WO2019085398A1 - 具有热超导换热器的动力电池包及动力电池包系统 - Google Patents

具有热超导换热器的动力电池包及动力电池包系统 Download PDF

Info

Publication number
WO2019085398A1
WO2019085398A1 PCT/CN2018/082548 CN2018082548W WO2019085398A1 WO 2019085398 A1 WO2019085398 A1 WO 2019085398A1 CN 2018082548 W CN2018082548 W CN 2018082548W WO 2019085398 A1 WO2019085398 A1 WO 2019085398A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal superconducting
plate
battery pack
power battery
heat
Prior art date
Application number
PCT/CN2018/082548
Other languages
English (en)
French (fr)
Inventor
仝爱星
曾巧
Original Assignee
上海嘉熙科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海嘉熙科技有限公司 filed Critical 上海嘉熙科技有限公司
Priority to US16/759,359 priority Critical patent/US11482740B2/en
Publication of WO2019085398A1 publication Critical patent/WO2019085398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of semiconductor manufacturing, and in particular relates to a power battery pack and a power battery pack system with a thermal superconducting heat exchanger.
  • the core component is the power battery.
  • the core part of the new energy electric vehicle is composed of one or more power battery packs, and the power battery pack is densely arranged by a plurality of battery cells.
  • the electric vehicle continues to operate under a large load condition, the power battery will continue. In a large rate discharge state.
  • a large amount of heat is rapidly generated in the battery pack, and the middle area inevitably has a large amount of heat accumulation, and the edge area is less, which increases the imbalance of the temperature of each unit battery in the battery pack, and ultimately affects the performance of the entire battery pack.
  • the heat in the middle area cannot be dissipated quickly and effectively, the battery temperature will rise significantly and lead to internal hot spots, which may lead to thermal runaway of the battery, oxidative combustion of the electrolyte, and even explosion.
  • the design of the battery pack must be sealed, waterproof, dustproof, insulated, etc., and uniform heat dissipation should be considered.
  • the heat dissipation of battery packs has become an important area of research in the industry.
  • the heat dissipation of the power battery pack is usually carried out by direct air cooling and liquid cooling.
  • the use of air cooling means that the cold air directly carries heat away from the battery cells.
  • the main advantages are: simple structure, light weight, effective ventilation when harmful gases are generated, and low cost; the disadvantage is: heat exchange with the battery wall Low coefficient, slow cooling rate, low efficiency, large battery spacing, large volume, etc.
  • the liquid cooling method is usually carried out by placing a liquid cooling plate on the bottom of the battery or between the microchannels and the battery cells, and removing heat through the liquid flow.
  • the main advantages of liquid cooling are: high heat transfer coefficient with battery wall surface and fast cooling speed; the disadvantages are: high sealing requirements, relatively large quality, complicated maintenance and maintenance, and need for water jackets, heat exchangers,
  • an object of the present invention is to provide a power battery pack and a power battery pack system having a thermal superconducting heat exchanger for solving the cooling of the battery pack in the prior art.
  • the present invention also provides a power battery pack having a thermal superconducting heat exchanger, the power battery pack having the thermal superconducting heat exchanger comprising: a thermal superconducting heat exchanger and a plurality of Battery cells; among them,
  • the thermal superconducting heat exchanger comprises a heat sink, a heater and a plurality of thermally superconducting plates arranged in parallel; the heater is located at one side of the heat sink and has a spacing from the heat sink; The thermal superconducting plate is located between the heat sink and the heater, one end is connected to the heat sink, the other end is connected to the heater, and a hot superconductor road is formed in the thermal superconducting plate.
  • the hot super-duct conduit is a closed pipeline, and the hot super-duct conduit is filled with a heat transfer medium;
  • the battery cell is located between the heat sink and the heater, and each of the battery cells is in contact with the thermal superconducting plate.
  • the thermal superconducting plate includes a wave portion and a bent portion; wherein
  • the wave portion includes an opposite first surface and a second surface, the wave portion further includes a plurality of first protrusions protruding toward the first surface and second protrusions protruding toward the second surface, The first raised portion and the second raised portion are alternately arranged and connected in series along the length direction of the thermal superconducting plate;
  • the bent portion is located at both ends of the wave portion and is connected to both ends of the wave portion;
  • Each of the thermal superconducting plates is respectively connected to a surface of the heat sink and a surface of the heater via the bent portion;
  • the battery cell is located on a side of the first surface of the wave portion and a second a side of the surface;
  • the battery cell located on a side of the first surface of the wave portion is disposed corresponding to the second protrusion portion, and is attached to the second protrusion portion, and is located at the second portion of the wave portion
  • the battery cell on one side of the surface is disposed corresponding to the first convex portion, and is attached to the first convex portion.
  • the first convex portion and the second convex portion are arc-shaped convex portions, and the battery cell has a cylindrical shape.
  • a length direction of the wave portion is perpendicular to a surface of the bent portion; and the wave portion and the bent portion are integrally formed.
  • the width of the wave portion is the same as the height of the battery cell, and the length of the bent portion is the same as the height of the heat sink.
  • the thermal superconducting plate includes a flat portion and a bent portion
  • the bent portion is located at both ends of the flat plate portion and is connected to both ends of the flat plate portion;
  • Each of the thermal superconducting plates is respectively connected to a surface of the heat sink and a surface of the heater via the bent portion;
  • the battery cell has a rectangular shape, the battery cell is located between adjacent flat plate portions, and the battery cell is disposed at least adjacent to a flat plate portion adjacent thereto.
  • the longitudinal direction of the flat plate portion is perpendicular to the surface of the bent portion; and the flat plate portion and the bent portion are integrally formed.
  • the width of the flat portion is the same as the height of the battery cell, and the length of the bent portion is the same as the height of the heat sink.
  • the thermal superconducting plate is a composite plate structure, and the thermal superconducting plate has a double-sided expansion, a single-sided expansion or a double-sided flat shape.
  • the heat sink includes at least a cooling plate, and a cooling pipe is formed in the cooling plate, and the cooling plate is provided with an inlet and an outlet communicating with the cooling pipe.
  • a surface of the cooling plate is connected to one end of the thermal superconducting plate, and a length direction of the cooling plate is parallel to a longitudinal direction of the heater, and the thermal super The length of the guide is perpendicular.
  • the heat sink further includes heat dissipating fins, and the heat dissipating fins are disposed on the cooling plate.
  • the heat sink includes a fixed substrate and heat dissipating fins disposed on the fixed substrate.
  • a surface of the fixed substrate is connected to one end of the thermal superconducting plate, and a length direction of the fixed substrate is parallel to a longitudinal direction of the heater, and the heat is The length direction of the superconducting plate is perpendicular; the number of the heat dissipating fins is plural, and the plurality of the heat dissipating fins are inserted from the surface of the fixing substrate away from the thermal superconducting plate.
  • the invention also provides a power battery pack system, the power battery pack system comprising:
  • a refrigerant system comprising at least a refrigerant source for providing a refrigerant to the radiator;
  • a heating controller is coupled to the heater for controlling operation of the heater.
  • the power battery pack system further includes a temperature control system, and the temperature system includes:
  • a temperature measuring device disposed on the power battery pack having the heat superconducting heat exchanger for measuring the temperature of each of the battery cells;
  • a temperature control device connected to the temperature measuring device, the refrigerant source and the heating controller, configured to control the refrigerant source to supply a refrigerant or a control device to the radiator according to a result of the measurement by the temperature measuring device
  • the heating controller controls the heater to heat.
  • the power battery pack and the power battery pack system having the thermal superconducting heat exchanger provided by the present invention have the following
  • the power battery pack with the thermal superconducting heat exchanger of the invention adopts a thermal superconducting plate as an exchange structure for heat exchange with the battery cells, and the thermal superconducting plate adopts a heat exchange method of thermal superconducting, and the equivalent thermal conductivity coefficient thereof can be Up to 4000W/m °C, with high thermal conductivity, high heat transfer efficiency, uniform temperature of the entire thermal superconducting plate, etc., can effectively reduce the temperature unevenness of the battery cells in the power battery pack during rapid charging and discharging.
  • the power battery pack with the thermal superconducting heat exchanger of the present invention can quickly heat the battery cell when the battery cell temperature is low by providing a heat sink and a heater at both ends of the thermal superconducting plate, thereby improving the battery bill.
  • the power battery pack with the thermal superconducting heat exchanger of the invention has the advantages of compact and flexible structure, small volume and weight, strong output capability and high reliability;
  • the power battery package system of the invention can realize automatic regulation of the temperature of the battery unit, and can automatically control the temperature of the battery unit within an optimal working temperature range.
  • FIG. 4 are schematic diagrams showing the structure of a power battery pack with a thermal superconducting heat exchanger according to Embodiment 1 of the present invention
  • FIG. 1 shows a heat sink including a cooling plate provided in Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing a three-dimensional structure of a power battery pack having a heat-dissipating heat exchanger
  • FIG. 2 is a heat-conducting heat exchanger having a heat-dissipating heat sink and a heat-dissipating fin.
  • FIG. 1 shows a heat sink including a cooling plate provided in Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing a three-dimensional structure of a power battery pack having a heat-dissipating heat exchanger
  • FIG. 2 is a heat-conducting heat exchanger having a heat-dissipating heat sink and a heat-dissipating fin.
  • FIG. 1 shows
  • FIG. 3 is a schematic perspective view of a power battery pack having a heat transfer heat exchanger including a fixed substrate and heat dissipating fins according to a first embodiment of the present invention.
  • FIG. The heat sink provided in the first embodiment of the present invention includes a top view of a power battery pack having a thermal superconducting heat exchanger that fixes the substrate and the heat dissipating fins.
  • FIG. 5 is a schematic perspective view showing a thermal superconducting plate in a power battery pack having a thermal superconducting heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 6 and FIG. 7 are schematic diagrams showing an enlarged partial cross-sectional structure of a thermal superconducting plate in a power battery pack with a thermal superconducting heat exchanger according to Embodiment 1 of the present invention, wherein the thermal superconducting plate in FIG. 6 is a single In the form of surface expansion, the thermal superconducting plate in Fig. 7 has a double-sided flat shape.
  • FIG. 8 and FIG. 9 are schematic diagrams showing the structure of a thermal superconducting plate in a power battery pack having a thermal superconducting heat exchanger according to Embodiment 1 of the present invention, wherein the thermal superconducting duct in the thermal superconducting plate of FIG.
  • the road has a hexagonal honeycomb shape
  • the hot superconductor road in the thermal superconducting plate in Fig. 9 has a rectangular grid shape.
