WO2019087912A1 - Head-up display device - Google Patents

Head-up display device Download PDF

Info

Publication number
WO2019087912A1
WO2019087912A1 PCT/JP2018/039604 JP2018039604W WO2019087912A1 WO 2019087912 A1 WO2019087912 A1 WO 2019087912A1 JP 2018039604 W JP2018039604 W JP 2018039604W WO 2019087912 A1 WO2019087912 A1 WO 2019087912A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
light source
wavelength component
display device
Prior art date
Application number
PCT/JP2018/039604
Other languages
French (fr)
Japanese (ja)
Inventor
裕輝 春山
千秋 渋谷
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2019551224A priority Critical patent/JP7287277B2/en
Publication of WO2019087912A1 publication Critical patent/WO2019087912A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a head-up display device.
  • a white LED (Light Emitting Diode) light source that emits white light
  • a lens that substantially collimates light from the white LED light source, and light that has passed through the lens
  • a head-up display device including a liquid crystal display panel to be illuminated.
  • the peripheral portion 90 of light emitted from the white LED light source 119 has a yellowish color compared to the central portion 91. A phenomenon occurs and illumination unevenness occurs.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a head-up display device capable of alleviating the yellow ring phenomenon.
  • the head-up display device is formed in a white light source, a lens through which light from the white light source is transmitted, and the lens, and the incident angle of the light on the lens is large. And a dielectric multilayer film for increasing the reflectance of the red wavelength component and the green wavelength component contained in the light relative to the reflectance of the blue wavelength component contained in the light.
  • the yellow ring phenomenon can be alleviated in the head-up display device.
  • 1 is a schematic view of a vehicle equipped with a head-up display device according to an embodiment of the present invention. It is a typical sectional view of a head up display device concerning one embodiment of the present invention. It is a schematic diagram of the white light source which concerns on one Embodiment of this invention. It is a schematic diagram which shows the light emission surface of a white light source. It is a perspective view of the 1st lens concerning one embodiment of the present invention. They are a top view, a side view, and a front view of the 3rd lens concerning one embodiment of the present invention. It is a figure which shows the optical path of the light from a white light source when the anti-reflective film is formed in the 1st lens which concerns on one Embodiment of this invention.
  • a head-up display device (hereinafter referred to as a HUD device) according to the present invention will be described with reference to the drawings.
  • the X direction coincides with the longitudinal direction of the vehicle
  • the Y direction coincides with the width direction of the vehicle
  • the Z direction coincides with the height direction of the vehicle.
  • the HUD device 10 is installed, for example, in a dashboard of the vehicle 200.
  • the HUD device 10 emits display light L representing an image including vehicle information toward a windshield 201 which is an example of a projection member of the vehicle 200.
  • the viewer 1 (for example, the driver of the vehicle 200) receives the display light L reflected by the windshield 201 and can visually recognize the virtual image V including the vehicle information through the windshield 201.
  • the HUD device 10 includes a display device 11, a concave mirror 20, a housing 30, and a heat dissipation member 40.
  • the housing 30 is formed of a light impermeable resin or a light impermeable metal, and forms a hollow substantially rectangular parallelepiped.
  • the housing 30 has an opening 30a at a position facing the windshield 201 in the Z direction.
  • a curved plate-like window 31 made of a light transmitting resin such as acrylic through which the display light L passes is fitted in the opening 30a.
  • the heat radiating member 40 is fixed to the display device 11 so as to be exposed to the outside of the housing 30.
  • the heat radiating member 40 is formed of, for example, a metal such as aluminum or a heat conductive resin.
  • the heat dissipation member 40 dissipates the heat generated by the display device 11 to the outside.
  • the display device 11 includes an illumination device 11 a and a liquid crystal device 11 b that emits display light L by being illuminated by the illumination device 11 a.
  • the illumination device 11 a includes first to third lenses 21 to 23, a plurality of white light sources 19, a circuit board 16, a first case body 14, and an anti-reflection film (AR coating: Anti Reflection Coating) 28 a, And 28b.
  • AR coating Anti Reflection Coating
  • the circuit board 16 is a printed board formed in a rectangular plate shape. One surface of the circuit board 16 is in surface contact with the heat dissipation member 40, and a plurality of white light sources 19 are mounted on the other surface of the circuit board 16.
  • Each white light source 19 is made of, for example, a surface-mounted white LED and emits substantially white light Lw.
  • the white light sources 19 are arranged in a matrix on the circuit board 16.
  • the white light sources 19 are arranged in a matrix of 2 rows ⁇ 6 columns.
  • the row direction is the Z direction
  • the column direction is the Y direction.
  • the white light source 19 includes a blue light source element 19a which is a blue LED element, a yellow phosphor 19b, and a package 19c.
  • the package 19c is formed of a light impermeable metal or a light impermeable resin, and includes a receiving recess 19d.
  • a white light source 19 is provided on the bottom of the housing recess 19d, and the yellow phosphor 19b is filled in the housing recess 19d.
  • the blue light source element 19a emits blue light to the yellow phosphor 19b.
  • the yellow phosphor 19b generates substantially white light Lw by changing the wavelength of blue light from the blue light source element 19a, and emits the light Lw to the outside.
  • the first case body 14 is formed, for example, of a light impermeable resin in a rectangular cylindrical shape.
  • the first case body 14 holds, in its inner space, a circuit board 16 on which a plurality of white light sources 19 are mounted and first to third lenses 21 to 23.
  • the first to third lenses 21 to 23 are disposed in the order of the first lens 21, the second lens 22 and the third lens 23 from the position close to the white light source 19. Light Lw from the white light source 19 passes through the first to third lenses 21 to 23.
  • the first lens 21 is formed in a rectangular plate shape from a light transmitting resin or a light transmitting glass.
  • the first lens 21 includes an incident surface 21i on which light is incident, and an exit surface 21o from which light transmitted through the first lens 21 in the thickness direction is emitted.
  • the first lens 21 has a plurality of convex lens portions 21 a arranged in a matrix.
  • the convex lens portions 21 a of the first lens 21 are formed in a biconvex lens shape, and are arranged in a 2 ⁇ 6 matrix as in the white light source 19 described above.
  • Each convex lens portion 21 a is positioned to face each white light source 19 so as to receive the light Lw from each white light source 19.
  • each white light source 19 is positioned at the center of each convex lens portion 21 a when viewed from the X direction.
  • Each convex lens portion 21 a has a function of condensing the light emitted from the white light source 19 and substantially collimating the light along the X direction.
  • anti-reflection films 28a and 28b for reducing the yellow ring phenomenon are formed on the incident surface 21i and the output surface 21o of the first lens 21 as described later.
  • the configuration and action of the antireflective films 28a and 28b will be described in detail later.
  • the second lens 22 is formed in a rectangular plate shape by a light transmitting resin or a light transmitting glass. Specifically, the second lens 22 includes an incident surface 22i on which light is incident, and an exit surface 22o from which light having passed through the second lens 22 in the thickness direction is emitted.
  • a plurality (11 in this example) of cylindrical lens portions 22a are formed on the incident surface 22i of the second lens 22.
  • a plurality of (11 in this example) cylindrical lens portions 22 b are formed on the exit surface 22 o of the second lens 22.
  • the cylindrical lens portions 22 a and 22 b extend in a semi-cylindrical shape along the Y direction of the second lens 22 and are arranged along the Z direction of the second lens 22.
  • the incident surface 22i of the second lens 22 has a function of diffusing light in the Z direction by the cylindrical lens portion 22a.
  • the diffusion angle of light can be adjusted based on the pitch and the radius of curvature of the cylindrical lens portions 22 a and 22 b of the second lens 22.
  • the exit surface 22o of the second lens 22 has a function of adjusting the diffusion angle of light which is not completely parallelized by the cylindrical lens portion 22b.
  • the third lens 23 is formed in a rectangular plate shape by a light transmitting resin or a light transmitting glass. Specifically, the third lens 23 includes an incident surface 23i on which light is incident, and an exit surface 23o from which light having passed through the inside of the third lens 23 in the thickness direction is emitted.
  • a plurality (16 in this example) of cylindrical lens portions 23a are formed on the incident surface 23i of the third lens 23 .
  • the cylindrical lens portions 23 a extend in a semi-cylindrical shape along the Z direction of the third lens 23 and are arranged along the Y direction of the third lens 23.
  • the incident surface 23i of the third lens 23 has a function of diffusing light in the Y direction by the cylindrical lens portion 23a.
  • the exit surface 23 o of the third lens 23 is formed of a concave toroidal surface so as to diffuse light in accordance with the liquid crystal display panel 18 described later. That is, the exit surface 23 o of the third lens 23 is formed with a concave curved surface along the Z direction and the Y direction of the third lens 23.
  • the exit surface 23 o of the third lens 23 has a function of diffusing light so as to illuminate the entire area of the liquid crystal display panel 18 described later.
  • the liquid crystal device 11 b includes a liquid crystal display panel 18, a light diffusion member 17, and a second case body 15.
  • the second case body 15 is formed of a light impermeable resin, and holds the light diffusion member 17 and the liquid crystal display panel 18.
  • the second case body 15 is formed in a rectangular frame shape surrounding the light diffusing member 17 and the liquid crystal display panel 18.
  • the light diffusion member 17 and the liquid crystal display panel 18 respectively extend along the YZ plane and face each other.
  • the light diffusion member 17 is provided at a position close to the third lens 23, and the liquid crystal display panel 18 is provided at a position facing the concave mirror 20 in the X direction.
  • the liquid crystal display panel 18 is configured of, for example, a TFT (Thin Film Transistor) type liquid crystal display panel.
  • the liquid crystal display panel 18 is switched to either the transmissive state or the non-transmissive state for each pixel under the control of a control unit (not shown). Thereby, the liquid crystal display panel 18 receives the light transmitted through the third lens 23 and emits the display light L according to the image.
  • TFT Thin Film Transistor
  • the light diffusion member 17 includes a base made of a light transmitting resin (not shown) and a light diffusion portion formed on the base and embossed.
  • the concave mirror 20 magnifies the image represented by the display light L while reflecting the display light L from the display device 11, and irradiates the magnified image on the windshield 201.
  • the concave mirror 20 includes a holder (not shown) made of resin such as polycarbonate, and a reflection layer formed on the holder made of metal such as aluminum.
  • the following three causes (a) to (c) can be mainly considered as the causes of occurrence of the yellow ring phenomenon described in the above background art.
  • the anti-reflection films 28 a and 28 b are formed on the first lens 21 to alleviate the yellow ring phenomenon.
