WO2019084765A1 - 无人机避障控制方法、雷达系统及无人机 - Google Patents

无人机避障控制方法、雷达系统及无人机 Download PDF

Info

Publication number
WO2019084765A1
WO2019084765A1 PCT/CN2017/108561 CN2017108561W WO2019084765A1 WO 2019084765 A1 WO2019084765 A1 WO 2019084765A1 CN 2017108561 W CN2017108561 W CN 2017108561W WO 2019084765 A1 WO2019084765 A1 WO 2019084765A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
detecting device
radar
radar detecting
controlling
Prior art date
Application number
PCT/CN2017/108561
Other languages
English (en)
French (fr)
Inventor
王春明
吴旭民
王俊喜
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780028209.0A priority Critical patent/CN109313452B/zh
Priority to PCT/CN2017/108561 priority patent/WO2019084765A1/zh
Publication of WO2019084765A1 publication Critical patent/WO2019084765A1/zh
Priority to US16/857,921 priority patent/US20200388172A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/83Electronic components structurally integrated with aircraft elements, e.g. circuit boards carrying loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • G01S13/935Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft for terrain-avoidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0078Surveillance aids for monitoring traffic from the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the embodiment of the invention relates to the field of drones, and in particular to a method for controlling obstacle avoidance of a drone, a radar system and a drone.
  • the drone is usually provided with a detecting device for detecting objects around the drone, for example, detecting obstacles around the drone, and preventing the drone from colliding with the obstacle.
  • the detecting device mounted on the drone usually includes a visual sensor and an ultrasonic sensor.
  • the resolution of the vision sensor is high, but the visual sensor is easily affected by the environment. In the environment where the visibility is not high, the detection distance of the visual sensor will be limited.
  • the ultrasonic sensor is less affected by the environment, but the ultrasonic sensor has a short detection range and a low resolution.
  • the prior art lacks a detection method that is neither affected by the environment, has high resolution, and has a long detection distance.
  • the embodiment of the invention provides a method for detecting an obstacle avoidance of a drone, a radar system and a drone to realize a detection method that is free from environmental influences and has high resolution and long detection distance.
  • a first aspect of an embodiment of the present invention provides a method for controlling an obstacle avoidance of a drone, wherein the drone includes a radar system, the radar system includes a radar detecting device and a rotating device, and the rotating device is disposed at the a body of the human machine, the rotating device is equipped with the radar detecting device; the method includes:
  • the drone is controlled to fly according to the probe information.
  • a second aspect of an embodiment of the present invention provides a radar system including: a radar detection device Preparation and turning device; among them,
  • the rotating device is disposed on a fuselage of the drone
  • the rotating device is equipped with the radar detecting device, and the rotating device drives the radar detecting device to continuously rotate;
  • the rotating device drives the radar detecting device to continuously rotate, the radar detecting device scans and detects an obstacle around the drone.
  • a third aspect of the embodiments of the present invention provides a drone, including:
  • a power system mounted to the fuselage for providing flight power
  • a flight controller communicatively coupled to the power system for controlling the flight of the drone
  • a radar system comprising a radar detecting device and a rotating device, the rotating device being disposed on a fuselage of the drone, wherein the rotating device is equipped with the radar detecting device;
  • the flight controller is used to:
  • the drone is controlled to fly according to the probe information.
  • the UAV obstacle avoidance control method, the radar system and the UAV provided by the embodiment enable the rotating device to continuously rotate by the UAV controlling the rotating device of the radar system, and the rotating device drives the radar during the continuous rotation of the rotating device.
  • the radar detection equipment of the system continuously rotates, and the drone controls the flight of the drone according to the detection information of the radar detection device during continuous rotation.
  • the radar detection device continuously rotates to detect a region with a longer distance and a wider range, and continuously rotates. Scanning radar has strong adaptability to the environment and high scanning resolution.
  • FIG. 1 is a structural diagram of a radar system included in a drone according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a radar system included in a drone according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a drone provided with a radar system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a drone provided with a radar system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a drone provided with a radar system according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for controlling an obstacle avoidance of a drone according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a digital beamforming DBF according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of scanning a first radio frequency antenna according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an obstacle avoidance of a drone according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a drone provided with a radar system according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of terrain tracking of a drone according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 1 is a structural diagram of a radar system included in a drone according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a radar system included in a drone according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a drone provided with a radar system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a drone provided with a radar system according to an embodiment of the present invention.
  • the radar system 11 includes a radar detecting device 12 and a rotating device 13, and the rotating device 13 is disposed on the body of the drone, and the rotating device 13 is mounted with a radar detecting device 12.
  • the radar detecting device 12 includes a control circuit board 121 and at least one radio frequency antenna, and the control circuit board 121 and the at least one radio frequency antenna are electrically connected.
  • the radar detecting device 12 includes a control circuit board 121, a first RF antenna 122, and a second RF antenna 123.
  • the control circuit board 121 is located between the first RF antenna 122 and the second RF antenna 123.
  • the board surface of the control circuit board 121 is parallel to the board surface of the first radio frequency antenna 122, and the board surface of the control circuit board 121 is parallel to the board surface of the second radio frequency antenna 123.
  • an angle between a board surface of the radio frequency antenna and a board surface of the control circuit board is a preset angle. As shown in FIG. 2, the board surface of the control circuit board 121 is at a predetermined angle with the board surface of the first RF antenna 122, and the board surface of the control circuit board 121 is at a predetermined angle with the board surface of the second RF antenna 123.
  • the rotating device 13 includes: a turntable 131, an ESC 132, and an interface board 133; the turntable 131 is configured to carry the radar detecting device; the ESC 132 is electrically connected to the motor, and is used for Driving a motor to rotate, and controlling a rotation state of the motor, the motor is used to drive the turntable to rotate; the interface board 133 is electrically connected to the ESC or/and the detecting device, The interface board is used for external connection for electrical connection.
  • the radar system 11 is vertically mounted above the fuselage of the drone 30, at which time the axis of rotation 10 of the radar system 11 is parallel to the yaw axis of the drone 30.
  • the attitude of the radar system 11 relative to the drone 30 is as shown in FIG. 1 or FIG. 2 , and FIG. 2 is taken as an example, that is, the board surface of the control circuit board 121 and the board surface of the first radio frequency antenna 122 are preset.
  • the angle of the board surface of the control circuit board 121 is at a predetermined angle with the board surface of the second RF antenna 123.
  • the radar system 11 is horizontally mounted below the fuselage of the drone 30, at which time the axis of rotation of the radar system 11 is perpendicular to the yaw axis of the drone 30. At this time, the attitude of the radar system 11 with respect to the drone 30 is as shown in FIG. 5.
  • the board surface of the control circuit board 121 and the board surface of the first radio frequency antenna 122 are further The board surface of the control circuit board 121 and the board surface of the second RF antenna 123 may also be at a predetermined angle.
  • FIG. 6 is a flowchart of a method for controlling an obstacle avoidance of a drone according to an embodiment of the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • Step S601 Control the rotating device to continuously rotate, so that the rotating device drives the radar detecting device to continuously rotate.
  • the execution body of the method of this embodiment may be a flight controller of a drone, or may be other general-purpose or dedicated processors.
  • a flight controller is schematically illustrated.
