WO2019084975A1 - 一种采用有限元网格划分方法进行裂纹分区域监测的法兰 - Google Patents

一种采用有限元网格划分方法进行裂纹分区域监测的法兰 Download PDF

Info

Publication number
WO2019084975A1
WO2019084975A1 PCT/CN2017/109678 CN2017109678W WO2019084975A1 WO 2019084975 A1 WO2019084975 A1 WO 2019084975A1 CN 2017109678 W CN2017109678 W CN 2017109678W WO 2019084975 A1 WO2019084975 A1 WO 2019084975A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
annular groove
finite element
solid wall
circuit board
Prior art date
Application number
PCT/CN2017/109678
Other languages
English (en)
French (fr)
Inventor
承天洋
周斌
卞晓磊
钱伟
陆飞
张伟
卞磊
Original Assignee
江阴市恒润环锻有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴市恒润环锻有限公司 filed Critical 江阴市恒润环锻有限公司
Publication of WO2019084975A1 publication Critical patent/WO2019084975A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the invention relates to the technical field of flanges, in particular to a flange for performing crack sub-area monitoring by using a finite element meshing method.
  • Flanges are widely used in many industrial fields such as fluid pipe connections in the chemical and water industry, cylinder connections in wind power towers, and connections between vessels in pressure vessels. They are also commonly used in machinery and shafts. The connection between it is an important force piece. In order to obtain better strength, the flange is usually made of a metal material such as carbon steel, stainless steel or the like.
  • the flange As the connecting end of two adjacent parts, the flange often needs to bear large loads, including tensile force, pressure, torque, shearing force and vibration force. Under abnormal load, the flange may be cracked and cause equipment failure; under normal working conditions, the flange may also cause fatigue cracks due to long-term use, resulting in failure of the flange connection and equipment accident. .
  • the cracking of the flange not only directly causes equipment failure, but also may cause major safety accidents, such as leakage of toxic gas or liquid in the pipeline in the chemical industry, and failure of the flange of the cooling circulating pump for nuclear power. Lead to the suspension of nuclear power equipment. Therefore, it is necessary to establish a monitoring mechanism for flange cracks in applications where high reliability applications are required.
  • An ideal flange crack monitoring system should be able to monitor the position of the flange crack, the size and number of flange cracks in real time, so that the flange can be used or repaired according to the monitored data. Replace for a more accurate assessment.
  • the present invention proposes a flange for monitoring the crack sub-area by using the finite element meshing method, and includes an annular groove at the end surface or the outer circle of the flange.
  • the inner surface of the annular groove is provided with a non-conductive coating
  • the annular groove is provided with a contoured solid wall perpendicular to the bottom end of the annular groove and distributed according to the finite element meshing method, the grid
  • the solid wall is a non-conductive mesh-shaped solid wall
  • the mesh-shaped solid wall is connected to the bottom end of the annular groove without a gap
  • the height of the mesh-shaped solid wall is smaller than the groove depth of the annular groove, and is in the shape of a mesh
  • the upper end of the solid wall is glued with a waterproof PCB circuit board and the annular groove is closed, and a plurality of independent confined spaces are formed between the bottom end of the annular groove, the lower end of the waterproof PCB circuit board and the grid-shaped solid wall.
  • the sealed space is filled with a conductive fluid
  • the waterproof PCB circuit board is respectively provided with a metal wire that communicates with each of the independent sealed spaces and is in contact with the conductive fluid, and the metal wire is led out through the waterproof PCB circuit board. to External shaped groove.
  • the conductive fluid is enclosed in a plurality of independent sealed spaces formed by the bottom end of the annular groove, the lower end of the waterproof PCB circuit board and the grid-shaped solid wall, and the inner surface of the annular groove is coated with non-conductive material.
  • the layer-shaped solid wall is a non-conductive grid-shaped solid wall, so when the flange is in a normal condition, the metal wire contacting the conductive fluid on the waterproof PCB circuit board is kept insulated from the body of the metal flange.
