WO2019084935A1 - 停车场定位方法、装置和系统 - Google Patents

停车场定位方法、装置和系统 Download PDF

Info

Publication number
WO2019084935A1
WO2019084935A1 PCT/CN2017/109428 CN2017109428W WO2019084935A1 WO 2019084935 A1 WO2019084935 A1 WO 2019084935A1 CN 2017109428 W CN2017109428 W CN 2017109428W WO 2019084935 A1 WO2019084935 A1 WO 2019084935A1
Authority
WO
WIPO (PCT)
Prior art keywords
geomagnetic
parking
parking lot
intensity
parking space
Prior art date
Application number
PCT/CN2017/109428
Other languages
English (en)
French (fr)
Inventor
蒋壮
郑勇
王文祺
刘兴忠
Original Assignee
深圳市沃特沃德股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沃特沃德股份有限公司 filed Critical 深圳市沃特沃德股份有限公司
Priority to PCT/CN2017/109428 priority Critical patent/WO2019084935A1/zh
Publication of WO2019084935A1 publication Critical patent/WO2019084935A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present invention relates to the field of positioning technologies, and in particular, to a parking lot positioning method, apparatus, and system.
  • Indoor clusters (such as underground parking lots) are usually provided in shopping malls, office buildings, residential areas, etc., so that people can park their vehicles. Due to the barrier function of the building, the indoor parking lot generally does not have a GPS signal, so the target in the indoor parking lot cannot be located by GPS.
  • a Bluetooth transceiver is installed in a parking lot, and a Bluetooth transceiver is used as a position reference, and Bluetooth technology is used for positioning.
  • Bluetooth technology is used for positioning.
  • the implementation cost is high, and in order to control the cost, the number of installations of the Bluetooth transceiver is limited, so the density of the position reference is low and the positioning is not accurate enough.
  • the main object of the present invention is to provide a parking lot positioning method, apparatus and system, which aim to reduce the implementation cost of parking lot positioning and improve positioning accuracy.
  • an embodiment of the present invention provides a parking lot positioning method, and the method includes the following steps: [0007] detecting a geomagnetic intensity of the parking space by a geomagnetic sensor disposed in a parking space;
  • the step of establishing a geomagnetic distribution map of the parking lot according to the parking map and the geomagnetic intensity of each parking space comprises:
  • the geomagnetic intensity corresponding to each geomagnetic grid is marked.
  • the geomagnetic grid includes at least a partial area of the parking space and a lane area corresponding to the parking space.
  • the geomagnetic grid when the parking spaces are symmetrically distributed on both sides of the lane, includes at least a portion of two parking spaces symmetrically distributed on both sides of the lane and corresponding to the two parking spaces. Lane area.
  • the geomagnetic intensity corresponding to the geomagnetic grid is an average value of geomagnetic intensity of the two parking lots.
  • the geomagnetic intensity corresponding to the geomagnetic grid is a geomagnetic intensity of one of the two parking lots.
  • the geomagnetic intensity corresponding to the geomagnetic grid is a range value with the geomagnetic intensity of the two parking lots as a boundary.
  • the step of marking the geomagnetic intensity corresponding to each geomagnetic grid further comprises: labeling position coordinates corresponding to each geomagnetic grid.
  • the step of detecting the geomagnetic intensity of the parking space by a geomagnetic sensor disposed in a parking space comprises:
  • the step of positioning the target in the parking lot according to the geomagnetic distribution map comprises:
  • the embodiment of the present invention provides a parking lot positioning device, and the device includes:
  • a detecting module configured to detect a geomagnetic intensity of the parking space by a geomagnetic sensor disposed in a parking space
  • establishing a module configured to establish a geomagnetic distribution map of the parking lot according to the parking map and the geomagnetic intensity of each parking space;
  • the positioning module is configured to locate the target in the parking lot according to the geomagnetic distribution map.
  • the establishing module includes:
  • a grid drawing unit configured to draw a geomagnetic grid on the parking lot map according to the geomagnetic intensity of each parking space Grid
  • the geomagnetic labeling unit is arranged to mark the geomagnetic intensity corresponding to each geomagnetic grid.
  • the establishing module further includes a coordinate labeling unit, and the coordinate labeling unit is configured to:
  • the detecting module includes:
  • a first detecting unit configured to detect whether there is a vehicle on the parking space by a geomagnetic sensor disposed in a parking space;
  • the second detecting unit is configured to detect a geomagnetic intensity of the parking space by the geomagnetic sensor when there is no vehicle ⁇ on the parking space.
  • the positioning module includes:
  • an obtaining unit configured to acquire a geomagnetic intensity of a region in which the target in the parking lot is located
  • a search unit configured to search for a positional region on the geomagnetism map that matches the geomagnetic strength of the region in which the target is located.
  • Embodiments of the present invention also provide a parking lot location system, the system including a memory, a processor, and at least one application stored in the memory and configured to be executed by the processor, The application is configured to perform the aforementioned parking lot location method.
  • a parking lot positioning method detects a geomagnetic intensity of a parking space by a geomagnetic sensor disposed in a parking space, and establishes a geomagnetic distribution map of the parking lot according to a parking lot map and a geomagnetic intensity of each parking space. According to the geomagnetic distribution map, the target in the parking lot is positioned, thereby realizing the precise positioning using the geomagnetism. Since the existing parking lot is provided with a geomagnetic sensor on the parking space, the geomagnetic sensor can be installed without using an existing geomagnetic sensor as a position reference, and the parking lot positioning scheme of the embodiment of the present invention can be realized, which greatly reduces the implementation cost. And because each parking space is provided with a geomagnetic sensor, the position reference density is high, so the positioning is more precise, and the positioning accuracy is greatly improved.
  • DRAWINGS 1 is a flow chart of an embodiment of a parking lot positioning method according to the present invention.
  • FIG. 2 is a schematic view of a geomagnetic grid in an embodiment of the present invention.
  • FIG. 3 is a partial schematic view of a parking lot map in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of drawing a geomagnetic grid on the parking lot map of FIG. 3; [0045] FIG.
  • FIG. 5 is another schematic diagram of a geomagnetic grid in an embodiment of the present invention.
  • FIG. 6 is a partial schematic view of another parking lot map in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a geomagnetic grid on the parking lot map of FIG. 6;
  • FIG. 9 is a schematic block diagram of an embodiment of a parking space locating device of the present invention.
  • FIG. 10 is a block diagram of the detection module of FIG. 9;
  • FIG. 11 is a block diagram of the building module of FIG. 9;
  • FIG. 12 is another block diagram of the building module of FIG. 9;
  • FIG. 13 is a block diagram of the positioning module of FIG. 9.
  • terminal and terminal device used herein include both a device of a wireless signal receiver, a device having only a wireless signal receiver without a transmitting capability, and a receiving and receiving device.
  • Such a device may comprise: a cellular or other communication device having a single line display or a multi-line display or a cellular or other communication device without a multi-line display; PCS (Persona 1 Communications Service), which may combine voice, Data processing, fax and/or data communication capabilities; PDA (Personal Digital Assistant), which can include radio frequency receivers, pagers, Internet/Intranet access, web browsers, notepads, calendars and/or GPS ( Global Positioning System, Receiver; Conventional laptop and/or palmtop computer or other device having a conventional laptop and/or palmtop computer or other device that includes and/or includes a radio frequency receiver.
  • PCS Personala 1 Communications Service
  • PDA Personal Digital Assistant
  • terminal may be portable, transportable, installed in a vehicle (aviation, sea and/or land), or adapted and/or configured to operate locally, and/or Run in any other location on the Earth and/or space in a distributed fashion.