  • FIG. 10 is a schematic perspective view showing a power battery pack with a thermal superconducting heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 11 is a top plan view showing a power battery pack with a thermal superconducting heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 12 is a perspective view showing the structure of a thermal superconducting plate in a power battery pack having a thermal superconducting heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 13 is a structural block diagram of a power battery pack system provided in Embodiment 3 of the present invention.
  • the present invention provides a power battery pack 1 having a thermal superconducting heat exchanger, wherein the power battery pack 1 having a thermal superconducting heat exchanger includes: a thermal superconducting heat exchanger 11 and a plurality of battery cells 12; wherein the thermal superconducting heat exchanger 11 includes a heat sink 111, a heater 112, and a plurality of thermally superposed plates 113 arranged in parallel; the heater 112 is located at the heat sink One side of the 111 has a spacing from the heat sink 111; the thermal superconducting plate 113 is located between the heat sink 111 and the heater 112, and one end of the thermal superconducting plate 113 and the heat sink 111 is connected to the other end, and the other end is connected to the heater 112.
  • the thermal superconducting plate 113 is formed with a thermal supercatheter circuit 1136 (as shown in FIGS. 4 to 7), and the thermal supercatheter circuit 1136 is closed. a pipeline, and the hot super conduit 1136 is filled with a heat transfer medium 1137; the battery unit 12 is located between the heat sink 111 and the heater 112, and each of the battery cells 12 is In contact with the thermal superconducting plate 113, in particular, each of the battery cells 12 is attached to the thermal superconducting plate 113.
  • the thermal superconducting plate 113 implements heat exchange between the battery unit 12 and the heat sink 111 and the heater 112 by using a thermal superconducting heat transfer technology.
  • the thermal super The conduction heat transfer technology includes a heat pipe technology for filling a working medium in a closed interconnected microchannel system, a thermal superconducting heat transfer through evaporation and condensation phase transformation of the working medium, and a control of the working medium microstructure in the closed system. State, that is, during the heat transfer process, the boiling of the liquid medium (or condensation of the gaseous medium) is suppressed, and on this basis, the consistency of the working microstructure is achieved, and the phase change suppression (PCI) transmission for achieving efficient heat transfer is achieved.
  • PCI phase change suppression
  • the heat transfer medium 1137 is a fluid.
  • the heat transfer medium 1137 may be a gas or a liquid or a mixture of a gas and a liquid. More preferably, in the embodiment, the heat transfer worker Mass 1137 is a mixture of liquid and gas.
  • the heat sink 111 includes at least a cooling plate 1111, and a cooling pipe (not shown) is formed in the cooling plate 1111.
  • the cooling plate 1111 is provided with An inlet 1112 and an outlet 1113 communicating with the cooling line.
  • the surface of the cooling plate 1111 is connected to one end of the thermal superconducting plate 113, and the longitudinal direction of the cooling plate 1111 is parallel to the longitudinal direction of the heater 112, and the length of the thermal superconducting plate 1113
  • the direction is perpendicular; that is, the surface of the cooling plate 1111 is parallel to the surface of the heater 112, and the length direction of the thermal superconducting plate 113 and the surface of the cooling plate 1111 and the surface of the heater 112 Vertical.
  • the heat sink 111 further includes heat dissipating fins 1114 disposed on the cooling plate 1111.
  • the heat dissipating fins 1114 are vertically inserted on a surface of the cooling plate 1111 away from the thermal superconducting plate 113, and the heat dissipating fins 1114 are perpendicular to the surface of the cooling plate 1111.
  • the number of the heat dissipating fins 1114 may be plural, and the plurality of the heat dissipating fins 1114 are spaced apart in parallel.
  • the heat sink 111 may further include a structure including a fixed substrate 1115 and heat dissipation fins 1114 disposed on the fixed substrate 1115 .
  • the fixed substrate 1115 is a solid substrate.
  • the fixed substrate 1115 may also be provided with a thermal superconducting heat dissipation pipe or the like.
  • one surface of the fixed substrate 1115 is connected to one end of the thermal superconducting plate 113, and the longitudinal direction of the fixed substrate 1115 is parallel to the longitudinal direction of the heater 112, and The longitudinal direction of the thermal superconducting plate 113 is perpendicular; the number of the heat dissipating fins 1114 is plural, and the plurality of the heat dissipating fins 1114 are inserted from the fixed substrate 1115 away from the thermal superconducting plate 113. surface.
  • a refrigerant may be introduced into the cooling pipe in the cooling plate 1111 (for example, Cooling water or cold air) to dissipate heat transferred from the thermal superconducting plate 113; when the heat sink 111 is a structure including the fixed substrate 1115 and the heat dissipating fins 1114, due to the fixing There is no refrigerant pipe that can pass through the refrigerant in the substrate 1115. At this time, the heat transferred from the heat superconducting plate 113 can be dissipated by forcibly blowing cold air to the heat dissipating fins 1114 to enhance heat dissipation.
  • the thermal superconducting plate 1313 includes a wave portion 1131 and a bent portion 1132; wherein the wave portion 1131 includes opposing first and second surfaces, the wave The portion 1131 further includes a plurality of first protrusions 11311 protruding toward the first surface and a second protrusion 11312 protruding toward the second surface, the first protrusions 11311 and the second protrusions 11312 is alternately distributed and integrated in the longitudinal direction of the thermal superconducting plate 113; the bent portion 1132 is located at both ends of the wave portion 1131 and is connected to both ends of the wave portion 1131; The number of the bent portions 1132 is two, one of the bent portions 1132 is located at one end of the wave portion 1131, and is connected to the end of the wave portion 1131 as an integral structure, and the other of the bends The folded portion 1132 is located at the other end of the wave portion 1131 and is connected to the end of the wave portion 1131 as an integral
  • the heat sink 111 includes the fixed substrate 1115 and the heat dissipating fins 1114, the bent portion 1132 and the portion
  • the fixed substrate 1115 is connected away from the surface of the heat dissipating fin 1114;
  • the battery cell 12 is located on the first surface side and the second surface side of the wave portion 1131; and is located at the wave portion 1131
  • the battery cell 12 on one side of the surface is disposed corresponding to the second boss portion 11312, and is attached to the second boss portion 11312, and the side of the second surface of the wave portion 1131 is
  • the battery cell 12 is disposed corresponding to the first boss portion 11311 and is attached to the first boss portion 11311.
  • the first convex portion 11311 forms a groove corresponding to the protrusion on the second surface side of the wave portion 1131 while protruding toward the first surface of the wave portion 1131.
  • the groove serves as a receiving space of the battery unit 12; similarly, the second raised portion 11312 is convex toward the second surface of the wave portion 1131, and the first portion of the wave portion 1131 A groove corresponding to the protrusion is formed on one side of one surface, and the groove also serves as a housing space of the battery unit 12.
  • the first raised portion 11311 and the second raised portion 11312 may both be arcuate protrusions, and the shape of the battery cell 12 may be a cylinder.
  • the first protrusion The curvature of the rising portion 11311 and the second convex portion 11312 matches the curvature of the surface of the battery cell 12 to ensure the battery cell 12 and the first convex portion 11311 and the second convex portion.
  • the contact portion 11312 is in full contact as much as possible to maximize the contact area between the battery cell 12 and the first boss portion 11311 and the second boss portion 11312, so that the battery cell 12 and the first There is as little space as possible between a raised portion 11311 and the second raised portion 11312 to ensure efficient heat exchange between the thermal superconducting plate 113 and each of the battery cells 12.
  • the shape of the battery cell 12 may also be a hexagonal body, an octagonal body, or the like, but regardless of the shape of the battery cell 12, the first protrusion
  • the shape of the portion 11311 and the second raised portion 11312 should match the shape of the battery cell 12 in contact therewith.
  • the length direction of the wave portion 1131 is perpendicular to the surface of the bent portion 1132; the wave portion 1131 and the bent portion 1132 are integrally formed.
  • the longitudinal direction of the wave portion 1131 coincides with the longitudinal direction of the thermal superconducting plate 113, the surface of the bent portion 1132 and the surface of the cooling plate 1111 or the fixed substrate 1115 and the heating The surfaces of the devices are parallel.
  • the integrally formed structure of the wave portion 1131 and the bent portion 1132 means that the thermal superconducting plate 113 is obtained by rolling and bending a flat hot superconducting plate.
  • the structure of the wave portion 1131 and the bent portion 1132 is described.
  • the gap between adjacent thermal superconducting plates 113 may be set according to actual needs, but the gap between adjacent thermal superconducting plates 113 must be larger than the lateral dimension of one of the battery cells 12. (i.e., the dimension in the direction perpendicular to the height of the battery cells 12) to ensure that at least one of the battery cells 12 can be placed between adjacent thermal superconducting plates 113.
  • the gap between the adjacent thermal superconducting plates 113 is preferably larger than the lateral dimension of one of the battery cells 12, and smaller than the lateral dimensions of the two of the battery cells 12. And, so that a plurality of the battery cells 12 staggered and distributed in the longitudinal direction of the adjacent thermal superconducting plates 113 may be placed adjacent to each other.
  • the width of the wave portion 1131 may be the same as the height of the battery cell 12, and the length of the bent portion 1132 may be the same as the height of the heat sink 111 (the height of the heat sink 111 is It is the width of the cooling plate 1111 or the width of the fixed substrate 1115).
  • the width of the wave portion 1131 may also be smaller than the height of the battery unit 12, and may be greater than the height of the battery unit 12; likewise, the length of the bent portion 1132 may also be Less than the height of the heat sink 111, it may be larger than the arsenazo of the heat sink 111.
  • the width of the wave portion 1131 herein refers to the dimension in the direction perpendicular to the longitudinal direction of the wave portion 1131
  • the length of the bent portion 1132 refers to the bending portion 1132 along the The dimension of the direction in which the longitudinal direction of the wave portion 1131 is perpendicular.
  • the thermal superconducting plate 113 may be a composite plate structure including a first plate 1134 and a second plate 1135 .
  • the thermal superconducting plate 113 has a single-face expansion configuration; a surface of the first plate 1134 is formed with an embossed channel formed by an imprint process or by an inflation process. Forming an inflation channel, while the embossed channel or the inflation channel is formed on a surface of the first plate 1134, the other surface of the first plate 1134 is formed and pressed a groove structure or a corresponding convex structure 11341; the first plate 1134 and the second plate 1135 may be compounded by a welding process or the like, and the first plate 1134 is formed
  • the surface of the embossed channel or the inflation channel is a composite surface; after the first plate 1134 is combined with the second plate 1135, the embossed channel or the inflation channel constitutes a
  • the thermal supercatheter circuit 1136 is described.
  • the etching channel or the inflation channel may be formed only for a surface of the second plate 1135.
  • the thermal superconducting plate 113 may also be in a double-sided flat form; a surface of the first plate 1134 is formed with an etched channel, and the first plate 1134 is The second plate 1135 is composited by a welding process, and the surface forming the etching channel is a composite surface; after the first plate 1134 is combined with the second plate 113, the etching channel is The hot superconductor path 1136 is formed.
