WO2019085910A1 - 一种通信终端和通信测试方法、存储介质 - Google Patents

一种通信终端和通信测试方法、存储介质 Download PDF

Info

Publication number
WO2019085910A1
WO2019085910A1 PCT/CN2018/112790 CN2018112790W WO2019085910A1 WO 2019085910 A1 WO2019085910 A1 WO 2019085910A1 CN 2018112790 W CN2018112790 W CN 2018112790W WO 2019085910 A1 WO2019085910 A1 WO 2019085910A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication terminal
radio frequency
baseband
communication
card
Prior art date
Application number
PCT/CN2018/112790
Other languages
English (en)
French (fr)
Inventor
唐彦波
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Publication of WO2019085910A1 publication Critical patent/WO2019085910A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication terminal, a communication test method, and a storage medium.
  • Open Air Interface also known as Open Air Interface 5g, an open source SDR initiated and maintained by the European EURECOM organization LTE project.
  • Embodiments of the present invention provide a communication terminal, a communication test method, and a storage medium, which can implement a D2D function based on OAI software development on a small communication terminal.
  • a technical solution adopted by the present invention is to provide a communication terminal, which is based on a micro-telecom computing architecture, including: at least one baseband card, and the OAI software is run on the at least one baseband card.
  • At least one radio frequency board For implementing digital signal processing functions; at least one radio frequency board, the at least one radio frequency board is used for transmitting, receiving or synchronizing radio frequency signals and analog/digital conversion work of signals; and the power source is used for giving The communication terminal provides an operating voltage; wherein the at least one baseband card and the at least one radio frequency card are coupled to each other, and the power source is simultaneously coupled to the at least one baseband card and the at least one radio frequency card;
  • the at least one baseband card includes a processor for implementing a D2D function.
  • the communication terminal further includes:
  • a carrier hub for processing data exchange between the at least one baseband board.
  • the carrier hub processes data exchange between the at least one baseband card through a peripheral component high speed interconnect interface or a high speed serial interface.
  • the processor includes at least two physical cores
  • the processor supports processing of a 20 MHz time division duplex long term evolution network protocol.
  • the at least one baseband card includes at least one of a field programmable gate, an array digital signal processor, and a system level chip.
  • the baseband interface of the at least one baseband card and the radio frequency interface of the at least one radio frequency card support a high speed communication protocol.
  • the high-speed communication protocol includes: a packet-switched interconnect protocol and a high-speed serial computer extended bus standard protocol.
  • another technical solution adopted by the present invention is to provide a communication test method, including: all communication terminals establish a wireless connection with a base station; and the first communication terminal sends test information to the second communication terminal; The second communication terminal sends the received test information to the third communication terminal; the third communication terminal sends the received test information to the fourth communication terminal; and detects the test received by the fourth communication terminal At least one of information, real-time signal to noise ratio, and throughput curve;
  • the communication terminal is based on a micro-telecom computing architecture and includes:
  • At least one baseband card the at least one baseband card running OAI software for implementing digital signal processing functions;
  • At least one radio frequency board wherein the at least one radio frequency board is used to complete transmission, reception or synchronization of the radio frequency signal and analog/digital conversion of the signal;
  • a power source for providing a working voltage to the communication terminal
  • the at least one baseband card and the at least one radio frequency card are coupled to each other, and the power source is coupled to the at least one baseband card and the at least one radio frequency card simultaneously;
  • the at least one baseband card includes a processor for implementing a D2D function.
  • the method further includes:
  • the communication terminal further includes:
  • a carrier hub for processing data exchange between the at least one baseband board.
  • the carrier hub processes data exchange between the at least one baseband card through a peripheral component high speed interconnect interface or a high speed serial interface.
  • the processor includes at least two physical cores
  • the processor supports processing of a 20 MHz time division duplex long term evolution network protocol.
  • the at least one baseband card includes at least one of a field programmable gate, an array digital signal processor, and a system level chip.
  • the baseband interface of the at least one baseband card and the radio frequency interface of the at least one radio frequency card support a high speed communication protocol.
  • the high-speed communication protocol includes: a packet-switched interconnect protocol and a high-speed serial computer extended bus standard protocol.
  • another technical solution adopted by the present invention is to provide a storage medium storing a plurality of instructions adapted to be loaded by a processor and performing the following steps:
  • All communication terminals establish a wireless connection with the base station
  • the first communication terminal sends the test information to the second communication terminal;
  • the second communication terminal sends the received test information to the third communication terminal;
  • the third communication terminal sends the received test information to the fourth communication terminal;
  • the communication terminal is based on a micro-telecom computing architecture and includes:
  • At least one baseband card the at least one baseband card running OAI software for implementing digital signal processing functions;
  • At least one radio frequency board wherein the at least one radio frequency board is used to complete transmission, reception or synchronization of the radio frequency signal and analog/digital conversion of the signal;
  • a power source for providing a working voltage to the communication terminal
  • the at least one baseband card and the at least one radio frequency card are coupled to each other, and the power source is coupled to the at least one baseband card and the at least one radio frequency card simultaneously;
  • the at least one baseband card includes a processor for implementing a D2D function.
  • the processor is further configured to:
  • the communication terminal further includes:
  • a carrier hub for processing data exchange between the at least one baseband board.
  • the carrier hub processes data exchange between the at least one baseband card through a peripheral component high speed interconnect interface or a high speed serial interface.
  • the at least one baseband card includes at least one of a field programmable gate, an array digital signal processor, and a system level chip.
  • the invention realizes the digital signal processing function by running the OAI software on the baseband board; the radio frequency board is used for transmitting, receiving or synchronizing the radio frequency signal and the analog/digital conversion work of the signal, based on the micro telecommunication computing architecture,
  • the volume of the communication terminal can be reduced, and the baseband board includes a processor for implementing the D2D function; the function of developing the D2D based on the OAI can be implemented on the communication terminal.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a communication terminal provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a second embodiment of a communication terminal provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a first embodiment of a communication test method provided by the present invention.
  • FIG. 4 is a schematic flow chart of a first embodiment of a communication test method provided by the present invention.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a communication test method provided by the present invention.
  • FIG. 6 is a schematic flow chart of a second embodiment of a communication test method provided by the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a communication terminal provided by the present invention.
  • the communication terminal 10 includes a baseband card 11, a radio frequency card 12, and a power supply 13.
  • the baseband card 11 includes a processor 111, which can run OAI software for implementing digital signal processing functions.
  • the processor 111 For the Intel general purpose processor, in other implementation scenarios, the processor 111 may also be an AMD processor.
  • the OAI software on the baseband board can be edited to support the related functions of the D2D, so the processor 111 can implement the D2D related functions by running the OAI software.
  • the radio frequency board 12 is coupled to the baseband board 11 for performing transmission, reception or synchronization of radio frequency signals and analog/digital conversion of signals.
  • the radio frequency board 12 integrates the transceiver of the Lime company (Transceiver), and the above work is completed by the Transceiver.
  • the power source 13 is simultaneously coupled to the baseband board 11 and the radio frequency board 12 for providing a working voltage for the operation of the communication terminal 10.
