WO2019085477A1 - 一种全向移动底盘及其小型双排全向轮 - Google Patents

一种全向移动底盘及其小型双排全向轮 Download PDF

Info

Publication number
WO2019085477A1
WO2019085477A1 PCT/CN2018/090080 CN2018090080W WO2019085477A1 WO 2019085477 A1 WO2019085477 A1 WO 2019085477A1 CN 2018090080 W CN2018090080 W CN 2018090080W WO 2019085477 A1 WO2019085477 A1 WO 2019085477A1
Authority
WO
WIPO (PCT)
Prior art keywords
small
omnidirectional
small roller
fixed bottom
bottom cover
Prior art date
Application number
PCT/CN2018/090080
Other languages
English (en)
French (fr)
Inventor
钟思超
张金龙
黎钊洪
招俊健
Original Assignee
深圳市工匠社科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711052652.XA external-priority patent/CN108068539A/zh
Priority claimed from CN201721420694.XU external-priority patent/CN207345975U/zh
Priority claimed from CN201721413507.5U external-priority patent/CN207345380U/zh
Application filed by 深圳市工匠社科技有限公司 filed Critical 深圳市工匠社科技有限公司
Publication of WO2019085477A1 publication Critical patent/WO2019085477A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/10Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with more than four wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the utility model relates to the field of robot movement technology, in particular to an omnidirectional mobile chassis.
  • the omnidirectional moving platform based on the omnidirectional wheel is the most mature solution for the omnidirectional moving platform.
  • the omnidirectional wheel generally has two degrees of freedom: an active driving degree of freedom along the tangential direction of the wheel surface and a tangential perpendicular to the surface. Dynamic degrees of freedom, omnidirectional motion can be achieved by controlling the rotation of a single wheel.
  • the chassis of an omnidirectional mobile platform consisting of omnidirectional wheels usually needs to select different configurations of chassis structures according to different usage conditions.
  • most of the omnidirectional mobile chassis structures on the market are relatively heavy, and are suitable for handling relatively large and heavy objects, which makes the use of mobile chassis on small robots cause a certain amount of power waste, and more importantly,
  • the oversized chassis structure makes the robot move more cumbersome, the walking is not flexible enough, and it is not easy to control.
  • the object of the present invention is to provide an omnidirectional structure that is more compact, can be applied to a small robot mobile platform, is lighter in weight, and has more flexible and smooth motion control. Move the chassis.
  • an omnidirectional moving chassis comprising a base, at least four geared motors mounted on the base, and an omnidirectional wheel rigidly connected with an output shaft of the geared motor,
  • the geared motors are arranged symmetrically.
  • the number of the speed reducing motors is four, and the axis of the geared motor has a cross-shaped X shape.
  • the base is provided with a motor mounting bracket.
  • the plane of the motor mount is perpendicular to the bottom plane of the base.
  • the number of the motor mounts is four, and is evenly arranged along the cross direction of the base.
  • each of the geared motors is fixedly connected to the motor mount by screws.
  • the number of the screws is four.
  • the omnidirectional wheel material is made of high-strength plastic material, so that the weight of the chassis structure is effectively reduced, the flexibility of the movement of the mobile platform is increased, and the requirements for portability of the small robot are met.
  • each of the omnidirectional wheels includes a hub and a small roller, the hub is rigidly connected to an output shaft of the reduction motor, and the small roller is rotatably disposed in the two ends in a row and evenly staggered Around.
  • the small roller is free to rotate along its axis, the small roller axis being perpendicular to the hub axis.
  • the number of the small rollers is ten, five in each row, and the small roller axes are rounded to form a regular pentagon.
  • the small roller is rotatably fixed on the small roller rolling shaft, and rotates around the rolling axis, that is, the small roller sequentially contacts the ground, and can rotate freely around its own axis, continuously switching with The bottom surface contacts the rolling, which not only ensures the height of the contact point with the ground when the wheel rolls, avoids the vibration of the robot, and ensures that the small roller can freely roll in parallel with the wheel axis at any position, so that The wheels run more smoothly and effectively reduce noise.
  • a small double-row omnidirectional wheel comprises a hub and a small roller
  • the hub comprises an intermediate fixing seat, a first fixed bottom cover and a second fixed bottom cover
  • the intermediate fixing seat is provided with a motor shaft mounting hole and a motor
  • the rotating shaft is fixedly connected, and the intermediate fixing seat is driven to rotate around the axis by the motor;
  • the two sides of the intermediate fixing seat are evenly arranged with two rows of grooves which are parallel to each other and are perpendicular to the center axis thereof, and the number of the grooves is ten.
