WO2019085588A1 - 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机 - Google Patents

滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机 Download PDF

Info

Publication number
WO2019085588A1
WO2019085588A1 PCT/CN2018/100948 CN2018100948W WO2019085588A1 WO 2019085588 A1 WO2019085588 A1 WO 2019085588A1 CN 2018100948 W CN2018100948 W CN 2018100948W WO 2019085588 A1 WO2019085588 A1 WO 2019085588A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner cylinder
balance
radial
washing machine
axial
Prior art date
Application number
PCT/CN2018/100948
Other languages
English (en)
French (fr)
Inventor
黄浩钦
陈省
黄方艺
杨阳
韩雷
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Publication of WO2019085588A1 publication Critical patent/WO2019085588A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • D06F37/225Damping vibrations by displacing, supplying or ejecting a material, e.g. liquid, into or from counterbalancing pockets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • D06F37/06Ribs, lifters, or rubbing means forming part of the receptacle

Definitions

  • the present application relates to the field of washing machines, and more particularly to a dynamic balancing device for a drum type washing machine, an inner cylinder assembly of a drum type washing machine, and a drum type washing machine.
  • Washing machine vibration noise has always been a major problem for users and developers, especially for drum-type washing machines, and its vibration source is mainly from the suspension system.
  • the suspension system is the core component of the drum washing machine, and mainly includes an inner cylinder rotor, an outer cylinder member, a driving motor, a weight, a lifting spring and a damper.
  • the inner cylinder rotor is a high-speed rotating structure, which is mainly connected to the outer cylinder of the washing machine through a bearing, and is driven to rotate by the motor through the transmission belt, thereby realizing the functions of washing and dehydrating.
  • the washing machine mainly uses a weight, a spring and a damper on the outer cylinder to perform combined dynamic balance damping. These vibration damping designs often cause the suspension system to be abnormally heavy.
  • the dynamic balance design of the rotating component of the inner cylinder rotor can not only reduce the weighting effect to a certain extent, but also realize the vibration damping effect more effectively.
  • the current dynamic balance technology of the inner cylinder rotor mainly places a balance ring at the front end of the inner cylinder, which increases the front load of the inner cylinder rotor cantilever beam structure to a certain extent, and reduces the vibration reduction effect of the inner cylinder rotor.
  • the present application proposes a dynamic balancing device for a drum type washing machine, an inner cylinder assembly of a drum type washing machine, and a drum type washing machine, which can directly perform liquid dynamic balance on the rotating vibration source of the inner cylinder rotor, and the vibration damping effect is further improved.
  • the quality can be lighter, which plays a vital role in the vibration damping design and lightweight design of the washing machine.
  • a dynamic balancing device for a drum type washing machine, the dynamic balancing device being mountable on an inner cylinder of the drum type washing machine; the dynamic balancing device comprising:
  • a radial balance chamber that is annular and forms an annular radial cavity therein;
  • An axial balance chamber extending axially from the radial balance chamber, forming at least one axial cavity in the axial direction, the at least one axial cavity being in communication with the radial cavity;
  • An equilibrium fluid which is a liquid, fills in at least a portion of the radial cavity and the axial cavity and is free to flow between the radial cavity and the axial cavity.
  • the radial balance chamber further comprises: at least two liquid storage chambers disposed in a circumferential direction of the radial balance chamber, the liquid storage chamber is an open bag shape, and the opening is arranged in the axial direction On the side away from the axial balance chamber.
  • a water pressure mechanism is disposed in the axial balance chamber and moves outwardly in a normal direction to squeeze the balance liquid in the axial cavity when the dynamic balance device rotates, Flowing the balance fluid from the axial cavity toward the radial cavity;
  • the balancing fluid does not exceed an outer surface of the pressurized water structure in a radial direction of the dynamic balancing device when the dynamic balancing device follows the dehydration rotation of the inner cylinder.
  • the liquid storage chamber is disposed on an inner wall of a circumferential outer side of the radial balance chamber;
  • the bag shape of the liquid storage chamber is a bag shape which gradually increases from the radially inner side to the radially outer side;
  • the liquid storage chamber is in the shape of a flared bucket
  • the liquid storage chambers are uniformly distributed at equal angular intervals in the circumferential direction of the radial balance chamber.
  • the water pressure mechanism comprises:
  • the telescopic structure is expandable and contractible, and one end of the telescopic direction is connected to the water pressure structure, and the other end is connected to an inner side wall of the axial cavity in a normal direction to make the dynamic balance device rotate when The pressurized water structure moves outwardly in a normal direction to squeeze the equilibrium liquid.
  • the pressurized water structure is a plate shape or a structure having a thickness in a normal direction.
  • the axial cavities are two or more, and the axial cavities are evenly distributed in the circumferential direction of the radial balance chamber.
  • an inner cylinder assembly of a drum type washing machine comprising an inner cylinder and a dynamic balancing device as described above fixedly mounted on the inner cylinder and rotating coaxially with the inner cylinder.
  • the radial balance chamber is mounted on a bearing side of the inner cylinder, and the axial balance chamber is mounted on a side of the inner cylinder away from the bearing.
  • the dynamic balancing device is fixedly mounted inside the inner cylinder.
  • the dynamic balancing device is fixedly mounted on an inner wall surface of the inner cylinder.
  • the dynamic balancing device is fixedly mounted at a rib position of the inner cylinder as a lifting rib.
  • one end of the liquid storage chamber is larger than the other end along the circumferential direction of the radial balance chamber, and the expansion direction thereof and the rotation of the inner cylinder The opposite direction.
  • a corner portion of the inner wall of the liquid storage chamber adjacent to the inner side of the circumference of the radial balance chamber is curved toward the rotation direction of the inner cylinder.
  • a drum type washing machine comprising the inner cylinder assembly as described above.
  • a dynamic balancing device for a drum type washing machine, an inner cylinder assembly of a drum type washing machine, and a drum type washing machine which can be mounted on an inner cylinder of a drum type washing machine, which is radially balanced by mutual communication
  • the chamber and the axial balance chamber structure and the balance liquid which can be freely flowed in the radial balance chamber and the axial balance chamber, and the liquid dynamic balance of the rotary vibration source of the inner cylinder rotor is directly under the action of the centrifugal force of the inner cylinder rotor
  • the damping effect is more obvious. Further, the quality can be lighter, greatly improving the operational stability of the washing machine.