  • only one surface of the second plate 1135 may be formed with the etching channel; and the first plate 1134 and the second plate 1135 may be formed with an etching channel. After the first plate 1134 is combined with the second plate 1135, the etched channel on the first plate 1134 and the etched channel on the second plate 1135 together form the thermal superconductor path 1136. .
  • the thermal superconducting plate 113 may also have a double-sided expansion shape; the surface adjacent to the first plate 1134 and the second plate 1135 may be formed with an embossed channel or an inflation channel.
  • the first plate 1134 and the second plate 1135 are respectively formed with a convex structure 11341 corresponding to the embossed channel or the inflation channel; the first plate 1134 and the second plate After the 1135 is compounded by the welding process, the embossing channel or the inflation channel on the first plate 1134 and the embossing channel or the inflation channel on the second plate 1135 together constitute the Thermal superconductor road 1136.
  • the shape of the thermal superconductor channel 1136 in the thermal superconducting plate 113 can be set to a hexagonal honeycomb shape (as shown in FIG. 8), a circular honeycomb shape, or a rectangular grid shape according to actual needs.
  • the hot superconductor roads 1136 and the periphery thereof are non-pipe portion 1138; when the thermal superconducting plate 113 is formed by an inflation process, the heat is formed.
  • a filling port 1139 is formed in the thermal superconducting plate 113, and the first plate member 1134 is combined with the second plate member 1135 and formed in the thermal superconducting plate 113.
  • the heat transfer conduit 1136 is followed by the heat transfer medium 1137 into the hot super conduit 1136, but after filling the heat transfer medium 1137, the filling port 1139 needs to be sealed to ensure The hot super conduit path 1136 is a sealed line.
  • the material of the first plate 1134 and the second plate 1135 should be a material with good thermal conductivity; preferably, in the embodiment, the materials of the first plate 1134 and the second plate 1135 are It may be copper, a copper alloy, aluminum or an aluminum alloy or any combination of any one or more.
  • the materials of the first plate 1134 and the second plate 1135 may be the same or different.
  • the materials of the first plate 1134 and the second plate 1135 are the same.
  • the power battery pack 1 having the thermal superconducting heat exchanger of the present invention operates on the principle that the battery cell 12 is generated by the thermal superconducting plate 113 when the battery cell 12 needs to be cooled and cooled. Heat is led to the heat sink 111, and heat is led to the outside of the battery pack via the heat sink 111; when the battery cell 12 needs to be heated and heated, the heat is applied through the thermal superconducting plate 113 The heat generated by the heater 112 is quickly and evenly conducted to each of the battery cells 12 to uniformly heat each of the battery cells 12.
  • the power battery pack 1 having a thermal superconducting heat exchanger of the present invention employs the thermal superconducting plate 113 as an exchange structure for heat exchange with the battery cells 12, and the thermal superconducting plate 113 employs thermal superconducting
  • the heat exchange mode has an equivalent thermal conductivity of 4000 W/m ° C, and has the characteristics of high heat conduction speed, high heat transfer efficiency, uniform temperature of the entire thermal superconducting plate 113, and the like, and can effectively reduce the position in the power battery pack.
  • the heat sink 111 and the heater 112 are disposed to rapidly heat the battery cell 12 when the temperature of the battery cell 12 is low, thereby improving heating of the battery cell 12 under low temperature conditions.
  • the battery cell 12 can be rapidly cooled and cooled when the temperature of the battery cell 12 is high; the power battery package 1 with the thermal superconducting heat exchanger of the present invention is compact, flexible and compact. with A small amount, high output capacity and high reliability.
  • the present invention further provides a power battery pack 1 having a thermal superconducting heat sink, and the structure and the first embodiment of the power battery pack 1 having the thermal superconducting heat sink described in this embodiment
  • the structure of the power battery pack 1 having the thermal superconducting heat sink is substantially the same, and the difference is that in the first embodiment, the thermal superconducting plate 1313 includes a wave portion 1131 and a bent portion 1132.
  • the wave portion 1131 includes opposing first and second surfaces, and the wave portion 1131 further includes a plurality of first protrusions 11311 protruding toward the first surface and second protrusions protruding toward the second surface
  • the first convex portion 11311 and the second convex portion 11312 are alternately arranged and connected in series along the longitudinal direction of the thermal superconducting plate 113
  • the bent portion 1132 is located at the wave portion Both ends of the 1131 are connected to the two ends of the wave portion 1131; specifically, the number of the bent portions 1132 is two, and one of the bent portions 1132 is located at one end of the wave portion 1131, and Connected to the end of the wave portion 1131 as a unitary structure, and the other of the bends 1132 is located at the other end of the wave portion 1131, and is connected to the end of the wave portion 1131 as an integral structure; the battery cell 12 is located on the first surface side and the second surface side of the wave portion 1131 And the battery cell 12
  • the thermal superconducting plate 113 includes a flat plate portion 1133 and a bent portion 1132.
  • the bent portion 1132 is located at both ends of the flat plate portion 1133 and is adjacent to the flat plate portion 1133.
  • the two terminals are connected in a rectangular shape
  • the battery cells 12 are rectangular in shape
  • the battery cells 12 are located between the adjacent flat plate portions 1133
  • the battery cells 12 are at least one adjacent thereto.
  • the flat plate portion 1133 is placed in contact with each other.
  • the battery cell 12 is disposed adjacent to the two flat plate portions 1133 adjacent thereto, and the spacing between the adjacent two flat plate portions 1133 and the battery cell 12
  • the horizontal dimensions are the same.
  • FIG. 10 and FIG. 11 only take the heat sink 111 as the cooling plate 1111 as an example.
  • the heat sink 111 may also be the same as the heat sink 111 of the embodiment.
  • the heat dissipating fins 1114 are disposed, and the heat dissipating fins 1114 are disposed on a surface of the cooling plate 1111.
  • the heat sink 111 in the embodiment may also be the structure shown in FIG. 3 and FIG. 4 in the first embodiment, that is, the heat sink 111 may further include the fixed substrate 1115 and the heat dissipation.
  • the structure of the fin 1114 may also be the structure shown in FIG. 3 and FIG. 4 in the first embodiment, that is, the heat sink 111 may further include the fixed substrate 1115 and the heat dissipation. The structure of the fin 1114.
  • the present invention further provides a power battery pack system, comprising: a power battery pack 1 having a thermal superconducting heat exchanger as described in Embodiment 1 or Embodiment 2; a system, the refrigerant system comprising at least a refrigerant source 2 for supplying a refrigerant to the radiator 111; a heating controller 3 connected to the heater 112 for controlling the heating The work of the device 112.
  • the refrigerant source 2 may be a cooling water source or a cooling air source
  • the refrigerant system further includes a refrigerant supply pipe. a passage 21 and a refrigerant discharge line (not shown), one end of the refrigerant supply line 21 is connected to the refrigerant source 2, and the other end is connected to the inlet of the cooling plate 1111; one end of the refrigerant discharge line It is connected to the outlet of the cooling plate 1111.
  • the refrigerant source 2 is a cooling air source, and the refrigerant source 2 blows strong cooling air to the heat dissipating fins 1114. For heat dissipation.
  • the power battery pack system further includes a temperature control system
  • the temperature system includes: a temperature measuring device 4, and the temperature measuring device 4 may be disposed on the power battery pack 1 having a thermal superconducting heat exchanger Specifically, the temperature measuring device 4 may be disposed at any position of the power battery pack 1 having the thermal superconducting heat exchanger for measuring the temperature of each of the battery cells 12; the temperature control device 5,
  • the temperature control device 5 is connected to the temperature measuring device 4, the refrigerant source 2 and the heating controller 3, and is configured to control the heat dissipation of the refrigerant source 2 according to the result measured by the temperature measuring device 4
  • the heater 111 provides a refrigerant (for example, controlling a flow rate of the refrigerant source 2 to pass the refrigerant into the cooling plate 1111 or controlling the refrigerant source 2 to blow cold air to the heat radiating fin 1114) or controlling the heating controller 3
  • the power heated by the heater 112 is controlled.
  • the power battery pack system of the present invention works on the principle that the temperature measuring device 4 detects the temperature of each of the battery cells 12 in real time.
  • the temperature control device 5 controls the refrigerant source 2 to pass refrigerant into the cooling plate 1111 of the heat sink 111, and the thermal superconducting plate 113 passes through the thermal superconducting plate 113.
  • the heat generated by the battery cell 12 is led to the heat sink 111, and the heat is led to the outside of the battery pack via the heat sink 111; the temperature control is performed when the battery cell 12 needs to be heated and heated.
  • the device 5 controls the heating controller 3, the control heater 3 controls the heating of the heater 3, and the heat generated by the heater 112 is quickly and uniformly transmitted to each of the batteries through the thermal superconducting plate 113.
  • the monomer 12 is uniformly heated for each of the battery cells 12.
  • the present invention provides a power battery pack and a power battery pack system having a thermal superconducting heat exchanger, the power battery pack having the thermal superconducting heat exchanger comprising: a thermal superconducting heat exchanger and a plurality of a battery cell; wherein the thermal superconducting heat exchanger comprises a heat sink, a heater and a plurality of thermally superconducting plates arranged in parallel; the heater is located at one side of the heat sink, and The heat sink has a spacing; the thermal superconducting plate is located between the heat sink and the heater, one end is connected to the heat sink, and the other end is connected to the heater, the thermal superconducting plate a thermal superconductor path is formed therein, the thermal superconductor path is a closed pipeline, and the thermal superconductor road is filled with a heat transfer medium; the battery cell is located at the radiator and the heater And each of the battery cells is in contact with the thermal superconducting plate.
  • the power battery pack with the thermal superconducting heat exchanger of the invention adopts a thermal superconducting plate as an exchange structure for heat exchange with the battery cells, and the thermal superconducting plate adopts a heat exchange method of thermal superconducting, and the equivalent thermal conductivity coefficient thereof can be Up to 4000W/m °C, with high thermal conductivity, high heat transfer efficiency, uniform temperature of the entire thermal superconducting plate, etc., can effectively reduce the temperature unevenness of the battery cells in the power battery pack during rapid charging and discharging.
  • the power battery pack with the thermal superconducting heat exchanger of the present invention is provided with a heat sink and heating at both ends of the thermal superconducting plate
  • the battery unit can be rapidly heated when the battery cell temperature is low, thereby improving the heating start time of the battery cell under low temperature conditions; at the same time, the battery cell can be performed when the battery cell temperature is high. Rapid heat dissipation cooling; the power battery pack with the thermal superconducting heat exchanger of the invention has the advantages of compact and flexible structure, small volume and weight, strong output capability and high reliability; Ming's power battery pack system can automatically adjust the battery cell temperature, and can automatically control the battery cell temperature within the optimal operating temperature range.

