는 멸균수를 넣어 실리카 코팅 자성 나노입자로부터 플라스미드 DNA를 용출시킨 후 자성입자 분리스탠드에 두어 자성 나노입자를 부착시켜 용출된 플라스미드 DNA만 회수하였다.Specifically, 2 ml of transformed Escherichia coli cultured for 16 hours were harvested and dispersed in 250 µl buffer 1 (50 mM Tris-Cl (pH 8.0), 10 mM EDTA, 0.1 mg / ml RNase A). After dispersion, 250 μl buffer solution 2 (0.2N NaOH, 2% SDS) and 200 μl chloroform were added and allowed to stand for 1 minute to dissolve, followed by buffer 3 containing amine-coated magnetic nanoparticles (4 M guanidine hydrochloride, 750 mM potassium acetate, 2.5 M acetic acid, 60 mg / ml lysine coated magnetic nanoparticles or APTES coated magnetic nanoparticles) was shaken up and down 5-6 times after the addition of 350 μl. The reaction solution was left in a magnetic particle separation stand for 1 minute to separate insoluble aggregates into amine-coated magnetic particles, and the remaining supernatant (except chloroform layer) was recovered and transferred to a new tube. 100 μl of silica-coated magnetic nanoparticles (30 mg / ml) was added to the supernatant, combined with plasmid DNA, and then left for 1 minute in a magnetic particle separation stand to recover the remaining solution. The plasmid DNA collected on the silica-coated magnetic nanoparticles was washed in the same manner by adding 800 µl of 80% ethanol and then left at 55 for 10 minutes to dry until residual ethanol was removed. After drying, plasmid DNA was eluted from silica-coated magnetic nanoparticles by adding 100-200 μl TE buffer solution (10 mM Tris-Cl (pH 8.0), 1 mM EDTA) or sterile water and placed on a magnetic particle separation stand. Was attached to recover only the eluted plasmid DNA.
회수된 DNA의 정제 결과를 분광광도계를 이용하여 DNA 수율 및 순도를 확인하고(표 1), 1% 아가로스 겔(agarose gel)에 전기영동하여 확인하였다(도 1).The result of purification of the recovered DNA was confirmed by confirming DNA yield and purity using a spectrophotometer (Table 1), and electrophoresed on a 1% agarose gel (Fig. 1).
-- 농도 (ng/ul)Concentration (ng / ul) O.D (260/280)O.D (260/280) O.D (260/230)O.D (260/230) 총량 (ug)Total amount (ug)
pUC-B1pUC-B1 103.5103.5 2.062.06 1.931.93 10.3510.35
pET28apET28a 85.485.4 2.092.09 1.851.85 8.548.54
실시예 2. 두가지 아민 코팅 자성 나노입자를 이용한 핵산 정제 결과Example 2. Nucleic Acid Purification Results Using Two Amine-Coated Magnetic Nanoparticles
실리카 코팅 자성입자는 Stober 방법(Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;28:62-9.)을 이용하여, TEOS (tetraethylorthosilicate)를 암모니아로 가수분해 하여 Fe3O4의 표면을 실리카(SiO2)로 코팅하여 생산하였다.Silica-coated magnetic particles were prepared using Stober method (Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range.J Colloid Interface Sci. 1968; 28: 62-9.). The surface of Fe 3 O 4 was coated with silica (SiO 2 ) to produce hydrolysis.