  • Figure 1 is a schematic view showing a preferred embodiment of an inner cylinder assembly of a drum type washing machine of the present application
  • FIG. 2 is a schematic view showing a preferred embodiment of a dynamic balancing device of a drum type washing machine of the present application
  • Figure 3 is a schematic view showing a preferred embodiment of the internal structure of the radial balance chamber 110 of a dynamic balancing device of the present application;
  • Figure 4 is a cross-sectional view showing a preferred embodiment of an inner cylinder rotor of the present application
  • Figure 5 is a schematic illustration of a preferred embodiment of a simplified shafting cantilever structure of the inner cylinder rotor of the present application
  • Fig. 6 is a schematic view showing a preferred embodiment of the axial balance principle of the axial balance chamber of the dynamic balancing device of the present application.
  • Figure 7 is a flow chart showing the dynamic balancing process of a preferred embodiment of the dynamic balancing device of the present application.
  • Fig. 1 is a schematic view showing a preferred embodiment of an inner cylinder assembly of a drum type washing machine of the present application.
  • the inner cylinder assembly 10 of the drum type washing machine (not shown) includes at least an inner cylinder 200 and a dynamic balancing device 100 fixedly mounted on the inner cylinder 200, for example, by means of screw fixing.
  • the dynamic balance device 100 is rotatable coaxially with the inner cylinder 200, the radial balance chamber 110 is mounted on the bearing side of the inner cylinder 200, and the axial balance chamber 120 is mounted on the inner cylinder 200 away from the bearing side.
  • the dynamic balance device 100 is fixedly mounted inside the inner cylinder 200, and of course, it can be understood that it can be attached to the outside of the inner cylinder 200 as long as it can rotate with the inner cylinder.
  • the dynamic balancing device 100 is fixedly mounted on the inner wall surface of the inner cylinder 200.
  • the dynamic balance device 100 is fixedly mounted as a lifting rib at the position of the lifting rib of the inner cylinder 200.
  • the dynamic balancing device 100 can function as a lifting rib, which can realize multi-purpose use and reduce development cost.
  • Fig. 2 is a schematic view showing a preferred embodiment of a dynamic balancing device of a drum type washing machine of the present application.
  • the dynamic balancing device can be mounted on an inner cylinder of the drum type washing machine.
  • the dynamic balancing device 100 is, for example, a hollow thin-walled plastic structure (not limited to a plastic material, and may also be other materials such as metal), including a radial balance chamber 110, an axial balance chamber 120, and a balance liquid (FIG. 1). Not shown).
  • the radial balance chamber 110 is annular and forms an annular radial cavity therein.
  • the axial balance chamber 120 extends axially from the radial balance chamber 110, forming at least one axial cavity in the axial direction, the at least one axial cavity being in communication with the radial cavity.
  • An equilibrium fluid which is a liquid, such as brine, filled in at least a portion of the radial cavity 110 and the axial cavity 120 and capable of being in the radial cavity and the axial cavity Free flow between.
  • the axial cavity is evenly distributed in the circumferential direction of the radial balance chamber 110, as shown in FIG. 1-2, for example, an angle distribution of 120 cavities to each other is 3 cavities, of course, not limited thereto. .
  • the centrifugal force generated by the rotation of the inner cylinder rotor acts as a driving force for the axial movement of the balance liquid.
  • the balance liquid will be under the action of inertia.
  • the axial direction moves in the opposite direction to the swing, so that the problem of the centroid advancement caused by the eccentricity of the laundry can be improved, and the amplitude of the inner cylinder swing can be reduced; likewise, the balance liquid in the axial balance chamber can move freely to the radial balance chamber.
  • the dynamic balance device 100 of the present application can not only balance the axial swing but also balance the radial swing due to the radial balance chamber 110 and the axial balance chamber 120, thereby reducing the bearing capacity of the shaft.
  • the running stability of the inner cylinder rotor is greatly improved.
  • FIG 3 is a schematic diagram showing a preferred embodiment of the internal structure of the radial balance chamber 110 of a dynamic balancing device of the present application.
  • the radial balance chamber 110 further includes at least two liquid storage chambers 111 disposed in a circumferential direction within the radial balance chamber 110, and the liquid storage chamber 111 is an open pocket in the circumferential direction.
  • the opening is disposed in the axial direction on a side away from the axial balance chamber.
  • the reservoir chamber 111 is disposed on the inner wall of the outer circumference of the radial balance chamber 110.
  • the bag shape of the liquid storage chamber 111 is a bag shape which gradually increases from the radially inner side of the radial balance chamber 110 to the radially outer side.
  • the reservoir chambers 111 are evenly distributed in an array in the circumferential direction of the radial balance chamber 110, that is to say at equal angular intervals.
  • the shape of the bag of the liquid storage chamber 111 is not limited to the shape shown in FIG. 3, and may be any other shape such as a square shape, a rectangular shape, an irregular shape or the like as long as it can collect the balance liquid in the radial direction. .
  • one end of the reservoir chamber 111 is larger than the other end.
  • the expansion direction of the liquid storage chamber 111 is opposite to the rotation direction 210 of the inner cylinder 200, so that the liquid storage chamber 111 can efficiently collect the balance liquid in the radial direction, thereby better ensuring the diameter. To balance the effect.
  • the corner portion of the inner wall of the liquid storage chamber 111 near the inner side of the circumference of the radial balance chamber is curved.
  • the inside of the radial balance chamber is provided with a flared "bucket" liquid storage chamber, and the liquid storage chamber is distributed in an array around the inner cylinder rotation axis, which can be well used for effective collection of the balance liquid in the radial balance.
  • the balancing liquid moves to the upper portion of the radial balance chamber 110 under the action of inertia, and can be stored in the upper portion.
  • the balance liquid also moves to the lower portion of the radial balance chamber 100 under inertia and is stored in the lower liquid storage chamber 111, so that The balance liquid in the radial balance chamber will always move to the opposite position of the eccentric clothing.
  • Figure 4 shows a schematic cross-sectional view of a preferred embodiment of an inner cylinder rotor of the present application.
  • the inner cylinder rotor includes a dynamic balance device 100, an inner cylinder 200, a rotating shaft 300, bearings 410 and 420, a tripod 500, a garment 600, and the like.
  • the axial balance chamber 120 of the dynamic balancing device 100 further includes a water pressure mechanism (not shown in detail), and the water pressure mechanism is disposed in the axial balance chamber. 120, and when the dynamic balancing device 100 rotates with the inner cylinder rotor, moves outward in the normal direction 220 to squeeze the balance liquid 130 in the axial cavity, so that the balance liquid 130 moves from the axial cavity to the radial cavity flow.