  • the flight controller of the drone 30 can control the continuous rotation of the rotating device 13, and the rotating device 13 drives the radar detecting device 12 to continuously rotate when continuously rotating, when the radar detecting device 12 is continuously rotating.
  • the obstacle around the drone 30 can be detected.
  • the radar system 11 can scan for obstacles within a 360 degree range around the drone 30.
  • Step S602 Acquire detection information of the radar detecting device during continuous rotation.
  • the flight controller of the drone 30 can acquire the detection information of the radar detecting device 12 in real time.
  • the radar system 11 can detect the obstacle in front of the drone 30.
  • the obstacle behind, the obstacle above, and the distance, speed, direction, height and the like of the obstacle relative to the drone 30 can also be detected.
  • Step S603 controlling the flight of the drone according to the detection information.
  • the flight controller of the drone 30 can control the drone 30 to fly according to the detection information of the radar detecting device 12, for example, to control the drone 30 to avoid obstacles.
  • the radar detecting device detects the target object around the drone through the digital beamforming DBF.
  • the beam emitted by the radar detecting device 12 may specifically be Digital Beam Forming (DBF), and the DBF-based continuous rotating scanning radar has strong adaptability to the environment, and the scanning resolution satisfies the obstacle blocking requirement.
  • DBF Digital Beam Forming
  • the drone includes an agricultural drone. That is to say, the radar system 11 described in this embodiment can be specifically applied to an agricultural drone. In other embodiments, the radar system 11 can be applied to other drones other than agricultural drones.
  • the rotating device of the radar system is controlled by the drone to continuously rotate the rotating device.
  • the rotating device drives the radar detecting device of the radar system to continuously rotate, and the drone is continuously in accordance with the radar detecting device.
  • the detection information during rotation controls the flight of the drone, and the radar detection device continuously rotates to detect a region with a longer distance and a wider range.
  • the continuous rotation scanning radar has strong adaptability to the environment and high scanning resolution.
  • Embodiments of the present invention provide a method for controlling an obstacle avoidance of a drone.
  • the radar detecting device is vertically mounted above the fuselage of the drone by the rotating device; the rotation axis of the radar detecting device is offset from the drone The axes are parallel.
  • the radar system 11 is vertically mounted above the fuselage of the drone 30.
  • the rotating shaft 10 of the radar system 11 is parallel to the yaw axis of the drone 30.
  • the attitude of the radar system 11 relative to the drone 30 is as shown in FIG. 1 or FIG. 2 , and FIG. 2 is taken as an example, that is, the board surface of the control circuit board 121 and the board surface of the first radio frequency antenna 122 are preset.
  • the angle of the board surface of the control circuit board 121 is at a predetermined angle with the board surface of the second RF antenna 123.
  • 80 denotes the XOY plane of the body coordinate system of the drone
  • 122 denotes the first radio frequency antenna of the radar system 11
  • 81 denotes the scanning beam perpendicular to the plane of the first radio frequency antenna 122.
  • Arrow 82 represents a scanned beam at a predetermined angle to beam 81. This is only a schematic illustration and does not limit the shape and extent of the beam emitted by the first RF antenna 122.
  • the pitch angle of the drone is 0, the XOY plane of the body coordinate system is parallel to the horizontal plane.
  • the pitch angle of the drone is not 0, the XOY plane of the body coordinate system forms a certain angle with the horizontal plane, and ⁇ and ⁇ respectively.
  • the angle of the pitch angle ⁇ is smaller than the angle of the pitch angle ⁇ degree. According to FIG. 8 , when the X axis of the body coordinate system of the drone is below the horizontal plane of the origin of the coordinate, as the angle of the elevation angle of the drone increases, the range of the ground that the first RF antenna 122 can scan continuously increase.
  • the radar detecting device is configured to detect at least one of an obstacle in front of the drone, a rear obstacle, and an upper obstacle.
  • the detection information includes at least one of: a distance, a speed, a direction, and a height of the obstacle relative to the drone.
  • the radar system 11 can detect an obstacle in front of the drone 30, an obstacle behind it, an obstacle above, and can also detect the distance, speed, and distance of the obstacle from the drone 30.
  • the radar system 11 can detect an obstacle in front of the drone 30, an obstacle behind it, an obstacle above, and can also detect the distance, speed, and distance of the obstacle from the drone 30.
  • controlling the flight of the drone according to the detection information includes the following feasible implementation manners:
  • a feasible implementation manner is: controlling the drone to avoid the obstacle according to the detection information.
  • the method further comprises: controlling the drone to return to a preset route.
  • the flight controller controls the drone to avoid the obstacle according to the detection information of the radar detecting device during continuous rotation, and avoids the obstacle. After that, the drone is controlled to return to the preset route to continue the flight.
  • Another feasible implementation manner is: adjusting planning information of a preset planned route or/and agricultural operation according to the detection information; controlling the drone, according to the adjusted route or/and the planning information of the agricultural operation Continue to fly.
  • the flight controller can also adjust the route of the agricultural drone operation, such as the length, width, and spacing of the route, according to the detection information of the radar detecting device during continuous rotation.
  • Or/and adjust planning information for agricultural drone operations such as spray routes, spray times, etc., when the flight controller adjusts the route for agricultural drone operations or/and adjusts planning information for agricultural drone operations
  • the agricultural drone is controlled to continue the flight operation according to the adjusted route or/and planning information.
  • the radar detecting device is vertically installed above the fuselage of the drone by the rotating device to detect at least one of an obstacle, a rear obstacle, and an upper obstacle in front of the drone, and the flight controller According to the detection information of the radar detection equipment, the drone is controlled to avoid obstacles, and the safety of the flight of the drone is improved, or the flight controller can also be based on the radar detection device.
  • the detection information adjusts the operation route and operation planning information of the drone, and realizes the flexibility of the drone operation control.
  • Embodiments of the present invention provide a method for controlling an obstacle avoidance of a drone.
  • the radar detecting device is horizontally installed under the fuselage of the drone by the rotating device; the rotation axis of the radar detecting device is offset from the drone The axis is vertical.
  • the radar system 11 is horizontally mounted below the fuselage of the drone 30.
  • the rotational axis of the radar system 11 is perpendicular to the yaw axis of the drone 30.
  • the attitude of the radar system 11 with respect to the drone 30 is as shown in FIG. 5.
  • the board surface of the control circuit board 121 and the board surface of the first radio frequency antenna 122 are further The board surface of the control circuit board 121 and the board surface of the second RF antenna 123 may also be at a predetermined angle.
  • the maximum detection direction of the radar detecting device and the yaw axis direction of the drone are at a preset angle.
  • the detection information includes at least one of: a height of the drone from the ground, and a terrain of the ground below the drone within the preset angle.
  • a height of the drone from the ground As shown in FIG. 10, when the radar system 11 is horizontally mounted under the fuselage of the drone 30, the radar system 11 can be used to detect the height H of the drone from the ground, and the ground below the drone within a predetermined angle ⁇ . Terrain, this embodiment does not limit the range of ⁇ .
  • controlling the flight of the drone according to the detection information includes the following feasible implementation manners:
  • a feasible implementation manner is: controlling the flying height of the drone according to the height of the drone from the ground.
  • the flight controller of the drone can control the flying height of the drone according to the height H of the drone detected by the radar system 11 from the ground.