  • the "terminal” and “terminal device” used herein may also be a communication terminal, an internet terminal, a music/video playback terminal, and may be, for example, a PDA, a MID (Mobile Internet Device), and/or have a music/video playback.
  • Functional mobile phones can also be smart TVs, set-top boxes and other devices.
  • the server used herein includes, but is not limited to, a computer, a network host, a single network server, a plurality of network server sets, or a cloud composed of multiple servers.
  • the cloud is composed of a large number of computers or network servers based on Cloud Computing, which is a kind of distributed computing, a super virtual computer composed of a group of loosely coupled computers.
  • the server, the terminal device and the WNS server can pass Any communication method realizes communication, including but not limited to, mobile communication based on 3GPP, LTE, WIMAX, computer network communication based on TCP/IP, UDP protocol, and short-range wireless transmission method based on Bluetooth and infrared transmission standard.
  • the application scenario of the parking lot positioning method, the device and the system in the embodiment of the present invention is mainly an indoor parking lot, in particular, an underground parking lot, and of course, an open-air parking lot or the like, which is not limited by the present invention.
  • the parking lot positioning method, apparatus and system according to the embodiment of the present invention are mainly applied to a server, which may be an independent server of each parking lot or a unified server that communicates and connects each parking lot.
  • a parking lot positioning method includes the following steps: [0065] Sl1 detects a geomagnetic intensity of a parking space by a geomagnetic sensor disposed in a parking space.
  • S12. Establish a geomagnetic distribution map of the parking lot according to the parking lot map and the geomagnetic intensity of each parking space.
  • the reinforced concrete structure of the building disturbs the indoor magnetic field, forming a unique magnetic field distribution pattern in each building, and increasing the signal difference of the magnetic field characteristics.
  • the geomagnetic intensity of N (N>2) parking spaces in the indoor parking lot can be measured by the geomagnetic sensor in the indoor fixed parking space.
  • a geomagnetic sensor is installed on each parking space, preferably installed in a central area of the parking space, and the geomagnetic intensity of each parking space is detected by each geomagnetic sensor, and the detected intensity value is a vector value.
  • the geomagnetic sensor is preferably a magnetoresistive sensor such as AMR (Anisotropic Magnetoresistance) or TMR (Tunnel Magnetoresistance).
  • the geomagnetic sensor detects whether there is a vehicle on the parking space.
  • the geomagnetic intensity of the parking space is detected by the geomagnetic sensor, so that the measured geomagnetic intensity of the parking space is more accurate.
  • the manner in which the geomagnetic sensor detects whether there is a vehicle on the parking space is the same as the prior art, and will not be described herein.
  • step S12 the parking lot map is first acquired, then the geomagnetic grid is drawn on the parking lot map according to the geomagnetic intensity of each parking space, and the geomagnetic intensity corresponding to each geomagnetic grid is finally marked, thereby obtaining the geomagnetic field of the parking lot. Distribution.
  • the geomagnetic intensity can be directly marked on the geomagnetic distribution map and/or the geomagnetic grid database can be established, and the geomagnetic grid database includes the corresponding relationship between the geomagnetic grid and the geomagnetic intensity.
  • each geo-grid may include at least a partial area of the parking space and a lane area corresponding to the parking space, and the geomagnetic intensity corresponding to the geo-grid is the geomagnetic intensity of the parking space included in the geo-grid.
  • This geomagnetic grid is especially suitable for individual parking spaces or single parking spaces.
  • a geomagnetic sensor 300 is disposed in the middle of the parking space 100.
  • the geomagnetic grid 400 is based on the geomagnetic sensor 300 and includes a partial area of the parking space 100 and a lane 200 area corresponding to the parking space 100.
  • the geo-grid 400 may also include only the parking space 100 area or the lane 200 area corresponding to the parking space 100.
  • FIG. 3 a partial schematic diagram of the parking lot map is shown in FIG. 3, and a plurality of parking spaces 100 are arranged in a single row.
  • the geomagnetic sensor 300 is disposed in the middle of each parking space 100, and the parking is based on the geomagnetic sensor 300.
  • the geomagnetic grid is drawn on the field map to obtain a geomagnetic distribution map as shown in FIG. 4, wherein each geomagnetic grid 400 includes a partial area of the parking space 100 and a lane 200 area corresponding to the parking space 100.
  • each of the geomagnetic grids may include two symmetrically distributed on both sides of the lane.
  • the geomagnetic intensity corresponding to the geomagnetic grid may be the average of the geomagnetic strengths of the two parking lots included in the geomagnetic grid, or The geomagnetic intensity of one of the two parking lots included in the geomagnetic grid may also be a range value of the geomagnetic intensity of the two parking lots included in the geomagnetic grid as a boundary.
  • two parking spaces 100 are symmetrically distributed on both sides of the lane 200.
  • a geomagnetic sensor 300 is disposed in the middle of each parking space 100.
  • the geomagnetic grid 400 is based on the geomagnetic sensor 300 and includes symmetrically distributed lanes.
  • FIG. 6 a partial schematic view of the parking lot map is shown in FIG. 6.
  • Two parking spaces 100 are symmetrically distributed on both sides of the lane 200, and a geomagnetic sensor 300 is disposed in the middle of each parking space 100 to The sensor 300 draws a geomagnetic grid on the parking lot map for reference to obtain a geomagnetic distribution map as shown in FIG. 7, wherein each geomagnetic grid 400 includes a partial region of two parking spaces 100 symmetrically distributed on both sides of the lane 200. And the corresponding lane 200 area.
  • the position coordinates corresponding to each geomagnetic grid may also be marked, the position coordinates may be directly marked on the geomagnetic distribution map and/or the geomagnetic grid database may be established, and the geomagnetic grid database includes the geomagnetic grid and Correspondence between geomagnetic intensity and position coordinates.
  • FIG. 8 it is a correspondence table in the geomagnetic grid database, which includes N (N>2) geomagnetic grids, position coordinates and geomagnetic strength, and each geomagnetic grid corresponds to one position coordinate and one geomagnetic intensity. .
  • a manual hand-held magnetic sensing device or a mobile terminal having a geomagnetic detecting function may be adopted (eg Smartphone)
  • the geomagnetic distribution map (including the geomagnetic grid database) may be regularly maintained, such as periodically collecting and comparing the geomagnetic strength of each parking space without ruts, and updating when there is a change. If the parking lot is under construction, it may disturb the distribution of the ground magnetic field of the parking lot. It is also necessary to re-collect the geomagnetic strength of each parking space without ruts and update it.
  • step S13 after positioning the target in the parking lot, first acquiring the geomagnetic intensity of the target area in the parking lot, such as receiving the geomagnetic intensity reported by the mobile terminal (such as a smart phone) carried by the target, and then The geomagnetic distribution map is used to find the positional area matching the geomagnetic intensity of the target area, thereby realizing the precise positioning using geomagnetism.
  • the mobile terminal such as a smart phone
  • the geomagnetism intensity of the region in which the target is located is M0
  • the geomagnetic intensity Mi closest to M0 is found on the geomagnetism map, and the location region corresponding to Mi is obtained, which is the region where the target is located.
  • the parking lot positioning method of the embodiment of the present invention detects the geomagnetic intensity of the parking space by the geomagnetic sensor installed in the parking space, and establishes the geomagnetic distribution map of the parking lot according to the parking lot map and the geomagnetic intensity of each parking space, according to the geomagnetic distribution The figure locates the target in the parking lot, thus achieving precise positioning using geomagnetism. Since the existing parking lot is provided with a geomagnetic sensor on the parking space, there is no need to additionally install a geomagnetic sensor, and the existing geomagnetic sensor can be used as a position reference to implement the parking lot positioning scheme of the embodiment of the present invention, which greatly reduces the implementation cost. And because each parking space is equipped with a geomagnetic sensor, the position reference density is high, so the positioning is more precise.
