WO2019087609A1 - 気体センサ装置 - Google Patents

気体センサ装置 Download PDF

Info

Publication number
WO2019087609A1
WO2019087609A1 PCT/JP2018/034734 JP2018034734W WO2019087609A1 WO 2019087609 A1 WO2019087609 A1 WO 2019087609A1 JP 2018034734 W JP2018034734 W JP 2018034734W WO 2019087609 A1 WO2019087609 A1 WO 2019087609A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
minimum value
sensor element
sensor device
gas sensor
Prior art date
Application number
PCT/JP2018/034734
Other languages
English (en)
French (fr)
Inventor
中野 洋
松本 昌大
浩昭 星加
丈夫 細川
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019087609A1 publication Critical patent/WO2019087609A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers

Definitions

  • the present invention relates to a gas sensor device provided with a thermal sensor element for detecting the concentration of gas or the like.
  • Gas sensor devices for measuring environmental characteristics such as concentration of gas are used in various technical fields.
  • the humidity, pressure, and temperature of intake air may be used to reduce fuel consumption. It measures and performs the optimal combustion control.
  • environmental parameters such as humidity and oxygen concentration with high accuracy.
  • pulsation occurs in the air flow as the intake valve controlling the intake air to the combustion chamber is opened and closed.
  • the intake valve opens and closes in a short time, and rapid air flow occurs.
  • the thermal sensor element detects the humidity or the like of the intake air based on a change in the amount of heat released from the heater and a change in the temperature. Therefore, when the sensor element is disposed in the air flow, the amount of heat release changes due to the air flow, so the amount of heat release can not be accurately determined and good measurement can not be performed. Therefore, it is necessary to reduce the influence of air flow around the sensor element.
  • Patent Document 1 as a sensor device corresponding to such a subject, a first hollow portion formed in a housing of the sensor device and in communication with an intake passage for protecting the sensor element and a first hollow portion communicating with the first hollow portion are disclosed. A second cavity is provided, and the second cavity accommodates the sensor element.
  • the configuration in which the sensor element is not directly exposed to the air flow reduces the influence of the air flow, the dustproof effect, and suppresses the destruction of the sensor element due to the collision of particles.
  • the cover member which covers a sensor element is provided, an introductory hole is provided in a lid member, and the introductory hole is arrange
  • a gas sensor device that measures the environment of the intake passage of an internal combustion engine needs to measure the amount of gas in real time. Therefore, high speed response is desired for the gas sensor device. It is desirable to expose the sensor element directly to the intake passage in order to achieve a fast response. However, when the sensor element is exposed in the intake passage, high-speed operation of the internal combustion engine causes intake air to flow at high speed, which adversely affects gas measurement.
  • Patent Document 1 In the sensor device for measuring the concentration of gas disclosed in Patent Document 1, the effect of protecting the sensor element can be obtained, but the time for the change in gas concentration to reach the sensor element from the intake passage is delayed. Moreover, although it is high-speed in patent document 2 than patent document 1, measurement gas flows in the inside of a cover member, and it is inadequate regarding high-precision measurement. Therefore, it is difficult to use in an internal combustion engine where high accuracy measurement in a wide flow rate range where the measurement gas flows from low speed to high speed is desired.
  • a gas concentration sensor device comprising a thermal sensor element having a heating element formed on a thin film portion of a substrate, the signal concentration portion processing the signal of the thermal sensor element.
  • the signal processing unit outputs a signal shifted in the direction of the minimum value of the input signal.
  • Sectional drawing which shows the structure of the sensor element of Example 1 of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The top view which shows the structure of the sensor element of Example 1 of this invention.
  • the block diagram which shows the signal processing means of Example 1 of this invention.
  • the block diagram which shows the signal processing means of Example 1 of this invention.
  • thermo gas sensor of the present invention in the first embodiment will be described with reference to FIGS. 1 to 7.
  • the sensor element 1 has a substrate 2 formed of single crystal silicon.
  • a hollow portion 3 is formed in the substrate 2, and the first heating element 4 and the second heating element 5 are laid on the hollow portion 3.
  • Thin film supports 6 a and 6 b for supporting these heating elements 4 and 5 are formed to cover the cavity 3 of the substrate 2.
  • the thin film supports 6a and 6b are formed of an insulating film laminated on the upper surface of the substrate 2, and the heating elements 4 and 5 are interposed and supported between these thin film supports 6a and 6b. There is.
  • the heating element 5 is disposed to surround the heating element 4.
  • the heating element 4 dissipates heat by transferring heat to the air which is the measurement medium. Since the heat conductivity of air changes due to humidity and the amount of heat radiation changes, a signal according to the humidity can be obtained by measuring a voltage value or current value based on the heat radiation amount of the heat generating body 4.
  • the heat generating body 5 has a function of keeping the ambient temperature of the heat generating body 4 constant, and can eliminate the environmental temperature influence of the heat release amount of the heat generating body 4.
  • the second heating element 5 is provided around the first heating element 4, but the second heating element 5 is provided for temperature compensation, and it is not always necessary to It is not essential in the configuration. The effect of the present invention can be obtained even in the configuration using only the first heating element 4.
  • FIG. 1 A plan view of the sensor element 1 is shown in FIG.
  • the heating elements 4 and 5 extend along the flat surface of the thin film supports 6a and 6b, and are fine width resistors having a plurality of folded portions.
  • the sensor element 1 is formed with electrodes 7a, 7b, 7c and 7d for connection with a drive circuit (not shown) for supplying heating current to the heating elements 4 and 5.
  • a material stable at high temperature a material having a high melting point
  • platinum (Pt) platinum
  • tantalum (Ta) molybdenum
  • Mo molybdenum
  • thin film supports 6a and 6b a single layer or laminated layer of silicon oxide (SiO2) and silicon nitride (Si3N4) is selected.
  • resin materials such as polyimide, ceramic, glass and the like can be selected in a single layer or laminated configuration.
  • aluminum (Al) or gold (Au) or the like is selected for the electrodes 7a, 7b, 7c, 7d.
  • the sensor element 1 is formed by using a semiconductor microfabrication technology and an anisotropic etching technology using photolithography.
  • the cavity 3 is formed by anisotropic etching of the substrate 2 or the like.
  • the thermal humidity sensor in the present embodiment utilizes the fact that the heat release amount of the first heating element 4 changes with humidity.