  • Another possible implementation manner is: controlling the drone to perform terrain following according to the terrain of the ground below the drone within the preset angle.
  • the drone 30 may specifically be an agricultural drone.
  • the flight controller of the drone may be detected according to the radar system 11.
  • the height H of the drone from the ground is such that the flying height of the drone is maintained within a preset height range to control the drone's terrain following.
  • the flight controller can also control the drone acceleration when controlling the drone for terrain tracking.
  • the UAV's rising acceleration is A
  • the terrain angle is ⁇ 1
  • the radar system's angle relative to the ground is ⁇ 2
  • the UAV's horizontal speed is V hs
  • the radar measuring oblique distance is L.
  • the reaction time t RD of the drone is the time when the radar measures the oblique distance from L to L/2. During the reaction time t RD , the drone needs to raise the climb speed from 0 to V vs. Therefore, the drone is required to increase the acceleration to In addition, then
  • the radar detecting device is horizontally installed under the fuselage of the drone through the rotating device to detect the height of the drone from the ground and the terrain of the ground below the drone within a preset angle, and the flight controller is based on the radar. Detecting the detection information of the equipment, controlling the flying height of the drone, controlling the drone to perform terrain tracking, and improving the safety of the agricultural drone during operation.
  • Embodiments of the present invention provide a radar system. 1, 2, 3, and 5, the radar system 11 includes a radar detecting device 12 and a rotating device 13; wherein the rotating device 13 is disposed on the body of the drone; and the rotating device 13 is mounted with the radar detecting device 12 And the rotating device 13 drives the radar detecting device 12 to continuously rotate; wherein, when the rotating device 13 drives the radar detecting device 12 to continuously rotate, the radar detecting device 12 scans and detects obstacles around the drone.
  • the radar detecting device comprises a control circuit board and at least one radio frequency antenna, and the control circuit board and the at least one radio frequency antenna are electrically connected.
  • an angle between a board surface of the radio frequency antenna and a board surface of the control circuit board is a preset angle.
  • the radar detecting device comprises a control circuit board, a first radio frequency antenna and a second radio frequency antenna, and the control circuit board is located between the first radio frequency antenna and the second radio frequency antenna.
  • the rotating device includes: a turntable for carrying the radar detecting device; an electric adjusting plate electrically connected to the motor for driving the motor to rotate, and controlling the rotating state of the motor, The motor is used to drive the turntable to rotate; the interface board is electrically connected to the electrical switchboard or/and the detecting device, and the interface board is used for external connection for electrical connection.
  • the radar detecting device detects the target object around the drone through the digital beamforming DBF.
  • the radar detecting device is vertically mounted above the fuselage of the drone by the rotating device; the rotating axis of the radar detecting device is parallel to the yaw axis of the drone. Specifically, as shown in FIG. 3, it will not be described here.
  • the radar detecting device is configured to detect at least one of an obstacle in front of the drone, a rear obstacle, and an upper obstacle.
  • the detection information of the radar detecting device includes at least one of the following: a distance, a speed, a direction, and a height of the obstacle relative to the drone.
  • the radar detecting device is horizontally mounted under the fuselage of the drone by the rotating device; the rotating axis of the radar detecting device is perpendicular to the yaw axis of the drone .
  • the details are shown in Figure 4, and are not described here.
  • the maximum detection direction of the radar detecting device and the yaw axis direction of the drone are at a preset angle.
  • the detection information includes at least one of: a height of the drone from the ground, and a terrain of the ground below the drone within the preset angle.
  • the rotating device of the radar system is controlled by the drone to continuously rotate the rotating device.
  • the rotating device drives the radar detecting device of the radar system to continuously rotate, and the drone is continuously in accordance with the radar detecting device.
  • the detection information during rotation controls the flight of the drone, and the radar detection device continuously rotates to detect a region with a longer distance and a wider range.
  • the continuous rotation scanning radar has strong adaptability to the environment and high scanning resolution.
  • Embodiments of the present invention provide a drone. 12 is a structural diagram of a drone according to an embodiment of the present invention. As shown in FIG. 12, the drone 1200 includes: a fuselage, a power system, a flight controller 1218, and a radar system 1208, where the power system includes at least the following One type: motor 1207, A propeller 1206 and an electronic governor 1217, a power system is mounted to the fuselage for providing flight power; and a flight controller 1218 is communicatively coupled to the power system for controlling the drone to fly.
  • the power system includes at least the following One type: motor 1207, A propeller 1206 and an electronic governor 1217, a power system is mounted to the fuselage for providing flight power; and a flight controller 1218 is communicatively coupled to the power system for controlling the drone to fly.
  • flight controller 1218 The specific principles and implementations of the flight controller 1218 are similar to the foregoing embodiments, and are not described herein again.
  • the UAV 1200 further includes: a communication system 1210, a supporting device 1202, and a shooting device 1204.
  • the supporting device 1202 may specifically be a PTZ.
  • the communication system 1210 may specifically include a receiver.
  • the wireless signal transmitted by the antenna 1214 of the receiving ground station 1212, 1216 represents the electromagnetic wave generated during communication between the receiver and the antenna 1214.
  • the rotating device of the radar system is controlled by the drone to continuously rotate the rotating device.
  • the rotating device drives the radar detecting device of the radar system to continuously rotate, and the drone is continuously in accordance with the radar detecting device.
  • the detection information during rotation controls the flight of the drone, and the radar detection device continuously rotates to detect a region with a longer distance and a wider range.