  • a parking lot positioning device of the present invention includes a detecting module 10 and a setup module.
  • the geomagnetic sensor is preferably a magnetoresistive sensor such as AMR or TM R.
  • the detecting module 10 preferably detects the geomagnetic intensity without the parking space of the vehicle, thereby making the measured parking space.
  • the geomagnetic strength is more accurate.
  • the detecting module 10 includes a first detecting unit 11 and a second detecting unit 12, wherein: the first detecting unit 11 is configured to detect whether there is a vehicle on the parking space through a geomagnetic sensor disposed in the parking space.
  • the second detecting unit 12 is arranged to detect the geomagnetic strength of the parking space by the geomagnetic sensor when there is no vehicle ⁇ on the parking space.
  • the manner in which the first detecting unit 11 detects whether there is a vehicle on the parking space is the same as that in the prior art, and details are not described herein.
  • the building module 20, as shown in FIG. 11, includes a grid drawing unit 21 and a geomagnetic labeling unit 22, wherein: the grid drawing unit 21 is configured to acquire a parking lot map, according to the geomagnetic intensity of each parking space in the parking lot map The geomagnetic grid is drawn on; the geomagnetic labeling unit 22 is arranged to mark the geomagnetic intensity corresponding to each geomagnetic grid, thereby obtaining a geomagnetic distribution map of the parking lot.
  • the geomagnetic marking unit 22 can directly mark the geomagnetic intensity on the geomagnetic distribution map and/or establish a geomagnetic grid database, and the geomagnetic grid database includes the corresponding relationship between the geomagnetic grid and the geomagnetic intensity.
  • each geo-grid may include at least a partial area of the parking space and a lane area corresponding to the parking space, and the geomagnetic intensity corresponding to the geo-grid is the geomagnetic intensity of the parking space included in the geo-grid.
  • This geomagnetic grid is especially suitable for individual parking spaces or single parking spaces.
  • a geomagnetic sensor 300 is disposed in the middle of the parking space 100.
  • the geomagnetic grid 400 includes a partial area of the parking space 100 and a lane 200 area corresponding to the parking space 100 based on the geomagnetic sensor 300.
  • the geomagnetic grid may also include only the parking space 100 area or the parking space 100. Lane 200 area.
  • FIG. 3 a partial schematic diagram of a parking lot map is shown in FIG. 3, a plurality of parking spaces 100 are arranged in a single row, and a geomagnetic sensor 300 is disposed in the middle of each parking space 100, and the parking is based on the geomagnetic sensor 300.
  • the geomagnetic grid is drawn on the field map to obtain a geomagnetic distribution map as shown in FIG. 4, wherein each geomagnetic grid 400 includes a partial area of the parking space 100 and a lane 200 area corresponding to the parking space 100.
  • each of the geomagnetic grids may include two symmetrically distributed on both sides of the lane.
  • the geomagnetic intensity corresponding to the geomagnetic grid may be the average of the geomagnetic strengths of the two parking lots included in the geomagnetic grid, or The geomagnetic intensity of one of the two parking lots included in the geomagnetic grid may also be a range value of the geomagnetic intensity of the two parking lots included in the geomagnetic grid as a boundary.
  • two parking spaces 100 are symmetrically distributed on both sides of the lane 200.
  • a geomagnetic sensor 300 is disposed in the middle of each parking space 100.
  • the geomagnetic grid 400 is based on the geomagnetic sensor 300 and includes symmetrically distributed lanes.
  • FIG. 6 a partial schematic view of the parking lot map is shown in FIG. 6.
  • Two parking spaces 100 are symmetrically distributed on both sides of the lane 200, and a geomagnetic sensor 300 is disposed in the middle of each parking space 100, and the geomagnetic sensor is used.
  • 300 is a reference to draw a geomagnetic grid on the parking lot map to obtain a geomagnetic distribution map as shown in FIG. 7, wherein each geomagnetic grid 400 includes a partial area of two parking spaces 100 symmetrically distributed on both sides of the lane 200 and corresponding Lane 200 area.
  • the establishing module 20 shown in FIG. 12 may further include a coordinate labeling unit 23, which is set to mark the position coordinates corresponding to each of the geomagnetic grids.
  • the coordinate labeling unit 23 can directly mark the position coordinates on the geomagnetic distribution map and/or establish a geomagnetic grid database, and the geomagnetic grid database includes the correspondence relationship between the geomagnetic grid and the geomagnetic intensity and position coordinates.
  • FIG. 8 it is a correspondence table in the geomagnetic grid database, which includes N (N>2) geomagnetic grids, position coordinates and geomagnetic strength, and each geomagnetic grid corresponds to one position coordinate and one geomagnetic intensity. .
  • the positioning module 30, as shown in FIG. 13, includes an obtaining unit 31 and a searching unit 32, wherein: the obtaining unit 31 is configured to acquire a geomagnetic intensity of a region in which the target is located in the parking lot, such as a mobile terminal carried by the receiving target (eg, Smartphone) reported geomagnetic strength; search unit 32, set to look up on the geomagnetic map The geomagnetic intensity of the target area matches the positional area, thus achieving precise positioning using geomagnetism.
  • the obtaining unit 31 is configured to acquire a geomagnetic intensity of a region in which the target is located in the parking lot, such as a mobile terminal carried by the receiving target (eg, Smartphone) reported geomagnetic strength
  • search unit 32 set to look up on the geomagnetic map
  • the geomagnetic intensity of the target area matches the positional area, thus achieving precise positioning using geomagnetism.
  • the positioning module 30 finds the geomagnetism intensity Mi closest to M0 on the geomagnetism map, and acquires a location region corresponding to Mi (such as a geomagnetic grid i).
  • the area (geomagnetic grid i) is the area where the target is located.
  • the parking lot positioning device of the embodiment of the present invention detects the geomagnetic intensity of the parking space by the geomagnetic sensor installed in the parking space, and establishes the geomagnetic distribution map of the parking lot according to the parking lot map and the geomagnetic intensity of each parking space, according to the geomagnetic distribution The figure locates the target in the parking lot, thus achieving precise positioning using geomagnetism. Since the existing parking lot is provided with a geomagnetic sensor on the parking space, there is no need to additionally install a geomagnetic sensor, and the existing geomagnetic sensor can be used as a position reference to implement the parking lot positioning scheme of the embodiment of the present invention, which greatly reduces the implementation cost. And because each parking space is equipped with a geomagnetic sensor, the position reference density is high, so the positioning is more precise.
  • the present invention also provides a parking lot location system including a memory, a processor, and at least one application stored in the memory and configured to be executed by the processor, the application being configured to be used for Implement the parking lot location method.
  • the parking lot positioning method comprises the following steps: detecting a geomagnetic intensity of a parking space by a geomagnetic sensor disposed in a parking space; establishing a geomagnetic distribution map of the parking lot according to a parking map and a geomagnetic intensity of each parking space; parking the parking according to the geomagnetic distribution map The target in the field is positioned.
  • the parking lot positioning method described in this embodiment is the parking lot positioning method according to the above embodiment of the present invention, and details are not described herein again.
  • the present invention includes apparatus that is directed to performing one or more of the operations described herein. These devices may be specially designed and manufactured for the required purposes, or may also include known devices in a general purpose computer. These devices have computer programs stored therein that are selectively activated or reconfigured.
