WO2019087635A1 - Rotary damper - Google Patents

Rotary damper Download PDF

Info

Publication number
WO2019087635A1
WO2019087635A1 PCT/JP2018/036292 JP2018036292W WO2019087635A1 WO 2019087635 A1 WO2019087635 A1 WO 2019087635A1 JP 2018036292 W JP2018036292 W JP 2018036292W WO 2019087635 A1 WO2019087635 A1 WO 2019087635A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary damper
chamber
inner chamber
rotor
shaft
Prior art date
Application number
PCT/JP2018/036292
Other languages
French (fr)
Japanese (ja)
Inventor
一正 中屋
Original Assignee
株式会社ソミック石川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソミック石川 filed Critical 株式会社ソミック石川
Priority to CN201880064057.4A priority Critical patent/CN111164327B/en
Publication of WO2019087635A1 publication Critical patent/WO2019087635A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings

Definitions

  • the present invention relates to a rotary damper used as a kinetic energy damping device in a pivoting mechanism of a four- or two-wheeled self-propelled vehicle or industrial machine tool.
  • Patent Document 1 discloses a rotary damper in which a rotor having a pair of vane-like vanes in a large diameter portion of a stepped rod in a cylindrical casing is supported at both ends (See FIG. 1 in Patent Document 1 below).
  • the present invention has been made to address the above problems, and an object thereof is to provide a rotary damper that can suppress the generation of abnormal noise and vibration during operation.
  • the feature of the present invention is to form a wall shape along the radial direction in the same inner chamber while having a cylindrical inner chamber for containing the fluid in a liquid tight manner
  • a rotary damper comprising: a housing having a fixed vane which impedes flow; and a rotor having a movable vane which rotates while pushing a fluid while partitioning an inner chamber to an outer peripheral portion of a shaft.
  • At least one of the inner wall surface of the moving housing and the shaft-facing end of the fixed vane on which the shaft of the movable vane slides is constituted by an inclined surface inclined along the axis of the inner chamber, and the rotor is A seal formed of an elastic body provided between the inner wall surface formed on the inclined surface and the movable vane and / or between the shaft facing end portion formed on the inclined surface and the shaft; Being pressed In the door.
  • the rotary damper includes the shaft facing end and the shaft formed between the inner wall surface of the rotor formed on the inclined surface and the movable vane and / or the inclined surface. Since the rotor is elastically pressed by the seal body formed of an elastic body provided between the rotor and the body, the rotor is assembled in a state of being elastically pressed on one side in the axial direction by the inclined surface with respect to the housing As a result, it is possible to suppress the generation of abnormal noise and vibration at the time of operation of the rotary damper.
  • Another feature of the present invention is that, in the rotary damper, the inclined surfaces are respectively formed on the inner wall surface and the shaft facing end.
  • the rotor since the inclined surface is respectively formed on the inner wall surface and the shaft facing end portion of the rotary damper, the rotor is provided in the entire circumferential direction with respect to the housing It is possible to elastically press on one side in the axial direction, and the generation of abnormal noise and vibration at the time of operation of the rotary damper can be suppressed by stable and homogeneous pressing by a stronger force.
  • the housing has a bottom portion closed at one end in the axial direction of the inner chamber and an opening portion opened at the other end and covered by a lid.
  • the bottomed cylindrical shape is formed, and the inclined surface is formed to be separated from the axis of the inner chamber from the bottom side toward the opening side.
  • the rotary damper has an opening in which the housing has a bottom closed at one end in the axial direction of the inner chamber and the other is open and covered by the lid Since the inclined surface is formed to be separated from the axis of the inner chamber from the bottom side toward the opening side, and the number of parts of the rotary damper is reduced.
  • the inclined surface can be easily formed using forging, casting or cutting.
  • a partially open shape (for example, a ring shape) is also included.
  • the fixed vanes face side wall surfaces respectively facing two inner chambers partitioned by the fixed vanes such that the thickness becomes thinner from the bottom side toward the opening side. Is composed of an inclined surface.
  • the rotary damper faces each of the two inner chambers partitioned by the stationary vanes such that the stationary vanes become thinner in thickness from the bottom side toward the opening side. Since the side wall surface to be formed is an inclined surface, it is possible to improve the strength of the root portion of the fixed vane and to improve the overall rigidity of the fixed vane while suppressing the decrease in the volume of the inner chamber and the increase in weight of the rotary damper. it can.
  • the seal body is configured such that the surface facing the inclined surface is an inclined surface parallel to the inclined surface.
  • the rotary damper is configured with an inclined surface because the surface facing the inclined surface is configured with an inclined surface parallel to the inclined surface.
  • the rotor can be more effectively pressed on one side in the axial direction within the housing while improving the liquid tightness by improving the adhesion to the inner wall surface of the inner chamber and / or the axially opposed end face of the movable vane, and the rotary It is possible to suppress the generation of abnormal noise and vibration during operation of the damper.
  • FIG. 2 is an exploded exploded perspective view showing a housing body, a seal body for the housing body, a rotor, and a seal body for the rotor, which constitute the rotary damper shown in FIG. 1.
  • FIG. 5 is a cross-sectional view of the rotary damper viewed from 4-4 shown in FIG. 3;
  • FIG. 5 is a cross-sectional view of the rotary damper viewed from 5-5 shown in FIG. 3;
  • FIG. 1 is a perspective view schematically showing an entire configuration of a rotary damper 100 according to the present invention.
  • 2 is an exploded exploded perspective view showing the housing body 102, the seal body 106 for the housing body 102, the rotor 120, and the seal body 128 for the rotor 120, which constitute the rotary damper 100 shown in FIG.
  • FIG. 3 is a front view schematically showing an entire configuration of the rotary damper 100 shown in FIG. It should be noted that each drawing referred to in the present specification has a portion schematically represented such as exaggeratingly showing a part of component to facilitate understanding of the present invention.
  • the rotary damper 100 is a damping device attached to the base end of a swing arm that supports the rear wheels of two-wheeled self-propelled vehicles (bikes) so as to be able to move up and down, thereby damping kinetic energy when the rear wheels move vertically. .
  • the rotary damper 100 includes a housing 101.
  • the housing 101 is a component that configures the housing of the rotary damper 100 while rotatably holding the rotor 120, and is made of various resin materials such as an aluminum material, an iron material, a zinc material, or a polyamide resin.
  • the housing 101 mainly includes the housing body 102 and the lid 110.
  • the housing body 102 is a component that accommodates movable vanes 126 and 127 of the rotor 120 and the fluid body 140 described later, and rotatably supports one end of the shaft 121 of the rotor 120, and one end of the cylinder is It is formed in a bottomed cylindrical shape which is largely open and whose other end is small and open. More specifically, in the housing body 102, a cylindrical inner chamber 103 is formed on the side of the opening portion 102a which is largely opened at one end of the cylindrical body, and the housing main body 102 is opened in the bottom portion 103a of the inner chamber 103. A rotor support portion 107 is formed.
  • the inner chamber 103 is a space that accommodates the fluid 140 together with the movable vanes 126 and 127 of the rotor 120 in a fluid-tight manner, and the two halves facing each other via the rotor 120 disposed centrally in the housing body 102. It consists of a cylindrical space.
  • the inner chamber wall surface 103b which is the inner wall surface of the inner chamber 103 in which the movable vanes 126 and 127 slide, is formed by an inclined surface.
  • the inner chamber wall surface 103b is formed in a conical surface taper shape in which the inner diameter is expanded from the bottom portion 103a side toward the opening portion 102a.
  • the inner chamber wall surface 103 b is formed by an inclined surface having an inclination angle ⁇ of 0.5 ° with respect to the axis of the inner chamber 103.
  • fixed vanes 104 and 105 are formed integrally with the housing body 102, respectively.
  • the fixed vanes 104 and 105 are wall-shaped portions that partition the interior of the inner chamber 103 together with the rotor 120 to form the individual chambers R1 to R4, and project inward from the inner chamber wall surface 103b along the axial direction of the housing main body 102. It is formed to overhang in a shape.
  • the two fixed vanes 104 and 105 are provided at mutually opposing positions in the circumferential direction on the inner peripheral surface of the inner chamber wall surface 103b.
  • lid opposing ends 104a and 105a respectively opposing the lid 110 described later and shaft opposing ends 104b and 105b each opposing the shaft 121 of the rotor 120 are concaved. It is formed in the shape of a recessed groove, and the seal body 106 is fitted in each of these grooves.
  • the lid facing end portions 104a and 105a are formed with a constant width and depth.
  • the shaft facing end portions 104b and 105b are formed along the axial direction of the housing main body 102, and the bottom in each groove is radially outward of the inner chamber 103 from the bottom 103a to the opening 102a. It is composed of an expanding slope.
  • the shaft facing end portions 104b and 105b are formed by an inclined surface having an inclination angle ⁇ of 0.5 ° with respect to the axis of the inner chamber 103, similarly to the inner chamber wall surface 103b.
  • the shaft facing end portions 104b and 105b are each formed of an inclined surface in which the distance between the side walls forming the groove, that is, the groove width spreads from the bottom portion 103a side to the opening portion 102a side.
  • fixed vanes 104 and 105 are inclined surfaces in which the side wall surfaces 104c and 105c that face the individual chambers R1 to R4 and form the individual chambers R1 to R4 in the inner chamber 103 are inclined along the axial direction of the inner chamber 103. It consists of Specifically, the side wall surfaces 104c and 105c are formed as inclined surfaces in which the thickness of the fixed vanes 104 and 105 is reduced from the bottom 103a to the opening 102a. In the present embodiment, the side wall surfaces 104c and 105c are imaginary lines parallel to the axis of the inner chamber 103, in other words, inclinations of the shaft facing ends 104b and 105b with respect to an imaginary line perpendicular to the bottom 103a. It is formed by the same 0.5 ° inclined surface as the angle ⁇ .
  • the seal body 106 is a component for securing the liquid tightness of the individual chambers R1 to R4 formed in the inner chamber 103, and is configured by forming an elastic material such as a rubber material in an L shape in side view There is. More specifically, in the seal body 106, the radial direction portion 106a press-fitted into the lid facing end portions 104a and 105a and the axial direction portion 106b press-fitted to the shaft facing end portions 104b and 105b are L-shaped. It is integrally formed in a shape. And these radial direction part 106a and axial direction part 106b are formed by the magnitude
  • the axial portion 106b is an inclined surface extending in parallel with the inclined surface constituting the shaft opposing ends 104b, 105b, that is, the opening 102a from the bottom 103a side. It is configured by an inclined surface that protrudes outward in the radial direction of the inner chamber 103 toward the side and also protrudes in a direction orthogonal to the same radial direction.
  • the thickness of the portion fitted to the shaft facing end portions 104b and 105b is continuously increased along the two directions from the bottom portion 103a side toward the opening portion 102a side. It is formed to be As a material which comprises this sealing body 106, there exist nitrile rubber, hydrogenated nitrile rubber, or fluororubber as a rubber material.
  • the rotor support portion 107 is a cylindrical portion that rotatably supports one end of the shaft 121 of the rotor 120.
  • the rotor support portion 107 supports the shaft body 121 of the rotor 120 in a fluid-tight manner via a sealing material such as a bearing and a packing.
  • the lid 110 is a component for sealing the inner chamber 103 formed in the housing main body 102 in a fluid-tight manner, and one end of the cylindrically formed rotor support portion 111 protrudes in a flange shape. Is formed.
  • the rotor support portion 111 is a cylindrical portion which rotatably supports the other end of the shaft 121 of the rotor 120.
  • the rotor support portion 111 supports the shaft body 121 of the rotor 120 in a fluid tight manner via a sealing material such as a bearing and packing.
  • the lid 110 is also provided with bypass passages 112a and 112b and adjustment needles 113a and 113b, respectively.
  • the bypass passage 112a is a passage that connects the first individual chamber R1 and the second individual chamber R2 in the inner chamber 103 so as to cause the fluid 140 to flow with each other and causes the first individual chamber R1 and the second individual chamber R2 to communicate with the outside.
  • the bypass passage 112b is a passage that connects the second individual chamber R2 and the fourth individual chamber R4 in the inner chamber 103 so as to allow the fluid 140 to flow with each other and causes the second individual chamber R2 and the fourth individual chamber R4 to communicate with the outside. .
  • the adjustment needles 113a and 113b are components for sealing the inside of the bypass passages 112a and 112b from the outside and adjusting the flow rate of the fluid 140 flowing, and using a tool (not shown) such as a driver.
  • the flow rate of the fluid 140 can be increased or decreased by using and rotating.
  • the lid 110 is attached to the end of the housing body 102 on the side where the inner chamber 103 is opened by four bolts 114.
  • the rotor 120 is disposed in the inner chamber 103 of the housing 101 and divides the inside of the inner chamber 103 into four spaces, ie, a first single chamber R1, a second single chamber R2, a third single chamber R3 and a fourth single chamber R4. It is a component for respectively increasing or decreasing the volume of each of the first single chamber R1, the second single chamber R2, the third single chamber R3 and the fourth single chamber R4 by rotating in the inner chamber 103, mainly the shaft It comprises 121 and movable vanes 126 and 127.
  • the shaft body 121 is a round bar-like portion that supports the movable vanes 126 and 127, and is made of various resin materials such as an aluminum material, an iron material, a zinc material, or a polyamide resin.
  • An accumulator mounting portion 122 is formed at one end of the shaft body 121 and a connection portion 123 is provided at the other end.
  • the accumulator attachment portion 122 is a bottomed cylindrical hole in which an accumulator (not shown) is attached.
  • the accumulator is a tool for compensating for a volume change due to expansion or contraction due to a temperature change of the fluid 140 in the inner chamber 103, and is provided in communication with a first one-way communication passage 125 described later.
  • the connection portion 123 is a portion for connecting to one of the two parts to which the rotary damper 100 is attached.
  • the connection portion 123 is configured by a bottomed cylindrical hole whose cross-sectional shape is a hexagonal shape.
  • the shaft 121 is formed with a first bidirectional communication passage 124 and a first unidirectional communication passage 125.
  • the first bidirectional communication passage 124 the volume is simultaneously reduced by rotation of the movable vanes 126 and 127 to one side, and the volume is simultaneously increased by rotation of the movable vanes 126 and 127 to the other. It is a passage which enables the fluid 140 to flow mutually.
  • the first two-way communication passage 124 is a first single chamber in which the volume is simultaneously reduced by the illustrated counterclockwise rotation of the movable vanes 126 and 127 and the volume is simultaneously increased by the illustrated clockwise rotation. It is formed in the state which penetrated shaft 121 so that R1 and the 3rd individual room R3 may connect mutually.
  • the volume is simultaneously increased by the pivoting of the movable vanes 126 and 127 to the one side, and the volume is simultaneously reduced by the pivoting of the movable vanes 126 and 127 to the other It is a passage which distributes the fluid 140 only from one side to the other.
  • the first one-way communication passage 125 is a second single chamber in which the volume is simultaneously increased by the illustrated counterclockwise rotation of the movable vanes 126 and 127 and the volume is simultaneously reduced by the illustrated clockwise rotation.
  • the first one-way communication passage 125 is also in communication with the accumulator on the upstream side of the flow direction of the fluid 140 with respect to the one-way valve 125a.
  • the one-way valve 125a allows the flow of the fluid 140 from the second individual chamber R2 side to the fourth individual chamber R4 side in the first one-way communication passage 125 which causes the second individual chamber R2 and the fourth individual chamber R4 to communicate with each other. It is a valve that blocks the flow from the four-chamber R4 side to the second individual chamber R2 side.
  • the movable vanes 126 and 127 are components for respectively increasing and decreasing the volume of each space in a fluid tight manner while partitioning the inside of the inner chamber 103 into a plurality of spaces, and in the radial direction of the shaft body 121 (inner chamber 103) Each is constituted by an extending plate-like body. In this case, these two movable vanes 126 and 127 are formed to extend in opposite directions (in other words, on the same imaginary plane) via the shaft 121. These movable vanes 126 and 127 have bottom-facing end portions 126a and 127a and inner-wall facing end portions 126b and 126b at end faces of the C shape (or U shape) facing the bottom portion 103a, the inner wall surface 103b and the lid 110 respectively. A groove 127b and a lid facing end 126c, 127c are formed in a concave shape.
  • the respective grooves constituting the bottom opposite ends 126a and 127a, the inner wall opposite ends 126b and 127b, and the lid opposite ends 126c and 127c are formed to have a constant width and depth and a predetermined depth.
  • a seal body 128 is fitted in the respective grooves of the bottom opposite ends 126a and 127a, the inner wall opposite ends 126b and 127b, and the lid opposite ends 126c and 127c.
  • the seal body 128 is a component for securing the liquid tightness of the individual chambers R1 to R4 formed in the inner chamber 103, and is made of an elastic material such as rubber similar to the seal body 106. It is formed and formed in C shape (or U shape) by side view. More specifically, the seal body 128 has a bottom side 128a press-fit into the bottom opposite end 126a, 127a, an inner wall side 128b press-fit into the inner wall opposite end 126b, 127b, and a lid A lid side portion 128c press-fitted into the end portions 126c and 127c is integrally formed in a C shape (or a U shape).
  • the bottom side portion 128a, the inner wall side portion 128b and the lid side portion 128c respectively project from the bottom facing ends 126a and 127a, the inner wall facing ends 126b and 127b, and the lid facing ends 126c and 127c. It is formed of
  • the inner wall side portion 128b is an inclined surface extending parallel to the inclined surface constituting the inner chamber wall surface 103b, ie, the inner chamber 103 facing the opening portion 102a from the bottom portion 103a side. It is comprised by the inclined surface which overhangs to the radial direction outer side of.
  • the inner wall side portion 128b is formed such that the thickness of the portion fitted to the inner wall facing end portions 126b and 127b is continuously increased from the bottom portion 103a side toward the opening portion 102a.
  • the movable vanes 126 and 127 cooperate with the fixed vanes 104 and 105 to form the first chamber R1, the second chamber R2, the third chamber R3 and the fourth chamber which are four spaces in the inner chamber 103. Form R4 together in a liquid tight manner.
  • a first individual chamber R1 is formed by the fixed vane 104 and the movable vane 126
  • a second individual chamber R2 is formed by the movable vane 126 and the fixed vane 105.
  • the movable vane 127 form a third individual chamber R 3
  • the movable vane 127 and the fixed vane 104 form a fourth individual chamber R 4. That is, the first compartment R1, the second compartment R2, the third compartment R3 and the fourth compartment R4 are formed adjacent to each other in the inner chamber 103 along the circumferential direction.
  • a second bidirectional communication passage 131 and a second one-way communication passage 132 are formed in the movable vanes 126 and 127, respectively.
  • the second two-way communication passage 131 is a first one-way communication passage with the first single chamber R1 of the first single chamber R1 and the third single chamber R3 as two communicating single chambers communicated by the first two-way communication passage 124.
  • Movable vanes 126 which divide the first single chamber R1 and the second single chamber R2 such that the second single chamber R2 of the second single chamber R2 and the second single chamber R2 of the fourth single chamber R4 as two single-sided communicating single chambers communicated by 125 communicate with each other. Is formed.
  • the second two-way communication passage 131 causes the fluid 140 to flow from the second single chamber R2 side which is a one-side communicating single chamber to the first single chamber R1 side which is a communicating single chamber, and to the second single chamber R2 side from the first single chamber R1 side.
  • the fluid 140 is configured to be distributed while being restricted.
  • the second two-way communication passage 131 is configured by arranging a one-way valve 131a and a throttle valve 131b in parallel.
  • the one-way valve 131a is a valve that circulates the fluid 140 from the second individual chamber R2 side to the first individual chamber R1 side and prevents the flow of the fluid 140 from the first individual chamber R1 side to the second individual chamber R2 side.
  • the throttle valve 131 b is configured of a valve that can be circulated in both directions while restricting the flow of the fluid 140 between the first individual chamber R ⁇ b> 1 and the second individual chamber R ⁇ b> 2. In this case, while restricting the flow of the fluid 140 in the throttle valve 131b, the flow is performed under the same conditions (for example, pressure and viscosity of the fluid) with respect to the flowability of the fluid 140 in the one-way valve 131a. It means that the body 140 is hard to flow.
  • the second one-way communication passage 132 is a communication chamber in which the second two-way communication passage 131 is not in communication, and a fourth one-way communication chamber in which the second two-way communication passage 131 is not in communication.