  • the communication terminal 10 is based on a Micro Telecom Computing Architecture (Micro TCA), which is highly scalable and stable, and is a 5G universal development based on soft and hard combination of open source software. , testing, application platform. And the platform has high integration, small size and flexible use. In other implementation scenarios, it can also be based on ATCA (Advanced Telecom Computing Architecture), TCA (Telecom Computing Platform, Telecom) Computing Architecture).
  • Micro TCA Micro Telecom Computing Architecture
  • ATCA Advanced Telecom Computing Architecture
  • TCA Telecom Computing Platform, Telecom
  • the Micro TCA-based communication terminal 10 includes a baseband card 11 and a radio frequency board 12, and the existing Micro TCA housing has five slots for supporting the insertion of five baseband boards and/or radio frequency boards.
  • the communication terminal 10 requires a baseband card 11 and a radio frequency card 12 based on the SISO (single input single output) design.
  • MIMO multiple support
  • Multiple Input Multiple Output requires at least 2 RF boards.
  • the system bandwidth is between 5M and 10M, and a baseband board 11 is required.
  • system bandwidth of 20 MHz or more may be supported, and two or more baseband boards are required. .
  • the baseband board is AMC (Adaptive Modulation Coding, Adaptive) Modulation and Coding)
  • AMC can select the appropriate modulation and coding mode according to the wireless channel change, and select the most suitable link modulation and coding mode according to the user's instantaneous channel quality condition and current resources, so that the user can achieve the highest possible data throughput rate.
  • RF board is FMC (FPGA mezzanine card, FPGA Mezzanine Card)
  • FMC board is a universal module with a wide range of applications, environmental scope and market.
  • the FMC board supports signal transmission rates of up to 10 Gb/s, eliminates protocol overhead, avoids latency issues, reduces power consumption by simplifying system design, reduces engineering time, and reduces IP core and material costs.
  • the interface of the baseband card 11 and the interface of the radio frequency card 12 support various high-speed communication protocols, such as RapidIO (Packet Switching Interconnect) protocol, PCIE (High-speed Serial Computer Extended Bus Standard, Peripheral Component Interconnect Express). And other agreements.
  • RapidIO Packet Switching Interconnect
  • PCIE High-speed Serial Computer Extended Bus Standard
  • Peripheral Component Interconnect Express Peripheral Component Interconnect Express
  • Ethernet architecture, Aurora and other protocols can also be supported.
  • Baseband board 11 integrates field programmable gates (FPGA, Field-Programmable) Gate Array), array digital signal processor (DSP, Digital) Signal Processing, and at least one of System-on-a-Chip, the baseband board 11 can implement digital signal processing functions through field programmable gates, array digital signal processors, or system-on-chip .
  • the baseband board 11 integrates a high-performance FPGA chip, and some physical layer functions can be translated into the FPGA, so that the communication terminal 10 not only supports the physical layer and the MAC, but the RLC layer runs in different physical entities, and also Support for different modules in the physical layer to seamlessly link between processor 111 and FPGA to support the high rate requirements of 5G.
  • the processor 111 includes two cores capable of supporting processing of a 20 MHz TDD (Time Division Duplexing) LTE (Long Term Evolution) protocol.
  • the processor 111 Including four cores, quad-core processors can provide higher data throughput and speed up data processing.
  • the processor 111 is an Intel general purpose processor, and the processor 111 includes two cores.
  • the design principle of the OAI software running on the communication terminal 10 based on the Intel general processor architecture is to maximize the utilization of the processing capability of the multi-core processor on the basis of satisfying the real-time requirements in the protocol.
  • the design of the OAI software has the following characteristics:
  • the OAI software supports both static scheduling and dynamic scheduling.
  • the static scheduling algorithm is to prepare a scheduling strategy before scheduling. The scheduling process is performed according to a pre-defined strategy. The actual load situation and load capacity of each server, gateway or link are not considered in the scheduling process. Since the schedule does not change as the current load conditions change, it is called a static scheduling algorithm.
  • the algorithm features simple implementation and fast scheduling.
  • the static scheduling algorithm mainly includes: a round robin scheduling algorithm, a weighted round robin scheduling algorithm, a random scheduling algorithm, a weighted random scheduling algorithm, a source address hash scheduling algorithm, a destination address hash scheduling algorithm, and a source address port hash scheduling algorithm.
  • Dynamic scheduling generally refers to scheduling performed in the event of unpredictable disturbances in the scheduling environment and tasks. Compared with static scheduling, dynamic scheduling can produce more operational decision-making schemes for actual situations.
  • the OAI software in the invention simultaneously supports static scheduling and dynamic scheduling, which can effectively save working time and improve work efficiency.
  • the OAI software can quickly and efficiently segment tasks according to the attributes of each task, and flexibly assign tasks to different threads.
  • the OAI software marks the timestamp for each subtask.
  • the task manager needs to assign a time budget to each subtask.
  • the software will time stamp the subtasks in the processing flow and compare them with the allocated time budget to decide whether to continue or prematurely terminate.
  • the software first processes high-priority tasks and then does its best to handle other tasks. For example, at the physical layer of the receiving end of the LTE terminal, IFFT (Inverse Fast Fourier Transform, Inverse Fast) is first performed. Fourier Transform) operation, and then decoding the PDCCH (Physical Downlink Control Channel) on a pair of control channels, and finally on the data channel PDSCH according to the remaining time (Physical Downlink Shared Channel, Physical Downlink Share Channel) for processing.
  • IFFT Inverse Fast Fourier Transform, Inverse Fast
  • Priority assignment of tasks and threads Different subroutines of different OAI programs running on the communication terminal 10 are assigned different priorities. For example, to ensure proper operation of the communication protocol, the control channel and associated procedures that control the processing flow must have the highest priority. There are also some tasks that do not have strict real-time requirements, so they can be assigned a lower priority and then deal with low-priority tasks after the high-priority tasks are processed. For example, the response in the PRACH (Physical Random Access Channel) channel can be processed in a long period of time.
  • PRACH Physical Random Access Channel
  • the communication terminal in this embodiment is based on a micro-telecom computing architecture platform, and the processor of the communication terminal realizes the related function of the D2D by running the edited OAI software, and the communication terminal is small in size and convenient to carry, and can be Meet the high rate requirements of 5G.
  • FIG. 2 is a schematic structural diagram of a second embodiment of a communication terminal according to the present invention.
  • the communication terminal 20 includes two baseband boards 21, 23.
  • a baseband board 21 may not meet the work requirements.
  • a new baseband board 23 can be added, and an array digital signal processor is integrated on the baseband board 23 ( DSP, Digital Signal At least one of Processing,) and System-on-a-Chip (SOC) can be used for extension of new functions in subsequent use.
  • the baseband boards 21 and 23 include processors 211 and 231, respectively.
  • the baseband board 21 and the baseband board 23 are connected by a carrier hub 24, and the carrier hub 24 processes data exchange between the baseband board 21 and the baseband board 23 through a peripheral component high speed interconnection interface or a high speed serial interface.