  • the small roller is fixed in the groove, that is, the center of the intermediate fixing seat is perpendicular to the axis of the small roller, and the first fixed bottom cover and the second fixed bottom cover are respectively fixed
  • the small roller comprises a small roller body, a small roller rolling shaft and a rubber sleeve, and a rolling shaft groove is arranged on two sides of each groove, and the small roller rolling axis is arranged
  • the small roller body is rotatably fixed on the small roller rolling shaft, and rotates around the rolling axis, that is, the small roller sequentially contacts the ground and can surround the own axis Free rotation, said
  • the rubber sleeve is wrapped around the outer surface of the small roller body, which effectively reduces vibration.
  • the intermediate fixing seat, the first fixed bottom cover and the second fixed bottom cover are made of high-strength plastic material, and are integrally formed, so that the weight is effectively reduced, which meets the requirements of small robots for portability.
  • the adjacent two small rollers have an angle of 72°, and the two rows of the small rollers are staggered at an angle of 36°, and each of the small rollers is fitted with a circle outer diameter of 38 mm, which is consistent with The need for a small robot mobile platform.
  • first fixed bottom cover and the second fixed bottom cover are respectively provided with a groove corresponding to the grooves on both sides of the intermediate fixing seat and a rolling shaft groove.
  • first fixed bottom cover and the second fixed bottom cover are respectively fixed on two sides of the intermediate fixing seat by five hub screws.
  • the gap between the two parallel small rollers is 20 mm, and the flat design makes the omnidirectional wheel look more beautiful.
  • an interference fit is formed between the rubber sleeve and the small roller body.
  • the small roller body and the small roller rolling shaft are made of high-strength plastic material, which further reduces the weight.
  • a positioning pin is disposed between the grooves of the first fixed bottom cover and the second fixed bottom cover, and is engaged with the positioning hole between the two grooves on the two sides of the intermediate fixing seat.
  • the small roller has a circular arc shape.
  • the utility model provides an omnidirectional moving chassis, which has the beneficial effects that the utility model provides an omnidirectional moving chassis, which comprises a base, a plurality of geared motors disposed on the base, and each The omnidirectional wheel of the rigid motor of the geared motor is arranged symmetrically on the base, which makes the movement of the chassis more stable.
  • the omnidirectional wheel is made of high-strength plastic material, so that the weight of the omnidirectional chassis structure can be reduced, so
  • the utility model has the characteristics of simple structure, low cost, light weight and more stable movement, and can realize omnidirectional movement of the platform.
  • FIG. 1 is a schematic structural view of an omnidirectional moving chassis provided by the present invention.
  • FIG. 2 is a top plan view of an omnidirectional moving chassis provided by the present invention.
  • FIG. 3 is a front view of an omnidirectional moving chassis provided by the present invention.
  • FIG. 4 is an isometric view of an omnidirectional wheel structure provided by the present invention.
  • Fig. 5 is a front elevational view showing the structure of the omnidirectional wheel provided by the present invention.
  • Fig. 6 is a left side view showing the structure of the omnidirectional wheel provided by the present invention.
  • FIG. 7 is a schematic structural view of an intermediate fixing seat of the omnidirectional wheel provided by the present invention.
  • Figure 8 is an exploded view of the omnidirectional wheel provided by the present invention.
  • the reference numerals in the figure 1-chassis, 11-motor mounting frame, 2-speed motor, 3-omnidirectional wheel, 31-wheel hub, 32-small roller, 4-screw, 311-intermediate mount, 312 - Groove, 3121 - Rolling shaft groove, 32 - Small roller, 321 - Small roller body, 322 - Small roller rolling shaft, 323 - Rubber sleeve, 313 - First fixed bottom cover, 314 Second fixed bottom cover, 316 - Positioning hole, 317-positioning pin, 318-hub screw, 319-motor shaft mounting hole.
  • installation should be understood broadly, unless otherwise explicitly defined and limited.
  • it may be a fixed connection or Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood by those skilled in the art in a specific case.
  • the omnidirectional moving chassis includes a base 1, at least four geared motors 2 mounted on the base 1, and the geared motor 2
  • the output shaft is rigidly connected to the omnidirectional wheel 3, and the geared motors 2 are arranged symmetrically.
  • the number of the reduction motors 2 is four, and the central axis of the reduction motor 2 has a cross-shaped X shape.
  • the base 1 is provided with a motor mount 11.
  • the plane of the motor mount 11 is perpendicular to the bottom plane of the base 1.