  • Such computer programs may be stored in a device (eg, computer) readable medium or in any type of medium suitable for storing electronic instructions and respectively coupled to a bus, including but not limited to any Types of disks (including floppy disks, hard disks, CDs, CD-ROMs, and magneto-optical disks), ROM (Read-Only Memory), RAM (Random Access Memory), EPROM (Erasable Programmable Read-Only) Memory, EEPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, magnetic card or light card.
  • a readable medium includes any medium that is stored or transmitted by a device (eg, a computer) in a form that is readable.
  • each block of the block diagrams and/or block diagrams and/or flow diagrams can be implemented by computer program instructions, and/or in the block diagrams and/or block diagrams and/or flow diagrams The combination of boxes.
  • these computer program instructions can be implemented by a general purpose computer, a professional computer, or a processor of other programmable data processing methods, such that the processor is executed by a computer or other programmable data processing method.
  • the block diagrams and/or block diagrams of the invention and/or the schemes specified in the blocks or blocks of the flow diagram are invented.

Abstract

本发明揭示了一种停车场定位方法、装置和系统,所述方法包括以下步骤:通过设置于停车位的地磁传感器检测所述停车位的地磁强度;根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布图;根据所述地磁分布图对停车场内的目标进行定位。由于现有的停车场都会在停车位上设置地磁传感器,因此无需额外安装地磁传感器,可以利用现成的地磁传感器作为位置基准实现本发明实施例的停车场定位方案,大大降低了实现成本。并且由于每个停车位上都设置有地磁传感器,位置基准密度高,因此定位更加精准,极大的提高了定位精度。

Description

停车场定位方法、 装置和系统
技术领域
[0001] 本发明涉及定位技术领域, 特别是涉及到一种停车场定位方法、 装置和系统。
背景技术
[0002] 商场、 写字楼、 住宅区等人群集聚区域通常都设置有室内停车场 (如地下停车 场) , 以方便人们停放车辆。 由于建筑物的阻隔作用, 室内停车场一般没有 GPS 信号, 因此无法通过 GPS对室内停车场内的目标进行定位。
[0003] 为了解决室内停车场的定位问题, 现有技术中通过在停车场内安装蓝牙收发装 置, 利用蓝牙收发装置作为位置基准, 采用蓝牙技术进行定位。 然而, 由于需 要额外安装蓝牙收发装置, 因此实现成本较高, 而为了控制成本, 蓝牙收发装 置的安装数量受到限制, 故位置基准的密度较低, 定位不够精准。
[0004] 因此, 如何降低停车场定位的实现成本、 提高定位精度, 是当前亟需解决的技 术问题。
技术问题
[0005] 本发明的主要目的为提供一直停车场定位方法、 装置和系统, 旨在降低停车场 定位的实现成本, 提高定位精度。
问题的解决方案
技术解决方案
[0006] 为达以上目的, 本发明实施例提出一种停车场定位方法, 所述包括以下步骤: [0007] 通过设置于停车位的地磁传感器检测所述停车位的地磁强度;
[0008] 根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布图;
[0009] 根据所述地磁分布图对停车场内的目标进行定位。
[0010] 可选地, 所述根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布 图的步骤包括:
[0011] 根据各个停车位的地磁强度在停车场地图上绘制地磁栅格;
[0012] 标注每个地磁栅格所对应的地磁强度。 [0013] 可选地, 所述地磁栅格包含停车位的至少部分区域和所述停车位对应的车道区 域。
[0014] 可选地, 当停车位对称分布于车道两侧吋, 所述地磁栅格包含对称分布于所述 车道两侧的两个停车位的至少部分区域和所述两个停车位对应的车道区域。
[0015] 可选地, 所述地磁栅格所对应的地磁强度为所述两个停车场的地磁强度的平均 值。
[0016] 可选地, 所述地磁栅格所对应的地磁强度为所述两个停车场中的一个停车场的 地磁强度。
[0017] 可选地, 所述地磁栅格所对应的地磁强度为以所述两个停车场的地磁强度作为 边界的范围值。
[0018] 可选地, 所述标注每个地磁栅格所对应的地磁强度的步骤的同吋还包括: 标注 每个地磁栅格所对应的位置坐标。
[0019] 可选地, 所述通过设置于停车位的地磁传感器检测所述停车位的地磁强度的步 骤包括:
[0020] 通过设置于停车位的地磁传感器检测所述停车位上是否有车辆;
[0021] 当所述停车位上没有车辆吋, 通过所述地磁传感器检测所述停车位的地磁强度
[0022] 可选地, 所述根据所述地磁分布图对停车场内的目标进行定位的步骤包括:
[0023] 获取停车场内的目标所在区域的地磁强度;
[0024] 在所述地磁分布图上査找与所述目标所在区域的地磁强度相匹配的位置区域。
[0025] 本发明实施例同吋提出一种停车场定位装置, 所述装置包括:
[0026] 检测模块, 设置为通过设置于停车位的地磁传感器检测所述停车位的地磁强度
[0027] 建立模块, 设置为根据停车场地图和各个停车位的地磁强度建立停车场的地磁 分布图;
[0028] 定位模块, 设置为根据所述地磁分布图对停车场内的目标进行定位。
[0029] 可选地, 所述建立模块包括:
[0030] 栅格绘制单元, 设置为根据各个停车位的地磁强度在停车场地图上绘制地磁栅 格;
[0031] 地磁标注单元, 设置为标注每个地磁栅格所对应的地磁强度。
[0032] 可选地, 所述建立模块还包括坐标标注单元, 所述坐标标注单元设置为:
[0033] 标注每个地磁栅格所对应的位置坐标。
[0034] 可选地, 所述检测模块包括:
[0035] 第一检测单元, 设置为通过设置于停车位的地磁传感器检测所述停车位上是否 有车辆;
[0036] 第二检测单元, 设置为当所述停车位上没有车辆吋, 通过所述地磁传感器检测 所述停车位的地磁强度。
[0037] 可选地, 所述定位模块包括:
[0038] 获取单元, 设置为获取停车场内的目标所在区域的地磁强度;
[0039] 査找单元, 设置为在所述地磁分布图上査找与所述目标所在区域的地磁强度相 匹配的位置区域。
[0040] 本发明实施例还提出一种停车场定位系统, 所述系统包括存储器、 处理器和至 少一个被存储在所述存储器中并被配置为由所述处理器执行的应用程序, 所述 应用程序被配置为用于执行前述停车场定位方法。
发明的有益效果
有益效果
