WO2019083238A1 - 모터 - Google Patents

모터

Info

Publication number
WO2019083238A1
WO2019083238A1 PCT/KR2018/012508 KR2018012508W WO2019083238A1 WO 2019083238 A1 WO2019083238 A1 WO 2019083238A1 KR 2018012508 W KR2018012508 W KR 2018012508W WO 2019083238 A1 WO2019083238 A1 WO 2019083238A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
gas bearing
impeller
rotor
gas
Prior art date
Application number
PCT/KR2018/012508
Other languages
English (en)
French (fr)
Inventor
김성기
김병직
황은지
김동한
김창래
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180113952A external-priority patent/KR102136831B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2018354513A priority Critical patent/AU2018354513B2/en
Priority to US16/631,823 priority patent/US11608832B2/en
Priority to EP18869845.0A priority patent/EP3683448A4/en
Publication of WO2019083238A1 publication Critical patent/WO2019083238A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings

Definitions

  • the present invention relates to a motor, and more particularly to a motor having a plurality of bearings.
  • the motor can be installed in a home appliance such as a vacuum cleaner, and in this case, a driving force for sucking air into the dust collecting portion can be generated.
  • An example of such a motor may include a motor housing, a stator provided in the motor housing, a rotor rotated by the stator, and a rotating shaft mounted with the rotor.
  • the rotary shaft of the motor can be rotatably supported by at least one bearing, and the rotary shaft can be rotated at a high speed while being supported by the bearing.
  • the motor may include a rotor on the rotating shaft, a rotor assembly to which the bearing cartridge and the impeller are connected, and an example of such a rotor assembly is disclosed in US Patent Application Publication No. US 2010/0215491 A1 (published Aug. 26, 2010).
  • a pair of bearings are surrounded by a sleeve, and a spring is disposed between the pair of bearings in order to support the rotary shaft at two points.
  • the embodiments of the present invention can reduce the weight of the rolling bearings and the gas bearings compared with the case where the pair of rolling bearings support the rotary shaft by supporting the rotary shaft together, Can be minimized and the motor life can be extended.
  • the rolling bearing and the gas bearing support the rotating shaft together, it is possible to more reliably support the rotating shaft rotating at a high speed of several tens of thousands of rpm or more.
  • noise can be minimized and the maximum rpm of the small-sized high-speed motor can be increased as compared with the case where the rotating shaft is supported by a pair of rolling bearings.
  • the rotating shaft may include an impeller engaging portion to which the impeller is engaged, a rotor engaging portion to which the rotor is engaged, and a support portion supported by the rolling bearing and the gas bearing.
  • the support portion may be positioned axially between the impeller engagement portion and the rotor engagement portion.
  • the rolling bearing and the gas bearing can support the supporting part together while being separated from each other.
  • the rolling bearings and the gas bearings can be mounted in a single bearing housing, in which case the number of parts can be minimized compared to the case where the bearing housing supporting the rolling bearing and the bearing housing supporting the gas bearing are separately provided have.
  • the bearing housing may have a through hole through which the rotating shaft passes, and the rolling bearing may be disposed in the bearing housing and coupled to the rotating shaft.
  • the gas bearing may be disposed on the bearing housing so as to be axially spaced from the rolling bearing, and may face the outer circumference of the rotating shaft.
  • the rotary shaft, the impeller and the rotor when the impeller and the rotor are mounted on the rotary shaft, the rotary shaft, the impeller and the rotor can constitute the rotor assembly, and the rotor mounted portion can be heavier than the impeller mounted portion.
  • the amount of flare of the portion of the rotary shaft on which the rotor is mounted may be larger than the amount of flare of the portion of the rotary shaft on which the impeller is mounted.
  • the rolling bearing among the rolling bearing and the gas bearing be disposed closer to the rotor.
  • the rotation axis may be too large in the portion close to the rotor, in which case the rolling bearing and the gas bearing may not be capable of stably supporting the rotation axis.
  • the rolling bearing can more stably support the rotating shaft at a position close to the rotor, and can support the rotating shaft so as to minimize stiction or wobbling of the rotor assembly.
  • the rotor, the impeller, the rolling bearing and the gas bearing may be arranged in the axial direction of the rotor, the rolling bearing, the gas bearing, and the impeller.
  • the rolling bearings are disposed as close to the rotor as possible, and for this purpose, the rolling bearings can be disposed closer to the rotor of the rotor and the impeller.
  • the rotating shaft may include an inner ring contact portion in which the inner ring of the rolling bearing abuts and a gas bearing opposing portion that faces the gas bearing in the radial direction.
  • the center of gravity of the rotor assembly may be between the inner ring contact portion of the rotary shaft and the gas bearing opposing portion.
  • the rolling bearing is preferably in contact with the bearing at a position as close as possible to the rotor assembly.
  • the distance between the center of gravity of the rotor assembly and the inner ring contact may be less than the distance between the center of gravity of the rotor assembly and the gas bearing counterpart, or may be equal to the distance between the center of gravity of the rotor assembly and the gas bearing counterpart.
  • the rolling bearing can support the rotor assembly as much as possible stably between the center of gravity of the rotor assembly and the rotor.
  • the gas bearing can support gas such as air between the rolling bearing and the impeller.
  • the rolling bearing when the rotation shaft rotates at low speed, the rolling bearing can support the rotation shaft as much as possible, and when the rotation shaft rotates at a high speed, the rolling bearing and the gas bearing can support the rotation shaft with high reliability.
  • the center of gravity of the rotor assembly may be the inner ring contact portion of the rotary shaft in this embodiment.
  • a bearing gap is formed between the gas bearing and the rotary shaft, and the gas bearing supports the rotary shaft by using the gas in the bearing gap.
  • the bearing clearance has a sufficient length in the axial direction, the gas in the bearing clearance can float the rotating shaft.
  • the axial gap length of the bearing clearance is too short, the amount of gas for floating the rotary shaft may be insufficient, and gas such as air may not reliably support the rotary shaft.
  • the gas bearing supports the rotary shaft at a spaced apart position from the rolling bearing, the gas bearing is spaced apart from the rolling bearing by a predetermined distance.
  • the gas bearing can be located as close as possible to the impeller.
  • gas bearings may be closer to the impeller of the rotor and the impeller. And gas bearings may be closer to the impeller of the rolling bearing and the impeller.
  • the bearing housing is formed with a gas bearing mounting portion for mounting a gas bearing.
  • the gas bearing has an inner surface spaced apart from an outer peripheral surface of the rotary shaft and an outer surface contacting the gas bearing mounting portion formed in the bearing housing.
  • a bearing gap may be formed between the outer peripheral surface of the rotating shaft and the inner surface of the gas bearing, so that gas in the air can float the rotating shaft.
  • the gas bearings can be formed as small as possible in the radial direction for miniaturization and material cost reduction.
  • the outer diameter of the gas bearing can be smaller than the outer diameter of the rolling bearing, and the motor can be made as light as possible.
  • the inner diameter of the gas bearing may be larger than the inner diameter of the rolling bearing. If the outer diameter of the rotary shaft is formed as constant as possible, it is easy to manufacture and the manufacturing cost can be lowered.
  • the rotating shaft may include a gas bearing opposing portion facing the gas bearing, and an inner ring mounting portion on which the inner ring of the rolling bearing is mounted. If the outer diameter of the gas bearing opposing portion and the outer diameter of the inner ring mounting portion are the same, the manufacturing cost of the rotary shaft may be low.
  • the inner diameter of the gas bearing may be larger than the inner diameter of the rolling bearing.
  • the gas bearing has a coating layer formed on the inner surface to minimize the wear of the rotating shaft.
  • the gas bearing can be manufactured by rolling in a friendly shape, with the coating layer formed on one side of the metal plate. In this case, the gas bearing is formed with a long slit in the axial direction.
  • the gas bearing includes a bush and a coating layer coated on the inner surface of the bush.