  • a peripheral component high speed interconnection interface or a high speed serial interface In this implementation scenario, there are two baseband boards. In other implementation scenarios, there may be three, four, or five baseband boards. These baseband boards process data exchange between each other through the carrier hub 24. task.
  • the RF board 22 is coupled to the baseband board 21 and the baseband board 23 for performing transmission, reception or synchronization of radio frequency signals and analog/digital conversion of signals.
  • the power source 25 is simultaneously coupled to the baseband board 21, the baseband board 23, and the radio frequency board 22 for providing an operating voltage for the operation of the communication terminal 10.
  • the baseband boards 21 and 23 are basically identical in structure and function to the baseband board 11 of the first embodiment of the communication terminal provided by the present invention, and the radio frequency board 22 and the first communication terminal provided by the present invention
  • the structure and function of the radio frequency board 12 of the embodiment are substantially the same.
  • the power supply 25 and the power supply 13 of the first embodiment of the communication terminal provided by the present invention have substantially the same structure and function, and the baseband boards 21 and 23 and the radio frequency board 22 are provided.
  • the connection relationship with the power source 25 is substantially the same as the connection relationship between the baseband board 11, the radio frequency board 12, and the power source 13 in the first embodiment of the communication terminal provided by the present invention. I will not repeat them here.
  • the communication terminal in this embodiment is based on the micro telecommunication computing architecture platform, so that the communication terminal is small in size and high in portability.
  • the processor of the communication terminal realizes the D2D related function by running the edited OAI software, and processes the data transmission with a carrier hub having a high-speed interface between the plurality of baseband boards, and has strong scalability and can satisfy 5G. High rate requirements.
  • FIG. 3 is a schematic structural diagram of a first embodiment of a communication test method provided by the present invention
  • FIG. 4 is a schematic flowchart diagram of a first embodiment of a communication test method provided by the present invention.
  • the communication test method provided by the present invention includes the following steps:
  • the communication terminal in the D2D connection state needs to receive the control of the base station, and the base station can allocate resources to the communication link between the communication terminals, so that the communication resources are properly applied.
  • the radio frequency board 32 of the communication terminal 30, the radio frequency board 42 of the communication terminal 40, the radio frequency board 52 of the communication terminal 50, and the radio frequency board 62 of the communication terminal 60 establish a connection with the base station 70. And establishing a connection between the radio frequency board 32 of the communication terminal 30 and the radio frequency board 42 of the communication terminal 40, establishing a connection between the radio frequency board 42 of the communication terminal 40 and the radio frequency board 52 of the communication terminal 50, and the radio frequency of the communication terminal 50.
  • a connection is established between the card 52 and the radio frequency board 62 of the communication terminal 60.
  • the communication terminal 40, the communication terminal 50, and the communication terminal 60 allocate appropriate communication resources.
  • the base station 70, the communication terminal 30, the communication terminal 40, the communication terminal 50, and the communication terminal 60 are respectively connected to the control device 81, the control device 82, the control device 83, and the control device 84 in order to observe the measurement result more intuitively.
  • control device 85 for controlling and feeding back the operating states of base station 70, communication terminal 30, communication terminal 40, communication terminal 50, and communication terminal 60.
  • the base station 70, the communication terminal 30, the communication terminal 40, the communication terminal 50, and the communication terminal 60 are caused to enter the multi-hop communication operation mode.
  • the route of the multi-hop communication is fixed.
  • the communication terminal 30 ⁇ the communication terminal 40 ⁇ the communication terminal 50 ⁇ the communication terminal 60.
  • S102 The first communication terminal sends the test information to the second communication terminal.
  • the test information is a video.
  • the test information may also be a piece of audio, or a picture, or other multimedia file.
  • the communication terminal 30 plays the video to be transmitted on the control device 82 connected thereto, and transmits the video data to the communication terminal 40 through the radio frequency board 32.
  • S103 The second communication terminal sends the received test information to the third communication terminal.
  • the communication terminal 40 receives the video data transmitted by the communication terminal 30 via the radio frequency board card 42, processes the video data via the baseband board 41, and plays the video on the control device 83 connected to itself. At the same time, the communication terminal 40 transmits the received video data to the communication terminal 50 via the radio frequency board 42 as a relay.
  • S104 The third communication terminal sends the received test information to the fourth communication terminal.
  • the communication terminal 50 receives the video data transmitted by the communication terminal 40 via the radio frequency board 52, processes the video data via the baseband board 51, and plays the video on the control device 85 connected to itself. At the same time, the communication terminal 50 transmits the received video data to the communication terminal 60 via the radio frequency board 52 as a relay.
  • S105 Detect at least one of test information, a real-time signal to noise ratio, and a throughput curve received by the fourth communication terminal.
  • the communication terminal 60 receives the video data transmitted by the communication terminal 50 via the radio frequency board 62, processes the video data via the baseband board 61, and plays the video on the control device 85 connected to itself. At this time, the communication quality of the D2D transmission can be visually detected by controlling the smoothness of the video played by the device 85 and the video quality.
  • the real-time equivalent SNR (Signal to Noise Ratio, Signal to Noise) of the communication terminal 60 can also be detected and displayed by the control device 85.
  • Ratio) or display throughput curve evaluate the communication quality of D2D transmission by real-time equivalent SNR or display throughput curve.
  • the smoothness of the video played by the control device 83 and the control device 84 and the video quality can be detected to visually detect the communication quality of each transmission link in the D2D transmission process.
  • the real-time equivalent SNR Signal to Noise Ratio, Signal to Noise
  • the control device 83 and the control device 84 can also be detected and displayed by the control device 83 and the control device 84. Ratio) or display the throughput curve, and evaluate the communication quality of each transmission link in the D2D transmission process by real-time equivalent SNR or display throughput curve.
  • the communication terminal 30, the communication terminal 40, the communication terminal 50, and the communication terminal 60 are the communication terminals shown in FIG. 1. In other embodiments, the communication terminal 30, the communication terminal 40, the communication terminal 50, and the communication terminal One or more of 60 may also be the communication terminal shown in FIG. 2.
  • the present embodiment performs D2D communication quality testing by using a communication terminal based on a micro telecommunication computing architecture platform, and detects D2D communication quality by using at least one of a video playback quality, a real-time SNR, and a throughput curve. Simple and easy.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a communication test method provided by the present invention
  • FIG. 6 is a schematic flowchart diagram of a second embodiment of a communication test method provided by the present invention.
  • the communication test method provided by the present invention includes the following steps:
  • S202 The first communication terminal sends the test information to the second communication terminal.
  • S203 The second communication terminal sends the received test information to the third communication terminal.
  • S204 The third communication terminal sends the received test information to the fourth communication terminal.
  • S205 Detect at least one of test information, a real-time signal to noise ratio, and a throughput curve received by the fourth communication terminal.
  • Steps S201 to S205 are substantially the same as steps S101 to S105 in the first embodiment of the communication test method provided by the present invention, and are not described herein again.
  • separate analog signal blocking is set on the communication link between the communication terminal 30 and the communication terminal 40, between the communication terminal 40 and the communication terminal 50, and between the communication terminal 50 and the communication terminal 60.