  • the third individual room R3 and the fourth individual room R4 are made to flow while restricting the fluid 140 only from the fourth individual room R4 side which is one-side communicating individual room between the individual room R4 and the third individual room R3 side which is the communicating individual room. It is formed in the movable vane 127 which divides.
  • the second one-way communication passage 132 includes a one-way valve 132a that allows the fluid 140 to flow only from the fourth individual chamber R4 side to the third individual chamber R3 side, and a throttling valve that restricts the flow rate of the fluid 140 And 132b are arranged in series.
  • the flow is performed under the same conditions (for example, pressure, viscosity of the fluid, etc.) with respect to the flowability of the fluid 140 in the one-way valve 132a. It means that the body 140 is hard to flow.
  • the fluid body 140 is a substance for causing the rotary damper 100 to act as a damper function by applying resistance to the movable vanes 126 and 127 which rotate the inner chamber 103, and is filled in the inner chamber 103.
  • the fluid body 140 is made of a fluid, gel-like or semi-solid substance having a flowability having a viscosity corresponding to the specification of the rotary damper 100. In this case, the viscosity of the fluid 140 is appropriately selected according to the specifications of the rotary damper 100.
  • the fluid 140 is made of oil, such as mineral oil or silicone oil.
  • the rotary damper 100 thus configured is provided between two parts movably connected to each other.
  • the rotary damper 100 is mounted with the housing 101 fixed to the frame side which is a basic frame of a two-wheeled self-propelled vehicle (not shown) and supports the rear wheels of the two-wheeled self-propelled vehicle
  • the rotor 120 is attached with the proximal end side of the swing arm as the movable side.
  • the portion to which the seal body 128, the one-way valves 131a and 132a and the throttle valves 131b and 132b are attached is cut.
  • Each is molded by The one-way valves 131a and 132a and the throttle valves 131b and 132b that constitute the second two-way communication passage 131 and the second one-way communication passage 132 are disposed with respect to the movable vanes 126 and 127.
  • the housing body 102, the lid 110, and the rotor 120 may be formable by casting or cutting, and when each of these parts is made of a resin material, injection molding and cutting may be performed. It can be molded using
  • the worker attaches the two seal bodies 106 to the stationary vanes 104 and 105, respectively.
  • the operator press-fits the seal body 106 into the grooves of the lid facing end portions 104a and 105a and the shaft facing end portions 104b and 105b of the fixed vanes 104 and 105, respectively.
  • the two seal bodies 106 face the shaft body 121 of the rotor 120 while the radial direction portion 106 a which is the end face facing the lid 110 extends in the radial direction orthogonal to the axial direction of the inner chamber 103.
  • the axial portion 106 b is mounted in a state of extending in parallel with the axial direction of the inner chamber 103.
  • the seal body 106 may be fixed to the fixed vanes 104 and 105 using an adhesive.
  • the worker attaches the two seal bodies 128 to the movable vanes 126 and 127, respectively. More specifically, the worker can form the seal body 128 on the bottom opposing ends 126a and 127a formed on the outer edges of the movable vanes 126 and 127, the inner wall opposing ends 126b and 127b, and the lid opposing ends 126c and 127c. Press-fit into each groove of. As a result, the two seal bodies 128 extend in the radial direction orthogonal to the axial direction of the inner chamber 103, with the lid side portion 128c and the bottom side portion 128a being end surfaces respectively facing the lid 110 and the bottom portion 103a.
  • An inner wall side portion 128b which is an end surface facing the inner chamber wall surface 103b of the housing 101, is mounted in a state of extending in parallel to the inner chamber wall surface 103b.
  • the seal body 128 may be fixed to the movable vanes 126 and 127 using an adhesive.
  • the operator assembles the rotor 120 into the housing body 102. Specifically, the operator arranges the bearing and the seal member on the rotor support portion 107 of the housing main body 102, and then inserts the rotor 120 into the housing main body 102 from the side of the accumulator mounting portion 122 and attaches it. In this case, the operator inserts the rotor 120 into the housing main body 102 while resisting the elastic force of the seal bodies 106 and 128.
  • the worker attaches the lid 110 to the housing body 102.
  • the operator arranges the bearing and the seal member on the rotor support portion 111 of the lid 110, and then inserts the rotor 120 into the rotor support portion 111 while the lid 110 is on the opening 102a of the housing main body 102. And assemble with bolts 114.
  • the operator presses the lid 110 against the opening 102 a of the housing main body 102 while assembling against the elastic force of the seal bodies 106 and 128.
  • the inside of the inner chamber 103 of the housing 101 is partitioned by the fixed vanes 104 and 105, the shaft 121 and the movable vanes 126 and 127 to form four individual chambers R1 to R4.
  • a slight clearance C in the axial direction is set in the inner chamber 103 between the inner chamber 103 and the rotor 120 in order to ensure smooth assembly and operation after assembly.
  • the rotor 120 is assembled so as to be slightly displaceable in the axial direction.
  • the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b in the housing main body 102 are formed as an inclined surface toward the opening 102a side, the inner chamber wall surface 103b and the shaft facing end portion 104b
  • the movable vanes 126 and 127 of the rotor 120 and the shaft 121 which are respectively pressed to the seal 105 and the seal 105b via the seal members 106 and 128, are disposed in a state of being elastically biased toward the opening 102a.
  • the rotor 120 is mounted in the inner chamber 103 in a state of being elastically biased toward the opening 102 a.
  • the rotor 120 rotates relative to the housing 101 in the biased state to increase or decrease the volume of each of the four separate chambers R1 to R4 formed in the inner chamber 103.
  • the worker injects the fluid 140 into the housing body 102 via the bypass passages 112 a and 112 b of the lid 110 and performs air removal.
  • the adjustment needles 113a and 113b are prepared and mounted on the lid 110, and adjustment work such as adjustment of the rotational force of the rotor 120 is performed to complete the rotary damper 100.
  • the final work such as the adjustment work is not directly related to the present invention, and thus the description thereof is omitted.
  • FIGS. 6 to 9 schematically showing the inside of the inner chamber 103 in order to facilitate understanding of the movement of the rotor 120 and the fluid 140 in the inner chamber 103.
  • 6 to 9 schematically show the inside of the rotary damper 100 viewed from the broken line arrow A in FIG. 5 in order to help understand the behavior of the fluid 140 with respect to the movement of the movable vanes 126 and 127.
  • FIG. 6 to FIG. 9 the state in which the pressure of the fluid 140 is relatively high relative to the other compartments is indicated by dark hatching, and the state in which the pressure is relatively low is indicated by light hatching.
  • FIGS. 7 and 9 the pivoting direction of the movable vanes 126 and 127 is indicated by a thick broken line arrow, and the flow direction of the fluid 140 is indicated by a thin broken line arrow.
  • the movable vane 126 comes closest to the fixed vane 104 and the movable vane 127 is fixed. It is in the state of being closest to the vane 105. That is, in the rotary damper 100, the respective volumes of the first individual chamber R1 and the third individual chamber R3 are in the minimum state, and the respective volumes of the second individual chamber R2 and the fourth individual chamber R4 are in the maximum state.
  • the fourth individual chamber R4 of the second individual chamber R2 and the fourth individual chamber R4 in the maximum volume is “inflow allowed, outflow not possible” by the first one-way communication passage 125 with respect to the second individual chamber R2.
  • the second one-way communication passage 132 makes the third individual chamber R3 "inflow impossible, outflow possible with restriction". Therefore, in the fourth separate chamber R4, the fluid 140 in the fourth separate chamber R4 flows out only into the third separate chamber R3 via the throttle valve 132b. As a result, the pressure in the fourth individual chamber R4 is increased to be in the high pressure state, so there is no inflow of the fluid body 140 from the second individual chamber R2 communicated via the first one-way communication passage 125.
  • the second single chamber R2 is in the state of “inflow is not possible and outflow is possible” by the first one-way communication passage 125 with respect to the fourth single chamber R4.
  • the two-way communication path 131 indicates that “inflow is possible with squeezing and outflow is possible”.
  • the fourth separate chamber R4 is in the high pressure state as described above.
  • the fluid 140 in the second separate chamber R2 flows out into the first separate chamber R1 via the second bidirectional communication path 131.
  • the second individual chamber R ⁇ b> 2 maintains the non-high pressure state while suppressing the pressure increase.
  • the non-high pressure state is relative to the pressure of the other individual chamber.
  • the third single chamber R3 of the first single chamber R1 and the third single chamber R3 in the minimum volume is "inflow possible, outflow possible” by the first bidirectional communication path 124 with respect to the first single chamber R1.
  • the third separate chamber R3 maintains the non-high pressure state because the fluid 140 flows from the first separate chamber R1 and the fourth separate chamber R4 via the throttle valve 132b.
  • the first individual chamber R1 is in the state of “inflow possible, outflow possible” by the first two-way communication passage 124 with respect to the third individual chamber R3, and
  • the two-way communication passage 131 is in the state of “inflow is possible, outflow is possible with throttling”. Therefore, since the fluid 140 flows from the second separate chamber R2 into the first separate chamber R1 and the fluid 140 flows out to the third separate chamber R3, the non-high pressure state is maintained.
  • the damping force is an anticlockwise It is smaller than the damping force at the time of turning.
  • the movable vanes 126 approach the fixed vanes 105 the closest and the movable vanes 127 approach the fixed vanes 104 the closest. That is, in the rotary damper 100, the respective volumes of the first single chamber R1 and the third single chamber R3 are respectively maximized, and the respective volumes of the second single chamber R2 and the fourth single chamber R4 are respectively minimized.
  • the swing arm of the self-propelled vehicle is in a raised state.
  • the rotary damper 100 rotates the rotor 120 counterclockwise in the drawing. That is, in the rotary damper 100, the movable vanes 126 rotate toward the fixed vanes 104 and the movable vanes 127 rotate toward the fixed vanes 105.
  • the respective volumes of the first single chamber R1 and the third single chamber R3 decrease, and the respective volumes of the second single chamber R2 and the fourth single chamber R4 increase.
  • the first single chamber R1 of the first single chamber R1 and the third single chamber R3 in the maximum volume is “inflow allowed, outflow possible” by the first bidirectional communication passage 124 with respect to the third single chamber R3.
  • the second two-way communication passage 131 allows the second individual chamber R2 to "inflow is possible and outflow is possible with restriction”.
  • the volume of the third individual chamber R3 is decreasing along with the first individual chamber R1 due to the rotation of the movable vane 127. Accordingly, in the first separate chamber R1, the fluid 140 in the first separate chamber R1 flows out only into the second separate chamber R2 via the throttling. As a result, the pressure in the first individual chamber R1 rises to a high pressure state.
  • the third separate chamber R3 is in the state of "inflow possible, outflow possible" by the first two-way communication path 124 with respect to the first separate chamber R1, and
  • the two-way communication path 132 is in the state of “inflow is possible with squeezing, and outflow is not possible”. Accordingly, in the third private chamber R3, the fluid 140 in the third private chamber R3 flows out only into the first private chamber R1. As a result, the pressure in the third separate chamber R3 increases together with the first separate chamber R1 to a high pressure state.
  • the second individual chamber R2 of the second individual chamber R2 and the fourth individual chamber R4 having the minimum volume is “inflow is possible with restriction due to the second bidirectional communication passage 131 with respect to the first individual chamber R1; While being in the state of "possible", the first one-way communication passage 125 is in the state of "inflow impossible, outflow possible” with respect to the fourth individual chamber R4. Therefore, the second private chamber R2 maintains the non-high pressure state because the fluid 140 flows from the first private chamber R1 through the throttling and the fluid 140 flows out to the fourth private chamber R4. That is, the second individual chamber R2 always maintains the non-high pressure state regardless of the rotational direction of the movable vanes 126 and 127.
  • the fourth individual chamber R4 is in a state of “inflow is possible, outflow is not possible” by the first one-way communication passage 125 with respect to the second individual chamber R2, and the fourth individual chamber R4 is The two-way communication path 132 is in the state of “inflow is not possible, outflow is possible with throttling”. Therefore, the fourth private chamber R4 maintains the non-high pressure state because the fluid 140 only flows in from the second private chamber R2.
  • the damping force of the rotary damper 100 is twice that of the above-described clockwise rotation because the individual chamber in the high pressure state is twice as large.
  • the movable vanes 126 approach the fixed vanes 104 the closest and the movable vanes 127 the closest the fixed vanes 105, and the first single chamber R1 and the third single chamber R3.
  • the respective volumes of the second chamber R2 and the fourth chamber R4 return to their maximum values, respectively, while their respective volumes become minimum.
  • the rotor 120 At the time of rotation operation or stationary of the rotor 120, the rotor 120 is pressed by the seal members 106 and 128 in close contact with the inner chamber wall surface 103b formed by the inclined surface and the shaft facing end portions 104b and 105b. Therefore, the entire rotor 120 is always elastically pressed to the lid 110 side. Thereby, in the rotary damper 100, the positional deviation in the axial direction of the rotor 120 at the time of the rotation operation or the stationary state of the rotor 120 is suppressed, and the noise due to the vibration of the rotor 120 itself or the collision to the lid 110 or the bottom 103a And vibration is suppressed.
  • the movable vane 126 comes closest to the fixed vane 104 and the movable vane 127 comes closest to the fixed vane 105, or the movable vane
  • the movable vanes 126 and 127 rotate from the state where the movable vane 127 approaches the fixed vane 104 while the 126 approaches the fixed vane 105 the most has been described.
  • the rotary damper 100 can naturally turn to the fixed vane 104 side or the fixed vane 105 side from the state in which the movable vanes 126 and 127 are positioned halfway between the fixed vane 104 and the fixed vane 105 It is.
  • the rotary damper 100 is provided between the inner chamber wall surface 103b in which the rotor 120 is formed in the inclined surface and the movable vanes 126 and 127 and on the inclined surface.
  • the rotor 120 is resiliently pressed by the seal bodies 106 and 128 formed of elastic bodies provided between the formed shaft facing end portions 104 b and 105 b and the shaft body 121.
  • the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are formed as inclined surfaces.
  • at least one of the inner wall surface 103b and the shaft facing end portion 104b, 105b may be formed as an inclined surface.
  • the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are inclined surfaces separated from the axis of the inner chamber 103 from the bottom portion 103a side of the housing body 102 toward the opening portion 102a. It consisted of. However, the inner chamber wall surface 103 b and the shaft facing end portions 104 b and 105 b may be configured by an inclined surface which is inclined along the axis of the inner chamber 103. Therefore, the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b can be configured as inclined surfaces separated from the axis of the inner chamber 103 from the opening 102a side to the bottom portion 103a side of the housing main body 102 .
  • the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are 0.5 ° to the axis of the inner chamber 103 from the bottom portion 103a side of the housing main body 102 toward the opening portion 102a. It comprised with the inclined surface of the inclination angles (alpha) and (beta) of.
  • the inclination angles of the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are not limited to the above embodiment.
  • the inclination angles ⁇ and ⁇ of the inner wall surface 103b and the shaft facing end portions 104b and 105b can be set to 0.1 ° or more and 5 ° or less, preferably 0.2 ° or more and 2 Or less, more preferably 0.2 or more and 0.5 or less.
  • the inclination angle ⁇ of the inner wall surface 103b and the inclination angle ⁇ of the shaft facing end portions 104b and 105b can be set to the same angle or different angles.
  • the housing 101 formed the housing main body 102 in bottomed cylindrical shape.
  • the housing 101 may be configured such that the housing main body 102 is formed in a cylindrical shape, and both ends of the cylindrical body are closed by a plate-like body corresponding to the lid 110.
  • the seal bodies 106 and 128 are in surface contact with the inner chamber wall surface 103b and the shaft opposing end portions 104b and 105b, respectively, which are configured by the inclined surfaces before being attached to the housing body 102 and the rotor 120.
  • the axial direction portion 106b and the inner wall side portion 128b are formed as inclined surfaces parallel to the inclined surfaces of the inner wall surface 103b and the shaft opposing end portions 104b and 105b.
  • the seal bodies 106 and 128 can be easily attached to the inner wall surface 103 b and the shaft body facing end portions 104 b and 105 b with good adhesion.
  • the seal body 106, 128 does not necessarily have to the inclined surface of the inner chamber wall surface 103b and the shaft opposing end portion 104b, 105b. It does not need to be formed in parallel, and can be formed in non-parallel, for example, parallel to the axial direction of the inner chamber 103.
  • the fixed vanes 104 and 105 are configured such that the side wall surfaces 104c and 105c are inclined surfaces such that the thickness on the bottom 103a side is thicker than the thickness on the tip of the opening 102a. ing. As a result, the fixed vanes 104 and 105 can increase the rigidity because the thickness on the bottom portion 103 a side is thicker than the tip portion.
  • the stationary vanes 104 and 105 can also be configured such that the side wall surfaces 104c and 105 are erected at right angles to the bottom portion 103a.
  • the side wall surfaces 104c and 105c may be formed as inclined surfaces in which the thickness of the fixed vanes 104 and 105 decreases from the opening 102a side toward the bottom 103a side, or along the radial direction of the inner chamber 103. It may be composed of an inclined surface whose thickness varies continuously. Further, the side wall surfaces 104c and 105c can be configured such that the thickness of the fixed vanes 104 and 105 is constant from the opening 102a to the bottom 103a, that is, not perpendicular to the slope 103a but perpendicular to the bottom 103a. .
  • the formability and processing efficiency by forging are improved by forming the inner wall surface 103b, the shaft facing end portions 104b and 105b, and the side wall surfaces 104c and 105c with inclined surfaces in the same direction. It can be done.
  • the rotary damper 100 divides the inside of one inner chamber 103 into a first individual chamber R1, a second individual chamber R2, a third individual chamber R3 and a fourth individual chamber R4, which are four individual chambers by fixed vanes 104 and 105 and movable vanes 126 and 127.
  • the rotary damper 100 has at least two separate chambers in which the volume is simultaneously reduced by the pivoting of the movable vanes 126 and 127 and the volume is simultaneously increased by the pivoting of the movable vanes 126 and 127.
  • the movable vanes 126 and 127 have at least two chambers in which the volume is simultaneously increased by the pivoting of the movable vanes 126 and 127 to the one and the volume is simultaneously reduced by the pivoting of the movable vanes 126 and 127 to the other Good.
  • the rotary damper 100 has at least two separate chambers whose volumes simultaneously increase when the rotor 120 rotates in one direction in one inner chamber 103 and at least two separate chambers whose volumes simultaneously decrease separately from these separate chambers. As long as you have Therefore, the rotary damper 100 has three individual chambers whose volumes increase simultaneously with rotation of the rotor 120 in one internal chamber 103 in one direction, and three individual chambers whose volumes simultaneously decrease separately from these individual chambers. Can also be configured.
  • the rotary damper 100 is configured such that the rotor 120 is provided with the accumulator mounting portion 122 and the accumulator (not shown) is provided.
  • the rotary damper 100 can compensate for a volume change due to expansion or contraction based on a temperature change of the fluid 140, and the configuration of the rotary damper 100 can be miniaturized.
  • the accumulator can also be provided at a location other than the rotor 120, for example, outside the housing 101. Further, when it is not necessary to consider the volume change of the fluid 140, the rotary damper 100 can be configured with the accumulator and the accumulator mounting portion 122 omitted.
  • the rotary damper 100 has the housing 101 at the fixed side and the rotor 120 at the movable side.
  • the rotation of the rotor 120 relative to the housing 101 in the rotary damper 100 is relative. Therefore, it goes without saying that the rotary damper 100 can also make the housing 101 movable and the rotor 120 fixed.
  • the second bidirectional communication passage 131 and the second one-way communication passage 132 are provided in the movable vanes 126 and 127.
  • the second two-way communication passage 131 and the second one-way communication passage 132 can also be provided in the fixed vanes 104 and 105.
  • the rotary damper 100 is a place other than the swing arm in a two-wheeled self-propelled vehicle (for example, an opening and closing mechanism of a seat), a vehicle other than a two-wheeled self-propelled vehicle It can be attached to a mechanical device, an electric device or an appliance other than a door) or a self-propelled vehicle.
  • inclination angle of the inner wall surface
  • inclination angle of the shaft facing end
  • R1 first single chamber
  • R2 second single chamber
  • R3 third single chamber
  • R4 fourth single chamber
  • C bottom of housing main body Clearance between the same bottom and the end face of the rotor shaft
  • 100 rotary damper