상기 실리카 코팅 자성입자의 표면에 아민기를 코팅하여 아민-코팅된 자성 나노입자를 제조하였다. 아민으로 표면을 코팅하는 방법은 여러가지가 알려져 있지만 대표적인 방법은 아미노산인 L-라이신(L-lysine)을 이용한 방법과 APTES ((3-Aminopropyl)triethoxysilane)를 이용한 코팅 방법이 있다. 이 두 가지 아민 코팅 방법을 이용하여 제작된 자성체 나노입자의 비용해성 응집체에 대한 제거 효율 및 핵산 정제시 순도를 비교 테스트 수행하였다. 라이신을 이용한 아민으로 표면변경법은 실리카 코팅된 자성입자를 이용하여 Zehra et al. 그룹이 제시한 방법(l-lysine coated magnetite nanoparticles: synthesis, structural and conductivity characterization. J alloys Compd 484:371-376)을 이용해 수행하였으며, APTES를 이용한 표면 변경법은 실리카 코팅된 자성입자를 이용하여 Cao et al. 그룹이 제시한 방법(Fabrication of Cyclodextrin Functionalized Superparamagnetic Fe3O4/Amino-Silane Core-Shell Nanoparticles via Layer-by-Layer Method. Applied Surface Science, 255, 7974-7980.)방법을 이용해 수행하였다. 상세하게 기술하면, L-라이신을 이용한 아민 코팅방법은 100 g의 실리카 코팅 자성입자를 멸균수에 분산하여 최종 34 mM 농도가 되도록 L-라이신을 넣어준 다음, 최종 농도가 2.8%가 되도록 암모니아를 넣고 상온에서 24시간 반응시켜 생산하였다. APTES를 이용한 아민 코팅법은 100 g의 실리카 코팅 자성입자를 80% 에탄올에 분산 하여 최종 1.5% APTES를 넣고 섞어준 다음, 최종 농도가 0.56%가 되도록 암모니아를 넣고 상온에서 24시간 반응 시켜 생산하였다.An amine-coated magnetic nanoparticle was prepared by coating an amine group on the surface of the silica coated magnetic particle. There are various methods of coating the surface with amines, but representative methods include L-lysine (amino acid) and coating method using APTES ((3-Aminopropyl) triethoxysilane). The removal efficiency of the insoluble aggregates of the magnetic nanoparticles prepared using these two amine coating methods and the purity of nucleic acid purification were compared. Surface modification of amines using lysine was carried out using Zehra et al. The method proposed by the group (l-lysine coated magnetite nanoparticles: synthesis, structural and conductivity characterization. J alloys Compd 484: 371-376) was performed. The surface modification method using APTES was performed by Cao et. al. It was performed using the method proposed by the group (Fabrication of Cyclodextrin Functionalized Superparamagnetic Fe3O4 / Amino-Silane Core-Shell Nanoparticles via Layer-by-Layer Method.Applied Surface Science, 255, 7974-7980.). In detail, the amine coating method using L-lysine disperses 100 g of silica-coated magnetic particles in sterile water to add L-lysine to a final concentration of 34 mM, and then adds ammonia to a final concentration of 2.8%. The reaction was produced at room temperature for 24 hours. The amine coating method using APTES was produced by dispersing 100 g of silica-coated magnetic particles in 80% ethanol, adding 1.5% APTES to the final mixture, adding ammonia to a final concentration of 0.56%, and reacting at room temperature for 24 hours.
이 두 가지 수용성 아민 코팅 자성입자를 이용하여 실시예 1과 같은 방법으로 핵산 정제 수행 후, 순도 및 전기영동 결과를 확인하였으나, 큰 차이를 보이지 않았다(표 2 및 도 2).After performing nucleic acid purification using the two water-soluble amine-coated magnetic particles in the same manner as in Example 1, purity and electrophoresis results were confirmed, but there was no significant difference (Table 2 and FIG. 2).