  • the number of the motor mounts 11 is four, and is evenly arranged along the cross direction of the base 1.
  • each of the reduction motors 2 is fixedly coupled to the motor mount 11 by screws 4.
  • the number of the screws 4 is four.
  • the material of the omnidirectional wheel 3 is made of high-strength plastic material, so that the weight of the chassis structure is effectively reduced, the flexibility of the movement of the mobile platform is increased, and the requirements for portability of the small robot are met.
  • each of the omnidirectional wheels 3 includes a hub 31 and a small roller 32, and the hub 31 is intermediate with the geared motor.
  • the output shafts of the two are rigidly connected.
  • the small rollers 31 are rotatably arranged in two rows in a row and are arranged around the hub 31 to reduce the vibration of the chassis caused by the impact of the ground on the wheel body during the movement.
  • the small roller 32 is free to rotate along its axis, the axis of the small roller 32 being perpendicular to the axis of the hub 31.
  • the number of the small rollers 32 is ten, five in each row, and the axis of the small rollers 32 is rounded to form a regular pentagon.
  • the small roller 32 in this embodiment is rotatably fixed on the rolling axis of the small roller 32, and rotates around the rolling axis, that is, the small roller 32 is in contact with the ground in turn, and can rotate freely around its own axis.
  • the rolling contact with the bottom surface is continuously switched, so that the height of the contact point with the ground when the wheel hub 31 rolls is ensured, the vibration of the robot is avoided, and the small roller 32 can be parallelized with the axis of the hub 31 at any position.
  • the free rolling makes the omnidirectional wheel 3 run more smoothly and effectively reduces noise.
  • the omnidirectional wheel 3 includes a hub 31 and a small roller 32.
  • the hub 31 includes an intermediate fixing seat 311, a first fixed bottom cover 313, and a second fixed bottom cover 314.
  • the intermediate fixing base 311 is provided with a motor shaft mounting hole 319 therebetween, and The motor shaft is fixedly connected, and the intermediate fixing base 311 is driven to rotate around the shaft center by the motor; the two sides of the intermediate fixing base 311 are evenly disposed with two rows of grooves 312 which are parallel to each other and are perpendicular to the center axis thereof.
  • the number of the plurality of rows is five, and the small roller 32 is fixed in the groove 312.
  • the axis of the intermediate fixing base 311 is perpendicular to the axis of the small roller 32.
  • the first first fixed bottom The cover 313 and the second fixed bottom cover 314 are respectively fixed on both sides of the intermediate fixing seat 311, and the small roller 32 includes a small roller main body 321, a small roller rolling shaft 322, and a rubber sleeve 323, each of the concave A rolling shaft groove 3121 is disposed at two sides of the groove 312.
  • the small roller rolling shaft 322 is disposed in the rolling shaft groove 3121, and the small roller body 321 is rotatably fixed on the small roller rolling shaft 322. Rotating around the small roller rolling shaft 322, the small Wheel 32 is free to rotate about its own axis, in turn in contact with the ground, the rubber cover 323 is wrapped in an outer surface 321 of the small roller body, effectively reduces the shock.
  • the intermediate fixing base 311, the first fixed bottom cover 313 and the second fixed bottom cover 314 are made of high-strength plastic material, and are integrally formed, so that the weight is effectively reduced, and the portableness of the small robot is met. Requirements.
  • the adjacent two small rollers 32 have an angle of 72°, and the two rows of the small rollers 32 are alternately arranged at an angle of 36°, and the outer diameter of each of the small rollers 32 is rounded. 38mm, in line with the needs of small robot mobile platforms.
  • first fixed bottom cover 313 and the second fixed bottom cover 314 are respectively provided with a groove corresponding to the grooves on both sides of the intermediate fixing base 311 and a rolling shaft groove.
  • first fixed bottom cover 4 and the second fixed bottom cover 314 are respectively fixed to both sides of the intermediate fixing base 311 by five hub screws.
  • the gap between the two parallel small rollers 32 is 20 mm, and the flat design makes the omnidirectional wheel look more beautiful.
  • the rubber sleeve 323 and the small roller body 321 are in an interference fit.
  • the small roller body 321 and the small roller rolling shaft 322 are made of high-strength plastic material, which further reduces the weight.
  • a positioning pin 317 is disposed between the recesses of the first fixed bottom cover 313 and the second fixed bottom cover 314, and the positioning hole 316 between the two recesses 312 on the two sides of the intermediate fixing base 311 is interspersed. Match the connection.
  • the small roller 32 has a circular arc shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Toys (AREA)