  • the gas bearing may form a coating layer on the inner surface of the bush having a hollow cylindrical shape.
  • the coating process of the coating layer may be complicated, and the coating layer may not be uniformly coated on the inner surface of the bush of the hollow cylindrical shape.
  • the gas bearing of the present invention can maximally uniformly coat the coating layer and maximize the service life of the gas bearing.
  • the rotating shaft may include an inner ring contact portion in which the inner ring of the rolling bearing contacts and an impeller engaging portion in which the impeller is engaged, and the coating layer may be directed between the inner ring contacting portion and the impeller engaging portion in the rotating shaft.
  • the bearing housing may include a rolling bearing housing portion and a gas bearing housing portion.
  • the rolling bearing housing portion can surround the outer surface of the rolling bearing and face the rotor in the axial direction.
  • the gas bearing housing portion may surround the outer surface of the gas bearing and face the impeller in the axial direction.
  • the inner diameter of the gas bearing housing part may be smaller than the inner diameter of the rolling bearing housing part, in which case the gas bearing may be minimized in thickness and the gas bearing and motor may be as light as possible.
  • the thickness of the gas bearing should be thicker to the thickness of the rolling bearing.
  • the thickness of the gas bearing can be reduced by the inner diameter difference, and the material cost of the gas bearing can be reduced.
  • a gap communicating with the bearing gap between the gas bearing and the rotary shaft can be formed, and gas such as air can smoothly flow into and out of the bearing gap during operation of the gas bearing.
  • the bearing housing may further include a connection portion.
  • the connecting portion can connect the rolling bearing housing portion and the gas bearing housing portion.
  • the inner diameter of the connecting portion may be smaller than the outer diameter of the outer ring of the rolling bearing.
  • the outer ring of the rolling bearing can be axially hooked to the connecting portion.
  • the connecting portion can function as a stopper for restricting the axial movement of the rolling bearing.
  • the inner diameter of the connecting portion may be smaller than the inner diameter of the rolling bearing housing portion and larger than the inner diameter of the gas bearing housing portion.
  • a space through which gas such as air can pass may be formed between the connecting portion and the rotating shaft, and gas such as air can smoothly go into and out of the bearing gap during operation of the gas bearing.
  • the rotary shaft may include a large-diameter portion and a small-diameter portion.
  • a rotor can be mounted on the large diameter part, and an impeller and a rolling bearing can be mounted on the small diameter part.
  • the outer diameter of one axial end of the large diameter portion can be larger than the inner diameter of the inner ring of the rolling bearing, and the rolling bearing can be axially hooked to one end of the large diameter portion.
  • the small diameter portion can direct the gas bearing in the radial direction.
  • the small diameter portion may have an inner ring contact portion in contact with the inner ring of the rolling bearing and a gas bearing opposing portion in the radial direction of the gas bearing.
  • the outer diameter of the inner ring contact portion and the outer diameter of the gas bearing opposing portion may be the same. In this case, the outer diameter of the small-diameter portion can be made as maximum as possible, and the manufacturing cost of the rotary shaft can be lowered.
  • gas bearing can be disposed axially between the rolling bearing and the rotor, and the rolling bearing can be disposed axially between the gas bearing and the impeller.
  • the gas bearing can be directed to the large diameter portion.
  • the area facing the rotary shaft is larger than in the case where the gas bearing is directed to the small-diameter portion, and a sufficiently large flow passage can be secured so that gas such as air can flow between the gas bearing and the rotary shaft. That is, the axial length of the gas bearing can be minimized.
  • the rolling bearing can be coupled to the small diameter portion.
  • the rolling bearing can be downsized and the weight of the motor can be reduced compared to when the rolling bearing is mounted on the large-diameter portion.
  • a combination of a rolling bearing and a gas bearing can support a rotating shaft, which makes it possible to reduce weight when a pair of rolling bearings support a rotating shaft, and a pair of rolling bearings
  • concentricity error that can be solved can be solved.
  • the rolling bearing having a relatively high load bearing capacity among the gas bearing and the rolling bearing is located closer to the rotor, the rotation shaft can be more stably supported and the fluctuation of the rotor can be minimized.
  • the rolling bearing can support the center of gravity of the rotor assembly, which is the assembly of the rotary shaft, the impeller and the rotor, or a portion close to the center of gravity, so that the rotor or the impeller can be stably rotated while minimizing striking or shaking.
  • the rolling bearing can stably support the rotor assembly while the rotor assembly is rotated at a low speed.
  • the weight of the gas bearing can be reduced and the material cost of the gas bearing can be reduced.
  • FIG. 1 is a side view of a motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a motor according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a motor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a rotor assembly according to one embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of a rolling bearing, a gas bearing, and a bearing housing according to an embodiment of the present invention
  • FIG. 6 is an enlarged perspective view of a gas bearing according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a rotor assembly according to another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a motor according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a motor according to an embodiment of the present invention
  • FIG. 4 is a cross-
  • FIG. 5 is a cross-sectional view of a rolling bearing, a gas bearing, and a bearing housing according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a gas bearing according to an embodiment of the present invention.
  • the motor includes a rotating shaft 1, a rotor 2, a stator 3, an impeller 4, a bearing housing 5, a rolling bearing 6 and a gas bearing 7. Further, the motor may further include a motor body 8 that forms its appearance.
  • the impeller space S1 in which the impeller 4 is accommodated may be formed in the interior of the motor body 8.
  • a motor space S2 in which the rotor 2 and the stator 3 are accommodated may be formed inside the motor body 8.
  • the motor body 8 may be provided with a suction port 91 through which air is sucked into the impeller space S1.
  • the motor body 8 may be provided with a discharge port 101 through which air in the motor space S2 is discharged to the outside of the motor.
  • the motor body 8 can be formed as a single member, or can be composed of a combination of a plurality of members.
  • the motor body 8 When the motor body 8 is a combination of a plurality of members, the motor body 8 may include an inlet body 9 and a motor housing 10.
  • the inlet body 9 may be formed with a suction port 91 through which air is sucked.
  • the inlet body 9 may be disposed so as to surround the outer periphery of the impeller 4.
  • the impeller space S1 in which the impeller 4 is rotatably received may be formed in the inlet body 9.
  • the inlet body 9 can be engaged with the motor housing 10 on the opposite side of the inlet 91.
  • the inlet body 9 may surround the entire outer circumference or a part of the outer circumference of the motor housing 10.
  • the motor housing 10 can surround the outer circumference of the stator 3. [ A motor space S2 in which the rotating shaft 1, the rotor 2, and the stator 3 are accommodated may be formed in the motor housing 10. The motor housing 10 may be provided with a discharge port 101 through which air introduced into the motor space S2 after being flowed by the impeller 4 is discharged to the outside of the motor body 8. [ The discharge port (101) may be formed on the opposite side of the suction port (91).
  • the motor housing 10 may be hollow.
  • the motor of the present embodiment is not supported by the motor housing 10 and the motor housing 10 may not include a separate rotary shaft supporter for supporting the rotary shaft 1.
  • the rotary shaft 1 may be arranged to extend from the motor space S2 to the impeller space S1.
  • One end 1A of the rotary shaft 1 may be located in the motor space S2 and the other end 1B of the rotary shaft 1 may be located in the impeller space S2.
  • the one end 1A of the rotary shaft 1 and the other end 1B of the rotary shaft 1 can be a single piece which is not supported by the motor body 8 and the bearing housing 5.
  • the rotary shaft 1 can be supported by a plurality of bearings 6 and 7 between one end 1A and the other end 1B.
  • One end 1A of the rotary shaft 1 can be close to the rotor 2 among the rotor 2 and the impeller 4 and can be free from the rotor.
  • the other end 1B of the rotary shaft 1 can be closer to the impeller 4 of the rotor 2 and the impeller 4 and can be freely impeller-side.