  • the continuous rotation scanning radar has strong adaptability to the environment and high scanning resolution.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or may have two or more unit sets. In one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种无人机避障控制方法、雷达系统及无人机,该方法包括:控制转动装置(13)连续转动,以使转动装置(13)带动雷达探测设备(12)连续转动;获取雷达探测设备(12)在连续转动时的探测信息;根据该探测信息,控制无人机(30)飞行。通过控制雷达系统(11)的转动装置(13),使转动装置(13)连续转动,在转动装置(13)连续转动的过程中,转动装置(13)带动雷达系统(11)的雷达探测设备连续转动,无人机根据雷达探测设备(12)在连续转动时的探测信息控制无人机飞行,通过雷达探测设备(12)连续转动,可探测到距离更远、范围更广的区域,连续旋转扫描雷达对环境适应能力强,并且扫描分辨率高。

Description

无人机避障控制方法、雷达系统及无人机 技术领域
本发明实施例涉及无人机领域,尤其涉及一种无人机避障控制方法、雷达系统及无人机。
背景技术
现有技术中无人机通常设置有探测设备,该探测设备用于探测无人机周围的物体,例如探测无人机周围的障碍物,避免无人机与障碍物发生碰撞。
现有技术中,无人机上搭载的探测设备通常包括视觉传感器和超声波传感器。视觉传感器的分辨率较高,但是视觉传感器容易受环境影响,在能见度不高的环境下,视觉传感器的探测距离将会受到限制。超声波传感器受环境影响小,但是超声波传感器的探测距离短,分辨率低。
因此,现有技术中缺乏一种既不受环境影响,且分辨率高、探测距离远的探测方法。
发明内容
本发明实施例提供一种无人机避障控制方法、雷达系统及无人机,以实现不受环境影响,且分辨率高、探测距离远的探测方法。
本发明实施例的第一方面是提供一种无人机避障控制方法,所述无人机包括雷达系统,所述雷达系统包括雷达探测设备和转动装置,所述转动装置设置在所述无人机的机身,所述转动装置上搭载有所述雷达探测设备;所述方法包括:
控制所述转动装置连续转动,以使所述转动装置带动所述雷达探测设备连续转动;
获取所述雷达探测设备在连续转动时的探测信息;
根据所述探测信息,控制所述无人机飞行。
本发明实施例的第二方面是提供一种雷达系统,包括:雷达探测设 备和转动装置;其中,
所述转动装置设置在无人机的机身;
所述转动装置上搭载有所述雷达探测设备,且所述转动装置带动所述雷达探测设备连续转动;
其中,在所述转动装置带动所述雷达探测设备连续转动时,所述雷达探测设备扫描探测所述无人机周围的障碍物。
本发明实施例的第三方面是提供一种无人机,包括:
机身;
动力系统,安装在所述机身,用于提供飞行动力;
飞行控制器,与所述动力系统通讯连接,用于控制所述无人机飞行;以及
雷达系统,所述雷达系统包括雷达探测设备和转动装置,所述转动装置设置在所述无人机的机身,所述转动装置上搭载有所述雷达探测设备;
所述飞行控制器用于:
控制所述转动装置连续转动,以使所述转动装置带动所述雷达探测设备连续转动;
获取所述雷达探测设备在连续转动时的探测信息;
根据所述探测信息,控制所述无人机飞行。
本实施例提供的无人机避障控制方法、雷达系统及无人机,通过无人机控制雷达系统的转动装置,使转动装置连续转动,在转动装置连续转动的过程中,转动装置带动雷达系统的雷达探测设备连续转动,无人机根据雷达探测设备在连续转动时的探测信息控制无人机飞行,通过雷达探测设备连续转动,可探测到距离更远、范围更广的区域,连续旋转扫描雷达对环境适应能力强,并且扫描分辨率高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的无人机包括的雷达系统的结构图;
图2为本发明实施例提供的无人机包括的雷达系统的结构图;
图3为本发明实施例提供的无人机设置有雷达系统的示意图;
图4为本发明实施例提供的无人机设置有雷达系统的示意图;
图5为本发明实施例提供的无人机设置有雷达系统的示意图;
图6为本发明实施例提供的无人机避障控制方法的流程图;
图7为本发明实施例提供的数字波束形成DBF的示意图;
图8为本发明实施例提供的第一射频天线扫描的示意图;
图9为本发明实施例提供的无人机避障的示意图;
图10为本发明实施例提供的无人机设置有雷达系统的示意图;
图11为本发明实施例提供的无人机地形跟随的示意图;
图12为本发明实施例提供的无人机的结构图。
附图标记:
11-雷达系统      12-雷达探测设备    13-转动装置
121-控制电路板    122-第一射频天线  123-第二射频天线
131-转台          132-电调板        133-接口板
30-无人机        80-XOY平面    81-扫描波束
82-扫描波束     1200-无人机     10-转动轴
1207-电机        1206-螺旋桨      1217-电子调速器
1218-飞行控制器   1208-雷达系统    1210-通信系统
1202-支撑设备     1204-拍摄设备    1212-地面站
1214-天线         1216-电磁波
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接” 另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种无人机避障控制方法。图1为本发明实施例提供的无人机包括的雷达系统的结构图。图2为本发明实施例提供的无人机包括的雷达系统的结构图。图3为本发明实施例提供的无人机设置有雷达系统的示意图。图4为本发明实施例提供的无人机设置有雷达系统的示意图。
如图1所示,雷达系统11包括雷达探测设备12和转动装置13,转动装置13设置在所述无人机的机身,转动装置13上搭载有雷达探测设备12。
可选的,雷达探测设备12包括控制电路板121和至少一个射频天线,控制电路板121和至少一个射频天线电连接。具体的,雷达探测设备12包括控制电路板121、第一射频天线122和第二射频天线123;控制电路板121位于第一射频天线122和第二射频天线123之间。
如图1所示,控制电路板121的板面与第一射频天线122的板面平行,控制电路板121的板面与第二射频天线123的板面平行。
在一些实施例中,所述射频天线的板面与所述控制电路板的板面之间的夹角为预设角度。如图2所示,控制电路板121的板面与第一射频天线122的板面成预设角度,控制电路板121的板面与第二射频天线123的板面成预设角度。
另外,如图1或图2所示,转动装置13包括:转台131、电调板132、接口板133;转台131用于承载所述雷达探测设备;电调板132与电机电连接,用于驱动电机转动,并且控制所述电机的转动状态,所述电机用于带动所述转台转动;接口板133与所述电调板或/及所述探测设备电连接, 所述接口板用于外部线路进行电连接。
雷达系统11在无人机上的安装方式可以有如下几种可能的情况:
一种可能的情况是:如图3所示,雷达系统11垂直安装在无人机30的机身上方,此时,雷达系统11的转动轴10与无人机30的偏航轴平行。此时,雷达系统11相对于无人机30的姿态如图1或图2所示,此处以图2为例,即控制电路板121的板面与第一射频天线122的板面成预设角度,控制电路板121的板面与第二射频天线123的板面成预设角度。
另一种可能的情况是:如图4所示,雷达系统11水平安装在无人机30的机身下方,此时,雷达系统11的转动轴与无人机30的偏航轴垂直。此时,雷达系统11相对于无人机30的姿态如图5所示,在其他实施例中,在图5的基础上,控制电路板121的板面与第一射频天线122的板面还可以成预设角度,控制电路板121的板面与第二射频天线123的板面还可以成预设角度。
图6为本发明实施例提供的无人机避障控制方法的流程图。如图6所示,本实施例中的方法,可以包括:
步骤S601、控制所述转动装置连续转动,以使所述转动装置带动所述雷达探测设备连续转动。
本实施例方法的执行主体可以是无人机的飞行控制器,也可以是其他通用或者专用的处理器,在本实施例中以飞行控制器来作示意性说明。
如图1-图5所示,无人机30的飞行控制器可以控制转动装置13连续转动,转动装置13在连续转动时,带动雷达探测设备12连续转动,当雷达探测设备12在连续转动时,可以对无人机30周围的障碍物进行检测。例如,图3所示,雷达系统11可以对无人机30周围360度范围内的障碍物进行扫描。