  • an analog signal is placed between the communication terminal 30 and the communication terminal 40, between the communication terminal 40 and the communication terminal 50, and between any one or two communication links between the communication terminal 50 and the communication terminal 60. Block.
  • the analog signal blocking 91, the analog signal blocking 92, and the analog signal blocking 93 are analog pedestrian blocking. In other implementation scenarios, the analog signal blocking 91, the analog signal blocking 92, and the analog signal blocking 93 may also be metal mesh blocking. .
  • S207 Detect whether at least one of the test information, the real-time signal-to-noise ratio, and the throughput curve received by the fourth communication terminal is decreased compared to when the analog signal is not blocked.
  • the video is played on the control device 84.
  • the communication quality of the D2D transmission can be visually detected by controlling the smoothness of the video played by the device 85 and the video quality.
  • the real-time equivalent SNR (Signal to Noise Ratio, Signal to Noise) of the communication terminal 60 can also be detected and displayed by the control device 85. Ratio) or display throughput curve, evaluate the communication quality of D2D transmission by real-time equivalent SNR or display throughput curve.
  • the smoothness and video quality of the video played by the control device 83 and the control device 84 can be detected, and the real-time equivalent SNR (signal-to-noise ratio) of the communication terminal 60 can be detected and displayed by the control device 83 and the control device 84.
  • Signal to noise ratio signal to noise ratio
  • display throughput curve The communication quality of each transmission link in D2D transmission process is evaluated by real-time equivalent SNR or display throughput curve. It will be blocked by analog signal 91, analog signal blocking 92 and analog. The magnitude of the effect of signal blocking 93.
  • the analog signal blocking 91, the analog signal blocking 92, and the analog signal blocking 93 can be compared to the process level and video quality, the time equivalent SNR, and the display throughput curve of the control device 85 when the pedestrian is blocked.
  • the analog signal blocking 91, the analog signal blocking 92 and the analog signal blocking 93 are the flow degree and video quality, the time equivalent SNR and the display throughput curve of the metal mesh time device 85 playing video, and the different analog signal blocking pairs D2D communication quality are obtained.
  • the size of the interference is the size of the interference.
  • the present embodiment uses a communication terminal based on a micro-telecom computing architecture platform, adds analog signal blocking between each communication terminal, and compares video playback quality, real-time signal-to-noise ratio, and throughput before and after blocking by adding analog signals. At least one of the curves detects the effect of the analog signal blocking on the quality of the D2D communication, and the method is simple and easy.
  • the communication terminal in the invention is based on a micro-telecom computing architecture platform, small in size, light in weight, convenient to carry, good in heat dissipation, light in power consumption, flexible in extension, strong in stability and compatibility.
  • the D2D communication is performed by running the OAI software on the communication terminal, and the method is simple and easy to implement.
  • the present invention also provides a storage medium storing a plurality of instructions adapted to be loaded by a processor and to perform the following steps:
  • All communication terminals establish a wireless connection with the base station
  • the first communication terminal sends the test information to the second communication terminal;
  • the second communication terminal sends the received test information to the third communication terminal;
  • the third communication terminal sends the received test information to the fourth communication terminal;
  • the communication terminal is based on a micro-telecom computing architecture and includes:
  • At least one baseband card the at least one baseband card running OAI software for implementing digital signal processing functions;
  • At least one radio frequency board wherein the at least one radio frequency board is used to complete transmission, reception or synchronization of the radio frequency signal and analog/digital conversion of the signal;
  • a power source for providing a working voltage to the communication terminal
  • the at least one baseband card and the at least one radio frequency card are coupled to each other, and the power source is coupled to the at least one baseband card and the at least one radio frequency card simultaneously;