  • the water pressure mechanism includes a water pressure structure 121 and a telescopic structure 122 supporting the water pressure structure. Under the action of the rotating centrifugal force, the water pressure structure 121 can drive the balance liquid to realize the balance liquid in the radial direction.
  • the balance chamber 110 moves axially between the axial balance chamber 120.
  • the water-pressure structure 121 may be in the form of a plate or a structure having a thickness in a normal direction such as a cube, a cube, a boat, or the like as long as the balance liquid can be squeezed to the radial balance chamber.
  • the telescoping structure 122 can be a spring or any other flexible structure.
  • the balance liquid 130 in the dynamic balance device 100 preferably does not exceed the outer surface of the pressurized water structure 121 in the radial direction of the dynamic balance device 100 when the dynamic balance device 100 follows the high-speed rotation of the inner cylinder rotor, for example, spin-drying.
  • the application can realize the dynamic adjustment of the critical speed of the inner cylinder rotor during the dehydration process of the washing machine by the axial movement of the balance liquid, so that the inner cylinder rotor is always kept at a safe speed running away from the critical speed zone, and the risk of resonance of the inner cylinder rotor of the washing machine is reduced.
  • the axial movement of the balance liquid can also balance the centroid advancement caused by the forward displacement of the clothing, which reduces the amplitude of the inner cylinder swing to a certain extent and improves the running stability.
  • the balance liquid moves axially, it also moves radially in the balance device.
  • the balance liquid in the radial balance chamber can dynamically move to the clothing. The relative direction, thereby achieving the radial balance of the inner cylinder rotor, reducing the lateral vibration caused by the eccentricity of the laundry, and reducing the force at the bearing seat.
  • Figure 5 shows a schematic view of a preferred embodiment of a simplified shafting cantilever structure of the inner cylinder rotor of the present application.
  • the structure is supported by two bearings 410 and 420.
  • the bearing 410 is a small bearing and the bearing 420 is a large bearing to better support the rotating shaft 300.
  • the weight of the inner cylinder rotor is mainly concentrated on the cantilever end of the shaft system.
  • the resonance critical speed of the rotor model can be expressed as:
  • n c is the critical speed of the rotor
  • is the pi ratio
  • E is the elastic modulus of the shaft material
  • I is the moment of inertia of the section of the shaft
  • m is the equivalent mass of the shafting
  • L is the equivalent length of the shafting
  • is the ratio of the distance between the shaft center equivalent centroid bearing support B and the shaft equivalent length L.
  • the factor affecting the resonance speed of the inner cylinder rotor is derived from ⁇ , that is, the critical speed of the rotor can be adjusted by adjusting the centroid position of the equivalent mass.
  • the present application can realize the axial movement of the equivalent mass centroid by using the dynamic balance device 100, and dynamically adjust the critical speed of the rotor.
  • Fig. 6 is a schematic view showing a preferred embodiment of the axial balance principle of the axial balance chamber of the dynamic balancing device of the present application.
  • the inner cylinder rotor speed increases, and the water pressure structure 121 in the axial balance chamber is pulled by the centrifugal force to pull the telescopic structure 122 to move outward in the normal direction, and simultaneously
  • k is the stiffness of the telescopic mechanism
  • ⁇ x is the normal moving distance outside the pressure plate
  • F r F 1 +F 2 force balance.
  • F r F 1 +F 2 force balance.
  • the balance liquid 130 is dynamically displaced outwardly and squeezed, and the balance liquid 130 is pressed to move from the axial balance chamber 120 to the radial balance chamber 110, and 131 is the liquid of the balance liquid.
  • the flow direction can change the position of the equivalent centroid of the entire inner cylinder rotor in the axial direction, that is, the dynamic adjustment value can be used to realize the dynamic adjustment of the resonance critical speed of the inner cylinder rotor, which can effectively avoid the risk of the washing machine operating in the resonance critical speed zone.
  • the balance liquid 130 is axially moved backward, which can reduce the amplitude of the lateral vibration of the rotor to a certain extent, and improve the running stability.
  • Figure 7 is a flow chart showing the dynamic balancing process of a preferred embodiment of the dynamic balancing device of the present application.
  • the balance liquid in the radial balance chamber also has a radial relative movement, that is, when the laundry is eccentrically operated to the lower end of the cylinder, the balance liquid is under inertia. It will move to the upper part of the radial balance chamber and can be stored in the upper reservoir.
  • the balance fluid will also move to the lower part of the radial balance chamber under inertia. It is stored in the liquid storage chamber, so that the balance liquid in the radial balance chamber always moves to the opposite position of the eccentric clothes.
  • the balance effect similar to the balance ring at the front end of the cylinder can be achieved, that is, Balance the radial vibration caused by the eccentric clothing to improve the running stability of the inner cylinder rotor.
  • the dynamic balance device of the drum type washing machine of the present application, the inner cylinder of the drum type washing machine, and the drum type washing machine have been described above.
  • the dynamic balancing device of the above-described drum type washing machine, the inner cylinder of the drum type washing machine, and the drum type washing machine according to the present application are connected to each other by a radial balance chamber, an axial balance chamber structure, and a radial balance chamber and an axial balance chamber.
  • the balance fluid capable of free flow can directly perform radial and axial liquid dynamic balance on the rotary vibration source of the inner cylinder rotor, and the vibration damping effect is more obvious. Further, reducing the dependence of the washing machine on the weights has a good effect on the weight improvement of the washing machine.
  • the quality can be lighter, reducing the bearing capacity of the shaft and greatly improving the running stability of the inner cylinder rotor.
  • liquid dynamic balance device of the washing machine proposed by the present application is implemented inside the inner cylinder, and the beneficial effects thereof include but are not limited to:
  • the dynamic balancing device of the present application is placed inside the cylinder, which can avoid increasing the load on the front end of the inner cylinder, increase the running stability of the inner cylinder rotor, and improve the vibration damping effect;
  • the dynamic balancing device of the present application can function as a lifting rib, which can realize multi-purpose use and reduce development cost;
  • the dynamic balancing device of the present application can realize the dynamic adjustment of the critical speed of the inner cylinder rotor by the axial movement of the balancing liquid, so as to reduce the risk of the resonance of the washing machine;
  • the dynamic balance device of the present application can realize the radial movement of the balance liquid, can dynamically balance the lateral large swing caused by the eccentric load of the laundry, improve the running stability of the inner cylinder rotor, and reduce the force at the bearing seat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)