  • the rotary shaft 1 may include an impeller coupling portion 16 to which the impeller 4 is coupled and a rotor coupling portion 17 to which the rotor 2 is coupled.
  • the rotary shaft 1 may further include a support portion 19 (see FIG. 2) supported by a plurality of bearings 6 and 7.
  • the support portion 19 may be located between the rotor coupling portion 17 and the impeller coupling portion 16.
  • the rotary shaft 1 may be in the order of the rotor coupling portion 17, the support portion 19, and the impeller coupling portion 16 in the axial direction L.
  • the impeller engaging portion 16 and the supporting portion 19 can constitute a small diameter portion 12 to be described later.
  • the rotor coupling portion 17 can constitute a large-diameter portion 11 to be described later.
  • the rotary shaft 1 may include a large-diameter portion 11 and a small-diameter portion 12.
  • the large-diameter portion 11 and the small-diameter portion 12 may be continuous in the axial direction.
  • the small diameter portion 12 may be a smaller diameter portion than the large diameter portion 11.
  • the large-diameter portion 11 is a portion to which the rotor 2 is mounted, and its outer diameter can be larger than the outer diameter of the small-diameter portion 12.
  • the large-diameter portion 11 may include one end 1A of the rotation shaft 1.
  • the large-diameter portion 11 can be located in the motor space S2.
  • the outer diameter of one end 11A in the axial direction of the large-diameter portion 11 may be larger than the inner diameter of the inner ring 61 of the rolling bearing 6.
  • the inner ring 61 of the rolling bearing 6 can be caught in the one end 11A of the large-diameter portion 11 in the axial direction L.
  • the one axial end 11A of the large diameter portion 11 can be brought into contact with the inner ring 61 of the rolling bearing 6 and the rolling bearing 6 is caught by the one axial end 11A of the large diameter portion 11, (Not shown).
  • the large-diameter portion 11 may include a rotor coupling portion 17 to which the rotor 2 is coupled.
  • the outer circumferential surface of the rotor coupling portion 17 may be surrounded by the rotor 2.
  • the rotor coupling portion 17 may include one end 1A of the rotary shaft 1.
  • the large-diameter portion 11 may further include a spacer 20 for separating the rolling bearing 6 from the rotor 2.
  • the spacer 20 may include one axial end 11A of the large-diameter portion 11.
  • the spacer 20 may have an outer diameter having a step with the small diameter portion 12.
  • the spacer 20 may have an outer diameter having a step with the rotor coupling portion 17.
  • the spacer 20 may include an engagement jaw in which the inner ring 61 of the rolling bearing 6 is caught in the axial direction and the engagement jaw is formed between the inner ring 61 of the rolling bearing 6 and the rotor 2 It can be projected to be positioned.
  • the small-diameter portion 12 can extend in the axial direction at one axial end 11A of the large-diameter portion 11.
  • the small diameter portion 12 can penetrate the through hole H of the bearing housing 5.
  • the small diameter portion 12 may be a portion where the impeller 4 and the rolling bearing 6 are mounted.
  • the small diameter portion 12 may include the other end 1B of the rotation shaft 1. [ A part of the small diameter part 12 can be placed in the motor space S1 and the rest of the small diameter part 12 can be placed in the impeller space S1.
  • the small diameter portion 12 can face the rolling bearing 6 and the gas bearing 7 in the radial direction R, respectively.
  • the small-diameter portion 12 includes an inner ring contact portion 13 to which the inner ring 61 of the rolling bearing 6 is in contact, a gas bearing opposed to the gas bearing 7 facing the gas bearing 7 in the radial direction R, (14). ≪ / RTI > In this case, the outer diameter D4 of the inner ring contact portion 13 and the outer diameter D4 of the gas bearing opposing portion 14 may be the same.
  • the manufacturing process of the rotary shaft 1 may be complicated if the inner ring contact portion 13 and the gas bearing opposing portion 14 have stepped portions.
  • the outer diameter D4 of the inner ring contact portion 13 and the outer diameter D4 of the rotary shaft 14 are the same, the manufacturing process of the rotary shaft 1 can be simple.
  • the small diameter portion 12 may further include a connection portion opposing portion 15 that directs the connecting portion 53, which will be described later, of the bearing housing 5 in the radial direction R.
  • a hollow space S3 may be formed between the outer circumferential surface of the connecting portion facing portion 15 and the inner circumferential surface of the connecting portion 53. [ This empty space S3 can function as a passage for air flowing in and out between the inner circumferential surface of the gas bearing 7 and the outer circumferential surface of the rotary shaft 1. [
  • the small diameter portion 12 may further include an impeller coupling portion 16 to which the impeller 4 is coupled.
  • the outer diameter of the small diameter portion 12 from the inner ring contact portion 13 to the impeller engagement portion 16 can be constant. In this case, the manufacturing process of the rotary shaft 1 can be simple.
  • the inner ring contact portion 13, the connecting portion facing portion 15 and the gas bearing facing portion 14 can constitute the support portion 19.
  • the small diameter portion 12 can largely include the impeller coupling portion 16 and the support portion 19, and the support portion 19 has the inner ring contact portion 13 positioned in a line in the axial direction L, (15) and a gas bearing opposing portion (14).
  • the small diameter portion 12 may have a constant outer diameter of the bearing support portion 19. In this case, the manufacturing process of the rotary shaft 1 can be simplified.
  • the rotor 2 can be mounted on the rotary shaft 1.
  • the rotor 2 may be disposed so as to surround the outer circumference of the rotary shaft 1. [
  • the rotor 2 may be mounted on a portion of the rotating shaft 1 accommodated in the motor space S2.
  • the rotor 2 may be spaced apart from the rolling bearing 6 in the axial direction L.
  • the rotor 2 may include a magnet 21.
  • the rotor 2 may further include a magnet core 22 on which the magnet 21 is mounted.
  • the rotor 2 may further include a pair of end plates 23 and 24 spaced in the axial direction L.
  • the rotor 2 can constitute the rotor assembly A together with the rotary shaft 1, the impeller 4 and the rolling bearing 6. [ The rotor 2 may be heavier than the impeller 4. The center of gravity of the rotor assembly A may be closer to the rotor 2 of the impeller 4 and the rotor 2.
  • the stator 3 may be disposed on the inner periphery of the motor body 8. [ The stator 3 may be disposed on the inner circumference of the motor housing 10. [ The stator 3 may include a stator core 31 and a coil 32 wound around the stator core.
  • the impeller 4 can be mounted on the rotary shaft 1.
  • the impeller 4 may be mounted so as to be spaced apart from the rotor 2.
  • the impeller 4 may be spaced apart from the rotor 2 in the axial direction L.
  • the impeller 4 may be made of a material that is lighter than the rotor 2 and formed of a high strength synthetic resin material such as PEEK.
  • the impeller 4 may be a centrifugal impeller for sucking gas such as air in the axial direction L and discharging it in the centrifugal direction R.
  • the impeller 4 may include a hub 42 and a plurality of blades 44 formed on the outer periphery of the hub 42.
  • the motor may further include a diffuser 46 (see FIGS. 2 and 3) for guiding the air that has flowed from the impeller 4.
  • the diffuser 46 can be positioned inside the motor body 8 and in particular the inlet body 9 and the outer periphery thereof can face the inner circumferential surface of the motor body 8 and in particular the inlet body 9.
  • a passage for guiding the gas such as the air flowed by the impeller 4 to the motor space S2 may be formed between the diffuser 46 and the inlet body 9.
  • the bearing housing 5 may be located between the impeller 4 and the rotor 2. [ A through hole (H) through which the rotary shaft (1) passes can be formed in the bearing housing (5).
  • the bearing housing 5 may surround the outer circumference of a part of the rotary shaft 1 (that is, the support 19).
  • the baying housing 5 can surround a part of the outer circumference of the small diameter portion 12 of the rotary shaft 1.