Abstract

本发明提供一种具有热超导换热器的动力电池包及动力电池包系统,包括:热超导换热器及若干个电池单体;热超导换热器包括散热器、加热器及若干个平行间隔排布的热超导板;加热器位于所述散热器的一侧;热超导板位于散热器与所述加热器之间,热超导板内形成有热超导管路,热超导管路为封闭管路,且热超导管路内填充有传热工质;电池单体位于所述散热器与所述加热器之间,且各电池单体均与热超导板相接触。本发明可以在电池单体温度较低时对电池单体进行快速加热,从而提高电池单体在低温条件下的加热启动时间;同时,还可以在电池单体温度较高时对电池单体进行快速散热冷却。

Description

具有热超导换热器的动力电池包及动力电池包系统 技术领域
本发明属于半导体制造技术领域,特别是涉及一种具有热超导换热器的动力电池包及动力电池包系统。
背景技术
随着时代的发展,全球已然掀起一波新能源汽车(电动汽车)的浪潮,同时也加速了电动汽车替代传统燃油车的步伐。最核心的部件就是动力电池。新能源电动汽车最核心部分是由一个或多个动力电池包所组成,而动力电池包是由多个电池单体密集摆放,当电动汽车持续在大负载条件下运行时,动力电池将持续处于大倍率放电状态。此时,电池包内迅速产生大量热量,中间区域必然热量聚集较多,边缘区域较少而增加了电池包中各单体电池温度的不均衡,最终影响整个电池包的性能。当中间区域的热量不能及时快速有效地散热,电池温度会显著升高而导致内部热点,就有可能导致电池热失控、电解液氧化燃烧、甚至爆炸现象的发生。
电池包的设计既要密封、防水、防尘、绝缘等,又要考虑均匀散热。电池包的散热已成为业内研究的一个重要领域。动力电池包的散热通常采用直接风冷散热和液冷散热两种方式。采用风冷就是冷空气直接通过电池单体带走热量,其主要优点有:结构简单,质量轻,有害气体产生时能有效通风,成本较低;不足之处在于:与电池壁面之间换热系数低,冷却速度慢,效率低,且电池间距大,体积大等。采用液冷散热方式通常是用液冷板放在电池底部或用微通道设置与电池单体之间,通过液体流动带走热量。液冷的主要优点有:与电池壁面之间换热系数高,冷却速度快;不足之处在于:密封性要求高,质量相对较大,维修和保养复杂,需要水套、换热器等部件,结构相对复杂。
此外,为了确保低温下的充电、放电性能和安全性,还需要在电池温度较低时进行预热,而目前并没有同时具备为电池包进行高效降温和对电池包进行加热功能的装置。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种具有热超导换热器的动力电池包及动力电池包系统,用于解决现有技术中的对电池包进行降温的降温方式存在的诸多问题,及现有技术不同时具备为电池包高效降温和加热功能的问题。
为实现上述目的及其它相关目的,本发明还提供一种具有热超导换热器的动力电池包,所述具有热超导换热器的动力电池包包括:热超导换热器及若干个电池单体;其中,
所述热超导换热器包括散热器、加热器及若干个平行间隔排布的热超导板;所述加热器位于所述散热器的一侧,且与所述散热器具有间距;所述热超导板位于所述散热器与所述加热器之间,一端与所述散热器相连接,另一端与所述加热器相连接,所述热超导板内形成有热超导管路,所述热超导管路为封闭管路,且所述热超导管路内填充有传热工质;
所述电池单体位于所述散热器与所述加热器之间,且各所述电池单体均与所述热超导板相接触。
作为本发明的一种优选方案,所述热超导板包括波浪部及弯折部;其中,
所述波浪部包括相对的第一表面及第二表面,所述波浪部还包括若干个向第一表面凸起的第一凸起部及向第二表面凸起的第二凸起部,所述第一凸起部与所述第二凸起部沿所述热超导板的长度方向依次交替分布且连接为一体;
所述弯折部位于所述波浪部的两端,且与所述波浪部的两端相连接;
各所述热超导板经由所述弯折部分别与所述散热器的表面及所述加热器的表面相连接;所述电池单体位于所述波浪部的第一表面一侧及第二表面一侧;位于所述波浪部第一表面一侧的所述电池单体与所述第二凸起部对应设置,且贴置于所述第二凸起部,位于所述波浪部第二表面一侧的所述电池单体与所述第一凸起部对应设置,且贴置于所述第一凸起部。
作为本发明的一种优选方案,所述第一凸起部及所述第二凸起部均为弧形凸起部,所述电池单体的形状为圆柱体。
作为本发明的一种优选方案,所述波浪部的长度方向与所述弯折部的表面相垂直;所述波浪部与所述弯折部为一体成型结构。
作为本发明的一种优选方案,所述波浪部的宽度与所述电池单体的高度相同,且所述弯折部的长度与所述散热器的高度相同。
作为本发明的一种优选方案,所述热超导板包括平板部及弯折部;其中,
所述弯折部位于所述平板部的两端,且与所述平板部的两端相连接;
各所述热超导板经由所述弯折部分别与所述散热器的表面及所述加热器的表面相连接;
所述电池单体的形状为矩形,所述电池单体位于相邻所述平板部之间,且所述电池单体至少与与其相邻的一所述平板部相贴置。
作为本发明的一种优选方案,所述平板部的长度方向与所述弯折部的表面相垂直;所述平板部与所述弯折部为一体成型结构。
作为本发明的一种优选方案,所述平板部的宽度与所述电池单体的高度相同,且所述弯折部的长度与所述散热器的高度相同。
作为本发明的一种优选方案,所述热超导板为复合板式结构,所述热超导板呈双面胀、单面胀或双面平形态。
作为本发明的一种优选方案,所述散热器至少包括冷却板,所述冷却板内形成有冷却管路,所述冷却板上设有与所述冷却管路相连通的进口及出口。
作为本发明的一种优选方案,所述冷却板的表面与所述热超导板的一端相连接,所述冷却板的长度方向与所述加热器长度方向相平行,且与所述热超导板的长度方向相垂直。
作为本发明的一种优选方案,所述散热器还包括散热翅片,所述散热翅片设置于所述冷却板上。
作为本发明的一种优选方案,所述散热器包括固定基板及设置于所述固定基板上的散热翅片。
作为本发明的一种优选方案,所述固定基板的一表面与所述热超导板的一端相连接,所述固定基板的长度方向与所述加热器长度方向相平行,且与所述热超导板的长度方向相垂直;所述散热翅片的数量为多个,多个所述散热翅片插设于所述固定基板远离所述热超导板的表面。
本发明还提供一种动力电池包系统,所述动力电池包系统包括:
如上述任一方案中所述的具有热超导换热器的动力电池包;
冷媒系统,至少包括冷媒源,用于向所述散热器提供冷媒;
加热控制器,与所述加热器相连接,用于控制所述加热器的工作。
作为本发明的一种优选方案,所述动力电池包系统还包括温控系统,所述温度系统包括:
测温装置,设置于所述具有热超导换热器的动力电池包上,用于测量各所述电池单体的温度;
温控装置,与所述测温装置、所述冷媒源及所述加热控制器相连接,用于依据所述测温装置测量的结果控制所述冷媒源向所述散热器提供冷媒或控制所述加热控制器控制所述加热器加热。
如上所述,本发明提供的具有热超导换热器的动力电池包及动力电池包系统,具有以下
有益效果:
本发明的具有热超导换热器的动力电池包采用热超导板作为与电池单体进行热交换的交换结构,热超导板由于采用热超导的热交换方式,其当量导热系数可以达到4000W/m℃,具有导热速度快、传热效率高、整个热超导板的温度均匀等特点,可以有效减小动力电池包中的电池单体在快速充电和放电时因温度不均、局部温度过高而导致的电池性能衰减的问题, 从而提高了动力电池包的整体寿命;
本发明的具有热超导换热器的动力电池包通过在热超导板两端设置散热器和加热器,可以在电池单体温度较低时对电池单体进行快速加热,从而提高电池单体在低温条件下的加热启动时间;同时,还可以在电池单体温度较高时对电池单体进行快速散热冷却;
本发明的具有热超导换热器的动力电池包结构紧凑灵活、体积和重量小、输出能力强及可靠性高等优点;
本发明的动力电池包系统可以实现对电池单体温度的自动调控,可以将电池单体温度自动控制在最佳的工作温度范围内。
附图说明
图1至图4显示为本发明实施例一中提供的具有热超导换热器的动力电池包的结构示意图;其中,图1显示为本发明实施例一中提供的散热器包括冷却板及散热翅片的具有热超导换热器的动力电池包的立体结构示意图,图2显示为本发明实施例一中提供的散热器包括冷却板及散热翅片的具有热超导换热器的动力电池包的俯视结构示意图,图3显示为本发明实施例一中提供的散热器包括固定基板及散热翅片的具有热超导换热器的动力电池包的立体结构示意图,图4显示为本发明实施例一中提供的散热器包括固定基板及散热翅片的具有热超导换热器的动力电池包的俯视结构示意图。
图5显示为本发明实施例一中提供的具有热超导换热器的动力电池包中的热超导板的立体结构示意图。
图6及图7显示为本发明实施例一中提供的具有热超导换热器的动力电池包中的热超导板放大局部截面结构示意图,其中,图6中的热超导板呈单面胀形态,图7中的热超导板呈双面平形态。
图8及图9显示为本发明实施例一中提供的具有热超导换热器的动力电池包中的热超导板的结构示意图,其中,图8中热超导板中的热超导管路呈六边形蜂窝状,图9中的热超导板中的热超导管路呈矩形网格状。
图10显示为本发明实施例二中提供的具有热超导换热器的动力电池包的立体结构示意图。
图11显示为本发明实施例二中提供的具有热超导换热器的动力电池包的俯视结构示意图。
图12显示为本发明实施例二中提供的具有热超导换热器的动力电池包中的热超导板的立体结构示意图。
图13显示为本发明实施例三中提供的动力电池包系统的结构框图。
组件标号说明
1          具有热超导换热器的动力电池包
11         热超导换热器
111        散热器
1111       冷却板
1112       进口
1113       出口
1114       散热翅片
1115       固定基板
112        加热器
113        热超导板
1131       波浪部
11311      第一凸起部
11312      第二凸起部
1132       弯折部
1133       平板部
1134       第一板材
11341      凸起结构
1135       第二板材
1136       热超导管路
1137       传热工质
1138       非管路部分