Abstract

一种全向移动底盘,包括底座(1)、设置于底座(1)上的多个减速电机(2)以及与各减速电机(2)刚性连接的全向轮(3),所述减速电机(2)之间在底座(1)上呈十字交叉对称布置,设置在全向轮(3)上的小滚轮(32)依次与地面接触,并可绕自身轴心自由转动,连续切换地与地面接触滚动,这样既保证了在轮盘滚动时同地面的接触点高度不变,避免了机器人振动,可使底盘运动更加的平稳,全向轮(3)采用塑料材质,从而可减小全向底盘结构的重量,具有结构简单、成本低廉、重量更轻、运动更平稳的特点,能实现平台的全向移动。

Description

一种全向移动底盘及其小型双排全向轮 技术领域
本实用新型涉及机器人移动技术领域,尤其涉及一种全向移动底盘。
背景技术
基于全向轮的全方位移动平台是目前全向运动平台最为成熟的方案,全向轮一般具有两个自由度:一个沿轮面切向的主动驱动自由度和一个与表面切向垂直的随动自由度,通过对单个轮子旋转的控制就可以实现全向运动。
由全向轮组成的全向移动平台的底盘通常需要根据不同的使用条件需要,选择不同配置的底盘结构。而目前市面上的全向移动底盘结构大多承重比较大,都是适合搬运比较大型的、重量比较重的一些物体,使得使用在小型机器人身上的移动底盘造成一定功率上的浪费,更重要的是,过大的底盘结构会使得机器人移动起来较笨重,行走不够机动灵活,不易于控制。
实用新型内容
综上所述,针对上述现有技术的不足之处,本实用新型的目的在于提供一种结构更加紧凑、能够适用于小型机器人移动平台的、重量更轻、运动控制更灵活更平稳的全向移动底盘。
为实现上述目的,本实用新型采用的技术方案是:一种全向移动底盘,包括底座、安装在底座上的至少四个减速电机以及与所述减速电机的输出轴刚性连接的全向轮,所述减速电机之间为对称布置。
进一步地,所述减速电机数量为四个,所述减速电机中轴线呈十字交叉的X型。
进一步地,所述底座设置有电机安装架。
进一步地,所述电机安装架所在平面与所述底座底平面垂直。
进一步地,所述电机安装架数量为四个,沿所述底座十字交叉方向均匀布置。
进一步地,所述各减速电机通过螺钉固定连接在所述电机安装架上。
更进一步地,所述螺钉数量为四个。
进一步地,所述全向轮材质为高强度塑料材质,使得底盘结构重量得到有效减轻,增加移动平台运动的灵活性,同时符合小型机器人对便携性的要求。
进一步地,所述每个全向轮包括轮毂和小滚轮,所述轮毂中间与所述减速电机的输出轴刚性连接,所述小滚轮分两排依次均匀交错的可转动的设置在所述轮毂的周围。
进一步地,所述小滚轮可沿其轴线自由转动,所述小滚轮轴线与所述轮毂轴线垂直。
进一步地,所述小滚轮数量为十个,每排五个,所述小滚轮轴线合围构成正五边形。
进一步地,所述小滚轮可转动的固定在所述小滚轮滚动轴上,绕所述滚动轴转动,即所述小滚轮依次与地面接触,并可绕自身轴心自由转动,连续切换地与底面接触滚动,这样既保证了在轮盘滚动时同地面的接触点高度不变,避免了机器人振动,也保证了小滚轮在任意位置都可以实现沿与轮盘轴平行方向的自由滚动,使得轮子运行的更加平稳,有效的减少了噪声。
一种小型双排全向轮,包括轮毂和小滚轮,所述轮毂包括中间固定座、第一固定底盖、第二固定底盖,所述中间固定座中间设置有电机转轴安装孔,与电机转轴连接固定,所述中间固定座绕轴心由电机驱动转动;所述中间固定座两侧均匀设置有两排互相平行错开与其中间轴心垂直的凹槽,所述凹槽数量为10个,每一排5个,所述小滚轮固定在所述凹槽内,即所述中间固定座轴心同 小滚轮轴心垂直,所述第一固定底盖和所述第二固定底盖分别固定在所述中间固定座的两侧,所述小滚轮包括小滚轮主体、小滚轮滚动轴以及橡胶套,所述每个凹槽中间两侧设置有滚动轴凹槽,所述小滚轮滚动轴设置在所述滚动轴凹槽内,所述小滚轮主体可转动的固定在所述小滚轮滚动轴上,绕所述滚动轴转动,即所述小滚轮依次与地面接触,并可绕自身轴心自由转动,所述橡胶套包裹在所述小滚轮主体外表面,有效的减少了震动。这样既保证了在轮盘滚动时同地面的接触点高度不变,避免机器人振动,也保证了小滚轮在任意位置都可以实现沿与轮盘轴平行方向的自由滚动。使得轮子运行的更加平稳,有效的减少噪声。