步骤S602、获取所述雷达探测设备在连续转动时的探测信息。
在雷达探测设备12连续转动的过程中,无人机30的飞行控制器可实时获取雷达探测设备12的探测信息,例如图3所示,雷达系统11可以检测出无人机30前方的障碍物、后方的障碍物、上方的障碍物,并且还可以检测出该障碍物相对于无人机30的距离、速度、方向、高度等信息。
步骤S603、根据所述探测信息,控制所述无人机飞行。
进一步的,无人机30的飞行控制器可根据雷达探测设备12的探测信息,控制无人机30飞行,例如,控制无人机30避开障碍物。
可选的,所述雷达探测设备通过数字波束形成DBF探测所述无人机周围的目标物体。如图7所示,雷达探测设备12发出的光束具体可以是数字波束形成(Digital Beam Forming,简称DBF),基于DBF的连续旋转扫描雷达对环境适应能力强,并且扫描分辨率满足绕障需求。
可选的,所述无人机包括农业无人机。也就是说,本实施例所述的雷达系统11具体可以适用于农业无人机。在其他实施例中,除农业无人机之外的其他无人机也可以应用该雷达系统11。
本实施例通过无人机控制雷达系统的转动装置,使转动装置连续转动,在转动装置连续转动的过程中,转动装置带动雷达系统的雷达探测设备连续转动,无人机根据雷达探测设备在连续转动时的探测信息控制无人机飞行,通过雷达探测设备连续转动,可探测到距离更远、范围更广的区域,连续旋转扫描雷达对环境适应能力强,并且扫描分辨率高。
本发明实施例提供一种无人机避障控制方法。在图6所示实施例的基础上,所述雷达探测设备通过所述转动装置垂直安装在所述无人机的机身上方;所述雷达探测设备的转动轴与所述无人机的偏航轴平行。
如图3所示,雷达系统11垂直安装在无人机30的机身上方,此时,雷达系统11的转动轴10与无人机30的偏航轴平行。此时,雷达系统11相对于无人机30的姿态如图1或图2所示,此处以图2为例,即控制电路板121的板面与第一射频天线122的板面成预设角度,控制电路板121的板面与第二射频天线123的板面成预设角度。
在图3的基础上,如图8所示,80表示无人机的机体坐标系的XOY平面,122表示雷达系统11的第一射频天线,81表示垂直于第一射频天线122平面的扫描波束,箭头82表示与波束81成预设角度的扫描波束。此处只是示意性说明,并不限定第一射频天线122发射的波束的形状和范围。当无人机的俯仰角为0时,机体坐标系的XOY平面与水平面平行,当无人机的俯仰角不为0时,机体坐标系的XOY平面与水平面成一定的角度,α和β分别表示无人机的俯仰角,俯仰角α的角度小于俯仰角β的角 度。根据图8可知,当无人机的机体坐标系的X轴位于过坐标原点的水平面之下时,随着无人机俯仰角角度的增加,第一射频天线122可扫描到的地面的范围不断增加。
可选的,所述雷达探测设备用于探测所述无人机前方障碍物、后方障碍物、上方障碍物中的至少一种。
可选的,所述探测信息包括如下至少一种:所述障碍物相对于所述无人机的距离、速度、方向、高度。
如图3所示,雷达系统11可以检测出无人机30前方的障碍物、后方的障碍物、上方的障碍物,并且还可以检测出该障碍物相对于无人机30的距离、速度、方向、高度等信息。
在本实施例中,所述根据所述探测信息,控制所述无人机飞行,包括如下几种可行的实现方式:
一种可行的实现方式是:根据所述探测信息,控制所述无人机避开所述障碍物。所述控制所述无人机避开所述障碍物之后,还包括:控制所述无人机返回预设航线。如图9所示,当雷达系统检测到无人机前方的障碍物时,飞行控制器根据雷达探测设备在连续转动时的探测信息,控制无人机避开障碍物,并在避开障碍物之后,控制无人机返回预设航线继续飞行。
另一种可行的实现方式是:根据所述探测信息,调整预设规划的航线或/及农业作业的规划信息;控制所述无人机,按照调整后的航线或/及农业作业的规划信息继续飞行作业。
具体的,飞行控制器还可以根据雷达探测设备在连续转动时的探测信息,调整农业无人机作业时的航线,例如航线的长度、宽度、间距等。或/及调整农业无人机作业时的规划信息,例如,喷洒路线、喷洒时间等,当飞行控制器调整农业无人机作业时的航线或/及调整农业无人机作业时的规划信息之后,控制农业无人机按照调整后的航线或/及规划信息继续飞行作业。
本实施例通过雷达探测设备通过所述转动装置垂直安装在所述无人机的机身上方,以探测无人机前方障碍物、后方障碍物、上方障碍物中的至少一种,飞行控制器根据雷达探测设备的探测信息,控制无人机避障,提高了无人机飞行的安全性,或者,飞行控制器还可以根据雷达探测设备 的探测信息调整无人机的作业航线、作业规划信息等,实现了对无人机作业控制的灵活性。
本发明实施例提供一种无人机避障控制方法。在图6所示实施例的基础上,所述雷达探测设备通过所述转动装置水平安装在所述无人机的机身下方;所述雷达探测设备的转动轴与所述无人机的偏航轴垂直。
如图4所示,雷达系统11水平安装在无人机30的机身下方,此时,雷达系统11的转动轴与无人机30的偏航轴垂直。此时,雷达系统11相对于无人机30的姿态如图5所示,在其他实施例中,在图5的基础上,控制电路板121的板面与第一射频天线122的板面还可以成预设角度,控制电路板121的板面与第二射频天线123的板面还可以成预设角度。
可选的,所述雷达探测设备的最大探测方向和所述无人机的偏航轴方向成预设角度。
可选的,所述探测信息包括如下至少一种:所述无人机距离地面的高度、所述预设角度内所述无人机下方地面的地形。如图10所示,当雷达系统11水平安装在无人机30的机身下方时,雷达系统11可用于检测无人机距离地面的高度H,以及预设角度δ内无人机下方地面的地形,本实施例并不限定δ的范围。
在本实施例中,所述根据所述探测信息,控制所述无人机飞行,包括如下几种可行的实现方式:
一种可行的实现方式是:根据所述无人机距离地面的高度,控制所述无人机的飞行高度。具体的,无人机的飞行控制器可以根据雷达系统11检测到的无人机距离地面的高度H,控制无人机的飞行高度。
另一种可行的实现方式是:根据所述预设角度内所述无人机下方地面的地形,控制所述无人机进行地形跟随。
如图11所示,无人机30具体可以是农业无人机,当该农业无人机在如图11所示的坡地作业时,无人机的飞行控制器可以根据雷达系统11检测到的无人机距离地面的高度H,以使无人机的飞行高度保持在预设的高度范围内,以控制无人机进行地形跟随。
此外,飞行控制器在控制无人机进行地形跟随时,还可以控制无人机 上升加速度。例如,无人机上升加速度为A,地形角度为α1,雷达系统相对于地面的角度为α2,无人机的水平速度为Vhs,雷达测量斜距离为L,当雷达测量斜距离为L/2时,无人机上升速度为Vvs=tanα1*Vhs,否则,无人机会与地面发生碰撞。无人机的反应时间tRD,也就是雷达测量斜距离由L变为L/2的时间。在反应时间tRD内,无人机需要将爬升速度由0提升到Vvs,因此,要求无人机上升加速度为
Figure PCTCN2017108561-appb-000001
另外,
Figure PCTCN2017108561-appb-000002
Figure PCTCN2017108561-appb-000003
本实施例通过雷达探测设备通过所述转动装置水平安装在无人机的机身下方,以探测无人机距离地面的高度、预设角度内无人机下方地面的地形,飞行控制器根据雷达探测设备的探测信息,控制无人机的飞行高度,控制无人机进行地形跟随,提高了农业无人机在作业时的安全性。
本发明实施例提供一种雷达系统。如图1、图2、图3、图5,雷达系统11包括雷达探测设备12和转动装置13;其中,转动装置13设置在无人机的机身;转动装置13上搭载有雷达探测设备12,且转动装置13带动雷达探测设备12连续转动;其中,在转动装置13带动雷达探测设备12连续转动时,雷达探测设备12扫描探测所述无人机周围的障碍物。
可选的,所述雷达探测设备包括控制电路板和至少一个射频天线,所述控制电路板和所述至少一个射频天线电连接。
可选的,所述射频天线的板面与所述控制电路板的板面之间的夹角为预设角度。
可选的,所述雷达探测设备包括控制电路板、第一射频天线和第二射频天线,所述控制电路板位于所述第一射频天线和所述第二射频天线之间。
可选的,所述转动装置包括:转台,用于承载所述雷达探测设备;电调板,与电机电连接,用于驱动电机转动,并且控制所述电机的转动状态, 所述电机用于带动所述转台转动;接口板,与所述电调板或/及所述探测设备电连接,所述接口板用于外部线路进行电连接。
可选的,所述雷达探测设备通过数字波束形成DBF探测所述无人机周围的目标物体。
雷达系统11在无人机上的安装方式可以有如下几种可能的情况:
一种可能的情况是:雷达探测设备通过所述转动装置垂直安装在所述无人机的机身上方;所述雷达探测设备的转动轴与所述无人机的偏航轴平行。具体如图3所示,此处不再赘述。