Abstract

一种滚筒式洗衣机的动平衡装置(100)、滚筒式洗衣机的内筒组件(101)及滚筒式洗衣机,所述动平衡装置(100)能够安装在滚筒式洗衣机的内筒(200)上,其通过相互连通的径向平衡室(110)、轴向平衡室(120)结构以及填充在径向平衡室(110)和轴向平衡室(120)内能够自由流动的平衡液(130),能够直接对内筒(200)转子这一旋转振动源进行液态动平衡,减振效果更为明显,质量更轻,对洗衣机的减振设计及轻量化设计起到至关重要的作用。

Description

滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机
本申请要求于2017年10月30日提交中国专利局、申请号为201711052141.8、发明名称为“滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及洗衣机领域,尤其涉及一种滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机。
背景技术
洗衣机振动噪声一直是困扰用户及研发人员的一大难题,尤其对于滚筒式洗衣机,而其振源主要来自于悬挂系统。
悬挂系统作为滚筒洗衣机的核心部件,其主要包括内筒转子、外筒部件、驱动电机、配重块、吊簧及阻尼器。其中内筒转子属高速旋转结构,主要通过轴承与洗衣机外筒相连,并由电机通过传动皮带驱动旋转,进而实现洗衣及脱水等功能。当内筒转子的内筒中存在衣物偏载时,转子会出现旋转不对称现象,并引起悬挂系统乃至整个洗衣机的振动,严重影响到用户的体验及洗衣机使用寿命。当前洗衣机主要以在外筒身上设置配重块、吊簧及阻尼器进行组合式动平衡减振,这些减振设计往往会造成悬挂系统异常笨重。
直接针对内筒转子这一旋转部件进行动平衡设计,不仅能在一定程度上起到轻量化作用,且能更加有效的实现减振降噪效果。但当前内筒转子的动平衡技术主要为在内筒前端放置平衡环,这在一定程度上增加内筒转子悬臂梁结构的前端负重,会削减内筒转子的减振效果。
针对上述问题,目前尚未提出有效的解决方式。
发明内容
有鉴于此,本申请提出一种滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机,能够直接对内筒转子这一旋转振动源进行液态动平衡,减振效果更为明显。进一步地,能够质量更轻,对洗衣机的减振设计及轻量化设计起到至关重要的作用。
根据本申请的一个方面,提供一种滚筒式洗衣机的动平衡装置,动平衡装置能够安装在所述滚筒式洗衣机的内筒上;动平衡装置包括:
径向平衡室,其为环状,并在其内形成环状的径向腔体;
轴向平衡室,其自所述径向平衡室沿轴向延伸,在轴向形成至少一个轴向腔体,所述至少一个轴向腔体与所述径向腔体连通;
平衡液,其是一种液体,填充在所述径向腔体和所述轴向腔体的至少一部分中,并能在所述径向腔体和所述轴向腔体之间自由流动。
优选地,所述径向平衡室还包括:至少两个储液腔,其设置在所述径向平衡室内的圆周方向上,所述储液腔为开口袋状,开口沿轴向方向、设置在远离轴向平衡室的一侧。
优选地,压水机构,其设置在所述轴向平衡室中,并在所述动平衡装置旋转时,向外法线方向运动以挤压所述轴向腔体中的所述平衡液,使所述平衡液自所述轴向腔体向所述径向腔体流动;
优选地,所述平衡液在所述动平衡装置跟随所述内筒脱水旋转时不超过所述压水结构在所述动平衡装置径向上的外侧表面。
优选地,所述储液腔设置在所述径向平衡室的圆周外侧的内壁上;
和/或,
所述储液腔的袋状为自径向内侧斜向径向外侧逐渐增大的袋状;
和/或,所述储液腔为扩口斗状;
和/或,
所述储液腔在所述径向平衡室的圆周方向上等角间距均匀分布。
优选地,所述压水机构包括:
压水结构和伸缩结构,
所述伸缩结构能够伸缩,其伸缩方向的一端与所述压水结构连接,另一端连接到所述轴向腔体的法线方向的内侧壁上,以在所述动平衡装置旋转时,使所述压水结构向外法线方向运动以挤压所述平衡液。
优选地,所述压水结构为板状或者在法线方向上具有厚度的结构。
优选地,所述轴向腔体为两个以上,所述轴向腔体在所述径向平衡室的圆周方向上均匀分布。
根据本申请的另一个方面,提供一种滚筒式洗衣机的内筒组件,包括内筒及固定安装在所述内筒上并与内筒同轴旋转的如前所述的动平衡装置。
优选地,所述径向平衡室安装在所述内筒的轴承侧,所述轴向平衡室安装在所述内筒的远离轴承侧。
优选地,所述动平衡装置固定安装在所述内筒的内部。
优选地,所述动平衡装置固定安装在所述内筒的内侧壁面上。
优选地,所述动平衡装置固定安装在所述内筒的加强筋位置处作为提升筋。
优选地,当所述动平衡装置中设置有储液腔时,沿着所述径向平衡室的圆周方向,所述储液腔一端大于另一端,且其扩张方向与所述内筒的旋转方向相反。
优选地,当所述动平衡装置中设置有储液腔时,朝向所述内筒的旋转方向,所述储液腔靠近所述径向平衡室的圆周内侧的内壁的角部呈弧状。
根据本申请的又一个方面,提供一种滚筒式洗衣机,包括如前所述的内筒组件。
根据本申请提出一种滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机,所述动平衡装置能够安装在滚筒式洗衣机的内筒上,其通过相互连通的径向平衡室、轴向平衡室结构以及填充在径向平衡室和轴向平衡室内能够自由流动的平衡液,在内筒转子旋转离心力的作用下,直接对内筒转子这一旋转振动源进行液态动平衡,减振效果更为明显。进一步地,质量能够更轻,极大地提升了洗衣机的运行稳定性。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本申请的一种滚筒式洗衣机的内筒组件的一优选实施例的示意图;