  • a method of controlling the first heating element 4 to a constant temperature is used.
  • the heating power for maintaining the first heating element 4 at a constant temperature changes according to the amount of heat release, so that the humidity can be measured by detecting this.
  • the air around the heating element 4 be in a stationary state.
  • the heating power of the first heating element 4 is increased.
  • a flow velocity V is generated around the sensor element 1 as shown in FIG. 3B, whereby the heat release amount of the first heating element 4 is increased. Therefore, if the heat release increases due to the air flow, the heating power for maintaining the first heating element 4 at a constant temperature increases.
  • Such a MEMS-type thermal humidity sensor detects that the thermal conductivity of air changes due to humidity from the change in the amount of heat released from the heating element, so when placed in the flow of air, heat is dissipated by the air flow Because of the change, it is not possible to distinguish between heat release due to air flow and heat release due to humidity, and good measurement can not be made. Therefore, it is necessary to reduce the influence of the air flow around the sensor element 1. In particular, when installed in the intake passage of an internal combustion engine, it becomes important because the flow velocity of air in the intake passage changes largely depending on the operating condition of the internal combustion engine.
  • the MEMS type element such as the sensor element 1 can reduce the heat capacity of the detection unit and improve the response.
  • the heat capacity is small, measurement errors due to minute air flow are likely to occur. Therefore, it is important to reduce the measurement error due to the air flow around the sensor element.
  • the configuration is as follows.
  • pulsation occurs in the air flow V as the intake valve for controlling the intake air to the combustion chamber of the internal combustion engine is opened and closed.
  • the illustrated waveform exemplifies a case where the rotational speed of the internal combustion engine is gradually increased. As shown in the drawing, in the first half low rotational speed region, although the fluctuation is moderate, the intake stroke becomes short as the rotational number increases in the second half, and rapid air flow occurs.
  • the sensor output waveform in the above-mentioned air flow V is shown in Drawing 4 (b).
  • the dotted line Din in the figure shows an output waveform in a mode to which the present invention is not applied.
  • a peak value of the air flow V increases in a high rotation range, and a spike-like measurement error occurs in the sensor output Din.
  • the solid line Df in the figure is a waveform obtained by averaging the dotted line Din by low-pass filter processing. Since the measurement error occurring in the dotted line Din is only a plus error, an offset error remains in the average value when low-pass filtering is performed.
  • the solid line Dout in FIG. 4B indicates a signal waveform obtained by applying the present embodiment.
  • the solid line Dout in the present embodiment is a waveform following the minimum value Dmin of the signal Din.
  • the timing at which the signal Din becomes the minimum value coincides with the timing Vmin at which the air flow V decreases as shown in FIG. 4A. Therefore, even if spiked errors overlap in the high rotation range of the engine, it is possible to obtain a sensor output in a state where the air flow is stationary if the minimum value of the signal Din is acquired.
  • the errors generated in the thermal humidity sensor due to the air flow are only plus errors as shown in FIG. 4 (b). This is because the influence of the air flow is only the increase of the heat release amount of the first heating element of the sensor element 1. That is, by obtaining the minimum value of the signal obtained from the sensor element 1, it is considered that the air flow is not generated or the signal of the conditioning that is slight, so that the true value is selected from among the signals on which the measurement error is superimposed. Can be extracted.
  • the output Dout when high frequency fluctuations occur in the signal Din, the output Dout is shifted to the minimum value side of the signal Din. That is, it shifts in the direction to cancel the signal which changes due to the air flow.
  • the shift direction may differ depending on the output form of the sensor signal. Since the change in the sensor output signal due to the increase in humidity and the change in the signal due to the air flow are in the same direction, the correction unit of the present invention is shifted to the low humidity side when the output signal from the sensor is converted to humidity. It will be.
  • the sensor element 1 as in this embodiment is manufactured by the MEMS process and has a small heat capacity and a fast response. Therefore, since it can follow the pulsating air flow and can catch the signal when the air flow stops instantaneously, it is a sensor element suitable for the present invention.
  • the processing unit 10 for processing the signal of the sensor element 1 detects the minimum value for the sensor signal under the air pulsation, and the processing under the air pulsation is performed so as to be the minimum value. Signal is output. Since the minimum value which is a signal at the time of the air stopping momentarily is taken out and used out of the signal on which the error of air pulsations was superimposed, the influence of a pulsation error can be reduced. According to this embodiment, the humidity can be accurately measured even if it is pulsation without using a filter or the like, so that it is possible to improve the accuracy without impairing the responsiveness.
  • the signal processing unit 10 is provided on a semiconductor substrate different from the semiconductor substrate on which the sensor element 1 is formed, the signal processing unit 10 may be formed on the same semiconductor substrate.
  • FIG. 5 shows an example of a specific embodiment of the above-mentioned means for reducing the measurement error.
  • a humidity sensor element 1 a pressure sensor element 9 disposed under the same environment as the humidity sensor element 1, and a pressure correction unit 8 for applying pressure correction to the signal obtained from the humidity sensor element 1;
  • a signal processing unit 10 is provided.
  • the signal processing unit 10 is an element for realizing the operation of the present invention.
  • the pressure correction unit 8 is not an essential element to obtain the effects of the present invention. When used under an environment where pressure fluctuations are severe, it is desirable to provide the signal processing unit 10 of the present invention after the pressure correction unit 8.
  • the heat release amount of the first heating element 4 formed in the sensor element 1 also changes depending on the air pressure. Therefore, the pressure fluctuation also occurs with the opening and closing of the intake valve of the internal combustion engine, so that periodic pulsation occurs in the sensor output.
  • pressure correction is performed at a stage prior to the signal processing unit of the present invention to remove pulsation components associated with pressure fluctuations.
  • the signal processing unit 10 includes a minimum value detection unit 11 and a low pass filter 12 that smoothes the signal.
  • the minimum value detection unit 11 includes a differentiator 13 that detects the rising or falling slope of the input signal Din, and an integrator 14 that attenuates the response of the input signal Din.