  • the light emitting surface 19s of the white light source 19 is formed on the outer periphery of the white region 19w from which the light B1 which is white light is emitted and the white region 19w, and the light B2 which is yellow light is emitted. It divides into yellow area 19y.
  • a yellow ring phenomenon occurs in which the peripheral portion 90 of the light emitted from each white light source 19 has a yellowish color than the central portion 91.
  • (C) Dispersion of light by lens The light passing through the inside of the lens has a different refractive index depending on the wavelength of the light, so the optical path differs for each wavelength of light. This property of light is called light dispersion.
  • the red wavelength component Lr and green of the light Lw The wavelength component Lg is directed to the peripheral portion of the convex lens portion 121a compared to the blue wavelength component Lb. For this reason, a yellow ring phenomenon occurs in which the peripheral edge portion of the convex lens portion 121a is yellow formed by the red wavelength component Lr and the green wavelength component Lg. This is the end of the description of the cause of the yellow ring phenomenon.
  • An antireflection film 28 a is formed on the incident surface 21 i of the first lens 21, and an antireflection film 28 b is formed on the emission surface 21 o of the first lens 21.
  • the anti-reflection films 28 a and 28 b indicate that the red light Lw from the white light source 19 becomes red as the incident angle ⁇ of the light Lw to the incident surface 21 i of the first lens 21 increases.
  • the derivative multilayer film has a property that the reflectances of the wavelength component Lr and the green wavelength component Lg increase relative to the reflectance of the blue wavelength component Lb in the light Lw.
  • the red wavelength component Lr has a wavelength of 610 nm
  • the green wavelength component Lg has a wavelength of 560 nm
  • the blue wavelength component Lb has a wavelength of 470 nm.
  • the incident angle ⁇ of the light Lw is an angle formed by the incident light ray direction of the light Lw and the normal direction of the incident surface 21 i of the first lens 21. Therefore, as the incident angle ⁇ of the light Lw is larger, the center of the convex lens portion 21a is closer to the peripheral portion. Therefore, due to the properties of the antireflective films 28a and 28b described above, the red wavelength component Lr and the green wavelength component are formed by the antireflective films 28a and 28b at positions where the incident angle .alpha. Lg is likely to be reflected at the convex lens portion 21 a and to be hard to transmit. As a result, the yellow light intensity generated by the red wavelength component Lr and the green wavelength component Lg in the peripheral portion of the convex lens portion 21a is reduced, and the yellow ring phenomenon can be alleviated.
  • This blue shift means that the wavelength P at which the reflectance becomes minimum shifts to the short wavelength side, that is, to the blue side as the incident angle ⁇ of the light Lw increases.
  • the reflectance with respect to the wavelength is indicated by the curve C1 indicated by the solid line in FIG. 10 and in the case of the second incident angle ⁇ 2 larger than the first incident angle ⁇ 1
  • the reflectance with respect to wavelength is indicated by a curve C2 indicated by a broken line in FIG.
  • the reflectance of the blue wavelength component Lb is smaller than the reflectance of the red wavelength component Lr and the reflectance of the green wavelength component Lg at a position where the incident angle ⁇ of the light Lw is increased, that is, at the peripheral portion of the convex lens portion 21a.
  • the reflectance of the red wavelength component Lr and the green wavelength component Lg can be made larger than the reflectance of the blue wavelength component Lb. For this reason, as described above, the yellow ring phenomenon can be alleviated.
  • the dielectric multilayer film has a spectral characteristic of 2% or less.
  • the ratio of reflectance per surface at an incident angle ⁇ of 5 ° or less is 1, the range of wavelengths of 400 to 700 nm is assumed to be 1.
  • a dielectric multilayer film having a spectral characteristic in which the range of 2 is 2 is preferable. Thereby, the yellow ring phenomenon can be alleviated.
  • this spectral characteristic is an example, and the antireflection films 28a and 28b may have spectral characteristics different from this spectral characteristic as long as the yellow ring phenomenon can be alleviated.
  • the HUD device 10 includes the white light source 19, the first lens 21 through which the light Lw from the white light source 19 passes, and the first lens 21, and the light Lw is incident on the first lens 21.
  • Antireflection that is a dielectric multilayer film that increases the reflectance of the red wavelength component Lr and the green wavelength component Lg contained in the light Lw with respect to the reflectance of the blue wavelength component Lb contained in the light Lw as the angle ⁇ becomes larger And a membrane 28a, 28b. According to this configuration, the reflectances of the red wavelength component Lr and the green wavelength component Lg forming the yellow light of the peripheral portion 90 in the yellow ring phenomenon shown in FIG.
  • the antireflective films 28a and 28b reflect the blue wavelength component Lb It is increased relative to the rate. Thereby, the light intensities of the red wavelength component Lr and the green wavelength component Lg are weakened, and the color of the peripheral portion 90 can be made close to the color of the central portion 91. Thus, the yellow ring phenomenon can be alleviated. Further, since only the anti-reflection films 28a and 28b are formed on the first lens 21, there is no need to add an optical element such as a lens to alleviate the yellow ring phenomenon, and the yellow ring can be formed by a simple configuration. The phenomenon can be mitigated.
  • the HUD device 10 includes the first to third lenses 21 to 23 including the first lens 21, and the first lens 21 on which the anti-reflection films 28a and 28b are formed is the first to third lenses.
  • the lens 21 to 23 are provided at the position closest to the white light source 19. According to this configuration, it is possible to further alleviate the yellow ring phenomenon.
  • the white light source 19 includes a blue light source element 19a that emits blue light, and a yellow phosphor 19b that generates white light by transmitting blue light from the blue light source element 19a.
  • the yellow ring phenomenon tends to be remarkable due to (a) and (b) of the causes of the occurrence of the above-mentioned yellow ring phenomenon. Therefore, in this situation, it is particularly useful to reduce the yellow ring phenomenon by the antireflective films 28a and 28b.
  • the first lens 21 includes a plurality of convex lens portions 21a disposed adjacent to each other, and the plurality of white light sources 19 are positioned to face the plurality of convex lens portions 21a. If the anti-reflection films 28a and 28b are not formed on the first lens 21, the peripheral portion 21o of the light emitted from each of the convex lens portions 21a is the central portion 21c of the light as shown in FIG. More yellowish.
  • peripheral edge portions 21o having a yellowish color are formed by the number of the convex lens portions 21a, and at least a part of the peripheral edge portions 21o adjacent to one another overlap one another.
  • the HUD device 10 projects the display light L and the liquid crystal display panel 18 that emits the display light L by being illuminated by the light Lw from the white light source 19 that has passed through the first to third lenses 21 to 23. And a concave mirror 20 that reflects toward a windshield 201, which is an example of a member.
  • the concave mirror 20 enlarges the light including the yellowish peripheral edge 21 o according to the yellow ring phenomenon and displays the light as a virtual image V.
  • the HUD device 10 is configured to easily reduce the visibility of the virtual image V due to the yellow ring phenomenon, it is particularly useful to reduce the yellow ring phenomenon by the antireflective films 28 a and 28 b.
  • the anti-reflection films 28a and 28b are formed on the entrance surface 21i and the exit surface 21o of the first lens 21, respectively. According to this configuration, the red wavelength component Lr and the green wavelength component Lg are higher in reflectance than the blue wavelength component Lb at two locations, the antireflective film 28a on the incident surface 21i and the antireflective film 28b on the output surface 21o. It is reflected. For this reason, compared with the case where the anti-reflection film is formed on any one of the light incident surface 21i and the light emission surface 21o of the first lens 21, the yellow ring phenomenon can be further alleviated.
  • antireflection films 28a and 28b were formed in the 1st lens 21, the lens in which an antireflection film is formed is not restricted to the 1st lens 21, but the 2nd lens 22 or the 1st A third lens 23 may be used.
  • an anti-reflection film may be formed on any two of the first to third lenses 21 to 23 or an anti-reflection film is formed on all of the first to third lenses 21 to 23. It is also good.
  • the anti-reflection films 28a and 28b are formed on the entrance surface 21i and the exit surface 21o of the first lens 21 in the above embodiment, even if one of the two anti-reflection films 28a and 28b is omitted. Good.
  • the antireflective film may be formed on either the incident surface or the exit surface, or the antireflective film may be formed on both the incident surface and the exit surface. You may form.
  • forming in an output surface is preferable.
  • the white light source 19 is a surface mounted white LED.
  • the white light source 19 may be another type of LED such as a shell type or chip on board type.
  • the white light source 19 is an LED, it may be another light source such as an incandescent lamp. Even when the white light source 19 is of a type other than a surface mount type white LED, a yellow ring is generated due to the cause (c) of the generation of the yellow ring phenomenon described above.
  • the HUD device 10 and the illumination device 11a include the first to third lenses 21 to 23.
  • the second lens 22 and the third lens 23 may be omitted.
  • the light diffusion member 17 may be omitted.
  • the shapes of the first to third lenses 21 to 23 in the above embodiment can be changed as appropriate.
  • the cylindrical lens portion 22b formed on the exit surface 22o of the second lens 22 may be omitted, and the exit surface 22o may be formed in a planar shape.
  • the exit surface of the third lens 23 may have a convex lens shape, a free curved surface shape, a simple spherical surface shape, a cylindrical surface shape, or an aspheric surface shape.
  • the convex lens portion 21 a of the first lens 21 is formed in a biconvex lens shape, but may be formed in a plano-convex lens shape or a Fresnel lens shape.
  • the concave mirror 20 in the above embodiment may be omitted.
  • the display light L from the display device 11 may be directly irradiated to the projection member (for example, the windshield 201).
  • the HUD device 10 may further include a relay member formed of a plane mirror or the like that reflects the display light L from the display device 11 toward the concave mirror 20.
  • the HUD device 10 is mounted on the vehicle 200 in the above embodiment, the HUD device 10 may be mounted on a vehicle other than a vehicle, such as an airplane or a ship.
  • the HUD device 10 irradiates the display light L to the windshield 201, the display light L may be irradiated to a dedicated combiner as a projection member.
  • the liquid crystal display panel 18 in the above embodiment is not limited to the TFT type, and may be a segment type.
  • HUD device 11 display device 11 a lighting device 11 b liquid crystal device 14 first case body 15 second case body 16 circuit board 17 light diffusion member 18 liquid crystal display panel 19 white light source 19 a blue light source element 19b yellow phosphor 19c package 19d accommodation recess 20 concave mirror 21 first lens 21a, 121a convex lens portion 21i, 22i, 23i entrance surface 21o, 22o, 23o exit surface 22 second lens 23 third lens 28a, 28b reflection prevention Film ⁇ Incident angle Lb Blue wavelength component Lg Green wavelength component Lr Red wavelength component