  • the at least one baseband card includes a processor for implementing a D2D function.
  • the processor is further configured to:
  • the communication terminal further includes:
  • a carrier hub for processing data exchange between the at least one baseband board.
  • the carrier hub processes data exchange between the at least one baseband card through a peripheral component high speed interconnect interface or a high speed serial interface.
  • the at least one baseband card includes at least one of a field programmable gate, an array digital signal processor, and a system level chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信终端和通信测试方法,包括:基带板卡,运行OAI软件,用于实现数字信号处理功能;射频板卡,用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;电源,用于给通信终端提供工作电压;基带板卡和射频板卡相互耦接,电源同时耦接基带板卡和射频板卡;基带板卡包括处理器,用于实现D2D功能。

Description

一种通信终端和通信测试方法、存储介质
本申请要求于2017年10月30日提交中国专利局、申请号为201711039084. X 、发明名称为“一种通信终端和通信测试方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别是涉及一种通信终端和通信测试方法、存储介质。
背景技术
Open Air Interface(OAI),又称Open Air Interface 5g,是欧洲EURECOM组织发起并维护的一个开源SDR LTE项目。
但是,由于OAI组织把开发的重点放在EPC和eNB上,之前UE的代码有很多bug,所以实际使用起来非常不稳定,且OAI的LTE协议只能兼容R8以及绝大多数R10子集,并不能支持D2D相关功能。同时OAI的硬件是基于PC的架构,体积很大。
技术问题
本发明实施例提供一种通信终端和通信测试方法、存储介质,能够在体积小的通信终端上实现基于OAI软件开发的D2D功能。
技术解决方案
为实现上述目的,本发明采用的一个技术方案是:提供一种通信终端,所述通信终端基于微型电信计算架构,包括:至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;电源,所述电源用于给所述通信终端提供工作电压;其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
其中,所述通信终端还包括:
载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
其中,所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
其中,所述处理器包括至少两个物理核心;
所述处理器支持20MHz时分双工长期演进网协议的处理。
其中,所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
其中,所述至少一块基带板卡的基带接口和所述至少一块射频板卡的射频接口支持高速通信协议。
其中,所述高速通信协议包括:基于包交换互联协议和高速串行计算机扩展总线标准协议。
为实现上述目的,本发明采用的另一个技术方案是:提供一种通信测试方法,包括:全部通信终端与基站建立无线连接;第一通信终端将测试信息发送给第二通信终端;所述第二通信终端将接收到的所述测试信息发送给第三通信终端;所述第三通信终端将接收到的所述测试信息发送给第四通信终端;检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
其中,所述通信终端基于微型电信计算架构,包括:
至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;
至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;
电源,所述电源用于给所述通信终端提供工作电压;
其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;
所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
其中,所述方法还包括:
在所述第一通信终端与所述第二通信终端之间、所述第二通信终端和所述第三通信终端之间、所述第三通信终端和所述第四通信终端之间的至少一处模拟信号阻挡;
检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项与未做模拟信号阻挡时相比是否下降。
其中,所述通信终端还包括:
载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
其中,所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
其中,所述处理器包括至少两个物理核心;
所述处理器支持20MHz时分双工长期演进网协议的处理。
其中,所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
其中,所述至少一块基带板卡的基带接口和所述至少一块射频板卡的射频接口支持高速通信协议。
其中,所述高速通信协议包括:基于包交换互联协议和高速串行计算机扩展总线标准协议。
为实现上述目的,本发明采用的再一个技术方案是:提供一种存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如下步骤:
全部通信终端与基站建立无线连接;
第一通信终端将测试信息发送给第二通信终端;
所述第二通信终端将接收到的所述测试信息发送给第三通信终端;
所述第三通信终端将接收到的所述测试信息发送给第四通信终端;
检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
其中,所述通信终端基于微型电信计算架构,包括:
至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;
至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;
电源,所述电源用于给所述通信终端提供工作电压;
其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;
所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
其中,所述处理器还用于处理:
在所述第一通信终端与所述第二通信终端之间、所述第二通信终端和所述第三通信终端之间、所述第三通信终端和所述第四通信终端之间的至少一处模拟信号阻挡;
检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项与未做模拟信号阻挡时相比是否下降。
其中,所述通信终端还包括:
载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
其中,所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
其中,所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
有益效果
本发明通过在基带板卡上运行OAI软件,用于实现数字信号处理功能;通过射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作,基于微型电信计算架构,可以缩小通信终端的体积,基带板卡包括用于实现D2D功能的处理器;可以在该通信终端上实现基于OAI的基础上开发D2D的功能。
附图说明
图1是本发明提供的通信终端的第一实施例的结构示意图;
图2是本发明提供的通信终端的第二实施例的结构示意图;
图3是本发明提供的通信测试方法的第一实施例的结构示意图;
图4是本发明提供的通信测试方法的第一实施例的流程示意图;
图5是本发明提供的通信测试方法的第二实施例的结构示意图
图6是本发明提供的通信测试方法的第二实施例的流程示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
请参阅图1,图1是本发明提供的通信终端的实施例的结构示意图。通信终端10包括一块基带板卡11、一块射频板卡12和电源13,基带板卡11包括处理器111,可以运行OAI软件,用于实现数字信号处理功能,在本实施场景中,处理器111为Intel通用处理器,在其他实施场景中,处理器111还可以是AMD处理器。在本实施场景中,基带板卡上的OAI软件经过编辑,可以支持D2D的相关功能,因此处理器111可以通过运行该OAI软件,实现D2D的相关功能。射频板卡12耦接基带板卡11,用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作。在本实施场景中,射频板卡12集成Lime公司的收发器(Transceiver),通过这个Transceiver完成上述工作。电源13同时耦接基带板卡11和射频板卡12,用于给通信终端10的工作提供工作电压。
在本实施场景中,通信终端10是基于微型电信计算架构平台(Micro TCA,Micro Telecom Computing Architecture),该平台可扩展性强、稳定性高、是基于开源软件搭建的软硬结合的5G通用开发、测试、应用平台。且该平台集成度高,体积小,使用灵活。在其他实施场景中,还可以基于ATCA(先进的电信计算平台,Advanced Telecom Computing Architecture)、TCA(电信计算平台,Telecom Computing Architecture)。