[0041] 本发明实施例所提供的一种停车场定位方法, 通过设置于停车位的地磁传感器 检测停车位的地磁强度, 根据停车场地图和各个停车位的地磁强度建立停车场 的地磁分布图, 根据地磁分布图对停车场内的目标进行定位, 从而实现了利用 地磁进行精准定位。 由于现有的停车场都会在停车位上设置地磁传感器, 因此 无需额外安装地磁传感器, 可以利用现成的地磁传感器作为位置基准实现本发 明实施例的停车场定位方案, 大大降低了实现成本。 并且由于每个停车位上都 设置有地磁传感器, 位置基准密度高, 因此定位更加精准, 极大的提高了定位 精度。
对附图的简要说明
附图说明 [0042] 图 1是本发明的停车场定位方法一实施例的流程图;
[0043] 图 2是本发明实施例中地磁栅格的示意图;
[0044] 图 3是本发明实施例中停车场地图的局部示意图;
[0045] 图 4是在图 3中的停车场地图上绘制地磁栅格的示意图;
[0046] 图 5是本发明实施例中地磁栅格的又一示意图;
[0047] 图 6是本发明实施例中又一停车场地图的局部示意图;
[0048] 图 7在图 6中的停车场地图上绘制地磁栅格的示意图;
[0049] 图 8本发明实施例中地磁栅格数据库中的对应关系表格;
[0050] 图 9是本发明的停车位定位装置一实施例的模块示意图;
[0051 ] 图 10是图 9中的检测模块的模块示意图;
[0052] 图 11是图 9中的建立模块的模块示意图;
[0053] 图 12是图 9中的建立模块的又一模块示意图;
[0054] 图 13是图 9中的定位模块的模块示意图。
[0055] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0056] 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发 明。
[0057] 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至 终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下 面通过参考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能解释为 对本发明的限制。
[0058] 本技术领域技术人员可以理解, 除非特意声明, 这里使用的单数形式"一"、 " 一个"、 "所述 "和"该"也可包括复数形式。 应该进一步理解的是, 本发明的说明 书中使用的措辞"包括"是指存在所述特征、 整数、 步骤、 操作、 元件和 /或组件 , 但是并不排除存在或添加一个或多个其他特征、 整数、 步骤、 操作、 元件、 组件和 /或它们的组。 应该理解, 当我们称元件被"连接"或"耦接"到另一元件吋 , 它可以直接连接或耦接到其他元件, 或者也可以存在中间元件。 此外, 这里 使用的"连接"或"耦接"可以包括无线连接或无线耦接。 这里使用的措辞 "和 /或"包 括一个或更多个相关联的列出项的全部或任一单元和全部组合。
[0059] 本技术领域技术人员可以理解, 除非另外定义, 这里使用的所有术语 (包括技 术术语和科学术语) , 具有与本发明所属领域中的普通技术人员的一般理解相 同的意义。 还应该理解的是, 诸如通用字典中定义的那些术语, 应该被理解为 具有与现有技术的上下文中的意义一致的意义, 并且除非像这里一样被特定定 义, 否则不会用理想化或过于正式的含义来解释。
[0060] 本技术领域技术人员可以理解, 这里所使用的 "终端"、 "终端设备"既包括无线 信号接收器的设备, 其仅具备无发射能力的无线信号接收器的设备, 又包括接 收和发射硬件的设备, 其具有能够在双向通信链路上, 执行双向通信的接收和 发射硬件的设备。 这种设备可以包括: 蜂窝或其他通信设备, 其具有单线路显 示器或多线路显示器或没有多线路显示器的蜂窝或其他通信设备; PCS (Persona 1 Communications Service, 个人通信系统) , 其可以组合语音、 数据处理、 传真 和 /或数据通信能力; PDA (Personal Digital Assistant, 个人数字助理) , 其可以 包括射频接收器、 寻呼机、 互联网 /内联网访问、 网络浏览器、 记事本、 日历和 / 或 GPS (Global Positioning System, 全球定位系统) 接收器; 常规膝上型和 /或掌 上型计算机或其他设备, 其具有和 /或包括射频接收器的常规膝上型和 /或掌上型 计算机或其他设备。 这里所使用的 "终端"、 "终端设备"可以是便携式、 可运输、 安装在交通工具 (航空、 海运和 /或陆地) 中的, 或者适合于和 /或配置为在本地 运行, 和 /或以分布形式, 运行在地球和 /或空间的任何其他位置运行。 这里所使 用的"终端"、 "终端设备"还可以是通信终端、 上网终端、 音乐 /视频播放终端, 例如可以是 PDA、 MID (Mobile Internet Device, 移动互联网设备) 和 /或具有音 乐 /视频播放功能的移动电话, 也可以是智能电视、 机顶盒等设备。
[0061] 本技术领域技术人员可以理解, 这里所使用的服务器, 其包括但不限于计算机 、 网络主机、 单个网络服务器、 多个网络服务器集或多个服务器构成的云。 在 此, 云由基于云计算 (Cloud Computing) 的大量计算机或网络服务器构成, 其 中, 云计算是分布式计算的一种, 由一群松散耦合的计算机集组成的一个超级 虚拟计算机。 本发明的实施例中, 服务器、 终端设备与 WNS服务器之间可通过 任何通信方式实现通信, 包括但不限于, 基于 3GPP、 LTE、 WIMAX的移动通信 、 基于 TCP/IP、 UDP协议的计算机网络通信以及基于蓝牙、 红外传输标准的近 距无线传输方式。
[0062] 本发明实施例的停车场定位方法、 装置和系统的应用场景主要是室内停车场特 别是地下停车场, 当然也可以是露天停车场或类似的其它场所, 本发明对此不 作限定。
[0063] 本发明实施例的停车场定位方法、 装置和系统, 主要应用于服务器, 该服务器 可以是各个停车场的独立服务器, 也可以是通信连接各个停车场的一个统一服 务器。
[0064] 参照图 1, 提出本发明的停车场定位方法一实施例, 所述方法包括以下步骤: [0065] Sl l、 通过设置于停车位的地磁传感器检测停车位的地磁强度。
[0066] S12、 根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布图。
[0067] S13、 根据地磁分布图对停车场内的目标进行定位。
[0068] 地磁在空间中任意点的磁场强度矢量都不相同, 与该点经纬度存在对应关系。
建筑物的钢筋水泥结构对室内磁场造成扰动, 形成了每个建筑物室内特有的磁 场分布规律, 而且增加了磁场特征的信号差异。 利用建筑物内部不同空间的地 磁场独特性和吋间稳定性, 通过室内固定停车位的地磁传感器就能测得室内停 车场内 N (N>2) 个停车位的地磁强度。
[0069] 步骤 S11中, 在每个停车位上安装一个地磁传感器, 优选安装于停车位的中部 区域, 通过每个地磁传感器检测每个停车位的地磁强度, 且检测到的强度值为 矢量值, 例如: 地磁传感器所在区域的位置坐标为 (Χ,Υ,Ζ) , 则该地磁传感器 测得地磁强度 M= (Mx,My,Mz) 。 地磁传感器优选为 AMR (Anisotropic Magnetoresistance, 各向异性磁电阻) 、 TMR (Tunnel Magnetoresistance, 隧道 磁电阻) 等磁阻传感器。
[0070] 由于车辆停放在停车位上吋, 会对停车位的地磁强度产生干扰。 因此, 首先通 过地磁传感器检测停车位上是否有车辆, 当停车位上没有车辆吋, 才通过地磁 传感器检测停车位的地磁强度, 从而使得测得的停车位的地磁强度更加准确。 地磁传感器检测停车位上是否有车辆的方式与现有技术相同, 在此不赘述。 [0071] 步骤 S12中, 首先获取停车场地图, 然后根据各个停车位的地磁强度在停车场 地图上绘制地磁栅格, 最后标注每个地磁栅格所对应的地磁强度, 从而获得停 车场的地磁分布图。 可以将地磁强度直接标注在地磁分布图上和 /或建立地磁栅 格数据库, 地磁栅格数据库中包括地磁栅格与地磁强度的对应关系。
