WO2019085812A1 - 冷却设备 - Google Patents

冷却设备 Download PDF

Info

Publication number
WO2019085812A1
WO2019085812A1 PCT/CN2018/111820 CN2018111820W WO2019085812A1 WO 2019085812 A1 WO2019085812 A1 WO 2019085812A1 CN 2018111820 W CN2018111820 W CN 2018111820W WO 2019085812 A1 WO2019085812 A1 WO 2019085812A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
cooling
flow guiding
cabinet
cooled
Prior art date
Application number
PCT/CN2018/111820
Other languages
English (en)
French (fr)
Inventor
钟杨帆
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2019085812A1 publication Critical patent/WO2019085812A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present specification relates to the field of heat dissipation equipment, and in particular to a cooling device.
  • This specification proposes a cooling device to increase the cooling efficiency of server cooling in the data center.
  • a cooling apparatus for cooling a device to be cooled, the cooling device comprising a cabinet and at least two heat exchange devices; wherein the cabinet body is for at least Partially immersing the cooling medium of the device to be cooled, the at least two heat exchange devices are in fluid connection with the cabinet, and the at least two heat exchange devices are used for driving a cooling medium to circulate in the cabinet to The cooling device is described as being cooled.
  • the cabinet is provided with a plurality of flow guiding channels corresponding to the number of the heat exchange devices, and one ends of the at least two heat exchange devices are connected in one-to-one correspondence with the plurality of flow guiding channels, The other ends of at least two heat exchange devices are connected to an external liquid supply device.
  • the flow guiding channel includes a first diversion inlet for introducing a cooling medium and a first diversion outlet for discharging the cooling medium, the first diversion inlet and the first diversion outlet are both Corresponding heat exchange devices are connected to each other.
  • the method further includes a flow guiding device disposed in the cabinet, the flow guiding device and the plurality of flow guiding channels are disposed in communication; the guiding device is provided with a plurality of air guiding ports distributed in a discrete manner, The plurality of air guiding ports are configured to discharge a cooling medium flowing through the flow guiding device into the cabinet or to introduce a cooling medium flowing through the device to be cooled into the flow guiding device.
  • the method further includes a plurality of flow guiding devices corresponding to the number of the guiding channels, wherein the plurality of guiding devices are disposed in the cabinet and are connected in one-to-one correspondence with the plurality of guiding channels;
  • the flow guiding device is provided with a plurality of air guiding ports distributed in a discrete manner, the plurality of air guiding ports for discharging cooling medium flowing through the flow guiding device into the cabinet or for flowing through the A cooling medium to be cooled is introduced into the flow guiding device.
  • the flow guiding device comprises a first guiding component and a second guiding component, wherein the first guiding component and the second guiding component are located on both sides of the device to be cooled, and both are Said a plurality of flow guiding channels connected to each other;
  • the air guiding port includes a plurality of second air guiding outlets disposed on the first air guiding component and a plurality of second air guiding inlets disposed in the second air guiding component, where the second air guiding outlet is used Discharging a cooling medium flowing through the first flow guiding assembly into the cabinet, the second flow guiding inlet for introducing a cooling medium flowing through the device to be cooled into the second flow guiding assembly.
  • the heat exchange device and the flow guiding channel are both, the cooling device further includes a control device and a detecting device, and the control device and the detecting device and the two heat exchange devices are maintained a communication connection; the detecting device is configured to detect whether the two heat exchange devices and the two flow guiding channels are faulty, and the control device is configured to control the two heat exchanges according to the detection result of the detecting device Opening and closing of the device to switch the operating mode of the cooling device.
  • the cooling device includes a first normal working mode and a first emergency working mode
  • the control device controls one of the two heat exchange devices to operate, and the other heat exchange device is turned off;
  • the control device controls the heat exchange device in the closed state to start Operating to switch the cooling device to the first emergency mode of operation.
  • the cooling device includes a second normal working mode and a second emergency working mode
  • control device controls the two heat exchange devices to operate at a preset speed
  • the control device controls another heat exchange device to accelerate on the basis of the preset speed Operating to switch the cooling device to the second emergency mode of operation.
  • the heat exchange device includes a heat exchanger, a diversion pump, a first circulation line for communicating with the cabinet, and a second circulation line for communicating with the external liquid supply device, The first circulation line and the second circulation line are both connected to the heat exchanger;
  • the flow guiding pump drives a cooling medium to circulate through the cabinet through the first circulation line and flows through the heat exchanger, and the coolant provided by the external liquid supply device flows through the second circulation line
  • the heat exchanger further heats the cooling medium flowing through the heat exchanger.
  • a cooling apparatus for cooling a device to be cooled, the cooling device comprising a cabinet, a first heat exchange device, a second heat exchange device, and a control system, the control system Coupling with the first heat exchange device and the second heat exchange device, the control system controls the first heat exchange when one of the first heat exchange device and the second heat exchange device fails The other of the device and the second heat exchange device operates to cool the device to be cooled.
  • the cooling device of the present specification drives the cooling medium to circulate in the cabinet through the heat exchange device to take away the heat of the device to be cooled, and then to cool the cooling device.
  • At least two heat exchange devices are arranged to be connected with the cabinet. When there is a failure of the heat exchange device, the other heat exchange devices can still ensure the normal operation of the cooling device, and will not affect the cooling efficiency of the server in the data center.
  • FIG. 1 is a schematic structural view of a cooling device according to an exemplary embodiment of the present specification
  • FIG. 2 is a perspective view showing a cabinet of a cooling device according to an exemplary embodiment of the present specification
  • FIG. 3 is a perspective view of the cabinet of the cooling device after removing the cover body according to an exemplary embodiment of the present specification
  • FIG. 4 is a perspective view showing the internal structure of a cabinet of a cooling device according to an exemplary embodiment of the present specification
  • FIG. 5 is a perspective view showing a flow guiding device of a cooling device according to an exemplary embodiment of the present specification
  • FIG. 6 is a schematic view showing a flow field in a cabinet of a cooling device according to an exemplary embodiment of the present specification
  • FIG. 7 is a schematic view showing a flow field in a cabinet of another cooling device according to an exemplary embodiment of the present specification.
  • first, second, third, etc. may be used in this specification to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information without departing from the scope of the present description.
  • second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • This specification proposes a cooling device to increase the cooling efficiency of server cooling in the data center.