1139       灌装口
12         电池单体
2          冷媒源
21         冷媒供应管路
3          加热控制器
4          测温装置
5         温控装置
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图13。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
实施例一
请参阅图1至图9,本发明提供一种具有热超导换热器的动力电池包1,所述具有热超导换热器的动力电池包1包括:热超导换热器11及若干个电池单体12;其中,所述热超导换热器11包括散热器111、加热器112及若干个平行间隔排布的热超导板113;所述加热器112位于所述散热器111的一侧,且与所述散热器111具有间距;所述热超导板113位于所述散热器111与所述加热器112之间,所述热超导板113一端与所述散热器111相连接,另一端与所述加热器112相连接,所述热超导板113内形成有热超导管路1136(如图4至图7所示),所述热超导管路1136为封闭管路,且所述热超导管路1136内填充有传热工质1137;所述电池单体12位于所述散热器111与所述加热器112之间,且各所述电池单体12均与所述热超导板113相接触,具体的,各所述电池单体12贴置于所述热超导板113上。
作为示例,所述热超导板113采用热超导传热技术实现所述电池单体12与所述散热器111及所述加热器112的热交换,这里需要说明的是,所述热超导传热技术包括在密闭的相互连通的微槽道系统内充装工作介质,通过工作介质的蒸发与冷凝相变实现热超导传热的热管技术;以及通过控制密闭体系中工作介质微结构状态,即在传热过程中,液态介质的沸腾(或气态介质的冷凝)被抑制,并在此基础上达到工质微结构的一致性,而实现高效传热的相变抑制(PCI)传热技术。
作为示例,所述传热工质1137为流体,优选地,所述传热工质1137可以为气体或液体或气体与液体的混合物,更为优选地,本实施例中,所述传热工质1137为液体与气体的混合物。
在一示例中,如图1及图2所示,所述散热器111至少包括冷却板1111,所述冷却板1111 内形成有冷却管路(未示出),所述冷却板1111上设有与所述冷却管路相连通的进口1112及出口1113。所述冷却板1111的表面与所述热超导板113的一端相连接,所述冷却板1111的长度方向与所述加热器112长度方向相平行,且与所述热超导板1113的长度方向相垂直;即所述冷却板1111的表面与所述加热器112的表面相平行,且所述热超导板113的长度方向与所述冷却板1111的表面及所述加热器112的表面相垂直。
作为示例,在该示例中,所述散热器111还包括散热翅片1114,所述散热翅片1114设置于所述冷却板1111上。优选地,所述散热翅片1114垂直插设于所述冷却板1111远离所述热超导板113的表面上,且所述散热翅片1114与所述冷却板1111的表面相垂直。所述散热翅片1114的数量可以为多个,多个所述散热翅片1114平行间隔分布。
在另一示例中,如图3及图4所示,所述散热器111还可以为包括固定基板1115及设置于所述固定基板1115上的散热翅片1114的结构。此时,所述固定基板1115为一实心基板,当然,所述固定基板1115内也可以设置有热超导散热管路等等。
作为示例,在该示例中,所述固定基板1115的一表面与所述热超导板113的一端相连接,所述固定基板1115的长度方向与所述加热器112长度方向相平行,且与所述热超导板113的长度方向相垂直;所述散热翅片1114的数量为多个,多个所述散热翅片1114插设于所述固定基板1115远离所述热超导板113的表面。
需要说明的是,当所述散热器111为包括所述冷却板1111及所述散热翅片1114的结构时,可以通过向所述冷却板1111内的所述冷却管路内通入冷媒(譬如,冷却水或冷风)以实现将所述热超导板113传递的热量散发出去;当所述散热器111为包括所述固定基板1115及所述散热翅片1114的结构时,由于所述固定基板1115内并没有可以通入冷媒的冷媒管路,此时可以通过向所述散热翅片1114强制吹冷风以增强散热,从而将所述热超导板113传递的热量散发出去。
作为示例,如图4及图5所示,所述热超导板1313包括波浪部1131及弯折部1132;其中,所述波浪部1131包括相对的第一表面及第二表面,所述波浪部1131还包括若干个向第一表面凸起的第一凸起部11311及向第二表面凸起的第二凸起部11312,所述第一凸起部11311与所述第二凸起部11312沿所述热超导板113的长度方向依次交替分布且连接为一体;所述弯折部1132位于所述波浪部1131的两端,且与所述波浪部1131的两端相连接;具体的,所述弯折部1132的数量为两个,一个所述弯折部1132位于所述波浪部1131的一端,且与所述波浪部1131的该端连接为一体结构,另一个所述弯折部1132位于所述波浪部1131的另一端,且与所述波浪部1131的该端连接为一体结构;各所述热超导板113经由所述弯折部1132 分别与所述散热器111的表面及所述加热器112的表面相连接(当所述散热器111包括所述冷却板1111时,所述弯折部1132与所述冷却板1111的表面相连接,当所述散热器111包括所述固定基板1115及所述散热翅片1114时,所述弯折部1132与所述固定基板1115远离所述散热翅片1114的表面相连接);所述电池单体12位于所述波浪部1131的第一表面一侧及第二表面一侧;且位于所述波浪部1131第一表面一侧的所述电池单体12与所述第二凸起部11312对应设置,且贴置于所述第二凸起部11312,位于所述波浪部1131第二表面一侧的所述电池单体12与所述第一凸起部11311对应设置,且贴置于所述第一凸起部11311。
作为示例,所述第一凸起部11311在向所述波浪部1131的第一表面凸起的同时,在所述波浪部1131的第二表面一侧形成了与凸起相对应的凹槽,所述凹槽作为所述电池单体12的容纳空间;同理,所述第二凸起部11312在向所述波浪部1131的第二表面凸起的同时,在所述波浪部1131的第一表面一侧形成了与凸起相对应的凹槽,所述凹槽同样作为所述电池单体12的容纳空间。
作为示例,所述第一凸起部11311及所述第二凸起部11312可以均为弧形凸起部,所述电池单体12的形状可以为圆柱体,此时,所述第一凸起部11311及所述第二凸起部11312的弧度与所述电池单体12表面的弧度相匹配,以确保所述电池单体12与所述第一凸起部11311及所述第二凸起部11312尽量完全接触,以尽量增大所述电池单体12与所述第一凸起部11311及所述第二凸起部11312的接触面积,使得所述电池单体12与所述第一凸起部11311及所述第二凸起部11312之间尽量没有空隙,以确保所述热超导板113可以与各所述电池单体12进行高效的热交换。当然,在其他示例中,所述电池单体12的形状还可以为六边形主体、八边形主体等等,但无论所述电池单体12的形状为何种形状,所述第一凸起部11311及所述第二凸起部11312的形状均应与与其接触的所述电池单体12的形状相匹配。
作为示例,所述波浪部1131的长度方向与所述弯折部1132的表面相垂直;所述波浪部1131与所述弯折部1132为一体成型结构。此时,所述波浪部1131的长度方向与所述热超导板113的长度方向一致,所述弯折部1132的表面与所述冷却板1111或所述固定基板1115的表面及所述加热器的表面相平行。
需要说明的是,所述波浪部1131与所述弯折部1132为一体成型结构是指所述热超导板113为通过将一块平板状热超导板经过轧制及弯折得到的具有所述波浪部1131及所述弯折部1132的结构。
作为示例,相邻所述热超导板113之间的间隙可以根据实际需要进行设定,但相邻所述热超导板113之间的间隙必须大于一个所述电池单体12的横向尺寸(即与所述电池单体12 高度相垂直的方向的尺寸),以确保相邻所述热超导板113之间至少可以放置一个所述电池单体12。优选地,本实施例中,相邻所述热超导板113之间的间隙优选为大于一个所述电池单体12的横向尺寸,且小于所述两个所述电池单体12横向尺寸之和,使得相邻所述热超导板113之间可以沿其长度方向放置若干个上下交错分布的所述电池单体12。
作为示例,所述波浪部1131的宽度可以与所述电池单体12的高度相同,且所述弯折部1132的长度可以与所述散热器111的高度相同(所述散热器111的高度即为所述冷却板1111的宽度或所述固定基板1115的宽度)。当然,在其他示例中,所述波浪部1131的宽度也可以小于所述电池单体12的高度,还可以大于所述电池单体12的高度;同样,所述弯折部1132的长度也可以小于所述散热器111的高度,还可以大于所述散热器111的噶偶氮。需要说明的是,这里所述的波浪部1131的宽度是指与所述波浪部1131的长度方向相垂直的方向的尺寸,所述弯折部1132的长度是指所述弯折部1132沿与所述波浪部1131的长度方向相垂直的方向的尺寸。
作为示例,如图6及图7所示,所述热超导板113可以为包括第一板材1134及所述第二板材1135的复合板式结构。
在一示例中,如图6所示,所述热超导板113呈单面胀形态;所述第一板材1134的一表面形成有通过压印工艺形成的压印槽道或通过吹胀工艺形成的吹胀槽道,在所述第一板材1134的一表面形成所述压印槽道或所述吹胀槽道的同时,所述第一板材1134的另一表面会形成与所述压印槽道或所述吹胀槽道相对应的凸起结构11341;所述第一板材1134与所述第二板材1135可以通过焊接工艺等工艺复合在一起,所述第一板材1134形成有所述压印槽道或所述吹胀槽道的表面为复合面;所述第一板材1134与所述第二板材1135复合后,所述压印槽道或所述吹胀槽道即构成所述热超导管路1136。当然,在其他示例中,也可以为只有所述第二板材1135的一表面形成有所述刻蚀槽道或吹胀槽道。