Abstract

Provided is a rotary damper wherein the generation of noise and vibration during operation can be suppressed. This rotary damper (100) is provided with a housing (101). The housing (101) has a rotor (120) provided within the closed-end circular cylindrical housing body (102) and is closed by a cover body (110). An inner chamber (103) within a housing body (101) is divided into four individual chambers by stationary vanes (104, 105) and by movable vanes (126, 127) provided to the rotor (120). The inner chamber wall surface (103b) of the inner chamber (103), on which the movable vanes (126, 127) slide, and shaft body-facing end sections (104b, 105b) of the stationary vanes (104, 105), which slide on the shaft body (121) of the rotor (120), comprise sloped surfaces. Seal bodies (106, 128) formed from elastic bodies are provided between the inner chamber wall surface (103b) and the movable vanes (126, 127) and between the shaft body (121) and the shaft body-facing end sections (104a, 105b).

Description

ロータリダンパRotary damper
 本発明は、四輪または二輪の自走式車両または産業用機械器具における回動機構において運動エネルギの減衰装置として用いられるロータリダンパに関する。 The present invention relates to a rotary damper used as a kinetic energy damping device in a pivoting mechanism of a four- or two-wheeled self-propelled vehicle or industrial machine tool.
 従来から、四輪または二輪の自走式車両または産業用機械器具においては、回動機構において運動エネルギの減衰装置としてロータリダンパが用いられている。例えば、下記特許文献1には、筒状に形成されたケーシング内に段付きの棒体における大径部に一対の羽根状のベーンを有したロータが両持ち支持されたロータリダンパが開示されている(下記特許文献1における図1参照)。 2. Description of the Related Art Conventionally, in four-wheel or two-wheel self-propelled vehicles or industrial machine tools, a rotary damper is used as a kinetic energy damping device in a pivoting mechanism. For example, Patent Document 1 below discloses a rotary damper in which a rotor having a pair of vane-like vanes in a large diameter portion of a stepped rod in a cylindrical casing is supported at both ends (See FIG. 1 in Patent Document 1 below).
特開平9-170638号公報JP-A-9-170638
 しかしながら、上記特許文献1に開示されたロータリダンパにおいては、ケーシングとロータとの間には図示はされていないが両者の円滑な組付けおよび作動のためにロータの軸方向への変位を許容する所定の隙間(所謂ガタ)が設定されていることが一般的であるため、ロータリダンパの作動時にケーシングとロータとのガタツキに起因した異音および振動が生じることがあるという問題がある。 However, in the rotary damper disclosed in Patent Document 1, although not shown between the casing and the rotor, axial displacement of the rotor is allowed for smooth assembly and operation of the both. Since a predetermined gap (so-called rattle) is generally set, there is a problem that abnormal noise and vibration may occur due to the rattling between the casing and the rotor when the rotary damper is operated.
 本発明は上記問題に対処するためなされたもので、その目的は、作動時における異音および振動の発生を抑制することができるロータリダンパを提供することにある。 The present invention has been made to address the above problems, and an object thereof is to provide a rotary damper that can suppress the generation of abnormal noise and vibration during operation.
 上記目的を達成するため、本発明の特徴は、流動体を液密的に収容する円筒状の内室を有するとともに同内室内に径方向に沿う壁状に形成されて流動体の周方向の流動を妨げる固定ベーンを有したハウジングと、軸体の外周部に内室内を仕切りつつ流動体を押しながら回動する可動ベーンを有したロータとを備えたロータリダンパにおいて、ロータの可動ベーンが摺動するハウジングの内室壁面および可動ベーンにおける軸体が摺動する固定ベーンの軸体対向端部のうちの少なくとも一方が内室の軸線に沿って傾斜した傾斜面で構成されており、ロータは、傾斜面に形成された内室壁面と可動ベーンとの間および/または傾斜面に形成された軸体対向端部と軸体との間に設けられた弾性体からなるシール体によって弾性的に押圧されていることにある。 In order to achieve the above object, the feature of the present invention is to form a wall shape along the radial direction in the same inner chamber while having a cylindrical inner chamber for containing the fluid in a liquid tight manner, A rotary damper comprising: a housing having a fixed vane which impedes flow; and a rotor having a movable vane which rotates while pushing a fluid while partitioning an inner chamber to an outer peripheral portion of a shaft. At least one of the inner wall surface of the moving housing and the shaft-facing end of the fixed vane on which the shaft of the movable vane slides is constituted by an inclined surface inclined along the axis of the inner chamber, and the rotor is A seal formed of an elastic body provided between the inner wall surface formed on the inclined surface and the movable vane and / or between the shaft facing end portion formed on the inclined surface and the shaft; Being pressed In the door.
 このように構成した本発明の特徴によれば、ロータリダンパは、ロータが傾斜面に形成された内室壁面と可動ベーンとの間および/または傾斜面に形成された軸体対向端部と軸体との間に設けられた弾性体からなるシール体によって弾性的に押圧されているため、ロータがハウジングに対して前記傾斜面によって軸方向の一方側に弾性的に押し付けられた状態で組み付けられることでロータリダンパの作動時における異音および振動の発生を抑制することができる。 According to the feature of the present invention configured as described above, the rotary damper includes the shaft facing end and the shaft formed between the inner wall surface of the rotor formed on the inclined surface and the movable vane and / or the inclined surface. Since the rotor is elastically pressed by the seal body formed of an elastic body provided between the rotor and the body, the rotor is assembled in a state of being elastically pressed on one side in the axial direction by the inclined surface with respect to the housing As a result, it is possible to suppress the generation of abnormal noise and vibration at the time of operation of the rotary damper.
 また、本発明の他の特徴は、前記ロータリダンパにおいて、傾斜面は、内室壁面および軸体対向端部にそれぞれ形成されていることにある。 Another feature of the present invention is that, in the rotary damper, the inclined surfaces are respectively formed on the inner wall surface and the shaft facing end.
 このように構成した本発明の他の特徴によれば、ロータリダンパは、傾斜面が内室壁面および軸体対向端部にそれぞれ形成されているため、ロータをハウジングに対して周方向の全域に亘って軸方向の一方側に弾性的に押付けることができ、より強い力による安定的で均質な押し付けによってロータリダンパの作動時における異音および振動の発生を抑制することができる。 According to another feature of the present invention configured as described above, since the inclined surface is respectively formed on the inner wall surface and the shaft facing end portion of the rotary damper, the rotor is provided in the entire circumferential direction with respect to the housing It is possible to elastically press on one side in the axial direction, and the generation of abnormal noise and vibration at the time of operation of the rotary damper can be suppressed by stable and homogeneous pressing by a stronger force.
 また、本発明の他の特徴は、前記ロータリダンパにおいて、ハウジングは、内室の軸線方向における一方の端部が閉塞された底部を有するとともに他方が開口して蓋体で覆われる開口部を有する有底筒状に形成されており、傾斜面は、底部側から開口部側に向かって内室の軸線に対して離隔するように形成されていることにある。 Also, another feature of the present invention is that, in the rotary damper, the housing has a bottom portion closed at one end in the axial direction of the inner chamber and an opening portion opened at the other end and covered by a lid. The bottomed cylindrical shape is formed, and the inclined surface is formed to be separated from the axis of the inner chamber from the bottom side toward the opening side.
 このように構成した本発明の他の特徴によれば、ロータリダンパは、ハウジングが内室の軸線方向における一方の端部が閉塞された底部を有するとともに他方が開口して蓋体で覆われる開口部を有する有底筒状に形成されているとともに、傾斜面が底部側から開口部側に向かって内室の軸線に対して離隔するように形成されているため、ロータリダンパの部品点数を抑えつつ傾斜面を鍛造加工、鋳造加工または切削加工を用いて容易に成形することができる。なお、有底筒状のハウジングには、底部がハウジングにおける内室の軸線方向における一方の端部を完全に閉塞する場合だけでなく、同一方の端部の少なくとも一部を閉塞して他の一部が開口した形状(例えば、リング状)も含まれるものである。 According to another feature of the present invention thus constituted, the rotary damper has an opening in which the housing has a bottom closed at one end in the axial direction of the inner chamber and the other is open and covered by the lid Since the inclined surface is formed to be separated from the axis of the inner chamber from the bottom side toward the opening side, and the number of parts of the rotary damper is reduced. However, the inclined surface can be easily formed using forging, casting or cutting. In the bottomed cylindrical housing, not only when the bottom completely closes one end in the axial direction of the inner chamber in the housing, but at least a part of the same end is closed and the other end is closed. A partially open shape (for example, a ring shape) is also included.
 また、本発明の他の特徴は、前記ロータリダンパにおいて、固定ベーンは、底部側から開口部側に向かって厚さが薄くなるように固定ベーンによって仕切られる2つの内室にそれぞれ面する側壁面が傾斜面で構成されていることにある。 Further, another feature of the present invention is that, in the rotary damper, the fixed vanes face side wall surfaces respectively facing two inner chambers partitioned by the fixed vanes such that the thickness becomes thinner from the bottom side toward the opening side. Is composed of an inclined surface.
 このように構成した本発明の他の特徴によれば、ロータリダンパは、固定ベーンが底部側から開口部側に向かって厚さが薄くなるように固定ベーンによって仕切られる2つの内室にそれぞれ面する側壁面が傾斜面で構成されているため、内室の容積の減少およびロータリダンパの重量の増加を抑えつつ固定ベーンの根元部分の強度を向上させて固定ベーン全体の剛性を向上させることができる。 According to another feature of the present invention configured as described above, the rotary damper faces each of the two inner chambers partitioned by the stationary vanes such that the stationary vanes become thinner in thickness from the bottom side toward the opening side. Since the side wall surface to be formed is an inclined surface, it is possible to improve the strength of the root portion of the fixed vane and to improve the overall rigidity of the fixed vane while suppressing the decrease in the volume of the inner chamber and the increase in weight of the rotary damper. it can.
 また、本発明の他の特徴は、前記ロータリダンパにおいて、シール体は、傾斜面に面する面が同傾斜面に対して平行な傾斜面で構成されていることにある。 Another feature of the present invention is that, in the rotary damper, the seal body is configured such that the surface facing the inclined surface is an inclined surface parallel to the inclined surface.
 このように構成した本発明の他の特徴によれば、ロータリダンパは、シール体が傾斜面に面する面が同傾斜面に対して平行な傾斜面で構成されているため、傾斜面で構成された内室壁面および/または可動ベーンの軸対向端面に対する密着性を向上させて液密性を向上させつつロータをハウジング内にてより効果的に軸方向の一方側に押し付けることができ、ロータリダンパの作動時における異音および振動の発生を抑制することができる。 According to another feature of the present invention configured as described above, the rotary damper is configured with an inclined surface because the surface facing the inclined surface is configured with an inclined surface parallel to the inclined surface. The rotor can be more effectively pressed on one side in the axial direction within the housing while improving the liquid tightness by improving the adhesion to the inner wall surface of the inner chamber and / or the axially opposed end face of the movable vane, and the rotary It is possible to suppress the generation of abnormal noise and vibration during operation of the damper.
本発明に係るロータリダンパの全体構成の概略的に示す斜視図である。It is a perspective view showing roughly the whole composition of the rotary damper concerning the present invention. 図1示すロータリダンパを構成するハウジング本体、ハウジング本体用のシール体、ロータおよびロータ用のシール体をそれぞれ示す組み立て分解斜視図である。FIG. 2 is an exploded exploded perspective view showing a housing body, a seal body for the housing body, a rotor, and a seal body for the rotor, which constitute the rotary damper shown in FIG. 1. 図1示すロータリダンパの全体構成を概略的に示す正面図である。It is a front view which shows roughly the whole structure of the rotary damper shown in FIG. 図3に示す4-4から見たロータリダンパの断面図である。FIG. 5 is a cross-sectional view of the rotary damper viewed from 4-4 shown in FIG. 3; 図3に示す5-5から見たロータリダンパの断面図である。FIG. 5 is a cross-sectional view of the rotary damper viewed from 5-5 shown in FIG. 3; 図1に示すロータリダンパの作動状態を説明するために横断面の構造を模式的に示した説明図である。It is explanatory drawing which showed typically the structure of the cross section in order to demonstrate the action | operation state of the rotary damper shown in FIG. 図6に示した状態からロータが時計回りに回動した状態を示す説明図である。It is explanatory drawing which shows the state which the rotor rotated clockwise from the state shown in FIG. 図7に示した状態からロータが反対側まで回動した状態を示す説明図である。It is explanatory drawing which shows the state which the rotor rotated to the other side from the state shown in FIG. 図8に示した状態からロータが反時計回りに回動した状態を示す説明図である。It is explanatory drawing which shows the state which the rotor rotated to anticlockwise rotation from the state shown in FIG.
 以下、本発明に係るロータリダンパの一実施形態について図面を参照しながら説明する。図1は、本発明に係るロータリダンパ100の全体構成を概略的に示す斜視図である。また、図2は、図1示すロータリダンパ100を構成するハウジング本体102、ハウジング本体102用のシール体106、ロータ120およびロータ120用のシール体128をそれぞれ示す組み立て分解斜視図である。図3は、図1示すロータリダンパ100の全体構成を概略的に示す正面図である。なお、本明細書において参照する各図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している部分がある。このため、各構成要素間の寸法や比率などは異なっていることがある。このロータリダンパ100は、二輪の自走式車両(バイク)の後輪を上下動可能に支持するスイングアームの基端部に取り付けられて後輪の上下動時に運動エネルギを減衰させる減衰装置である。 Hereinafter, an embodiment of a rotary damper according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view schematically showing an entire configuration of a rotary damper 100 according to the present invention. 2 is an exploded exploded perspective view showing the housing body 102, the seal body 106 for the housing body 102, the rotor 120, and the seal body 128 for the rotor 120, which constitute the rotary damper 100 shown in FIG. FIG. 3 is a front view schematically showing an entire configuration of the rotary damper 100 shown in FIG. It should be noted that each drawing referred to in the present specification has a portion schematically represented such as exaggeratingly showing a part of component to facilitate understanding of the present invention. For this reason, the dimensions, proportions, etc. between the components may be different. The rotary damper 100 is a damping device attached to the base end of a swing arm that supports the rear wheels of two-wheeled self-propelled vehicles (bikes) so as to be able to move up and down, thereby damping kinetic energy when the rear wheels move vertically. .
(ロータリダンパ100の構成)
 ロータリダンパ100は、ハウジング101を備えている。ハウジング101は、ロータ120を回転自在に保持しつつロータリダンパ100の筐体を構成する部品であり、アルミニウム材、鉄材、亜鉛材、またはポリアミド樹脂などの各種樹脂材によって構成されている。具体的には、ハウジング101は、主として、ハウジング本体102と蓋体110とで構成されている。
(Configuration of rotary damper 100)
The rotary damper 100 includes a housing 101. The housing 101 is a component that configures the housing of the rotary damper 100 while rotatably holding the rotor 120, and is made of various resin materials such as an aluminum material, an iron material, a zinc material, or a polyamide resin. Specifically, the housing 101 mainly includes the housing body 102 and the lid 110.
 ハウジング本体102は、後述するロータ120の可動ベーン126,127および流動体140を収容するとともにロータ120の軸体121の一方の端部を回転自在に支持する部品であり、筒体における一方端が大きく開口するとともに他方端が小さく開口する有底円筒状に形成されている。より具体的には、ハウジング本体102は、前記筒体における一方端で大きく開口する開口部102a側に円筒状の内室103が形成されるとともに、この内室103の底部103aに開口した状態でロータ支持部107が形成されている。 The housing body 102 is a component that accommodates movable vanes 126 and 127 of the rotor 120 and the fluid body 140 described later, and rotatably supports one end of the shaft 121 of the rotor 120, and one end of the cylinder is It is formed in a bottomed cylindrical shape which is largely open and whose other end is small and open. More specifically, in the housing body 102, a cylindrical inner chamber 103 is formed on the side of the opening portion 102a which is largely opened at one end of the cylindrical body, and the housing main body 102 is opened in the bottom portion 103a of the inner chamber 103. A rotor support portion 107 is formed.
 内室103は、ロータ120の可動ベーン126,127とともに流動体140を液密的に収容する空間であり、ハウジング本体102内に中央部に配置されたロータ120を介して互いに対向する2つの半円筒の空間で構成されている。この場合、可動ベーン126,127が摺動する内室103の内壁面である内室壁面103bは、傾斜面で構成されている。具体的には、内室壁面103bは、底部103a側から開口部102a側に向かって内径が広がる円錐面状のテーパ形状に形成されている。本実施形態においては、内室壁面103bは、内室103の軸線に対して0.5°の傾斜角αの傾斜面で形成されている。これらの内室103内には、固定ベーン104,105がハウジング本体102と一体的にそれぞれ形成されている。 The inner chamber 103 is a space that accommodates the fluid 140 together with the movable vanes 126 and 127 of the rotor 120 in a fluid-tight manner, and the two halves facing each other via the rotor 120 disposed centrally in the housing body 102. It consists of a cylindrical space. In this case, the inner chamber wall surface 103b, which is the inner wall surface of the inner chamber 103 in which the movable vanes 126 and 127 slide, is formed by an inclined surface. Specifically, the inner chamber wall surface 103b is formed in a conical surface taper shape in which the inner diameter is expanded from the bottom portion 103a side toward the opening portion 102a. In the present embodiment, the inner chamber wall surface 103 b is formed by an inclined surface having an inclination angle α of 0.5 ° with respect to the axis of the inner chamber 103. In the inner chamber 103, fixed vanes 104 and 105 are formed integrally with the housing body 102, respectively.
 固定ベーン104,105は、ロータ120とともに内室103内を仕切って個室R1~R4を形成する壁状の部分であり、ハウジング本体102の軸線方向に沿って内室壁面103bから内側に向かって凸状に張り出して形成されている。この場合、2つの固定ベーン104,105は、内室壁面103bの内周面における周方向上での互いに対向する位置に設けられている。これらの各固定ベーン104,105は、後述する蓋体110にそれぞれ対向する蓋体対向端部104a,105aおよびロータ120の軸体121にそれぞれ対向する軸体対向端部104b,105bがそれぞれ凹状に凹む溝状に形成されているとともに、これらの各溝内にシール体106が嵌め込まれている。 The fixed vanes 104 and 105 are wall-shaped portions that partition the interior of the inner chamber 103 together with the rotor 120 to form the individual chambers R1 to R4, and project inward from the inner chamber wall surface 103b along the axial direction of the housing main body 102. It is formed to overhang in a shape. In this case, the two fixed vanes 104 and 105 are provided at mutually opposing positions in the circumferential direction on the inner peripheral surface of the inner chamber wall surface 103b. In each of the fixed vanes 104 and 105, lid opposing ends 104a and 105a respectively opposing the lid 110 described later and shaft opposing ends 104b and 105b each opposing the shaft 121 of the rotor 120 are concaved. It is formed in the shape of a recessed groove, and the seal body 106 is fitted in each of these grooves.
 この場合、蓋体対向端部104a,105aは、一定の幅および深さで形成されている。一方、軸体対向端部104b,105bは、ハウジング本体102の軸線方向に沿って形成されるとともに各溝内の底部が底部103a側から開口部102a側に向かって内室103の径方向外側に広がる傾斜面で構成されている。本実施形態においては、軸体対向端部104b,105bは、内室壁面103bと同様に、内室103の軸線に対して0.5°の傾斜角βの傾斜面で形成されている。また、軸体対向端部104b,105bは、溝を形成する両側壁の間隔、すなわち溝幅が底部103a側から開口部102a側に向かって広がる傾斜面でそれぞれ構成されている。 In this case, the lid facing end portions 104a and 105a are formed with a constant width and depth. On the other hand, the shaft facing end portions 104b and 105b are formed along the axial direction of the housing main body 102, and the bottom in each groove is radially outward of the inner chamber 103 from the bottom 103a to the opening 102a. It is composed of an expanding slope. In the present embodiment, the shaft facing end portions 104b and 105b are formed by an inclined surface having an inclination angle β of 0.5 ° with respect to the axis of the inner chamber 103, similarly to the inner chamber wall surface 103b. The shaft facing end portions 104b and 105b are each formed of an inclined surface in which the distance between the side walls forming the groove, that is, the groove width spreads from the bottom portion 103a side to the opening portion 102a side.
 また、固定ベーン104,105は、内室103内で個室R1~R4にそれぞれ面して個室R1~R4をそれぞれ形成する側壁面104c,105cが内室103の軸線方向に沿って傾斜する傾斜面で構成されている。具体的には、側壁面104c,105cは、底部103a側から開口部102a側に向かって固定ベーン104,105の厚さが薄くなる傾斜面に形成されている。本実施形態においては、側壁面104c,105cは、内室103の軸線と平行な仮想線、換言すれば、底部103aに対して垂直な仮想線に対して軸体対向端部104b,105bの傾斜角βと同じ0.5°の傾斜面で形成されている。 In addition, fixed vanes 104 and 105 are inclined surfaces in which the side wall surfaces 104c and 105c that face the individual chambers R1 to R4 and form the individual chambers R1 to R4 in the inner chamber 103 are inclined along the axial direction of the inner chamber 103. It consists of Specifically, the side wall surfaces 104c and 105c are formed as inclined surfaces in which the thickness of the fixed vanes 104 and 105 is reduced from the bottom 103a to the opening 102a. In the present embodiment, the side wall surfaces 104c and 105c are imaginary lines parallel to the axis of the inner chamber 103, in other words, inclinations of the shaft facing ends 104b and 105b with respect to an imaginary line perpendicular to the bottom 103a. It is formed by the same 0.5 ° inclined surface as the angle β.
