WO2019085173A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2019085173A1
WO2019085173A1 PCT/CN2017/116040 CN2017116040W WO2019085173A1 WO 2019085173 A1 WO2019085173 A1 WO 2019085173A1 CN 2017116040 W CN2017116040 W CN 2017116040W WO 2019085173 A1 WO2019085173 A1 WO 2019085173A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
quantum dot
crystal display
light quantum
Prior art date
Application number
PCT/CN2017/116040
Other languages
English (en)
French (fr)
Inventor
海博
李冬泽
李泳锐
萧宇均
Original Assignee
惠州市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市华星光电技术有限公司 filed Critical 惠州市华星光电技术有限公司
Priority to US15/754,269 priority Critical patent/US20190384108A1/en
Publication of WO2019085173A1 publication Critical patent/WO2019085173A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal display.
  • LCD has been synonymous with display, and in recent years, novel display technologies such as OLED electroluminescence, laser display, and Micro LED have frequently appeared, and there is a tendency to replace it.
  • LCD is also constantly updated, using new technologies and new designs to make up for its own shortcomings, Quantum Dots (QDs) is one of the most beneficial attempts.
  • QDs Quantum Dots
  • QDs materials can also be used to enhance the viewing angle of the display by utilizing its directional selective stimulated emission. True. In the existing LCD liquid crystal display, the viewing angle has always been one of the important evaluation criteria. However, due to factors such as display mode and backlight design, such as TN, VA and other displays, the display of the large viewing angle is much inferior to the front view display.
  • the present invention provides a liquid crystal display capable of obtaining a display effect of a high color gamut and a wide viewing angle, thereby improving the taste of the entire liquid crystal display.
  • the specific technical solution provided by the present invention is to provide a liquid crystal display, the liquid crystal display includes a backlight module and a display module, the backlight module includes a backlight, and the display module includes a lower polarizing layer, a liquid crystal layer, and An upper polarizing layer, the liquid crystal layer is located between the upper polarizing layer and the lower polarizing layer, the backlight includes a lamp cover and an LED chip received in the lamp cover, and an inner surface of the lamp cover is coated with fluorescent light a powder layer, the lower polarizing layer includes a quantum dot layer and a polarizing layer disposed between the quantum dot layer and the liquid crystal layer, and light emitted by the LED chip sequentially passes through the phosphor layer and the quantum dot After the layer is formed, white light is emitted.
  • the LED chip is a blue LED chip
  • the phosphor layer is a red phosphor layer
  • the quantum dot layer is a green quantum dot layer.
  • the material of the phosphor layer is fluoride or nitride.
  • the fluoride has a molecular formula of A x MF y : Mn 4+, A is selected from one of Li, Na, K, Ca, Sr, Ba, and M is selected from one of Si, Al, Y, and Sc. kind.
  • the green light quantum dot layer is formed by mixing a green light quantum dot, a dispersion solvent and a polymer matrix.
  • the green light quantum dot layer is doped with red light quantum dots.
  • the liquid crystal display further includes a red light quantum dot layer disposed at a bottom of the green light quantum dot layer or between the green light quantum dot layer and the polarizing layer.
  • the red light quantum dot layer is formed by mixing red light quantum dots, a dispersion solvent, and a polymer matrix.
  • the green light quantum dots and the red light quantum dots are all oil-soluble materials
  • the dispersion solvent is a non-polar solvent
  • the polymer matrix is selected from the group consisting of acrylic resins, epoxy resins, and cycloolefins.
  • acrylic resins epoxy resins
  • cycloolefins One of a polymer, an organosilane resin, and a fiber ester.
  • the polarizing layer comprises a polarizing film, a compensation film, an adhesive layer and a substrate which are disposed in this order from bottom to top.
  • the liquid crystal display provided by the invention has a quantum dot layer disposed at the bottom of the polarizing layer to form a quantum dot structure with a high color gamut and a wide viewing angle, thereby improving the taste of the entire liquid crystal display.
  • the quantum dot layer is disposed on the bottom layer of the lower polarizer, thereby avoiding the light-collecting effect of the prism sheet in the backlight module on the quantum dot layer, thereby effectively increasing the brightness of the liquid crystal display while increasing the color gamut of the liquid crystal display.
  • the thickness of the liquid crystal display is thinned by forming a quantum dot layer in the lower polarizer.
  • FIG. 1 is a schematic structural view of a liquid crystal display device of Embodiment 1;
  • Embodiment 2 is a schematic structural view of a lower polarizing layer in Embodiment 1;
  • Figure 3 is an emission spectrum of fluoride and nitride
  • FIG. 4 is a schematic structural view of a liquid crystal display device of Embodiment 2;
  • FIG. 5 is a schematic structural view of a lower polarizing layer in Embodiment 3.
  • FIG. 6 is a schematic structural view of a lower polarizing layer in Embodiment 4.
  • the liquid crystal display in this embodiment is a side-entry type, and includes a backlight module 1 and a display module 2 .
  • the backlight module 1 includes a light guide plate 11 and a backlight 12, and the backlight 12 is disposed opposite to the light incident surface of the light guide plate 11.
  • the display module 2 includes a lower polarizing layer 21, a liquid crystal layer 22 and an upper polarizing layer 23, a lower polarizing layer 21 between the light guiding plate 11 and the liquid crystal layer 22, and a liquid crystal layer 22 between the lower polarizing layer 21 and the upper polarizing layer 23.
  • the backlight 12 includes a lamp cover 12a and an LED chip 12b housed in the lamp cover 12a.