  • the cooling device of the present specification will be described in detail below with reference to the accompanying drawings. The features of the embodiments and embodiments described below may be combined with each other without conflict.
  • an embodiment of the present specification provides a cooling device 1 using a single-phase immersion liquid cooling technology for cooling a device to be cooled 90.
  • the cooling device to be cooled 90 may be a server of a data center, or may be other needs.
  • the cooling device 1 comprises a cabinet 10 and at least two heat exchange devices 20.
  • the non-conducting cooling medium 80 for at least partially immersing the device to be cooled 90 can be contained in the cabinet 10 , and the at least two heat exchange devices 20 are in fluid connection with the cabinet 10 .
  • the at least two heat exchange devices 20 are used to drive a cooling medium 80 to circulate within the cabinet 10 to cool the device to be cooled 90.
  • the cooling medium 80 can be completely immersed in the device to be cooled 90, or partially immersed in the device to be cooled 90, and can be set according to actual needs.
  • the cooling medium 80 can be a gaseous medium, a liquid medium or a solid-liquid mixed medium, and can also be set according to actual needs.
  • the heat exchange device 20 is exemplified by two, the cooling medium 80 is completely immersed in the device to be cooled 90, and the cooling medium 80 is a liquid fluorinated liquid of M.
  • the cooling device 1 of the present specification drives the cooling medium 80 to circulate in the cabinet 10 through the heat exchange device 20 to take away the heat of the device to be cooled 90, thereby cooling the device to be cooled.
  • At least two heat exchange devices 20 are disposed to be connected to the cabinet 10. When the heat exchange device 20 fails, the other heat exchange devices 20 can ensure that the cooling device 1 works normally without downtime, and has redundant backup. The functionality does not affect the cooling efficiency of cooling servers in the data center.
  • the cabinet 10 is further provided with a plurality of flow guiding channels corresponding to the number of the heat exchange devices 20.
  • One ends of the at least two heat exchange devices 20 are connected in one-to-one correspondence with the plurality of flow guiding channels, and the other ends of the at least two heat exchange devices 20 are connected to the external liquid supply device 30.
  • the plurality described herein refers to two or more.
  • the external liquid supply device 30 is configured to provide cooling liquid to the at least two heat exchange devices 20, and the cooling liquid may be cooling water.
  • the external liquid supply device 30 may be one or more, and when the external liquid supply device 30 is one, the at least two heat exchange devices 20 are connected to the external liquid supply device 30. When there are a plurality of external liquid supply devices 30, they correspond to the number of the heat exchange devices 20.
  • the at least two heat exchange devices 20 are connected in one-to-one correspondence with the plurality of external liquid supply devices 30.
  • each liquid supply device 30 can be integrated with the corresponding heat exchange device 20 as one component, saving volume. That is, when the external liquid supply device 30 is one, the cooling liquid can be supplied to all of the heat exchange devices 20.
  • each heat exchange device 20 supplies cooling liquid through a correspondingly connected external liquid supply device 30.
  • the cooling medium 80 is driven by the heat exchange device 20 to circulate in the cabinet 10 to take away the heat of the device to be cooled 90, and exchange heat with the coolant provided by the liquid supply device 30, so that the cooling medium 80 reaches the low temperature state again. After circulating into the cooling device 1, the cooling device 90 can be cooled again to cool down, thereby achieving the purpose of continuously discharging the heat of the device to be cooled 90.
  • the cooling device 1 further includes a control device and a detecting device,
  • the control device maintains a communication connection with the detection device and the two heat exchange devices 20.
  • the detecting device is configured to detect whether the two heat exchange devices 20 and the two flow guiding channels are faulty, and the control device is configured to control the two heat exchange devices 20 according to the detection result of the detecting device Opening and closing to switch the operating mode of the cooling device 1.
  • the cooling device 1 includes a first normal operating mode and a first emergency operating mode.
  • the control device controls one of the two heat exchange devices 20 to operate, and the other heat exchange device 20 is turned off.
  • the control device controls the heat exchange in the closed state. The device 20 begins to operate, thereby switching the cooling device 1 to the first emergency mode of operation.
  • the cooling device 1 includes a second normal operating mode and a second emergency operating mode.
  • the control device controls the two heat exchange devices 20 to operate at a preset speed.
  • the control device controls the basis of the other heat exchange device 20 at the preset speed when the detecting device detects that any of the heat exchange devices 20 has failed or detects that any of the flow guiding channels has failed.
  • the acceleration operation is performed until the system requirements are met, and the cooling device 1 is switched to the second emergency operation mode. It should be noted that the final operating speed of the control device after controlling the acceleration of the other heat exchange device 20 may be determined according to actual conditions.
  • the control device controls the other heat exchange device 20 to accelerate to The speed of the preset speed is doubled to enable the operating speed of the heat exchange device 20 to meet the rated power required for the cooling device 1 to operate normally. That is, when the cooling device 1 is in the second normal working mode, both heat exchange devices 20 are operated at 50% load, and when one of the heat exchange devices 20 fails, the other heat exchange device 20 is operated at full speed. To ensure that the cooling device 1 can work normally.
  • the top of the cabinet 10 is removably provided with a cover 100 by fasteners.
  • the fastener is removed to open the cover 100, and the device to be cooled 90 is placed in the cabinet 10.
  • the cover 100 can be closed to function as a sealed cabinet 10.
  • the heat exchange device 20 includes a heat exchanger 210, a diversion pump 220, a first circulation line 230 for communicating with the cabinet 10, and for external supply.
  • the liquid device 30 communicates with the disposed second circulation line 240, and the first circulation line 230 and the second circulation line 240 are both connected to the heat exchanger 210.
  • the flow guiding pump 220 drives the cooling medium 80 through the first circulation line 230 to circulate in the cabinet 10 and flows through the heat exchanger 210 to take away heat of the device to be cooled 90, and externally supply liquid
  • the coolant provided by the device 30 flows through the heat exchanger 210 through the second circulation line 240, thereby performing heat exchange on the cooling medium 80 flowing through the heat exchanger 210, and discharging the heat carried by the cooling medium 80.
  • the cooling device 90 can be cooled and cooled again after being circulated into the cabinet 10, thereby achieving the purpose of continuously discharging the heat of the device to be cooled 90.
  • the flow guiding channel includes a first guiding inlet 101 and a first guiding outlet 102 disposed in the cabinet 10, and the first guiding inlet 101 is used to introduce the cooling medium 80 into the cabinet. Within 10, the first flow outlet 102 is used to discharge the cooling medium 80 out of the cabinet 10.
  • the first diversion inlet 101 and the first diversion outlet 102 are both in communication with the first circulation line 230 of the heat exchange device 20 .
  • the first circulation line 230 includes a first line 231 and a second line 232.
  • the first line 231 is in communication with the first flow inlet 101 of the flow channel, and the second line 232 It is disposed in communication with the first air outlet outlet 102 of the flow guiding channel.
  • the second circulation line 240 includes a third line 241 and a fourth line 242.