图2示出了本申请的一种滚筒式洗衣机的动平衡装置的一优选实施例的示意图;
图3示出了本申请的一种动平衡装置的径向平衡室110内部结构的一优选实施例的示意图;
图4示出了本申请的一种内筒转子的一优选实施例的截面示意图;
图5示出了本申请的内筒转子简化的轴系悬臂梁结构的一优选实施例的示意图;
图6示出了本申请的动平衡装置的轴向平衡室实现轴向平衡原理图的一优选实施例的示意图。
图7示出了本申请的动平衡装置的一优选实施例的动态平衡流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出了本申请的一种滚筒式洗衣机的内筒组件的一优选实施例的示意图。
如图1所示,滚筒式洗衣机(未示出)中内筒组件10至少包括内筒200和固定安装在内筒200上的动平衡装置100,例如,可以采用螺钉固定的方式。动平衡装置100能够与内筒200同轴旋转,径向平衡室110安装在内筒200的轴承侧,轴向平衡室120安装在内筒200的远离轴承侧。作为一个实施方式,动平衡装置100固定安装在内筒200的内部,当然,可以理解地,也可以安装在内筒200的外部,只要能够随内筒旋转。可选地,动平衡装置100固定安装在内筒200的内侧壁面上。优选地,动平衡装置100固定安装在内筒200的提升筋位置处作为提升筋,这样,动平衡装置100能起到提升筋的作用,可实现一物多用,减少开发成本。
图2示出了本申请的一种滚筒式洗衣机的动平衡装置的一优选实施例的示意图。所述动平衡装置能够安装在所述滚筒式洗衣机的内筒上。
如图2所示,动平衡装置100例如为中空薄壁塑料结构(不限于塑料材料,也可以为其他材料如金属),包括径向平衡室110、轴向平衡室120和平衡液(图1中未示出)。径向平衡室110,为环状,并在其内形成环状的径向腔体。轴向平衡室120自所述径向平衡室110沿轴向延伸,在轴向形成至少一个轴向腔体,所述至少一个轴向腔体与所述径向腔体连通。平衡液,其是一种液体例如盐水,填充在所述径向腔体110和所述轴向腔体120的至少一部分中,并能在所述径向腔体和所述轴向腔体之间自由流动。
其中,可选地,轴向腔体在径向平衡室110的圆周方向上均匀分布,如图1-2所示,例如为彼此呈120度的角度分布为3个腔体,当然不限于此。
当所述动平衡装置100安装在滚筒式洗衣机的内筒上时,内筒转子旋转产生的离心力作为平衡液轴向运动的驱动力,当发生轴向摆动时,平衡液在惯性作用下会在轴向上向与摆动相反的方向运动,从而能改善衣物偏 载引起质心前移的问题,减小内筒摆动幅度;同样地,由于轴向平衡室内的平衡液能够往径向平衡室自由移动,因此,当发生径向摆动时,平衡液同样在惯性作用下会移动到与偏载对立的位置,平衡了衣物偏载引起的径向大摆动。可见,本申请的动平衡装置100由于同时设置了径向平衡室110和轴向平衡室120,不止能够平衡轴向的摆动,还能平衡径向的摆动,从而降低了轴的承受力,极大提升了内筒转子的运行稳定性。
图3示出了本申请的一种动平衡装置的径向平衡室110内部结构的一优选实施例的示意图。
如图3所示,可选地,径向平衡室110还包括至少两个储液腔111,其设置在径向平衡室110内的圆周方向上,储液腔111为沿圆周方向的开口袋状,开口沿轴向方向、设置在远离轴向平衡室的一侧。作为一种优选实施方式,储液腔111设置在径向平衡室110的圆周外侧的内壁上。可选地,储液腔111的袋状为自径向平衡室110的径向内侧斜向径向外侧逐渐增大的袋状。非限制地,储液腔111在径向平衡室110的圆周方向上呈阵列均匀分布,也就是说等角间距分布。通过在径向平衡室中布置等角间距的储液腔,可实现平衡液径向运动时液体的临时存储,从而保证径向平衡效果。
可以理解地,储液腔111的袋状不限于图3所示的形状,还可以为任意其他形状,如方形、长方形、不规则形等等形状,只要其能够在径向上收集平衡液即可。
优选地,沿着径向平衡室110的圆周方向,储液腔111一端大于另一端。当动平衡装置100固定安装到内筒200上时,储液腔111的扩张方向与内筒200的旋转方向210相反,从而储液腔111能够在径向上有效收集平衡液,更好地保证径向平衡效果。
优选地,如图3所示,朝向内筒200的旋转方向,储液腔111靠近径向平衡室的圆周内侧的内壁的角部呈弧状。如此设置,可以更好地在径向上有效收集平衡液,更好地保证径向平衡效果。
优选地,径向平衡室内部设置有扩口“斗状”储液腔,储液腔绕内筒 转轴呈阵列分布,可很好地用于径向平衡时平衡液的有效收集。
作为示例,在洗衣机脱水过程中,如果产生衣物偏载,当衣物偏载运行至内筒200下部时,平衡液在惯性作用下会运动到径向平衡室110的上部,并可储存在上部的储液腔111中,相反,如衣物偏载运行至内筒200上部时,平衡液亦会在惯性作用下运动到径向平衡室100的下部并储存在下部的储液腔111中,这样在径向平衡室中的平衡液总会运动到偏载衣物的对立位置,通过这种偏载对立,即可实现与筒前端设置平衡环相似的平衡作用,从而平衡偏载衣物引起的径向振动,以提高内筒转子运行稳定性。
图4示出了本申请的一种内筒转子的一优选实施例的截面示意图。
如图4所示,内筒转子包括动平衡装置100、内筒200、转轴300、轴承410和420、三脚架500、衣物600等。
为了更好地实现轴向平衡,可选地,如图4所示,动平衡装置100的轴向平衡室120还包括压水机构(未详细示出),压水机构设置在轴向平衡室120中,并在动平衡装置100随内筒转子旋转时,向外法线方向220运动以挤压轴向腔体中的平衡液130,使平衡液130自轴向腔体向径向腔体流动。