  • the inner surface of the lamp cover 12a is coated with a phosphor layer 12c.
  • the lower polarizing layer 21 includes a polarizing layer 21a and is disposed between the polarizing layer 21a and the light guide plate 11.
  • the quantum dot layer 21b and the light emitted from the LED chip 12b sequentially pass through the phosphor layer 12c and the quantum dot layer 21b to form white light.
  • the backlight module 1 in this embodiment is a side-lit backlight module, and the backlight 12 is disposed on the side of the light guide plate 11.
  • the light incident surface of the light guide plate 11 refers to the side of the light guide plate 11 facing the backlight 12 . .
  • the light emitted from the LED chip 12b is incident on the phosphor layer 12c to excite the phosphor layer 12c to emit light, and the light emitted from the phosphor layer 12c and the light emitted from the LED chip 12b are incident on the light guide plate 11 and are reflected by the light guide plate 11 multiple times.
  • the light-emitting surface of the light guide plate 11 is emitted.
  • the light-emitting surface of the light guide plate 11 refers to the surface of the light guide plate 11 facing the quantum dot layer 21b.
  • the light emitted from the light-emitting surface of the light guide plate 11 is incident on the quantum dot layer 21b, and the quantum dot layer 21b is excited to emit fluorescence, the light emitted from the LED chip 12b, the light emitted from the phosphor layer 12c, and the fluorescence emitted from the quantum dot layer 21b.
  • white light is formed to be emitted from the quantum dot layer 21b.
  • the quantum dot layer 21b is disposed on the bottom layer of the lower polarizer 21, which can avoid the light-collecting effect of the prism sheet in the backlight module 1 on the quantum dot layer 21b, and effectively increase the liquid crystal display while increasing the color gamut of the liquid crystal display.
  • the LED chip 12b in this embodiment is a blue LED chip
  • the phosphor layer 12c is a red phosphor layer
  • the quantum dot layer 21b is a green quantum dot layer.
  • the red phosphor layer emits red light under the excitation of the blue LED chip
  • the green light quantum dot layer undergoes an electronic transition under the excitation of blue light to generate green fluorescence, thereby emitting a blue light and a red phosphor layer emitted by the blue LED chip.
  • the red light and the green light emitted by the green light quantum dot layer are mixed to obtain white light, so that the light entering the polarizing layer 21a is white light.
  • the color of the light emitted from the phosphor layer 12c and the quantum dot layer 21b may be selected as another color combination as long as the light emitted from the quantum dot layer 21b can be made white.
  • the phosphor layer 12c is a red phosphor layer
  • the quantum dot layer 21b is a green quantum dot layer.
  • the material of the phosphor layer 12c is fluoride or nitride, and the emission spectrum of the fluoride and nitride is shown in FIG.
  • the formula of the fluoride is A x MF y : Mn 4 + , A is selected from one of Li, Na, K, Ca, Sr, Ba, and M is selected from one of Si, Al, Y, and Sc.
  • Commonly used fluorides generally contain three systems: KSF, KGF, and KTF.
  • KSF belongs to the cubic system.
  • KGF and KTF belong to the hexagonal system. These three systems are called tetravalent manganese-excited potassium fluorosilicate/ ⁇ /titanium.
  • the chemical formula is K 2 SiF 6 : Mn 4+ , K 2 GeF 6 : Mn 4+ , and K 2 TiF 6 : Mn 4+ , respectively .
  • Table 1 shows the peak wavelength and half-wave width of fluoride and nitride.
  • the green light quantum dot layer in this embodiment is formed by mixing a green light quantum dot, a dispersion solvent, and a polymer matrix.
  • the green light quantum dot adopts an oil-soluble material, which comprises an illuminating core and an inorganic protective shell, wherein the material of the luminescent core is selected from one of ZnCdSe 2 , InP, Cd 2 Sse, ZnCuInS x Se y and CuInS x , and inorganic protection
  • the material of the shell is selected from one of CdS, ZnSe, ZnCdS 2 , ZnS, ZnO or a plurality of combinations selected from the group consisting of CdS, ZnSe, ZnCdS 2 , ZnS, and ZnO.
  • the dispersing solvent is a non-polar solvent
  • the non-polar solvent is selected from the group consisting of n-pentane, n-hexane, n-heptane, cyclopentane, cyclohexane, dichloromethane, chloroform, toluene, petroleum ether and the like. Or a mixture selected from several of them, preferably, the non-polar solvent is one of n-hexane, cyclohexane, toluene or a mixed solvent of several of them.
  • the polymer matrix is selected from one of a polymer compound such as an acrylic resin, an epoxy resin, a cycloolefin polymer, an organosilane resin, and a cellulose ester.
  • a polymer compound such as an acrylic resin, an epoxy resin, a cycloolefin polymer, an organosilane resin, and a cellulose ester.
  • the polymer matrix is a cycloolefin polymer or an organosilane.
  • High barrier material such as resin.
  • the film forming process of the green light quantum dot layer includes solution processing and physical processing processes, for example, a thermal curing process, a photocuring process, and a melt hot extrusion process.
  • the green light quantum dot layer is bonded to the polarizing layer 21a by these processes to form the lower polarizing layer 21.
  • the green light quantum dot layer in the embodiment only contains green light quantum dots, which can avoid the phenomenon that the luminous efficiency is reduced due to improper mixing and mixing of quantum dots materials of multiple colors, which reduces the film forming difficulty and reduces the film forming time.