  • the third line 241 and the fourth line 242 are both disposed in communication with the liquid supply device 30.
  • the cooling device 1 of the present specification further includes a plurality of flow guiding devices corresponding to the number of the guiding channels, and the plurality of guiding devices are disposed in the cabinet 10 and The plurality of flow guiding channels are connected in a one-to-one correspondence.
  • the flow guiding device is provided with a plurality of flow guiding ports distributed in a discrete manner, the plurality of air guiding openings for discharging the cooling medium 80 flowing through the flow guiding device into the cabinet 10 or for The cooling medium 80 flowing through the device to be cooled 90 is introduced into the flow guiding device.
  • the flow guiding device may be disposed in communication with the first guiding inlet 101 of the guiding channel to discharge the cooling medium 80 flowing through the guiding device into the cabinet 10, and the cooling medium After flowing through the device to be cooled 90, the cooling device 90 can be cooled and cooled.
  • the flow guiding device may also be disposed in communication with the first air guiding outlet 102 of the flow guiding channel to introduce the cooling medium 80 flowing through the cooling device 90 into the guiding device from the cabinet 10 . effect.
  • the plurality of diversion ports that are discretely distributed can cause the cooling medium 80 to flow into or out of the cabinet 10 from a plurality of different directions, thereby reducing the temperature difference between the cooling mediums 80, thereby cooling.
  • the flow rate and temperature of the medium 80 are more uniform and the cooling efficiency is higher.
  • the flow guiding device includes a first flow guiding component 410 and a second flow guiding component 420, the first guiding component 410 and the first
  • the two flow guiding assemblies 420 are located on both sides of the device to be cooled 90 and are disposed in communication with the plurality of flow guiding channels.
  • the air guiding port includes a plurality of second air guiding outlets 411 disposed in the first air guiding component 410 and a plurality of second air guiding inlets 421 disposed in the second air guiding component 420.
  • the second air guiding outlet 411 is disposed in communication with the first air guiding inlet 101 of the air guiding channel, and the cooling medium 80 flowing through the first air guiding component 410 is discharged to the Inside the cabinet 10.
  • the second flow guiding inlet 421 is disposed in communication with the first air guiding outlet 102 of the flow guiding channel, and the cooling medium 80 flowing through the device to be cooled 90 is introduced from the cabinet 10 through the second air guiding inlet 421 The second flow guiding component 420.
  • the second air guiding outlet 411 of the first guiding component 410 may be connected to the first air guiding outlet 102 of the guiding channel, and the second guiding component may be
  • the second diversion inlet 421 of the 420 is disposed in communication with the first diversion inlet 101 of the diversion channel, that is, the cooling medium 80 is discharged into the cabinet 10 through the second diversion assembly 420, and passes through the first diversion flow.
  • the assembly 410 discharges the cooling medium 80 flowing through the device to be cooled 90 out of the cabinet 10.
  • the first flow guiding component 410 and the second flow guiding component 420 are respectively located on two sides of the device to be cooled 90 in the vertical direction, so that the flow field of the cooling medium 80 is in a vertical direction.
  • the straight path can avoid additional energy consumption due to gravity when moving in the lateral direction, so that the entire liquid flow path of the cooling medium 80 is the shortest, the resistance is minimized, and the energy consumption required to drive the liquid is correspondingly greatly reduced, thereby achieving The lowest energy consumption.
  • the cooling medium 80 adopts a straight flow path, and the cold and hot fluids are completely isolated, thereby avoiding mixing of cold and hot fluids, thereby achieving an optimal cooling effect.
  • the first diversion inlet 101 is located above the first diversion outlet 102.
  • the first flow guiding component 410 is located at the top of the device to be cooled 90
  • the second flow guiding component 420 is located at the bottom of the device to be cooled 90.
  • the first flow guiding inlet 101 may also be located below the first air guiding outlet 102.
  • the first flow guiding component 410 is located at the bottom of the device to be cooled 90
  • the second flow guiding component 420 is located at the top of the device to be cooled 90.
  • the first flow guiding component 410 includes a loop portion 412 and a first flow guiding portion 413 disposed in communication with the loop portion 412, the first The flow guiding portion 413 is provided in communication with the first flow guiding inlet 101, and at least one of the annular pipe portion 412 and the first flow guiding portion 413 is provided with the second flow guiding outlet 411.
  • the annular tube portion 412 and the first flow guiding portion 413 are both provided with the second flow guiding outlet 411.
  • the cooling medium 80 After the cooling medium 80 enters the first flow guiding assembly 410 from the first guiding inlet 101 of the guiding channel, the cooling medium 80 is discharged to the cabinet through the second guiding outlet 411 of the annular tube portion 412 and the first guiding portion 413. Within 10, it flows through the device to be cooled 90 to cool it down.
  • the loop structure of the loop portion 412 may correspond to the cross-sectional structure of the device to be cooled 90, so that the cooling medium 80 flowing out of the first flow guiding component 410 can better conform to the device to be cooled 90. Flow around to achieve higher cooling efficiency.
  • the cross-sectional structure of the device to be cooled 90 is rectangular, and the annular tube portion 412 is a rectangular loop structure corresponding thereto.
  • the cross-sectional structure of the device to be cooled 90 may be other shapes, and the loop structure of the ring portion 412 may correspond thereto.
  • the cross-sectional structure of the device to be cooled 90 is rectangular, and the annular tube portion 412 is a rectangular loop structure corresponding thereto.
  • the ring pipe portion 412 includes two first pipe bodies 4121 and two second pipe bodies 4122 that are connected to each other and are connected to each other.
  • the first flow guiding portion 413 is in communication with any of the first pipe bodies 4121.
  • the side wall of at least one of the first pipe body 4121, the second pipe body 4122, and the first flow guiding portion 413 is provided with the second air guiding outlet 411.
  • the second inner wall 4412, the second tube 4122, and the inner side wall of the first flow guiding portion 413 are all provided with the second air guiding outlet 411.
  • the second guiding body is disposed on the first pipe body 4121, the second pipe body 4122 and the first guiding portion 413.
  • the outflow port 411 is discharged into the cabinet body, and flows through the device to be cooled 90 to cool it down.
  • the length of the first pipe body 4121 is smaller than the length of the second pipe body 4122, and the first pipe body 4121 is sleeved with a reinforcing ring 414, and the second pipe body
  • the upper sleeve of the 4122 is provided with a plurality of reinforcing rings 414, which can enhance the structural strength of the first flow guiding assembly 410.
  • the two first tubes 4121 are integrally formed with the adjacent at least one of the second tubes 4122. That is, the two first tubes 4121 can be integrally formed with the two second tubes 4122 in one-to-one correspondence, or the two first tubes 4121 and the two second tubes 4122 are integrally formed, which can be further enhanced.
  • the structural strength of the first flow guiding assembly 410 is provided.
  • the second flow guiding component 420 includes a tube portion 422 and a second flow guiding portion 423 disposed in communication with the tube portion 422.
  • the second flow guiding portion 423 is provided in communication with the first air guiding outlet 102