基于Micro TCA的通信终端10包括一块基带板卡11和一块射频板卡12,现有的Micro TCA外壳有5个插槽,可以支持插入5块基带板卡和\或射频板卡。在本实施场景中,通信终端10基于SISO(单入单出,single input single output)的设计,需要一块基带板卡11和一块射频板卡12,在其他实施场景中,可能需要支持MIMO(多入多出,Multiple Input Multiple Output)则需要至少2块射频板卡。在本实施场景中,系统带宽在5M~10M之间,需要一块基带板卡11,在其他实施场景中,可能支持20MHz及以上的系统带宽,则需要2块或者更多块的基带板卡11。
在本实施场景中,基带板卡是AMC(自适应调制编码,Adaptive Modulation and Coding)板卡,AMC可以根据无线信道变化选择合适的调制和编码方式,根据用户瞬时信道质量状况和目前资源选择最合适的链路调制和编码方式,使用户达到尽量高的数据吞吐率。射频板卡是FMC(FPGA 夹层卡,FPGA Mezzanine Card)板卡,FMC板卡是一个应用范围、适应环境范围和市场领域范围都很广的通用模块。FMC板卡支持高达 10 Gb/s 的信号传输速率,消除了协议开销,可以避免时延问题,通过简化系统设计降低了功耗,缩短了工程设计时间,并缩减了IP 核及材料成本。
在本实施场景中,基带板卡11的接口和射频板卡12的接口支持多种高速通信协议,如RapidIO(包交换互联)协议, PCIE(高速串行计算机扩展总线标准,Peripheral Component Interconnect Express)等协议。在其他实施场景中,还可以支持以太网结构,Aurora等协议。
基带板卡11集成了现场可编程门(FPGA,Field-Programmable Gate Array)、阵列数字信号处理器(DSP,Digital Signal Processing,)和系统级芯片(SOC,System-on-a-Chip)中的至少一项,基带板卡11可以通过现场可编程门、阵列数字信号处理器或者系统级芯片实现数字信号处理功能。在本实施场景中,基带板卡11集成高性能FPGA芯片,部分物理层功能可以平移到FPGA中完成,这样通信终端10不仅支持物理层和MAC,RLC等层在不同物理实体中运行,同时也支持物理层中的不同模块在处理器111和FPGA之间无缝链接,以支持5G的高速率需求。
在本实施场景中,处理器111包括两个核心,能够支持20MHz TDD(时分双工,Time Division Duplexing))LTE(长期演进,Long Term Evolution)协议的处理,在其他实施场景中,处理器111包括四个核心,四核处理器可以提供更高的数据吞吐量,加快数据处理的速度。
在本实施场景中,处理器111为Intel通用处理器,且处理器111包括两个核心。基于Intel通用处理器架构的通信终端10上运行的OAI软件的设计原则是在满足协议中对实时性要求的基础上,最大化的利用多核处理器的处理能力。为此,在OAI软件的设计还有以下特征:
1)该OAI软件同时支持静态调度和动态调度法。静态调度算法是调度之前制定好调度策略,调度过程中按照预先制定的策略进行调度,调度过程中不考虑当前各服务器、网关或链路的实际负载情况及可负载的能力。由于调度不随着当前的负载情况改变而改变,因此称为静态调度算法。算法特点是实现简单、调度快捷。静态调度算法主要代表有:轮转调度算法、加权轮转调度算法、随机调度算法、加权随机调度算法、基于源地址哈希调度算法、基于目的地址哈希调度算法、基于源地址端口哈希调度算法。
动态调度通常是指在调度环境和任务存在不可预测扰动情况下所进行的调度。与静态调度相比,动态调度能够针对实际情况产生更具可操作性的决策方案。动态调度的实现方式有两种:一是事先不存在静态调度方案,直接按照现有的状况以及相关信息,使用某种计算方法,确定不同程序的优先级,即实时调度;二是在已有静态调度方案的基础上,根据现场状态,及时进行静态调度方案的调整,确定不同程序的优先级,此种方式常常被称作“重调度”。
本发明中的OAI软件同时支持静态调度和动态调度,可以有效的节省工作时间,提升工作效率。
2) 该OAI软件根据每个任务的属性可以快速高效地对任务进行切分,并且灵活地将任务分配给不同的线程。
3) 该OAI软件为每个子任务标记时间戳。任务管理器需要给每个子任务分配一个时间预算。软件在处理流程中会给子任务标记时间戳,并与分配的时间预算进行比较,以此来决定是继续执行还是提前终止。软件会首先处理高优先级的任务,然后在尽最大的努力处理其他任务。例如,在LTE终端接收端的物理层,首先进行IFFT(快速傅里叶逆变换,,Inverse Fast Fourier Transform)运算,然后逐一对控制信道PDCCH(物理下行控制信道,Physical Downlink Control Channel)进行解码,最后再根据剩余的时间对数据信道PDSCH(物理下行共享信道,Physical Downlink Share Channel)进行处理。
4)任务和线程的优先级分配。给通信终端10上运行的OAI程序不同的子程序分配不同的优先级。例如,为了保证通信协议的正常运转,控制信道以及控制处理流程的相关程序必须具有最高的优先级。也有一些任务并没有严格的实时性要求,因此可以给其分配较低的优先级,在高优先级的任务处理完毕后再处理低优先级的任务。例如,PRACH(物理随机接入信道,Physical Random Access Channel)信道中的响应就可以在一个较长的时间周期内去处理。
通过上述描述可知,本实施例中的通信终端基于微型电信计算架构平台,通信终端的处理器通过运行经过编辑后的OAI软件,实现D2D的相关功能,通信终端的体积小,携带方便,且可以满足5G的高速率需求。
请参阅图2,图2是本发明提供的通信终端的第二实施例的结构示意图。通信终端20包括两个基带板卡21、23。在一个具体的实施场景中,有新功能需要扩展时,一块基带板卡21可能无法满足工作需求,此时可以添加一块新的基带板卡23,基带板卡23上集成阵列数字信号处理器(DSP,Digital Signal Processing,)和系统级芯片(SOC,System-on-a-Chip)中的至少一项,可以用于后续使用中新功能的扩展。基带板卡21和23分别包括处理器211和231。基带板卡21和基带板卡23之间通过载波集线器24连接,载波集线器24通过外设部件高速互连接口或高速串行接口处理基带板卡21和基带板卡23之间的数据交换。本实施场景中,有两块基带板卡,在其他实施场景中,可以有3块、4块或者5块基带板卡,这些基带板卡之间都通过载波集线器24处理彼此之间的数据交换任务。射频板卡22耦接基带板卡21和基带板卡23,用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作。电源25同时耦接基带板卡21、基带板卡23和射频板卡22,用于给通信终端10的工作提供工作电压。
在本实施场景中,基带板卡21和23与本发明提供的通信终端的第一实施例的基带板卡11的结构与功能基本一致,射频板卡22与本发明提供的通信终端的第一实施例的射频板卡12的结构与功能基本一致,电源25与本发明提供的通信终端的第一实施例的电源13的结构与功能基本一致,且基带板卡21和23、射频板卡22与电源25之间的连接关系与本发明提供的通信终端的第一实施例中的基带板卡11、射频板卡12和电源13的连接关系基本一致。此处不再赘述。
通过上述描述可知,本实施例中的通信终端基于微型电信计算架构平台,使得该通信终端体积小巧,便携性高。通信终端的处理器通过运行经过编辑后的OAI软件,实现D2D的相关功能,在多个基带板卡之间用具有高速接口的载波集线器处理数据传输的工作,可扩展性强,可以满足5G的高速率需求。
请结合参阅图3、图4,图3是本发明提供的通信测试方法的第一实施例的结构示意图,图4是本发明提供的通信测试方法的第一实施例的流程示意图。本发明提供的通信测试方法包括以下步骤:
S101:全部通信终端与基站建立无线连接;
D2D连接状态下的通信终端需要接受基站的控制,基站可以对通信终端之间的通信链路分配资源,以使得通信资源得到合理应用。在一个具体的实施场景中,通信终端30的射频板卡32、通信终端40的射频板卡42、通信终端50的射频板卡52和通信终端60的射频板卡62与基站70建立连接。且通信终端30的射频板卡32和通信终端40的射频板卡42之间建立连接、通信终端40的射频板卡42和通信终端50的射频板卡52之间建立连接、通信终端50的射频板卡52和通信终端60的射频板卡62之间建立连接。基站70根据通信终端30、通信终端40、通信终端50和通信终端60需要传输的数据量和数据类型,以及通信终端30的射频板卡32和通信终端40的射频板卡42之间、通信终端40的射频板卡42和通信终端50的射频板卡52之间、通信终端50的射频板卡52和通信终端60的射频板卡62之间的通信链路的通信质量,给通信终端30、通信终端40、通信终端50和通信终端60分配合适的通信资源。
在本实施场景中,为了可以更加直观的观察测量结果,基站70、通信终端30、通信终端40、通信终端50和通信终端60分别连接控制设备81、控制设备82、控制设备83、控制设备84和控制设备85,用于控制并反馈基站70、通信终端30、通信终端40、通信终端50和通信终端60的工作状态。在通信终端30的射频板卡32、通信终端40的射频板卡42、通信终端50的射频板卡52和通信终端60的射频板卡62与基站70建立连接后,操作基站70的控制设备,使得基站70、通信终端30、通信终端40、通信终端50和通信终端60进入多跳通信工作模式。在本实施场景中,为了便于实验数据的统计与比对,本实施场景中,多跳通信的路由是固定的,
例如通信终端30→通信终端40 →通信终端50→通信终端60。
S102:第一通信终端将测试信息发送给第二通信终端;
在一个具体的实施场景中,测试信息是一段视频,在其他实施场景中,测试信息也可以是一段音频,或者一幅图片,或者其他多媒体文件。
通信终端30将需要传输的视频在与其相连接的控制设备82上播放,并将该视频数据通过射频板卡32发送给通信终端40。
S103:所述第二通信终端将接收到的所述测试信息发送给第三通信终端;
通信终端40通过射频板卡42接收由通信终端30发送的视频数据,经过基带板卡41处理该视频数据,并在与自身相连接的控制设备83上播放该视频。同时通信终端40作为中继通过射频板卡42向通信终端50发送接收到的视频数据。
S104:所述第三通信终端将接收到的所述测试信息发送给第四通信终端;
通信终端50通过射频板卡52接收由通信终端40发送的视频数据,经过基带板卡51处理该视频数据,并在与自身相连接的控制设备85上播放该视频。同时通信终端50作为中继通过射频板卡52向通信终端60发送接收到的视频数据。
S105:检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
通信终端60通过射频板卡62接收由通信终端50发送的视频数据,经过基带板卡61处理该视频数据,并在与自身相连接的控制设备85上播放该视频。此时可以通过控制设备85播放的视频的流畅程度和视频质量直观检测出D2D传输的通信质量。
在其他实施场景中,还可以通过控制设备85检测并显示通信终端60的实时等效SNR(信噪比,Signal to noise ratio)或者显示吞吐量曲线,通过实时等效SNR或者显示吞吐量曲线评价D2D传输的通信质量。