 シール体106は、内室103内に形成される個室R1~R4の液密性を確保するための部品であり、ゴム材などの弾性材料を側面視でL字状に形成して構成されている。より具体的には、シール体106は、蓋体対向端部104a,105a内に圧入される径方向部106aと、軸体対向端部104b,105bに圧入される軸方向部106bとがL字状に一体的に形成されている。そして、これらの径方向部106aおよび軸方向部106bは、蓋体対向端部104a,105aおよび軸体対向端部104b,105bからそれぞれ張り出す大きさで形成されている。 The seal body 106 is a component for securing the liquid tightness of the individual chambers R1 to R4 formed in the inner chamber 103, and is configured by forming an elastic material such as a rubber material in an L shape in side view There is. More specifically, in the seal body 106, the radial direction portion 106a press-fitted into the lid facing end portions 104a and 105a and the axial direction portion 106b press-fitted to the shaft facing end portions 104b and 105b are L-shaped. It is integrally formed in a shape. And these radial direction part 106a and axial direction part 106b are formed by the magnitude | size which each protrudes from lid opposing end part 104a, 105a and axial body opposing end part 104b, 105b.
 また、軸方向部106bは、軸体対向端部104b,105bに対向する面が軸体対向端部104b,105bを構成する傾斜面と平行に延びる傾斜面、すなわち、底部103a側から開口部102a側に向かって内室103の径方向外側に張り出すとともに同径方向に直交する方向に張り出す傾斜面で構成されている。換言すれば、軸方向部106bは、軸体対向端部104b,105bに嵌合する部分が底部103a側から開口部102a側に向かって前記2つの方向に沿ってそれぞれ厚さが連続的に厚くなるように形成されている。このシール体106を構成する材料としては、ゴム材としてニトリルゴム、水素化ニトリルゴムまたはフッ素ゴムがある。 Further, the axial portion 106b is an inclined surface extending in parallel with the inclined surface constituting the shaft opposing ends 104b, 105b, that is, the opening 102a from the bottom 103a side. It is configured by an inclined surface that protrudes outward in the radial direction of the inner chamber 103 toward the side and also protrudes in a direction orthogonal to the same radial direction. In other words, in the axial direction portion 106b, the thickness of the portion fitted to the shaft facing end portions 104b and 105b is continuously increased along the two directions from the bottom portion 103a side toward the opening portion 102a side. It is formed to be As a material which comprises this sealing body 106, there exist nitrile rubber, hydrogenated nitrile rubber, or fluororubber as a rubber material.
 ロータ支持部107は、ロータ120の軸体121における一方の端部を回転自在な状態で支持する円筒状の部分である。このロータ支持部107は、ベアリングおよびパッキンなどのシール材を介してロータ120の軸体121を液密的に支持している。 The rotor support portion 107 is a cylindrical portion that rotatably supports one end of the shaft 121 of the rotor 120. The rotor support portion 107 supports the shaft body 121 of the rotor 120 in a fluid-tight manner via a sealing material such as a bearing and a packing.
 蓋体110は、ハウジング本体102に形成されている内室103を液密的に塞ぐための部品であり、円筒状に形成されたロータ支持部111の一方の端部がフランジ状に張り出した形状に形成されている。ロータ支持部111は、ロータ120の軸体121における他方の端部を回転自在な状態で支持する円筒状の部分である。このロータ支持部111は、ベアリングおよびパッキンなどのシール材を介してロータ120の軸体121を液密的に支持している。 The lid 110 is a component for sealing the inner chamber 103 formed in the housing main body 102 in a fluid-tight manner, and one end of the cylindrically formed rotor support portion 111 protrudes in a flange shape. Is formed. The rotor support portion 111 is a cylindrical portion which rotatably supports the other end of the shaft 121 of the rotor 120. The rotor support portion 111 supports the shaft body 121 of the rotor 120 in a fluid tight manner via a sealing material such as a bearing and packing.
 また、蓋体110には、バイパス通路112a,112bおよび調整ニードル113a,113bがそれぞれ設けられている。バイパス通路112aは、内室103内における第1個室R1と第2個室R2とを連通させて流動体140を互いに流通させるとともに第1個室R1および第2個室R2をそれぞれ外部に連通させる通路である。バイパス通路112bは、内室103内における第2個室R2と第4個室R4とを連通させて流動体140を互いに流通させるとともに第2個室R2および第4個室R4をそれぞれ外部に連通させる通路である。 The lid 110 is also provided with bypass passages 112a and 112b and adjustment needles 113a and 113b, respectively. The bypass passage 112a is a passage that connects the first individual chamber R1 and the second individual chamber R2 in the inner chamber 103 so as to cause the fluid 140 to flow with each other and causes the first individual chamber R1 and the second individual chamber R2 to communicate with the outside. . The bypass passage 112b is a passage that connects the second individual chamber R2 and the fourth individual chamber R4 in the inner chamber 103 so as to allow the fluid 140 to flow with each other and causes the second individual chamber R2 and the fourth individual chamber R4 to communicate with the outside. .
 また、調整ニードル113a,113bは、バイパス通路112a,112b内をそれぞれ外部に対して密閉するとともに流通する流動体140の流量を調整するための部品であり、ドライバなどの工具(図示せず)を使って回動させることにより流動体140の流通量を増減することができる。この蓋体110は、4つのボルト114によってハウジング本体102における内室103が開口する側の端部に取り付けられている。 Further, the adjustment needles 113a and 113b are components for sealing the inside of the bypass passages 112a and 112b from the outside and adjusting the flow rate of the fluid 140 flowing, and using a tool (not shown) such as a driver. The flow rate of the fluid 140 can be increased or decreased by using and rotating. The lid 110 is attached to the end of the housing body 102 on the side where the inner chamber 103 is opened by four bolts 114.
 ロータ120は、ハウジング101の内室103内に配置されて内室103内を4つの空間である第1個室R1、第2個室R2、第3個室R3および第4個室R4にそれぞれ仕切るとともに、この内室103内で回動することによりこれらの第1個室R1、第2個室R2、第3個室R3および第4個室R4の各個室の容積をそれぞれ増減させるための部品であり、主として、軸体121と可動ベーン126,127とで構成されている。 The rotor 120 is disposed in the inner chamber 103 of the housing 101 and divides the inside of the inner chamber 103 into four spaces, ie, a first single chamber R1, a second single chamber R2, a third single chamber R3 and a fourth single chamber R4. It is a component for respectively increasing or decreasing the volume of each of the first single chamber R1, the second single chamber R2, the third single chamber R3 and the fourth single chamber R4 by rotating in the inner chamber 103, mainly the shaft It comprises 121 and movable vanes 126 and 127.
 軸体121は、可動ベーン126,127を支持する丸棒状の部分であり、アルミニウム材、鉄材、亜鉛材、またはポリアミド樹脂などの各種樹脂材によって構成されている。この軸体121には、一方の端部にアキュムレータ取付部122が形成されるとともに他方の端部に接続部123が設けられている。 The shaft body 121 is a round bar-like portion that supports the movable vanes 126 and 127, and is made of various resin materials such as an aluminum material, an iron material, a zinc material, or a polyamide resin. An accumulator mounting portion 122 is formed at one end of the shaft body 121 and a connection portion 123 is provided at the other end.
 アキュムレータ取付部122は、図示しないアキュムレータが取り付けられる有底筒状の穴である。ここで、アキュムレータは、内室103内の流動体140の温度変化による膨張または収縮による体積変化を補償するための機具であり、後述する第1片方向連通路125に連通した状態で設けられる。接続部123は、ロータリダンパ100が取り付けられる2つの部品間のうちの一方の部品に接続するための部分である。本実施形態においては、接続部123は、断面形状が六角形状の有底筒状の穴で構成されている。 The accumulator attachment portion 122 is a bottomed cylindrical hole in which an accumulator (not shown) is attached. Here, the accumulator is a tool for compensating for a volume change due to expansion or contraction due to a temperature change of the fluid 140 in the inner chamber 103, and is provided in communication with a first one-way communication passage 125 described later. The connection portion 123 is a portion for connecting to one of the two parts to which the rotary damper 100 is attached. In the present embodiment, the connection portion 123 is configured by a bottomed cylindrical hole whose cross-sectional shape is a hexagonal shape.
 また、この軸体121には、図6ないし図9にそれぞれ示すように、第1双方向連通路124および第1片方向連通路125がそれぞれ形成されている。第1双方向連通路124は、可動ベーン126,127の一方への回動によって容積が同時に減少するとともに同可動ベーン126,127の他方への回動によって容積が同時に増加する2つの個室間で相互に流動体140の流通を可能とする通路である。本実施形態においては、第1双方向連通路124は、可動ベーン126,127の図示反時計回りの回動によって容積が同時に減少するとともに図示時計回りの回動によって容積が同時に増加する第1個室R1と第3個室R3とが互いに連通するように軸体121を貫通した状態で形成されている。 Further, as shown in FIGS. 6 to 9, the shaft 121 is formed with a first bidirectional communication passage 124 and a first unidirectional communication passage 125. In the first bidirectional communication passage 124, the volume is simultaneously reduced by rotation of the movable vanes 126 and 127 to one side, and the volume is simultaneously increased by rotation of the movable vanes 126 and 127 to the other. It is a passage which enables the fluid 140 to flow mutually. In the present embodiment, the first two-way communication passage 124 is a first single chamber in which the volume is simultaneously reduced by the illustrated counterclockwise rotation of the movable vanes 126 and 127 and the volume is simultaneously increased by the illustrated clockwise rotation. It is formed in the state which penetrated shaft 121 so that R1 and the 3rd individual room R3 may connect mutually.
 第1片方向連通路125は、可動ベーン126,127の前記一方への回動によって容積が同時に増加するとともに同可動ベーン126,127の前記他方への回動によって容積が同時に減少する2つの個室間で一方から他方にのみ流動体140を流通させる通路である。本実施形態においては、第1片方向連通路125は、可動ベーン126,127の図示反時計回りの回動によって容積が同時に増加するとともに図示時計回りの回動によって容積が同時に減少する第2個室R2と第4個室R4とが第2個室R2から第4個室R4にのみ流動体140が流通するように一方向弁125aを介して軸体121を貫通した状態で形成されている。また、この第1片方向連通路125は、一方向弁125aに対して流動体140の流通方向の上流側で前記アキュムレータにも連通している。 In the first one-way communication passage 125, the volume is simultaneously increased by the pivoting of the movable vanes 126 and 127 to the one side, and the volume is simultaneously reduced by the pivoting of the movable vanes 126 and 127 to the other It is a passage which distributes the fluid 140 only from one side to the other. In the present embodiment, the first one-way communication passage 125 is a second single chamber in which the volume is simultaneously increased by the illustrated counterclockwise rotation of the movable vanes 126 and 127 and the volume is simultaneously reduced by the illustrated clockwise rotation. R2 and the fourth separate chamber R4 are formed in a state of penetrating the shaft body 121 via the one-way valve 125a so that the fluid 140 can flow only from the second separate chamber R2 to the fourth separate chamber R4. The first one-way communication passage 125 is also in communication with the accumulator on the upstream side of the flow direction of the fluid 140 with respect to the one-way valve 125a.
 一方向弁125aは、第2個室R2と第4個室R4とを連通させる第1片方向連通路125において流動体140の第2個室R2側から第4個室R4側への流通を許容しつつ第4個室R4側から第2個室R2側への流動を阻止する弁である。 The one-way valve 125a allows the flow of the fluid 140 from the second individual chamber R2 side to the fourth individual chamber R4 side in the first one-way communication passage 125 which causes the second individual chamber R2 and the fourth individual chamber R4 to communicate with each other. It is a valve that blocks the flow from the four-chamber R4 side to the second individual chamber R2 side.
 可動ベーン126,127は、内室103内を複数の空間に仕切りつつこれらの各空間の容積を液密的にそれぞれ増減させるための部品であり、軸体121(内室103)の径方向に延びる板状体によってそれぞれ構成されている。この場合、これら2つの可動ベーン126,127は、軸体121を介して互いに反対方向(換言すれば仮想の同一平面上)に延びて形成されている。これらの可動ベーン126,127は、底部103a、内室壁面103bおよび蓋体110にそれぞれ対向するC字状(またはコ字状)の端面に底部対向端部126a,127a、内壁対向端部126b,127bおよび蓋体対向端部126c,127cがそれぞれ凹状に凹む溝状に形成されている。 The movable vanes 126 and 127 are components for respectively increasing and decreasing the volume of each space in a fluid tight manner while partitioning the inside of the inner chamber 103 into a plurality of spaces, and in the radial direction of the shaft body 121 (inner chamber 103) Each is constituted by an extending plate-like body. In this case, these two movable vanes 126 and 127 are formed to extend in opposite directions (in other words, on the same imaginary plane) via the shaft 121. These movable vanes 126 and 127 have bottom-facing end portions 126a and 127a and inner-wall facing end portions 126b and 126b at end faces of the C shape (or U shape) facing the bottom portion 103a, the inner wall surface 103b and the lid 110 respectively. A groove 127b and a lid facing end 126c, 127c are formed in a concave shape.
 この場合、底部対向端部126a,127a、内壁対向端部126b,127bおよび蓋体対向端部126c,127cをそれぞれ構成する各溝は、幅および深さが一定の幅および深さに形成されている。そして、これらの底部対向端部126a,127a、内壁対向端部126b,127bおよび蓋体対向端部126c,127cの各溝内には、シール体128が嵌め込まれている。 In this case, the respective grooves constituting the bottom opposite ends 126a and 127a, the inner wall opposite ends 126b and 127b, and the lid opposite ends 126c and 127c are formed to have a constant width and depth and a predetermined depth. There is. A seal body 128 is fitted in the respective grooves of the bottom opposite ends 126a and 127a, the inner wall opposite ends 126b and 127b, and the lid opposite ends 126c and 127c.
 シール体128は、シール体106と同様に、内室103内に形成される個室R1~R4の液密性を確保するための部品であり、シール体106と同様のゴム材などの弾性材料を側面視でC字状(またはコ字状)に形成して構成されている。より具体的には、シール体128は、底部対向端部126a,127a内に圧入される底側部128aと、内壁対向端部126b,127b内に圧入される内壁側部128bと、蓋体対向端部126c,127c内に圧入される蓋側部128cとがC字状(またはコ字状)に一体的に形成されている。そして、これらの底側部128a、内壁側部128bおよび蓋側部128cは、底部対向端部126a,127a、内壁対向端部126b,127bおよび蓋体対向端部126c,127cからそれぞれ張り出す大きさで形成されている。 Similar to the seal body 106, the seal body 128 is a component for securing the liquid tightness of the individual chambers R1 to R4 formed in the inner chamber 103, and is made of an elastic material such as rubber similar to the seal body 106. It is formed and formed in C shape (or U shape) by side view. More specifically, the seal body 128 has a bottom side 128a press-fit into the bottom opposite end 126a, 127a, an inner wall side 128b press-fit into the inner wall opposite end 126b, 127b, and a lid A lid side portion 128c press-fitted into the end portions 126c and 127c is integrally formed in a C shape (or a U shape). The bottom side portion 128a, the inner wall side portion 128b and the lid side portion 128c respectively project from the bottom facing ends 126a and 127a, the inner wall facing ends 126b and 127b, and the lid facing ends 126c and 127c. It is formed of
 この場合、内壁側部128bは、内室壁面103bに対向する面が内室壁面103bを構成する傾斜面と平行に延びる傾斜面、すなわち、底部103a側から開口部102a側に向かって内室103の径方向外側に張り出す傾斜面で構成されている。換言すれば、内壁側部128bは、内壁対向端部126b,127bに嵌合する部分が底部103a側から開口部102a側に向かって厚さが連続的に厚くなるように形成されている。これらにより、可動ベーン126,127は、前記固定ベーン104,105と協働して内室103内に互いに4つの空間である第1個室R1、第2個室R2、第3個室R3および第4個室R4を互いに液密的に形成する。 In this case, the inner wall side portion 128b is an inclined surface extending parallel to the inclined surface constituting the inner chamber wall surface 103b, ie, the inner chamber 103 facing the opening portion 102a from the bottom portion 103a side. It is comprised by the inclined surface which overhangs to the radial direction outer side of. In other words, the inner wall side portion 128b is formed such that the thickness of the portion fitted to the inner wall facing end portions 126b and 127b is continuously increased from the bottom portion 103a side toward the opening portion 102a. Due to these, the movable vanes 126 and 127 cooperate with the fixed vanes 104 and 105 to form the first chamber R1, the second chamber R2, the third chamber R3 and the fourth chamber which are four spaces in the inner chamber 103. Form R4 together in a liquid tight manner.
 より具体的には、内室103内には、固定ベーン104と可動ベーン126とで第1個室R1が形成され、可動ベーン126と固定ベーン105とで第2個室R2が形成され、固定ベーン105と可動ベーン127とで第3個室R3が形成され、可動ベーン127と固定ベーン104とで第4個室R4が形成される。すなわち、第1個室R1、第2個室R2、第3個室R3および第4個室R4は、内室103内において周方向に沿って隣接して形成されている。 More specifically, in the inner chamber 103, a first individual chamber R1 is formed by the fixed vane 104 and the movable vane 126, and a second individual chamber R2 is formed by the movable vane 126 and the fixed vane 105. And the movable vane 127 form a third individual chamber R 3, and the movable vane 127 and the fixed vane 104 form a fourth individual chamber R 4. That is, the first compartment R1, the second compartment R2, the third compartment R3 and the fourth compartment R4 are formed adjacent to each other in the inner chamber 103 along the circumferential direction.
 これらの可動ベーン126,127には、第2双方向連通路131および第2片方向連通路132がそれぞれ形成されている。第2双方向連通路131は、第1双方向連通路124によって連通される2つの連通個室としての第1個室R1および第3個室R3のうちの第1個室R1と、第1片方向連通路125によって連通される2つの片側連通個室としての第2個室R2および第4個室R4のうちの第2個室R2とが互いに連通するように第1個室R1と第2個室R2とを仕切る可動ベーン126に形成されている。 A second bidirectional communication passage 131 and a second one-way communication passage 132 are formed in the movable vanes 126 and 127, respectively. The second two-way communication passage 131 is a first one-way communication passage with the first single chamber R1 of the first single chamber R1 and the third single chamber R3 as two communicating single chambers communicated by the first two-way communication passage 124. Movable vanes 126 which divide the first single chamber R1 and the second single chamber R2 such that the second single chamber R2 of the second single chamber R2 and the second single chamber R2 of the fourth single chamber R4 as two single-sided communicating single chambers communicated by 125 communicate with each other. Is formed.
 この第2双方向連通路131は、片側連通個室である第2個室R2側から連通個室である第1個室R1側に流動体140を流通させるとともに第1個室R1側から第2個室R2側に流動体140を制限しつつ流通させるように構成されている。具体的には、第2双方向連通路131は、図8に示すように、一方向弁131aと絞り弁131bとが並列配置されて構成されている。 The second two-way communication passage 131 causes the fluid 140 to flow from the second single chamber R2 side which is a one-side communicating single chamber to the first single chamber R1 side which is a communicating single chamber, and to the second single chamber R2 side from the first single chamber R1 side. The fluid 140 is configured to be distributed while being restricted. Specifically, as shown in FIG. 8, the second two-way communication passage 131 is configured by arranging a one-way valve 131a and a throttle valve 131b in parallel.
 一方向弁131aは、第2個室R2側から第1個室R1側に流動体140を流通させるとともに第1個室R1側から第2個室R2側へは流動体140の流れを阻止する弁で構成されている。また、絞り弁131bは、第1個室R1と第2個室R2との間で流動体140の流れを制限しつつ双方向に流通させることができる弁で構成されている。この場合、絞り弁131bにおける流動体140の流れを制限しつつとは、一方向弁131aにおける流動体140の流れ易さに対して同一条件(例えば、圧力および流動体の粘度など)下において流動体140が流れ難いことを意味する。 The one-way valve 131a is a valve that circulates the fluid 140 from the second individual chamber R2 side to the first individual chamber R1 side and prevents the flow of the fluid 140 from the first individual chamber R1 side to the second individual chamber R2 side. ing. Further, the throttle valve 131 b is configured of a valve that can be circulated in both directions while restricting the flow of the fluid 140 between the first individual chamber R <b> 1 and the second individual chamber R <b> 2. In this case, while restricting the flow of the fluid 140 in the throttle valve 131b, the flow is performed under the same conditions (for example, pressure and viscosity of the fluid) with respect to the flowability of the fluid 140 in the one-way valve 131a. It means that the body 140 is hard to flow.
 第2片方向連通路132は、第2双方向連通路131が連通していない連通個室である第3個室R3と、第2双方向連通路131が連通していない片側連通個室である第4個室R4との間で片側連通個室である第4個室R4側から連通個室である第3個室R3側にのみ流動体140を制限しつつ流通させるように第3個室R3と第4個室R4とを仕切る可動ベーン127に形成されている。具体的には、第2片方向連通路132は、第4個室R4側から第3個室R3側にのみ流動体140を流通させる一方向弁132aと、流動体140の流通量を制限する絞り弁132bとが直列配置されて構成されている。この場合、絞り弁132bにおける流動体140の流れを制限しつつとは、一方向弁132aにおける流動体140の流れ易さに対して同一条件(例えば、圧力および流動体の粘度など)下において流動体140が流れ難いことを意味する。 The second one-way communication passage 132 is a communication chamber in which the second two-way communication passage 131 is not in communication, and a fourth one-way communication chamber in which the second two-way communication passage 131 is not in communication. The third individual room R3 and the fourth individual room R4 are made to flow while restricting the fluid 140 only from the fourth individual room R4 side which is one-side communicating individual room between the individual room R4 and the third individual room R3 side which is the communicating individual room. It is formed in the movable vane 127 which divides. Specifically, the second one-way communication passage 132 includes a one-way valve 132a that allows the fluid 140 to flow only from the fourth individual chamber R4 side to the third individual chamber R3 side, and a throttling valve that restricts the flow rate of the fluid 140 And 132b are arranged in series. In this case, while restricting the flow of the fluid 140 in the throttle valve 132b, the flow is performed under the same conditions (for example, pressure, viscosity of the fluid, etc.) with respect to the flowability of the fluid 140 in the one-way valve 132a. It means that the body 140 is hard to flow.
 流動体140は、内室103を回動する可動ベーン126,127に対して抵抗を付与することによりロータリダンパ100にダンパー機能を作用させるための物質であり、内室103内に満たされている。この流動体140は、ロータリダンパ100の仕様に応じた粘性を有する流動性を有する液状、ジェル状または半固体状の物質で構成されている。この場合、流動体140の粘度は、ロータリダンパ100の仕様に応じて適宜選定される。本実施形態においては、流動体140は、油、例えば、鉱物油またはシリコーンオイルなどによって構成されている。 The fluid body 140 is a substance for causing the rotary damper 100 to act as a damper function by applying resistance to the movable vanes 126 and 127 which rotate the inner chamber 103, and is filled in the inner chamber 103. . The fluid body 140 is made of a fluid, gel-like or semi-solid substance having a flowability having a viscosity corresponding to the specification of the rotary damper 100. In this case, the viscosity of the fluid 140 is appropriately selected according to the specifications of the rotary damper 100. In the present embodiment, the fluid 140 is made of oil, such as mineral oil or silicone oil.