-- 농도 (ng/ul)Concentration (ng / ul) O.D (260/280)O.D (260/280) O.D (260/230)O.D (260/230) 총량 (ug)Total amount (ug)
라이신 코팅Lysine coating 116.9116.9 2.082.08 1.821.82 11.6911.69
APTES 코팅APTES coating 110.0110.0 2.062.06 1.801.80 11.0011.00
실시예 3. 플라스미드 DNA 정제단계에서 아민코팅 자성입자의 투입 단계에 따른 비용해성 응집체 제거 효율Example 3 Insoluble Aggregate Removal Efficiency According to Input Step of Amine Coating Magnetic Particles in Plasmid DNA Purification Step
다른 완충액에 넣어서 사용할 경우의 비용해성 응집체의 제거 효율을 알아보기 위해 다음과 같은 실험을 수행하였다. (a) 실시예 1과 같이 아민코팅 자성입자를 중화용액(완충액 3)에 희석하여 사용한 경우, (b) 용해 용액(완충액 2)에 자성입자를 넣어 사용한 경우, (c) 분산 용액(완충액 1)에 자성입자를 넣어 사용한 경우를 비교하였다. 비용해성 응집체에 대한 제거효율을 측정하기 위하여, 상기 완충액에 포함된 아민 코팅 자성입자를 이용한 제거와 원심분리로 제거 후 플라스미드 DNA의 정제 순도를 측정하여 비교하였다. 수용성 아민코팅 자성입자를 상기 단계별 투입하여 플라스미드 정제결과 표 3에 보는바와 같이 수율은 비슷하였으나, 중화용액과 용해용액에 아민자성입자를 넣어서 비용해성 응집체를 제거하는 것이 제일 좋은 결과를 나타내었다.In order to determine the removal efficiency of insoluble aggregates when used in other buffers, the following experiment was performed. (a) When the amine-coated magnetic particles were diluted in a neutralizing solution (buffer 3) and used as in Example 1, (b) When the magnetic particles were used in the dissolving solution (buffer 2), (c) Dispersion solution (buffer 1) ) Was used to compare the use of magnetic particles. In order to measure the removal efficiency of the insoluble aggregates, the purification purity of the plasmid DNA was measured after removal by centrifugation and removal using the amine-coated magnetic particles included in the buffer. As a result of plasmid purification by adding the water-soluble amine-coated magnetic particles as described above, the yield was similar as shown in Table 3, but it was best to remove the insoluble aggregate by adding the amine magnetic particles to the neutralizing solution and the dissolving solution.
-- 원심분리법 Centrifugation 완충액 1Buffer 1 완충액 2 Buffer 2 완충액3Buffer 3
Total DNA yield(ug)Total DNA yield (ug) 10.3510.35 10.5410.54 11.3511.35 11.6111.61
O.D. 260/280 ㎚O.D. 260/280 nm 2.012.01 2.062.06 2.032.03 2.062.06
O.D. 260/230 ㎚O.D. 260/230 nm 1.831.83 1.621.62 1.771.77 1.801.80
실시예 4. 클로로포름 사용 여부에 따른 핵산 정제 순도 향상 결과 비교Example 4. Comparison of Purity of Nucleic Acid Purification with or without Chloroform
플라스미드 정제시 실시예 1에서 클로로포름을 사용하지 않은 경우 분광광도계를 이용한 핵산 정제 수율 및 순도 관찰결과 수율은 비슷하나 260/230 비가 클로로포름 처리한 경우 더 좋은 순도를 나타내었다(표 4).When chloroform was not used in plasmid purification, the yield and purity of the nucleic acid purification using a spectrophotometer were similar, but the yield was similar when the 260/230 ratio was treated with chloroform (Table 4).
-- 농도 (ng/ul)Concentration (ng / ul) O.D.(260/280)O.D. (260/280) O.D.(260/230)O.D. (260/230) 총량(ug)Gross
클로로포름 처리 ×Chloroform Treatment × 111.5111.5 2.032.03 1.601.60 11.1511.15
클로로포름 처리 Chloroform treatment 114.5114.5 2.052.05 1.841.84 11.4511.45
전기영동 결과와 PCR 수행결과 및 제한효소 처리결과에서는 도 3a 및 3b에서 보이는 바와 같이 큰 차이를 보이지 않았다.Electrophoresis and PCR results and restriction enzyme treatment results did not show a significant difference as shown in Figure 3a and 3b.