作为一个实施方式,压水机构如图4所示,包括压水结构121及支撑压水结构的伸缩结构122,在旋转离心力的作用下压水结构121可驱动平衡液以实现平衡液在径向平衡室110与轴向平衡室120之间轴向移动。所述压水结构121,可以为板状,也可以为在在法线方向上具有厚度的结构如正方体、立方体、船形等,只要能够挤压平衡液至径向平衡室即可。伸缩结构122可以为弹簧或任何其他具有伸缩性的结构。
其中,作为示例,动平衡装置100中的平衡液130在动平衡装置100跟随内筒转子高速旋转例如脱水旋转时,优选不超过压水结构121在动平衡装置100径向上的外侧表面。
本申请通过平衡液的轴向移动能实现洗衣机脱水过程中内筒转子临界转速的动态调节,使内筒转子始终保持在偏离临界转速区的安全转速运行, 降低了洗衣机内筒转子共振的风险,同时平衡液轴向移动也能很好的平衡因衣物偏载前移引起的质心前移,一定程度上减小了内筒摆动振幅,提升了运行稳定性。
本申请中平衡液轴向移动的同时,也会在平衡装置内部径向相对运动,当衣物偏载造成内筒转子大摆动时,径向平衡室中的平衡液能动态运动到衣物偏载的相对方向,从而实现内筒转子的径向平衡,减小衣物偏载引起的横向振动,降低轴承座处受力。
图5示出了本申请的内筒转子简化的轴系悬臂梁结构的一优选实施例的示意图。
如图5所示,该结构由两轴承410和420支撑,优选地,轴承410为小轴承,轴承420为大轴承,以更好地对转轴300起到支承作用。内筒转子承受的重量主要集中在轴系的悬臂端,该转子模型旋转时的共振临界转速可表示为:
Figure PCTCN2018100948-appb-000001
式中:
n c为转子临界转速;
π为圆周率;
E为轴材料的弹性模量;
I为轴的截面惯性矩;
m为轴系的等效质量;
L为轴系等效长度;
λ为轴系等效质心距轴承支撑B的距离与轴系等效长度L的比值。
由临界转速计算公式可知,当洗衣机内筒转子结构及衣物重量确定之后,影响内筒转子共振临界转速的因素来自于λ,即通过调节等效质量的质心位置可实现转子临界转速的调节。
本申请基于以上原理,利用动平衡装置100可实现等效质量质心的轴向移动,并对转子临界转速动态调节。
图6示出了本申请的动平衡装置的轴向平衡室实现轴向平衡原理图的一优选实施例的示意图。
如图6所示,当洗衣机进入高速旋转例如脱水模式后,内筒转子转速上升,轴向平衡室中的压水结构121由于受离心力作用会牵引伸缩结构122而向外法向方向移动,同时伸缩结构122会对压水结构121有反向的拉力F 1=k·Δx和F 2=k·Δx,其中:
k为伸缩机构的刚度,
Δx为压水板外法向运动距离,
且每个转速状态压水结构121均有F r=F 1+F 2受力平衡,当洗衣机转速动态变化时,F r也会动态变化,相应Δx也会动态变化,压水结构121即会在转速变化的情况下向外法向动态位移并挤压平衡液130,平衡液130受挤压会由轴向平衡室120向径向平衡室110运动,图中131所示为平衡液的液流方向,从而可改变整个内筒转子的等效质心在轴向的位置,即通过动态调节值来实现内筒转子的共振临界转速动态调节作用,可有效避免洗衣机运行在共振临界转速区的风险,且受洗衣机升速,平衡液130轴向后移,可一定程度上减小转子横向振动的幅度,提升运行稳定性。
图7示出了本申请的动平衡装置的一优选实施例的动态平衡流程示意图。
如前所述,当洗衣机脱水过程中实现转子轴向平衡的同时,径向平衡室中的平衡液也会出现径向相对运动,即衣物偏载运行至筒下端时,平衡液在惯性作用下会运动到径向平衡室的上部,并可储存在上部的储液腔中,相反,如衣物偏载运行至筒上端时,平衡液亦会在惯性作用下运动到径向平衡室的下部并储存在储液腔中,这样在径向平衡室中的平衡液总会运动到偏载衣物的对立位置,通过这种偏载对立,即可实现与筒前端设置平衡 环相似的平衡作用,即平衡偏载衣物引起的径向振动,以提高内筒转子运行稳定性。
以上对本申请的滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒及滚筒式洗衣机进行了描述。根据本申请的上述滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒及滚筒式洗衣机,通过相互连通的径向平衡室、轴向平衡室结构以及填充在径向平衡室和轴向平衡室内能够自由流动的平衡液,能够直接对内筒转子这一旋转振动源进行径向和轴向的液态动平衡,减振效果更为明显。进一步地,减小洗衣机对配重块的依赖程度,对洗衣机轻量化改善有很好的效果。质量能够更轻,降低了轴的承受力,极大提升了内筒转子的运行稳定性。
具体地,本申请提出的洗衣机液态动平衡装置在内筒的内部实现,其有益效果包括但不局限于:
(1)在减振的同时能很大程度上减小洗衣机对配重块的依耐性,对洗衣机减重设计有一定积极效果;
(2)本申请的动平衡装置放置在筒的内部,能避免增加内筒前端负重,增加内筒转子运行稳定性,提升减振效果;
(3)优选地,本申请的动平衡装置能起到提升筋的作用,可实现一物多用,减少开发成本;
(4)本申请的动平衡装置能通过平衡液的轴向移动实现内筒转子的临界转速动态调节,以减小洗衣机运行共振的风险;
(5)本申请的动平衡装置能实现平衡液径向运动,可动态平衡衣物偏载引起的横向大摆动,提升内筒转子运行平稳性,降低轴承座处受力。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等 同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (16)