在其他实施场景中,可以检测控制设备83、控制设备84播放的视频的流畅程度和视频质量直观检测出D2D传输过程中的每一段传输链路的通信质量。同理,还可以通过控制设备83、控制设备84检测并显示通信终端60的实时等效SNR(信噪比,Signal to noise ratio)或者显示吞吐量曲线,通过实时等效SNR或者显示吞吐量曲线评价D2D传输过程中的每一段传输链路的通信质量。
在本实施场景中,通信终端30、通信终端40、通信终端50和通信终端60是图1所示的通信终端,在其他实施例中,通信终端30、通信终端40、通信终端50和通信终端60中的一个或者多个还有可能是图2所示的通信终端。
通过上述描述可知,本实施例通过使用基于微型电信计算架构平台的通信终端进行D2D的通信质量测试,通过视频播放质量、实时信噪比和吞吐量曲线中的至少一项检测D2D通信质量,方法简单易行。
请结合参阅图5、图6,图5是本发明提供的通信测试方法的第二实施例的结构示意图,图6是本发明提供的通信测试方法的第二实施例的流程示意图。本发明提供的通信测试方法包括以下步骤:
S201:全部通信终端与基站建立无线连接;
S202:第一通信终端将测试信息发送给第二通信终端;
S203:所述第二通信终端将接收到的所述测试信息发送给第三通信终端;
S204:所述第三通信终端将接收到的所述测试信息发送给第四通信终端;
S205:检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
步骤S201~步骤S205与本发明提供的通信测试方法的第一实施例中的步骤S101~步骤S105基本一致,此处不再赘述。
S206:在所述第一通信终端与所述第二通信终端之间、所述第二通信终端和所述第三通信终端之间、所述第三通信终端和所述第四通信终端之间的至少一处模拟信号阻挡;
在一个具体的实施场景中,在通信终端30与通信终端40之间、在通信终端40与通信终端50之间以及在通信终端50与通信终端60之间的通信链路上设置分别模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93。在其他实施例中,通信终端30与通信终端40之间、在通信终端40与通信终端50之间以及在通信终端50与通信终端60之间的任意一条或者两条通信链路上设置模拟信号阻挡。
在本实施场景中,模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93为模拟行人阻挡,在其他实施场景中模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93还可以是金属网阻挡。
S207:检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项与未做模拟信号阻挡时相比是否下降;
与步骤S205类似,在控制设备84上播放该视频。此时可以通过控制设备85播放的视频的流畅程度和视频质量直观检测出D2D传输的通信质量。还可以通过控制设备85检测并显示通信终端60的实时等效SNR(信噪比,Signal to noise ratio)或者显示吞吐量曲线,通过实时等效SNR或者显示吞吐量曲线评价D2D传输的通信质量。
将经过模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93阻挡后控制设备85播放视频的流程程度和视频质量、时等效SNR以及显示吞吐量曲线与步骤S205中得到的结果进行对比,得出模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93对D2D通信质量的影响程度。
在其他实施场景中,可以检测控制设备83、控制设备84播放的视频的流畅程度和视频质量,还可以通过控制设备83、控制设备84检测并显示通信终端60的实时等效SNR(信噪比,Signal to noise ratio)或者显示吞吐量曲线,通过实时等效SNR或者显示吞吐量曲线评价D2D传输过程中的每一段传输链路的通信质量受到将经过模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93的影响大小。
在其他实施场景中,可以比对模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93是模拟行人阻挡时控制设备85播放视频的流程程度和视频质量、时等效SNR以及显示吞吐量曲线与模拟信号阻挡91、模拟信号阻挡92和模拟信号阻挡93是金属网时制设备85播放视频的流程程度和视频质量、时等效SNR以及显示吞吐量曲线,得出不同模拟信号阻挡对D2D通信质量的干扰大小。
通过上述描述可知,本实施例使用基于微型电信计算架构平台的通信终端,在各通信终端之间添加模拟信号阻挡,通过比对添加模拟信号阻挡前后的视频播放质量、实时信噪比和吞吐量曲线中的至少一项检测模拟信号阻挡对D2D通信质量的影响,方法简单易行。
区别于现有技术,本发明中的通信终端基于微型电信计算架构平台,尺寸小,重量轻,方便携带,散热性好,耗电轻,可灵活扩展强,稳定性和兼容性好。在该通信终端上通过运行OAI软件进行D2D通信,方法简单易实现。
本发明还提供一种存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如下步骤:
全部通信终端与基站建立无线连接;
第一通信终端将测试信息发送给第二通信终端;
所述第二通信终端将接收到的所述测试信息发送给第三通信终端;
所述第三通信终端将接收到的所述测试信息发送给第四通信终端;
检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
其中,所述通信终端基于微型电信计算架构,包括:
至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;
至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;
电源,所述电源用于给所述通信终端提供工作电压;
其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;
所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
其中,所述处理器还用于处理:
在所述第一通信终端与所述第二通信终端之间、所述第二通信终端和所述第三通信终端之间、所述第三通信终端和所述第四通信终端之间的至少一处模拟信号阻挡;
检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项与未做模拟信号阻挡时相比是否下降。
其中,所述通信终端还包括:
载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
其中,所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
其中,所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种通信终端,其中,所述通信终端基于微型电信计算架构,包括:
    至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;
    至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;
    电源,所述电源用于给所述通信终端提供工作电压;
    其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;
    所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
  2. 根据权利要求1所述的通信终端,其中,所述通信终端还包括:
    载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
  3. 根据权利要求2所述的通信终端,其中,
    所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
  4. 根据权利要求1所述的通信终端,其中,
    所述处理器包括至少两个物理核心;
    所述处理器支持20MHz时分双工长期演进网协议的处理。
  5. 根据权利要求1所述的通信终端,其中,
    所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
  6. 根据权利要求1所述的通信终端,其中,
    所述至少一块基带板卡的基带接口和所述至少一块射频板卡的射频接口支持高速通信协议。
  7. 根据权利要求6所述的通信终端,其中,
    所述高速通信协议包括:基于包交换互联协议和高速串行计算机扩展总线标准协议。
  8. 一种通信测试方法,其中,包括:所述方法包括:
    全部通信终端与基站建立无线连接;
    第一通信终端将测试信息发送给第二通信终端;
    所述第二通信终端将接收到的所述测试信息发送给第三通信终端;
    所述第三通信终端将接收到的所述测试信息发送给第四通信终端;
    检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
    其中,所述通信终端基于微型电信计算架构,包括:
    至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;
    至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;
    电源,所述电源用于给所述通信终端提供工作电压;
    其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;
    所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
  9. 根据权利要求8所述的通信测试方法,其中,所述方法还包括:
    在所述第一通信终端与所述第二通信终端之间、所述第二通信终端和所述第三通信终端之间、所述第三通信终端和所述第四通信终端之间的至少一处模拟信号阻挡;
    检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项与未做模拟信号阻挡时相比是否下降。
  10. 根据权利要求8所述的通信测试方法,其中,所述通信终端还包括:
    载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
  11. 根据权利要求10所述的通信测试方法,其中,
    所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
  12. 根据权利要求8所述的通信测试方法,其中,
    所述处理器包括至少两个物理核心;
    所述处理器支持20MHz时分双工长期演进网协议的处理。
  13. 根据权利要求8所述的通信测试方法,其中,