실시예 5. 대량 배양액에서의 정제 과정Example 5 Purification Process in Mass Culture
상기 실시예 1에서는 소량 배양액(0.5-2 ㎖)의 세포배양액으로부터 플라스미드를 정제하였다. 본 발명에서 개시한 조성물과 방법을 이용하여 50-200 ㎖의 대량 배양액으로부터 세포를 수집 후 실시예 1에서 언급한 방법으로 플라스미드 DNA 정제를 수행하였다. 구체적으로는 고복제수 플라스미드인 pUC19-B1 벡터를 포함한 세포 50-100 ㎖ 배양액에서 세포를 수집하여 2.5 ㎖ 분산 완충액(suspension buffer), 2.5 ㎖ 용해 완충액(lysis buffer), 3 ㎖ 클로로포름, 3.5 ㎖ 아민 코팅 자성체가 포함된 중화 완충액(neutralization buffer + amine coated magnetic nanoparticle)를 실시예 1과 같은 방법으로 처리 후 플라스미드 DNA를 정제하였다(도 4).In Example 1, the plasmid was purified from the cell culture medium in a small amount of culture solution (0.5-2 ml). Plasmid DNA purification was performed by the method described in Example 1 after collecting cells from 50-200 ml of bulk culture using the compositions and methods disclosed herein. Specifically, cells were collected from 50-100 ml culture medium containing the high cloning plasmid pUC19-B1 vector, and then 2.5 ml suspension buffer, 2.5 ml lysis buffer, 3 ml chloroform and 3.5 ml amine. Neutralization buffer containing a coating magnetic material (neutralization buffer + amine coated magnetic nanoparticle) was treated in the same manner as in Example 1 and purified plasmid DNA (Fig. 4).
표 5에서 나타낸 바와 같이 소량 및 대량 배양 세포에서 정제 효율 및 순도에는 큰 차이를 나타내지 않았다.As shown in Table 5, there was no significant difference in purification efficiency and purity in small and large-scale cultured cells.
-- 농도 (ng/ul)Concentration (ng / ul) O.D.(260/280)O.D. (260/280) O.D.(260/230)O.D. (260/230) 총량(ug)Gross
pUC19(2 ㎖ 배양)pUC19 (2 mL culture) 98.798.7 2.012.01 1.851.85 9.879.87
106.9106.9 2.002.00 1.881.88 10.6910.69
pUC19(50 ㎖ 배양)pUC19 (50 ml culture) 108.4108.4 2.032.03 1.921.92 216.8216.8
105.3105.3 2.052.05 1.851.85 210.6210.6
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that such a specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims (8)

  1. 세포 내 플라스미드 DNA 분리를 위한 비용해성 응집체 제거용 아민-코팅 자성 나노입자로, 상기 아민-코팅 자성 나노입자는 자성 나노입자의 표면에 아민기가 기능화된 것을 특징으로 하는 아민-코팅 자성 나노입자.An amine-coated magnetic nanoparticle for removing insoluble aggregates for intracellular plasmid DNA separation, wherein the amine-coated magnetic nanoparticle has an amine group functionalized on the surface of the magnetic nanoparticle.
  2. 제 1 항에 있어서, 상기 세포는 박테리아 또는 효모인 것을 특징으로 하는 아민-코팅 자성 나노입자.The amine-coated magnetic nanoparticle of claim 1, wherein the cell is a bacterium or yeast.
  3. 제 1 항에 있어서, 상기 비용해성 응집체는 단백질 응집체, 세포 잔해물 또는 지노믹(genomic) DNA인 것을 특징으로 하는 아민-코팅 자성 나노입자.2. The amine-coated magnetic nanoparticle of claim 1 wherein the insoluble aggregate is protein aggregate, cell debris or genomic DNA.
  4. 제 1 항에 있어서, 상기 자성 나노입자는 실리카 코팅된 자성 나노입자인 것을 특징으로 하는 아민-코팅 자성 나노입자.2. The amine-coated magnetic nanoparticle of claim 1, wherein the magnetic nanoparticles are silica coated magnetic nanoparticles.