  • the non-conductive coating in the confined space is synchronously destroyed, and cracks appear along with the flange, and the conductive fluid in the confined space passes through the non-conductive
  • the coating is in contact with the metal flange body, and the metal wire is electrically connected to the body of the flange. Therefore, as long as the metal wire and the body of the metal flange are connected as two terminals to the monitoring system, by detecting the resistance of the two terminals, it is possible to determine whether the flange has cracks in real time, and it can be judged that the crack is located. Which confined space location. If the crack is long, the metal wires of the adjacent several confined spaces may be simultaneously turned on with the metal flange body, and accordingly, the length of the crack can also be judged.
  • a flange of the present invention for performing crack sub-area monitoring using a finite element meshing method further includes an annular sealing colloid layer, and the annular sealing colloid layer The cover is disposed on the waterproof PCB circuit board.
  • the conductive fluid is a freeze-resistant liquid conductive paste.
  • the conductive fluid is an aqueous solution containing conductive ions, and an antifreeze is added to the aqueous solution.
  • the conductive fluid is mercury.
  • the non-conductive coating is a silicon steel sheet insulating varnish coating.
  • the non-conductive coating is a ceramic coating.
  • the use of a ceramic coating allows monitoring of microfractures in the flange.
  • the silicon steel sheet insulating varnish coating is suitable for applications where it is necessary to ignore some non-fatal microcracks and only need to monitor larger deadly cracks.
  • the annular sealant layer material is an elastic sealant.
  • a protective cover may also be placed over the annular sealant layer.
  • the mesh-shaped solid wall in the invention can be made of rubber, engineering plastics and the like with certain elongation, and the preform is made by pressing or injection molding.
  • the prefabricated grid-shaped solid wall is glued into the annular groove provided with a non-conductive coating.
  • an insulating colloid layer is further disposed between the annular sealant layer and the waterproof PCB circuit board, and the metal wires on the waterproof PCB circuit board pass through the insulating colloid layer and communicate each A separate confined space and in contact with the electrically conductive fluid.
  • the annular groove on the flange of the present invention can also be opened on the outer circumference of the flange.
  • the mesh-shaped solid wall can be integrally formed into an annular ring shape with an opening to facilitate installation.
  • the waterproof PCB circuit board is flexible, and is also formed into an annular ring shape with an opening for easy installation.
  • a finite element meshing method of the present invention is used to perform crack sub-area monitoring.
  • the measured flange adopts a finite element meshing method, and a grid-shaped solid wall is arranged in an annular groove provided with a non-conductive coating, and the annular groove is divided into a plurality of independent closed spaces, and the sealed space is provided therein.
  • the conductive fluid monitors whether there is a crack in the flange by detecting whether the conductive fluid in the sealed space is electrically connected to the metal flange body, so as to realize on-line monitoring of the flange crack, so that the equipment is timely maintained, thereby avoiding major safety accidents.
  • a flange of the invention can be used for flange end face crack monitoring.
  • the anti-freezing liquid conductive adhesive can timely bond the crack to avoid excessive excessive anti-freezing liquid conductive adhesive. Loss, thereby improving the reliability of monitoring.
  • the flange of the invention can be used for flange end face crack monitoring.
  • the ceramic groove is used in the annular groove, which has high sensitivity to cracks, and the sensitivity of the monitoring is high, which is favorable for obtaining an early stage before the flange fails. Monitoring and early warning to avoid major equipment failures or safety incidents.
  • FIG. 1 is a schematic structural view of a flange for performing crack sub-area monitoring using a finite element meshing method according to the present invention
  • Figure 2 is a partial enlarged view of Figure 1;