  • the minimum value detection unit 11 selects whether to output the input signal Din through the integrator 14 or to output the input signal Din as it is depending on whether the gradient of the signal detected by the differentiator 13 is positive or negative.
  • the minimum value detection unit 11 outputs a signal through the integrator 14 when the gradient of the signal detected by the differentiator 13 is positive, and outputs the signal through the integrator 14 when the gradient of the signal detected by the differentiator 13 is negative. Output the signal without passing.
  • FIG. 7 shows an input / output waveform of the signal processing unit 10.
  • the input signal Din is a signal including a spike-like measurement error obtained from the sensor element 1 in pulsation.
  • a waveform Db that follows the minimum value of Din is obtained.
  • the minimum value detection unit 11 has a sawtooth waveform including the minimum value of the input signal Din as shown by the action of lowering the rising speed with respect to the signal Din.
  • the signal Db is smoothed by the low pass filter 12, an output signal Dout is obtained, and the waveform follows the minimum value of the input signal Din.
  • the response speed to the humidity change differs between the rise and fall of the signal. Therefore, passing the low-pass filter 12 after the minimum value detection unit 11 has an advantage of matching the response speeds of the falling and rising edges of the signal.
  • the low pass filter 12 since the low pass filter 12 may not be necessary depending on the system using the sensor device, the low pass filter 12 is not necessarily an essential component in the practice of the present invention.
  • FIG. 8 A second embodiment of the present invention is shown using FIG. 8 and FIG.
  • the main difference from the first embodiment is the method of detecting the minimum value.
  • the signal Din obtained from the sensor element 1 is sampled for a predetermined period tc and stored in the memory.
  • This is a method of extracting data Dout having a minimum value from the sampled data (P1, P2%) And outputting it.
  • the sampling period TC is appropriately set according to the generation period of the spike waveform.
  • FIG. 14 is a block diagram showing the above signal processing.
  • the signal Din obtained from the sensor element 1 is converted to a digital value by the sample and hold circuit 23 and an AD converter.
  • the data (P1, P2%) Converted into digital values are stored in the memory 24.
  • the data (P1, P2%) for a predetermined period (TC) is held in the memory 24, and the minimum value detection unit 25 detects the minimum value from the held data and outputs it as an output signal Dout.
  • the sampling period tc and the sampling number n are determined by the capacity of the memory 24 and the clock CLK which determines the update period of the memory, and are appropriately set according to the spike waveform generated by the air pulsation.
  • the minimum value of the input signal Din is acquired, but it is not necessary to acquire only the minimum value. That is, the effect is obtained when the output signal approaches the minimum value side of the input signal, and the degree to which the output signal approaches the minimum value can be designed according to the allowable error range in the system to which the sensor device is applied. .
  • the third embodiment will be described with reference to FIGS. 9 to 11. Descriptions of configurations similar to those of the first and second embodiments will be omitted.
  • the frequency characteristic of the signal processing unit 10 is shown in FIG.
  • the average value Dave of the output signal has a characteristic that approaches the minimum value of the input signal Din on the high frequency side.
  • ⁇ Dave be the difference between the average value of the input signal Din and the average value Dave of the output signal.
  • ⁇ Dave gradually shifts in the negative direction as the frequency rises.
  • the absolute value of ⁇ Dave matches the amplitude of the input signal Din. That is, the average value Dave of the output signal has a characteristic approaching the minimum value of the input signal Din.
  • the frequency that produces ⁇ Dave is determined by the frequency of the spiked error superimposed on the sensor element 1. That is, the spike-like error depends on the tendency of air flow, that is, the structure around the sensor element.
  • the spiked error waveform also depends on the response of the sensor element 1. As shown in FIG. 11, when the air flow V has a frequency faster than the responsiveness of the sensor element, the signal Din obtained from the sensor element 1 can not follow the air flow. Then, the minimum value of the signal obtained in the first embodiment or the second embodiment can not be said to be a sufficient minimum value, and an error ⁇ E is left.
  • the frequency of the fluid which is the medium to be measured, for which the minimum value detection functions most effectively is equal to or less than the response speed of the sensor element 1.
  • the frequency of the fluid which is the medium to be measured, for which the minimum value detection functions most effectively is equal to or less than the response speed of the sensor element 1.
  • an output based on the minimum value is output.
  • the average value Dave is output.
  • the response speed of the sensor element 1 is a value that changes depending on the element structure because it is determined by the heat capacity of the heating element 4.
  • the response is 100 Hz to 200 Hz. Therefore, if a signal of at least 100 Hz or more is input to the signal processing unit 11, the average value Dave of the output signal has a characteristic that approaches the minimum value of the input signal Din. Shift to the minimum value side.
  • FIG. 12 The system of an internal combustion engine suitable for the sensor apparatus to which this invention is applied to FIG. 12, FIG. 13 is shown.
  • Intake pulsation in the intake passage of the internal combustion engine is caused by the opening and closing of the intake valve 17.
  • the throttle valve 15 suppresses pulsation on the upstream side of the throttle valve 15. Therefore, since the pulsation of the air flow is small on the upstream side of the throttle valve 15, it is easy to install the sensor element 1 as in this embodiment.
  • the environment of the sensor device in which the present invention works particularly well is the environment in which the air flow pulsates. That is, it is particularly effective in an environment where air is repeatedly flowing and standing still. Such an environment is likely to occur downstream of the throttle valve 15 in the intake passage of the internal combustion engine. On the downstream side of the throttle valve 15, the air flow pulsation becomes intense due to the pressure change accompanying the opening and closing of the intake valve 17. As a result, when the thermal sensor element 1 as in this embodiment is installed, measurement errors occur due to pulsating flow, but by applying the present invention, it is possible to obtain good measurement values even in a place where the air flow is intense It is.
  • the gas sensor device in which the sensor element 1 is mounted is disposed at a branch point toward the cylinder 18 c farthest from the throttle valve 15.
  • the intake valves provided in the respective cylinders 18a to 18c sequentially open and close.
  • the gas sensor device of the present invention can be applied not only to internal combustion engines of automobiles, but also to measurement of gas concentrations in various environments other than internal combustion engines.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