可选的,所述雷达探测设备用于探测所述无人机前方障碍物、后方障碍物、上方障碍物中的至少一种。
可选的,所述雷达探测设备的探测信息包括如下至少一种:所述障碍物相对于所述无人机的距离、速度、方向、高度。
另一种可能的情况是:所述雷达探测设备通过所述转动装置水平安装在所述无人机的机身下方;所述雷达探测设备的转动轴与所述无人机的偏航轴垂直。具体如图4所示,此处不再赘述。
可选的,所述雷达探测设备的最大探测方向和所述无人机的偏航轴方向成预设角度。
可选的,所述探测信息包括如下至少一种:所述无人机距离地面的高度、所述预设角度内所述无人机下方地面的地形。
本发明实施例提供的雷达系统的具体原理和实现方式均与图6所示实施例类似,此处不再赘述。
本实施例通过无人机控制雷达系统的转动装置,使转动装置连续转动,在转动装置连续转动的过程中,转动装置带动雷达系统的雷达探测设备连续转动,无人机根据雷达探测设备在连续转动时的探测信息控制无人机飞行,通过雷达探测设备连续转动,可探测到距离更远、范围更广的区域,连续旋转扫描雷达对环境适应能力强,并且扫描分辨率高。
本发明实施例提供一种无人机。图12为本发明实施例提供的无人机的结构图,如图12所示,无人机1200包括:机身、动力系统、飞行控制器1218和雷达系统1208,所述动力系统包括如下至少一种:电机1207、 螺旋桨1206和电子调速器1217,动力系统安装在所述机身,用于提供飞行动力;飞行控制器1218与所述动力系统通讯连接,用于控制所述无人机飞行。
在本实施例中,雷达系统1208的具体原理和实现方式均与上述实施例类似,此处不再赘述。
飞行控制器1218的具体原理和实现方式均与上述实施例类似,此处不再赘述。
另外,如图12所示,无人机1200还包括:通信系统1210、支撑设备1202、拍摄设备1204,其中,支撑设备1202具体可以是云台,通信系统1210具体可以包括接收机,接收机用于接收地面站1212的天线1214发送的无线信号,1216表示接收机和天线1214通信过程中产生的电磁波。
本实施例通过无人机控制雷达系统的转动装置,使转动装置连续转动,在转动装置连续转动的过程中,转动装置带动雷达系统的雷达探测设备连续转动,无人机根据雷达探测设备在连续转动时的探测信息控制无人机飞行,通过雷达探测设备连续转动,可探测到距离更远、范围更广的区域,连续旋转扫描雷达对环境适应能力强,并且扫描分辨率高。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集 成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (48)

  1. 一种无人机避障控制方法,其特征在于,所述无人机包括雷达系统,所述雷达系统包括雷达探测设备和转动装置,所述转动装置设置在所述无人机的机身,所述转动装置上搭载有所述雷达探测设备;
    所述方法包括:
    控制所述转动装置连续转动,以使所述转动装置带动所述雷达探测设备连续转动;
    获取所述雷达探测设备在连续转动时的探测信息;
    根据所述探测信息,控制所述无人机飞行。
  2. 根据权利要求1所述的方法,其特征在于,所述雷达探测设备通过所述转动装置垂直安装在所述无人机的机身上方;
    所述雷达探测设备的转动轴与所述无人机的偏航轴平行。
  3. 根据权利要求1或2所述的方法,其特征在于,所述雷达探测设备用于探测所述无人机前方障碍物、后方障碍物、上方障碍物中的至少一种。
  4. 根据权利要求3所述的方法,其特征在于,所述探测信息包括如下至少一种:
    所述障碍物相对于所述无人机的距离、速度、方向、高度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述探测信息,控制所述无人机飞行,包括:
    根据所述探测信息,控制所述无人机避开所述障碍物。
  6. 根据权利要求5所述的方法,其特征在于,所述控制所述无人机避开所述障碍物之后,还包括:
    控制所述无人机返回预设航线。
  7. 根据权利要求4所述的方法,其特征在于,所述根据所述探测信息,控制所述无人机飞行,包括:
    根据所述探测信息,调整预设规划的航线或/及农业作业的规划信息;
    控制所述无人机,按照调整后的航线或/及农业作业的规划信息继续飞行作业。
  8. 根据权利要求1所述的方法,其特征在于,所述雷达探测设备通过所述转动装置水平安装在所述无人机的机身下方;
    所述雷达探测设备的转动轴与所述无人机的偏航轴垂直。
  9. 根据权利要求8所述的方法,其特征在于,所述雷达探测设备的最大探测方向和所述无人机的偏航轴方向成预设角度。
  10. 根据权利要求9所述的方法,其特征在于,所述探测信息包括如下至少一种:
    所述无人机距离地面的高度、所述预设角度内所述无人机下方地面的地形。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述探测信息,控制所述无人机飞行,包括:
    根据所述无人机距离地面的高度,控制所述无人机的飞行高度。
  12. 根据权利要求10所述的方法,其特征在于,所述根据所述探测信息,控制所述无人机飞行,包括:
    根据所述预设角度内所述无人机下方地面的地形,控制所述无人机进行地形跟随。
  13. 根据权利要求1所述的方法,其特征在于,所述雷达探测设备包括控制电路板和至少一个射频天线,所述控制电路板和所述至少一个射频天线电连接。
  14. 根据权利要求13所述的方法,其特征在于,所述射频天线的板面与所述控制电路板的板面之间的夹角为预设角度。
  15. 根据权利要求13或14所述的方法,其特征在于,所述雷达探测设备包括控制电路板、第一射频天线和第二射频天线,所述控制电路板位于所述第一射频天线和所述第二射频天线之间。
  16. 根据权利要求1所述的方法,其特征在于,所述转动装置包括:
    转台,用于承载所述雷达探测设备;
    电调板,与电机电连接,用于驱动电机转动,并且控制所述电机的转动状态,所述电机用于带动所述转台转动;
    接口板,与所述电调板或/及所述探测设备电连接,所述接口板用于外部线路进行电连接。
  17. 根据权利要求1所述的方法,其特征在于,所述雷达探测设备通过数字波束形成DBF探测所述无人机周围的目标物体。
  18. 根据权利要求1所述的方法,其特征在于,所述无人机包括农业无人机。
  19. 一种雷达系统,其特征在于,包括:雷达探测设备和转动装置;其中,
    所述转动装置设置在无人机的机身;
    所述转动装置上搭载有所述雷达探测设备,且所述转动装置带动所述雷达探测设备连续转动;
    其中,在所述转动装置带动所述雷达探测设备连续转动时,所述雷达探测设备扫描探测所述无人机周围的障碍物。
  20. 根据权利要求19所述的雷达系统,其特征在于,所述雷达探测设备通过所述转动装置垂直安装在所述无人机的机身上方;
    所述雷达探测设备的转动轴与所述无人机的偏航轴平行。
  21. 根据权利要求19或20所述的雷达系统,其特征在于,所述雷达探测设备用于探测所述无人机前方障碍物、后方障碍物、上方障碍物中的至少一种。
  22. 根据权利要求21所述的雷达系统,其特征在于,所述雷达探测设备的探测信息包括如下至少一种:
    所述障碍物相对于所述无人机的距离、速度、方向、高度。
  23. 根据权利要求19所述的雷达系统,其特征在于,所述雷达探测设备通过所述转动装置水平安装在所述无人机的机身下方;
    所述雷达探测设备的转动轴与所述无人机的偏航轴垂直。
  24. 根据权利要求23所述的雷达系统,其特征在于,所述雷达探测设备的最大探测方向和所述无人机的偏航轴方向成预设角度。
  25. 根据权利要求24所述的雷达系统,其特征在于,所述探测信息包括如下至少一种:
    所述无人机距离地面的高度、所述预设角度内所述无人机下方地面的地形。
  26. 根据权利要求19所述的雷达系统,其特征在于,所述雷达探测 设备包括控制电路板和至少一个射频天线,所述控制电路板和所述至少一个射频天线电连接。
  27. 根据权利要求26所述的雷达系统,其特征在于,所述射频天线的板面与所述控制电路板的板面之间的夹角为预设角度。
  28. 根据权利要求26或27所述的雷达系统,其特征在于,所述雷达探测设备包括控制电路板、第一射频天线和第二射频天线,所述控制电路板位于所述第一射频天线和所述第二射频天线之间。
  29. 根据权利要求19所述的雷达系统,其特征在于,所述转动装置包括:
    转台,用于承载所述雷达探测设备;
    电调板,与电机电连接,用于驱动电机转动,并且控制所述电机的转动状态,所述电机用于带动所述转台转动;
    接口板,与所述电调板或/及所述探测设备电连接,所述接口板用于外部线路进行电连接。