  • the polarizing layer 21a in the present embodiment includes a polarizing film 210, a compensation film 211, an adhesive layer 212, and a substrate 213 which are provided on the quantum dot layer 21b in order from bottom to top.
  • the material of the polarizing film 210 is PVA (polyvinyl alcohol), and the polarizing film 210 functions as a polarizing.
  • the compensation film 211 serves as a protective layer of the polarizing film 210, and has the function of isolating water vapor while having a function of compensating for the viewing angle.
  • the material of the bonding layer 212 is PSA (pressure sensitive adhesive) for bonding the compensation film 211 to the substrate 213, where the substrate 213 is usually glass.
  • the backlight module 1 in this embodiment further includes a reflective layer 13 disposed at the bottom of the light guide plate 11 and an optical film set 14 disposed on the top of the light guide plate 11.
  • the reflective layer 13 may be a reflective sheet or a coated guide.
  • the optical film group 14 includes a lower diffusion sheet 14a, a brightness enhancement sheet 14b, and an upper diffusion sheet 14c which are disposed in this order from the bottom to the top.
  • the upper diffusion sheet 14c is located between the brightness enhancement sheet 14b and the display module 2
  • the lower diffusion sheet 14a is located between the brightness enhancement sheet 14b and the light guide plate 11.
  • the lower diffusion sheet 14a is for collectively projecting the light emitted from the light-emitting surface of the light guide plate 11 onto the light-increasing sheet 14b, and the light-increasing sheet 14b is for collecting the dispersed light emitted from the lower diffusion sheet 14a to increase the brightness and spread the light.
  • the sheet 14c is for atomizing the light emitted from the brightness enhancement sheet 14b, and uniformly emits the light.
  • the brightness enhancement sheet 14b is usually a prism sheet.
  • the liquid crystal display in this embodiment further includes an outer frame 3 for supporting the backlight module 1 and the display module 2.
  • Embodiment 1 is different from Embodiment 1 in that the liquid crystal display in this embodiment is of a direct type.
  • the liquid crystal display in this embodiment includes a backlight module 1 and a display module 2.
  • the backlight module 1 includes a backlight 12, and the backlight 12 is located at the bottom of the display module 2.
  • the display module 2 includes a lower polarizing layer 21, a liquid crystal layer 22, and an upper polarizing layer 23, and the liquid crystal layer 22 is located between the lower polarizing layer 21 and the upper polarizing layer 23.
  • the backlight 12 includes a lamp cover 12a and an LED chip 12b housed in the lamp cover 12a.
  • the inner surface of the lamp cover 12a is coated with a phosphor layer 12c.
  • the lower polarizing layer 21 includes a polarizing layer 21a and is disposed between the polarizing layer 21a and the light guide plate 11.
  • the quantum dot layer 21b and the light emitted from the LED chip 12b sequentially pass through the phosphor layer 12c and the quantum dot layer 21b to form white light.
  • the light emitted from the LED chip 12b is incident on the phosphor layer 12c to excite the phosphor layer 12c to emit light, and the light emitted from the phosphor layer 12c and the light emitted from the LED chip 12b are directly incident on the quantum dot layer 21b, and the quantum dot layer 21b is excited. Fluorescence, light emitted from the LED chip 12b, and light emitted from the phosphor layer 12c are mixed with the fluorescence emitted from the quantum dot layer 21b to form white light which is emitted from the quantum dot layer 21b.
  • the quantum dot layer 21b is disposed on the bottom layer of the lower polarizer 21, which can avoid the light-collecting effect of the prism sheet in the backlight module 1 on the quantum dot layer 21b, and effectively increase the liquid crystal display while increasing the color gamut of the liquid crystal display.
  • the LED chip 12b, the phosphor layer 12c, the quantum dot layer 21b, and the polarizing layer 21a in this embodiment are the same as those in Embodiment 1, and are not described herein again.
  • the backlight module 1 in this embodiment further includes a reflective layer 13 disposed at the bottom of the backlight 12 and an optical film set 14 disposed at the top of the backlight 12.
  • the reflective layer 13 may be a reflective sheet or a reflective coating.
  • the optical film group 14 includes a lower diffusion sheet 14a, a brightness enhancement sheet 14b, and an upper diffusion sheet 14c which are disposed in this order from the bottom to the top.
  • the upper diffusion sheet 14c is located between the brightness enhancement sheet 14b and the display module 2
  • the lower diffusion sheet 14a is located between the brightness enhancement sheet 14b and the backlight 12.
  • the lower diffusion sheet 14a is for collecting the light emitted from the backlight 12 and uniformly projecting it onto the brightness enhancement sheet 14b
  • the brightness enhancement sheet 14b is for collecting the scattered light emitted from the lower diffusion sheet 14a to improve Brightness
  • the upper diffusion sheet 14c is for atomizing the light emitted from the brightness enhancement sheet 14b, and uniformly emits the light.
  • the brightness enhancement sheet 14b is usually a prism sheet.
  • the liquid crystal display in this embodiment further includes an outer frame 3 for supporting the backlight module 1 and the display module 2, wherein the reflective layer 13 covers the inner surface of the outer frame 3, and the backlight 12 can be emitted through the reflective layer 13. Most of the light is reflected onto the optical film set 14, thereby increasing the luminous efficiency of the backlight 12.
  • the green quantum dot layer is doped with red light quantum dots. Due to the decrease of the red light energy, in order to improve the red color point, the green quantum dot layer is doped with a small concentration of a small concentration. Red light quantum dots, thereby increasing the color gamut of the entire liquid crystal display.