環境変動の激しい条件下において応答性の低下を抑え計測精度を向上する。 上記課題を解決するために本発明では、基板の薄膜部に形成した発熱体を有する熱式センサエレメントを備えた気体濃度センサ装置において、前記熱式センサエレメントの信号を処理する信号処理部を備え、前記信号処理部は入力された信号の最小値方向へシフトした信号を出力する。これにより、計測誤差が重畳した信号の中から計測誤差の小さい信号を得ることができる。

Description

気体センサ装置
 本発明は、気体の濃度などを検出するための熱式のセンサ素子を備える気体センサ装置に関する。
 気体の濃度などの環境特性を計測する気体センサ装置は、種々の技術分野で使用されており、例えば自動車用の内燃機関においては低燃費化を図るために、吸入空気の湿度、圧力、温度を計測し最適な燃焼制御をしている。さらに内燃機関を最適に運転するために湿度や酸素濃度などの環境パラメータを高精度に計測することが求められている。
 内燃機関の吸気通路では、燃焼室への吸入空気を制御する吸気バルブの開閉に伴い空気流に脈動が発生する。とくに内燃機関の回転数が上昇すると短時間で吸気バルブが開閉するため急激な空気流動が発生する。熱式のセンサ素子は、吸入空気の湿度などをヒータの放熱量変化や温度変化に基づいて検出している。そのため、空気流の中にセンサ素子が配置されると、空気流により放熱量が変化するため、正確な放熱量を判別できず良好な計測ができない。そのため、センサ素子の周りの空気流動の影響を低減することが必要である。
 このような課題に対応したセンサ装置として特許文献1では、センサ素子を保護するためにセンサ装置のハウジングに形成され吸気通路に連通する第1の空洞部と、第1の空洞部に連通する第2の空洞部を設け、第2の空洞部にセンサ素子を収容している。このように、センサ素子が直接空気流に晒されない構成とすることにより、空気流による影響の低減、防塵効果、粒子の衝突によるセンサ素子の破壊を抑制している。
 また、特許文献2では、センサ素子を覆う蓋部材を設け、蓋部材に導入孔を設け、測定ガスがセンサ素子に直接当たらないように導入孔を配置している。
特開2015-4609号公報 特開2014-81367号公報
 例えば内燃機関の吸気通路の環境を測定する気体センサ装置は、リアルタイムに気体の所量を測定する必要がある。そのために気体センサ装置には高速応答が望まれている。高速応答を実現するためには、センサ素子を吸気通路に直接露出すことが望ましい。しかし、センサ素子を吸気通路に露出した場合、内燃機関の高回転運転によって吸気が高速で流れ、気体の測定に悪影響を与える。
 特許文献1のガスの濃度を計測するセンサ装置では、センサ素子を保護する効果が得られるが、吸気通路からセンサ素子までガス濃度の変化が到達する時間が遅くなる。また、特許文献2では特許文献1よりは高速ではあるものの、測定ガスが蓋部材の内部に流れ込み、高精度な計測に関しては不十分である。したがって、測定ガスが低速から高速で流れるような広い流量範囲での高精度計測が望まれる内燃機関での使用が難しい。
 上記課題を解決するために本発明では、基板の薄膜部に形成した発熱体を有する熱式センサエレメントを備えた気体濃度センサ装置において、前記熱式センサエレメントの信号を処理する信号処理部を備え、前記信号処理部は入力された信号の最小値方向へシフトした信号を出力する。これにより、計測誤差が重畳した信号の中から計測誤差の小さい信号を得ることができる。
 本発明によれば、環境変動の激しい条件下において応答性の低下を抑え計測精度を向上することが可能である。
本発明の実施例1のセンサ素子の構造を示す断面図。 本発明の実施例1のセンサ素子の構造を示す平面図。 本発明の実施例1の気体センサ装置の作用・効果を説明するための図。 本発明の実施例1の気体センサ装置の作用・効果を説明するための図。 本発明の実施例1の信号処理手段を示すブロック図。 本発明の実施例1の信号処理手段を示すブロック図。 本発明の実施例1の信号処理手段の作用・効果を説明するための図。 本発明の実施例2の信号処理手段の作用・効果を説明するための図。 本発明の実施例3の信号処理手段の作用・効果を説明するための図。 本発明の実施例3の信号処理手段の作用・効果を説明するための図。 本発明の実施例3の信号処理手段の作用・効果を説明するための図。 本発明の適用に好適なシステムを説明するため図。 本発明の適用に好適なシステムを説明するため図。 本発明の実施例2における信号処理を示すブロック図
 以下、本発明に係る気体センサ装置の一実施の形態を説明する。
 図1から図7を用いて、実施例1における本発明の熱式気体センサを説明する。
 センサ素子1は、単結晶シリコンで形成された基板2を有している。基板2には、空洞部3が形成されており、この空洞部3上に、第一の発熱体4と第二の発熱体5が敷設される。これらの発熱体4、5を支持する薄膜支持体6a、6bが基板2の空洞部3を覆うように形成されている。
 ここで、薄膜支持体6a、6bは基板2の上面に積層された絶縁膜で構成されており、これらの薄膜支持体6a、6bの間に、発熱体4、5が介在されて支持されている。発熱体5は発熱体4の周囲を取り巻くように配置されている。