  30. 根据权利要求19所述的雷达系统,其特征在于,所述雷达探测设备通过数字波束形成DBF探测所述无人机周围的目标物体。
  31. 一种无人机,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供飞行动力;
    飞行控制器,与所述动力系统通讯连接,用于控制所述无人机飞行;以及
    雷达系统,所述雷达系统包括雷达探测设备和转动装置,所述转动装置设置在所述无人机的机身,所述转动装置上搭载有所述雷达探测设备;
    所述飞行控制器用于:
    控制所述转动装置连续转动,以使所述转动装置带动所述雷达探测设备连续转动;
    获取所述雷达探测设备在连续转动时的探测信息;
    根据所述探测信息,控制所述无人机飞行。
  32. 根据权利要求31所述的无人机,其特征在于,所述雷达探测设备通过所述转动装置垂直安装在所述无人机的机身上方;
    所述雷达探测设备的转动轴与所述无人机的偏航轴平行。
  33. 根据权利要求31或32所述的无人机,其特征在于,所述雷达探测设备用于探测所述无人机前方障碍物、后方障碍物、上方障碍物中的至少一种。
  34. 根据权利要求33所述的无人机,其特征在于,所述探测信息包括如下至少一种:
    所述障碍物相对于所述无人机的距离、速度、方向、高度。
  35. 根据权利要求34所述的无人机,其特征在于,所述飞行控制器根据所述探测信息,控制所述无人机飞行时,具体用于:
    根据所述探测信息,控制所述无人机避开所述障碍物。
  36. 根据权利要求35所述的无人机,其特征在于,所述控制所述无人机避开所述障碍物之后,所述飞行控制器还用于:
    控制所述无人机返回预设航线。
  37. 根据权利要求34所述的无人机,其特征在于,所述飞行控制器根据所述探测信息,控制所述无人机飞行时,具体用于:
    根据所述探测信息,调整预设规划的航线或/及农业作业的规划信息;
    控制所述无人机,按照调整后的航线或/及农业作业的规划信息继续飞行作业。
  38. 根据权利要求31所述的无人机,其特征在于,所述雷达探测设备通过所述转动装置水平安装在所述无人机的机身下方;
    所述雷达探测设备的转动轴与所述无人机的偏航轴垂直。
  39. 根据权利要求38所述的无人机,其特征在于,所述雷达探测设备的最大探测方向和所述无人机的偏航轴方向成预设角度。
  40. 根据权利要求39所述的无人机,其特征在于,所述探测信息包括如下至少一种:
    所述无人机距离地面的高度、所述预设角度内所述无人机下方地面的地形。
  41. 根据权利要求40所述的无人机,其特征在于,所述飞行控制器根据所述探测信息,控制所述无人机飞行时,具体用于:
    根据所述无人机距离地面的高度,控制所述无人机的飞行高度。
  42. 根据权利要求40所述的无人机,其特征在于,所述飞行控制器根据所述探测信息,控制所述无人机飞行时,具体用于:
    根据所述预设角度内所述无人机下方地面的地形,控制所述无人机进行地形跟随。
  43. 根据权利要求31所述的无人机,其特征在于,所述雷达探测设备包括控制电路板和至少一个射频天线,所述控制电路板和所述至少一个射频天线电连接。
  44. 根据权利要求43所述的无人机,其特征在于,所述射频天线的板面与所述控制电路板的板面之间的夹角为预设角度。
  45. 根据权利要求43或44所述的无人机,其特征在于,所述雷达探测设备包括控制电路板、第一射频天线和第二射频天线,所述控制电路板位于所述第一射频天线和所述第二射频天线之间。
  46. 根据权利要求31所述的无人机,其特征在于,所述转动装置包括:
    转台,用于承载所述雷达探测设备;
    电调板,与电机电连接,用于驱动电机转动,并且控制所述电机的转动状态,所述电机用于带动所述转台转动;
    接口板,与所述电调板或/及所述探测设备电连接,所述接口板用于外部线路进行电连接。
  47. 根据权利要求31所述的无人机,其特征在于,所述雷达探测设备通过数字波束形成DBF探测所述无人机周围的目标物体。
  48. 根据权利要求31所述的无人机,其特征在于,所述无人机包括农业无人机。
PCT/CN2017/108561 2017-10-31 2017-10-31 无人机避障控制方法、雷达系统及无人机 WO2019084765A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780028209.0A CN109313452B (zh) 2017-10-31 2017-10-31 无人机避障控制方法、雷达系统及无人机
PCT/CN2017/108561 WO2019084765A1 (zh) 2017-10-31 2017-10-31 无人机避障控制方法、雷达系统及无人机
US16/857,921 US20200388172A1 (en) 2017-10-31 2020-04-24 Obstacle avoidance control method for unmanned aerial vehicle, radar system, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108561 WO2019084765A1 (zh) 2017-10-31 2017-10-31 无人机避障控制方法、雷达系统及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/857,921 Continuation US20200388172A1 (en) 2017-10-31 2020-04-24 Obstacle avoidance control method for unmanned aerial vehicle, radar system, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019084765A1 true WO2019084765A1 (zh) 2019-05-09

Family

ID=65205090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108561 WO2019084765A1 (zh) 2017-10-31 2017-10-31 无人机避障控制方法、雷达系统及无人机

Country Status (3)

Country Link
US (1) US20200388172A1 (zh)
CN (1) CN109313452B (zh)
WO (1) WO2019084765A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105949A (zh) * 2019-10-31 2020-12-18 深圳市大疆创新科技有限公司 可移动平台
CN112272780A (zh) * 2019-11-04 2021-01-26 深圳市大疆创新科技有限公司 地杂波抑制与地形估计方法、无人机、旋转雷达及存储介质
CN111399535A (zh) * 2020-03-24 2020-07-10 北京三快在线科技有限公司 一种无人机避障方法、装置、无人机及存储介质
CN111650589A (zh) * 2020-06-18 2020-09-11 成都纳雷科技有限公司 一种无人机毫米波雷达探测系统、探测方法及无人机
CN112171658B (zh) * 2020-08-17 2022-05-10 深圳市优必选科技股份有限公司 一种控制方法、控制装置及机器人
US20220366794A1 (en) * 2021-05-11 2022-11-17 Honeywell International Inc. Systems and methods for ground-based automated flight management of urban air mobility vehicles
CN116088559B (zh) * 2021-11-05 2024-03-26 北京三快在线科技有限公司 一种无人机控制系统、方法及无人机
CN116540764A (zh) * 2022-01-25 2023-08-04 深圳市道通智能航空技术股份有限公司 一种无人机临时飞行任务的实现方法、设备及存储介质