  • the red light quantum dot adopts an oil-soluble material, which comprises a light-emitting core and an inorganic protective shell, wherein the material of the light-emitting core is selected from the group consisting of CdSe, Cd 2 SeTe, InAs, ZnCuInS x Se y and CuInS x , and the material of the inorganic protective shell is used.
  • the material of the inorganic protective shell is used.
  • the present embodiment is different from Embodiment 1 in that the lower polarizing layer 21 further includes a red quantum dot layer 21c disposed between the green quantum dot layer and the upper diffusion sheet 14c.
  • the red color point can be improved, the color gamut of the entire liquid crystal display can be improved, and the phenomenon that the luminous efficiency is reduced due to improper mixing and mixing of quantum dots materials of multiple colors can be avoided, the film forming difficulty is reduced, and the film forming time is reduced.
  • the red light quantum dot layer 21c is formed by mixing a red light quantum dot, a dispersion solvent, and a polymer matrix.
  • the red light quantum dot adopts an oil-soluble material, which comprises a light-emitting core and an inorganic protective shell, wherein the material of the light-emitting core is selected from the group consisting of CdSe, Cd 2 SeTe, InAs, ZnCuInS x Se y and CuInS x , and the material of the inorganic protective shell is used.
  • the dispersing solvent is a non-polar solvent
  • the non-polar solvent is selected from the group consisting of n-pentane, n-hexane, n-heptane, cyclopentane, cyclohexane, dichloromethane, chloroform, toluene, petroleum ether and the like. Or a mixture selected from several of them, preferably, the non-polar solvent is one of n-hexane, cyclohexane, toluene or a mixed solvent of several of them.
  • the polymer matrix is selected from one of a polymer compound such as an acrylic resin, an epoxy resin, a cycloolefin polymer, an organosilane resin, and a cellulose ester.
  • a polymer compound such as an acrylic resin, an epoxy resin, a cycloolefin polymer, an organosilane resin, and a cellulose ester.
  • the polymer matrix is a cycloolefin polymer or an organosilane.
  • High barrier material such as resin.
  • this embodiment is different from Embodiment 4 in that a red light quantum dot layer 21c is located between the green light quantum dot layer and the polarizing layer 21a.
  • This embodiment can further improve the red color point and improve the color gamut of the entire liquid crystal display based on the third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种液晶显示器,包括背光模组(1)和显示模组(2),背光模组(2)包括背光源(12),显示模组(2)包括下偏光层(21)、液晶层(22)及上偏光层(23),液晶层(22)位于上偏光层(23)与下偏光层(21)之间,背光源(12)包括灯罩(12a)及收容于灯罩(12a)中的LED芯片(12b),灯罩(12a)的内表面涂覆有荧光粉层(12c),下偏光层(21)包括量子点层(21b)及设于量子点层与液晶层之间的偏振层(21a),LED芯片(12b)发出的光依次经过荧光粉层(12c)、量子点层(21b)后形成白光出射。该液晶显示器在偏振层(21a)的底部设置量子点层(21b),提高了色域,改善了视角。

Description