  • the second tube guiding portion 422 is provided with the second air guiding inlet 421.
  • the cooling medium 80 flowing through the device to be cooled 90 takes the heat of the device to be cooled 90 and then enters the second flow guiding member 420 through the second guiding inlet 421 provided in the tube portion 422, and then the first from the cabinet 10
  • the flow outlets 102 are discharged from the cabinet 10 to achieve the purpose of discharging heat from the device to be cooled 90.
  • the tube structure of the tube portion 422 may correspond to the cross-sectional structure of the device to be cooled 90, so that the cooling medium 80 flowing through the device to be cooled 90 can flow into the second channel as much as possible.
  • the assembly 420 is thereafter discharged from the first flow outlet 102 of the cabinet 10, thereby increasing the circulation speed of the cooling medium 80.
  • the cross-sectional structure of the device to be cooled 90 is rectangular, and the pipe structure of the pipe portion 422 is a rectangular pipe structure corresponding thereto.
  • the cross-sectional structure of the device to be cooled 90 may be other shapes, and the pipe structure of the pipe portion 422 may correspond thereto.
  • the cross-sectional structure of the device to be cooled 90 is rectangular, and the pipe portion 422 is a rectangular pipe structure corresponding thereto.
  • the tube portion 422 includes two third tubes 4221 and a plurality of fourth tubes 4222 connected between the two third tubes 4221, and a plurality of fourth tubes 4222 and the two The three tubes 4221 are connected to each other.
  • the second flow guiding portion 423 is disposed in communication with any of the third tubular bodies 4221, and the second guiding inlet 421 is disposed at the top of the fourth tubular body 4222.
  • the cooling medium 80 flowing through the device to be cooled 90 carries away the heat of the device to be cooled 90, and then enters the second flow guiding assembly 420 through the second guiding inlet 421 provided in the fourth pipe body 4222, and then from the second body of the cabinet 10 A flow guiding outlet 102 is discharged from the cabinet 10 to achieve the purpose of discharging heat from the device to be cooled 90.
  • the length of the third pipe body 4221 is smaller than the length of the fourth pipe body 4222, and the third pipe body 4221 is sleeved with a reinforcing ring 414, which can enhance the second guiding flow.
  • the plurality of fourth tubes 4222 comprise two groups arranged in a staggered relationship with each other.
  • One set of the fourth tube body 4222 is integrally formed with one of the third tube bodies 4221, and the other group of the fourth tube body 4222 is integrally formed with the other third tube body 4221, that is, equivalent to a plurality of fourth tubes.
  • the body 4222 and the two third tubes 4221 form an integral structure of two staples, which can further enhance the structural strength of the second flow guiding assembly 420.
  • the plurality of second air guiding outlets 411 are evenly disposed on at least one of the first tube body 4121, the second tube body 4122, and the first guiding portion 413 of the first flow guiding component 410.
  • the first tubular body 4121, the second tubular body 4122 of the first flow guiding component 410, and the inner sidewall of the first guiding portion 413 are each provided with a plurality of second guiding flows uniformly arranged. Exit 411.
  • the plurality of second flow guiding inlets 421 are evenly disposed on the top of the fourth tubular body 4222 of the second flow guiding assembly 420.
  • the first air guiding inlet 101 is located above the first air guiding outlet 102
  • the first air guiding component 410 is located at the top of the device to be cooled 90
  • the second air guiding component 420 is located at the device to be cooled.
  • the bottom of the 90 is taken as an example to explain the working principle of the cooling device 1 of the present specification.
  • a plurality of plug-in assemblies 190 for mounting the device to be cooled 90 are disposed in the cabinet 10.
  • the devices to be cooled 90 may be in a sheet-like structure and sequentially inserted into the plug assemblies 190.
  • the cooling medium 80 After entering the first flow guiding component 410 from the first air guiding inlet 101 of the cabinet 10, the cooling medium 80 is discharged into the cabinet 10 through the second air guiding outlet 411 of the first air guiding component 410, and then flows downward through the device to be cooled. 90, the cooling medium 80 flowing through the device to be cooled 90 takes the heat of the device to be cooled 90 and then enters the second flow guiding assembly 420 through the second guiding inlet 421 of the second guiding assembly 420, and then from the cabinet 10 The first air outlet outlet 102 exits the cabinet 10 to achieve the purpose of discharging heat from the device to be cooled 90.
  • the dotted arrows in the figure indicate the flow direction of the cooling medium 80 in the state of the hot liquid fluid
  • the solid arrows indicate the flow direction of the cooling medium 80 in the state of the cold liquid fluid.
  • the first air guiding inlet 101 is located below the first air guiding outlet 102, the first air guiding component 410 is located at the bottom of the device to be cooled 90, and the second air guiding component 420 is located at the top of the device 90 to be cooled.
  • a plurality of plug-in assemblies 190 for mounting the device to be cooled 90 are disposed in the cabinet 10.
  • the devices to be cooled 90 may be in a sheet-like structure and sequentially inserted into the plug assemblies 190.
  • the second guiding outlet 411 of the first guiding assembly 410 is discharged into the cabinet 10 and then flows upward through the device to be cooled.
  • the cooling medium 80 flowing through the device to be cooled 90 takes the heat of the device to be cooled 90 and then enters the second flow guiding assembly 420 through the second guiding inlet 421 of the second guiding assembly 420, and then from the cabinet 10
  • the first air outlet outlet 102 exits the cabinet 10 to achieve the purpose of discharging heat from the device to be cooled 90.
  • the dotted arrows in the figure indicate the flow direction of the cooling medium 80 in the state of the hot liquid fluid
  • the solid arrows indicate the flow direction of the cooling medium 80 in the state of the cold liquid fluid.
  • the embodiment of the present specification further provides a cooling device for cooling a device to be cooled, the cooling device including a cabinet, a first heat exchange device, a second heat exchange device, and a control system, the control system and the first The heat exchange device and the second heat exchange device are coupled to each other, and when one of the first heat exchange device and the second heat exchange device fails, the control system controls the first heat exchange device and the second exchange The other of the thermal devices operates to cool the device to be cooled.
  • the cooling device of the present specification is provided with two heat exchange devices connected to the cabinet.
  • the control system controls another heat exchange device to operate to cool the device.
  • the device is cooled so that the entire cooling device can work normally without downtime, and has the function of redundant backup, which does not affect the cooling efficiency of cooling the data center server.
  • control system may control one of the first heat exchange device and the second heat exchange device to operate while the other is on standby.
  • the control system detects that the heat exchange device in the running state has a fault, the heat exchange device that controls the standby starts to operate, so that the entire cooling device can work normally without being shut down, and has the function of redundant backup.
  • control system controls both the first heat exchange device and the second heat exchange device to operate at a 50% load, and when the control system detects that one of the heat exchange devices fails, the control system controls The other heat exchanger is running at full speed so that the entire cooling unit can work normally without downtime and has the function of redundant backup.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本说明书提供一种冷却设备,用于冷却待冷却装置,所述冷却设备包括柜体和至少两个换热装置;其中,所述柜体内可盛放用于至少部分浸没所述待冷却装置的冷却介质,所述至少两个换热装置均与所述柜体流通连接,所述至少两个换热装置用于驱动冷却介质在所述柜体内循环以对所述待冷却装置进行冷却。