  • the minimum inner diameter of the bearing housing 5 may be larger than the outer diameter of the small diameter portion 12.
  • the bearing housing 5 may be integrally formed with the motor body 1 and may be separately formed from the motor body 1 and then coupled to the motor body 1. [ When the bearing housing 5 is formed integrally with the motor body 1, the assembly tolerance can be minimized.
  • the bearing housing 5 When the bearing housing 5 is manufactured separately from the motor body 1, the bearing housing 5 can be fastened to the motor body 8, particularly the inlet body 9 or the motor housing 10, with a fastening member such as a screw.
  • the bearing housing 5 may include a housing portion 54 (see Figs. 3-5) that supports a plurality of bearings 6, 7 apart.
  • the bearing housing 5 may further include a fastening portion 55 (refer to FIG. 3) fastened to the motor body 1.
  • the bearing housing 5 may further include a plurality of bridge portions 56 (see FIG. 3) connecting the housing portion 54 and the fastening portion 55.
  • a through hole (H) through which the rotating shaft (1) passes may be formed in the housing part (54).
  • a bearing space in which a plurality of bearings 6 and 7 are accommodated may be formed in the housing part 54.
  • the motor may include a contact bearing in constant contact with the rotary shaft 1 and a noncontact bearing not always in contact with the rotary shaft 1. The combination of the contact bearing and the non- .
  • the bearing housing 5 can support the rolling bearing 6 and the gas bearing 7 while the rolling bearing 6 and the gas bearing 7 are supported by the bearing housing 5, And can be rotatably supported.
  • the rolling bearing 6 may be an example of a contact bearing.
  • the rolling bearing 6 may be a bearing capable of supporting the rotary shaft 1 in two directions of the axial direction L and the radial direction R.
  • This embodiment can support the rotary shaft 1 by the combination of the rolling bearing 6 and the gas bearing 7. This embodiment is more advantageous than the case where the two rolling bearings 6 support the rotary shaft 1 The resistance can be reduced and the rotating shaft 1 rotating at a high speed can be more stably supported.
  • the gas bearing 7 may be an example of a non-contact bearing.
  • the gas bearing 7 has a higher load supporting capability as the rotating speed of the rotating shaft 1 is higher.
  • at least one of the plurality of bearings is a gas bearing 7 as in the present embodiment, It is possible to more stably support the rotating shaft 1 rotating at a high speed than in the case of a bearing.
  • the gas bearing 7 may be a thrust gas bearing for supporting the rotary shaft 1 in the axial direction L or a radial gas bearing (for example, a journal gas bearing) for supporting the rotary shaft 1 in the radial direction R, Lt; / RTI >
  • a gas radial bearing and a gas thrust bearing are provided in the motor, the length of the rotary shaft 1 and the overall length of the motor can be increased.
  • the motor preferably includes a minimum number of gas bearings 7 for weight reduction and miniaturization.
  • the rolling bearing 6 is a motor capable of supporting the rotary shaft 1 in two directions of the axial direction L and the radial direction R and therefore the present embodiment is applicable to the rolling bearing 6 and the radial gas bearing 7, So that the rotating shaft 1 can be stably supported.
  • the motor can be a high speed motor in which the rotating shaft 1 can be rotated at a high speed of 10,000 RPM or more and the rotating shaft 1 can be rotated by the combination of the rolling bearing 6 and the radial gas bearing 7, When supporting, the motor can stably support the rotary shaft 1.
  • the rolling bearing 6 supports an axial load and a radial load of the rotary shaft 1 in a state of constant contact with the rotary shaft 1 and the radial gas bearing 7 is in a state of being separated from the rotary shaft 1 , It is possible to support the radial load of the rotating shaft 1 together with the rolling bearing 6 when the rotating shaft 1 rotates at a high speed.
  • a combination of the thruster gas bearing 7 and the rolling bearing 6 is also possible in place of the combination of the radial gas bearing 7 and the rolling bearing 6 but in this case the outer diameter and size of the motor are increased And a combination of the radial gas bearing 7 and the rolling bearing 6 is preferable for compacting the motor.
  • the motor is a high-speed motor in which the rotary shaft 1 is rotated at a high speed of 10,000 RPM or more
  • the ability to support the load in the radial direction may be more important than the ability to support the load in the axial direction
  • the motor can support the gas bearing 7 which is an example of the non-contact bearing and the portion of the rotary shaft 1 between the rotor 2 and the impeller 4, which is one example of the contact type bearing .
  • the rolling bearing 6 and the gas bearing 7 can be mounted together in the bearing housing 5, and the number of parts of the motor can be minimized.
  • the bearing housing 5 may include a rolling bearing housing portion 51 and a gas bearing housing portion 52.
  • the rolling bearing housing part 51 can surround the outer circumferential surface of the rolling bearing 6 and can support and protect the rolling bearing 6.
  • the rolling bearing housing portion 51 can be directed to the rotor 2 in the axial direction L.
  • the outer ring 62 of the rolling bearing 6 can be press-fitted into the inner circumferential surface of the rolling bearing housing portion 51 and fixed to the inner circumferential surface of the rolling bearing housing portion 51.
  • the gas bearing housing part 52 can surround the outer circumferential surface of the gas bearing 7 and can support and protect the gas bearing 7.
  • the gas bearing housing portion 52 can be directed to the impeller 4 in the axial direction L.
  • the gas bearing housing part 52 may be spaced apart from the impeller 4 in the axial direction L and a gas such as air may be introduced between the gas bearing housing part 52 and the impeller 4 to the gas bearing housing part 52 A gap can be formed for flowing into and out of the inside of the housing. These clearances can be communicated with the bearing clearance G between the gas bearing 7 and the rotating shaft 1 in the axial direction L.
  • the bearing housing 5 may be provided with a first stopping jaw which is engaged with one axial end of the gas bearing 7 and a second stopping jaw which is hooked with the other axial end of the gas bearing 7.
  • the first stopping jaw and the second stopping jaw can protrude with a width not to be worn by the rotating shaft 1 and can protrude with a width that is not in contact with the rotating shaft 1.
  • the protruding width of each of the first and second stopping jaws may be thinner than the thickness of the gas bearing 7. In this case, the outer circumferential surface of the rotating shaft 1 can be brought into contact with the coating layer 75 of the gas bearing 7, and the rotating shaft 1 is contacted with the first and second engaging jaws to minimize wear .
  • the protruding width of each of the first stopping jaw and the second stopping jaw may be 50% to 90% of the thickness of the gas bearing 7.
  • the protruding widths of the first and second stopping jaws are too small, the gas bearing 7 can easily escape to the outside of the bearing housing 5 while riding over any one of the first and second stopping jaws have.
  • the gas bearing 7 is arranged between the first stopping jaw and the second stopping jaw in the axial direction L). ≪ / RTI >
  • the gas bearing housing part 52 may have an inner diameter smaller than that of the rolling bearing housing part 51.
  • the gas bearing housing part 52 is preferably smaller than the rolling bearing 6 and the inner diameter of the gas bearing housing part 52 may be smaller than the inner diameter of the rolling bearing housing part 51.
  • the bearing housing 5 may further include a connecting portion 53.
  • the connecting portion 53 may be formed to connect the rolling bearing housing portion 51 and the gas bearing housing portion 52.
  • the rolling bearing 6 and the gas bearing 7 are spaced in the axial direction L and the rolling bearing housing part 51 and the gas bearing housing part 52 are also spaced apart,
  • the bearing housing portion 51 and the gas bearing housing portion 52 can be connected between the gas bearing housing portion 51 and the gas bearing housing portion 52.
  • the connecting portion 53 may be formed such that the outer ring 62 of the rolling bearing 6 is caught in the axial direction L.
  • the inner diameter of the connecting portion 53 may be smaller than the outer diameter of the outer ring 62 of the rolling bearing 6.
  • the inner diameter of the connecting portion 53 may be smaller than the inner diameter of the rolling bearing housing portion 51 and larger than the inner diameter of the gas bearing housing portion 52.