 発熱体4は、測定媒体である空気へ熱伝達することにより放熱する。湿度によって空気の熱伝導率が変化し放熱量が変化するため、発熱体4の放熱量に基づいた電圧値、または電流値を計測することにより湿度に応じた信号が得られる。発熱体5は、発熱体4の周囲温度を一定に保持する作用があり、発熱体4の放熱量の環境温度影響を排除することができる。
 本実施例では、第1の発熱体4の周辺に第2の発熱体5を設けた構成としているが、第2の発熱体5は温度補償のために設けたものであり、必ずしも本発明の構成において必須なものではない。第1の発熱体4のみを用いた構成においても本発明の効果は得られる。
 図2にセンサ素子1の平面図を示す。発熱体4、5は、薄膜支持体6a、6bの平面に沿って延在し、複数の折り返し部を有する微細幅の抵抗体である。発熱体4、5に加熱電流を供給するための駆動回路(図示なし)との接続のために、センサ素子1は電極7a、7b、7c、7dが形成されている。
 発熱体4、5としては、高温で安定な材料(高い融点を有する材料)を採用することが望ましく、例えば、白金(Pt)、タンタル(Ta)、モリブデン(Mo)、シリコン(Si)等が選定される。薄膜支持体6a、6bとしては、酸化シリコン(SiO2)と窒化シリコン(Si3N4)の単層あるいは積層が選定される。また,薄膜支持体6a、6bとして、ポリイミドなどの樹脂材料やセラミック、ガラスなどが単層あるいは積層構成にて選定することもできる。また、電極7a、7b、7c、7dには、アルミニウム(Al)または金(Au)等が選定される。
 センサ素子1はフォトリソグラフィーを利用した半導体微細加工技術、異方性エッチング技術を用いて形成される。空洞部3は、基板2の異方性エッチングなどにより形成される。
 図3(a)と図3(b)を用いて、センサ素子周りの空気流動によって引き起こされる計測誤差の発生メカニズムを示す。本実施例における熱式湿度センサは第1の発熱体4の放熱量が湿度によって変化することを利用している。放熱量の変化を検知するために本実施例では、第1の発熱体4を一定温度に制御する方式を用いている。こうすれば放熱量に応じて第1の発熱体4を一定温度に保持するための加熱電力が変化するため、これを検知することで湿度を計測できる。
 図3(a)に示すように発熱体4の周りの空気は静止状態であることが望ましい。この状態でセンサ素子1が置かれる環境の湿度が増加すると、第1の発熱体4の加熱電力が増加する。しかしながら、内燃機関の吸気通路の空気の流れの影響により図3(b)に示すようにセンサ素子1の周りに流速Vが発生し、これにより第1の発熱体4の放熱量が増加する。そのため、空気流動により放熱が増加すると第1の発熱体4を一定温度に保持するための加熱電力が増加する。
 このようなMEMSタイプの熱式湿度センサは、空気の熱伝導率が湿度により変化することを発熱体の放熱量変化から検出しているため、空気の流れ中に配置すると、空気流により放熱が変化するため、空気流による放熱と湿度による放熱を判別できず良好な計測ができない。そのため、センサ素子1の周りの空気流動の影響を低減することが必要である。特に、内燃機関の吸気通路に設置する場合、内燃機関の運転状況により吸気通路内の空気の流速が大きく変化するため重要となる。
 センサ素子1のようなMEMSタイプの素子は検出部の熱容量を小さくすることができ応答性が向上する。一方で、熱容量が小さいため微小な空気流動による計測誤差が発生しやすい。そのため、センサ素子周りの空気流動による計測誤差を低減することが重要である。
 一方で、センサ素子周りの空気流動を低減するために、カバーやフィルタを設けると通気性が悪化し、湿度変化に対する応答性を損なってしまう。そこで、本実施例では、下記のような構成としている。
 図4(a)に示すように、内燃機関の燃焼室への吸入空気を制御する吸気バルブの開閉に伴い空気流動Vに脈動が発生する。図示した波形は、徐々に内燃機関の回転数を上昇させた場合を一例としている。図示したように前半の低回転域では、緩やかな変動であるが、後半は回転数の上昇にともない吸気行程が短時間となるため急激な空気流動が発生する。
 図4(b)に上記の空気流動Vにおけるセンサ出力波形を示す。図中の点線Dinは、本発明が適用されていない形態での出力波形を示している。一定湿度環境下でのセンサ出力は一定となることが望ましいが、高回転域において空気流動Vのピーク値が増加するためセンサ出力Dinにスパイク状の計測誤差が発生する。図中の実線Dfは、点線Dinにローパスフィルタ処理により平均化した波形である。点線Dinに生じる計測誤差はプラス誤差のみであるため、ローパスフィルタ処理を行うと平均値にオフセット誤差が残る。
 図4(b)における実線Doutは、本実施例を適用して得られる信号波形を示す。本実施例における実線Doutは、信号Dinの最小値Dminを追従した波形である。信号Dinが最小値となるタイミングは図4(a)に示すように空気流動Vが低下するタイミングVminと一致する。そのため、エンジンの高回転域においてスパイク状の誤差が重畳しても信号Dinの最小値を取得すれば空気流動が静止した状態のセンサ出力を得ることができる。
 空気流動によって熱式湿度センサに生じる誤差は、図4(b)に示したようにプラス誤差のみである。これは、空気流動による影響はセンサ素子1の第1の発熱体の放熱量の増加のみであるためである。つまり、センサ素子1から得られた信号の最小値を取得することにより、空気流動が起きていないか、微少である条件化の信号と考えられるため、計測誤差が重畳した信号の中から真値を抽出することができる。