Description

冷却设备
本申请要求2017年11月03日递交的申请号为201711073060.6、发明名称为“冷却设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书涉及散热设备技术领域,尤其涉及一种冷却设备。
背景技术
云计算技术(也即大规模分布式系统技术)的高速发展,对服务器计算性能的要求越来越高。服务器性能提升的同时,功耗呈现急速上升之势,机柜功耗成倍数上升,数据显示,近十年来数据中心机柜的功率密度提高了近15倍。过去一个机柜的功耗一般为1.5kW~2kW,现在个别机柜却出现局部高达20kW~30kW的情况。
数据中心的服务器通常采用空调风冷的方式,正在消耗大量的能源、空间和成本,而且消耗量日益膨胀。然而,随着功率密度的稳定攀升,目前许多数据中心提供的冷却能力正趋向极限,功率密度快速增长的这种趋势会产生不利影响。因此,常规的空调风冷的方式已经不能满足对数据中心的服务器降温的需求。
发明内容
本说明书提出一种冷却设备,以提高对数据中心的服务器降温的冷却效率。
根据本说明书实施例的第一方面,提供一种冷却设备,用于冷却待冷却装置,所述冷却设备包括柜体和至少两个换热装置;其中,所述柜体内可盛放用于至少部分浸没所述待冷却装置的冷却介质,所述至少两个换热装置均与所述柜体流通连接,所述至少两个换热装置用于驱动冷却介质在所述柜体内循环以对所述待冷却装置进行冷却。
进一步地,所述柜体设有与所述换热装置数量对应的多个导流通道,所述至少两个换热装置的一端与所述多个导流通道一一对应地连接,所述至少两个换热装置的另一端均与外部供液装置连接。
进一步地,所述导流通道包括用于导入冷却介质的第一导流入口和用于排出冷却介质的第一导流出口,所述第一导流入口和所述第一导流出口均与对应的所述换热装置连通设置。
进一步地,还包括设置于所述柜体内的导流装置,所述导流装置与所述多个导流通 道均连通设置;所述导流装置设有呈离散分布的多个导流口,所述多个导流口用于将流经所述导流装置的冷却介质排至所述柜体内或用于将流经所述待冷却装置的冷却介质导入所述导流装置。
进一步地,还包括与所述导流通道数量对应的多个导流装置,所述多个导流装置设置于所述柜体内并与所述多个导流通道一一对应地连通设置;所述导流装置设有呈离散分布的多个导流口,所述多个导流口用于将流经所述导流装置的冷却介质排至所述柜体内或用于将流经所述待冷却装置的冷却介质导入所述导流装置。
进一步地,所述导流装置包括第一导流组件和第二导流组件,所述第一导流组件和所述第二导流组件位于所述待冷却装置的两侧,并均与所述多个导流通道连通设置;
所述导流口包括设于所述第一导流组件的多个第二导流出口和设于所述第二导流组件的多个第二导流入口,所述第二导流出口用于将流经所述第一导流组件的冷却介质排至所述柜体内,所述第二导流入口用于将流经所述待冷却装置的冷却介质导入所述第二导流组件。
进一步地,所述换热装置和所述导流通道均为两个,所述冷却设备还包括控制装置和检测装置,所述控制装置与所述检测装置以及所述两个换热装置均保持通信连接;所述检测装置用于检测所述两个换热装置以及所述两个导流通道是否发生故障,所述控制装置用于根据所述检测装置的检测结果控制所述两个换热装置的启闭,以切换所述冷却设备的工作模式。
进一步地,所述冷却设备包括第一正常工作模式和第一应急工作模式;
所述冷却设备处于所述第一正常工作模式时,所述控制装置控制所述两个换热装置的其中一个换热装置运行,另一个换热装置关闭;
当所述检测装置检测到处于运行状态的换热装置发生故障或检测到与处于运行状态的换热装置对应连接的导流通道发生故障时,所述控制装置控制处于关闭状态的换热装置开始运行,进而将所述冷却设备切换至所述第一应急工作模式。
进一步地,所述冷却设备包括第二正常工作模式和第二应急工作模式;
所述冷却设备处于所述第二正常工作模式时,所述控制装置控制所述两个换热装置均以预设速度运行;
当所述检测装置检测到任一所述换热装置发生故障或检测到任一所述导流通道发生故障时,所述控制装置控制另一个换热装置在所述预设速度的基础上加速运行,进而将所述冷却设备切换至所述第二应急工作模式。
进一步地,所述换热装置包括热交换器、导流泵、用于与所述柜体连通设置的第一循环管路、以及用于与外部供液装置连通设置的第二循环管路,所述第一循环管路和所述第二循环管路均与所述热交换器连接;
所述导流泵通过所述第一循环管路驱动冷却介质在所述柜体内循环并流经所述热交换器,外部供液装置提供的冷却液通过所述第二循环管路流经所述热交换器,进而对流经所述热交换器的冷却介质进行热交换。
根据本说明书实施例的第二方面,提供一种冷却设备,用于冷却待冷却装置,所述冷却设备包括柜体、第一换热装置,第二换热装置以及控制系统,所述控制系统与所述第一换热装置和第二换热装置耦合连接,当所述第一换热装置和第二换热装置中之一者发生故障时,所述控制系统控制所述第一换热装置和第二换热装置中之另一者运行,以对所述待冷却装置进行冷却。
由以上技术方案可见,本说明书的冷却设备,通过换热装置驱动冷却介质在柜体内循环流动以带走待冷却装置的热量,进而对待冷却装置进行冷却。设置至少两个换热装置与柜体相连,当其中有换热装置发生故障时,其他的换热装置仍能保证冷却设备正常进行工作,不会影响对数据中心的服务器进行降温的冷却效率。
附图说明
图1示出了本说明书一示例性实施例的一种冷却设备的结构示意图;
图2示出了本说明书一示例性实施例的一种冷却设备的柜体的立体示意图;
图3示出了本说明书一示例性实施例的一种冷却设备的柜体去除盖体后的立体示意图;
图4示出了本说明书一示例性实施例的一种冷却设备的柜体的内部结构的立体示意图;
图5示出了本说明书一示例性实施例的一种冷却设备的导流装置的立体示意图;
图6示出了本说明书一示例性实施例的一种冷却设备的柜体内的流场示意图;
图7示出了本说明书一示例性实施例的另一种冷却设备的柜体内的流场示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施 例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。
在本说明书使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书。在本说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本说明书可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本说明书范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本说明书提出一种冷却设备,以提高对数据中心的服务器降温的冷却效率。下面结合附图,对本说明书的冷却设备进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
参见图1所示,本说明书实施例提供一种采用单相浸没液冷技术的冷却设备1,用于冷却待冷却装置90,冷却待冷却装置90可以是数据中心的服务器,或者可以是其他需冷却降温的发热设备。所述冷却设备1包括柜体10和至少两个换热装置20。其中,所述柜体10内可盛放用于至少部分浸没所述待冷却装置90的不导电的冷却介质80,所述至少两个换热装置20均与所述柜体10流通连接。所述至少两个换热装置20用于驱动冷却介质80在所述柜体10内循环以对所述待冷却装置90进行冷却。冷却介质80可以完全浸没待冷却装置90,也可以部分浸没待冷却装置90,可以根据实际需要设置。冷却介质80可以是气态介质、液态介质或是固液混合态的介质,同样可以根据实际需要设置。在图中所示的例子中,换热装置20以两个为例,冷却介质80完全浸没待冷却装置90,冷却介质80采用液态的M的电子氟化液。
由以上技术方案可见,本说明书的冷却设备1,通过换热装置20驱动冷却介质80在柜体10内循环流动以带走待冷却装置90的热量,进而对待冷却装置进行冷却。设置至少两个换热装置20与柜体10相连,当其中有换热装置20发生故障时,其他的换热装置20仍能保证冷却设备1正常进行工作而不至于宕机,具有冗余备份的功能,不会影响对数据中心的服务器进行降温的冷却效率。
在一可选的实施方式中,所述柜体10还设有与所述换热装置20数量对应的多个导 流通道。所述至少两个换热装置20的一端与所述多个导流通道一一对应地连接,所述至少两个换热装置20的另一端均与外部供液装置30连接。需要说明的是,本文中所述的多个均指两个及两个以上。