 このように構成されたロータリダンパ100は、互いに可動的に連結される2つの部品間に設けられる。例えば、ロータリダンパ100は、二輪の自走式車両(図示しない)の基本骨格であるフレーム側を固定側としてハウジング101が取り付けられるとともに、二輪の自走式車両の後輪を上下動可能に支持するスイングアームの基端部側を可動側としてロータ120が取り付けられる。 The rotary damper 100 thus configured is provided between two parts movably connected to each other. For example, the rotary damper 100 is mounted with the housing 101 fixed to the frame side which is a basic frame of a two-wheeled self-propelled vehicle (not shown) and supports the rear wheels of the two-wheeled self-propelled vehicle The rotor 120 is attached with the proximal end side of the swing arm as the movable side.
(ロータリダンパ100の製造)
 次に、このロータリダンパ100の主要部の製造過程について説明する。このロータリダンパ100を製造する作業者は、まず、1つのロータリダンパ100に対して、1つのハウジング本体102、2つのシール体106、1つの蓋体110、1つのロータ120および2つのシール体128をそれぞれ用意する。この場合、ハウジング本体102は、鍛造加工によってハウジング本体102に固定ベーン104,105およびロータ支持部107が一体的に成形された後、切削加工によって取付孔などの成形が行なわれて製造される。また、蓋体110は、鍛造加工によって外観形状が成形された後、切削加工によって取付孔などの成形が行なわれて製造される。
(Manufacture of rotary damper 100)
Next, the manufacturing process of the main part of the rotary damper 100 will be described. An operator who manufactures this rotary damper 100 first makes, with respect to one rotary damper 100, one housing main body 102, two seal bodies 106, one lid 110, one rotor 120 and two seal bodies 128. Prepare each In this case, after the fixed vanes 104 and 105 and the rotor support portion 107 are integrally formed on the housing body 102 by forging, the housing body 102 is manufactured by forming an attachment hole or the like by cutting. In addition, the lid 110 is manufactured by forming an attachment hole or the like by cutting after the external shape is formed by forging.
 また、ロータ120は、鍛造加工によって軸体121と可動ベーン126,127とを一体的に形成した後、シール体128、一方向弁131a,132aおよび絞り弁131b,132bをそれぞれ取り付ける部分を切削加工によってそれぞれ成形する。そして、可動ベーン126,127に対して第2双方向連通路131および第2片方向連通路132を構成する一方向弁131a,132aおよび絞り弁131b,132bが配置される。 In addition, after the rotor 120 integrally forms the shaft 121 and the movable vanes 126 and 127 by forging, the portion to which the seal body 128, the one- way valves 131a and 132a and the throttle valves 131b and 132b are attached is cut. Each is molded by The one- way valves 131a and 132a and the throttle valves 131b and 132b that constitute the second two-way communication passage 131 and the second one-way communication passage 132 are disposed with respect to the movable vanes 126 and 127.
 なお、ハウジング本体102、蓋体110およびロータ120は、鋳造加工や切削加工によって成形性するようにしてもよいし、これらの各部品を樹脂材で構成する場合には、射出成形加工および切削加工を用いて成形することができる。 The housing body 102, the lid 110, and the rotor 120 may be formable by casting or cutting, and when each of these parts is made of a resin material, injection molding and cutting may be performed. It can be molded using
 次に、作業者は、2つのシール体106を固定ベーン104,105にそれぞれ取り付ける。具体的には、作業者は、シール体106を固定ベーン104,105の蓋体対向端部104a,105aおよび軸体対向端部104b,105bの各溝内にそれぞれ圧入する。これにより、2つのシール体106は、蓋体110に対向する端面である径方向部106aが内室103の軸線方向に対して直交する径方向に延びるとともに、ロータ120の軸体121に対向する軸方向部106bが内室103の軸線方向に対して平行に延びた状態で取り付けられる。なお、シール体106は、固定ベーン104,105に対して接着剤を用いて固着してもよい。 Next, the worker attaches the two seal bodies 106 to the stationary vanes 104 and 105, respectively. Specifically, the operator press-fits the seal body 106 into the grooves of the lid facing end portions 104a and 105a and the shaft facing end portions 104b and 105b of the fixed vanes 104 and 105, respectively. Thus, the two seal bodies 106 face the shaft body 121 of the rotor 120 while the radial direction portion 106 a which is the end face facing the lid 110 extends in the radial direction orthogonal to the axial direction of the inner chamber 103. The axial portion 106 b is mounted in a state of extending in parallel with the axial direction of the inner chamber 103. The seal body 106 may be fixed to the fixed vanes 104 and 105 using an adhesive.
 次に、作業者は、2つのシール体128を可動ベーン126,127にそれぞれ取り付ける。具体的には、作業者は、シール体128を可動ベーン126,127の各外縁部に形成された底部対向端部126a,127a、内壁対向端部126b,127bおよび蓋体対向端部126c,127cの各溝内にそれぞれ圧入する。これにより、2つのシール体128は、蓋体110および底部103aにそれぞれ対向する端面である蓋側部128cおよび底側部128aが内室103の軸線方向に対して直交する径方向に延びるとともに、ハウジング101の内室壁面103bに対向する端面である内壁側部128bが内室壁面103bに対して平行に延びた状態で取り付けられる。なお、シール体128は、可動ベーン126,127に対して接着剤を用いて固着してもよい。 Next, the worker attaches the two seal bodies 128 to the movable vanes 126 and 127, respectively. More specifically, the worker can form the seal body 128 on the bottom opposing ends 126a and 127a formed on the outer edges of the movable vanes 126 and 127, the inner wall opposing ends 126b and 127b, and the lid opposing ends 126c and 127c. Press-fit into each groove of. As a result, the two seal bodies 128 extend in the radial direction orthogonal to the axial direction of the inner chamber 103, with the lid side portion 128c and the bottom side portion 128a being end surfaces respectively facing the lid 110 and the bottom portion 103a. An inner wall side portion 128b, which is an end surface facing the inner chamber wall surface 103b of the housing 101, is mounted in a state of extending in parallel to the inner chamber wall surface 103b. The seal body 128 may be fixed to the movable vanes 126 and 127 using an adhesive.
 次に、作業者は、ロータ120をハウジング本体102内に組み付ける。具体的には、作業者は、ハウジング本体102のロータ支持部107にベアリングおよびシール材を配置した後、ロータ120をアキュムレータ取付部122側からハウジング本体102内に挿し込んで取り付ける。この場合、作業者は、シール体106,128の弾性力に抗しながらロータ120をハウジング本体102内に挿し込む。 Next, the operator assembles the rotor 120 into the housing body 102. Specifically, the operator arranges the bearing and the seal member on the rotor support portion 107 of the housing main body 102, and then inserts the rotor 120 into the housing main body 102 from the side of the accumulator mounting portion 122 and attaches it. In this case, the operator inserts the rotor 120 into the housing main body 102 while resisting the elastic force of the seal bodies 106 and 128.
 次に、作業者は、蓋体110をハウジング本体102に取り付ける。具体的には、作業者は、蓋体110のロータ支持部111にベアリングおよびシール材を配置した後、ロータ120をロータ支持部111に挿し込みつつ蓋体110をハウジング本体102の開口部102a上に被せてボルト114で組み付ける。この場合、作業者は、シール体106,128の弾性力に抗しながら蓋体110をハウジング本体102の開口部102aに押し付けて組み付ける。 Next, the worker attaches the lid 110 to the housing body 102. Specifically, the operator arranges the bearing and the seal member on the rotor support portion 111 of the lid 110, and then inserts the rotor 120 into the rotor support portion 111 while the lid 110 is on the opening 102a of the housing main body 102. And assemble with bolts 114. In this case, the operator presses the lid 110 against the opening 102 a of the housing main body 102 while assembling against the elastic force of the seal bodies 106 and 128.
 これにより、ハウジング101の内室103内は、固定ベーン104,105、軸体121および可動ベーン126,127によって仕切られて4つの個室R1~R4が形成される。この場合、内室103とロータ120との間には、円滑な組み立ておよび組み立て後の作動を確保するために、内室103内において軸方向に僅かなクリアランスCが設定されており、このクリアランスCによってロータ120が軸方向に僅かに変位可能な状態で組み付けられる。 As a result, the inside of the inner chamber 103 of the housing 101 is partitioned by the fixed vanes 104 and 105, the shaft 121 and the movable vanes 126 and 127 to form four individual chambers R1 to R4. In this case, a slight clearance C in the axial direction is set in the inner chamber 103 between the inner chamber 103 and the rotor 120 in order to ensure smooth assembly and operation after assembly. Thus, the rotor 120 is assembled so as to be slightly displaceable in the axial direction.
 しかしながら、ハウジング本体102における内室壁面103bおよび軸体対向端部104b,105bは、開口部102a側に向かって傾斜面で構成されているため、これらの内室壁面103bおよび軸体対向端部104b,105bにシール体106,128を介してそれぞれ押し付けられるロータ120の可動ベーン126,127および軸体121は開口部102a側に弾性的に付勢された状態で配置される。これにより、ロータ120は、内室103内において開口部102a側に弾性的に付勢された状態で取り付けられる。そして、このロータ120は、この付勢された状態でハウジング101に対して相対的に回動することによって内室103内に形成した4つの個室R1~R4の各容積を増減させる。 However, since the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b in the housing main body 102 are formed as an inclined surface toward the opening 102a side, the inner chamber wall surface 103b and the shaft facing end portion 104b The movable vanes 126 and 127 of the rotor 120 and the shaft 121, which are respectively pressed to the seal 105 and the seal 105b via the seal members 106 and 128, are disposed in a state of being elastically biased toward the opening 102a. Thus, the rotor 120 is mounted in the inner chamber 103 in a state of being elastically biased toward the opening 102 a. The rotor 120 rotates relative to the housing 101 in the biased state to increase or decrease the volume of each of the four separate chambers R1 to R4 formed in the inner chamber 103.
 次に、作業者は、蓋体110のバイパス通路112a,112bを介してハウジング本体102内に流動体140を注入するとともにエア抜きを行う。次に、調整ニードル113a,113bを用意して蓋体110に装着してロータ120の回転力の調整などの調整作業を行ってロータリダンパ100を完成させる。この調整作業などの最終作業については、本発明に直接関わらないため、その説明を省略する。 Next, the worker injects the fluid 140 into the housing body 102 via the bypass passages 112 a and 112 b of the lid 110 and performs air removal. Next, the adjustment needles 113a and 113b are prepared and mounted on the lid 110, and adjustment work such as adjustment of the rotational force of the rotor 120 is performed to complete the rotary damper 100. The final work such as the adjustment work is not directly related to the present invention, and thus the description thereof is omitted.
(ロータリダンパ100の作動)
 次に、このように構成されたロータリダンパ100の作動について説明する。この作動説明においては、内室103内におけるロータ120および流動体140の動きの理解を容易にするために内室103内を模式的に示した図6~図9を用いて説明する。なお、図6~図9は、可動ベーン126,127の動きに対する流動体140の挙動の理解を助けるために図5の破線矢印Aから見たロータリダンパ100の内部を模式化して示している。また、図6~図9においては、流動体140の圧力が他の個室に対して相対的に高い状態を濃いハッチングで示し、圧力が相対的に低い状態を薄いハッチングで示している。また、図7および図9においては、可動ベーン126,127の回動方向を太線の破線矢印で示すとともに、流動体140の流動方向を細線の破線矢印で示している。
(Operation of rotary damper 100)
Next, the operation of the rotary damper 100 configured as described above will be described. The operation will be described with reference to FIGS. 6 to 9 schematically showing the inside of the inner chamber 103 in order to facilitate understanding of the movement of the rotor 120 and the fluid 140 in the inner chamber 103. 6 to 9 schematically show the inside of the rotary damper 100 viewed from the broken line arrow A in FIG. 5 in order to help understand the behavior of the fluid 140 with respect to the movement of the movable vanes 126 and 127. Further, in FIG. 6 to FIG. 9, the state in which the pressure of the fluid 140 is relatively high relative to the other compartments is indicated by dark hatching, and the state in which the pressure is relatively low is indicated by light hatching. Further, in FIGS. 7 and 9, the pivoting direction of the movable vanes 126 and 127 is indicated by a thick broken line arrow, and the flow direction of the fluid 140 is indicated by a thin broken line arrow.
 まず、自走式車両が平地を走行してスイングアームが下降した状態においては、ロータリダンパ100は、図6に示すように、可動ベーン126が固定ベーン104に最接近するとともに可動ベーン127が固定ベーン105に最接近した状態にある。すなわち、ロータリダンパ100は、第1個室R1および第3個室R3の各容積が最小の状態であるとともに、第2個室R2および第4個室R4の各容積が最大の状態になる。 First, in a state where the self-propelled vehicle travels on a flat surface and the swing arm is lowered, as shown in FIG. 6, in the rotary damper 100, the movable vane 126 comes closest to the fixed vane 104 and the movable vane 127 is fixed. It is in the state of being closest to the vane 105. That is, in the rotary damper 100, the respective volumes of the first individual chamber R1 and the third individual chamber R3 are in the minimum state, and the respective volumes of the second individual chamber R2 and the fourth individual chamber R4 are in the maximum state.
 この状態から自走式車両の後輪が段差などに乗り上げた場合には、スイングアームが上昇するためロータリダンパ100は、図7に示すように、ロータ120が図示時計回りに回動する。すなわち、ロータリダンパ100は、可動ベーン126が固定ベーン105に向かって回動するとともに可動ベーン127が固定ベーン104に向かって回動する。これにより、ロータリダンパ100は、第1個室R1および第3個室R3の各容積がそれぞれ増加するとともに第2個室R2および第4個室R4の各容積がそれぞれ減少する。 In this state, when the rear wheel of the mobile vehicle rides on a step or the like, the swing arm ascends so that the rotary damper 100 rotates the rotor 120 clockwise as shown in FIG. That is, in the rotary damper 100, the movable vanes 126 rotate toward the fixed vanes 105 and the movable vanes 127 rotate toward the fixed vanes 104. Thus, in the rotary damper 100, the respective volumes of the first single chamber R1 and the third single chamber R3 increase, and the respective volumes of the second single chamber R2 and the fourth single chamber R4 decrease.
 この場合、最大容積にあった第2個室R2および第4個室R4のうちの第4個室R4は、第2個室R2に対して第1片方向連通路125によって「流入が可,流出が不可」の状態であるとともに、第3個室R3に対して第2片方向連通路132によって「流入が不可,流出が絞り付きで可」の状態である。したがって、第4個室R4は、第4個室R4内の流動体140が絞り弁132bを介して第3個室R3内にのみ流出する。これにより、第4個室R4は、圧力が上昇して高圧状態となるため、第1片方向連通路125を介して連通する第2個室R2からの流動体140の流入はない。 In this case, the fourth individual chamber R4 of the second individual chamber R2 and the fourth individual chamber R4 in the maximum volume is “inflow allowed, outflow not possible” by the first one-way communication passage 125 with respect to the second individual chamber R2. In addition, the second one-way communication passage 132 makes the third individual chamber R3 "inflow impossible, outflow possible with restriction". Therefore, in the fourth separate chamber R4, the fluid 140 in the fourth separate chamber R4 flows out only into the third separate chamber R3 via the throttle valve 132b. As a result, the pressure in the fourth individual chamber R4 is increased to be in the high pressure state, so there is no inflow of the fluid body 140 from the second individual chamber R2 communicated via the first one-way communication passage 125.
 また、これと同時に、第2個室R2は、第4個室R4に対して第1片方向連通路125によって「流入が不可,流出が可」の状態であるとともに、第1個室R1に対して第2双方向連通路131によって「流入が絞り付きで可、流出が可」である。この場合、第4個室R4は、前記したように高圧状態である。したがって、第2個室R2は、第2個室R2内の流動体140が第2双方向連通路131を介して第1個室R1内に流出する。この場合、第2個室R2は、流動体140が第2双方向連通路131における一方向弁131aを介して円滑に流動するため、圧力の上昇は抑えられ非高圧状態を維持する。なお、ここで非高圧状態とは、他の個室の圧力に対する相対的なものである。 In addition, at the same time, the second single chamber R2 is in the state of “inflow is not possible and outflow is possible” by the first one-way communication passage 125 with respect to the fourth single chamber R4. The two-way communication path 131 indicates that “inflow is possible with squeezing and outflow is possible”. In this case, the fourth separate chamber R4 is in the high pressure state as described above. Accordingly, in the second separate chamber R2, the fluid 140 in the second separate chamber R2 flows out into the first separate chamber R1 via the second bidirectional communication path 131. In this case, since the fluid 140 flows smoothly through the one-way valve 131 a in the second two-way communication passage 131, the second individual chamber R <b> 2 maintains the non-high pressure state while suppressing the pressure increase. Here, the non-high pressure state is relative to the pressure of the other individual chamber.
 一方、最小容積にあった第1個室R1および第3個室R3のうちの第3個室R3は、第1個室R1に対して第1双方向連通路124によって「流入が可,流出が可」の状態であるとともに、第4個室R4に対して第2片方向連通路132によって「流入が絞り付きで可,流出が不可」の状態である。したがって、第3個室R3は、第1個室R1および第4個室R4からそれぞれ流動体140が絞り弁132bを介して流入するため、非高圧状態を維持する。 On the other hand, the third single chamber R3 of the first single chamber R1 and the third single chamber R3 in the minimum volume is "inflow possible, outflow possible" by the first bidirectional communication path 124 with respect to the first single chamber R1. In addition to being in the state, it is in the state of “inflow is possible with squeezing, outflow is not possible” by the second one-way communication passage 132 with respect to the fourth individual chamber R4. Accordingly, the third separate chamber R3 maintains the non-high pressure state because the fluid 140 flows from the first separate chamber R1 and the fourth separate chamber R4 via the throttle valve 132b.
 また、これと同時に、第1個室R1は、第3個室R3に対して第1双方向連通路124によって「流入が可、流出が可」の状態であるとともに、第2個室R2に対して第2双方向連通路131によって「流入が可,流出が絞り付きで可」の状態である。したがって、第1個室R1は、第2個室R2から流動体140が流入するとともに第3個室R3に対して流動体140が流出するため、非高圧状態を維持する。 Further, at the same time, the first individual chamber R1 is in the state of “inflow possible, outflow possible” by the first two-way communication passage 124 with respect to the third individual chamber R3, and The two-way communication passage 131 is in the state of “inflow is possible, outflow is possible with throttling”. Therefore, since the fluid 140 flows from the second separate chamber R2 into the first separate chamber R1 and the fluid 140 flows out to the third separate chamber R3, the non-high pressure state is maintained.
 すなわち、ロータ120が図示時計回りに回動した場合においては、ロータリダンパ100は、第4個室R4のみが流動体140の流出が制限されて高圧状態となるため、減衰力は後述する図示反時計回り時の減衰力に比べて小さい。そして、この後、ロータリダンパ100は、図8に示すように、可動ベーン126が固定ベーン105に最接近するとともに可動ベーン127が固定ベーン104に最接近した状態となる。すなわち、ロータリダンパ100は、第1個室R1および第3個室R3の各容積がそれぞれ最大となるとともに、第2個室R2および第4個室R4の各容積がそれぞれ最小の状態となる。なお、この状態は、自走式車両のスイングアームが上昇した状態である。 That is, when the rotor 120 is rotated clockwise in the figure, since the outflow of the fluid 140 is limited only in the fourth individual chamber R4 and the rotary damper 100 is in a high pressure state, the damping force is an anticlockwise It is smaller than the damping force at the time of turning. Then, after that, as shown in FIG. 8, in the rotary damper 100, the movable vanes 126 approach the fixed vanes 105 the closest and the movable vanes 127 approach the fixed vanes 104 the closest. That is, in the rotary damper 100, the respective volumes of the first single chamber R1 and the third single chamber R3 are respectively maximized, and the respective volumes of the second single chamber R2 and the fourth single chamber R4 are respectively minimized. In this state, the swing arm of the self-propelled vehicle is in a raised state.
 次に、スイングアームが下降した場合には、ロータリダンパ100は、図9に示すように、ロータ120が図示反時計回りに回動する。すなわち、ロータリダンパ100は、可動ベーン126が固定ベーン104に向かって回動するとともに可動ベーン127が固定ベーン105に向かって回動する。これにより、ロータリダンパ100は、第1個室R1および第3個室R3の各容積がそれぞれ減少するとともに第2個室R2および第4個室R4の各容積がそれぞれ増加する。 Next, when the swing arm is lowered, as shown in FIG. 9, the rotary damper 100 rotates the rotor 120 counterclockwise in the drawing. That is, in the rotary damper 100, the movable vanes 126 rotate toward the fixed vanes 104 and the movable vanes 127 rotate toward the fixed vanes 105. Thus, in the rotary damper 100, the respective volumes of the first single chamber R1 and the third single chamber R3 decrease, and the respective volumes of the second single chamber R2 and the fourth single chamber R4 increase.
 この場合、最大容積にあった第1個室R1および第3個室R3のうちの第1個室R1は、第3個室R3に対して第1双方向連通路124によって「流入が可,流出が可」の状態であるとともに、第2個室R2に対して第2双方向連通路131によって「流入が可,流出が絞り付きで可」の状態である。また、この場合、第3個室R3は、可動ベーン127の回動によって第1個室R1とともに容積が減少しつつある。したがって、第1個室R1は、第1個室R1内の流動体140が絞りを介して第2個室R2内にのみ流出する。これにより、第1個室R1は、圧力が上昇して高圧状態となる。 In this case, the first single chamber R1 of the first single chamber R1 and the third single chamber R3 in the maximum volume is “inflow allowed, outflow possible” by the first bidirectional communication passage 124 with respect to the third single chamber R3. In addition, the second two-way communication passage 131 allows the second individual chamber R2 to "inflow is possible and outflow is possible with restriction". Further, in this case, the volume of the third individual chamber R3 is decreasing along with the first individual chamber R1 due to the rotation of the movable vane 127. Accordingly, in the first separate chamber R1, the fluid 140 in the first separate chamber R1 flows out only into the second separate chamber R2 via the throttling. As a result, the pressure in the first individual chamber R1 rises to a high pressure state.
 また、これと同時に、第3個室R3は、第1個室R1に対して第1双方向連通路124によって「流入が可,流出が可」の状態であるとともに、第4個室R4に対して第2片方向連通路132によって「流入が絞り付きで可,流出が不可」の状態である。したがって、第3個室R3は、第3個室R3内の流動体140が第1個室R1内にのみ流出する。これにより、第3個室R3は、第1個室R1とともに圧力が上昇して高圧状態となる。 Also, at the same time, the third separate chamber R3 is in the state of "inflow possible, outflow possible" by the first two-way communication path 124 with respect to the first separate chamber R1, and The two-way communication path 132 is in the state of “inflow is possible with squeezing, and outflow is not possible”. Accordingly, in the third private chamber R3, the fluid 140 in the third private chamber R3 flows out only into the first private chamber R1. As a result, the pressure in the third separate chamber R3 increases together with the first separate chamber R1 to a high pressure state.