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

The present invention provides a head-up display device capable of mitigating the yellow ring phenomenon. The head-up display device comprises: a white light source 19; a first lens 21 through which light Lw from the white light source 19 is transmitted; and antireflection films 28a, 28b that are provided on the first lens 21 as a dielectric multilayer film that increases the reflectance of a red wavelength component Lr and a green wavelength component Lg included in the light Lw relative to the reflectance of a blue wavelength component Lb included in the light Lw with an increase in the incident angle α of the light Lw incident on the first lens 21.

Description

ヘッドアップディスプレイ装置Head-up display device
 本発明は、ヘッドアップディスプレイ装置に関する。 The present invention relates to a head-up display device.
 従来から、例えば、特許文献1に記載されるように、白色の光を出射する白色LED(Light Emitting Diode)光源と、白色LED光源からの光を略平行化するレンズと、レンズを経た光により照明される液晶表示パネルと、を備えるヘッドアップディスプレイ装置が知られている。 Conventionally, for example, as described in Patent Document 1, a white LED (Light Emitting Diode) light source that emits white light, a lens that substantially collimates light from the white LED light source, and light that has passed through the lens There is known a head-up display device including a liquid crystal display panel to be illuminated.
特開2016-218391号公報JP, 2016-218391, A
 しかしながら、上記特許文献1の構成では、後述する種々の原因により、図12に示すように、白色LED光源119から出射された光の周縁部90が中心部91に比べて黄色味を帯びるイエローリング現象が生じて照明ムラとなる。 However, in the configuration of Patent Document 1, due to various causes to be described later, as shown in FIG. 12, the peripheral portion 90 of light emitted from the white LED light source 119 has a yellowish color compared to the central portion 91. A phenomenon occurs and illumination unevenness occurs.
 本発明は、上記実状を鑑みてなされたものであり、イエローリング現象を緩和できるヘッドアップディスプレイ装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a head-up display device capable of alleviating the yellow ring phenomenon.
 上記目的を達成するため、本発明に係るヘッドアップディスプレイ装置は、白色光源と、前記白色光源からの光が透過するレンズと、前記レンズに形成され、前記光の前記レンズへの入射角度が大きくなるにつれて、前記光に含まれる赤色波長成分及び緑色波長成分の反射率を前記光に含まれる青色波長成分の反射率に対して増加させる誘電体多層膜と、を備える。 In order to achieve the above object, the head-up display device according to the present invention is formed in a white light source, a lens through which light from the white light source is transmitted, and the lens, and the incident angle of the light on the lens is large. And a dielectric multilayer film for increasing the reflectance of the red wavelength component and the green wavelength component contained in the light relative to the reflectance of the blue wavelength component contained in the light.
 本発明によれば、ヘッドアップディスプレイ装置において、イエローリング現象を緩和することができる。 According to the present invention, the yellow ring phenomenon can be alleviated in the head-up display device.
本発明の一実施形態に係るヘッドアップディスプレイ装置が搭載された車両の模式図である。1 is a schematic view of a vehicle equipped with a head-up display device according to an embodiment of the present invention. 本発明の一実施形態に係るヘッドアップディスプレイ装置の模式的な断面図である。It is a typical sectional view of a head up display device concerning one embodiment of the present invention. 本発明の一実施形態に係る白色光源の模式図である。It is a schematic diagram of the white light source which concerns on one Embodiment of this invention. 白色光源の発光面を示す模式図である。It is a schematic diagram which shows the light emission surface of a white light source. 本発明の一実施形態に係る第1のレンズの斜視図である。It is a perspective view of the 1st lens concerning one embodiment of the present invention. 本発明の一実施形態に係る第3のレンズの平面図、側面図及び正面図である。They are a top view, a side view, and a front view of the 3rd lens concerning one embodiment of the present invention. 本発明の一実施形態に係る第1のレンズに反射防止膜が形成されている場合の白色光源からの光の光路を示す図である。It is a figure which shows the optical path of the light from a white light source when the anti-reflective film is formed in the 1st lens which concerns on one Embodiment of this invention. レンズに反射防止膜が形成されていない場合の白色光源からの光の光路を示す図である。It is a figure which shows the optical path of the light from a white light source when the anti-reflective film is not formed in the lens. 本発明の一実施形態に係る反射防止膜における波長と反射率との関係を示すグラフである。It is a graph which shows the relationship of the wavelength and reflectance in the anti-reflective film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る入射角度が変化した場合の波長と反射率との関係を模式的に示すグラフである。It is a graph which shows typically the relationship between the wavelength at the time of the incident angle which concerns on one Embodiment of this invention changing, and a reflectance. 本発明の一実施形態に係る反射防止膜における光の入射角度と各色成分の反射率との関係を示すグラフである。It is a graph which shows the relationship of the incident angle of the light in the anti-reflective film concerning one Embodiment of this invention, and the reflectance of each color component. イエローリング現象を示す模式図である。It is a schematic diagram which shows the yellow ring phenomenon. 第1のレンズの各凸レンズ部のイエローリング現象を示す模式図である。It is a schematic diagram which shows the yellow ring phenomenon of each convex lens part of a 1st lens.
 本発明に係るヘッドアップディスプレイ装置(以下、HUD装置と呼ぶ)の一実施形態について、図面を参照して説明する。以下では、X方向は車両の前後方向に一致し、Y方向は車両の幅方向に一致し、Z方向は車両の高さ方向に一致する。 One embodiment of a head-up display device (hereinafter referred to as a HUD device) according to the present invention will be described with reference to the drawings. Hereinafter, the X direction coincides with the longitudinal direction of the vehicle, the Y direction coincides with the width direction of the vehicle, and the Z direction coincides with the height direction of the vehicle.
 図1に示すように、HUD装置10は、例えば、車両200のダッシュボード内に設置される。HUD装置10は、車両200の投射部材の一例であるフロントガラス201に向けて車両情報を含む画像を表す表示光Lを出射する。視認者1(例えば車両200の運転者)は、フロントガラス201を反射した表示光Lを受けることによりフロントガラス201を通して車両情報を含む虚像Vを視認可能となる。 As shown in FIG. 1, the HUD device 10 is installed, for example, in a dashboard of the vehicle 200. The HUD device 10 emits display light L representing an image including vehicle information toward a windshield 201 which is an example of a projection member of the vehicle 200. The viewer 1 (for example, the driver of the vehicle 200) receives the display light L reflected by the windshield 201 and can visually recognize the virtual image V including the vehicle information through the windshield 201.
 図2に示すように、HUD装置10は、表示装置11と、凹面鏡20と、ハウジング30と、放熱部材40と、を備える。 As shown in FIG. 2, the HUD device 10 includes a display device 11, a concave mirror 20, a housing 30, and a heat dissipation member 40.
 ハウジング30は、光不透過性樹脂又は光不透過性金属で形成されるとともに、中空の略直方体をなす。ハウジング30は、Z方向においてフロントガラス201に対向する位置に開口部30aが形成されている。この開口部30aには、表示光Lが通過するアクリルなどの光透過性樹脂からなる湾曲板状の窓部31が嵌め込まれている。 The housing 30 is formed of a light impermeable resin or a light impermeable metal, and forms a hollow substantially rectangular parallelepiped. The housing 30 has an opening 30a at a position facing the windshield 201 in the Z direction. A curved plate-like window 31 made of a light transmitting resin such as acrylic through which the display light L passes is fitted in the opening 30a.
 放熱部材40は、ハウジング30の外部に露出するように表示装置11に固定されている。放熱部材40は、例えばアルミニウム等の金属又は熱伝導性樹脂により形成される。放熱部材40は、表示装置11が発する熱を外部に放出する。 The heat radiating member 40 is fixed to the display device 11 so as to be exposed to the outside of the housing 30. The heat radiating member 40 is formed of, for example, a metal such as aluminum or a heat conductive resin. The heat dissipation member 40 dissipates the heat generated by the display device 11 to the outside.
 表示装置11は、照明装置11aと、照明装置11aにより照明されることにより表示光Lを出射する液晶装置11bと、を備える。
 照明装置11aは、第1~第3のレンズ21~23と、複数の白色光源19と、回路基板16と、第1のケース体14と、反射防止膜(ARコーティング:Anti Reflection Coating)28a,28bと、を備える。
The display device 11 includes an illumination device 11 a and a liquid crystal device 11 b that emits display light L by being illuminated by the illumination device 11 a.
The illumination device 11 a includes first to third lenses 21 to 23, a plurality of white light sources 19, a circuit board 16, a first case body 14, and an anti-reflection film (AR coating: Anti Reflection Coating) 28 a, And 28b.
 回路基板16は、長方形板状に形成されるプリント基板である。回路基板16の一方の面は放熱部材40に面接触し、回路基板16の他方の面には複数の白色光源19が実装されている。 The circuit board 16 is a printed board formed in a rectangular plate shape. One surface of the circuit board 16 is in surface contact with the heat dissipation member 40, and a plurality of white light sources 19 are mounted on the other surface of the circuit board 16.
 各白色光源19は、例えば、表面実装型の白色LEDからなり、ほぼ白色の光Lwを出射する。白色光源19は、回路基板16上に、マトリックス状に配置されている。本例では、白色光源19は、2行×6列のマトリックス状に配置される。なお、本例では、行方向はZ方向であり、列方向はY方向である。 Each white light source 19 is made of, for example, a surface-mounted white LED and emits substantially white light Lw. The white light sources 19 are arranged in a matrix on the circuit board 16. In the present example, the white light sources 19 are arranged in a matrix of 2 rows × 6 columns. In this example, the row direction is the Z direction, and the column direction is the Y direction.
 図3に示すように、白色光源19は、青色LED素子である青色光源素子19aと、黄色蛍光体19bと、パッケージ19cと、を備える。パッケージ19cは、光不透過性金属又は光不透過性樹脂により形成され、収容凹部19dを備える。収容凹部19dの底面には、白色光源19が設けられ、収容凹部19d内には黄色蛍光体19bが充填されている。青色光源素子19aは、青色光を黄色蛍光体19bに出射する。黄色蛍光体19bは、青色光源素子19aからの青色光の波長を変化させることによりほぼ白色の光Lwを生成し、その光Lwを外部に放射する。 As shown in FIG. 3, the white light source 19 includes a blue light source element 19a which is a blue LED element, a yellow phosphor 19b, and a package 19c. The package 19c is formed of a light impermeable metal or a light impermeable resin, and includes a receiving recess 19d. A white light source 19 is provided on the bottom of the housing recess 19d, and the yellow phosphor 19b is filled in the housing recess 19d. The blue light source element 19a emits blue light to the yellow phosphor 19b. The yellow phosphor 19b generates substantially white light Lw by changing the wavelength of blue light from the blue light source element 19a, and emits the light Lw to the outside.
 図2に示すように、第1のケース体14は、例えば、光不透過性樹脂にて長方形の筒状に形成される。第1のケース体14は、その内部空間に複数の白色光源19が実装された回路基板16と第1~第3のレンズ21~23を保持する。 As shown in FIG. 2, the first case body 14 is formed, for example, of a light impermeable resin in a rectangular cylindrical shape. The first case body 14 holds, in its inner space, a circuit board 16 on which a plurality of white light sources 19 are mounted and first to third lenses 21 to 23.