外部供液装置30用于向所述至少两个换热装置20循环提供冷却液,冷却液可以是冷却水。外部供液装置30为一个也可以为多个,外部供液装置30为一个时,所述至少两个换热装置20均与该外部供液装置30连接。外部供液装置30为多个时,与所述换热装置20的数量对应。所述至少两个换热装置20与多个外部供液装置30一一对应地连接。可选地,每个供液装置30可以和对应的换热装置20集成为一个组件,节省体积。也就是说,当外部供液装置30为一个时,可以为全部的换热装置20提供冷却液。当外部供液装置30的数量与换热装置20的数量对应时,每个换热装置20均通过对应连接的外部供液装置30提供冷却液。通过换热装置20驱动冷却介质80在柜体10内循环流动以带走待冷却装置90的热量,并与供液装置30提供的冷却液进行热交换,使冷却介质80重新达到低温的状态,循环进入冷却设备1后能够再次对待冷却装置90进行冷却降温,从而达到循环持续地将待冷却装置90的热量排出的目的。
参见图1所示,在一可选的实施方式中,以所述换热装置20和所述导流通道均为两个为例,所述冷却设备1还包括控制装置和检测装置,所述控制装置与所述检测装置以及所述两个换热装置20均保持通信连接。所述检测装置用于检测所述两个换热装置20以及所述两个导流通道是否发生故障,所述控制装置用于根据所述检测装置的检测结果控制所述两个换热装置20的启闭,以切换所述冷却设备1的工作模式。
在一实施例中,所述冷却设备1包括第一正常工作模式和第一应急工作模式。所述冷却设备1处于所述第一正常工作模式时,所述控制装置控制所述两个换热装置20的其中一个换热装置20运行,另一个换热装置20关闭。当所述检测装置检测到处于运行状态的换热装置20发生故障或检测到与处于运行状态的换热装置20对应连接的导流通道发生故障时,所述控制装置控制处于关闭状态的换热装置20开始运行,进而将所述冷却设备1切换至所述第一应急工作模式。
在另一实施例中,所述冷却设备1包括第二正常工作模式和第二应急工作模式。所述冷却设备1处于所述第二正常工作模式时,所述控制装置控制所述两个换热装置20均以预设速度运行。当所述检测装置检测到任一所述换热装置20发生故障或检测到任一所述导流通道发生故障时,所述控制装置控制另一个换热装置20在所述预设速度的基础上加速运行,直到满足系统要求即可,进而将所述冷却设备1切换至所述第二应急工作模 式。需要说明的是,所述控制装置控制另一个换热装置20加速后最终的运行速度可以根据实际情况而定。在本实施例中,当所述检测装置检测到任一所述换热装置20发生故障或检测到任一所述导流通道发生故障时,所述控制装置控制另一个换热装置20加速到所述预设速度的两倍速度进行运行,使该换热装置20的运行速度能够满足冷却设备1正常工作时所需的额定功率。即相当于所述冷却设备1处于所述第二正常工作模式时,两个换热装置20均以50%负载运行,当其中一个换热装置20发生故障时,另一个换热装置20全速运行,以保证冷却设备1能够正常工作。
参见图2所示,在一可选的实施方式中,柜体10的顶部通过紧固件可拆卸地设有盖体100。当需要将待冷却装置90放入柜体10时,拆除紧固件打开盖体100,即可将待冷却装置90放入柜体10。待冷却装置90放置完成后,将盖体100合上可以起到密封柜体10的作用。
在一可选的实施方式中,所述换热装置20包括热交换器210、导流泵220、用于与所述柜体10连通设置的第一循环管路230、以及用于与外部供液装置30连通设置的第二循环管路240,所述第一循环管路230和所述第二循环管路240均与所述热交换器210连接。所述导流泵220通过所述第一循环管路230驱动冷却介质80在所述柜体10内循环并流经所述热交换器210,以带走待冷却装置90的热量,外部供液装置30提供的冷却液通过所述第二循环管路240流经所述热交换器210,进而对流经所述热交换器210的冷却介质80进行热交换,将冷却介质80带有的热量排出,使冷却介质80重新达到低温的状态,循环进入柜体10后能够再次对待冷却装置90进行冷却降温,从而达到循环持续地将待冷却装置90的热量排出的目的。
在一可选的实施方式中,所述导流通道包括设于柜体10的第一导流入口101和第一导流出口102,第一导流入口101用于将冷却介质80导入柜体10内,第一导流出口102用于将冷却介质80排出柜体10。所述第一导流入口101和所述第一导流出口102均与所述换热装置20的第一循环管路230连通设置。进一步地,所述第一循环管路230包括第一管路231和第二管路232,第一管路231与所述导流通道的第一导流入口101连通设置,第二管路232与所述导流通道的第一导流出口102连通设置。所述第二循环管路240包括第三管路241和第四管路242,第三管路241及第四管路242均与供液装置30连通设置。
在一可选的实施方式中,本说明书的冷却设备1还包括与所述导流通道数量对应的多个导流装置,所述多个导流装置设置于所述柜体10内并与所述多个导流通道一一对应 地连通设置。所述导流装置设有呈离散分布的多个导流口,所述多个导流口用于将流经所述导流装置的冷却介质80排至所述柜体10内或用于将流经所述待冷却装置90的冷却介质80导入所述导流装置。所述导流装置既可以与所述导流通道的第一导流入口101连通设置,起到将流经所述导流装置的冷却介质80排至所述柜体10内的作用,冷却介质80流经待冷却装置90后可以对待冷却装置90进行冷却降温。所述导流装置也可以与所述导流通道的第一导流出口102连通设置,起到将流经所述待冷却装置90的冷却介质80从柜体10内导入所述导流装置的作用。但不论是哪种设置方式,呈离散分布的多个导流口均可以使冷却介质80从多个不同的方向流入或流出柜体10,减小冷却介质80之间的温度差,进而使冷却介质80的流量和温度更加均匀,冷却效率更高。
在一可选的实施方式中,参见图3至图5所示,所述导流装置包括第一导流组件410和第二导流组件420,所述第一导流组件410和所述第二导流组件420位于所述待冷却装置90的两侧,并均与所述多个导流通道连通设置。
进一步地,所述导流口包括设于所述第一导流组件410的多个第二导流出口411和设于所述第二导流组件420的多个第二导流入口421。所述第二导流出口411与所述导流通道的第一导流入口101连通设置,通过第二导流出口411将流经所述第一导流组件410的冷却介质80排至所述柜体10内。所述第二导流入口421与所述导流通道的第一导流出口102连通设置,通过第二导流入口421将流经所述待冷却装置90的冷却介质80从柜体10导入到所述第二导流组件420。当然,在其他实施例中,也可以将所述第一导流组件410的第二导流出口411与所述导流通道的第一导流出口102连通设置,将所述第二导流组件420的第二导流入口421与所述导流通道的第一导流入口101连通设置,即相当于通过第二导流组件420将冷却介质80排至柜体10内,通过第一导流组件410将流经待冷却装置90的冷却介质80排出柜体10。
可选地,所述第一导流组件410和所述第二导流组件420分别位于所述待冷却装置90沿竖直方向的两侧,使冷却介质80的流场为沿竖直方向的直线路径,可以避免沿横向移动时由于重力而造成额外的能量消耗,使得冷却介质80的整个液体流过路径最短,受到的阻力最小,驱动液体所需要的能耗也相应地大幅降低,进而达到能耗最低的效果。另外,冷却介质80采用直线形式的流经路径,并且冷、热流体完全隔离,可以避免冷、热流体相互混合,进而达到最优的制冷效果。在图中所述的例子中,第一导流入口101位于第一导流出口102的上方。相应地,所述第一导流组件410位于所述待冷却装置90的顶部,所述第二导流组件420位于所述待冷却装置90的底部。当然,在其他实施例中, 第一导流入口101也可以位于第一导流出口102的下方。相应地,第一导流组件410位于所述待冷却装置90的底部,第二导流组件420位于所述待冷却装置90的顶部。
参见图5所示,在一可选的实施方式中,所述第一导流组件410包括环管部412和与所述环管部412连通设置的第一导流部413,所述第一导流部413与所述第一导流入口101连通设置,所述环管部412和所述第一导流部413中的至少一者设有所述第二导流出口411。在本实施例中,所述环管部412和所述第一导流部413均设有所述第二导流出口411。冷却介质80从所述导流通道的第一导流入口101进入第一导流组件410后,经设于环管部412和第一导流部413的第二导流出口411排出至柜体10内,流经待冷却装置90为其冷却降温。
进一步地,所述环管部412的环路结构可以与所述待冷却装置90的截面结构相对应,可以使第一导流组件410流出的冷却介质80更好的贴合待冷却装置90的周围进行流动,进而达到更高的冷却效率。例如,所述待冷却装置90的截面结构为矩形,所述环管部412为与之对应的矩形环管结构。当然,所述待冷却装置90的截面结构也可以是其他形状,所述环管部412的环路结构与之对应即可。