  5. 제 1 항에 있어서, 상기 아민-코팅 자성 나노입자는 세포 현탁물, 세포 용해물 또는 상기 세포 용해물을 중화시켜 비용해성 응집체가 형성된 반응물에 처리되는 것을 특징으로 하는 아민-코팅 자성 나노입자.2. The amine-coated magnetic nanoparticle of claim 1, wherein the amine-coated magnetic nanoparticle is treated with a cell suspension, cell lysate or reactant in which insoluble aggregates are formed by neutralizing the cell lysate.
  6. 제 1 항 내지 제 5 항 중 어느 한 항의 아민-코팅 자성 나노입자를 포함하는 세포 내 플라스미드 DNA 분리용 조성물.An intracellular plasmid DNA separation composition comprising the amine-coated magnetic nanoparticle of any one of claims 1 to 5.
  7. 다음의 단계를 포함하는 비용해성 응집체(insoluble aggregate)의 제거 방법:Methods for removing insoluble aggregates include the following steps:
    (a) 세포의 현탁물, 용해물 또는 상기 용해물을 중화시켜 비용해성 응집체가 형성된 반응물에 제 1 항 내지 제 5 항 중 어느 한 항의 아민-코팅 자성 나노입자를 처리하여, 상기 아민-코팅 자성 나노입자 및 비용해성 응집체의 흡착을 유도하는 단계; 및(a) treating the amine-coated magnetic nanoparticles of any one of claims 1 to 5 with a suspension, lysate of the cells or a reactant in which an insoluble aggregate is formed by neutralizing the lysate. Inducing adsorption of nanoparticles and insoluble aggregates; And
    (b) 자기장을 이용하여 흡착된 비용해성 응집체를 제거하는 단계.(b) using magnetic fields to remove adsorbed insoluble aggregates.
  8. 다음의 단계를 포함하는 세포 내 플라스미드 DNA 분리 방법:Intracellular plasmid DNA isolation method comprising the following steps:
    (a) 플라스미드 DNA를 포함하는 세포 부유물 또는 이의 용해물에 제 1 항 내지 제 5 항 중 어느 한 항의 아민-코팅 자성 나노입자를 처리하여 비용해성 응집체의 흡착을 유도하는 단계;(a) treating the cell suspension comprising plasmid DNA or a lysate thereof with the amine-coated magnetic nanoparticle of any one of claims 1 to 5 to induce adsorption of insoluble aggregates;
    (b) 자기장을 이용하여 흡착된 비용해성 응집체를 제거하는 단계;(b) using a magnetic field to remove the adsorbed insoluble aggregates;
    (c) 실리카-코팅 자성 나노입자를 처리하여 플라스미드 DNA의 흡착을 유도하는 단계; 및(c) treating silica-coated magnetic nanoparticles to induce adsorption of plasmid DNA; And
    (d) 자기장을 이용하여 흡착된 플라스미드 DNA를 분리하는 단계.(d) separating the adsorbed plasmid DNA using a magnetic field.