进一步地,所述中间固定座、所述第一固定底盖以及第二固定底盖采用高强度的塑料材质,一体成型制成,使得重量得到有效的降低,符合小型机器人对便携性的要求。
进一步地,相邻的所述两小滚轮夹角为72°,两排所述小滚轮之间成36°角相互交错排列,每排所述小滚轮拟合成的圆外径为38mm,符合小型机器人移动平台的需要。
进一步地,所述第一固定底盖、第二固定底盖分别设置有与所述中间固定座两侧凹槽对应的凹槽及滚动轴凹槽。
进一步地,所述第一固定底盖、第二固定底盖通过5个轮毂螺钉分别固定在所述中间固定座两侧。
进一步地,所述两平行的小滚轮之间的间隙为20mm,扁平化设计,使得全向轮外观更美观。
进一步地,所述橡胶套与所述小滚轮主体之间为过盈配合。
进一步地,所述小滚轮主体及小滚轮滚动轴为高强度塑料材质,进一步减 轻了重量。
进一步地,所述第一固定底盖、第二固定底盖的凹槽之间设置有定位销,与所述中间固定座两侧两凹槽之间的定位孔过盈配合连接。
进一步地,所述小滚轮外形呈圆弧形。
与现有技术相比,本实用新型提供的一种全向移动底盘的有益效果在于:本实用新型提供的一种全向移动底盘,包括底座、设置于底座上的多个减速电机以及与各减速电机刚性连接的全向轮,其在底座上呈十字交叉对称布置,可使底盘运动更加的平稳,全向轮采用高强度塑料材质制成,从而可减小全向底盘结构的重量,故本实用新型具有结构简单、成本低廉、重量更轻、运动更平稳的特点,能实现平台的全向移动。
附图说明
图1是本实用新型提供的一种全向移动底盘的结构示意图。
图2是本实用新型提供的一种全向移动底盘的俯视图。
图3是本实用新型提供的一种全向移动底盘的主视图。
图4是本发明提供的全向轮结构的轴测图。
图5是本发明提供的全向轮的结构的主视图。
图6是本发明提供的全向轮的结构的左视图。
图7是本发明提供的全向轮的中间固定座的结构示意图。
图8是本发明提供的全向轮的分解图。
其中,图中各附图标记:1-底盘,11-电机安装架,2-减速电机,3-全向轮,31-轮毂,32-小滚轮,4-螺钉,311-中间固定座,312-凹槽,3121-滚动轴凹槽,32-小滚轮,321-小滚轮主体,322-小滚轮滚动轴,323-橡胶套,313-第一固定底盖,314第二固定底盖,316-定位孔,317-定位销,318-轮毂螺钉, 319-电机转轴安装孔。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加明白,以下结合附图及实施例对本实用新型进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型,基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本实用新型的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
下面结合附图对本实用新型提供的优选实施方式做具体说明。
请参照图1、图2,为本实用新型的一较佳实施例,所说全向移动底盘,包括底座1、安装在底座1上的至少四个减速电机2以及与所述减速电机2的输出轴刚性连接的全向轮3,所述减速电机2之间为对称布置。
具体地,如图2所示,所述减速电机2的数量为四个,所述减速电机2的中轴线呈十字交叉的X型。
具体地,如图3所示,所述底座1设置有电机安装架11。
具体地,如图3所示,所述电机安装架11所在平面与所述底座1底平面垂直。
具体地,如图2所示,所述电机安装架11的数量为四个,沿所述底座1的十字交叉方向均匀布置。
具体地,如图1所示,所述各减速电机2通过螺钉4固定连接在所述电机安装架11上。