液晶显示器 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种液晶显示器。
背景技术
在过去的几十年,LCD一直作为显示的代名词,而近年来OLED电致发光、激光显示、Micro LED等新颖的显示技术频出,大有取而代之的趋势。在此背景下,LCD也在不断更新换代,利用新技术新设计来弥补自身不足,量子点材料(Quantum Dots,QDs)就是其中最为有益的尝试之一。
由于QDs材料本身所具有的高色纯度、光谱连续可调等优异性质,使其成为21世纪最为优秀的发光材料,可以在显示色域上大幅度提高现有LCD的色彩表现,因此近年来被广泛应用于显示技术领域中。QDs材料除了用于色域提升之外,利用其无方向选择性的受激发射,也可以用来提升显示器的视角表现。诚然。现有的LCD液晶显示器,视角一直是重要的评价标准之一,然而由于显示模式与背光设计等因素限制,如TN、VA等显示器,其大视角的显示要远逊于正视视角显示。
发明内容
为了解决现有技术的不足,本发明提供一种液晶显示器,能够获得高色域、广视角的显示效果,提升了整个液晶显示器的品味。
本发明提出的具体技术方案为:提供一种液晶显示器,所述液晶显示器包括背光模组和显示模组,所述背光模组包括背光源,所述显示模组包括下偏光层、液晶层及上偏光层,所述液晶层位于所述上偏光层与所述下偏光层之间,所述背光源包括灯罩及收容于所述灯罩中的LED芯片,所述灯罩的内表面涂覆有荧光粉层,所述下偏光层包括量子点层及设于所述量子点层与所述液晶层之间的偏振层,所述LED芯片发出的光依次经过所述荧光粉层、所述量子点层后形成白光出射。
可选地,所述LED芯片为蓝光LED芯片,所述荧光粉层为红色的荧光粉层,所述量子点层为绿光量子点层。
可选地,所述荧光粉层的材料为氟化物或氮化物。
可选地,所述氟化物的分子式为AxMFy:Mn4+,A选自Li、Na、K、Ca、Sr、Ba中的一种,M选自Si、Al、Y、Sc中的一种。
可选地,所述绿光量子点层是由绿光量子点、分散溶剂及聚合物基质混合成膜而成。
可选地,所述绿光量子点层中掺杂有红光量子点。
可选地,所述液晶显示器还包括设于所述绿光量子点层的底部或者设于所述绿光量子点层与所述偏振层之间的红光量子点层。
可选地,所述红光量子点层是由红光量子点、分散溶剂及聚合物基质混合成膜而成。
可选地,所述绿光量子点和所述红光量子点的材质均为油溶性材料,所述分散溶剂为非极性溶剂,所述聚合物基质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯中的一种。
可选地,所述偏振层包括从下而上依次设置的偏振膜、补偿膜、粘接层及基板。
本发明提出的液晶显示器在偏振层的底部设置量子点层,形成高色域、广视角的量子点架构,提升了整个液晶显示器的品味。此外,将量子点层设置在下偏光片的底层,可以避免背光模组中的棱镜片对量子点层的收光效果,从而在增加液晶显示器的色域的同时有效的增加了液晶显示器的亮度,而且通过将量子点层成膜在下偏光片中,减薄了液晶显示器的厚度。
附图说明
图1为实施例1中液晶显示器的结构示意图;
图2为实施例1中下偏光层的结构示意图;
图3为氟化物与氮化物的发射光谱图;
图4为实施例2中液晶显示器的结构示意图;
图5为实施例3中下偏光层的结构示意图;
图6为实施例4中下偏光层的结构示意图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,相同的标号将始终被用于表示相同的元件。
实施例1
参照图1、图2,本实施例中的液晶显示器为侧入式,其包括背光模组1和显示模组2。背光模组1包括导光板11及背光源12,背光源12与导光板11的入光面相对设置。显示模组2包括下偏光层21、液晶层22及上偏光层23,下偏光层21位于导光板11与液晶层22之间,液晶层22位于下偏光层21与上偏光层23之间。背光源12包括灯罩12a及收容于灯罩12a中的LED芯片12b,灯罩12a的内表面涂覆有荧光粉层12c,下偏光层21包括偏振层21a及设于偏振层21a与导光板11之间的量子点层21b,LED芯片12b发出的光依次经过荧光粉层12c、量子点层21b后形成白光出射。
本实施例中的背光模组1为侧入式的背光模组,背光源12设置在导光板11的侧面,其中,导光板11的入光面指的是导光板11朝向背光源12的一面。LED芯片12b发出的光入射至荧光粉层12c上激发荧光粉层12c发光,荧光粉层12c发出的光与LED芯片12b发出的光入射至导光板11中并经导光板11多次反射后从导光板11的出光面出射,这里,导光板11的出光面指的是导光板11与量子点层21b相对的一面。从导光板11的出光面出射的光再入射至量子点层21b中,量子点层21b受激发发出荧光,LED芯片12b发出的光、荧光粉层12c发出的光与量子点层21b发出的荧光混合后形成白光从量子点层21b出射。
由于量子点材料各个方向都是在量子限域范围内的尺寸,荧光辐射也不存在方向选择性,故受激后是向360°无差别辐射荧光,可以有效平衡各视角的亮度。因此,通过在偏振层21a与导光板11之间设置量子点层21b,可以形成高色域、广视角的量子点架构,从而提升整个液晶显示器的品味。此外,将量子点层21b设置在下偏光片21的底层,可以避免背光模组1中的棱镜片对量子点层21b的收光效果,在增加液晶显示器的色域的同时有效的增加了液晶显示器的亮度,而且通过将量子点层21b成膜在下偏光片21中,减薄了液晶显示器的厚度。
本实施例中的LED芯片12b为蓝光LED芯片,荧光粉层12c为红色的荧光粉层,量子点层21b为绿光量子点层。红色的荧光粉层在蓝光LED芯片的激发下发出红光,绿光量子点层在蓝光的激发下发生电子跃迁,产生绿色的荧光,从而,蓝光LED芯片发出的蓝光、红色的荧光粉层发出的红光以及绿光量子点层发出的绿光混合得到白光,从而使得进入偏振层21a中的光为白光。当然,在本实施例中,也可以将荧光粉层12c、量子点层21b发出的光的颜色选为其他的颜色组合,只要能够满足从量子点层21b出射的光为白光即可。为了能够获得最好的发光效果,优选的,荧光粉层12c为红色的荧光粉层,量子点层21b为绿光量子点层。
荧光粉层12c的材料为氟化物或氮化物,氟化物与氮化物的发射光谱图如图3所示。氟化物的分子式为AxMFy:Mn4+,A选自Li、Na、K、Ca、Sr、Ba中的一种,M选自Si、Al、Y、Sc中的一种。常用的氟化物一般包含KSF、KGF、KTF三种体系,KSF属于立方晶系,KGF、KTF属于六方晶系,这三种体系称为4价锰激发的氟硅酸钾/锗/钛,其化学式分别为K2SiF6:Mn4+、K2GeF6:Mn4+、K2TiF6:Mn4+。如表一所示,表一示出了氟化物与氮化物的峰值波长和半波宽。
表一
Figure PCTCN2017116040-appb-000001