[0072] 可选地, 每一个地磁栅格可以包含停车位的至少部分区域和该停车位对应的车 道区域, 该地磁栅格对应的地磁强度即该地磁栅格包含的停车位的地磁强度。 这种地磁栅格特别适用于单独的停车位或单列停车位。
[0073] 如图 2所示, 停车位 100中部设置了地磁传感器 300, 地磁栅格 400以地磁传感器 300为基准, 包含停车位 100的部分区域和该停车位 100对应的车道 200区域。 当 然, 在其它实施例中, 地磁栅格 400也可以仅包括停车位 100区域或停车位 100对 应的车道 200区域。
[0074] 举例而言, 假设停车场地图的局部示意图如图 3所示, 多个停车位 100单列排布 , 每个停车位 100中部设置了地磁传感器 300, 则以地磁传感器 300为基准在停车 场地图上绘制地磁栅格获得如图 4所示的地磁分布图, 其中, 每个地磁栅格 400 包含停车位 100的部分区域和该停车位 100对应的车道 200区域。
[0075] 可选地, 当停车位为对称式停车位或双列对称停车位吋, 即停车位对称分布于 车道两侧吋, 每一个地磁栅格可以包含对称分布于车道两侧的两个停车位的至 少部分区域和该两个停车位对应的车道区域, 此吋, 地磁栅格对应的地磁强度 , 可以是该地磁栅格包含的两个停车场的地磁强度的平均值, 也可以是该地磁 栅格包含的两个停车场中的一个停车场的地磁强度, 还可以是以该地磁栅格包 含的两个停车场的地磁强度作为边界的范围值。
[0076] 如图 5所示, 两个停车位 100对称分布于车道 200两侧, 每个停车位 100中部设置 了地磁传感器 300, 地磁栅格 400以地磁传感器 300为基准, 包含对称分布于车道 200两侧的两个停车位 100的部分区域以及对应的车道 200区域。
[0077] 举例而言, 假设停车场地图的局部示意图如图 6所示, 两列停车位 100分别对称 分布于车道 200两侧, 每个停车位 100中部设置有地磁传感器 300, 则以以地磁传 感器 300为基准在停车场地图上绘制地磁栅格获得如图 7所示的地磁分布图, 其 中, 每个地磁栅格 400包含对称分布于车道 200两侧的两个停车位 100的部分区域 以及对应的车道 200区域。
[0078] 进一步地, 还可以标注每个地磁栅格所对应的位置坐标, 可以将位置坐标直接 标注在地磁分布图上和 /或建立地磁栅格数据库, 地磁栅格数据库中包括地磁栅 格与地磁强度和位置坐标的对应关系。 如图 8所示, 为地磁栅格数据库中的对应 关系表格, 其中包括 N (N>2) 个地磁栅格、 位置坐标和地磁强度, 每个地磁栅 格均对应一个位置坐标和一个地磁强度。
[0079] 进一步地, 对于停车场中没有停车位的区域, 比如停车场入口、 出口、 多层停 车场的连接部分等, 可以采取人工手持地磁传感装置或具有地磁检测功能的移 动终端 (如智能手机) 步行测量的方法, 对这些区域建立地磁栅格, 以完善地 磁分布图。
[0080] 进一步地, 还可以对地磁分布图 (包括地磁栅格数据库) 进行定期维护, 如定 期采集、 比较每个停车位没有车吋的地磁强度, 当有变化吋则及吋进行更新。 如果停车场有施工装修吋, 可能会对停车场的地磁场分布产生扰动, 也需要重 新采集每个停车位无车吋的地磁强度, 及吋更新。
[0081] 步骤 S13中, 在对停车场内的目标进行定位吋, 首先获取停车场内的目标所在 区域的地磁强度, 如接收目标携带的移动终端 (如智能手机) 上报的地磁强度 , 然后在地磁分布图上査找与目标所在区域的地磁强度相匹配的位置区域, 从 而实现了利用地磁进行精准定位。
[0082] 例如, 假设目标所在区域的地磁强度为 M0, 在地磁分布图上査找到与 M0最接 近的地磁强度 Mi, 获取 Mi对应的位置区域, 该位置区域即为目标所在区域。
[0083] 本发明实施例的停车场定位方法, 通过设置于停车位的地磁传感器检测停车位 的地磁强度, 根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布 图, 根据地磁分布图对停车场内的目标进行定位, 从而实现了利用地磁进行精 准定位。 由于现有的停车场都会在停车位上设置地磁传感器, 因此无需额外安 装地磁传感器, 可以利用现成的地磁传感器作为位置基准实现本发明实施例的 停车场定位方案, 大大降低了实现成本。 并且由于每个停车位上都设置有地磁 传感器, 位置基准密度高, 因此定位更加精准。
[0084] 参照图 9, 提出本发明的停车场定位装置, 所述装置包括检测模块 10、 建立模 块 20和定位模块 30, 其中: 检测模块 10, 设置为通过设置于停车位的地磁传感 器检测停车位的地磁强度; 建立模块 20, 设置为根据停车场地图和各个停车位 的地磁强度建立停车场的地磁分布图; 定位模块 30, 设置为根据地磁分布图对 停车场内的目标进行定位。
[0085] 本发明实施例中, 每个停车位上均安装了一个地磁传感器, 优选安装于停车位 的中部区域, 检测模块通过每个地磁传感器检测每个停车位的地磁强度, 且检 测到的强度值为矢量值, 例如: 地磁传感器所在区域的位置坐标为 (Χ,Υ,Ζ) , 则该地磁传感器测得地磁强度M= (Μχ,Μγ,Μζ) 。 地磁传感器优选为 AMR、 TM R等磁阻传感器。
[0086] 由于车辆停放在停车位上吋, 会对停车位的地磁强度产生干扰, 因此, 本发明 实施例中检测模块 10优选检测没有车辆吋停车位的地磁强度, 从而使得测得的 停车位的地磁强度更加准确。 此吋, 检测模块 10如图 10所示, 包括第一检测单 元 11和第二检测单元 12, 其中: 第一检测单元 11, 设置为通过设置于停车位的 地磁传感器检测停车位上是否有车辆; 第二检测单元 12, 设置为当停车位上没 有车辆吋, 通过地磁传感器检测停车位的地磁强度。 第一检测单元 11检测停车 位上是否有车辆的方式与现有技术相同, 在此不赘述。
[0087] 建立模块 20如图 11所示, 包括栅格绘制单元 21和地磁标注单元 22, 其中: 栅格 绘制单元 21, 设置为获取停车场地图, 根据各个停车位的地磁强度在停车场地 图上绘制地磁栅格; 地磁标注单元 22, 设置为标注每个地磁栅格所对应的地磁 强度, 从而获得停车场的地磁分布图。 地磁标注单元 22可以将地磁强度直接标 注在地磁分布图上和 /或建立地磁栅格数据库, 地磁栅格数据库中包括地磁栅格 与地磁强度的对应关系。
[0088] 可选地, 每一个地磁栅格可以包含停车位的至少部分区域和该停车位对应的车 道区域, 该地磁栅格对应的地磁强度即该地磁栅格包含的停车位的地磁强度。 这种地磁栅格特别适用于单独的停车位或单列停车位。
[0089] 如图 2所示, 停车位 100中部设置了地磁传感器 300, 地磁栅格 400以地磁传感器 300为基准, 包含停车位 100的部分区域和该停车位 100对应的车道 200区域。 当 然, 在其它实施例中, 地磁栅格也可以仅包括停车位 100区域或停车位 100对应 的车道 200区域。
[0090] 举例而言, 假设停车场地图的局部示意图如图 3所示, 多个停车位 100单列排布 , 每个停车位 100中部设置了地磁传感器 300, 则以地磁传感器 300为基准在停车 场地图上绘制地磁栅格获得如图 4所示的地磁分布图, 其中, 每个地磁栅格 400 包含停车位 100的部分区域和该停车位 100对应的车道 200区域。
[0091] 可选地, 当停车位为对称式停车位或双列对称停车位吋, 即停车位对称分布于 车道两侧吋, 每一个地磁栅格可以包含对称分布于车道两侧的两个停车位的至 少部分区域和该两个停车位对应的车道区域, 此吋, 地磁栅格对应的地磁强度 , 可以是该地磁栅格包含的两个停车场的地磁强度的平均值, 也可以是该地磁 栅格包含的两个停车场中的一个停车场的地磁强度, 还可以是以该地磁栅格包 含的两个停车场的地磁强度作为边界的范围值。
[0092] 如图 5所示, 两个停车位 100对称分布于车道 200两侧, 每个停车位 100中部设置 了地磁传感器 300, 地磁栅格 400以地磁传感器 300为基准, 包含对称分布于车道 200两侧的两个停车位 100的部分区域以及对应的车道 200区域。