具体地,所述螺钉4的数量为四个。
具体地,所述全向轮3的材质为高强度塑料材质,使得底盘结构重量得到有效减轻,增加移动平台运动的灵活性,同时符合小型机器人对便携性的要求。
具体地,本实用新型中的全向轮工作时,如图1、图3可以看出,所述每个全向轮3包括轮毂31和小滚轮32,所述轮毂31中间与所述减速电机2的输出轴刚性连接,所述小滚轮31分两排依次均匀交错的可转动的设置在所述轮毂31的周围,能够在运动过程中减弱地面对轮体的冲击造成的底盘震动。
具体地,所述小滚轮32可沿其轴线自由转动,所述小滚轮32轴线与所述轮毂31轴线垂直。
具体地,所述小滚轮32数量为十个,每排五个,所述小滚轮32轴线合围构成正五边形。
本实施例中的小滚轮32可转动的固定在所述小滚轮32的滚动轴上,绕所述滚动轴转动,即所述小滚轮32依次与地面接触,并可绕自身轴心自由转动,连续切换地与底面接触滚动,这样既保证了在轮毂31滚动时同地面的接触点 高度不变,避免了机器人振动,也保证了小滚轮32在任意位置都可以实现沿与轮毂31轴线平行方向的自由滚动,使得全向轮3运行的更加平稳,有效的减少了噪声。
如图4至8所示:
全向轮3包括轮毂31和小滚轮32,轮毂31包括中间固定座311、第一固定底盖313、第二固定底盖314,所述中间固定座311中间设置有电机转轴安装孔319,与电机转轴连接固定,所述中间固定座311绕轴心由电机驱动转动;所述中间固定座311两侧均匀设置有两排互相平行错开与其中间轴心垂直的凹槽312,所述凹槽312数量为10个,每一排5个,所述小滚轮32固定在所述凹槽312内,即所述中间固定座311轴心同小滚轮32轴心垂直,所述第一第一固定底盖313和所述第二固定底盖314分别固定在所述中间固定座311的两侧,所述小滚轮32包括小滚轮主体321、小滚轮滚动轴322以及橡胶套323,所述每个凹槽312中间两侧设置有滚动轴凹槽3121,所述小滚轮滚动轴322设置在所述滚动轴凹槽3121内,所述小滚轮主体321可转动的固定在所述小滚轮滚动轴322上,绕所述小滚轮滚动轴322转动,所述小滚轮32绕自身轴心自由转动,依次与地面接触,所述橡胶套323包裹在所述小滚轮主体321外表面,有效的减少了震动。这样既保证了在轮盘滚动时同地面的接触点高度不变,避免机器人振动,也保证了小滚轮32在任意位置都可以实现沿与轮盘轴平行方向的自由滚动,使得轮子运行的更加平稳,有效的减少噪声。
具体地,所述中间固定座311、所述第一固定底盖313以及第二固定底盖314采用高强度的塑料材质,一体成型制成,使得重量得到有效的降低,符合小型机器人对便携性的要求。
具体地,相邻的所述两小滚轮32夹角为72°,两排所述小滚轮32之间成 36°角相互交错排列,每排所述小滚轮32拟合成的圆外径为38mm,符合小型机器人移动平台的需要。
具体地,所述第一固定底盖313、第二固定底盖314分别设置有与所述中间固定座311两侧凹槽对应的凹槽及滚动轴凹槽。
具体地,所述第一固定底盖4和第二固定底盖314通过5个轮毂螺钉分别固定在所述中间固定座311两侧。
具体地,所述两平行的小滚轮32之间的间隙为20mm,扁平化设计,使得全向轮外观更美观。
具体地,所述橡胶套323与所述小滚轮主体321之间为过盈配合。
具体地,所述小滚轮主体321及小滚轮滚动轴322为高强度塑料材质,进一步减轻了重量。
具体地,所述第一固定底盖313、第二固定底盖314的凹槽之间设置有定位销317,与所述中间固定座311两侧两凹槽312之间的定位孔316过盈配合连接。
具体地,所述小滚轮32外形呈圆弧形。
以上所述仅为本实用新型的较佳实施例而已,显然本实用新型专利的实现并不受上述方式的限制,只要采用了本实用新型专利的方法构思和技术方案进行的任何修改、等同替换和改进等,或未经改进将本实用新型专利的构思和技术方案直接应用于其它场合的,均应包含在本实用新型的保护范围之内。