  • An empty space S3 may be formed between the inner circumference of the connection portion 53 and the outer circumference surface of the rotary shaft 1. [ The empty space S3 can communicate with the bearing gap G between the gas bearing 7 and the rotary shaft 1 in the axial direction L. [
  • the rolling bearing housing part 51 and the gas bearing housing part 52 and the connecting part 53 may constitute a housing part 54 for supporting a plurality of bearings 6 and 7 different in kind from each other.
  • a separate air passage for guiding a part of the air that has been flown by the impeller 4 to the bearing gap G may be formed in the housing part 54.
  • An example of such an air passage may be an outer side of the housing part 54 And the space S3 of the connecting portion 53 or may be formed to communicate the outside of the housing portion 54 and the inside of the gas bearing housing portion 52 with each other.
  • the rolling bearing 6 and the gas bearing 7 may be disposed in the bearing housing 5. [ The rolling bearing 6 and the gas bearing 7 may be disposed on the bearing housing 5 so as to be spaced apart from each other in the axial direction L.
  • the rolling bearings 6 may be located between the gas bearings 7 and the rotor 2 in the axial direction L and may be spaced apart from the gas bearings 7 and the rotor 2, respectively.
  • the gas bearing 7 can be positioned between the rolling bearing 6 and the impeller 4 in the axial direction L and can be separated from the rolling bearing 6 and the impeller 4 respectively.
  • the impeller 4 and the rolling bearing 6 and the gas bearing 7 are connected to the rotor 2 and the rolling bearing 6 and the gas bearing 7 and the impeller 4 in the axial direction L, In order.
  • the rolling bearing 6 may include an inner ring 61 fixed to the rotary shaft 1 and an outer ring 62 and a rolling member 63.
  • the rolling bearing 6 may be a contact bearing that supports the rotary shaft 1 in a state of being in constant contact with the rotary shaft 1. When the rotary shaft 1 is rotated at a low speed, Is high.
  • the rotary shaft 1, the rotor 2 and the impeller 4 can constitute a rotor assembly A (see FIG. 4)
  • the rotary shaft 1, the rotor 2 and the impeller 4 can be rotated together.
  • the rotor 2 may be heavier than the impeller 4.
  • the center of gravity C of the rotor assembly A may be closer to the rotor 3 than to the impeller 4.
  • the motor has a higher load bearing capacity of the gas bearing 7 and the rolling bearing 6 and always places the bearing in contact with the rotating shaft 1 closer to the rotor 2.
  • the motor is preferably arranged such that the rolling bearing 6 is disposed closer to the rotor 2 than the gas bearing 7. In this case, the rolling bearing 6 and the gas bearing 7 can support the rotor assembly A more stably.
  • the rolling bearing 6 may be closer to the rotor 2 than the rotor 2 and the impeller 4.
  • the distance L2 between the rolling bearing 6 and the rotor 2 may be shorter than the distance between the rolling bearing 6 and the impeller 4.
  • Each of the rolling bearing 6 and the gas bearing 7 preferably supports the rotor assembly A at a position close to the center of gravity C of the rotor assembly A. [ In this case, the rotor assembly A can be more stably supported.
  • the rolling bearing 6 supports a portion where the center of gravity C of the rotor assembly A is located or a portion close to the center of gravity C of the rotor assembly A.
  • the rolling bearing 6 be in contact with a portion located between the portion where the center of gravity C of the rotor assembly A is located and the rotor engaging portion 17.
  • the distance L3 between the center of gravity C of the rotor assembly A and the rolling bearing 7 may be shorter than the distance L4 between the center of gravity C of the rotor assembly A and the gas bearing 7 have.
  • the center of gravity C of the rotor assembly A is located in the support portion 19 (see FIG. 2), and the portion of the rotary shaft 1 located between the inner ring contact portion 13 and the gas bearing opposing portion 14 (I.e., the connecting portion facing portion 15)) or the inner ring contact portion 13.
  • the motor is that the distance L3 between the center of gravity C of the rotor assembly A and the inner ring contact portion 13 is larger than the distance between the center of gravity C of the rotor assembly A and the gas bearing opposing portion 14 (L4).
  • the rolling bearing 6 may be disposed closer to the center of gravity C of the rotor assembly A than the gas bearing 7.
  • the distance L3 between the center of gravity C of the rotor assembly A and the inner ring contact portion 13 is larger than the distance L3 between the center of gravity C of the rotor assembly A and the gas bearing opposed portion 14 May be the same as the distance L4.
  • the rolling bearing 6 and the gas bearing 7 can support the rotary shaft 1 with a distance equal to the center of gravity C of the rotor assembly A.
  • the rolling bearing 6 can be engaged with the one end 11A of the large-diameter portion 11 in the axial direction L. [ The inner ring 61 of the rolling bearing 6 can be held in contact with the one end 11A of the large diameter portion 11. [
  • the gas bearing 7 may be closer to the impeller 4 of the rotor 2 and the impeller 4.
  • the gas bearing 7 may be closer to the impeller 4 than the rolling bearing 6 and the impeller 4.
  • the axial distance L1 between the gas bearing 7 and the impeller 4 may be shorter than the axial distance L2 between the rolling bearing 6 and the rotor 2.
  • the gas bearing 7 can be directed between the center of gravity C of the rotor assembly A and the impeller engaging portion 16. As shown in Fig.
  • the gas bearing 7 may be an oilless bearing.
  • the gas bearing 7 may be a bearing formed with a low-friction coating layer having excellent lubricity and abrasion resistance.
  • a low friction coating layer may be formed on the inner circumference of the gas bearing 7.
  • Gas such as air can support the rotary shaft 1 between the low friction coating layer of the gas bearing 7 and the outer peripheral surface of the rotary shaft 1.
  • the gas bearing 7 may be a pressure gas bearing and can support the rotary shaft 1 by a gas such as air introduced into the space between the inner circumferential surface of the gas bearing 7 and the rotary shaft 1 in the vicinity thereof.
  • the gas bearing 7 may have an inner surface 71 which is spaced apart from the outer peripheral surface of the rotary shaft 1 and an outer surface 72 which is in contact with the gas bearing housing portion 52 formed in the bearing housing 5.
  • the gas bearing 7 may be formed with a slit 73 (see Fig. 6) long in the axial direction L on one side.
  • the slit 73 can be radially opened to the gas bearing 7.
  • the gas bearing 7 can be manufactured by rolling a metal plate whose thickness is thinner than the thickness of the rolling bearing 6 and having a cross section of a good shape or an annular shape and by rotating the gas bearing housing part 52 in a so- As shown in FIG.
  • the gas bearing 7 is manufactured by rolling the metal plate to facilitate the thickness distribution of the gas bearing 7, and the outer circumferential surface of the rotating shaft 1 and the inner circumferential surface of the bearing housing 5
  • the bearing clearance G between the rotary shaft 1 and the gas bearing 7 can be managed to a desired level by the manufacturer.
  • the gas bearing 7 may include a bush 74 having a slit 73 formed therein and a coating layer 75 applied to the inner surface of the bushing 74.
  • the coating layer 75 may be made of PTFE (Polytetrafluoroethylene), diamond like carbon (DLC), lubrite, Mos2, D10, boron nitride, ceramic powder, soap or soft metal such as copper or lead.
  • the inner surface 71 of the gas bearing 7 may be the surface of the coating layer 75 facing the outer circumferential surface of the rotary shaft 1 and the outer surface 72 of the gas bearing 7 may be the surface of the bearing housing 5 The inner circumferential surface of the inner circumferential surface of the outer circumferential surface.
  • the coating layer 75 can be applied to one surface of the metal plate when the gas bearing 7 is in a metal plate state before it is dried in a favorable shape or an annular shape. In this case, the thickness uniformity of the coating layer 75 becomes high, The gas bearing 7 can be easily managed as a whole in thickness distribution.