 一方、最小容積にあった第2個室R2および第4個室R4のうちの第2個室R2は、第1個室R1に対して第2双方向連通路131によって「流入が絞り付きで可,流出が可」の状態であるとともに、第4個室R4に対し第1片方向連通路125によって「流入が不可,流出が可」の状態である。したがって、第2個室R2は、第1個室R1から流動体140が絞りを介して流入するとともに第4個室R4に対して流動体140が流出するため、非高圧状態を維持する。すなわち、第2個室R2は、可動ベーン126,127の回転方向に関わらず常に非高圧状態を維持する。 On the other hand, the second individual chamber R2 of the second individual chamber R2 and the fourth individual chamber R4 having the minimum volume is “inflow is possible with restriction due to the second bidirectional communication passage 131 with respect to the first individual chamber R1; While being in the state of "possible", the first one-way communication passage 125 is in the state of "inflow impossible, outflow possible" with respect to the fourth individual chamber R4. Therefore, the second private chamber R2 maintains the non-high pressure state because the fluid 140 flows from the first private chamber R1 through the throttling and the fluid 140 flows out to the fourth private chamber R4. That is, the second individual chamber R2 always maintains the non-high pressure state regardless of the rotational direction of the movable vanes 126 and 127.
 また、これと同時に、第4個室R4は、第2個室R2に対して第1片方向連通路125によって「流入が可、流出が不可」の状態であるとともに、第3個室R3に対して第2片方向連通路132によって「流入が不可,流出が絞り付きで可」の状態である。したがって、第4個室R4は、第2個室R2から流動体140が流入するのみであるため、非高圧状態を維持する。 Further, at the same time, the fourth individual chamber R4 is in a state of “inflow is possible, outflow is not possible” by the first one-way communication passage 125 with respect to the second individual chamber R2, and the fourth individual chamber R4 is The two-way communication path 132 is in the state of “inflow is not possible, outflow is possible with throttling”. Therefore, the fourth private chamber R4 maintains the non-high pressure state because the fluid 140 only flows in from the second private chamber R2.
 すなわち、ロータ120が図示反時計回りに回動した場合においては、ロータリダンパ100は、第1個室R1および第3個室R3が流動体140の流出が制限されてそれぞれ高圧状態となるため、減衰力は前記した図示時計回り時の減衰力に比べて大きくなる。この場合、ロータリダンパ100の減衰力は、前記した図示時計回り時に比べて高圧状態の個室が2倍存在するため減衰力も2倍となる。 That is, when the rotor 120 is rotated counterclockwise in the figure, in the rotary damper 100, the first individual chamber R1 and the third individual chamber R3 are restricted in outflow of the fluid 140 and are respectively in a high pressure state. Is larger than the damping force at the time of clockwise rotation shown in the drawing. In this case, the damping force of the rotary damper 100 is twice that of the above-described clockwise rotation because the individual chamber in the high pressure state is twice as large.
 そして、この後、ロータリダンパ100は、図6に示すように、可動ベーン126が固定ベーン104に最接近するとともに可動ベーン127が固定ベーン105に最接近して第1個室R1および第3個室R3の各容積がそれぞれ最小となるとともに第2個室R2および第4個室R4の各容積がそれぞれ最大の状態に戻る。 Then, after this, as shown in FIG. 6, in the rotary damper 100, the movable vanes 126 approach the fixed vanes 104 the closest and the movable vanes 127 the closest the fixed vanes 105, and the first single chamber R1 and the third single chamber R3. The respective volumes of the second chamber R2 and the fourth chamber R4 return to their maximum values, respectively, while their respective volumes become minimum.
 このようなロータ120の回動作動時または静止時において、ロータ120は、傾斜面で構成された内室壁面103bおよび軸体対向端部104b,105bに密着するシール体106,128によって押圧されているため、ロータ120全体が常に蓋体110側に弾性的に押圧されている。これにより、ロータリダンパ100は、ロータ120の回動作動時または静止時におけるロータ120の軸方向への位置ずれが抑制されてロータ120自身の振動、蓋体110または底部103aへの衝突による異音および振動が抑制される。 At the time of rotation operation or stationary of the rotor 120, the rotor 120 is pressed by the seal members 106 and 128 in close contact with the inner chamber wall surface 103b formed by the inclined surface and the shaft facing end portions 104b and 105b. Therefore, the entire rotor 120 is always elastically pressed to the lid 110 side. Thereby, in the rotary damper 100, the positional deviation in the axial direction of the rotor 120 at the time of the rotation operation or the stationary state of the rotor 120 is suppressed, and the noise due to the vibration of the rotor 120 itself or the collision to the lid 110 or the bottom 103a And vibration is suppressed.
 なお、上記作動説明においては、ロータリダンパ100の作動状態の理解を容易にするため、可動ベーン126が固定ベーン104に最接近するとともに可動ベーン127が固定ベーン105に最接近した状態、または可動ベーン126が固定ベーン105に最接近するとともに可動ベーン127が固定ベーン104に最接近した状態から可動ベーン126,127が回動した場合について説明した。しかし、ロータリダンパ100は、可動ベーン126,127が固定ベーン104と固定ベーン105との間の途中に位置している状態から固定ベーン104側または固定ベーン105側に回動することが当然に有り得ることである。 In the above operation description, in order to facilitate understanding of the operation state of the rotary damper 100, the movable vane 126 comes closest to the fixed vane 104 and the movable vane 127 comes closest to the fixed vane 105, or the movable vane The case where the movable vanes 126 and 127 rotate from the state where the movable vane 127 approaches the fixed vane 104 while the 126 approaches the fixed vane 105 the most has been described. However, the rotary damper 100 can naturally turn to the fixed vane 104 side or the fixed vane 105 side from the state in which the movable vanes 126 and 127 are positioned halfway between the fixed vane 104 and the fixed vane 105 It is.
 上記作動方法の説明からも理解できるように、上記実施形態によれば、ロータリダンパ100は、ロータ120が傾斜面に形成された内室壁面103bと可動ベーン126,127との間および傾斜面に形成された軸体対向端部104b,105bと軸体121との間に設けられた弾性体からなるシール体106,128によって弾性的に押圧されているため、ロータ120がハウジング101に対して前記傾斜面によって軸方向の一方側に弾性的に押し付けられた状態で組み付けられることでロータリダンパ100の作動時における異音および振動の発生を抑制することができる。 As understood from the above description of the operation method, according to the above embodiment, the rotary damper 100 is provided between the inner chamber wall surface 103b in which the rotor 120 is formed in the inclined surface and the movable vanes 126 and 127 and on the inclined surface. The rotor 120 is resiliently pressed by the seal bodies 106 and 128 formed of elastic bodies provided between the formed shaft facing end portions 104 b and 105 b and the shaft body 121. By being assembled in a state of being elastically pressed to one side in the axial direction by the inclined surface, it is possible to suppress generation of abnormal noise and vibration at the time of operation of the rotary damper 100.
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 Furthermore, the implementation of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the object of the present invention.
 例えば、上記実施形態においては、ロータリダンパ100は、内室壁面103bおよび軸体対向端部104b,105bをそれぞれ傾斜面で構成した。しかし、ロータリダンパ100は、内室壁面103bおよび軸体対向端部104b,105bのうちの少なくとも一方を傾斜面で構成すればよい。 For example, in the above embodiment, in the rotary damper 100, the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are formed as inclined surfaces. However, in the rotary damper 100, at least one of the inner wall surface 103b and the shaft facing end portion 104b, 105b may be formed as an inclined surface.
 また、上記実施形態においては、内室壁面103bおよび軸体対向端部104b,105bは、ハウジング本体102の底部103a側から開口部102a側に向かって内室103の軸線に対して離隔する傾斜面で構成した。しかし、内室壁面103bおよび軸体対向端部104b,105bは、内室103の軸線に沿って傾斜する傾斜面で構成されていればよい。したがって、内室壁面103bおよび軸体対向端部104b,105bは、ハウジング本体102の開口部102a側から底部103a側に向かって内室103の軸線に対して離隔する傾斜面で構成することもできる。 In the above embodiment, the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are inclined surfaces separated from the axis of the inner chamber 103 from the bottom portion 103a side of the housing body 102 toward the opening portion 102a. It consisted of. However, the inner chamber wall surface 103 b and the shaft facing end portions 104 b and 105 b may be configured by an inclined surface which is inclined along the axis of the inner chamber 103. Therefore, the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b can be configured as inclined surfaces separated from the axis of the inner chamber 103 from the opening 102a side to the bottom portion 103a side of the housing main body 102 .
 また、上記実施形態においては、内室壁面103bおよび軸体対向端部104b,105bは、ハウジング本体102の底部103a側から開口部102a側に向かって内室103の軸線に対して0.5°の傾斜角α,βの傾斜面で構成した。しかし、内室壁面103bおよび軸体対向端部104b,105bの各傾斜角は、上記実施形態に限定されるものではない。この場合、内室壁面103bおよび軸体対向端部104b,105bの各傾斜角α,βは、0.1°以上かつ5°以下で設定することができ、好ましくは0.2°以上かつ2°以下、より好ましくは0.2°以上かつ0.5以下である。また、これらの場合、内室壁面103bの傾斜角αと軸体対向端部104b,105bの傾斜角βを互いに同じ角度または互いに異なる角度に設定することができる。 Further, in the above embodiment, the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are 0.5 ° to the axis of the inner chamber 103 from the bottom portion 103a side of the housing main body 102 toward the opening portion 102a. It comprised with the inclined surface of the inclination angles (alpha) and (beta) of. However, the inclination angles of the inner chamber wall surface 103b and the shaft facing end portions 104b and 105b are not limited to the above embodiment. In this case, the inclination angles α and β of the inner wall surface 103b and the shaft facing end portions 104b and 105b can be set to 0.1 ° or more and 5 ° or less, preferably 0.2 ° or more and 2 Or less, more preferably 0.2 or more and 0.5 or less. In these cases, the inclination angle α of the inner wall surface 103b and the inclination angle β of the shaft facing end portions 104b and 105b can be set to the same angle or different angles.
 また、上記実施形態において、ハウジング101は、ハウジング本体102を有底筒状に形成した。しかし、ハウジング101は、ハウジング本体102を筒状に形成するとともに、この筒状体の両端部を蓋体110に相当する板状体で塞いで構成することもできる。 Moreover, in the said embodiment, the housing 101 formed the housing main body 102 in bottomed cylindrical shape. However, the housing 101 may be configured such that the housing main body 102 is formed in a cylindrical shape, and both ends of the cylindrical body are closed by a plate-like body corresponding to the lid 110.
 また、上記実施形態においては、シール体106,128は、ハウジング本体102およびロータ120に装着前において、傾斜面で構成された内室壁面103bおよび軸体対向端部104b,105bにそれぞれ面接触する軸方向部106bおよび内壁側部128bを内室壁面103bおよび軸体対向端部104b,105bの各傾斜面に対して互いに平行な傾斜面で構成した。これにより、シール体106,128は、内室壁面103bおよび軸体対向端部104b,105bに対して容易に密着性良く装着することができる。しかし、シール体106,128は、軸方向部106bおよび内壁側部128bをハウジング本体102およびロータ120に装着前において、必ずしも内室壁面103bおよび軸体対向端部104b,105bの各傾斜面に対して平行に形成される必要はなく非平行、例えば、内室103の軸方向に平行に形成することもできる。 Further, in the above embodiment, the seal bodies 106 and 128 are in surface contact with the inner chamber wall surface 103b and the shaft opposing end portions 104b and 105b, respectively, which are configured by the inclined surfaces before being attached to the housing body 102 and the rotor 120. The axial direction portion 106b and the inner wall side portion 128b are formed as inclined surfaces parallel to the inclined surfaces of the inner wall surface 103b and the shaft opposing end portions 104b and 105b. As a result, the seal bodies 106 and 128 can be easily attached to the inner wall surface 103 b and the shaft body facing end portions 104 b and 105 b with good adhesion. However, before the axial direction portion 106b and the inner wall side portion 128b are attached to the housing body 102 and the rotor 120, the seal body 106, 128 does not necessarily have to the inclined surface of the inner chamber wall surface 103b and the shaft opposing end portion 104b, 105b. It does not need to be formed in parallel, and can be formed in non-parallel, for example, parallel to the axial direction of the inner chamber 103.
 また、上記実施形態においては、固定ベーン104,105は、底部103a側の厚さが開口部102a側の先端部の厚さに比べて厚くなるように側壁面104c,105cが傾斜面で構成されている。これにより、固定ベーン104,105は、底部103a側の厚さが先端部に対して厚いため剛性を高めることができる。しかし、固定ベーン104,105は、側壁面104c,105を底部103aに対して直角に起立して構成することもできる。 Further, in the above embodiment, the fixed vanes 104 and 105 are configured such that the side wall surfaces 104c and 105c are inclined surfaces such that the thickness on the bottom 103a side is thicker than the thickness on the tip of the opening 102a. ing. As a result, the fixed vanes 104 and 105 can increase the rigidity because the thickness on the bottom portion 103 a side is thicker than the tip portion. However, the stationary vanes 104 and 105 can also be configured such that the side wall surfaces 104c and 105 are erected at right angles to the bottom portion 103a.
 しかし、側壁面104c,105cは、開口部102a側から底部103a側に向かって固定ベーン104,105の厚さが薄くなる傾斜面に形成されてもよいし、内室103の径方向に沿って厚さが連続的に変化する傾斜面で構成されていてもよい。また、側壁面104c,105cは、開口部102a側から底部103a側に向かって固定ベーン104,105の厚さが一定、すなわち、傾斜面ではなく底部103aに対して垂直な面で構成することできる。なお、ハウジング本体102は、内室壁面103b、軸体対向端部104b,105bおよび側壁面104c,105cを同じ向きの傾斜角の傾斜面で構成することで鍛造加工による成形性および加工効率を向上させることができる。 However, the side wall surfaces 104c and 105c may be formed as inclined surfaces in which the thickness of the fixed vanes 104 and 105 decreases from the opening 102a side toward the bottom 103a side, or along the radial direction of the inner chamber 103. It may be composed of an inclined surface whose thickness varies continuously. Further, the side wall surfaces 104c and 105c can be configured such that the thickness of the fixed vanes 104 and 105 is constant from the opening 102a to the bottom 103a, that is, not perpendicular to the slope 103a but perpendicular to the bottom 103a. . In the housing body 102, the formability and processing efficiency by forging are improved by forming the inner wall surface 103b, the shaft facing end portions 104b and 105b, and the side wall surfaces 104c and 105c with inclined surfaces in the same direction. It can be done.
 ロータリダンパ100は、1つの内室103内を固定ベーン104,105および可動ベーン126,127によって4つの個室である第1個室R1、第2個室R2、第3個室R3および第4個室R4に仕切った。しかし、ロータリダンパ100は、可動ベーン126,127の一方への回動によって容積が同時に減少するとともに同可動ベーン126,127の他方への回動によって容積が同時に増加する個室を少なくとも2つ有するとともに、この可動ベーン126,127の前記一方への回動によって容積が同時に増加するとともに同可動ベーン126,127の前記他方への回動によって容積が同時に減少する個室を少なくとも2つ有していればよい。 The rotary damper 100 divides the inside of one inner chamber 103 into a first individual chamber R1, a second individual chamber R2, a third individual chamber R3 and a fourth individual chamber R4, which are four individual chambers by fixed vanes 104 and 105 and movable vanes 126 and 127. The However, the rotary damper 100 has at least two separate chambers in which the volume is simultaneously reduced by the pivoting of the movable vanes 126 and 127 and the volume is simultaneously increased by the pivoting of the movable vanes 126 and 127. If the movable vanes 126 and 127 have at least two chambers in which the volume is simultaneously increased by the pivoting of the movable vanes 126 and 127 to the one and the volume is simultaneously reduced by the pivoting of the movable vanes 126 and 127 to the other Good.
 すなわち、ロータリダンパ100は、1つの内室103内においてロータ120の一つの方向への回動時に容積が同時に増加する少なくとも2つの個室とこれらの個室とは別に容積が同時に減少する少なくとも2つの個室を有していればよい。したがって、ロータリダンパ100は、1つの内室103内においてロータ120の一つの方向への回動時に容積が同時に増加する3つの個室とこれらの個室とは別に容積が同時に減少する3つの個室を有して構成することもできる。 That is, the rotary damper 100 has at least two separate chambers whose volumes simultaneously increase when the rotor 120 rotates in one direction in one inner chamber 103 and at least two separate chambers whose volumes simultaneously decrease separately from these separate chambers. As long as you have Therefore, the rotary damper 100 has three individual chambers whose volumes increase simultaneously with rotation of the rotor 120 in one internal chamber 103 in one direction, and three individual chambers whose volumes simultaneously decrease separately from these individual chambers. Can also be configured.
 また、上記実施形態においては、ロータリダンパ100は、ロータ120にアキュムレータ取付部122を設けてアキュムレータ(図示せず)を設けるように構成した。これにより、ロータリダンパ100は、流動体140の温度変化に基づく膨張または収縮による体積変化を補償することができるとともにロータリダンパ100の構成を小型化することができる。しかし、アキュムレータは、ロータ120以外の場所、例えば、ハウジング101の外側に設けることもできる。また、ロータリダンパ100は、流動体140の体積変化を考慮する必要がない場合には、アキュムレータおよびアキュムレータ取付部122を省略して構成することもできる。 Further, in the above embodiment, the rotary damper 100 is configured such that the rotor 120 is provided with the accumulator mounting portion 122 and the accumulator (not shown) is provided. Thus, the rotary damper 100 can compensate for a volume change due to expansion or contraction based on a temperature change of the fluid 140, and the configuration of the rotary damper 100 can be miniaturized. However, the accumulator can also be provided at a location other than the rotor 120, for example, outside the housing 101. Further, when it is not necessary to consider the volume change of the fluid 140, the rotary damper 100 can be configured with the accumulator and the accumulator mounting portion 122 omitted.
 また、上記実施形態においては、ロータリダンパ100は、ハウジング101を固定側としロータ120を可動側とした。しかし、ロータリダンパ100におけるハウジング101に対するロータ120の回動は相対的なものである。したがって、ロータリダンパ100は、ハウジング101を可動側としロータ120を固定側とすることもできることは当然である。 Further, in the above embodiment, the rotary damper 100 has the housing 101 at the fixed side and the rotor 120 at the movable side. However, the rotation of the rotor 120 relative to the housing 101 in the rotary damper 100 is relative. Therefore, it goes without saying that the rotary damper 100 can also make the housing 101 movable and the rotor 120 fixed.
 また、上記実施形態においては、第2双方向連通路131および第2片方向連通路132は、可動ベーン126,127に設けた。しかし、第2双方向連通路131および第2片方向連通路132は、固定ベーン104,105に設けることもできる。 In the above embodiment, the second bidirectional communication passage 131 and the second one-way communication passage 132 are provided in the movable vanes 126 and 127. However, the second two-way communication passage 131 and the second one-way communication passage 132 can also be provided in the fixed vanes 104 and 105.
 また、上記実施形態においては、ロータリダンパ100は、二輪自走式車両のスイングアームに取り付け場合について説明した。しかし、ロータリダンパ100は、二輪自走式車両におけるスイングアーム以外の場所(例えば、シートの開閉機構)、二輪自走式車両以外の車両(四輪自走式車両におけるサスペンション機構、シート機構または開閉扉)または自走式車両以外の機械装置、電機装置または器具に取り付けて用いることができる。 Moreover, in the said embodiment, the case where the rotary damper 100 was attached to the swing arm of a two-wheel self-propelled vehicle was demonstrated. However, the rotary damper 100 is a place other than the swing arm in a two-wheeled self-propelled vehicle (for example, an opening and closing mechanism of a seat), a vehicle other than a two-wheeled self-propelled vehicle It can be attached to a mechanical device, an electric device or an appliance other than a door) or a self-propelled vehicle.
α…内室壁面の傾斜角、β…軸体対向端部の傾斜角、R1…第1個室、R2…第2個室、R3…第3個室、R4…第4個室、C…ハウジング本体の底部と同底部に対向するロータの軸体の端面との間のクリアランス、
100…ロータリダンパ、101…ハウジング、102…ハウジング本体、102a…開口部、103…内室、103a…底部、103b…内室壁面、104,105…固定ベーン、104a,105a…蓋体対向端部、104b,105b…軸体対向端部、104c,105c…側壁面、106…シール体、106a…径方向部、106b…軸方向部、107…ロータ支持部、
110…蓋体、111…ロータ支持部、112a,112b…バイパス通路、113a,113b…調整ニードル、114…ボルト、
120…ロータ、121…軸体、122…アキュムレータ取付部、123…接続部、124…第1双方向連通路、125…第1片方向連通路、125a…一方向弁、126,127…可動ベーン、126a,127a…底部対向端部、126b,127b…内壁対向端部、126c,127c…蓋体対向端部、128…シール体、128a…底側部、128b…内壁側部、128c…蓋側部、
131…第2双方向連通路、131a…一方向弁、131b…絞り弁、132…第2片方向連通路、132a…一方向弁、132b…絞り弁、
140…流動体。
α: inclination angle of the inner wall surface, β: inclination angle of the shaft facing end, R1: first single chamber, R2: second single chamber, R3: third single chamber, R4: fourth single chamber, C: bottom of housing main body Clearance between the same bottom and the end face of the rotor shaft,
100: rotary damper, 101: housing, 102: housing body, 102a: opening, 103: inner chamber, 103a: bottom, 103b: inner chamber wall, 104, 105: fixed vane, 104a, 105a: lid facing end , 104b, 105b ... shaft opposite end, 104c, 105c ... sidewall, 106 ... seal, 106a ... radial direction, 106b ... axial, 107 ... rotor support,
DESCRIPTION OF SYMBOLS 110 ... Lid body, 111 ... Rotor support part, 112a, 112b ... Bypass channel | path, 113a, 113b ... Adjustment needle, 114 ... Bolt,
DESCRIPTION OF SYMBOLS 120 ... Rotor, 121 ... Shaft body, 122 ... Accumulator attachment part, 123 ... Connection part, 124 ... 1st two-way communication path, 125 ... 1st one-way communication path, 125a ... One-way valve, 126, 127 ... Movable vane Bottom opposed end 126b, 127b Inner wall opposite end 126c, 127c Lid opposite end, 128 Seal body 128a Bottom side 128b Inner wall side 128c Lid side Department,
131 second bidirectional communication passage 131a one-way valve 131b throttle valve 132 second one-way communication passage 132a one-way valve 132b throttle valve
140: Fluid.