  1. 一种滚筒式洗衣机的动平衡装置,其特征在于:
    所述动平衡装置能够安装在所述滚筒式洗衣机的内筒上;
    所述动平衡装置包括:
    径向平衡室,其为环状,并在其内形成环状的径向腔体;
    轴向平衡室,其自所述径向平衡室沿轴向延伸,在轴向形成至少一个轴向腔体,所述至少一个轴向腔体与所述径向腔体连通;
    平衡液,其是一种液体,填充在所述径向腔体和所述轴向腔体的至少一部分中,并能在所述径向腔体和所述轴向腔体之间自由流动。
  2. 如权利要求1所述的动平衡装置,其特征在于,所述径向平衡室还包括:
    至少两个储液腔,其设置在所述径向平衡室内的圆周方向上,所述储液腔为开口袋状,开口沿轴向方向、设置在远离轴向平衡室的一侧。
  3. 如权利要求1所述的动平衡装置,其特征在于,压水机构,其设置在所述轴向平衡室中,并在所述动平衡装置旋转时,向外法线方向运动以挤压所述轴向腔体中的所述平衡液,使所述平衡液自所述轴向腔体向所述径向腔体流动。
  4. 如权利要求1所述的动平衡装置,其特征在于,
    所述平衡液在所述动平衡装置跟随所述内筒脱水旋转时不超过所述压水结构在所述动平衡装置径向上的外侧表面。
  5. 如权利要求2所述的动平衡装置,其特征在于,
    所述储液腔设置在所述径向平衡室的圆周外侧的内壁上;
    和/或,
    所述储液腔的袋状为自径向内侧斜向径向外侧逐渐增大的袋状;
    和/或,
    所述储液腔为扩口斗状;
    和/或,
    所述储液腔在所述径向平衡室的圆周方向上等角间距均匀分布。
  6. 如权利要求3所述的动平衡装置,其特征在于,所述压水机构包括:
    压水结构和伸缩结构,
    所述伸缩结构能够伸缩,其伸缩方向的一端与所述压水结构连接,另一端连接到所述轴向腔体的法线方向的内侧壁上,以在所述动平衡装置旋转时,使所述压水结构向外法线方向运动以挤压所述平衡液。
  7. 如权利要求6所述的动平衡装置,其特征在于,
    所述压水结构为板状或者在法线方向上具有厚度的结构。
  8. 如权利要求1至7任一所述的动平衡装置,其特征在于,
    所述轴向腔体为两个以上,所述轴向腔体在所述径向平衡室的圆周方向上均匀分布。
  9. 一种滚筒式洗衣机的内筒组件,其特征在于,包括内筒及固定安装在所述内筒上并与内筒同轴旋转的如权利要求1至8任一所述的动平衡装置。
  10. 如权利要求9所述的内筒组件,其特征在于,
    所述径向平衡室安装在所述内筒的轴承侧,所述轴向平衡室安装在所述内筒的远离轴承侧。
  11. 如权利要求9所述的内筒组件,其特征在于,
    所述动平衡装置固定安装在所述内筒的内部。
  12. 如权利要求9所述的内筒组件,其特征在于,
    所述动平衡装置固定安装在所述内筒的内侧壁面上。
  13. 如权利要求9-12任一所述的内筒组件,其特征在于,所述动平衡装置固定安装在所述内筒的加强筋位置处作为提升筋。
  14. 如权利要求9所述的内筒组件,其特征在于,
    当所述动平衡装置中设置有储液腔时,沿着所述径向平衡室的圆周方向,所述储液腔一端大于另一端,且其扩张方向与所述内筒的旋转方向相反。
  15. 如权利要求9所述的内筒组件,其特征在于,
    当所述动平衡装置中设置有储液腔时,朝向所述内筒的旋转方向,所述储液腔靠近所述径向平衡室的圆周内侧的内壁的角部呈弧状。
  16. 一种滚筒式洗衣机,其特征在于,包括如权利要求9至15任一所述的内筒组件。
PCT/CN2018/100948 2017-10-30 2018-08-17 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机 WO2019085588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711052141.8 2017-10-30
CN201711052141.8A CN107829260B (zh) 2017-10-30 2017-10-30 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机