[0093] 举例而言, 假设停车场地图的局部示意图如图 6所示, 两列停车位 100分别对称 分布于车道 200两侧, 每个停车位 100中部设置有地磁传感器 300, 则以地磁传感 器 300为基准在停车场地图上绘制地磁栅格获得如图 7所示的地磁分布图, 其中 , 每个地磁栅格 400包含对称分布于车道 200两侧的两个停车位 100的部分区域以 及对应的车道 200区域。
[0094] 进一步地, 在如图 12所示的建立模块 20中, 其还可以包括坐标标注单元 23, 该 坐标标注单元 23设置为标注每个地磁栅格所对应的位置坐标。 坐标标注单元 23 可以将位置坐标直接标注在地磁分布图上和 /或建立地磁栅格数据库, 地磁栅格 数据库中包括地磁栅格与地磁强度和位置坐标的对应关系。 如图 8所示, 为地磁 栅格数据库中的对应关系表格, 其中包括 N (N>2) 个地磁栅格、 位置坐标和地 磁强度, 每个地磁栅格均对应一个位置坐标和一个地磁强度。
[0095] 定位模块 30如图 13所示, 包括获取单元 31和査找单元 32, 其中: 获取单元 31, 设置为获取停车场内的目标所在区域的地磁强度, 如接收目标携带的移动终端 (如智能手机) 上报的地磁强度; 査找单元 32, 设置为在地磁分布图上査找与 目标所在区域的地磁强度相匹配的位置区域, 从而实现了利用地磁进行精准定 位。
[0096] 例如, 假设目标所在区域的地磁强度为 M0, 定位模块 30在地磁分布图上査找 到与 M0最接近的地磁强度 Mi, 获取 Mi对应的位置区域 (如地磁栅格 i) , 该位 置区域 (地磁栅格 i) 即为目标所在区域。
[0097] 本发明实施例的停车场定位装置, 通过设置于停车位的地磁传感器检测停车位 的地磁强度, 根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布 图, 根据地磁分布图对停车场内的目标进行定位, 从而实现了利用地磁进行精 准定位。 由于现有的停车场都会在停车位上设置地磁传感器, 因此无需额外安 装地磁传感器, 可以利用现成的地磁传感器作为位置基准实现本发明实施例的 停车场定位方案, 大大降低了实现成本。 并且由于每个停车位上都设置有地磁 传感器, 位置基准密度高, 因此定位更加精准。
[0098] 本发明同吋提出一种停车场定位系统, 其包括存储器、 处理器和至少一个被存 储在存储器中并被配置为由处理器执行的应用程序, 所述应用程序被配置为用 于执行停车场定位方法。 所述停车场定位方法包括以下步骤: 通过设置于停车 位的地磁传感器检测停车位的地磁强度; 根据停车场地图和各个停车位的地磁 强度建立停车场的地磁分布图; 根据地磁分布图对停车场内的目标进行定位。 本实施例中所描述的停车场定位方法为本发明中上述实施例所涉及的停车场定 位方法, 在此不再赘述。
[0099] 本领域技术人员可以理解, 本发明包括涉及用于执行本申请中所述操作中的一 项或多项的设备。 这些设备可以为所需的目的而专门设计和制造, 或者也可以 包括通用计算机中的已知设备。 这些设备具有存储在其内的计算机程序, 这些 计算机程序选择性地激活或重构。 这样的计算机程序可以被存储在设备 (例如 , 计算机) 可读介质中或者存储在适于存储电子指令并分别耦联到总线的任何 类型的介质中, 所述计算机可读介质包括但不限于任何类型的盘 (包括软盘、 硬盘、 光盘、 CD-ROM、 和磁光盘) 、 ROM (Read-Only Memory , 只读存储器 ) 、 RAM (Random Access Memory , 随机存储器) 、 EPROM (Erasable Programmable Read-Only Memory , 可擦写可编程只读存储器) 、 EEPROM (Electrically Erasable Programmable Read-Only Memory , 电可擦可编程只读存储器) 、 闪存、 磁性卡 片或光线卡片。 也就是, 可读介质包括由设备 (例如, 计算机) 以能够读的形 式存储或传输信息的任何介质。
[0100] 本技术领域技术人员可以理解, 可以用计算机程序指令来实现这些结构图和 / 或框图和 /或流图中的每个框以及这些结构图和 /或框图和 /或流图中的框的组合。 本技术领域技术人员可以理解, 可以将这些计算机程序指令提供给通用计算机 、 专业计算机或其他可编程数据处理方法的处理器来实现, 从而通过计算机或 其他可编程数据处理方法的处理器来执行本发明公幵的结构图和 /或框图和 /或流 图的框或多个框中指定的方案。
[0101] 本技术领域技术人员可以理解, 本发明中已经讨论过的各种操作、 方法、 流程 中的步骤、 措施、 方案可以被交替、 更改、 组合或刪除。 进一步地, 具有本发 明中已经讨论过的各种操作、 方法、 流程中的其他步骤、 措施、 方案也可以被 交替、 更改、 重排、 分解、 组合或刪除。 进一步地, 现有技术中的具有与本发 明中公幵的各种操作、 方法、 流程中的步骤、 措施、 方案也可以被交替、 更改 、 重排、 分解、 组合或刪除。
[0102] 以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种停车场定位方法, 包括以下步骤:
通过设置于停车位的地磁传感器检测所述停车位的地磁强度; 根据停车场地图和各个停车位的地磁强度建立停车场的地磁分布图; 根据所述地磁分布图对停车场内的目标进行定位。
[权利要求 2] 根据权利要求 1所述的停车场定位方法, 其中, 所述根据停车场地图 和各个停车位的地磁强度建立停车场的地磁分布图的步骤包括: 根据各个停车位的地磁强度在停车场地图上绘制地磁栅格; 标注每个地磁栅格所对应的地磁强度。
[权利要求 3] 根据权利要求 2所述的停车场定位方法, 其中, 所述地磁栅格包含停 车位的至少部分区域和所述停车位对应的车道区域。
[权利要求 4] 根据权利要求 2所述的停车场定位方法, 其中, 当停车位对称分布于 车道两侧吋, 所述地磁栅格包含对称分布于所述车道两侧的两个停车 位的至少部分区域和所述两个停车位对应的车道区域。
[权利要求 5] 根据权利要求 4所述的停车场定位方法, 其中, 所述地磁栅格所对应 的地磁强度为所述两个停车场的地磁强度的平均值。
[权利要求 6] 根据权利要求 4所述的停车场定位方法, 其中, 所述地磁栅格所对应 的地磁强度为所述两个停车场中的一个停车场的地磁强度。
[权利要求 7] 根据权利要求 4所述的停车场定位方法, 其中, 所述地磁栅格所对应 的地磁强度为以所述两个停车场的地磁强度作为边界的范围值。
[权利要求 8] 根据权利要求 2所述的停车场定位方法, 其中, 所述标注每个地磁栅 格所对应的地磁强度的步骤的同吋还包括: 标注每个地磁栅格所对应 的位置坐标。
[权利要求 9] 根据权利要求 1所述的停车场定位方法, 其中, 所述通过设置于停车 位的地磁传感器检测所述停车位的地磁强度的步骤包括:
通过设置于停车位的地磁传感器检测所述停车位上是否有车辆; 当所述停车位上没有车辆吋, 通过所述地磁传感器检测所述停车位的 地磁强度。 根据权利要求 1所述的停车场定位方法, 其中, 所述根据所述地磁分 布图对停车场内的目标进行定位的步骤包括:
获取停车场内的目标所在区域的地磁强度;
在所述地磁分布图上査找与所述目标所在区域的地磁强度相匹配的位 置区域。
一种停车场定位装置, 包括:
检测模块, 设置为通过设置于停车位的地磁传感器检测所述停车位的 地磁强度;
建立模块, 设置为根据停车场地图和各个停车位的地磁强度建立停车 场的地磁分布图;
定位模块, 设置为根据所述地磁分布图对停车场内的目标进行定位。 根据权利要求 11所述的停车场定位装置, 其中, 所述建立模块包括: 栅格绘制单元, 设置为根据各个停车位的地磁强度在停车场地图上绘 制地磁栅格;
地磁标注单元, 设置为标注每个地磁栅格所对应的地磁强度。
根据权利要求 12所述的停车场定位装置, 其中, 所述地磁栅格包含停 车位的至少部分区域和所述停车位对应的车道区域。
根据权利要求 12所述的停车场定位装置, 其中, 当停车位对称分布于 车道两侧吋, 所述地磁栅格包含对称分布于所述车道两侧的两个停车 位的至少部分区域和所述两个停车位对应的车道区域。
根据权利要求 14所述的停车场定位装置, 其中, 所述地磁栅格所对应 的地磁强度为所述两个停车场的地磁强度的平均值。
根据权利要求 14所述的停车场定位装置, 其中, 所述地磁栅格所对应 的地磁强度为所述两个停车场中的一个停车场的地磁强度。