 第1~第3のレンズ21~23は、白色光源19に近い位置から第1のレンズ21、第2のレンズ22及び第3のレンズ23の順で設置される。白色光源19からの光Lwは、第1~第3のレンズ21~23を透過する。 The first to third lenses 21 to 23 are disposed in the order of the first lens 21, the second lens 22 and the third lens 23 from the position close to the white light source 19. Light Lw from the white light source 19 passes through the first to third lenses 21 to 23.
 詳しくは、第1のレンズ21は、光透過性樹脂又は光透過性ガラスにより長方形板状に形成されている。第1のレンズ21は、光が入射する入射面21iと、第1のレンズ21をその厚さ方向に透過した光を出射する出射面21oと、を備える。第1のレンズ21には、マトリックス状に配置された複数の凸レンズ部21aが形成されている。 Specifically, the first lens 21 is formed in a rectangular plate shape from a light transmitting resin or a light transmitting glass. The first lens 21 includes an incident surface 21i on which light is incident, and an exit surface 21o from which light transmitted through the first lens 21 in the thickness direction is emitted. The first lens 21 has a plurality of convex lens portions 21 a arranged in a matrix.
 図5に示すように、第1のレンズ21の凸レンズ部21aは、両凸レンズ状に形成されるとともに、上述した白色光源19と同様に2行×6列のマトリックス状に配置されている。各凸レンズ部21aは、各白色光源19からの光Lwを受けるように、各白色光源19に対向して位置する。図13に示すように、X方向から見て、各凸レンズ部21aの中央に各白色光源19が位置する。各凸レンズ部21aは、白色光源19から出射される光を集光するとともに、光をX方向に沿うように略平行化する機能を有する。 As shown in FIG. 5, the convex lens portions 21 a of the first lens 21 are formed in a biconvex lens shape, and are arranged in a 2 × 6 matrix as in the white light source 19 described above. Each convex lens portion 21 a is positioned to face each white light source 19 so as to receive the light Lw from each white light source 19. As shown in FIG. 13, each white light source 19 is positioned at the center of each convex lens portion 21 a when viewed from the X direction. Each convex lens portion 21 a has a function of condensing the light emitted from the white light source 19 and substantially collimating the light along the X direction.
 図2に示すように、第1のレンズ21における入射面21i及び出射面21oには、後述するようにイエローリング現象を緩和する反射防止膜28a,28bが形成されている。反射防止膜28a,28bの構成及び作用については後で詳述する。 As shown in FIG. 2, anti-reflection films 28a and 28b for reducing the yellow ring phenomenon are formed on the incident surface 21i and the output surface 21o of the first lens 21 as described later. The configuration and action of the antireflective films 28a and 28b will be described in detail later.
 第2のレンズ22は、光透過性樹脂又は光透過性ガラスにより長方形板状に形成される。詳しくは、第2のレンズ22は、光が入射する入射面22iと、第2のレンズ22をその厚さ方向に通過した光が出射する出射面22oとを備える。 The second lens 22 is formed in a rectangular plate shape by a light transmitting resin or a light transmitting glass. Specifically, the second lens 22 includes an incident surface 22i on which light is incident, and an exit surface 22o from which light having passed through the second lens 22 in the thickness direction is emitted.
 第2のレンズ22の入射面22iには、複数(本例では11個)のシリンドリカルレンズ部22aが形成されている。第2のレンズ22の出射面22oには、複数(本例では11個)のシリンドリカルレンズ部22bが形成されている。各シリンドリカルレンズ部22a,22bは、第2のレンズ22のY方向に沿って半円柱状に延出し、第2のレンズ22のZ方向に沿って配列されている。
 第2のレンズ22の入射面22iは、そのシリンドリカルレンズ部22aによって、光をZ方向に拡散する機能を有する。第2のレンズ22のシリンドリカルレンズ部22a,22bのピッチ及び曲率半径に基づき、光の拡散角度を調整することができる。また、第2のレンズ22の出射面22oは、そのシリンドリカルレンズ部22bによって、完全に平行化されていない光の拡散角度を調整する機能を有する。
On the incident surface 22i of the second lens 22, a plurality (11 in this example) of cylindrical lens portions 22a are formed. A plurality of (11 in this example) cylindrical lens portions 22 b are formed on the exit surface 22 o of the second lens 22. The cylindrical lens portions 22 a and 22 b extend in a semi-cylindrical shape along the Y direction of the second lens 22 and are arranged along the Z direction of the second lens 22.
The incident surface 22i of the second lens 22 has a function of diffusing light in the Z direction by the cylindrical lens portion 22a. The diffusion angle of light can be adjusted based on the pitch and the radius of curvature of the cylindrical lens portions 22 a and 22 b of the second lens 22. Further, the exit surface 22o of the second lens 22 has a function of adjusting the diffusion angle of light which is not completely parallelized by the cylindrical lens portion 22b.
 第3のレンズ23は、光透過性樹脂又は光透過性ガラスにより長方形板状に形成される。詳しくは、第3のレンズ23は、光が入射する入射面23iと、第3のレンズ23の内部をその厚さ方向に通過した光が出射する出射面23oと、を備える。 The third lens 23 is formed in a rectangular plate shape by a light transmitting resin or a light transmitting glass. Specifically, the third lens 23 includes an incident surface 23i on which light is incident, and an exit surface 23o from which light having passed through the inside of the third lens 23 in the thickness direction is emitted.
 図6に示すように、第3のレンズ23の入射面23iには、複数(本例では16個)のシリンドリカルレンズ部23aが形成されている。シリンドリカルレンズ部23aは、第3のレンズ23のZ方向に沿って半円柱状で延出するとともに、第3のレンズ23のY方向に沿って配列されている。第3のレンズ23の入射面23iは、そのシリンドリカルレンズ部23aによって光をY方向に拡散する機能を有する。 As shown in FIG. 6, on the incident surface 23i of the third lens 23, a plurality (16 in this example) of cylindrical lens portions 23a are formed. The cylindrical lens portions 23 a extend in a semi-cylindrical shape along the Z direction of the third lens 23 and are arranged along the Y direction of the third lens 23. The incident surface 23i of the third lens 23 has a function of diffusing light in the Y direction by the cylindrical lens portion 23a.
 第3のレンズ23の出射面23oは、後述する液晶表示パネル18に合わせて光を拡散可能に凹トロイダル面で形成されている。すなわち、第3のレンズ23の出射面23oには、第3のレンズ23のZ方向及びY方向に沿って凹状の曲面が形成されている。第3のレンズ23の出射面23oは、後述する液晶表示パネル18全域を照明するように光を拡散する機能を有する。 The exit surface 23 o of the third lens 23 is formed of a concave toroidal surface so as to diffuse light in accordance with the liquid crystal display panel 18 described later. That is, the exit surface 23 o of the third lens 23 is formed with a concave curved surface along the Z direction and the Y direction of the third lens 23. The exit surface 23 o of the third lens 23 has a function of diffusing light so as to illuminate the entire area of the liquid crystal display panel 18 described later.
 図2に示すように、液晶装置11bは、液晶表示パネル18と、光拡散部材17と、第2のケース体15と、を備える。
 第2のケース体15は、光不透過性樹脂により形成され、光拡散部材17及び液晶表示パネル18を保持する。第2のケース体15は、光拡散部材17及び液晶表示パネル18の周囲を囲む長方形の枠状に形成されている。
As shown in FIG. 2, the liquid crystal device 11 b includes a liquid crystal display panel 18, a light diffusion member 17, and a second case body 15.
The second case body 15 is formed of a light impermeable resin, and holds the light diffusion member 17 and the liquid crystal display panel 18. The second case body 15 is formed in a rectangular frame shape surrounding the light diffusing member 17 and the liquid crystal display panel 18.
 光拡散部材17及び液晶表示パネル18は、それぞれYZ平面に沿って延出し、互いに対面する。光拡散部材17は、第3のレンズ23に近い位置に設けられ、液晶表示パネル18は、X方向において凹面鏡20に対向する位置に設けられている。 The light diffusion member 17 and the liquid crystal display panel 18 respectively extend along the YZ plane and face each other. The light diffusion member 17 is provided at a position close to the third lens 23, and the liquid crystal display panel 18 is provided at a position facing the concave mirror 20 in the X direction.
 液晶表示パネル18は、例えば、TFT(Thin Film Transistor)型の液晶表示パネルにより構成される。液晶表示パネル18は、図示しない制御部による制御のもと、その画素毎に透過状態及び不透過状態の何れかに切り替える。これにより、液晶表示パネル18は、第3のレンズ23を透過した光を受けて、画像に応じた表示光Lを出射する。 The liquid crystal display panel 18 is configured of, for example, a TFT (Thin Film Transistor) type liquid crystal display panel. The liquid crystal display panel 18 is switched to either the transmissive state or the non-transmissive state for each pixel under the control of a control unit (not shown). Thereby, the liquid crystal display panel 18 receives the light transmitted through the third lens 23 and emits the display light L according to the image.
 光拡散部材17は、何れも図示しない、光透過性樹脂からなる基材と、この基材に形成されシボ加工された光拡散部と、を備える。 The light diffusion member 17 includes a base made of a light transmitting resin (not shown) and a light diffusion portion formed on the base and embossed.
 凹面鏡20は、表示装置11からの表示光Lを反射させつつ表示光Lが表す像を拡大し、その拡大した像をフロントガラス201に照射する。凹面鏡20は、何れも図示しない、例えばポリカーボネート等の樹脂からなるホルダと、そのホルダに形成され例えばアルミニウム等の金属からなる反射層とを備える。 The concave mirror 20 magnifies the image represented by the display light L while reflecting the display light L from the display device 11, and irradiates the magnified image on the windshield 201. The concave mirror 20 includes a holder (not shown) made of resin such as polycarbonate, and a reflection layer formed on the holder made of metal such as aluminum.
 上記背景技術においても説明したイエローリング現象の発生原因としては主に下記の(a)~(c)の3つの原因が考えられる。本実施形態では、第1のレンズ21に反射防止膜28a,28bが形成されることにより、イエローリング現象を緩和している。 The following three causes (a) to (c) can be mainly considered as the causes of occurrence of the yellow ring phenomenon described in the above background art. In the present embodiment, the anti-reflection films 28 a and 28 b are formed on the first lens 21 to alleviate the yellow ring phenomenon.
 (a)光の黄色蛍光体19bの通過距離に応じた色ムラ
 図3に示すように、青色光源素子19aの出射角度が大きくなるにつれて青色光源素子19aからの光が黄色蛍光体19bを通過する距離Dが長くなり、この距離Dが長くなるにつれて黄色蛍光体19bから出射される光Lwの色が黄色に近くなる。これにより、図12に示すように、各白色光源19から照射される光の周縁部90が中心部91よりも黄色味を帯びるイエローリング現象が生じる。
(A) Color Unevenness According to the Travel Distance of Yellow Phosphor 19b of Light As shown in FIG. 3, light from blue light source 19a passes through yellow phosphor 19b as the emission angle of blue light source 19a increases. As the distance D becomes longer and the distance D becomes longer, the color of the light Lw emitted from the yellow phosphor 19 b becomes closer to yellow. As a result, as shown in FIG. 12, a yellow ring phenomenon occurs in which the peripheral portion 90 of the light emitted from each white light source 19 has a yellowish color than the central portion 91.
 (b)白色光源19の発光面の色ムラ
 図3に示すように、青色光源素子19aから出射される光B1は、黄色蛍光体19b内において反射することなく黄色蛍光体19bから出射される。この光B1は白色光となる。一方、青色光源素子19aから出射される光B2は、黄色蛍光体19b内において黄色蛍光体19bの出射面、収容凹部19dの側面及び底面等に反射したうえで黄色蛍光体19bから出射される。この光B2は、光B1よりも黄色蛍光体19bから出射するまでの光路が長くなるため黄色光となる。
 図4に示すように、白色光源19の発光面19sは、白色光である光B1が出射される白色領域19wと、白色領域19wの外周に形成され、黄色光である光B2が出射される黄色領域19yとに分かれる。これにより、図12に示すように、各白色光源19から照射される光の周縁部90が中心部91よりも黄色味を帯びるイエローリング現象が生じる。