  • Figure 3 is a plan view of Figure 1 (the top view after removing the annular sealant layer and the waterproof PCB circuit board);
  • Figure 4 is a partial structural view of the flange when the annular groove is opened on the outer circumference of the flange;
  • Fig. 5 is a schematic view showing the outer structure of the flange when the annular groove is opened on the outer circumference of the flange (the figure shows the outline structure of the annular sealant layer and the waterproof PCB circuit board).
  • FIG. 1 to 5 show an embodiment of a flange for performing crack sub-area monitoring using a finite element meshing method according to the present invention, including an annular groove 2 at an end surface or an outer circle of the flange 1
  • the inner surface of the annular groove 2 is provided with a non-conductive coating 3
  • the annular groove 2 is provided with a contoured solid body perpendicular to the bottom end of the annular groove and distributed according to the finite element mesh 11 division method.
  • the grid-shaped solid wall 4 is a non-conductive grid-shaped solid wall, the grid-shaped solid wall is connected to the bottom end of the annular groove without a gap, and the height of the grid-shaped solid wall is smaller than the annular groove
  • the groove depth is glued to the upper end of the mesh-shaped solid wall 4 with the waterproof PCB circuit board 5 and the annular groove 2 is closed, and at the bottom end of the annular groove 2, the lower end of the waterproof PCB circuit board 5 and the grid
  • a plurality of independent sealed spaces are formed between the solid walls 4, and the sealed space is filled with a conductive fluid 7, and the waterproof PCB circuit board 5 is respectively provided with each of the independent sealed spaces and the conductive fluid. 7 contacting metal wires 8 which are led out through the waterproof PCB circuit board 5 to Shaped groove 10 outside.
  • a flange for performing crack sub-area monitoring using the finite element meshing method of the embodiment further includes an annular sealant layer 9 which is disposed on the waterproof PCB circuit board 5.
  • One of the preferred embodiments of the conductive fluid 7 material of the present embodiment is that the conductive fluid is a freeze-resistant liquid conductive paste.
  • a second preferred embodiment of the conductive fluid 7 material of the present embodiment is that the conductive fluid is an aqueous solution containing conductive ions, and an antifreeze is added to the aqueous solution.
  • a third preferred embodiment of the conductive fluid 7 material of the present embodiment is that the conductive fluid is mercury.
  • non-conductive coating 3 of the present embodiment is that the non-conductive coating is a silicon steel sheet insulating varnish coating.
  • a second preferred embodiment of the non-conductive coating 3 of the present embodiment is that the non-conductive coating is a ceramic coating.
  • the material of the annular sealant layer 9 is an elastic sealant.
  • a protective cover (not shown) may be provided on the annular sealant layer 9.
  • an insulating colloid layer (not shown) is disposed between the annular sealant layer 9 and the waterproof PCB circuit board 5, and the waterproof PCB board 5 is Metal wires pass through the insulating colloid layer and communicate with each of the individual enclosed spaces and are in contact with the electrically conductive fluid 7.
  • the mesh-shaped solid wall 12 in the present invention can be made of a rubber or engineering plastic material having a certain elongation, and a preform made by pressing or injection molding.
  • the prefabricated grid-shaped solid wall is glued into the annular groove provided with a non-conductive coating.
  • the position of the annular groove 2 on the flange of the present embodiment is set on the outer circumference of the flange.
  • the mesh-shaped solid wall 4 is integrally formed into an annular ring shape with an opening to facilitate the installation.
  • the waterproof PCB circuit board 5 is flexible, and is also formed into an annular ring shape with an opening for easy installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种采用有限元网格(11)划分方法进行裂纹分区域监测的法兰(1),包括在所述法兰(1)的端面或外圆设有环形槽(2),所述环形槽(2)的内表面设有非导电的涂层(3),所述环形槽(2)内设有垂直于环形槽(2)底端且按照有限元网格(11)划分方法进行分布的等高的网格形实体墙(4),在网格形实体墙(4)的上端胶接有防水型PCB线路板(5)并将环形槽(2)封闭,且在所述环形槽(2)底端、防水型PCB线路板(5)的下端与网格形实体墙(4)之间形成若干个独立的密闭空间,所述密闭空间内灌注有导电流体(7),所述防水型PCB线路板(5)上分别设有连通每个独立的密闭空间并与所述导电流体(7)接触的金属导线(8),所述金属导线(8)通过防水型PCB线路板(5)引出至环形槽的外部(10)。该采用有限元网格(11)划分方法进行裂纹分区域监测的法兰(1)可以实现法兰(1)裂纹的位置和数量的在线监测。