根据权利要求 14所述的停车场定位装置, 其中, 所述地磁栅格所对应 的地磁强度为以所述两个停车场的地磁强度作为边界的范围值。 根据权利要求 12所述的停车场定位装置, 其中, 所述建立模块还包括 坐标标注单元, 所述坐标标注单元设置为: 标注每个地磁栅格所对应的位置坐标。
[权利要求 19] 根据权利要求 11所述的停车场定位装置, 其中, 所述检测模块包括: 第一检测单元, 设置为通过设置于停车位的地磁传感器检测所述停车 位上是否有车辆;
第二检测单元, 设置为当所述停车位上没有车辆吋, 通过所述地磁传 感器检测所述停车位的地磁强度。
[权利要求 20] —种停车场定位系统, 包括存储器、 处理器和至少一个被存储在所述 存储器中并被配置为由所述处理器执行的应用程序, 其中, 所述应用 程序被配置为用于执行权利要求 1所述的停车场定位方法。
PCT/CN2017/109428 2017-11-03 2017-11-03 停车场定位方法、装置和系统 WO2019084935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109428 WO2019084935A1 (zh) 2017-11-03 2017-11-03 停车场定位方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109428 WO2019084935A1 (zh) 2017-11-03 2017-11-03 停车场定位方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2019084935A1 true WO2019084935A1 (zh) 2019-05-09

Family

ID=66332010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109428 WO2019084935A1 (zh) 2017-11-03 2017-11-03 停车场定位方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2019084935A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150018018A1 (en) * 2013-07-12 2015-01-15 Microsoft Corporation Indoor Location-Finding using Magnetic Field Anomalies
CN104812064A (zh) * 2015-04-20 2015-07-29 北京识途科技有限公司 一种终端位置确定方法及装置
CN105043387A (zh) * 2015-06-26 2015-11-11 武汉科技大学 基于惯导辅助地磁的个人室内定位系统
CN105157699A (zh) * 2015-06-18 2015-12-16 南京邮电大学 一种基于WiFi和传感网技术融合的室内停车场导航方法
CN205050343U (zh) * 2015-07-17 2016-02-24 袁丽 智能泊车监控管理系统及车辆检测器
CN106092093A (zh) * 2016-05-26 2016-11-09 浙江工业大学 一种基于地磁指纹匹配算法的室内定位方法
CN106123892A (zh) * 2016-06-22 2016-11-16 武汉科技大学 一种基于无线传感器网络与地磁地图的机器人定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150018018A1 (en) * 2013-07-12 2015-01-15 Microsoft Corporation Indoor Location-Finding using Magnetic Field Anomalies
CN104812064A (zh) * 2015-04-20 2015-07-29 北京识途科技有限公司 一种终端位置确定方法及装置
CN105157699A (zh) * 2015-06-18 2015-12-16 南京邮电大学 一种基于WiFi和传感网技术融合的室内停车场导航方法
CN105043387A (zh) * 2015-06-26 2015-11-11 武汉科技大学 基于惯导辅助地磁的个人室内定位系统
CN205050343U (zh) * 2015-07-17 2016-02-24 袁丽 智能泊车监控管理系统及车辆检测器
CN106092093A (zh) * 2016-05-26 2016-11-09 浙江工业大学 一种基于地磁指纹匹配算法的室内定位方法
CN106123892A (zh) * 2016-06-22 2016-11-16 武汉科技大学 一种基于无线传感器网络与地磁地图的机器人定位方法

Similar Documents

Publication Publication Date Title
CN107883950B (zh) 停车场导航方法、装置和系统
US20120264454A1 (en) Method and apparatus for identification of local beacon systems
CN107850658A (zh) 具有自适应主动定位的增强型被动定位
CN108632761B (zh) 一种基于粒子滤波算法的室内定位方法
Brennan Jr et al. Influence of vertical sensor placement on data collection efficiency from bluetooth MAC address collection devices
CN107490802B (zh) 一种基于多磁信标的空间定位方法、装置及系统
US8577590B2 (en) Scalable geofences
US20130281120A1 (en) Cooperative localization of portable electronic devices
US8683707B1 (en) Magnetically modulated location system
CN107211389A (zh) 分配及利用用于位置确定操作的天线信息
CN103154764A (zh) 使用参考点对齐位置信息对设备进行定位
CN113923596B (zh) 室内定位方法、装置、设备及介质
CN104483658A (zh) 基于Wi-Fi和地磁场的室内定位方法
US20130084887A1 (en) Using wired endpoints to determine position information for wireless endpoints in a network
CN103069778B (zh) 用于定位的方法、移动设备及系统
Lee et al. An indoor localization solution using Bluetooth RSSI and multiple sensors on a smartphone
Ching et al. Uniwide WiFi based positioning system
US20160066156A1 (en) Selection of Location-Determination Information
CN101577853B (zh) 一种无线台站终端精确定位方法
WO2017092008A1 (zh) 一种导航方法和用于导航的设备
WO2019084935A1 (zh) 停车场定位方法、装置和系统
CN204115737U (zh) 一种基于惯性制导和射频识别的室内定位装置
Chen et al. BikeGPS: Accurate localization of shared bikes in street canyons via low-level GPS cooperation
TWM530957U (zh) 室內定位裝置
CN104132659A (zh) 一种楼体内的定位实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930876

Country of ref document: EP

Kind code of ref document: A1