CN114625154A (zh) * 2022-04-08 2022-06-14 深圳市道通智能航空技术股份有限公司 航线任务的在线规划方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121574A1 (en) * 2006-09-05 2010-05-13 Honeywell International Inc. Method for collision avoidance of unmanned aerial vehicle with other aircraft
CN205028162U (zh) * 2015-09-22 2016-02-10 北京行易道科技有限公司 一种无人机主动安全装置
CN105892489A (zh) * 2016-05-24 2016-08-24 国网山东省电力公司电力科学研究院 一种基于多传感器融合的自主避障无人机系统及控制方法
CN107003679A (zh) * 2016-11-23 2017-08-01 深圳市大疆创新科技有限公司 无人飞行器的避障控制方法及无人飞行器
CN107077148A (zh) * 2016-11-22 2017-08-18 深圳市大疆创新科技有限公司 无人机避障控制方法、飞行控制器及无人飞行器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202695A (en) * 1990-09-27 1993-04-13 Sperry Marine Inc. Orientation stabilization by software simulated stabilized platform
US7280082B2 (en) * 2003-10-10 2007-10-09 Cisco Technology, Inc. Antenna array with vane-supported elements
US9415869B1 (en) * 2015-03-26 2016-08-16 Amazon Technologies, Inc. Mobile antenna array
CN204731643U (zh) * 2015-06-30 2015-10-28 零度智控(北京)智能科技有限公司 一种无人机的控制装置
CN105425814A (zh) * 2015-11-24 2016-03-23 木牛(青岛)科技有限公司 一种无人机控制系统及控制方法
US10613216B2 (en) * 2016-05-31 2020-04-07 Honeywell International Inc. Integrated digital active phased array antenna and wingtip collision avoidance system
CN205787903U (zh) * 2016-06-30 2016-12-07 深圳市大疆创新科技有限公司 农业无人机
CN106716285A (zh) * 2016-06-30 2017-05-24 深圳市大疆创新科技有限公司 农业无人机作业方法、系统及农业无人机
US20180097560A1 (en) * 2016-10-05 2018-04-05 Ubiqomm, LLC Apparatus and methods to provide communications to aerial platforms
CN206202675U (zh) * 2016-11-23 2017-05-31 深圳市大疆创新科技有限公司 无人飞行器
CN106950978B (zh) * 2017-03-28 2019-08-27 西安电子科技大学 固定翼无人机避障系统及其避障方法以及固定翼无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121574A1 (en) * 2006-09-05 2010-05-13 Honeywell International Inc. Method for collision avoidance of unmanned aerial vehicle with other aircraft
CN205028162U (zh) * 2015-09-22 2016-02-10 北京行易道科技有限公司 一种无人机主动安全装置
CN105892489A (zh) * 2016-05-24 2016-08-24 国网山东省电力公司电力科学研究院 一种基于多传感器融合的自主避障无人机系统及控制方法
CN107077148A (zh) * 2016-11-22 2017-08-18 深圳市大疆创新科技有限公司 无人机避障控制方法、飞行控制器及无人飞行器
CN107003679A (zh) * 2016-11-23 2017-08-01 深圳市大疆创新科技有限公司 无人飞行器的避障控制方法及无人飞行器

Also Published As

Publication number Publication date
CN109313452B (zh) 2023-01-20
US20200388172A1 (en) 2020-12-10
CN109313452A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2019084765A1 (zh) 无人机避障控制方法、雷达系统及无人机
US20200301423A1 (en) Flight control method for agricultural unmanned aerial vehicle, radar system, and agricultural unmanned aerial vehicle
US20190346562A1 (en) Systems and methods for radar control on unmanned movable platforms
US20190278303A1 (en) Method of controlling obstacle avoidance for unmanned aerial vehicle and unmanned aerial vehicle
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
EP3120411B1 (en) Mechanically steered and horizontally polarized antenna for aerial vehicles, and associated systems and methods
JP6051327B1 (ja) 無人航空機
US20190341694A1 (en) Two-dimensional antenna system and method and device for positioning a target
US20200339251A1 (en) Systems and methods for uav sensor placement
WO2019119199A1 (zh) 无人机的控制方法、控制装置、无人机及农业无人机
WO2021087701A1 (zh) 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
WO2019000345A1 (zh) 控制方法、无人机和计算机可读存储介质
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
CN113820709A (zh) 基于无人机的穿墙雷达探测系统及探测方法
TWI785442B (zh) 無人機及其飛行控制方法
KR102212029B1 (ko) 회전 비행체
WO2021087643A1 (zh) 地杂波抑制与地形估计方法、无人机、旋转雷达及存储介质
CN111580538A (zh) 一种无人平台障碍避障系统及方法
WO2023082253A1 (zh) 无人飞行器的控制方法、无人飞行器及存储介质
WO2022138213A1 (ja) 移動体、制御方法および制御プログラム
CN211827025U (zh) 一种无人平台障碍避障系统
WO2023082282A1 (zh) 控制方法、控制装置以及无人飞行器
EP3972146A1 (en) Phased array transmission reflected off rotor blade to target
WO2023155195A1 (zh) 一种障碍物的探测方法、装置、可移动平台及程序产品
WO2024004162A1 (ja) 無人航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930243

Country of ref document: EP

Kind code of ref document: A1