Description

一种采用有限元网格划分方法进行裂纹分区域监测的法兰 技术领域
本发明涉及法兰技术领域,具体涉及一种采用有限元网格划分方法进行裂纹分区域监测的法兰。
背景技术
法兰在化工和水利行业的流体管道连接、风力发电行业的风电塔筒的筒体连接以及压力容器的容器之间的连接等众多的工业技术领域应用广泛,也常用于机械领域中轴与轴之间的连接,它是重要的受力件。为了获得较好的强度,法兰通常采用金属材料制造,例如碳钢、不锈钢等。
法兰作为两个相邻零件的连接端,往往需要承受较大的载荷,这些载荷包括拉力、压力、扭力、剪切力、振动力等。在非正常的载荷作用下,法兰有可能出现裂纹而造成设备故障;而在正常的使用工况下,法兰也有可能因长期使用而产生疲劳裂纹,从而使得法兰连接失效而造成设备事故。
在一些非常重要的应用场合,法兰出现裂纹不但直接造成设备故障,而且有可能造成重大的安全事故,例如化工行业中管道内有毒气体或液体的泄漏、核电用冷却循环泵因法兰裂纹故障导致核电设备停运等。因此对于需要高可靠应用的场合,建立法兰裂纹的监测机制显得十分必要。一个比较理想的法兰裂纹监测系统,应该能够对法兰裂纹的位置、法兰裂纹的大小和数量进行实时的监测,以便能够根据监测到的数据,对法兰是否能继续使用或者需要维修或更换进行较为准确的评估。
发明内容
为了解决上述问题,实现设备在运转过程中对法兰的裂纹的位 置、数量等情况进行较为精确的监测,本发明提出一种采用有限元网格划分方法进行裂纹分区域监测的法兰,包括在所述法兰的端面或外圆设有环形槽,所述环形槽的内表面设有非导电的涂层,所述环形槽内设有垂直于环形槽底端且按照有限元网格划分方法进行分布的等高的网格形实体墙,所述网格形实体墙为非导电的网格形实体墙,所述网格形实体墙与环形槽的底端无间隙连接,所述网格形实体墙的高度小于环形槽的槽深,在网格形实体墙的上端胶接有防水型PCB线路板并将环形槽封闭,且在所述环形槽底端、防水型PCB线路板的下端与网格形实体墙之间形成若干个独立的密闭空间,所述密闭空间内灌注有导电流体,所述防水型PCB线路板上分别设有连通每个独立的密闭空间并与所述导电流体接触的金属导线,所述金属导线通过防水型PCB线路板引出至环形槽的外部。
上述技术方案中,导电流体被封闭在由环形槽底端、防水型PCB线路板的下端与网格形实体墙之间形成的若干个独立的密闭空间内,环形槽内表面有非导电的涂层,网格形实体墙为非导电的网格形实体墙,所以当法兰处于正常情况,防水型PCB线路板上与导电流体接触的金属导线与金属法兰的本体之间保持绝缘状态。当法兰端面在位于某个密闭空间的位置出现裂纹时,该密闭空间内的非导电的涂层同步遭到破坏,跟随法兰一起出现裂纹,该密闭空间内的导电流体穿过非导电的涂层与金属法兰本体相接触,金属导线与法兰的本体之间电性连通。因此,只要将金属导线以及金属法兰的本体作为两个端子接入到监测系统中,通过检测两个端子的电阻情况,即可实时判断出法兰是否出现了裂纹,并且可以判断出裂纹位于哪个密闭空间位置。如果裂纹较长,就可能出现相邻几个密闭空间的金属导线与金属法兰本体同时导通的情况,因此据此也能判断出裂纹的长度。
为了增加密封性能,本发明的一种采用有限元网格划分方法进行裂纹分区域监测的法兰还包括环形密封胶体层,所述环形密封胶体层 盖设于所述防水型PCB线路板上面。
作为优选方案之一,所述导电流体为抗冻液态导电胶。
作为优选方案之二,所述导电流体为含有导电离子的水溶液,且所述水溶液中添加有抗冻剂。
作为优选方案之三,所述导电流体为水银。
本技术方案中,所述非导电的涂层为硅钢片绝缘漆涂层。
但是,在需要对于法兰裂纹高度敏感的场合,优选地,所述非导电的涂层为陶瓷涂层。
采用陶瓷涂层可以使得法兰出现微裂纹时得到监测。而硅钢片绝缘漆涂层则适用于允许忽略一些不致命的微裂纹而仅需要监测较大致命裂纹的场合。
优选的,所述环形密封胶体层材料为弹性密封胶。
作为进一步的改进,还可以在环形密封胶体层上面设置一层保护盖。
本发明中的网格形实体墙可以采用有一定延伸性的橡胶、工程塑料等材料制成,通过压制或注塑做成预制件。预制好的网格形实体墙通过胶接方式安装到设有非导电的涂层的环形槽中。