本实施例中的绿光量子点层是由绿光量子点、分散溶剂及聚合物基质混合成膜而成。其中,绿光量子点采用油溶性材料,其包括发光核和无机保护壳,其中,发光核的材质选自ZnCdSe2、InP、Cd2Sse、ZnCuInSxSey、CuInSx中的一种, 无机保护壳的材质选自CdS、ZnSe、ZnCdS2、ZnS、ZnO中的一种或选自其中的多种组合而成。
分散溶剂为非极性溶剂,非极性溶剂选自正戊烷、正己烷、正庚烷、环戊烷、环己烷、二氯甲烷、三氯甲烷、甲苯、石油醚等溶剂中的一种或选自其中几种的混合物,较佳地,非极性溶剂为正己烷、环己烷、甲苯中的一种或为其中几种的混合溶剂。聚合物基质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯等高分子化合物中的一种,较佳地,聚合物基质为环烯烃聚合物、有机硅烷类树脂等高阻隔性材料。
绿光量子点层的成膜工艺包括溶液加工和物理加工制程,例如,热固化工艺、光固化工艺、熔融热挤出工艺。通过这些工艺将绿光量子点层与偏振层21a粘接形成下偏光层21。
本实施例中的绿光量子点层中只含有绿光量子点,可以避免因多种颜色的量子点材料混合调配不当而降低发光效率的现象,降低了成膜难度,减少了成膜时间。
本实施例中的偏振层21a包括从下而上依次设于量子点层21b上的偏振膜210、补偿膜211、粘接层212及基板213。偏振膜210的材质为PVA(聚乙烯醇),偏振膜210起到起偏的作用。补偿膜211作为偏振膜210的保护层,具有隔绝水汽的作用,同时具有补偿视角的作用。粘接层212的材质为PSA(压敏胶),其用于将补偿膜211与基板213粘接在一起,这里基板213通常为玻璃。
本实施例中的背光模组1还包括设于导光板11的底部的反射层13及设于导光板11顶部的光学膜片组14,反射层13可以是反射片也可以是涂覆于导光板11的底部的反射涂层。光学膜片组14包括从下而上依次设置的下扩散片14a、增光片14b、上扩散片14c。上扩散片14c位于增光片14b和显示模组2之间,下扩散片14a位于增光片14b和导光板11之间。下扩散片14a用于将从导光板11的出光面发出的光集中起来均匀投射到增光片14b上,增光片14b用于将下扩散片14a发出的分散光进行聚集,以提高亮度,上扩散片14c用于对从增光片14b发出的光进行雾化,并将光均匀射出。这里增光片14b通常为棱镜片。
本实施例中的液晶显示器还包括用于支撑背光模组1和显示模组2的外框3。
实施例2
本实施例与实施例1的不同之处在于,本实施例中的液晶显示器为直下式。
参照图4,本实施例中的液晶显示器包括背光模组1和显示模组2。背光模组1包括背光源12,背光源12位于显示模组2的底部。显示模组2包括下偏光层21、液晶层22及上偏光层23,液晶层22位于下偏光层21与上偏光层23之间。背光源12包括灯罩12a及收容于灯罩12a中的LED芯片12b,灯罩12a的内表面涂覆有荧光粉层12c,下偏光层21包括偏振层21a及设于偏振层21a与导光板11之间的量子点层21b,LED芯片12b发出的光依次经过荧光粉层12c、量子点层21b后形成白光出射。
LED芯片12b发出的光入射至荧光粉层12c上激发荧光粉层12c发光,荧光粉层12c发出的光与LED芯片12b发出的光直接入射至量子点层21b中,量子点层21b受激发发出荧光,LED芯片12b发出的光、荧光粉层12c发出的光与量子点层21b发出的荧光混合后形成白光从量子点层21b出射。
由于量子点材料各个方向都是在量子限域范围内的尺寸,荧光辐射也不存在方向选择性,故受激后是向360°无差别辐射荧光,可以有效平衡各视角的亮度。因此,通过将量子点层21b设在显示模组2的底部,可以形成高色域、广视角的量子点架构,从而提升整个液晶显示器的品味。此外,将量子点层21b设置在下偏光片21的底层,可以避免背光模组1中的棱镜片对量子点层21b的收光效果,在增加液晶显示器的色域的同时有效的增加了液晶显示器的亮度,而且通过将量子点层21b成膜在下偏光片21中,减薄了液晶显示器的厚度。
本实施例中的LED芯片12b、荧光粉层12c、量子点层21b及偏振层21a与实施例1的相同,这里不再赘述。
本实施例中的背光模组1还包括设于背光源12的底部的反射层13及设于背光源12的顶部的光学膜片组14,反射层13可以是反射片也可以是反射涂层。光学膜片组14包括从下而上依次设置的下扩散片14a、增光片14b、上扩散片14c。上扩散片14c位于增光片14b和显示模组2之间,下扩散片14a位于增光片14b和背光源12之间。下扩散片14a用于将从背光源12发出的光集中起来均匀投射到增光片14b上,增光片14b用于将下扩散片14a发出的分散光进行聚集,以提高 亮度,上扩散片14c用于对从增光片14b发出的光进行雾化,并将光均匀射出。这里增光片14b通常为棱镜片。
本实施例中的液晶显示器还包括用于支撑背光模组1和显示模组2的外框3,其中,反射层13覆盖于外框3的内表面,通过反射层13可以将背光源12发出的光绝大部分反射至光学膜片组14上,从而提升背光源12的发光效率。
实施例3
本实施例与实施例1的不同之处在于绿光量子点层中掺杂有红光量子点,由于红光的能量降低,为了提高红色色点,在绿色量子点层中掺杂低浓度的少量的红光量子点,从而提高整个液晶显示器的色域。
红光量子点采用油溶性材料,其包括发光核和无机保护壳,其中,发光核的材质选自CdSe,Cd2SeTe,InAs,ZnCuInSxSey,CuInSx中的一种,无机保护壳的材质选自CdS、ZnSe、ZnCdS2、ZnS、ZnO中的一种或选自其中的多种组合而成。
实施例4
参照图5,本实施例与实施例1的不同之处在于下偏光层21还包括设于绿光量子点层与上扩散片14c之间的红光量子点层21c。本实施例能够提高红色色点、提高整个液晶显示器的色域,同时还可以避免因多种颜色的量子点材料混合调配不当而降低发光效率的现象,降低了成膜难度,减少了成膜时间。
红光量子点层21c是由红光量子点、分散溶剂及聚合物基质混合成膜而成。红光量子点采用油溶性材料,其包括发光核和无机保护壳,其中,发光核的材质选自CdSe,Cd2SeTe,InAs,ZnCuInSxSey,CuInSx中的一种,无机保护壳的材质选自CdS、ZnSe、ZnCdS2、ZnS、ZnO中的一种或选自其中的多种组合而成。
分散溶剂为非极性溶剂,非极性溶剂选自正戊烷、正己烷、正庚烷、环戊烷、环己烷、二氯甲烷、三氯甲烷、甲苯、石油醚等溶剂中的一种或选自其中几种的混合物,较佳地,非极性溶剂为正己烷、环己烷、甲苯中的一种或为其中几种的混合溶剂。聚合物基质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯等高分子化合物中的一种,较佳地,聚合物基质为环烯烃聚合物、有机硅烷类树脂等高阻隔性材料。
实施例5
参照图6,本实施例与实施例4的不同之处在于红光量子点层21c位于绿光量子点层与偏振层21a之间。本实施例在实施例3的基础上能够更进一步的提高红色色点、提高整个液晶显示器的色域。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (13)