(B) Color unevenness of light emitting surface of white light source 19 As shown in FIG. 3, light B1 emitted from the blue light source element 19a is emitted from the yellow phosphor 19b without being reflected in the yellow phosphor 19b. This light B1 is white light. On the other hand, light B2 emitted from the blue light source element 19a is emitted from the yellow phosphor 19b after being reflected by the emission surface of the yellow phosphor 19b, the side surface and the bottom surface of the accommodation recess 19d in the yellow phosphor 19b. The light B2 becomes yellow light because the light path from the yellow phosphor 19b to the light B1 is longer than the light B1.
As shown in FIG. 4, the light emitting surface 19s of the white light source 19 is formed on the outer periphery of the white region 19w from which the light B1 which is white light is emitted and the white region 19w, and the light B2 which is yellow light is emitted. It divides into yellow area 19y. As a result, as shown in FIG. 12, a yellow ring phenomenon occurs in which the peripheral portion 90 of the light emitted from each white light source 19 has a yellowish color than the central portion 91.
 (c)レンズによる光の分散
 レンズの内部を通過する光は、その光の波長に応じて屈折率が異なるため、光の波長毎に光路が異なる。この光の性質を光の分散と呼ぶ。これにより、図8に示すように、白色光源19からの光Lwが本実施形態と異なり反射防止膜28a,28bが形成されない凸レンズ部121aに入射すると、この光Lwのうち赤色波長成分Lr及び緑色波長成分Lgは、青色波長成分Lbに比べて、凸レンズ部121aの周縁部に向かう。このため、凸レンズ部121aの周縁部が赤色波長成分Lr及び緑色波長成分Lgにより形成される黄色となるイエローリング現象が生じる。
 以上、イエローリング現象の発生原因の説明を終了する。
(C) Dispersion of light by lens The light passing through the inside of the lens has a different refractive index depending on the wavelength of the light, so the optical path differs for each wavelength of light. This property of light is called light dispersion. Thereby, as shown in FIG. 8, when light Lw from the white light source 19 is incident on the convex lens portion 121a where the anti-reflection films 28a and 28b are not formed unlike the present embodiment, the red wavelength component Lr and green of the light Lw The wavelength component Lg is directed to the peripheral portion of the convex lens portion 121a compared to the blue wavelength component Lb. For this reason, a yellow ring phenomenon occurs in which the peripheral edge portion of the convex lens portion 121a is yellow formed by the red wavelength component Lr and the green wavelength component Lg.
This is the end of the description of the cause of the yellow ring phenomenon.
 次に、図7を参照しつつ、反射防止膜28a,28bの構成及び作用について説明する。
 第1のレンズ21の入射面21iには反射防止膜28aが形成され、第1のレンズ21の出射面21oには反射防止膜28bが形成されている。
 反射防止膜28a,28bは、図7及び図11に示すように、白色光源19からの光Lwの第1のレンズ21の入射面21iへの入射角度αが大きくなるにつれて、光Lwのうち赤色波長成分Lr及び緑色波長成分Lgの反射率が光Lwのうち青色波長成分Lbの反射率に対して増加する性質を有する誘導体多層膜からなる。一例として、赤色波長成分Lrは610nmの波長を有し、緑色波長成分Lgは560nmの波長を有し、青色波長成分Lbは470nmの波長を有する。
Next, the configuration and operation of the antireflective films 28a and 28b will be described with reference to FIG.
An antireflection film 28 a is formed on the incident surface 21 i of the first lens 21, and an antireflection film 28 b is formed on the emission surface 21 o of the first lens 21.
As shown in FIGS. 7 and 11, the anti-reflection films 28 a and 28 b indicate that the red light Lw from the white light source 19 becomes red as the incident angle α of the light Lw to the incident surface 21 i of the first lens 21 increases. The derivative multilayer film has a property that the reflectances of the wavelength component Lr and the green wavelength component Lg increase relative to the reflectance of the blue wavelength component Lb in the light Lw. As an example, the red wavelength component Lr has a wavelength of 610 nm, the green wavelength component Lg has a wavelength of 560 nm, and the blue wavelength component Lb has a wavelength of 470 nm.
 図7に示すように、光Lwの入射角度αは、光Lwの入射光線方向と第1のレンズ21の入射面21iの法線方向とがなす角度である。よって、光Lwの入射角度αが大きくなるほど、凸レンズ部21aの中心から周縁部に近くなる。このため、上述した反射防止膜28a,28bの性質により、光Lwの入射角度αが大きくなる位置、すなわち凸レンズ部21aの周縁部において、反射防止膜28a,28bにより赤色波長成分Lr及び緑色波長成分Lgが凸レンズ部21aにおいて反射され易く、かつ透過しづらくなる。この結果、凸レンズ部21aの周縁部において赤色波長成分Lr及び緑色波長成分Lgにより生成される黄色の光強度が低下し、イエローリング現象を緩和することができる。 As shown in FIG. 7, the incident angle α of the light Lw is an angle formed by the incident light ray direction of the light Lw and the normal direction of the incident surface 21 i of the first lens 21. Therefore, as the incident angle α of the light Lw is larger, the center of the convex lens portion 21a is closer to the peripheral portion. Therefore, due to the properties of the antireflective films 28a and 28b described above, the red wavelength component Lr and the green wavelength component are formed by the antireflective films 28a and 28b at positions where the incident angle .alpha. Lg is likely to be reflected at the convex lens portion 21 a and to be hard to transmit. As a result, the yellow light intensity generated by the red wavelength component Lr and the green wavelength component Lg in the peripheral portion of the convex lens portion 21a is reduced, and the yellow ring phenomenon can be alleviated.
 上述した反射防止膜28a,28bの性質を実現するために、誘導体多層膜において生じるいわゆるブルーシフトという現象を利用している。このブルーシフトは、図10に模式的に示すように、光Lwの入射角度αが大きくなるにつれて、反射率が最小となる波長Pが短波長側へ、すなわち青側へシフトすることを言う。図10の例では、第1の入射角度α1の場合、図10の実線で示す曲線C1により波長に対する反射率が示され、第1の入射角度α1よりも大きい第2の入射角度α2の場合、図10の破線で示す曲線C2により波長に対する反射率が示される。これにより、光Lwの入射角度αが大きくなる位置、すなわち凸レンズ部21aの周縁部において、青色波長成分Lbの反射率を赤色波長成分Lr及び緑色波長成分Lgの反射率に対して小さく、言い換えると、赤色波長成分Lr及び緑色波長成分Lgの反射率を青色波長成分Lbの反射率に対して大きくすることができる。このため、上述のように、イエローリング現象を緩和することができる。 In order to realize the above-described properties of the antireflective films 28a and 28b, the phenomenon of so-called blue shift which occurs in the derivative multilayer film is utilized. This blue shift, as schematically shown in FIG. 10, means that the wavelength P at which the reflectance becomes minimum shifts to the short wavelength side, that is, to the blue side as the incident angle α of the light Lw increases. In the example of FIG. 10, in the case of the first incident angle α1, the reflectance with respect to the wavelength is indicated by the curve C1 indicated by the solid line in FIG. 10, and in the case of the second incident angle α2 larger than the first incident angle α1 The reflectance with respect to wavelength is indicated by a curve C2 indicated by a broken line in FIG. Thereby, the reflectance of the blue wavelength component Lb is smaller than the reflectance of the red wavelength component Lr and the reflectance of the green wavelength component Lg at a position where the incident angle α of the light Lw is increased, that is, at the peripheral portion of the convex lens portion 21a. The reflectance of the red wavelength component Lr and the green wavelength component Lg can be made larger than the reflectance of the blue wavelength component Lb. For this reason, as described above, the yellow ring phenomenon can be alleviated.
 一例として、反射防止膜28a,28bは、図9に示すように、入射角度αが5°以下における一面あたりの反射率が、波長450~640nmの範囲において1%以下かつ波長400~700nmの範囲において2%以下となる分光特性を有する誘電体多層膜が好ましい。また、反射防止膜28a,28bは、図9に示すように、入射角度αが5°以下における一面あたりの反射率の比率が、波長450~640nmの範囲を1としたとき、波長400~700nmの範囲が2となる分光特性を有する誘電体多層膜が好ましい。これにより、イエローリング現象を緩和することができる。なお、この分光特性は一例であり、イエローリング現象を緩和することができれば、反射防止膜28a,28bはこの分光特性とは異なる分光特性を有していてもよい。 As an example, as shown in FIG. 9, in the antireflection films 28a and 28b, the reflectance per surface when the incident angle α is 5 ° or less is 1% or less in the wavelength range of 450 to 640 nm and the wavelength range of 400 to 700 nm Preferably, the dielectric multilayer film has a spectral characteristic of 2% or less. Further, as shown in FIG. 9, when the ratio of reflectance per surface at an incident angle α of 5 ° or less is 1, the range of wavelengths of 400 to 700 nm is assumed to be 1. A dielectric multilayer film having a spectral characteristic in which the range of 2 is 2 is preferable. Thereby, the yellow ring phenomenon can be alleviated. Note that this spectral characteristic is an example, and the antireflection films 28a and 28b may have spectral characteristics different from this spectral characteristic as long as the yellow ring phenomenon can be alleviated.
(効果)
 以上、説明した一実施形態によれば、以下の効果を奏する。
(effect)
According to the embodiment described above, the following effects can be obtained.
 (1)HUD装置10は、白色光源19と、白色光源19からの光Lwが透過する第1のレンズ21と、第1のレンズ21に形成され、光Lwの第1のレンズ21への入射角度αが大きくなるにつれて、光Lwに含まれる赤色波長成分Lr及び緑色波長成分Lgの反射率を光Lwに含まれる青色波長成分Lbの反射率に対して増加させる誘電体多層膜である反射防止膜28a,28bと、を備える。
 この構成によれば、反射防止膜28a,28bにより、図12に示すイエローリング現象における周縁部90の黄色光を形成する赤色波長成分Lr及び緑色波長成分Lgの反射率が青色波長成分Lbの反射率に対して増加される。これにより、赤色波長成分Lr及び緑色波長成分Lgの光強度が弱まり、周縁部90の色を中心部91の色に近づけることができる。よって、イエローリング現象を緩和することができる。
 また、反射防止膜28a,28bを第1のレンズ21に形成するだけなので、イエローリング現象を緩和するために、新たなレンズ等の光学素子を追加する必要がなく、簡易な構成により、イエローリング現象を緩和することができる。
(1) The HUD device 10 includes the white light source 19, the first lens 21 through which the light Lw from the white light source 19 passes, and the first lens 21, and the light Lw is incident on the first lens 21. Antireflection that is a dielectric multilayer film that increases the reflectance of the red wavelength component Lr and the green wavelength component Lg contained in the light Lw with respect to the reflectance of the blue wavelength component Lb contained in the light Lw as the angle α becomes larger And a membrane 28a, 28b.
According to this configuration, the reflectances of the red wavelength component Lr and the green wavelength component Lg forming the yellow light of the peripheral portion 90 in the yellow ring phenomenon shown in FIG. 12 by the antireflective films 28a and 28b reflect the blue wavelength component Lb It is increased relative to the rate. Thereby, the light intensities of the red wavelength component Lr and the green wavelength component Lg are weakened, and the color of the peripheral portion 90 can be made close to the color of the central portion 91. Thus, the yellow ring phenomenon can be alleviated.
Further, since only the anti-reflection films 28a and 28b are formed on the first lens 21, there is no need to add an optical element such as a lens to alleviate the yellow ring phenomenon, and the yellow ring can be formed by a simple configuration. The phenomenon can be mitigated.
 (2)HUD装置10は、第1のレンズ21を含む第1~第3のレンズ21~23を備え、反射防止膜28a,28bが形成される第1のレンズ21は、第1~第3のレンズ21~23のうち白色光源19に最も近い位置に設けられる。
 この構成によれば、イエローリング現象をより緩和することができる。
(2) The HUD device 10 includes the first to third lenses 21 to 23 including the first lens 21, and the first lens 21 on which the anti-reflection films 28a and 28b are formed is the first to third lenses. The lens 21 to 23 are provided at the position closest to the white light source 19.