为了使得密封更可靠,在所述环形密封胶体层与防水型PCB线路板之间还设置有绝缘胶体层,所述防水型PCB线路板上的金属导线穿过所述绝缘胶体层并连通每个独立的密闭空间,且与所述导电流体接触。
需要说明的是,本发明的法兰上的环形槽也可开设在法兰外圆上,这时,网格形实体墙可以整体上做成带开口的环形圈形状以方便安装。另外防水性PCB线路板采用柔性的,同样做成带开口的环形圈形状以方便安装。
本发明的有益效果是:
第一,本发明的一种采用有限元网格划分方法进行裂纹分区域监 测的法兰,采用了有限元网格划分方法,在设有非导电的涂层的环形槽内设置网格形实体墙,将环形槽分割成多个独立的密闭空间,密闭空间内设有导电流体,通过检测密闭空间内的导电流体与金属法兰本体之间是否导通来监测法兰是否有裂纹,以实现法兰裂纹的在线监测,使得设备及时得到维护,从而避免重大安全事故的发生;而且,由于采用了有限元网格划分方法进行裂纹分区域监测,可以实现对法兰裂纹的位置、法兰裂纹的大小和数量进行实时的精细化的监测,从而可以根据监测情况来优化设备的更新维护周期,避免设备的盲目过早更新造成设备维护成本的提高,或者设备延误维修导致重大设备故障或安全事故的发生。
第二,本发明的一种可用于法兰端面裂纹监测的法兰,在出现贯穿性的裂纹时,抗冻液态导电胶可及时将裂纹处胶接住,避免抗冻液态导电胶的过多流失,从而提高监测的可靠性。
第三,本发明的一种可用于法兰端面裂纹监测的法兰,环形槽内采用陶瓷涂层,对于裂纹具有高度的敏感性,其监测的灵敏度高,有利于在法兰失效前得到早期的监测和预警,避免重大设备故障或安全事故的发生。
附图说明
图1是本发明的一种采用有限元网格划分方法进行裂纹分区域监测的法兰的结构示意图;
图2是图1的局部放大图;
图3是图1的俯视图(图中为去除了环形密封胶体层以及防水型PCB线路板后的俯视图);
图4是环形槽开设在法兰外圆上时法兰的局部结构示意图;
图5是环形槽开设在法兰外圆上时法兰的外形结构示意图(图中为去除了环形密封胶体层以及防水型PCB线路板后的外形结构示意图)。
图中:1、法兰,2、环形槽,3、非导电的涂层,4、网格形实体墙,5、防水型PCB线路板,7、导电流体,8、金属导线,9、环形密封胶体层,10、金属导线的外部,11、有限元网格,12、网格形实体墙。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1至5所示为本发明的一种采用有限元网格划分方法进行裂纹分区域监测的法兰的实施例,包括在所述法兰1的端面或外圆设有环形槽2,所述环形槽2的内表面设有非导电的涂层3,所述环形槽2内设有垂直于环形槽底端且按照有限元网格11划分方法进行分布的等高的网格形实体墙4,所述网格形实体墙4为非导电的网格形实体墙,所述网格形实体墙与环形槽的底端无间隙连接,所述网格形实体墙的高度小于环形槽的槽深,在网格形实体墙4的上端胶接有防水型PCB线路板5并将环形槽2封闭,且在所述环形槽2底端、防水型PCB线路板5的下端与网格形实体墙4之间形成若干个独立的密闭空间,所述密闭空间内灌注有导电流体7,所述防水型PCB线路板5上分别设有连通每个独立的密闭空间并与所述导电流体7接触的金属导线8,所述金属导线8通过防水型PCB线路板5引出至环形槽的外部10。
本实施例的一种采用有限元网格划分方法进行裂纹分区域监测的法兰还包括环形密封胶体层9,所述环形密封胶体层9盖设于所述防水型PCB线路板5上面。
本实施例的导电流体7材料的优选方案之一是,所述导电流体为抗冻液态导电胶。
本实施例的导电流体7材料的优选方案之二是,所述导电流体为含有导电离子的水溶液,且所述水溶液中添加有抗冻剂。
本实施例的导电流体7材料的优选方案之三是,所述导电流体为水银。
本实施例的非导电的涂层3的优选方案之一是:所述非导电的涂层为硅钢片绝缘漆涂层。
本实施例的非导电的涂层3的优选方案之二是:所述非导电的涂层为陶瓷涂层。
本实施例中,所述环形密封胶体层9材料为弹性密封胶。