在一可选的实施方式中,所述待冷却装置90的截面结构为矩形,所述环管部412为与之对应的矩形环管结构。所述环管部412包括相互连通并围合连接的两个第一管体4121和两个第二管体4122,所述第一导流部413与任一所述第一管体4121连通设置,所述第一管体4121、所述第二管体4122以及所述第一导流部413中的至少一者的侧壁设有所述第二导流出口411。在本实施例中,所述第一管体4121、所述第二管体4122以及所述第一导流部413的内侧壁均设有所述第二导流出口411。冷却介质80从所述导流通道的第一导流入口101进入第一导流组件410后,经设于第一管体4121、第二管体4122以及第一导流部413的第二导流出口411排出至柜体内,流经待冷却装置90为其冷却降温。
在一可选的实施方式中,所述第一管体4121的长度小于所述第二管体4122的长度,所述第一管体4121上套设有加强环414,所述第二管体4122上间隔套设有多个加强环414,可以增强第一导流组件410的结构强度。进一步地,所述两个第一管体4121均与邻接的至少一个所述第二管体4122为一体成型设置。即两个第一管体4121可以一一对应地与两个第二管体4122一体成型设置,或者两个第一管体4121与两个第二管体4122均为一体成型设置,可以进一步增强第一导流组件410的结构强度。
参见图4和图5所示,在一可选的实施方式中,所述第二导流组件420包括排管部 422和与所述排管部422连通设置的第二导流部423,所述第二导流部423与所述第一导流出口102连通设置,所述排管部422设有所述第二导流入口421。流经待冷却装置90的冷却介质80将待冷却装置90的热量带走后经设于排管部422的第二导流入口421进入第二导流组件420,再从柜体10的第一导流出口102排出柜体10,从而达到将待冷却装置90的热量排出的目的。
进一步地,所述排管部422的排管结构可以与所述待冷却装置90的截面结构相对应,可以使流经待冷却装置90的冷却介质80能够尽可能多的流进第二导流组件420内后从柜体10的第一导流出口102排出,进而提高冷却介质80的循环速度。例如,所述待冷却装置90的截面结构为矩形,所述排管部422的排管结构为与之对应的矩形排管结构。当然,所述待冷却装置90的截面结构也可以是其他形状,所述排管部422的排管结构与之对应即可。
在一可选的实施方式中,所述待冷却装置90的截面结构为矩形,所述排管部422为与之对应的矩形排管结构。所述排管部422包括两个第三管体4221和连接于所述两个第三管体4221之间的多个第四管体4222,多个第四管体4222与所述两个第三管体4221均连通设置。所述第二导流部423与任一所述第三管体4221连通设置,所述第四管体4222的顶部设有所述第二导流入口421。流经待冷却装置90的冷却介质80将待冷却装置90的热量带走后经设于第四管体4222的第二导流入口421进入第二导流组件420,再从柜体10的第一导流出口102排出柜体10,从而达到将待冷却装置90的热量排出的目的。
在一可选的实施方式中,所述第三管体4221的长度小于所述第四管体4222的长度,所述第三管体4221上套设有加强环414,可以增强第二导流组件420的结构强度。可选地,所述多个第四管体4222包括两组,相互呈交错排列。其中一组第四管体4222与其中一个第三管体4221为一体成型设置,另一组第四管体4222与另一个第三管体4221为一体成型设置,即相当于多个第四管体4222与两个第三管体4221形成两个钉耙的一体结构,可以进一步增强第二导流组件420的结构强度。
在一可选的实施方式中,多个第二导流出口411均匀布设于第一导流组件410的第一管体4121、第二管体4122以及第一导流部413中的至少一者的内侧壁。在图中所示的实施例中,第一导流组件410的第一管体4121、第二管体4122以及第一导流部413的内侧壁均设有均匀布置的多个第二导流出口411。多个第二导流入口421均匀布设于第二导流组件420的第四管体4222的顶部。这样,可以使冷却介质80流经待冷却装置 90的流量分布更加均匀,有利于提高冷却效率。
结合图4至图6所示,以第一导流入口101位于第一导流出口102的上方,第一导流组件410位于待冷却装置90的顶部,第二导流组件420位于待冷却装置90的底部为例,对本说明书的冷却设备1的工作原理进行说明。所述柜体10内设有用于装设待冷却装置90的多个插接组件190,待冷却装置90可以采用片体式结构,依次插接在这些插接组件190上。冷却介质80从柜体10的第一导流入口101进入第一导流组件410后,经第一导流组件410的第二导流出口411排到柜体10内后向下流经待冷却装置90,流经待冷却装置90的冷却介质80将待冷却装置90的热量带走后经第二导流组件420的第二导流入口421进入第二导流组件420,再从柜体10的第一导流出口102排出柜体10,从而达到将待冷却装置90的热量排出的目的。图中的虚线箭头表示冷却介质80处于热液流体状态下的流向,实线箭头表示冷却介质80处于冷液流体状态下的流向。通过将第一导流组件410设在待冷却装置90的顶部,第二导流组件420设在待冷却装置90的底部,使冷却介质80流经待冷却装置90的流场为自上而下的直线路径,使得冷却介质的整个液体流过路径最短,受到的阻力最小,驱动液体所需要的能耗也相应地大幅降低,进而达到能耗最低的效果。另外,冷却介质采用直线形式的流经路径,冷、热流体完全隔离,可以避免冷、热流体相互混合,进而达到最优的制冷效果。
参见图7所示,以第一导流入口101位于第一导流出口102的下方,第一导流组件410位于待冷却装置90的底部,第二导流组件420位于待冷却装置90的顶部为例,对本说明书的冷却设备1的工作原理进行说明。所述柜体10内设有用于装设待冷却装置90的多个插接组件190,待冷却装置90可以采用片体式结构,依次插接在这些插接组件190上。冷却介质80从柜体10的第一导流入口101进入第一导流组件410后,经第一导流组件410的第二导流出口411排到柜体10内后向上流经待冷却装置90,流经待冷却装置90的冷却介质80将待冷却装置90的热量带走后经第二导流组件420的第二导流入口421进入第二导流组件420,再从柜体10的第一导流出口102排出柜体10,从而达到将待冷却装置90的热量排出的目的。图中的虚线箭头表示冷却介质80处于热液流体状态下的流向,实线箭头表示冷却介质80处于冷液流体状态下的流向。通过将第一导流组件410设在待冷却装置90的底部,第二导流组件420设在待冷却装置90的顶部,使冷却介质80流经待冷却装置90的流场为自下而上的直线路径,使得冷却介质的整个液体流过路径最短,受到的阻力最小,驱动液体所需要的能耗也相应地大幅降低,进而达到能耗最低的效果。另外,冷却介质采用直线形式的流经路径,冷、热流体完全隔离, 可以避免冷、热流体相互混合,进而达到最优的制冷效果。
本说明书实施例还提供一种冷却设备,用于冷却待冷却装置,所述冷却设备包括柜体、第一换热装置,第二换热装置以及控制系统,所述控制系统与所述第一换热装置和第二换热装置耦合连接,当所述第一换热装置和第二换热装置中之一者发生故障时,所述控制系统控制所述第一换热装置和第二换热装置中之另一者运行,以对所述待冷却装置进行冷却。
由以上技术方案可见,本说明书的冷却设备,设置两个换热装置与柜体相连,当其中有一个换热装置发生故障时,控制系统控制另一个换热装置运行,以对所述待冷却装置进行冷却,这样整个冷却设备可以正常工作而不至于宕机,具有冗余备份的功能,不会影响对数据中心的服务器进行降温的冷却效率。
在一实施例中,正常运行时,所述控制系统可以控制第一换热装置和第二换热装置中之一者运行,另一者待机。当控制系统检测到处于运行状态的换热装置发生故障时,控制待机的换热装置开始运行,这样整个冷却设备可以正常工作而不至于宕机,具有冗余备份的功能。
在另一实施例中,正常运行时,所述控制系统控制第一换热装置和第二换热装置均以50%负载运行,当控制系统检测检测到其中一个换热装置发生故障时,控制另一个换热装置全速运行,这样整个冷却设备可以正常工作而不至于宕机,具有冗余备份的功能。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本说明书的其它实施方案。本说明书旨在涵盖本说明书的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本说明书的一般性原理并包括本说明书未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本说明书的真正范围和精神由下面的权利要求指出。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本说明书的较佳实施例而已,并不用以限制本说明书,凡在本说明书的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本说明书保护的范围之内。