 本実施例では、信号Dinに高周波の変動が発生すると、信号Dinの最小値側に出力Doutをシフトしている。つまり、空気流動により変化する信号を打ち消す方向にシフトするものである。センサ信号の出力形態によってシフト方向が異なる場合もある。湿度の増加によるセンサ出力信号の変化と空気流による誤差による信号の変化は同一方向であることから、センサの出力信号を湿度に換算したときに、本発明の補正部は低湿側にシフトされることになる。
 本実施例のようなセンサ素子1は、MEMSプロセスによって製造され熱容量が小さく高速応答である。そのため、脈動する空気流動に追従することができ、瞬間的に空気流動が止まったときの信号を捕らえることができるため、本発明に好適なセンサ素子である。
 本実施例では、センサ素子1の信号を処理する処理部10が、空気脈動下におけるセンサ信号に対して、最小値を検出し、空気脈動下に対してはこの最小値となるように処理後の信号を出力している。空気脈動の誤差が重畳した信号の中から、瞬間的に空気が止まった際の信号である最小値を取り出して利用しているため、脈動誤差の影響を低減することができる。本実施例によれば、フィルタ等を利用せずに脈動化であっても湿度を精度よく計測できるため、応答性を損なうことなく精度を向上することが可能である。
 なお、信号処理部10は、センサ素子1を形成する半導体基板とは別の半導体基板上に設けた例を示したが、同一の半導体基板上に形成してもよい。
 図5に上記の計測誤差を低減する手段の具体的実施形態の一例を示す。本実施例では、湿度センサ素子1と、湿度センサ素子1と同一環境下に配置した圧力センサ素子9と、湿度センサ素子1から得られた信号に圧力補正を加えるための圧力補正部8と、信号処理部10からなる。信号処理部10は本発明の作用を実現するための要素である。
 圧力補正部8は、本発明の効果を得るのに必須の要素ではない。圧力変動の激しい環境下で使用される場合には、圧力補正部8の後に本発明の信号処理部10を設ける構成にすることが望ましい。センサ素子1に形成した第1の発熱体4は、気圧によっても放熱量が変化する。そのため、内燃機関の吸気バルブの開閉に伴い気圧の変動も生じるためセンサ出力に周期的な脈動が生じる。この脈動に対して本発明の信号処理が適用されることを防止するため、本発明の信号処理部より前段で圧力補正を実施し、圧力変動に伴う脈動成分を取り除くためである。
 信号処理部10は、最小値検出部11と信号を平滑化するローパスフィルタ12を備える。
 図6に示すように、最小値検出部11は、入力信号Dinの立ち上りか立ち下がりかの勾配を検出する微分器13と、入力信号Dinの応答を減衰するための積分器14を備える。
 最小値検出部11は、微分器13が検出した信号の勾配の正負に応じて入力信号Dinを積分器14に通して出力するか、入力信号Dinをそのまま出力するか選択して出力する。
 最小値検出部11は、微分器13が検出した信号の勾配が正の場合に、積分器14を通して信号を出力し、微分器13が検出した信号の勾配が負の場合に、積分器14を通さずに信号を出力する。
 最小値検出部11の出力信号Dbはローパスフィルタ12に入力される。ローパスフィルタ12を設けたことによる利点を以下に説明する。
図7に信号処理部10の入出力波形を示す。入力信号Dinは、脈動化でセンサ素子1から得られたスパイク状の計測誤差を含んだ信号である。この入力信号Dinは、最小値検出部11を通すと、Dinの最小値を追従する波形Dbが得られる。最小値検出部11は信号Dinに対して立ち上り速度を低下させる作用により、図示したような入力信号Dinの最小値を含んだ鋸形の波形となる。この信号Dbをローパスフィルタ12により平滑化すると出力信号Doutがえられ、入力信号Dinの最小値に追従する波形となる。
 また、本実施例に示した最小値検出部11は、湿度変化に対する応答速度が信号の立ち上がりと立ち下がりとで異なる。そのため、最小値検出部11の後にローパスフィルタ12を通すことによって、信号の立下りと立ち上がりの応答速度を一致させるという利点がある。しかしながら、ローパスフィルタ12は、本センサ装置を用いるシステムによっては不要である場合もあるため、必ずしも本発明の実施において必須な構成ではない。
 図8、図14を用いて、本発明の実施例2を示す。実施例1との主な相違点は、最小値を検出する方法である。
 図8に示すようにセンサ素子1から得られる信号Dinを所定期間tcサンプリングしてメモリに格納する。サンプリングしたデータ(P1、P2…)の中から最小値となるデータをDoutを抽出して出力する方式である。サンプリング期間TCは、入力信号Dinのスパイク波形の発生期間よりも長くすることで、入力信号Din の最小値を追従した出力信号Doutを得ることができる。サンプリング期間TCにおけるサンプリング数は、スパイク波形の発生期間に応じて適宜設定される。
 図14は上記の信号処理を示すブロック図である。センサ素子1から得られる信号Dinはサンプルホールド回路23とAD変換器によってデジタル値に変換される。デジタル値に変換されたデータ(P1、P2…)はメモリ24に格納される。メモリ24には所定期間(TC)のデータ(P1、P2…)が保持され、最小値検出部25によって、保持されたデータの中から最小値を検出し出力信号Doutとして出力される。サンプリング期間tcとサンプリング数nは、メモリ24の容量と、メモリの更新周期を決めるクロックCLKによって決まり、空気脈動により発生するスパイク波形に応じて適宜設定されるものである。