PCT/KR2017/015682 2017-01-16 2017-12-28 Method and composition for isolating plasmid dna using amine-coated magnetic nanoparticle WO2018131826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170007041A KR102047362B1 (en) 2017-01-16 2017-01-16 Method for Extracting Plasmid DNA Using Amine-coated Magnetic Nanoparticles and Composition Comprising the Same
KR10-2017-0007041 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131826A1 true WO2018131826A1 (en) 2018-07-19

Family

ID=62840469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015682 WO2018131826A1 (en) 2017-01-16 2017-12-28 Method and composition for isolating plasmid dna using amine-coated magnetic nanoparticle

Country Status (2)

Country Link
KR (1) KR102047362B1 (en)
WO (1) WO2018131826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929763A (en) * 2019-02-01 2019-06-25 浙江和谱生物科技有限公司 Microorganism-capturing method and separation method and purposes based on nonimmune effect magnetic material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220018185A (en) 2020-08-06 2022-02-15 주식회사 바이오솔루션 Plasmid DNA extraction method
KR20220018187A (en) 2020-08-06 2022-02-15 주식회사 바이오솔루션 A Kit for Plasmid DNA extraction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718742B1 (en) * 1999-07-02 2004-04-13 Dna Research Innovations Limited Magnetic particle composition
KR20060061494A (en) * 2004-12-02 2006-06-08 요업기술원 Functionalized silica magnetic nanoparticles for separating-purifying nucleic acid(dna/rna) and method for preparing the same
JP2009118858A (en) * 1999-05-14 2009-06-04 Promega Corp Cell concentration and lysate clearance using paramagnetic particles
KR20160000439A (en) * 2014-06-24 2016-01-04 (주)바이오니아 Method for Isolating and Preparing Nucleic Acid Using Magnetic Parcticle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118858A (en) * 1999-05-14 2009-06-04 Promega Corp Cell concentration and lysate clearance using paramagnetic particles
US6718742B1 (en) * 1999-07-02 2004-04-13 Dna Research Innovations Limited Magnetic particle composition
KR20060061494A (en) * 2004-12-02 2006-06-08 요업기술원 Functionalized silica magnetic nanoparticles for separating-purifying nucleic acid(dna/rna) and method for preparing the same
KR20160000439A (en) * 2014-06-24 2016-01-04 (주)바이오니아 Method for Isolating and Preparing Nucleic Acid Using Magnetic Parcticle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, XIAOXIAO: "Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs", TALANTA, 14 September 2007 (2007-09-14), pages 764 - 769, XP022243174 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929763A (en) * 2019-02-01 2019-06-25 浙江和谱生物科技有限公司 Microorganism-capturing method and separation method and purposes based on nonimmune effect magnetic material

Also Published As

Publication number Publication date
KR20180084245A (en) 2018-07-25
KR102047362B1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018131826A1 (en) Method and composition for isolating plasmid dna using amine-coated magnetic nanoparticle
EP1367137B1 (en) Methods of isolating biological target materials using silica magnetic particles
JP4456046B2 (en) Magnetic dye
JP5537894B2 (en) Magnetic dye
Yoza et al. Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer
CN106237947B (en) The magnetic microsphere and preparation method thereof of high density carboxyl modified
US20060078923A1 (en) Method for isolating nucleic acids
US20030235839A1 (en) Solid phase technique for selectively isolating nucleic acids
US20070054285A1 (en) Method for isolating nucleic acids
KR20070062555A (en) Methods for isolating nucleic acids from biological and cellular materials
CN110548489B (en) Preparation method of amino magnetic nanoparticles and application of amino magnetic nanoparticles in DNA extraction
CN112391384B (en) Kit for rapidly extracting genomic DNA of gram-negative bacteria and extraction method
US20050287583A1 (en) Methods and kits for isolating biological target materials using silica magnetic particles
US20050019827A1 (en) Method for unspecific enrichment of bacterial cells
JP2008116265A (en) Carrier, manufacturing method of carrier, and its use
KR20070018501A (en) Silica-coated Magnetite Having Amino Substituents Capable of Seperating and Purifying DNA in a High Purity and Large Scale and a Process for Preparing the Same
WO2009102171A2 (en) Silica magnetic particles having a spherical form and a process for preparing the same
WO2019088527A2 (en) Pathogen lysis and nucleic acid extraction method using zinc oxide nanostar
JP4171522B2 (en) Magnetic carrier for binding nucleic acid and method for producing the same
KR101954082B1 (en) Purification method of plasmid deoxyribonucleic acid
WO2022145980A1 (en) Method for isolating exosomes with high efficiency and high purity
WO2022177326A1 (en) Polymeric material-coated nanoparticle complex for isolation of biological target and preparation method therefor
US20240025759A1 (en) Magnetic nanoparticles for sample separation
RU2382081C2 (en) Method of separating and purifying nucleic acids
CN118421614A (en) Animal tissue genome extraction kit and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890926

Country of ref document: EP

Kind code of ref document: A1