  1. 一种液晶显示器,其中,包括背光模组和显示模组,所述背光模组包括背光源,所述显示模组包括下偏光层、液晶层及上偏光层,所述液晶层位于所述上偏光层与所述下偏光层之间,所述背光源包括灯罩及收容于所述灯罩中的LED芯片,所述灯罩的内表面涂覆有荧光粉层,所述下偏光层包括量子点层及设于所述量子点层与所述液晶层之间的偏振层,所述LED芯片发出的光依次经过所述荧光粉层、所述量子点层后形成白光出射。
  2. 根据权利要求1所述的液晶显示器,其中,所述LED芯片为蓝光LED芯片,所述荧光粉层为红色的荧光粉层,所述量子点层为绿光量子点层。
  3. 根据权利要求2所述的液晶显示器,其中,所述荧光粉层的材料为氟化物或氮化物。
  4. 根据权利要求3所述的液晶显示器,其中,所述氟化物的分子式为AxMFy:Mn4+,A选自Li、Na、K、Ca、Sr、Ba中的一种,M选自Si、Al、Y、Sc中的一种。
  5. 根据权利要求2所述的液晶显示器,其中,所述绿光量子点层是由绿光量子点、分散溶剂及聚合物基质混合成膜而成。
  6. 根据权利要求5所述的液晶显示器,其中,所述绿光量子点层中掺杂有红光量子点。
  7. 根据权利要求5所述的液晶显示器,其中,还包括设于所述绿光量子点层的底部或者设于所述绿光量子点层与所述偏振层之间的红光量子点层。
  8. 根据权利要求7所述的液晶显示器,其中,所述红光量子点层是由红光量子点、分散溶剂及聚合物基质混合成膜而成。
  9. 根据权利要求5所述的液晶显示器,其中,所述绿光量子点和所述红光量子点的材质均为油溶性材料,所述分散溶剂为非极性溶剂,所述聚合物基质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯中的一种。
  10. 根据权利要求6所述的液晶显示器,其中,所述绿光量子点和所述红光量子点的材质均为油溶性材料,所述分散溶剂为非极性溶剂,所述聚合物基 质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯中的一种。
  11. 根据权利要求7所述的液晶显示器,其中,所述绿光量子点和所述红光量子点的材质均为油溶性材料,所述分散溶剂为非极性溶剂,所述聚合物基质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯中的一种。
  12. 根据权利要求8所述的液晶显示器,其中,所述绿光量子点和所述红光量子点的材质均为油溶性材料,所述分散溶剂为非极性溶剂,所述聚合物基质选自丙烯酸系树脂、环氧树脂、环烯烃聚合物、有机硅烷类树脂及纤维酯中的一种。
  13. 根据权利要求1所述的液晶显示器,其中,所述偏振层包括从下而上依次设置的偏振膜、补偿膜、粘接层及基板。
PCT/CN2017/116040 2017-11-01 2017-12-14 液晶显示器 WO2019085173A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/754,269 US20190384108A1 (en) 2017-11-01 2017-12-14 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711059831.6A CN107656399A (zh) 2017-11-01 2017-11-01 液晶显示器
CN201711059831.6 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019085173A1 true WO2019085173A1 (zh) 2019-05-09

Family

ID=61096805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116040 WO2019085173A1 (zh) 2017-11-01 2017-12-14 液晶显示器

Country Status (3)

Country Link
US (1) US20190384108A1 (zh)
CN (1) CN107656399A (zh)
WO (1) WO2019085173A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814842B (zh) * 2019-06-17 2023-09-11 大陸商蘇州鐸力斯科技有限公司 白光發光二極體及包含其之背光模組與顯示裝置
CN114578613A (zh) * 2020-11-30 2022-06-03 优美特创新材料股份有限公司 含有荧光粉及量子点的背光模块
CN113156703A (zh) * 2021-04-22 2021-07-23 深圳市华星光电半导体显示技术有限公司 背光模组及量子点显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202065823U (zh) * 2011-05-13 2011-12-07 京东方科技集团股份有限公司 一种白光led及其器件
CN103090319A (zh) * 2012-12-20 2013-05-08 康佳集团股份有限公司 一种液晶电视和直下式背光模组的灯条
CN103869528A (zh) * 2014-03-24 2014-06-18 信利半导体有限公司 液晶显示模组
CN105202483A (zh) * 2014-06-20 2015-12-30 业鑫科技顾问股份有限公司 背光模组及显示设备
US20160070137A1 (en) * 2012-06-15 2016-03-10 Apple Inc. Quantum Dot-Enhanced Display Having Dichroic Filter
KR20160041709A (ko) * 2014-10-08 2016-04-18 주식회사 엘지화학 광학 필름, 이를 포함하는 휘도 향상 필름 및 백라이트 유닛
KR20170011616A (ko) * 2015-07-23 2017-02-02 주식회사 아모그린텍 청색광원용 광확산기능 일체형 양자점 시트, 이의 제조방법 및 이를 포함하는 백라이트 유닛
CN106970488A (zh) * 2017-05-04 2017-07-21 深圳市华星光电技术有限公司 一种光学膜组件、背光模组及显示设备
CN107092138A (zh) * 2017-06-28 2017-08-25 深圳Tcl新技术有限公司 液晶显示面板和液晶显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759050B (zh) * 2012-07-09 2015-08-05 创维液晶器件(深圳)有限公司 背光模组及液晶显示装置