在另一示例中,如图7所示,所述热超导板113还可以呈双面平形态;所述第一板材1134的一表面形成有刻蚀槽道,所述第一板材1134与所述第二板材1135通过焊接工艺复合在一起,且形成所述刻蚀槽道的表面为复合面;所述第一板材1134与所述第二板材113复合后,所述刻蚀槽道即构成所述热超导管路1136。在其他示例中,也可以为只有所述第二板材1135的一表面形成有所述蚀刻槽道;还可以在所述第一板材1134及所述第二板材1135均形成有刻蚀槽道,所述第一板材1134与所述第二板材1135复合后,所述第一板材1134上的刻蚀槽道与所述第二板材1135上的刻蚀槽道共同构成所述热超导管路1136。
在又一示例中,所述热超导板113还可以呈双面胀形态;所述第一板材1134与所述第二 板材1135相邻的表面均形成有压印槽道或吹胀槽道,所述第一板材1134及所述第二板材1135上均形成有与所述压印槽道或吹胀槽道相对应的凸起结构11341;所述第一板材1134与所述第二板材1135通过焊接工艺复合在一起后,位于所述第一板材1134上的压印槽道或吹胀槽道与位于所述第二板材1135上的压印槽道或吹胀槽道共同构成所述热超导管路1136。
作为示例,所述热超导板113内所述热超导管路1136的形状可以根据实际需要设定为六边形蜂窝状(如图8所示)、圆形蜂窝状、矩形网格状(如图9所示)、首尾串联的多个U形、菱形、三角形、圆环形、纵横交错的网状或其中任一种以上的任意组合。需要说明的是,如图6及图7所示,所述热超导管路1136之间及其外围均为非管路部分1138;当所述热超导板113采用吹胀工艺形成所述热超导管路1136时,所述热超导板113内还形成有灌装口1139,由于在所述第一板材1134与所述第二板材1135复合并在所述热超导板113内形成所述热超导管路1136之后向所述热超导管路1136内通入所述传热工质1137,但当填充完所述传热工质1137之后,所述灌装口1139需要密封,以确保所述热超导管路1136为密封管路。
作为示例,所述第一板材1134及所述第二板材1135的材料应为导热性良好的材料;优选地,本实施例中,所述第一板材1134及所述第二板材1135的材料均可以为铜、铜合金、铝或铝合金或任一种以上的任意组合。所述第一板材1134及所述第二板材1135的材料可以相同,也可以不同;优选地,本实施例中,所述第一板材1134及所述第二板材1135的材料相同。
本发明的所述具有热超导换热器的动力电池包1的工作原理为:在所述电池单体12需要冷却降温时,通过所述热超导板113将所述电池单体12产生的热量导出至所述散热器111,经由所述散热器111将热量导出到所述电池包的外部;在所述电池单体12需要加热升温时,通过所述热超导板113将所述加热器112产生的热量快速均匀地传导至各所述电池单体12,以给各所述电池单体12均匀加热。
本发明的具有热超导换热器的动力电池包1采用所述热超导板113作为与所述电池单体12进行热交换的交换结构,所述热超导板113由于采用热超导的热交换方式,其当量导热系数可以达到4000W/m℃,具有导热速度快、传热效率高、整个所述热超导板113的温度均匀等特点,可以有效减小动力电池包中的所述电池单体12在快速充电和放电时因温度不均、局部温度过高而导致的电池性能衰减的问题,从而提高了动力电池包的整体寿命;通过在所述热超导板113两端设置所述散热器111和所述加热器112,可以在所述电池单体12温度较低时对所述电池单体12进行快速加热,从而提高所述电池单体12在低温条件下的加热启动时间;同时,还可以在所述电池单体12温度较高时对所述电池单体12进行快速散热冷却;本 发明的具有热超导换热器的动力电池包1结构紧凑灵活、体积和重量小、输出能力强及可靠性高等优点。
实施例二
请参阅图10至图12,本发明还提供一种具有热超导散热器的动力电池包1,本实施例中所述的具有热超导散热器的动力电池包1的结构与实施例一中所述的具有热超导散热器的动力电池包1的结构大致相同,二者的区别在于:实施例一中,所述热超导板1313包括波浪部1131及弯折部1132;其中,所述波浪部1131包括相对的第一表面及第二表面,所述波浪部1131还包括若干个向第一表面凸起的第一凸起部11311及向第二表面凸起的第二凸起部11312,所述第一凸起部11311与所述第二凸起部11312沿所述热超导板113的长度方向依次交替分布且连接为一体;所述弯折部1132位于所述波浪部1131的两端,且与所述波浪部1131的两端相连接;具体的,所述弯折部1132的数量为两个,一个所述弯折部1132位于所述波浪部1131的一端,且与所述波浪部1131的该端连接为一体结构,另一个所述弯折部1132位于所述波浪部1131的另一端,且与所述波浪部1131的该端连接为一体结构;所述电池单体12位于所述波浪部1131的第一表面一侧及第二表面一侧;且位于所述波浪部1131第一表面一侧的所述电池单体12与所述第二凸起部11312对应设置,且贴置于所述第二凸起部11312,位于所述波浪部1131第二表面一侧的所述电池单体12与所述第一凸起部11311对应设置,且贴置于所述第一凸起部11311。而在本实施例中,所述热超导板113包括平板部1133及弯折部1132;其中,所述弯折部1132位于所述平板部1133的两端,且与所述平板部1133的两端相连接;各所述电池单体12的形状为矩形,所述电池单体12位于相邻所述平板部1133之间,且所述电池单体12至少与与其相邻的一所述平板部1133相贴置,优选地,所述电池单体12与与其相邻的两所述平板部1133均相贴置,及相邻两所述平板部1133的间距与所述电池单体12的横向尺寸相同。
本实施例中所述的具有热超导换热器的动力电池包1的其他结构及工作原理与实施例一中所述的具有热超导换热器的动力电池包1的其他结构及工作原理相同,具体请参阅实施例一,此处不再累述。
需要说明的是,图10及图11仅以所述散热器111包括所述冷却板1111作为示例,在本示例中,所述散热器111还可以与实施例一种所述的散热器111一样包括所述散热翅片1114,所述散热翅片1114设置于所述冷却板1111的表面。当然,本实施例中的所述散热器111还可以为如实施例一中图3及图4中所示的结构,即所述散热器111还可以为包括所述固定基板1115及所述散热翅片1114的结构。
实施例三
请参阅图13,本发明还提供一种动力电池包系统,所述动力电池包系统包括:如实施例一或实施例二中所述的具有热超导换热器的动力电池包1;冷媒系统,所述冷媒系统至少包括冷媒源2,所述冷媒源2用于向所述散热器111提供冷媒;加热控制器3,所述与所述加热器112相连接,用于控制所述加热器112的工作。
作为示例,当所述散热器111为包括所述冷却板1111及所述散热翅片1114的结构时,所述冷媒源2可以为冷却水源或冷却风源,所述冷媒系统还包括冷媒供应管路21及冷媒排放管路(未示出),所述冷媒供应管路21一端与所述冷媒源2相连接,另一端与所述冷却板1111的进口相连接;所述冷媒排放管路一端与所述冷却板1111的出口相连接。当所述散热器111为包括所述固定基板1115及所述散热翅片1114的结构时,所述冷媒源2为冷却风源,所述冷媒源2通过向所述散热翅片1114吹强制冷风以进行散热。
作为示例,所述动力电池包系统还包括温控系统,所述温度系统包括:测温装置4,所述测温装置4可以设置于所述具有热超导换热器的动力电池包1上,具体的,所述测温装置4可以设置于所述具有热超导换热器的动力电池包1的任意位置,用于测量各所述电池单体12的温度;温控装置5,所述温控装置5与所述测温装置4、所述冷媒源2及所述加热控制器3相连接,用于依据所述测温装置4测量的结果控制所述冷媒源2向所述散热器111提供冷媒(譬如,控制所述冷媒源2向所述冷却板1111内通入冷媒的流量或控制所述冷媒源2向所述散热翅片1114吹冷风)或控制所述加热控制器3控制所述加热器112加热的功率。
以所述散热器111包括所述冷却板1111的结构作为示例,本发明的所述动力电池包系统的工作原理为:所述测温装置4实时侦测各所述电池单体12的温度,在所述电池单体12需要冷却降温时,所述温控装置5控制所述冷媒源2向所述散热器111的所述冷却板1111内通入冷媒,通过所述热超导板113将所述电池单体12产生的热量导出至所述散热器111,经由所述散热器111将热量导出到所述电池包的外部;在所述电池单体12需要加热升温时,所述温控装置5控制所述加热控制器3,所述控制加热器3控制所述加热器3加热,通过所述热超导板113将所述加热器112产生的热量快速均匀地传导至各所述电池单体12,以给各所述电池单体12均匀加热。
综上所述,本发明提供一种具有热超导换热器的动力电池包及动力电池包系统,所述具有热超导换热器的动力电池包包括:热超导换热器及若干个电池单体;其中,所述热超导换热器包括散热器、加热器及若干个平行间隔排布的热超导板;所述加热器位于所述散热器的一侧,且与所述散热器具有间距;所述热超导板位于所述散热器与所述加热器之间,一端与 所述散热器相连接,另一端与所述加热器相连接,所述热超导板内形成有热超导管路,所述热超导管路为封闭管路,且所述热超导管路内填充有传热工质;所述电池单体位于所述散热器与所述加热器之间,且各所述电池单体均与所述热超导板相接触。本发明的具有热超导换热器的动力电池包采用热超导板作为与电池单体进行热交换的交换结构,热超导板由于采用热超导的热交换方式,其当量导热系数可以达到4000W/m℃,具有导热速度快、传热效率高、整个热超导板的温度均匀等特点,可以有效减小动力电池包中的电池单体在快速充电和放电时因温度不均、局部温度过高而导致的电池性能衰减的问题,从而提高了动力电池包的整体寿命;本发明的具有热超导换热器的动力电池包通过在热超导板两端设置散热器和加热器,可以在电池单体温度较低时对电池单体进行快速加热,从而提高电池单体在低温条件下的加热启动时间;同时,还可以在电池单体温度较高时对电池单体进行快速散热冷却;本发明的具有热超导换热器的动力电池包结构紧凑灵活、体积和重量小、输出能力强及可靠性高等优点;本发明的动力电池包系统可以实现对电池单体温度的自动调控,可以将电池单体温度自动控制在最佳的工作温度范围内。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (16)