According to this configuration, it is possible to further alleviate the yellow ring phenomenon.
 (3)白色光源19は、青色光を出射する青色光源素子19aと、青色光源素子19aからの青色光が透過することにより白色光を生成する黄色蛍光体19bと、を備える。
 この種の白色光源19が採用される場合、上述したイエローリング現象の発生原因の(a)及び(b)により、イエローリング現象が顕著となりやすい。よって、この状況において、反射防止膜28a,28bによりイエローリング現象を緩和することは特に有益である。
(3) The white light source 19 includes a blue light source element 19a that emits blue light, and a yellow phosphor 19b that generates white light by transmitting blue light from the blue light source element 19a.
When this type of white light source 19 is adopted, the yellow ring phenomenon tends to be remarkable due to (a) and (b) of the causes of the occurrence of the above-mentioned yellow ring phenomenon. Therefore, in this situation, it is particularly useful to reduce the yellow ring phenomenon by the antireflective films 28a and 28b.
 (4)第1のレンズ21は、互いに隣接して配置される複数の凸レンズ部21aを備え、複数の白色光源19は、それぞれ複数の凸レンズ部21aに対向して位置する。
 仮に第1のレンズ21に反射防止膜28a,28bが形成されない場合、上述したイエローリング現象により、図13に示すように、各凸レンズ部21aから出射した光の周縁部21oが光の中心部21cよりも黄色味を帯びる。白色光源19が凸レンズ部21aに対応してマトリックス状に配置される場合、凸レンズ部21aの数だけ黄色味を帯びた周縁部21oが形成され、さらに互いに隣り合う周縁部21oの少なくとも一部が重なり合うことにより黄色味が増すことも想定される。このように、イエローリング現象が目立ちやすい構成を有するHUD装置10において、反射防止膜28a,28bによりイエローリング現象を緩和することは特に有益である。
(4) The first lens 21 includes a plurality of convex lens portions 21a disposed adjacent to each other, and the plurality of white light sources 19 are positioned to face the plurality of convex lens portions 21a.
If the anti-reflection films 28a and 28b are not formed on the first lens 21, the peripheral portion 21o of the light emitted from each of the convex lens portions 21a is the central portion 21c of the light as shown in FIG. More yellowish. When the white light sources 19 are arranged in a matrix corresponding to the convex lens portions 21a, peripheral edge portions 21o having a yellowish color are formed by the number of the convex lens portions 21a, and at least a part of the peripheral edge portions 21o adjacent to one another overlap one another. It is also assumed that yellowishness may be increased by doing so. As described above, in the HUD device 10 having the configuration in which the yellow ring phenomenon is easily noticeable, it is particularly useful to reduce the yellow ring phenomenon by the anti-reflection films 28 a and 28 b.
 (5)HUD装置10は、第1~第3のレンズ21~23を経た白色光源19からの光Lwにより照明されることにより表示光Lを出射する液晶表示パネル18と、表示光Lを投射部材の一例であるフロントガラス201に向けて反射する凹面鏡20と、を備える。
 凹面鏡20は、イエローリング現象に伴い黄色味を帯びた周縁部21oを含む光を拡大したうえで虚像Vとして表示する。このように、HUD装置10は、イエローリング現象によって虚像Vの視認性が低下しやすい構成であるため、反射防止膜28a,28bによりイエローリング現象を緩和することは特に有益である。
(5) The HUD device 10 projects the display light L and the liquid crystal display panel 18 that emits the display light L by being illuminated by the light Lw from the white light source 19 that has passed through the first to third lenses 21 to 23. And a concave mirror 20 that reflects toward a windshield 201, which is an example of a member.
The concave mirror 20 enlarges the light including the yellowish peripheral edge 21 o according to the yellow ring phenomenon and displays the light as a virtual image V. As described above, since the HUD device 10 is configured to easily reduce the visibility of the virtual image V due to the yellow ring phenomenon, it is particularly useful to reduce the yellow ring phenomenon by the antireflective films 28 a and 28 b.
 (6)反射防止膜28a,28bは、それぞれ第1のレンズ21の入射面21i及び出射面21oに形成される、
 この構成によれば、入射面21iの反射防止膜28aと出射面21oの反射防止膜28bの2箇所にて、青色波長成分Lbに比べて高い反射率で赤色波長成分Lr及び緑色波長成分Lgが反射される。このため、反射防止膜を第1のレンズ21の入射面21i及び出射面21oの何れか一方に形成した場合に比べて、イエローリング現象をより緩和することができる。
(6) The anti-reflection films 28a and 28b are formed on the entrance surface 21i and the exit surface 21o of the first lens 21, respectively.
According to this configuration, the red wavelength component Lr and the green wavelength component Lg are higher in reflectance than the blue wavelength component Lb at two locations, the antireflective film 28a on the incident surface 21i and the antireflective film 28b on the output surface 21o. It is reflected. For this reason, compared with the case where the anti-reflection film is formed on any one of the light incident surface 21i and the light emission surface 21o of the first lens 21, the yellow ring phenomenon can be further alleviated.
(変形例)
 なお、上記各実施形態は、これを適宜変更した以下の形態にて実施することができる。
(Modification)
In addition, said each embodiment can be implemented in the following forms which changed this suitably.
 上記実施形態においては、第1のレンズ21に反射防止膜28a,28bが形成されていたが、反射防止膜が形成されるレンズは第1のレンズ21に限らず、第2のレンズ22又は第3のレンズ23であってもよい。また、第1~第3のレンズ21~23のうち何れか2つに反射防止膜が形成されてもよいし、第1~第3のレンズ21~23の全てに反射防止膜が形成されてもよい。 In the above-mentioned embodiment, although antireflection films 28a and 28b were formed in the 1st lens 21, the lens in which an antireflection film is formed is not restricted to the 1st lens 21, but the 2nd lens 22 or the 1st A third lens 23 may be used. In addition, an anti-reflection film may be formed on any two of the first to third lenses 21 to 23 or an anti-reflection film is formed on all of the first to third lenses 21 to 23. It is also good.
 上記実施形態においては、第1のレンズ21の入射面21i及び出射面21oに反射防止膜28a,28bが形成されていたが、2つの反射防止膜28a,28bの何れか一方を省略してもよい。第1のレンズ21以外のレンズに反射防止膜を形成する場合も、入射面と出射面の何れかに反射防止膜を形成してもよいし、入射面と出射面の両方に反射防止膜を形成してもよい。入射面と出射面の何れかに反射防止膜を形成する場合は、出射面に形成することが好ましい。 Although the anti-reflection films 28a and 28b are formed on the entrance surface 21i and the exit surface 21o of the first lens 21 in the above embodiment, even if one of the two anti-reflection films 28a and 28b is omitted. Good. When an antireflective film is formed on lenses other than the first lens 21, the antireflective film may be formed on either the incident surface or the exit surface, or the antireflective film may be formed on both the incident surface and the exit surface. You may form. When forming an anti-reflective film in any of an entrance plane and an output surface, forming in an output surface is preferable.
 上記実施形態では、白色光源19は表面実装型の白色LEDであったが、これに限らず、砲弾型、チップオンボード型等の他の種類のLEDであってもよい。さらに、白色光源19は、LEDであったが、その他白熱電球等の光源であってもよい。白色光源19として表面実装型の白色LED以外の種類が採用された場合であっても、少なくとも上述したイエローリング現象の発生原因の(c)の原因によりイエローリングが発生する。 In the above embodiment, the white light source 19 is a surface mounted white LED. However, the present invention is not limited to this. The white light source 19 may be another type of LED such as a shell type or chip on board type. Furthermore, although the white light source 19 is an LED, it may be another light source such as an incandescent lamp. Even when the white light source 19 is of a type other than a surface mount type white LED, a yellow ring is generated due to the cause (c) of the generation of the yellow ring phenomenon described above.
 上記実施形態においては、HUD装置10及び照明装置11aは、第1~第3のレンズ21~23を備えていたが、第2のレンズ22及び第3のレンズ23を省略してもよい。また、光拡散部材17を省略してもよい。 In the above embodiment, the HUD device 10 and the illumination device 11a include the first to third lenses 21 to 23. However, the second lens 22 and the third lens 23 may be omitted. In addition, the light diffusion member 17 may be omitted.
 上記実施形態における第1~第3のレンズ21~23の形状は適宜変更可能である。例えば、第2のレンズ22の出射面22oに形成されるシリンドリカルレンズ部22bを省略し、その出射面22oを平面状に形成してもよい。第3のレンズ23の出射面は凸レンズ形状、自由曲面形状、単純球面形状、シリンドリカル面形状又は非球面形状であってもよい。第1のレンズ21の凸レンズ部21aは、両凸レンズ状に形成されていたが、平凸レンズ状、フレネルレンズ状で形成してもよい。 The shapes of the first to third lenses 21 to 23 in the above embodiment can be changed as appropriate. For example, the cylindrical lens portion 22b formed on the exit surface 22o of the second lens 22 may be omitted, and the exit surface 22o may be formed in a planar shape. The exit surface of the third lens 23 may have a convex lens shape, a free curved surface shape, a simple spherical surface shape, a cylindrical surface shape, or an aspheric surface shape. The convex lens portion 21 a of the first lens 21 is formed in a biconvex lens shape, but may be formed in a plano-convex lens shape or a Fresnel lens shape.
 上記実施形態における凹面鏡20を省略してもよい。この場合、表示装置11からの表示光Lが直接に投射部材(例えば、フロントガラス201)に照射されてもよい。
 また、HUD装置10は、表示装置11からの表示光Lを凹面鏡20に向けて反射させる平面鏡等からなるリレー部材を備えていてもよい。
The concave mirror 20 in the above embodiment may be omitted. In this case, the display light L from the display device 11 may be directly irradiated to the projection member (for example, the windshield 201).
The HUD device 10 may further include a relay member formed of a plane mirror or the like that reflects the display light L from the display device 11 toward the concave mirror 20.
 上記実施形態では、HUD装置10は、車両200に搭載されていたが、車両以外の飛行機、船等の乗り物に搭載されてもよい。また、HUD装置10は、表示光Lをフロントガラス201に照射していたが、表示光Lを投射部材として専用のコンバイナに照射してもよい。 Although the HUD device 10 is mounted on the vehicle 200 in the above embodiment, the HUD device 10 may be mounted on a vehicle other than a vehicle, such as an airplane or a ship. In addition, although the HUD device 10 irradiates the display light L to the windshield 201, the display light L may be irradiated to a dedicated combiner as a projection member.
 上記実施形態における液晶表示パネル18はTFT型に限らず、セグメント型であってもよい。 The liquid crystal display panel 18 in the above embodiment is not limited to the TFT type, and may be a segment type.
1 視認者
10 ヘッドアップディスプレイ装置,HUD装置
11 表示装置
11a 照明装置
11b 液晶装置
14 第1のケース体
15 第2のケース体
16 回路基板
17 光拡散部材
18 液晶表示パネル
19 白色光源
19a 青色光源素子
19b 黄色蛍光体
19c パッケージ
19d 収容凹部
20 凹面鏡
21 第1のレンズ
21a,121a 凸レンズ部
21i,22i,23i 入射面
21o,22o,23o 出射面
22 第2のレンズ
23 第3のレンズ
28a,28b 反射防止膜
α 入射角度
Lb 青色波長成分
Lg 緑色波長成分
Lr 赤色波長成分
REFERENCE SIGNS LIST 1 viewer 10 head-up display device, HUD device 11 display device 11 a lighting device 11 b liquid crystal device 14 first case body 15 second case body 16 circuit board 17 light diffusion member 18 liquid crystal display panel 19 white light source 19 a blue light source element 19b yellow phosphor 19c package 19d accommodation recess 20 concave mirror 21 first lens 21a, 121a convex lens portion 21i, 22i, 23i entrance surface 21o, 22o, 23o exit surface 22 second lens 23 third lens 28a, 28b reflection prevention Film α Incident angle Lb Blue wavelength component Lg Green wavelength component Lr Red wavelength component