Claims (14)

  1. 一种全向移动底盘,其特征在于:包括底座、安装在底座上的至少四个减速电机以及与所述减速电机的输出轴刚性连接的全向轮,所述减速电机之间为对称布置。
  2. 根据权利要求1所述的全向移动底盘,其特征在于:所述减速电机数量为四个,所述减速电机中轴线呈十字交叉的X型。
  3. 根据权利要求1所述的全向移动底盘,其特征在于:所述底座设置有电机安装架,
    所述电机安装架所在平面与所述底座底平面垂直,
    所述电机安装架数量为四个,沿所述底座十字交叉方向均匀布置,所述各减速电机通过螺钉固定连接在所述电机安装架上。
  4. 根据权利要求1所述的全向移动底盘,其特征在于:所述每个全向轮包括轮毂和小滚轮,所述轮毂中间与所述减速电机的输出轴刚性连接,所述小滚轮分两排依次均匀交错的可转动的设置在所述轮毂的周围,
    所述小滚轮可沿其轴线自由转动,所述小滚轮轴线与所述轮毂轴线垂直。
  5. 根据权利要求4所述的全向移动底盘,其特征在于:所述小滚轮数量为十个,每排五个,所述小滚轮轴线合围构成正五边形。
  6. 一种小型双排全向轮,由中间固定座、第一固定底盖、第二固定底盖以及小滚轮组成,其特征在于:所述中间固定座中间设置有电机转轴安装孔,与电机转轴连接固定;所述中间固定座两侧均匀设置有两排互相平行错开与其中间轴心垂直的凹槽,所述小滚轮固定在所述凹槽内,所述第一固定底盖和所述第二固定底盖分别固定在所述中间固定座的两侧,所述小滚轮包括小滚轮主体、小滚轮滚动轴以及橡胶套,所述每个凹槽中间两侧设置有滚动轴凹槽,所述小滚轮滚动轴设置在所述滚动轴凹槽内,所述小滚轮主体可转动的固定在所 述小滚轮滚动轴上,绕所述滚动轴转动,所述橡胶套包裹在所述小滚轮主体外表面。
  7. 根据权利要求6所述的小型双排全向轮,其特征在于:所述中间固定座、所述第一固定底盖以及第二固定底盖采用塑料材质,一体成型。
  8. 根据权利要求6所述的小型双排全向轮,其特征在于:相邻的所述两小滚轮夹角为72°,两排所述小滚轮之间成36°角相互交错排列,每排所述小滚轮拟合成的圆外径为38mm。
  9. 根据权利要求6所述的小型双排全向轮,其特征在于:所述第一固定底盖、第二固定底盖分别设置有与所述中间固定底两侧凹槽对应的凹槽及滚动轴凹槽。
  10. 根据权利要求6所述的小型双排全向轮,其特征在于:所述第一固定底盖、第二固定底盖通过轮毂螺钉分别固定在所述中间固定座两侧。
  11. 根据权利要求6所述的小型双排全向轮,其特征在于:所述两平行的小滚轮之间的间隙为20mm。
  12. 根据权利要求6所述的小型双排全向轮,其特征在于:所述小滚轮外形呈圆弧形,所述橡胶套与所述小滚轮主体之间为过盈配合。
  13. 根据权利要求6所述的小型双排全向轮,其特征在于:所述小滚轮主体及小滚轮滚动轴为塑料材质。
  14. 根据权利要求6所述的小型双排全向轮,其特征在于:所述第一固定底盖、第二固定底盖的凹槽之间设置有定位销,与所述中间固定座两侧两凹槽之间的定位孔过盈配合连接。
PCT/CN2018/090080 2017-10-30 2018-06-06 一种全向移动底盘及其小型双排全向轮 WO2019085477A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201711052652.XA CN108068539A (zh) 2017-10-30 2017-10-30 一种小型双排全向轮
CN201711052652.X 2017-10-30
CN201721413507.5 2017-10-30
CN201721420694.XU CN207345975U (zh) 2017-10-30 2017-10-30 一种全向移动底盘
CN201721420694.X 2017-10-30
CN201721413507.5U CN207345380U (zh) 2017-10-30 2017-10-30 一种小型双排全向轮