CN106405710B (zh) * 2013-07-05 2018-03-30 大日本印刷株式会社 防眩膜、偏振片、液晶面板和图像显示装置
WO2015152116A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 光変換部材及び光変換部材の製造方法並びに光変換部材を含むバックライトユニットおよび液晶表示装置
CN105278025B (zh) * 2015-11-11 2019-04-30 深圳市华星光电技术有限公司 量子点偏光片
CN105334660A (zh) * 2015-12-08 2016-02-17 深圳市华星光电技术有限公司 量子点偏光片
CN106855648A (zh) * 2017-02-04 2017-06-16 苏州星烁纳米科技有限公司 量子点偏光元件、背光模组及液晶显示装置
US10345688B2 (en) * 2017-04-18 2019-07-09 Unique Materials Co., Ltd. Light emitting apparatus using composite material
CN207992627U (zh) * 2017-11-01 2018-10-19 惠州市华星光电技术有限公司 液晶显示器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202065823U (zh) * 2011-05-13 2011-12-07 京东方科技集团股份有限公司 一种白光led及其器件
US20160070137A1 (en) * 2012-06-15 2016-03-10 Apple Inc. Quantum Dot-Enhanced Display Having Dichroic Filter
CN103090319A (zh) * 2012-12-20 2013-05-08 康佳集团股份有限公司 一种液晶电视和直下式背光模组的灯条
CN103869528A (zh) * 2014-03-24 2014-06-18 信利半导体有限公司 液晶显示模组
CN105202483A (zh) * 2014-06-20 2015-12-30 业鑫科技顾问股份有限公司 背光模组及显示设备
KR20160041709A (ko) * 2014-10-08 2016-04-18 주식회사 엘지화학 광학 필름, 이를 포함하는 휘도 향상 필름 및 백라이트 유닛
KR20170011616A (ko) * 2015-07-23 2017-02-02 주식회사 아모그린텍 청색광원용 광확산기능 일체형 양자점 시트, 이의 제조방법 및 이를 포함하는 백라이트 유닛
CN106970488A (zh) * 2017-05-04 2017-07-21 深圳市华星光电技术有限公司 一种光学膜组件、背光模组及显示设备
CN107092138A (zh) * 2017-06-28 2017-08-25 深圳Tcl新技术有限公司 液晶显示面板和液晶显示装置

Also Published As

Publication number Publication date
CN107656399A (zh) 2018-02-02
US20190384108A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US8514350B2 (en) Light emitting device, display device, and color conversion sheet
JP6735287B2 (ja) ダウンコンバージョンフィルム要素
US8451402B2 (en) Color conversion sheet, illumination device, and display device
US10134962B2 (en) Quantum dot LED package structure
KR101775260B1 (ko) 색도 좌표와 색 영역 조절이 가능한 형광 필름
US20090194774A1 (en) Light source module with wavelength converting structure and the method of forming the same
US11630258B2 (en) Color liquid crystal displays and display backlights
EP3620834A1 (en) Light conversion film for use in backlight module, backlight module, and display device
TW201606401A (zh) 背光模組及顯示裝置
KR20090078547A (ko) 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
WO2017193418A1 (zh) 量子点背光模组
WO2015081692A1 (zh) 一种导光板、背光源及液晶显示装置
CN209858903U (zh) 一种复合光学膜、背光装置和显示装置
WO2019085173A1 (zh) 液晶显示器
WO2020168669A1 (zh) 量子点液晶显示器
CN105065995A (zh) 一种直下式背光模组
CN108919558A (zh) 一种楔形基板的量子点彩膜结构
US20170139092A1 (en) Polarizer, Quantum-Effect-Based Display Panel and Display Device
US10649129B2 (en) Light guide plate, backlight module and display device
CN207992627U (zh) 液晶显示器
CN207516587U (zh) 偏光片、液晶面板及液晶显示器
US9910209B2 (en) Backlight module, display module and display device
CN107589482A (zh) 偏光片、液晶面板及液晶显示器
US10247983B2 (en) Light conversion film for backlight module, backlight module and display device
TWI831382B (zh) 背光模組與顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930865

Country of ref document: EP

Kind code of ref document: A1