  • One example of the method for manufacturing a motor includes the steps of applying a coating layer 75 to one surface of a metallic thin film in the shape of a plate; A step of manufacturing a bushing 74 in which a coating layer 75 is formed by forming a metal thin film in a shape of arc so that one surface of the metal thin film coated with the coating layer 75 is located inside; Inserting the gas bearing (7) into the bearing housing (5); And passing the rotating shaft 1 through the inside of the gas bearing 7.
  • the bushing 74 may be a nickel chromium alloy having a nickel content greater than the chromium content.
  • the bush 74 may be a bush having slits 73 formed on one side thereof, and the gas bearing 7 may be a non-contact type bush bearing.
  • the coating layer 75 can be applied to one surface of the metal plate when the bush 74 is in a plate shape before the bush 74 is allowed to dry in a friendly or annular shape. In this case, the thickness uniformity of the coating layer 75 is high, The thickness distribution can be easily managed as a whole.
  • the gas bearing 7 may be a bearing that lubricates by gas located in the bearing gap G, particularly air, and may be a noncontact oilless bearing that supports the rotating shaft 1 in a state of not contacting the rotating shaft 1 have.
  • the gas bearing 7 can be directed to an eccentric position from the center of the rotating shaft 1 toward the impeller 4 side.
  • the gas bearing 7 may be closer to the impeller 4 of the rotor 2 and the impeller 4.
  • the gas bearing 7 may be closer to the impeller 4 than the rolling bearing 6 and the impeller 4.
  • the axial distance L1 between the gas bearing 7 and the impeller 4 may be shorter than the axial distance L2 between the rolling bearing 6 and the rotor 2.
  • the gas bearing 7 can be directed between the center of gravity of the rotary shaft 1 and the other end 1B of the rotary shaft 1.
  • the gas bearing 7 can be directed between the center of gravity of the rotating shaft 1 and the impeller coupling 16.
  • the gas bearing 7 may have an inner surface 71 which is spaced apart from the outer peripheral surface of the rotary shaft 1 and an outer surface 72 which is in contact with the gas bearing housing portion 52 formed in the bearing housing 5.
  • the gas bearing 7 is preferably made of a shape and a thickness capable of keeping the bearing gap G constant and preferably has an elastic force capable of maintaining its shape when mounted on the bearing housing 5.
  • the thickness of the gas bearing 7 is 50% or more of the gap between the inner surface of the bearing housing 5 and the outer surface of the rotating shaft 1, and is 0.3 mm or less.
  • the thickness distribution of the gas bearing 7 may be large, the bearing gap G may not be constant, and the deviation may be large.
  • the optimum bearing clearance G of the gas bearing 7 can be different according to the outer diameter of the gas bearing opposing portion 14 and the gas bearing 7 can be made of a gas bearing 7
  • the thickness may be 0.004 to 0.0125 times the outer diameter of the gas bearing opposing portion 14.
  • the bearing gap G may be 0.02 mm to 0.05 mm.
  • the gas bearing 7 is made to have such a thickness as to secure such a bearing gap G.
  • the thickness dispersion of the gas bearing 7 will be about 0.01 mm
  • the thickness distribution of 0.01 mm may correspond to 20% to 50% of the bearing clearance G, and the performance of the gas bearing 7 may be large.
  • the thickness of the gas bearing 7 is more than 0.3 mm, when the gas bearing 7 is bent to be inserted into the bearing housing 5, plastic deformation is generated and is not brought into close contact with the inner surface of the bearing housing 5 And can contact the outer circumferential surface of the rotating shaft 1, and the portion of the gas bearing 7 where the plastic deformation occurs can not function as a gas bearing.
  • the thickness of the gas bearing 7 is 50% or more of the gap G1 between the inner surface of the bearing housing 5 and the outer peripheral surface of the rotary shaft 1, the gas bearing 7 is mounted to the bearing housing 5 A part of the gas bearing 7 can not overlap with the other part and the bearing gap G error can be minimized while the entire gas bearing 7 remains in contact with the bearing housing 5 as much as possible.
  • the thickness of the gas bearing 7 is too small, such as 0.1 mm or less, the production may not be easy.
  • the appropriate thickness of the gas bearing 7 for this purpose may be 0.3 mm, and the preferable range thereof may be 0.1 mm or more and 0.3 mm or less.
  • the gas bearing 7 can be manufactured by rolling a metal thin film having a plate shape of 0.3 mm or less in a favorable shape or an annular shape, and inserted into the bearing housing 5 in a state of being dried in a friendly shape or a ring shape, .
  • the outer diameter D1 of the gas bearing 7 may be smaller than the outer diameter D2 of the rolling bearing 7.
  • the inner diameter D3 of the gas bearing 7 may be larger than the inner diameter D4 of the rolling bearing 7.
  • the outer diameter D2 of the rolling bearing 7 may be the outer diameter of the outer ring 62 and the inner diameter D of the rolling bearing 7 may be the inner diameter of the inner ring 61.
  • the gas bearing 7 may be a noncontact bearing that is not in contact with the rotary shaft 1 and the rolling bearing 6 may be a contact bearing in which the inner circumferential surface of the inner ring 61 is always in contact with the rotary shaft 1,
  • the inner diameter D3 of the bearing 7 may be larger than the inner diameter D4 of the rolling bearing 7.
  • the gas bearing 7 may have a rotating shaft 1 and a bearing gap G.
  • a bearing clearance G may be formed between the inner circumferential surface of the gas bearing 7 and the outer surface of the small diameter portion 12.
  • the bearing clearance G can be defined as a gap between the inner circumferential surface of the gas bearing 7 and the outer surface of the small diameter portion 12.
  • the gas bearing 7 may be a bearing that lubricates by the gas located in the bearing gap G, particularly air.
  • the gas bearing 9 may be a noncontact oilless bearing that supports the rotary shaft 1 in a state in which the rotary shaft 1 is not in contact with the rotary shaft 1 when the rotary shaft 1 is not eccentric.
  • the gas bearing 7 can be directed to a position eccentric from the center of the rotary shaft 1 toward the impeller 4 side in the axial direction L. [ In other words, the gas bearing 7 can be directed between the axial center of the rotary shaft 1 and the other end 1B of the rotary shaft 1.
  • the air around the bearing housing 5 can be introduced into the interior of the bearing housing 5, in particular, between the inner circumferential surface of the gas bearing 7 and the outer circumferential surface of the rotary shaft 1 when the impeller 4 rotates at a high speed ,
  • the rotary shaft 1 can be floated.
  • the gas bearing 7 When the axial length L5 of the gas bearing 7 is long, the region of the rotating shaft 1 supported by the gas such as air increases and the gas bearing 7 having the long axial length L5 is rotated 1 can be more reliably supported. On the other hand, when the axial length L5 of the gas bearing 7 is too long, the length of the rotary shaft 1 becomes excessively long, and the gas bearing 7 preferably has an appropriate length.
  • the axial length L5 of the gas bearing 7 is longer than the axial length L6 of the rolling bearing 6.
  • the distance L7 between the gas bearing 7 and the rolling bearing 6 is preferably shorter than the axial length L5 of the gas bearing 7.
  • the motor constructed as described above can be supported by the gas bearing opposing portion 14 and the inner ring contact portion 13 by the air and the rolling bearing 6 introduced between the gas bearing 7 and the rotary shaft 1, respectively.
  • the rotating shaft 1 can be supported by two points, that is, the supporting portion 19 located between the rotor coupling portion 17 and the impeller coupling portion 16, and the rotary shaft 1 can be stably rotated at a high speed .
  • two rolling bearings are mounted on the rotary shaft 1 in the axial direction so as to be spaced apart from each other, as disclosed in U.S. Patent Application Publication No. US 2010/0215491 A1 (published on Aug. 26, 2010)
  • Each of the two rolling bearings spaced apart from each other may rotatably support the rotary shaft.