  1. 一种具有热超导换热器的动力电池包,其特征在于,所述具有热超导换热器的动力电池包包括:热超导换热器及若干个电池单体;其中,
    所述热超导换热器包括散热器、加热器及若干个平行间隔排布的热超导板;所述加热器位于所述散热器的一侧,且与所述散热器具有间距;所述热超导板位于所述散热器与所述加热器之间,一端与所述散热器相连接,另一端与所述加热器相连接,所述热超导板内形成有热超导管路,所述热超导管路为封闭管路,且所述热超导管路内填充有传热工质;
    所述电池单体位于所述散热器与所述加热器之间,且各所述电池单体均与所述热超导板相接触。
  2. 根据权利要求1所述的具有热超导换热器的动力电池包,其特征在于,所述热超导板包括波浪部及弯折部;其中,
    所述波浪部包括相对的第一表面及第二表面,所述波浪部还包括若干个向第一表面凸起的第一凸起部及向第二表面凸起的第二凸起部,所述第一凸起部与所述第二凸起部沿所述热超导板的长度方向依次交替分布且连接为一体;
    所述弯折部位于所述波浪部的两端,且与所述波浪部的两端相连接;
    各所述热超导板经由所述弯折部分别与所述散热器的表面及所述加热器的表面相连接;所述电池单体位于所述波浪部的第一表面一侧及第二表面一侧;位于所述波浪部第一表面一侧的所述电池单体与所述第二凸起部对应设置,且贴置于所述第二凸起部,位于所述波浪部第二表面一侧的所述电池单体与所述第一凸起部对应设置,且贴置于所述第一凸起部。
  3. 根据权利要求2所述的具有热超导换热器的动力电池包,其特征在于,所述第一凸起部及所述第二凸起部均为弧形凸起部,所述电池单体的形状为圆柱体。
  4. 根据权利要求2所述的具有热超导换热器的动力电池包,其特征在于,所述波浪部的长度方向与所述弯折部的表面相垂直;所述波浪部与所述弯折部为一体成型结构。
  5. 根据权利要求2所述的具有热超导换热器的动力电池包,其特征在于,所述波浪部的宽度与所述电池单体的高度相同,且所述弯折部的长度与所述散热器的高度相同。
  6. 根据权利要求1所述的具有热超导换热器的动力电池包,其特征在于,所述热超导板 包括平板部及弯折部;其中,
    所述弯折部位于所述平板部的两端,且与所述平板部的两端相连接;
    各所述热超导板经由所述弯折部分别与所述散热器的表面及所述加热器的表面相连接;
    所述电池单体的形状为矩形,所述电池单体位于相邻所述平板部之间,且所述电池单体至少与与其相邻的一所述平板部相贴置。
  7. 根据权利要求6所述的具有热超导换热器的动力电池包,其特征在于,所述平板部的长度方向与所述弯折部的表面相垂直;所述平板部与所述弯折部为一体成型结构。
  8. 根据权利要求6所述的具有热超导换热器的动力电池包,其特征在于,所述平板部的宽度与所述电池单体的高度相同,且所述弯折部的长度与所述散热器的高度相同。
  9. 根据权利要求1所述的具有热超导换热器的动力电池包,其特征在于,所述热超导板为复合板式结构,所述热超导板呈双面胀、单面胀或双面平形态。
  10. 根据权利要求1至9中任一项所述的具有热超导换热器的动力电池包,其特征在于,所述散热器至少包括冷却板,所述冷却板内形成有冷却管路,所述冷却板上设有与所述冷却管路相连通的进口及出口。
  11. 根据权利要求10所述的具有热超导换热器的动力电池包,其特征在于,所述冷却板的表面与所述热超导板的一端相连接,所述冷却板的长度方向与所述加热器长度方向相平行,且与所述热超导板的长度方向相垂直。
  12. 根据权利要求10所述的具有热超导换热器的动力电池包,其特征在于,所述散热器还包括散热翅片,所述散热翅片设置于所述冷却板上。
  13. 根据权利要求1至9中任一项所述的具有热超导换热器的动力电池包,其特征在于,所述散热器包括固定基板及设置于所述固定基板上的散热翅片。
  14. 根据权利要求13所述的具有热超导换热器的动力电池包,其特征在于,所述固 定基板的一表面与所述热超导板的一端相连接,所述固定基板的长度方向与所述加热器长度方向相平行,且与所述热超导板的长度方向相垂直;所述散热翅片的数量为多个,多个所述散热翅片插设于所述固定基板远离所述热超导板的表面。
  15. 一种动力电池包系统,其特征在于,所述动力电池包系统包括:
    如权利要求1至14中任一项所述的具有热超导换热器的动力电池包;
    冷媒系统,至少包括冷媒源,用于向所述散热器提供冷媒;
    加热控制器,与所述加热器相连接,用于控制所述加热器的工作。
  16. 根据权利要求15所述的动力电池包系统,其特征在于,所述动力电池包系统还包括温控系统,所述温度系统包括:
    测温装置,设置于所述具有热超导换热器的动力电池包上,用于测量各所述电池单体的温度;
    温控装置,与所述测温装置、所述冷媒源及所述加热控制器相连接,用于依据所述测温装置测量的结果控制所述冷媒源向所述散热器提供冷媒或控制所述加热控制器控制所述加热器加热。
PCT/CN2018/082548 2017-11-03 2018-04-10 具有热超导换热器的动力电池包及动力电池包系统 WO2019085398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/759,359 US11482740B2 (en) 2017-11-03 2018-04-10 Power battery pack having heat superconducting heat exchanger and power battery pack system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711071820.X 2017-11-03
CN201711071820.XA CN107946690A (zh) 2017-11-03 2017-11-03 具有热超导换热器的动力电池包及动力电池包系统