Publications (1)

Publication Number Publication Date
WO2019085588A1 true WO2019085588A1 (zh) 2019-05-09

Family

ID=61651321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100948 WO2019085588A1 (zh) 2017-10-30 2018-08-17 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机

Country Status (2)

Country Link
CN (1) CN107829260B (zh)
WO (1) WO2019085588A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107829260B (zh) * 2017-10-30 2023-09-15 珠海格力电器股份有限公司 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机
CN108797004A (zh) * 2018-08-24 2018-11-13 南京创维家用电器有限公司 一种洗衣机内桶平衡装置及平衡方法
CN111962260B (zh) * 2019-05-20 2022-07-26 青岛海尔智能技术研发有限公司 洗衣机及其平衡控制方法
CN110863325B (zh) * 2019-11-21 2020-11-17 珠海格力电器股份有限公司 一种双动力洗衣机的内筒装置、洗衣机
CN114941229A (zh) * 2022-06-30 2022-08-26 海信冰箱有限公司 一种洗衣机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167852A (zh) * 1996-01-31 1997-12-17 夏普公司 降低对地面振动的转筒式洗衣机及其操作方法
CN1304468A (zh) * 1998-04-14 2001-07-18 土尔加·西姆瑟克 灵敏的平衡装置
EP2025797A1 (en) * 2007-08-17 2009-02-18 Electrolux Home Products Corporation N.V. Method of balancing a washing machine drum,and washing machine implementing such a method
CN102686790A (zh) * 2009-12-31 2012-09-19 阿塞里克股份有限公司 不平衡载荷被平衡的洗衣机
CN105051282A (zh) * 2013-02-13 2015-11-11 Lg电子株式会社 衣物处理设备
CN107829260A (zh) * 2017-10-30 2018-03-23 珠海格力电器股份有限公司 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机
CN207619673U (zh) * 2017-10-30 2018-07-17 珠海格力电器股份有限公司 滚筒式洗衣机的动平衡装置、内筒组件及滚筒式洗衣机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781882B2 (en) * 1995-12-28 2005-08-10 Samsung Electronics Co., Ltd. Drum appliances with balancing devices
KR100306989B1 (ko) * 1997-03-21 2001-10-19 다카노 야스아키 드럼식원심탈수장치
EP1391549A1 (en) * 2001-03-28 2004-02-25 Sanyo Electric Co., Ltd. Washing machine
RU2302569C2 (ru) * 2002-05-22 2007-07-10 Дайсон Текнолоджи Лимитед Устройство автоматической балансировки
ES2277487B1 (es) * 2004-11-08 2008-06-16 Fagor, S. Coop. Dispositivo y metodo para el equilibrado de una lavadora.
JP6025264B2 (ja) * 2014-04-23 2016-11-16 シャープ株式会社 洗濯機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167852A (zh) * 1996-01-31 1997-12-17 夏普公司 降低对地面振动的转筒式洗衣机及其操作方法
CN1304468A (zh) * 1998-04-14 2001-07-18 土尔加·西姆瑟克 灵敏的平衡装置
EP2025797A1 (en) * 2007-08-17 2009-02-18 Electrolux Home Products Corporation N.V. Method of balancing a washing machine drum,and washing machine implementing such a method
CN102686790A (zh) * 2009-12-31 2012-09-19 阿塞里克股份有限公司 不平衡载荷被平衡的洗衣机
CN105051282A (zh) * 2013-02-13 2015-11-11 Lg电子株式会社 衣物处理设备
CN107829260A (zh) * 2017-10-30 2018-03-23 珠海格力电器股份有限公司 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机
CN207619673U (zh) * 2017-10-30 2018-07-17 珠海格力电器股份有限公司 滚筒式洗衣机的动平衡装置、内筒组件及滚筒式洗衣机

Also Published As

Publication number Publication date
CN107829260A (zh) 2018-03-23
CN107829260B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2019085588A1 (zh) 滚筒式洗衣机的动平衡装置、滚筒式洗衣机的内筒组件及滚筒式洗衣机
CN104562554B (zh) 一种平衡环及洗衣机
ES2638452T3 (es) Máquina de lavar
EP3249088B1 (en) Variable damping shock absorber
CN207619673U (zh) 滚筒式洗衣机的动平衡装置、内筒组件及滚筒式洗衣机
JP4893504B2 (ja) 洗濯機
CN105525484B (zh) 洗衣机用内筒及洗衣机
RU2530375C2 (ru) Машина для обработки белья
JP7477613B2 (ja) 動的均衡化アセンブリを有するランドリー装置
CN106917219B (zh) 洗衣机
CN107604588B (zh) 一种滚筒洗衣机
CN104060443B (zh) 平衡圈及其滚筒洗衣机
KR101654054B1 (ko) 세탁장치
JP7415004B2 (ja) 1つ以上のクロックスプリングを有するランドリー装置及び動的均衡化アセンブリ
KR100807256B1 (ko) 밸런서를 구비한 세탁기
RU77872U1 (ru) Барабан стиральной машины
RU2536681C2 (ru) Машина для обработки белья
CN106939491B (zh) 波轮洗衣机及其内筒
WO2018196286A1 (zh) 洗衣机
KR100273366B1 (ko) 세탁기의 원심균형조절장치
CN208346505U (zh) 洗衣机内筒和具有其的洗衣机
CN105378172A (zh) 滚筒式洗衣机
CN111485377A (zh) 平衡环及具有该平衡环的衣物处理设备
KR100206855B1 (ko) 회전체의 원심균형 조절구조
CN211311916U (zh) 一种洗衣机离合器下壳体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18872332

Country of ref document: EP

Kind code of ref document: A1