Claims (11)

  1. 一种冷却设备,用于冷却待冷却装置,其特征在于,所述冷却设备包括柜体和至少两个换热装置;其中,所述柜体内可盛放用于至少部分浸没所述待冷却装置的冷却介质,所述至少两个换热装置均与所述柜体流通连接,所述至少两个换热装置用于驱动冷却介质在所述柜体内循环以对所述待冷却装置进行冷却。
  2. 根据权利要求1所述的冷却设备,其特征在于,所述柜体设有与所述换热装置数量对应的多个导流通道,所述至少两个换热装置的一端与所述多个导流通道一一对应地连接,所述至少两个换热装置的另一端均与外部供液装置连接。
  3. 根据权利要求2所述的冷却设备,其特征在于,所述导流通道包括用于导入冷却介质的第一导流入口和用于排出冷却介质的第一导流出口,所述第一导流入口和所述第一导流出口均与对应的所述换热装置连通设置。
  4. 根据权利要求2所述的冷却设备,其特征在于,还包括设置于所述柜体内的导流装置,所述导流装置与所述多个导流通道均连通设置;所述导流装置设有呈离散分布的多个导流口,所述多个导流口用于将流经所述导流装置的冷却介质排至所述柜体内或用于将流经所述待冷却装置的冷却介质导入所述导流装置。
  5. 根据权利要求2所述的冷却设备,其特征在于,还包括与所述导流通道数量对应的多个导流装置,所述多个导流装置设置于所述柜体内并与所述多个导流通道一一对应地连通设置;所述导流装置设有呈离散分布的多个导流口,所述多个导流口用于将流经所述导流装置的冷却介质排至所述柜体内或用于将流经所述待冷却装置的冷却介质导入所述导流装置。
  6. 根据权利要求4或5所述的冷却设备,其特征在于,所述导流装置包括第一导流组件和第二导流组件,所述第一导流组件和所述第二导流组件位于所述待冷却装置的两侧,并均与所述多个导流通道连通设置;
    所述导流口包括设于所述第一导流组件的多个第二导流出口和设于所述第二导流组件的多个第二导流入口,所述第二导流出口用于将流经所述第一导流组件的冷却介质排至所述柜体内,所述第二导流入口用于将流经所述待冷却装置的冷却介质导入所述第二导流组件。
  7. 根据权利要求2所述的冷却设备,其特征在于,所述换热装置和所述导流通道均为两个,所述冷却设备还包括控制装置和检测装置,所述控制装置与所述检测装置以及所述两个换热装置均保持通信连接;所述检测装置用于检测所述两个换热装置以及所述 两个导流通道是否发生故障,所述控制装置用于根据所述检测装置的检测结果控制所述两个换热装置的启闭,以切换所述冷却设备的工作模式。
  8. 根据权利要求7所述的冷却设备,其特征在于,所述冷却设备包括第一正常工作模式和第一应急工作模式;
    所述冷却设备处于所述第一正常工作模式时,所述控制装置控制所述两个换热装置的其中一个换热装置运行,另一个换热装置关闭;
    当所述检测装置检测到处于运行状态的换热装置发生故障或检测到与处于运行状态的换热装置对应连接的导流通道发生故障时,所述控制装置控制处于关闭状态的换热装置开始运行,进而将所述冷却设备切换至所述第一应急工作模式。
  9. 根据权利要求7所述的冷却设备,其特征在于,所述冷却设备包括第二正常工作模式和第二应急工作模式;
    所述冷却设备处于所述第二正常工作模式时,所述控制装置控制所述两个换热装置均以预设速度运行;
    当所述检测装置检测到任一所述换热装置发生故障或检测到任一所述导流通道发生故障时,所述控制装置控制另一个换热装置在所述预设速度的基础上加速运行,进而将所述冷却设备切换至所述第二应急工作模式。
  10. 根据权利要求1所述的冷却设备,其特征在于,所述换热装置包括热交换器、导流泵、用于与所述柜体连通设置的第一循环管路、以及用于与外部供液装置连通设置的第二循环管路,所述第一循环管路和所述第二循环管路均与所述热交换器连接;
    所述导流泵通过所述第一循环管路驱动冷却介质在所述柜体内循环并流经所述热交换器,外部供液装置提供的冷却液通过所述第二循环管路流经所述热交换器,进而对流经所述热交换器的冷却介质进行热交换。
  11. 一种冷却设备,用于冷却待冷却装置,其特征在于,所述冷却设备包括柜体、第一换热装置,第二换热装置以及控制系统,所述控制系统与所述第一换热装置和第二换热装置耦合连接,当所述第一换热装置和第二换热装置中之一者发生故障时,所述控制系统控制所述第一换热装置和第二换热装置中之另一者运行,以对所述待冷却装置进行冷却。
PCT/CN2018/111820 2017-11-03 2018-10-25 冷却设备 WO2019085812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711073060.6A CN109757062B (zh) 2017-11-03 2017-11-03 冷却设备
CN201711073060.6 2017-11-03

Publications (1)

Publication Number Publication Date
WO2019085812A1 true WO2019085812A1 (zh) 2019-05-09

Family

ID=66332840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111820 WO2019085812A1 (zh) 2017-11-03 2018-10-25 冷却设备

Country Status (3)

Country Link
CN (1) CN109757062B (zh)
TW (1) TW201919464A (zh)
WO (1) WO2019085812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150131A1 (en) * 2020-01-23 2021-07-29 Ivan Kirillov Cooling bath for multiprocessor circuit boards

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347507B (zh) * 2021-07-01 2022-12-27 北京奕信通科技有限公司 一种液体浸没冷却式交换机及交换机组
CN114096133A (zh) * 2021-12-22 2022-02-25 北京字节跳动网络技术有限公司 浸没式液冷装置及液冷系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202076074U (zh) * 2011-04-29 2011-12-14 程战斌 一种用于强迫油循环风冷式油浸变压器的冷却系统
CN104284536A (zh) * 2014-10-28 2015-01-14 储敏健 服务器机柜及具有其的机柜组和液体浸没冷却服务器系统
CN206196242U (zh) * 2016-12-02 2017-05-24 郑州云海信息技术有限公司 具有双冷源装置的冷却装置及服务器
EP3229103A1 (en) * 2014-12-05 2017-10-11 Exascaler Inc. Electronic apparatus cooling device
CN207519035U (zh) * 2017-11-03 2018-06-19 阿里巴巴集团控股有限公司 冷却设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199018B2 (ja) * 2003-02-14 2008-12-17 株式会社日立製作所 ラックマウントサーバシステム
CN106559968A (zh) * 2015-09-27 2017-04-05 大冶斯瑞尔换热器有限公司 用于紧凑耦合的冷却系统的方法和装置
CN105611803B (zh) * 2015-12-30 2018-04-17 南京佳力图机房环境技术股份有限公司 一种新型背板空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202076074U (zh) * 2011-04-29 2011-12-14 程战斌 一种用于强迫油循环风冷式油浸变压器的冷却系统
CN104284536A (zh) * 2014-10-28 2015-01-14 储敏健 服务器机柜及具有其的机柜组和液体浸没冷却服务器系统
EP3229103A1 (en) * 2014-12-05 2017-10-11 Exascaler Inc. Electronic apparatus cooling device
CN206196242U (zh) * 2016-12-02 2017-05-24 郑州云海信息技术有限公司 具有双冷源装置的冷却装置及服务器
CN207519035U (zh) * 2017-11-03 2018-06-19 阿里巴巴集团控股有限公司 冷却设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150131A1 (en) * 2020-01-23 2021-07-29 Ivan Kirillov Cooling bath for multiprocessor circuit boards

Also Published As

Publication number Publication date
CN109757062B (zh) 2021-06-11
TW201919464A (zh) 2019-05-16
CN109757062A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2019085813A1 (zh) 冷却机柜及冷却系统
WO2019085812A1 (zh) 冷却设备
US9273906B2 (en) Modular pumping unit(s) facilitating cooling of electronic system(s)
CN106572616B (zh) 数据中心中的电子机柜的液体辅助底部空气冷却
WO2013139144A1 (zh) 电子设备及其散热系统和散热方法
US20160242323A1 (en) Rack type data center
WO2022017346A1 (zh) 一种单相浸没式液冷系统
WO2009096729A2 (en) Multilateral continuous uniform rapid cooling device of double cooling structure
WO2023116015A1 (zh) 制氢设备和制氢设备的电解槽温度控制方法
WO2019037309A1 (zh) 一种冷却装置及液冷散热系统
WO2024103675A1 (zh) 一种热管理系统及其控制方法
CN109688764B (zh) 机柜
CN213636112U (zh) 冷水机组与储能系统
CN207519035U (zh) 冷却设备
US11612080B2 (en) Data center airflow management
TWM555109U (zh) 機櫃冷卻裝置
CN217064359U (zh) 服务器机柜和液体浸没冷却系统
CN113727589B (zh) 水冷散热装置
CN209843904U (zh) 温控系统及储能电池柜
WO2018133158A1 (zh) 循环冷却系统
WO2018048173A1 (ko) 하이브리드타입 공기조화 및 히트펌프시스템
CN111114264A (zh) 车辆换热循环系统和具有其的车辆
CN213901575U (zh) 冷水机组与储能系统
CN207519034U (zh) 冷却机柜及冷却系统
CN220693612U (zh) 数据中心机柜液冷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874562

Country of ref document: EP

Kind code of ref document: A1