Publications (1)

Publication Number Publication Date
WO2019085398A1 true WO2019085398A1 (zh) 2019-05-09

Family

ID=61933279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082548 WO2019085398A1 (zh) 2017-11-03 2018-04-10 具有热超导换热器的动力电池包及动力电池包系统

Country Status (3)

Country Link
US (1) US11482740B2 (zh)
CN (1) CN107946690A (zh)
WO (1) WO2019085398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708080C1 (ru) * 2019-07-01 2019-12-04 Акционерное общество "АвтоВАЗ" Тепловой интерфейс аккумуляторной батареи технического средства
CN113078386A (zh) * 2021-03-29 2021-07-06 哈尔滨工业大学(威海) 蜂窝状相变材料与液冷耦合的电池冷却系统及冷却方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022523625A (ja) * 2019-01-07 2022-04-26 カヌー テクノロジーズ インク バッテリーパック熱管理の方法およびシステム
CN109686892A (zh) * 2019-01-28 2019-04-26 深圳市嘉名科技有限公司 电池模组、电池包、电动车及电网系统
CN110556610A (zh) * 2019-09-02 2019-12-10 华南理工大学 一种基于柔性热管的液冷式电池组热管理系统及工作方法
CN112054266A (zh) * 2020-06-12 2020-12-08 湖南大学 一种用于圆柱电池的螺纹式紧固热管理系统
CN114725563A (zh) * 2022-02-28 2022-07-08 阿尔特汽车技术股份有限公司 一种电池模组、电池组热管理装置及系统
DE102022106066A1 (de) * 2022-03-16 2023-09-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Heizanordnung für ein Hochvoltspeichermodul für ein Kraftfahrzeug
CN114824557A (zh) * 2022-04-22 2022-07-29 北京科技大学 一种电池包冷却系统
WO2024033349A1 (de) * 2022-08-10 2024-02-15 Gentherm Gmbh Temperiereinrichtung und batterieanordnung mit einer temperiereinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742753A (zh) * 2016-03-15 2016-07-06 上海工程技术大学 一种电池包热管理方法和装置
CN106025439A (zh) * 2016-08-05 2016-10-12 华霆(合肥)动力技术有限公司 一种热管理装置及电源装置
US20170125866A1 (en) * 2015-11-03 2017-05-04 Toyota Motor Engineering & Manufacturing North America, Inc. Novel thermal management solution for battery pack
CN106785213A (zh) * 2017-01-12 2017-05-31 江乐新 带有板式热管的电动汽车电池热管理系统
CN107204314A (zh) * 2017-06-30 2017-09-26 上海嘉熙科技有限公司 热超导散热组件及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011092773A1 (ja) * 2010-01-29 2013-05-30 パナソニック株式会社 電池モジュール
US9312582B2 (en) * 2012-03-27 2016-04-12 Ford Global Technologies, Llc Apparatus and method for manufacturing a modular battery pack with fluid circulation tube and interleaved fins
CN206116563U (zh) * 2016-03-24 2017-04-19 吉林大学 柱状电池成组高导热液体换热装置
CN106051956A (zh) * 2016-06-17 2016-10-26 上海嘉熙科技有限公司 基于热超导散热板的电控器及空调室外机
CN206471454U (zh) * 2017-01-12 2017-09-05 江乐新 一种电动汽车电池热管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125866A1 (en) * 2015-11-03 2017-05-04 Toyota Motor Engineering & Manufacturing North America, Inc. Novel thermal management solution for battery pack
CN105742753A (zh) * 2016-03-15 2016-07-06 上海工程技术大学 一种电池包热管理方法和装置
CN106025439A (zh) * 2016-08-05 2016-10-12 华霆(合肥)动力技术有限公司 一种热管理装置及电源装置
CN106785213A (zh) * 2017-01-12 2017-05-31 江乐新 带有板式热管的电动汽车电池热管理系统
CN107204314A (zh) * 2017-06-30 2017-09-26 上海嘉熙科技有限公司 热超导散热组件及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708080C1 (ru) * 2019-07-01 2019-12-04 Акционерное общество "АвтоВАЗ" Тепловой интерфейс аккумуляторной батареи технического средства
CN113078386A (zh) * 2021-03-29 2021-07-06 哈尔滨工业大学(威海) 蜂窝状相变材料与液冷耦合的电池冷却系统及冷却方法

Also Published As

Publication number Publication date
US11482740B2 (en) 2022-10-25
US20210367288A1 (en) 2021-11-25
CN107946690A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2019085398A1 (zh) 具有热超导换热器的动力电池包及动力电池包系统
CN202758989U (zh) 一种包含多介质冷却源的电池系统
WO2017215159A1 (zh) 功率电池的工质接触式冷却系统及其工作方法
CN106654450B (zh) 一种动力电池液冷成组箱
CN203351713U (zh) 电池组的冷却兼加热结构
CN107346814B (zh) 一种电池热管理系统
CN206134883U (zh) 一种基于热电效应的电池模组热管理装置
CN108306072B (zh) 一种并联式热交换电池包
CN208062216U (zh) 一种电池包
JP2013514515A (ja) 熱交換器
WO2019154083A1 (zh) 液冷管路和电源装置
JP2014522099A (ja) 無動力冷却型太陽電池板
CN106960988B (zh) 一种动力锂电池热管理系统
CN106785236B (zh) 圆柱体电池组的热管理系统和方法
CN111029681B (zh) 一种管板式热管型动力电池热管理模组结构
CN105789516A (zh) 动力电池热控箱体
CN109802167A (zh) 电池模组、电池包、电动车及电网系统
KR102283829B1 (ko) 주름형 냉각핀 기반 에너지저장시스템
CN110137616A (zh) 一种电池热管理系统
CN111370807A (zh) 一种柔性换热件及采用该柔性换热件的电池包散热装置
CN217485563U (zh) 一种风冷散热的方形电池组结构
CN110707259A (zh) 一种高防护等级的空冷式锂电池包热管理系统及方法
CN105466261A (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN108565527A (zh) 一种扁平热管用于电池模组散热的装置
CN213752811U (zh) 动力电池充放电冷却系统、电池及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873237

Country of ref document: EP

Kind code of ref document: A1