 図6、図8に示したように上記実施例では入力信号Dinの最小値を取得する構成としているが必ずしも、最小値のみを取得する必要はない。つまり、入力信号の最小値側に出力信号が近づくことにより効果が得られ、どの程度最小値に近づけるかについてはセンサ装置が適用されるシステムにおいて許容される誤差範囲に応じて設計することができる。
 実施例3について、図9~図11を用いて説明する。実施例1、2と同様の構成については説明を省略する。
 図9に信号処理部10の周波数特性を示す。一定振幅で周波数が異なる入力信号Dinが信号処理部10に入力されると、出力信号の平均値Daveは高周波側において入力信号Dinの最小値に近づく特性となる。入力信号Dinの平均値と出力信号の平均値Daveの差をΔDaveとする。図10に示すように、周波数の上昇に伴いΔDaveがマイナス方向に徐々にシフトしている。最終的には、ΔDaveの絶対値は、入力信号Dinの振幅と一致する。すなわち、出力信号の平均値Daveは入力信号Dinの最小値に近づく特性となる。
 ΔDaveを生じる周波数は、センサ素子1に重畳するスパイク状の誤差の周波数により決定される。つまり、スパイク状の誤差は空気流動の起きやすさ、つまりセンサ素子周りの構造に依存するものである。また、スパイク状の誤差波形はセンサ素子1の応答性にも依存する。 図11に示すようにセンサ素子の応答性よりも早い周波数の空気流動Vでは、センサ素子1から得られる信号Dinは空気流動に追従できない。そうすると、上記実施例1または2で得られる信号の最小値が十分な最小値と言えず誤差ΔEを残してしまう。
 そこで、本実施例では、最小値検出が最も有効に機能する被計測媒体である流体の周波数がセンサ素子1の応答速度以下であることに着目し、センサ素子1の応答速度以下の周波数の空気流動の場合には、最小値に基づいた出力を出力する。一方で、応答速度より大きい周波数の空気流動の場合には、平均値Daveを出力する。
 センサ素子1の応答速度は、発熱体4の熱容量によって決まるため素子構造によって変化する値である。本実施例では、空洞部3のサイズは0.5~1.0mm、薄膜支持体6a、6bの厚みは1~5umとすれば100Hzから200Hzの応答性となる。従って、信号処理部11に少なくとも100Hz以上の信号が入力されれば、出力信号の平均値Daveは入力信号Dinの最小値に近づく特性となるため、100Hz以下の場合に実施例1または2で記載した最小値側へのシフトを実施する。
 図12、図13に本発明を適用したセンサ装置に好適な、内燃機関のシステムを示す。内燃機関の吸気通路における吸気脈動は、吸気バルブ17の開閉により生じる。スロットル弁15より上流側は、スロットル弁15により脈動が抑制される。そのため、スロットル弁15の上流側は空気流の脈動が小さいため、本実施例のようなセンサ素子1を設置が容易である。
 本発明が特に有効に作用するセンサ装置の環境は、空気流が脈動する環境である。つまり空気が流動したり静止したりを繰り返す環境において特に有効となる。このような環境は内燃機関の吸気通路におけるスロットル弁15の下流側で生じやすい。スロットル弁15の下流側は吸気バルブ17の開閉に伴う圧力変化により空気流の脈動が激しくなる。これにより、本実施例のような熱式のセンサ素子1を設置すると脈動流による計測誤差を生じるが、本発明を適用することにより空気流動の激しい場所においても良好な計測値を得ることが可能である。
 さらに、好適な内燃機関のシステムとしては、図13に示すように吸気通路をそれぞれの燃焼室に分岐させた吸気マニホールド21において、第1分岐点22より下流側に本発明を適用した気体センサ装置を配置することが好ましい。図13に示した3気筒エンジンの一例では、センサ素子1が搭載された気体センサ装置をスロットル弁15から最も遠い気筒18cへ向かう分岐点に配置している。それぞれの気筒18aから18cに設けられた吸気バルブは、順番に開閉する。例えば気筒18aの吸気バルブが開くと気筒18aへ向かう空気流が発生するが、気筒18cの吸気バルブは閉じているため、センサ素子1が周りの空気流動は小さくなるタイミングが得られる。吸気バルブの開閉順により空気の流れが小さい期間を確保して、このときの計測値を取得すれば良好な計測値をえることができる。
 本発明の気体センサ装置は、自動車の内燃機関以外にも適用することが可能であり、内燃機関以外にも、種々の環境における気体の濃度を計測する場合に適用することができる。
 上記各実施形態は、好ましい実施形態として例示したに過ぎず、上記実施形態を、適宜、組み合わせることが可能であり、また、発明の趣旨に基づいて、適宜、変更することが可能である。
1…センサ素子、2…基板、3…空洞部、4…第1の発熱体、5…第2の発熱体、6a、6b…薄膜支持体、7a~7d…電極、8…圧力補正部、9…圧力センサ、10…信号処理部、11…最小値検出部、12…ローパスフィルタ、13…微分器、14…積分器、15…スロットル弁、16…吸気、17…吸気バルブ、18…燃焼室、19…ピストン、20…コントローラー、21…吸気マニホールド、22…第1分岐点、23…サンプルホールド回路、24…メモリ、25…最小値検出部、26…AD変換器