  • FIG. 7 is a cross-sectional view of a rotor assembly according to another embodiment of the present invention.
  • the motor of this embodiment includes a rolling bearing 6 'and a gas bearing 7' which are spaced apart and in which the rolling bearing 6 'is mounted in the axial direction L with a gas bearing 7' and an impeller 4, And the gas bearing 7 'may be positioned between the rolling bearing 6' and the rotor 2 in the axial direction L.
  • a rolling bearing 6 'and a gas bearing 7' which are spaced apart and in which the rolling bearing 6 'is mounted in the axial direction L with a gas bearing 7' and an impeller 4, And the gas bearing 7 'may be positioned between the rolling bearing 6' and the rotor 2 in the axial direction L.
  • the rolling bearing 6 'and the gas bearing 7' are disposed on the bearing housing 5 'in the axial direction L, but their arrangement positions may be reversed from those of the present invention.
  • the bearing housing 5 ' may include a rolling bearing housing portion 51', a gas bearing housing portion 52 ', and may further include a connecting portion 53'.
  • the rolling bearing housing portion 51 ' may surround the outer surface of the rolling bearing 6' and face the impeller 4 in the axial direction L.
  • a locking step 51a may be formed in the rolling bearing housing part 51 'so that the outer ring 62 of the rolling bearing 6 is axially latched.
  • the engagement protrusion 51a can be positioned between the outer ring 62 of the rolling bearing 6 and the impeller 4 and the outer ring 62 of the rolling bearing 6 ' And can be retained in the bearing housing 5 'without being constrained and moved toward the impeller 4.
  • the gas bearing housing portion 52 ' may surround the outer surface of the gas bearing 7' and may face the rotor 2 in the axial direction L.
  • the connecting portion 53' can be positioned between the rolling bearing housing portion 51'and the gas bearing housing portion 52'and is capable of connecting the rolling bearing housing portion 51'and the gas bearing housing portion 52 ' have.
  • the connecting portion 53 ' may be formed to have a stepped portion with the gas bearing housing portion 52'.
  • the inner diameter of the connecting portion 53 ' may be smaller than the inner diameter of the gas bearing housing portion 52'.
  • One end 53a of the connecting portion 53 ' can function as a latching jaw which is caught in the axial direction L of the gas bearing 7'.
  • the motor of this embodiment can be arranged in the order of the rotor 2 in the axial direction L, the gas bearing 7 ', the rolling bearing 6' and the impeller 4 in this order.
  • the rolling bearing 6 ' can be disposed closer to the impeller 4, among the rotor 2 and the impeller 4. And, the rolling bearing 6 'can be disposed closer to the impeller 4 among the gas bearing 7 and the impeller 4.
  • Such a rolling bearing 6 ' is different in position from the rolling bearing 6 of the embodiment of the present invention, and the detailed structure and function thereof may be the same as that of the rolling bearing 6 of the embodiment of the present invention.
  • the configuration of the rolling bearing 6 'of the present embodiment will be described with respect to the configuration different from the rolling bearing 6 of the embodiment of the present invention.
  • the gas bearing 7 ' may be closer to the rotor 2 of the rotor 2 and the impeller 4.
  • This gas bearing 7 ' is different in position from the gas bearing 7 of the embodiment of the present invention, and its detailed structure and function are the same as those of the gas bearing 6 of the embodiment of the present invention.
  • Only the structure different from the gas bearing 7 of the embodiment of the present invention will be described for the bearing 7 '.
  • the rotary shaft 1 'of the present embodiment may include an impeller engaging portion 16, supports 13', 14 ', 15' and a rotor engaging portion 17, and the supports 13 ', 14' 15 'can be supported by the rolling bearing 6' and the gas bearing 7 'between the impeller engaging portion 16 and the rotor engaging portion 17.
  • the support portions 13 ', 14', 15 ' may include an inner ring contact portion 13', a gas bearing opposing portion 14 'and a connecting portion opposing portion 15'.
  • the inner ring contact portion 13 ' can be brought into contact with the inner ring 61 of the rolling bearing 6'.
  • the size of the rolling bearing 6' may be large.
  • the outer diameter of the inner ring contacting portion 13' is small. It is preferable that the outer diameter of the inner ring contact portion 13 'and the outer diameter of the impeller engaging portion 16' of the rotary shaft 1 are constant.
  • the gas bearing counterpart 14 ' may direct the gas bearing 7' in the radial direction R.
  • An appropriate bearing clearance G may be formed between the gas bearing opposing portion 14 'and the gas bearing 7'.
  • the connecting portion counterpart 15 ' may direct the connecting portion 53' in the radial direction R.
  • the connecting portion facing portion 15 ' may be formed to have a step with the inner ring contacting portion 13'.
  • the outer diameter of the connecting portion facing portion 15 ' may be larger than the outer diameter of the inner ring contacting portion 13'.
  • One end 15a of the connecting portion opposing portion 15 ' may face the inner ring 61 of the rolling bearing 6 in the axial direction L. [ The inner ring 61 of the rolling bearing 6 'can be caught in one end 15a of the connecting portion opposing portion 15' in the axial direction L. [
  • the rolling bearing 6 ' is restrained by the connecting portion facing portion 15' and is not moved toward the rotor 2, and the rolling bearing 6 'is pressed against the rolling bearing housing portion 51' and the connecting portion facing portion 15 ' Lt; / RTI >
  • the outer diameter of the inner ring contact portion 13 'and the outer diameter of the gas bearing opposing portion 14' may be different.
  • the outer diameter of the gas bearing facing portion 14 'and the outer diameter of the connecting portion facing portion 15' may be the same and the outer diameter of the inner ring contacting portion 13 'may be smaller than the outer diameter of the gas bearing facing portion 14'.
  • the rotary shaft 1 ' is formed so as not to support the maximum in the axial direction L, and it is preferable that the change in the outer diameter in the axial direction L is minimized.
  • the rotating shaft 1 ' preferably includes a large diameter portion 11' and a small diameter portion 12 ', and the rolling bearing 6' is preferably coupled to the small diameter portion 12 ' Is disposed facing the large-diameter portion 11 '.
  • the large diameter portion 11 ' may include a rotor coupling portion 17 and a gas bearing opposing portion 14' and a connecting portion opposing portion 15 '.
  • the small diameter portion 12 ' may include the inner ring contact portion 13' and the impeller engagement portion 16.
  • the diameter of the gas bearing 7 ' is small and the gas bearing 7' is disposed at a position facing the small diameter portion 12 'of the bearing housing 5'.
  • the diameter of the gas bearing 7 ' can be minimized while the area of the gas bearing 7' facing the rotary shaft 1 'is small and the area between the gas bearing 7' and the rotary shaft 1 '
  • the gas bearing 7 ' may be formed to have a long axial length so as to form a sufficient bearing clearance that can flow in the gas or the like.
  • the diameter of the gas bearing 7 ' is large and the gas bearing 7' is disposed at a position facing the large diameter portion 11 'of the bearing housing 5'.
  • the diameter of the gas bearing 7 ' is large while the area of the gas bearing 7' facing the rotation shaft 1 'is large and the air bearing surface 7' is formed between the gas bearing 7 ' A sufficient flow passage through which the gas can flow can be ensured, and the axial length of the gas bearing 7 'can be minimized.
  • the gas bearing 7 ' is preferably disposed to face the large diameter portion 11'.
  • the rolling bearing 6' is coupled to the small diameter portion 12 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

본 실시예는 회전축과; 회전축에 장착된 로터와; 로터의 외둘레를 둘러싸는 스테이터와; 회전축에 로터와 이격되게 장착된 임펠러와; 회전축이 관통되는 통공이 형성된 베어링 하우징과; 베어링 하우징에 배치되고 회전축에 결합된 구름 베어링과; 베어링 하우징에 구름 베어링과 축 방향으로 이격되게 배치되고 회전축의 외둘레를 향하는 가스 베어링을 포함한다.