Claims (5)

  1.  白色光源と、
     前記白色光源からの光が透過するレンズと、
     前記レンズに形成され、前記光の前記レンズへの入射角度が大きくなるにつれて、前記光に含まれる赤色波長成分及び緑色波長成分の反射率を前記光に含まれる青色波長成分の反射率に対して増加させる誘電体多層膜と、を備える、
     ヘッドアップディスプレイ装置。
    White light source,
    A lens through which light from the white light source passes;
    The reflectance of the red wavelength component and the green wavelength component contained in the light is formed with respect to the reflectance of the blue wavelength component contained in the light as the incident angle of the light to the lens increases. And increasing dielectric multilayer films,
    Head-up display device.
  2.  前記レンズを含む複数のレンズを備え、
     前記誘電体多層膜が形成される前記レンズは、前記複数のレンズのうち前記白色光源に最も近い位置に設けられる、
     請求項1に記載のヘッドアップディスプレイ装置。
    Comprising a plurality of lenses including the lens,
    The lens on which the dielectric multilayer film is formed is provided at a position closest to the white light source among the plurality of lenses.
    The head-up display device according to claim 1.
  3.  前記白色光源は、
     青色光を出射する青色光源素子と、
     前記青色光源素子からの前記青色光が透過することにより前記光として白色光を生成する黄色蛍光体と、を備える、
     請求項1又は2に記載のヘッドアップディスプレイ装置。
    The white light source is
    A blue light source element that emits blue light;
    A yellow phosphor that generates white light as the light by transmitting the blue light from the blue light source element;
    The head-up display device according to claim 1.
  4.  前記レンズは、互いに隣接して配置される複数の凸レンズ部を備え、
     複数の前記白色光源は、それぞれ前記複数の凸レンズ部に対向して位置する、
     請求項1から3のいずれか1項に記載のヘッドアップディスプレイ装置。
    The lens comprises a plurality of convex lens portions arranged adjacent to each other,
    The plurality of white light sources are positioned to face the plurality of convex lens portions, respectively.
    The head-up display device according to any one of claims 1 to 3.
  5.  前記レンズから出射した光により照明されることにより表示光を出射する液晶表示パネルと、
     前記表示光を投射部材に向けて反射する凹面鏡と、を備える、
     請求項1から4のいずれか1項に記載のヘッドアップディスプレイ装置。
    A liquid crystal display panel that emits display light by being illuminated by light emitted from the lens;
    And a concave mirror for reflecting the display light toward the projection member.
    The head-up display device according to any one of claims 1 to 4.
PCT/JP2018/039604 2017-10-31 2018-10-25 Head-up display device WO2019087912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019551224A JP7287277B2 (en) 2017-10-31 2018-10-25 head-up display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017210036 2017-10-31
JP2017-210036 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087912A1 true WO2019087912A1 (en) 2019-05-09