Claims (5)

  1.  流動体を液密的に収容する円筒状の内室を有するとともに同内室内に径方向に沿う壁状に形成されて前記流動体の周方向の流動を妨げる固定ベーンを有したハウジングと、
     軸体の外周部に前記内室内を仕切りつつ前記流動体を押しながら回動する可動ベーンを有したロータとを備えたロータリダンパにおいて、
     前記ロータの前記可動ベーンが摺動する前記ハウジングの内室壁面および前記可動ベーンにおける前記軸体が摺動する前記固定ベーンの軸体対向端部のうちの少なくとも一方が前記内室の軸線方向に沿って傾斜した傾斜面で構成されており、
     前記ロータは、
     前記傾斜面に形成された前記内室壁面と前記可動ベーンとの間および/または前記傾斜面に形成された前記軸体対向端部と前記軸体との間に設けられた弾性体からなるシール体によって弾性的に押圧されていることを特徴とするロータリダンパ。
    A housing having a cylindrical inner chamber for containing the fluid in a liquid tight manner and having a fixed vane formed in the inner chamber in the shape of a wall along the radial direction to prevent circumferential flow of the fluid;
    A rotary damper comprising: a rotor having movable vanes which rotate while pushing the fluid while partitioning the inner chamber on an outer peripheral portion of a shaft;
    At least one of the inner wall surface of the housing in which the movable vane of the rotor slides and the shaft-facing end of the fixed vane on which the shaft of the movable vane slides in the axial direction of the inner chamber It consists of an inclined surface inclined along the
    The rotor is
    A seal comprising an elastic body provided between the inner wall surface formed on the inclined surface and the movable vane and / or between the shaft facing end portion formed on the inclined surface and the shaft A rotary damper characterized by being elastically pressed by a body.
  2.  請求項1に記載したロータリダンパにおいて、
     前記傾斜面は、
     前記内室壁面および前記軸体対向端部にそれぞれ形成されていることを特徴とするロータリダンパ。
    In the rotary damper described in claim 1,
    The inclined surface is
    A rotary damper characterized in that it is respectively formed on the inner wall surface and the shaft facing end.
  3.  請求項1または請求項2に記載したロータリダンパにおいて、
     前記ハウジングは、
     前記内室の軸線方向における一方の端部が閉塞された底部を有するとともに他方が開口して蓋体で覆われる開口部を有する有底筒状に形成されており、
     前記傾斜面は、
     前記底部側から前記開口部側に向かって前記内室の軸線に対して離隔するように形成されていることを特徴とするロータリダンパ。
    The rotary damper according to claim 1 or 2
    The housing is
    The inner chamber is formed in a bottomed cylindrical shape having a bottom portion closed at one end in the axial direction of the inner chamber and an opening portion open at the other end and covered with a lid,
    The inclined surface is
    A rotary damper characterized in that it is separated from an axis of the inner chamber from the bottom side toward the opening side.
  4.  請求項3に記載したロータリダンパにおいて、
     前記固定ベーンは、
     前記底部側から前記開口部側に向かって厚さが薄くなるように前記固定ベーンによって仕切られる2つの前記内室にそれぞれ面する側壁面が傾斜面で構成されていることを特徴とするロータリダンパ。
    In the rotary damper described in claim 3,
    The fixed vane is
    A rotary damper characterized in that side wall surfaces respectively facing the two inner chambers partitioned by the fixed vanes are formed to be inclined so that the thickness becomes thinner from the bottom side toward the opening side. .
  5.  請求項1ないし請求項4のうちのいずれか1つに記載したロータリダンパにおいて、
     前記シール体は、
     前記傾斜面に面する面が同傾斜面に対して平行な傾斜面で構成されていることを特徴とするロータリダンパ。
    The rotary damper according to any one of claims 1 to 4, wherein
    The seal body is
    The rotary damper characterized in that a surface facing the inclined surface is an inclined surface parallel to the inclined surface.
PCT/JP2018/036292 2017-10-31 2018-09-28 Rotary damper WO2019087635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880064057.4A CN111164327B (en) 2017-10-31 2018-09-28 Rotary damping device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-209934 2017-10-31
JP2017209934A JP6474479B1 (en) 2017-10-31 2017-10-31 Rotary damper