作为本实施例的进一步的改进,还可以在环形密封胶体层9上面设置一层保护盖(图中未画出)。
为了使得密封更可靠,本实施例在所述环形密封胶体层9与防水型PCB线路板5之间还设置有绝缘胶体层(图中未画出),所述防水型PCB线路板5上的金属导线穿过所述绝缘胶体层并连通每个独立的密闭空间,且与所述导电流体7接触。
本发明中的网格形实体墙12可以采用有一定延伸性的橡胶、工程塑料等材料制成,通过压制或注塑做成的预制件。预制好的网格形实体墙通过胶接方式安装到设有非导电的涂层的环形槽中。
如图1至3所示本实施例的法兰上环形槽2的位置开设在法兰端面上。
如图4至5所示本实施例的法兰上环形槽2的位置开设在法兰外圆上,这时,网格形实体墙4整体上做成带开口的环形圈形状以方便安装。另外防水性PCB线路板5采用柔性的,同样做成带开口的环形圈形状以方便安装。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征在于在所述法兰的端面或外圆设有环形槽,所述环形槽的内表面设有非导电的涂层,所述环形槽内设有垂直于环形槽底端且按照有限元网格划分方法进行分布的等高的网格形实体墙,所述网格形实体墙为非导电的网格形实体墙,所述网格形实体墙与环形槽的底端无间隙连接,所述网格形实体墙的高度小于环形槽的槽深,在网格形实体墙的上端胶接有防水型PCB线路板并将环形槽封闭,且在所述环形槽底端、防水型PCB线路板的下端与网格形实体墙之间形成若干个独立的密闭空间,所述密闭空间内灌注有导电流体,所述防水型PCB线路板上分别设有连通每个独立的密闭空间并与所述导电流体接触的金属导线,所述金属导线通过防水型PCB线路板引出至环形槽的外部。
  2. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:还包括环形密封胶体层,所述环形密封胶体层盖设于所述防水型PCB线路板上面。
  3. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:所述导电流体为抗冻液态导电胶。
  4. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:所述导电流体为含有导电离子的水溶液,且所述水溶液中添加有抗冻剂。
  5. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:所述导电流体为水银。
  6. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:所述非导电的涂层为陶瓷涂层。
  7. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:所述非导电的涂层为硅钢片绝缘漆涂层。
  8. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:所述环形密封胶体层材料为弹性密封胶。
  9. 根据权利要求1所述的一种采用有限元网格划分方法进行裂纹分区域监测的法兰,其特征是:在所述环形密封胶体层与防水型PCB线路板之间还设置有绝缘胶体层,所述防水型PCB线路板上的金属导线穿过所述绝缘胶体层并连通每个独立的密闭空间,且与所述导电流体接触。
PCT/CN2017/109678 2017-10-30 2017-11-07 一种采用有限元网格划分方法进行裂纹分区域监测的法兰 WO2019084975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711037293.0A CN108020583B (zh) 2017-10-30 2017-10-30 一种采用有限元网格划分方法进行裂纹分区域监测的法兰
CN201711037293.0 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019084975A1 true WO2019084975A1 (zh) 2019-05-09