Family

ID=66332880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039604 WO2019087912A1 (en) 2017-10-31 2018-10-25 Head-up display device

Country Status (2)

Country Link
JP (1) JP7287277B2 (en)
WO (1) WO2019087912A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09146039A (en) * 1995-11-16 1997-06-06 Matsushita Electric Ind Co Ltd Projection type display device
JP2014048392A (en) * 2012-08-30 2014-03-17 Konica Minolta Inc Color separation/synthesis prism
WO2016194305A1 (en) * 2015-06-05 2016-12-08 株式会社デンソー Headup display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09146039A (en) * 1995-11-16 1997-06-06 Matsushita Electric Ind Co Ltd Projection type display device
JP2014048392A (en) * 2012-08-30 2014-03-17 Konica Minolta Inc Color separation/synthesis prism
WO2016194305A1 (en) * 2015-06-05 2016-12-08 株式会社デンソー Headup display device

Also Published As

Publication number Publication date
JPWO2019087912A1 (en) 2020-12-03
JP7287277B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
CN114730044A (en) Directional lighting device and privacy display
US11079629B2 (en) LED backlight module
EP3447561B1 (en) Head-up display device
WO2015012138A1 (en) Scanning-type projection device
WO2010061699A1 (en) Thin backlight system and liquid crystal display device using same
JP7117578B2 (en) Head-up display and moving object
WO2015068337A1 (en) Head-up display device
JP5323274B2 (en) Surface light source device and liquid crystal display device
US20190317322A1 (en) Head-up display device
JP6700792B2 (en) Light source
WO2019116698A1 (en) Liquid crystal illumination device, head-up display, and illumination method
US9804482B2 (en) Rear-projection display device
JP2016180922A (en) Head-up display device
WO2019087912A1 (en) Head-up display device
US10831091B2 (en) Projection device and illumination system
CN114326108A (en) Anti-dazzle assembly based on image source, head-up display device and motor vehicle
TWI802087B (en) Image generating unit and head-up display therefor
JPH04172418A (en) Head-up display device
WO2022019048A1 (en) Image generation apparatus and head-up display
US10641457B2 (en) Vehicular lamp
WO2023153510A1 (en) Optical member, light source device, and head-up display
JP7447162B2 (en) Vehicle display device
WO2023153278A1 (en) Light source apparatus and head-up display
JP7164594B2 (en) vehicle lamp
WO2023238460A1 (en) Light source unit and video display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872220

Country of ref document: EP

Kind code of ref document: A1