Publications (1)

Publication Number Publication Date
WO2019087635A1 true WO2019087635A1 (en) 2019-05-09

Family

ID=65516980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036292 WO2019087635A1 (en) 2017-10-31 2018-09-28 Rotary damper

Country Status (3)

Country Link
JP (1) JP6474479B1 (en)
CN (1) CN111164327B (en)
WO (1) WO2019087635A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365604B2 (en) * 2019-04-26 2023-10-20 株式会社ソミックマネージメントホールディングス Volume change compensator and damper device
CN117480332A (en) * 2021-06-14 2024-01-30 松美可管理股份有限公司 Rotary damper and method for manufacturing same
WO2023281554A1 (en) * 2021-07-03 2023-01-12 株式会社ソミックマネージメントホールディングス Rotary damper and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301272A (en) * 1994-04-28 1995-11-14 Hitachi Powdered Metals Co Ltd Fluid pressure damper
JP2006242318A (en) * 2005-03-04 2006-09-14 Nifco Inc Damper
JP2014070640A (en) * 2012-09-27 2014-04-21 Kayaba Ind Co Ltd Rotary damper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108004A (en) * 1999-10-12 2001-04-20 Fuji Seiki Co Ltd Rotary damper
US7575108B2 (en) * 2007-04-12 2009-08-18 Nifco Inc. Damper
JP2012197861A (en) * 2011-03-22 2012-10-18 Kyb Co Ltd Rotary damper
CN103405186B (en) * 2013-08-08 2015-07-01 赵励平 Slow descending and damping device and slow descending and damping method for toilet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301272A (en) * 1994-04-28 1995-11-14 Hitachi Powdered Metals Co Ltd Fluid pressure damper
JP2006242318A (en) * 2005-03-04 2006-09-14 Nifco Inc Damper
JP2014070640A (en) * 2012-09-27 2014-04-21 Kayaba Ind Co Ltd Rotary damper

Also Published As

Publication number Publication date
JP6474479B1 (en) 2019-02-27
CN111164327B (en) 2021-12-14
CN111164327A (en) 2020-05-15
JP2019082208A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2019087635A1 (en) Rotary damper
WO2020137209A1 (en) Seal body and rotary damper
JP6410742B2 (en) Valve timing control device
JP2022507662A (en) Ball valve
JP6010310B2 (en) Rotary damper
DE102013212935A1 (en) Central valve system for a dry belt drive
CN104812996A (en) Hydraulic camshaft adjuster with centre locking and adjustable locking play
EP3530979B1 (en) Rotary damper
CN111350844B (en) Ball valve
WO2021100262A1 (en) Rotary damper
US10663062B2 (en) High-precision rear-axle reduction gearbox for scooter
JP7374416B2 (en) rotary damper
JP2015090128A (en) Intake control valve and its assembling method
WO2020100680A1 (en) Rotary damper
US20180291894A1 (en) Engine oil pump
JP4102200B2 (en) Method for manufacturing damper device using viscous fluid
WO2022202083A1 (en) Damper device
JP2017007420A (en) Rack and pinion type steering gear unit and method for manufacturing slide bearing
JP7365604B2 (en) Volume change compensator and damper device
CN111350843B (en) Ball valve
JPH0719277A (en) Finite angular rotation damping device
JP2006017211A (en) Sealing structure in vane
WO2021235129A1 (en) Rotary damper
JP2000120749A (en) Rotary damper
CN112154276B (en) Rotary damper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874286

Country of ref document: EP

Kind code of ref document: A1