    所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
  14. 根据权利要求8所述的通信测试方法,其中,
    所述至少一块基带板卡的基带接口和所述至少一块射频板卡的射频接口支持高速通信协议。
  15. 根据权利要求14所述的通信测试方法,其中,
    所述高速通信协议包括:基于包交换互联协议和高速串行计算机扩展总线标准协议。
  16. 一种存储介质,其存储有多条指令,所述指令适于由处理器加载并执行如下步骤:
    全部通信终端与基站建立无线连接;
    第一通信终端将测试信息发送给第二通信终端;
    所述第二通信终端将接收到的所述测试信息发送给第三通信终端;
    所述第三通信终端将接收到的所述测试信息发送给第四通信终端;
    检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项;
    其中,所述通信终端基于微型电信计算架构,包括:
    至少一块基带板卡,所述至少一块基带板卡上运行OAI软件,用于实现数字信号处理功能;
    至少一块射频板卡,所述至少一块射频板卡用于完成射频信号的发送、接收或同步以及信号的模拟/数字转换工作;
    电源,所述电源用于给所述通信终端提供工作电压;
    其中,所述至少一块基带板卡和所述至少一块射频板卡相互耦接,所述电源同时耦接所述至少一块基带板卡和所述至少一块射频板卡;
    所述至少一块基带板卡包括处理器,所述处理器用于实现D2D功能。
  17. 根据权利要求16所述的存储介质,其中,所述处理器还用于处理:
    在所述第一通信终端与所述第二通信终端之间、所述第二通信终端和所述第三通信终端之间、所述第三通信终端和所述第四通信终端之间的至少一处模拟信号阻挡;
    检测所述第四通信终端接收到的测试信息、实时信噪比和吞吐量曲线中的至少一项与未做模拟信号阻挡时相比是否下降。
  18. 根据权利要求16所述的存储介质,其中,所述通信终端还包括:
    载波集线器,所述载波集线器用于处理所述至少一块基带板卡之间的数据交换。
  19. 根据权利要求18所述的存储介质,其中,
    所述载波集线器通过外设部件高速互连接口或高速串行接口处理所述至少一块基带板卡之间的数据交换。
  20. 根据权利要求16所述的存储介质,其中,所述至少一块基带板卡包括现场可编程门、阵列数字信号处理器和系统级芯片中的至少一项。
PCT/CN2018/112790 2017-10-30 2018-10-30 一种通信终端和通信测试方法、存储介质 WO2019085910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711039084.XA CN107959981B (zh) 2017-10-30 2017-10-30 一种通信终端和通信测试方法
CN201711039084.X 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019085910A1 true WO2019085910A1 (zh) 2019-05-09

Family

ID=61964261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112790 WO2019085910A1 (zh) 2017-10-30 2018-10-30 一种通信终端和通信测试方法、存储介质

Country Status (2)

Country Link
CN (1) CN107959981B (zh)
WO (1) WO2019085910A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112162759A (zh) * 2020-09-29 2021-01-01 上海移远通信技术股份有限公司 射频软件板卡的加载方法、系统、电子设备和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959981B (zh) * 2017-10-30 2020-07-10 捷开通讯(深圳)有限公司 一种通信终端和通信测试方法
CN113644920B (zh) * 2021-06-16 2022-10-14 北京协同创新研究院 一种用于脑部成像的微波多路收发系统
CN113811131A (zh) * 2021-09-22 2021-12-17 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种通信设备及其装配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070050820A1 (en) * 2005-08-25 2007-03-01 Nokia Corporation IP datacasting middleware
US20070294727A1 (en) * 2006-06-20 2007-12-20 Samsung Electronics Co., Ltd. Method and system for providing ESG in a digital video broadcasting system
CN106850113A (zh) * 2017-01-03 2017-06-13 惠州Tcl移动通信有限公司 一种基于oai平台的tdd控制方法及系统
CN107959981A (zh) * 2017-10-30 2018-04-24 捷开通讯(深圳)有限公司 一种通信终端和通信测试方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585422C (zh) * 2004-05-22 2010-01-27 株式会社爱德万测试 用于对模块化测试系统进行仿真的方法和系统
US10805926B2 (en) * 2014-08-07 2020-10-13 Apple Inc. Systems, methods, and devices for proximity services for multi-carrier capable mobile devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070050820A1 (en) * 2005-08-25 2007-03-01 Nokia Corporation IP datacasting middleware
US20070294727A1 (en) * 2006-06-20 2007-12-20 Samsung Electronics Co., Ltd. Method and system for providing ESG in a digital video broadcasting system
CN106850113A (zh) * 2017-01-03 2017-06-13 惠州Tcl移动通信有限公司 一种基于oai平台的tdd控制方法及系统
CN107959981A (zh) * 2017-10-30 2018-04-24 捷开通讯(深圳)有限公司 一种通信终端和通信测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112162759A (zh) * 2020-09-29 2021-01-01 上海移远通信技术股份有限公司 射频软件板卡的加载方法、系统、电子设备和存储介质
CN112162759B (zh) * 2020-09-29 2023-11-07 上海移远通信技术股份有限公司 射频软件板卡的加载方法、系统、电子设备和存储介质

Also Published As

Publication number Publication date
CN107959981B (zh) 2020-07-10
CN107959981A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
WO2019085910A1 (zh) 一种通信终端和通信测试方法、存储介质
WO2018228500A1 (zh) 一种调度信息传输方法及装置
US10959103B2 (en) Neighbor awareness networking preferred channel learning
JP2016517200A (ja) パイロット信号を決定するシステム及び方法
WO2019096030A1 (zh) 跳频处理方法及设备
JP7249405B2 (ja) V2xトラフィックに対応するための制御チャネル構造設計
WO2019103766A1 (en) Method and apparatus for skipping uplink transmission in mobile communications
WO2020063728A1 (zh) 一种资源配置的方法、装置及系统
WO2021022532A1 (en) Sharing harq processes by multiple configured grants resources
WO2019051798A1 (zh) 用于资源分配的方法、装置和计算机存储介质
WO2020224372A1 (zh) 副链路通信的服务质量控制方法、装置、介质及电子设备
CN109923887B (zh) 用于在无线电通信系统中分配无线电资源的方法和设备
JP2023512968A (ja) リソース配置方法、装置及び機器
CN112333826A (zh) 一种业务接纳方法及装置
US9655104B1 (en) Carrier aggregation scheduling based reordering density
US20190082443A1 (en) Communication of Persistent or Predictive Scheduling Information
JP2022507564A (ja) 通信方法および装置
US11812438B2 (en) Specifying a transmission-time limit for uplink multi-user communication
WO2018059483A1 (zh) 多空口通信方法和装置
WO2017114218A1 (zh) 资源划分方法及装置
CN111970764A (zh) 对sr配置的处理方法及装置、存储介质、终端
WO2012040914A1 (zh) 跨载波调度的方法和装置以及终端、基站和系统
TW202102039A (zh) 一種發送和接收輔助指示信令的方法、設備及電腦可存儲介質
CN112243296A (zh) 辅小区激活方法及装置
WO2022017207A1 (zh) 一种工作模式的指示方法、装置以及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874483

Country of ref document: EP

Kind code of ref document: A1