Claims (10)

  1.  空洞部を有する基板、該空洞部を覆う薄膜部、該薄膜部に設けられた発熱体、を有するセンサ素子と、
     前記センサ素子から入力された入力信号を処理する信号処理部と、を備える気体センサ装置において、
     前記信号処理部は、脈動時には、前記センサ素子から入力された信号の最小値に基づく信号を出力する気体センサ装置。
  2.  前記信号処理部は、
     前記入力信号の最小値を出力する最小値検出部と、
     前記最小値検出部から出力された信号を平滑化するローパスフィルタと、を備える請求項1に記載の気体センサ装置。
  3.  前記最小値検出部は、前記入力信号の勾配を検出する微分器と、前記入力信号の応答を減衰する積分器と、を備え、前記勾配が正の場合に前記積分器を通して信号を出力し、前記勾配が負の場合には前記積分器を通さずに信号を出力する請求項2に記載の気体センサ装置。
  4.  前記最小値検出部は、前記入力された信号を所定期間サンプリングし、該サンプリングしたデータの中から最小値となるデータを出力する請求項2に記載の気体センサ装置。
  5.  前記信号処理部は、前記入力信号の所定期間の最小値を出力する請求項1に記載の気体センサ装置。
  6.  前記最小値は、前記入力された信号を所定期間サンプリングし、該サンプリングしたデータの中から最小値となる値である請求項5に記載の気体センサ装置。
  7.  圧力センサ素子と、
     前記圧力センサ素子と前記熱式センサ素子との信号が入力され、補正後の信号を出力する圧力補正部と、を備え、
     前記信号処理部へ入力される信号は、前記圧力補正部から出力された補正後の信号である請求項3または4の何れかに記載の気体センサ装置。
  8.  前記信号処理部は、
     前記熱式センサ素子の応答速度より低い周波数の入力信号に対して、前記入力信号の最小値に基づく信号を出力する請求項1乃至6の何れかに記載の気体センサ装置。
  9.  請求項1乃至8の何れかに記載の気体センサ装置を、内燃機関の吸気通路に設けたスロットル弁より下流に設置した内燃機関システム。
  10.  請求項1乃至8の何れかに記載の気体センサ装置を、内燃機関のマニホールドにおいて複数に分岐した分岐通路のうち最初の分岐点よりも下流側に設置した内燃機関システム。
PCT/JP2018/034734 2017-11-02 2018-09-20 気体センサ装置 WO2019087609A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212418A JP6952577B2 (ja) 2017-11-02 2017-11-02 気体センサ装置
JP2017-212418 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019087609A1 true WO2019087609A1 (ja) 2019-05-09

Family

ID=66331706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034734 WO2019087609A1 (ja) 2017-11-02 2018-09-20 気体センサ装置

Country Status (2)

Country Link
JP (1) JP6952577B2 (ja)
WO (1) WO2019087609A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640718A (en) * 1979-09-10 1981-04-17 Nissan Motor Co Ltd Output voltage averaging unit for sensor for automobile
JPS59148821A (ja) * 1983-02-11 1984-08-25 ロ−ベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 内燃機関の吸気管に流れる空気流量を測定する方法及び装置
JP2000310551A (ja) * 1999-04-27 2000-11-07 Yazaki Corp 脈動解析方法及びその装置
JP2000320391A (ja) * 1999-05-10 2000-11-21 Denso Corp 内燃機関の吸入空気流量検出装置
JP2002323362A (ja) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd 流量計測装置
US20060224298A1 (en) * 2004-10-01 2006-10-05 Tobias Lang Method for pulsation correction within a measuring device measuring a media mass flow
JP2007205916A (ja) * 2006-02-02 2007-08-16 Hitachi Ltd 流量測定装置
JP2016011889A (ja) * 2014-06-30 2016-01-21 日立オートモティブシステムズ株式会社 物理量検出装置
JP6177384B1 (ja) * 2016-05-26 2017-08-09 三菱電機株式会社 熱式空気流量計
WO2018190060A1 (ja) * 2017-04-14 2018-10-18 株式会社デンソー 空気流量測定装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640718A (en) * 1979-09-10 1981-04-17 Nissan Motor Co Ltd Output voltage averaging unit for sensor for automobile
JPS59148821A (ja) * 1983-02-11 1984-08-25 ロ−ベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 内燃機関の吸気管に流れる空気流量を測定する方法及び装置
JP2000310551A (ja) * 1999-04-27 2000-11-07 Yazaki Corp 脈動解析方法及びその装置
JP2000320391A (ja) * 1999-05-10 2000-11-21 Denso Corp 内燃機関の吸入空気流量検出装置
JP2002323362A (ja) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd 流量計測装置
US20060224298A1 (en) * 2004-10-01 2006-10-05 Tobias Lang Method for pulsation correction within a measuring device measuring a media mass flow
JP2007205916A (ja) * 2006-02-02 2007-08-16 Hitachi Ltd 流量測定装置
JP2016011889A (ja) * 2014-06-30 2016-01-21 日立オートモティブシステムズ株式会社 物理量検出装置
JP6177384B1 (ja) * 2016-05-26 2017-08-09 三菱電機株式会社 熱式空気流量計
WO2018190060A1 (ja) * 2017-04-14 2018-10-18 株式会社デンソー 空気流量測定装置

Also Published As

Publication number Publication date
JP6952577B2 (ja) 2021-10-20
JP2019086313A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
US9958305B2 (en) Gas sensor device
JP4836864B2 (ja) 熱式流量計
JP3817497B2 (ja) 熱式流量計測装置
JP2004257870A (ja) 流量センサ
US20080265870A1 (en) Particulate Matter Sensor
JP3650384B2 (ja) 熱式流量検出装置
JPS6047462B2 (ja) 電子制御燃料噴射装置の吸入空気量計測装置
US20070089504A1 (en) Gas flow measuring apparatus
JP4850105B2 (ja) 熱式流量計
JP5542505B2 (ja) 熱式流量センサ
JP4602973B2 (ja) 熱式流量測定装置
WO2019087609A1 (ja) 気体センサ装置
KR101768736B1 (ko) 공기 질량 계측기
JP3707610B2 (ja) 流量検出装置
JP5981301B2 (ja) 熱式ガスセンサ
WO2002006786A1 (fr) Capteur de pression
JP3878198B2 (ja) 熱式流量計測装置
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JP2012247266A (ja) 熱式流量測定装置
JP2003270016A (ja) 流量計測装置
JP5120289B2 (ja) 空気流量測定装置
JP2008026205A (ja) 熱式ガス流量センサ及びそれを用いた内燃機関制御装置
Cain et al. Development of a wafer-bonded, silicon-nitride membrane thermal shear-stress sensor with platinum sensing element
WO2017203860A1 (ja) 湿度測定装置
JPH0814978A (ja) 熱式空気流量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871880

Country of ref document: EP

Kind code of ref document: A1