Publications (1)

Publication Number Publication Date
WO2019085477A1 true WO2019085477A1 (zh) 2019-05-09

Family

ID=63165745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090080 WO2019085477A1 (zh) 2017-10-30 2018-06-06 一种全向移动底盘及其小型双排全向轮

Country Status (2)

Country Link
JP (1) JP3217560U (zh)
WO (1) WO2019085477A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465917A (zh) * 2019-08-26 2019-11-19 华南理工大学 一种可转动导轮组导向式轨道机器人底盘
CN111845998A (zh) * 2020-07-15 2020-10-30 中原动力智能机器人有限公司 一种机器人移动平台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209755188U (zh) * 2019-03-01 2019-12-10 达闼科技(北京)有限公司 一种轮脚模组及机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323867A (en) * 1992-03-06 1994-06-28 Eric J. Allard Robot transport platform with multi-directional wheels
CN103569230A (zh) * 2012-07-25 2014-02-12 成都联腾动力控制技术有限公司 一种全向移动平台
CN105751815A (zh) * 2016-04-29 2016-07-13 广东科杰达智能电器有限公司 一种扫地机器人的全向轮
CN207345975U (zh) * 2017-10-30 2018-05-11 深圳市工匠社科技有限公司 一种全向移动底盘
CN207345380U (zh) * 2017-10-30 2018-05-11 深圳市工匠社科技有限公司 一种小型双排全向轮
CN108068539A (zh) * 2017-10-30 2018-05-25 深圳市工匠社科技有限公司 一种小型双排全向轮

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323867A (en) * 1992-03-06 1994-06-28 Eric J. Allard Robot transport platform with multi-directional wheels
CN103569230A (zh) * 2012-07-25 2014-02-12 成都联腾动力控制技术有限公司 一种全向移动平台
CN105751815A (zh) * 2016-04-29 2016-07-13 广东科杰达智能电器有限公司 一种扫地机器人的全向轮
CN207345975U (zh) * 2017-10-30 2018-05-11 深圳市工匠社科技有限公司 一种全向移动底盘
CN207345380U (zh) * 2017-10-30 2018-05-11 深圳市工匠社科技有限公司 一种小型双排全向轮
CN108068539A (zh) * 2017-10-30 2018-05-25 深圳市工匠社科技有限公司 一种小型双排全向轮

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465917A (zh) * 2019-08-26 2019-11-19 华南理工大学 一种可转动导轮组导向式轨道机器人底盘
CN111845998A (zh) * 2020-07-15 2020-10-30 中原动力智能机器人有限公司 一种机器人移动平台

Also Published As

Publication number Publication date
JP3217560U (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2019085477A1 (zh) 一种全向移动底盘及其小型双排全向轮
CN206067368U (zh) 全向轮、包括全向轮的机器人移动平台及移动机器人
CN102615649A (zh) 一种滚动双四平行四边形机器人
US20190126675A1 (en) Small double-row omni-directional wheel
CN106739781B (zh) 半嵌入式麦克纳姆轮结构
CN206719346U (zh) 行走驱动组件及球形机器人
CN103569230A (zh) 一种全向移动平台
CN210298174U (zh) 一种无尘车间用可调角度的离子风机
CN108775497A (zh) 一种便于拆卸的墙体安装支架
CN102672707A (zh) 一种滚动行进的差速七连杆机器人
CN106004237A (zh) 一种全向移动装置
CN107697181A (zh) 水平阴角攀爬机器人
CN207345380U (zh) 一种小型双排全向轮
CN204133807U (zh) 一种按摩装置
CN105267016A (zh) 一种按摩装置
CN207345975U (zh) 一种全向移动底盘
CN209304248U (zh) 玻璃磨边设备中转机构
CN201744996U (zh) 全方位移动机器人传动机构
CN207345967U (zh) 水平阴角攀爬机器人
CN210556021U (zh) 一种金箍食品包装密封圈
CN104015556A (zh) 一种全向轮
CN204149766U (zh) 一种全向轮
CN207824895U (zh) 一种可翻转的机器人行进底盘
CN206719347U (zh) 行走驱动组件及球形机器人
CN102059915B (zh) 全方位轮的轮毂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18873334

Country of ref document: EP

Kind code of ref document: A1