Family

ID=62080339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109678 WO2019084975A1 (zh) 2017-10-30 2017-11-07 一种采用有限元网格划分方法进行裂纹分区域监测的法兰

Country Status (2)

Country Link
CN (1) CN108020583B (zh)
WO (1) WO2019084975A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112651150B (zh) * 2020-11-30 2022-09-02 成都大学 一种Al2O3/316L不锈钢阻氚系统表面多重裂纹行为的扩展有限元模拟分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035495A1 (en) * 1994-06-20 1995-12-28 Capteur Sensors & Analysers Ltd. Resistive gas sensing, especially for detection of ozone
CN204007950U (zh) * 2014-08-13 2014-12-10 武汉市市政建设集团有限公司 结构裂纹监测装置
CN104502446A (zh) * 2014-11-27 2015-04-08 北京华清燃气轮机与煤气化联合循环工程技术有限公司 基于无损检测技术预测高温合金涂层服役状况的方法
CN204405556U (zh) * 2014-12-23 2015-06-17 桂林电子科技大学 一种基于数字图像处理的混凝土桥梁裂缝检测装置
CN105806270A (zh) * 2016-04-28 2016-07-27 北京工业大学 一种材料表面微裂纹深度的检测方法
CN106442637A (zh) * 2016-08-19 2017-02-22 北京必创科技股份有限公司 一种法兰裂纹监测装置和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803485A (en) * 1970-02-16 1974-04-09 Battelle Development Corp Indicating coating for locating fatigue cracks
DE102011112228A1 (de) * 2011-09-01 2013-03-07 Martin Wolf Verfahren zur Rissprüfung
CN102565140A (zh) * 2012-02-20 2012-07-11 南京航空航天大学 一种基于电位法的疲劳裂纹扩展速率测量方法
CN103278532B (zh) * 2013-04-12 2016-08-10 中国人民解放军空军工程大学 一种用于金属结构疲劳裂纹监测的微米传感元及其方法
JP2015210215A (ja) * 2014-04-28 2015-11-24 株式会社村田製作所 絶縁フィルムの欠陥検出装置および欠陥検出方法
CN104181207A (zh) * 2014-08-21 2014-12-03 中国人民解放军空军工程大学 一种基于pvd的金属结构疲劳损伤监测传感元及其应用
CN105738226A (zh) * 2014-12-10 2016-07-06 中国飞机强度研究所 一种用于监测金属表面裂纹萌生及扩展的方法
CN205080083U (zh) * 2015-10-30 2016-03-09 金翼安达航空科技(北京)有限公司 一种裂纹监测传感器
CN205175951U (zh) * 2015-10-30 2016-04-20 金翼安达航空科技(北京)有限公司 一种结构裂纹在线监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995035495A1 (en) * 1994-06-20 1995-12-28 Capteur Sensors & Analysers Ltd. Resistive gas sensing, especially for detection of ozone
CN204007950U (zh) * 2014-08-13 2014-12-10 武汉市市政建设集团有限公司 结构裂纹监测装置
CN104502446A (zh) * 2014-11-27 2015-04-08 北京华清燃气轮机与煤气化联合循环工程技术有限公司 基于无损检测技术预测高温合金涂层服役状况的方法
CN204405556U (zh) * 2014-12-23 2015-06-17 桂林电子科技大学 一种基于数字图像处理的混凝土桥梁裂缝检测装置
CN105806270A (zh) * 2016-04-28 2016-07-27 北京工业大学 一种材料表面微裂纹深度的检测方法
CN106442637A (zh) * 2016-08-19 2017-02-22 北京必创科技股份有限公司 一种法兰裂纹监测装置和方法

Also Published As

Publication number Publication date
CN108020583B (zh) 2021-04-13
CN108020583A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN103406070A (zh) 一种多功能高温高压反应釜
KR101452639B1 (ko) 차압·압력 발신기
WO2019084975A1 (zh) 一种采用有限元网格划分方法进行裂纹分区域监测的法兰
CN108709023A (zh) 一种水处理设备用具有拼接功能的水管
CN103292068B (zh) 一种具有内外加强筋结构的保温石油管
CN212082747U (zh) 一种用于化工装置的密封性检测装置
KR101600892B1 (ko) 전기 관통구 집합체
CN115790774A (zh) 一种高温高压条件下的多重防泄漏液位测量装置
CN202171512U (zh) 热电偶引出装置
CN209705371U (zh) 一种带有冗余填料密封结构的高压球阀
CN2559147Y (zh) 整体式绝缘接头
CN113623549A (zh) 一种带泄露自动报警装置的真空补偿器
CN208900938U (zh) 一种管道用杯状视窗
CN203469947U (zh) 一种多功能高温高压反应釜
CN105527032B (zh) 机组轴瓦测温系统
CN216483659U (zh) 一种具有水压感应功能的定位控制传感器
CN208845914U (zh) 法兰绝缘组
CN110333057A (zh) 一种深井潜水电泵用电机水压试验罐
CN215721566U (zh) 一种用于水利工程的水利管道
CN108061209A (zh) 一种可用于法兰外圆裂纹监测的法兰
CN214251304U (zh) 一种高防护多功能防爆测温装置
CN204986119U (zh) 一种法兰连接结构
CN219870181U (zh) 一种供热锅炉密封性无损检测结构
CN205645549U (zh) 一种防漏的电解电容结构
CN219368864U (zh) 一种液位变送器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930321

Country of ref document: EP

Kind code of ref document: A1