Description

모터
본 발명은 모터에 관한 것으로, 더욱 상세하게는 다수의 베어링을 갖는 모터에 관한 것이다.
모터는 청소기 등의 가전기기에 설치될 수 있고, 이 경우 공기를 먼지 집진부로 흡인시키는 구동력을 발생할 수 있다.
이러한 모터의 일예는 모터 하우징과, 모터 하우징에 설치된 스테이터와, 스테이터에 의해 회전되는 로터와, 로터가 장착된 회전축을 포함할 수 있다. 모터의 회전축은 적어도 하나의 베어링에 의해 회전 가능하게 지지될 수 있고, 회전축은 베어링에 지지된 상태에서 고속으로 회전될 수 있다.
모터는 회전축에 로터와 베어링 카트리지 및 임펠러가 연결된 로터 어셈블리를 포함할 수 있고, 이러한 로터 어셈블리의 일예는 미국 공개특허공보 US 2010/0215491 A1(2010년8월26일 공개)에 개시되어 있다.
상기한 선행문헌에 개시된 로터 어셈블리는 회전축을 2점 지지하기 위해, 한 쌍의 베어링이 슬리브에 의해 둘러싸이고, 한 쌍의 베어링 사이에 스프링이 배치된다.
본 발명은 경량화가 가능하면서 복수개 베어링의 동심 오차를 최소화할 수 있으면서 회전축을 보다 안정적으로 지지할 수 있는 모터를 제공하는데 그 목적이 있다.
본 발명의 실시 예는 구름 베어링과 가스 베어링이 회전축을 함께 지지하여, 한 쌍의 구름 베어링이 회전축을 지지하는 경우 보다 경량화가 가능하고, 한 쌍의 구름 베어링 사이의 동심 오차가 클 때 발생되는 진동을 최소화할 수 있으며, 모터 수명을 연장할 수 있다.
상기와 같이, 구름 베어링과 가스 베어링이 회전축을 함께 지지할 경우, 수만 rpm 이상으로 고속 회전되는 회전축을 보다 신뢰성 높게 지지할 수 있다. 그리고, 본 실시예는 한 쌍의 구름 베어링으로 회전축을 지지하는 경우 보다 소음이 최소화될 수 있고, 소형 고속 모터의 최대 rpm을 높일 수 있다.
회전축은 임펠러가 결합되는 임펠러 결합부와, 로터가 결합되는 로터 결합부와, 구름 베어링 및 가스 베어링에 의해 지지되는 지지부를 포함할 수 있다. 지지부는 축 방향으로 임펠러 결합부와 로터 결합부의 사이에 위치될 수 있다. 그리고, 구름 베어링과 가스 베어링은 서로 이격된 상태에서 지지부를 함께 지지할 수 있다.
구름 베어링과 가스 베어링은 하나의 베어링 하우징에 장착될 수 있고, 이 경우, 모터는 구름 베어링을 지지하는 베어링 하우징과, 가스 베어링을 지지하는 베어링 하우징이 각각 별도로 구비되는 경우 보다, 부품수가 최소화될 수 있다.
베어링 하우징에는 회전축이 관통되는 통공이 형성될 수 있고, 구름 베어링은 베어링 하우징에 배치되고 회전축에 결합될 수 있다. 그리고, 가스 베어링은 베어링 하우징에 구름 베어링과 축 방향으로 이격되게 배치될 수 있고, 회전축의 외둘레를 향할 수 있다.
한편, 회전축에 임펠러 및 로터가 장착되었을 때, 회전축과 임펠러와 로터는 로터 어셈블리를 구성할 수 있고, 로터 어셈블리 중 로터가 장착된 부분은 임펠러가 장착하는 부분 보다 무거울 수 있다. 그리고, 회전축 중 로터가 장착된 부분의 쳐짐량은 회전축 중 임펠러가 장착된 부분의 쳐짐량 보다 많을 수 있다.
이러한 로터 어셈블리의 처짐량 차를 고려할 경우, 구름 베어링과 가스 베어링 중 구름 베어링이 로터에 더 근접하게 배치되는 것이 바람직하다.
가스 베어링이 로터에 더 가까우면, 회전축은 로터와 근접한 부분의 쳐짐량이 너무 클 수 있고, 이 경우, 구름 베어링과 가스 베어링은 회전축은 안정적으로 지지하지 못할 수 있다.
반면에, 구름 베어링이 가스 베어링 보다 로터에 더 근접하면, 구름 베어링은 로터와 근접한 위치에서 회전축을 보다 안정적으로 지지할 수 있고, 로터 어셈블리의 쳐짐이나 흔들임이 최소화되게 회전축을 지지할 수 있다.
이를 위해, 로터와, 임펠러와, 구름 베어링 및 가스 베어링은 축 방향으로 로터와, 구름 베어링과, 가스 베어링과, 임펠러 순서로 배치될 수 있다.
한편, 구름 베어링은 최대한 로터에 근접하게 배치되는 것이 바람직하고, 이를 위해, 구름 베어링은 로터와 임펠러 중 로터에 더 가깝게 배치될 수 있다.
상기와 같이 구름 베어링과 가스 베어링이 회전축을 함께 지지할 경우, 회전축은 구름 베어링의 내륜이 접촉되는 내륜 접촉부와, 가스 베어링을 반경방향으로 향하는 가스 베어링 대향부를 포함할 수 있다.
이 경우, 로터 어셈블리의 무게중심은 회전축 중 내륜 접촉부와 가스 베어링 대향부 사이일 수 있다. 한편, 구름 베어링은 로터 어셈블리와 최대한 근접한 위치에서 베어링과 접촉되는 것이 바람직하다. 이를 위해, 로터 어셈블리의 무게중심과 내륜 접촉부 사이의 거리는 로터 어셈블리의 무게중심과 가스 베어링 대향부 사이의 거리 보다 짧거나 로터 어셈블리의 무게중심과 가스 베어링 대향부 사이의 거리와 같을 수 있다.
구름 베어링은 로터 어셈블리의 무게중심과 로터의 사이에서 로터 어셈블리를 최대한 안정적으로 지지할 수 있다. 그리고, 가스 베어링은 회전축의 고속 회전시, 에어 등의 가스가 구름 베어링과 임펠러 사이를 지지하게 할 수 있다.
즉, 회전축의 저속 회전시, 구름 베어링이 회전축을 최대한 안정적으로 지지할 수 있고, 회전축의 고속 회전시, 구름 베어링과 가스 베어링이 회전축을 신뢰성 높게 지지할 수 있다.
본 실시예는 로터 어셈블리의 무게중심이 회전축 중 내륜 접촉부인 것도 가능함은 물론이다.
한편, 가스 베어링과 회전축 사이에는 베어링 간극이 형성되고, 가스 베어링은 베어링 간극의 가스를 이용하여 회전축을 지지한다.
베어링 간극은 축 방향으로 충분한 길이를 갖을 경우, 베어링 간극의 가스가 회전축을 부양시킬 수 있다. 한편, 베어링 간극의 축 방향 길이가 너무 짧으면, 회전축을 부양하기 위한 가스의 양이 부족할 수 있고, 에어 등의 가스가 회전축을 신뢰성 높게 지지하지 못할 수 있다.
가스 베어링은 구름 베어링과 이격된 위치에서 회전축을 지지하므로, 구름 베어링과 소정 거리만큼 이격되게 배치된다.
베어링 간극이 축 방향으로 충분한 길이를 갖고, 가스 베어링이 구름 베어링과 소정 거리만큼 이격될 경우, 가스 베어링은 임펠러에 최대한 근접하게 위치될 수 있다.
이를 위해, 가스 베어링은 로터와 임펠러 중 임펠러에 더 가까울 수 있다. 그리고, 가스 베어링은 구름 베어링과 임펠러 중 임펠러에 더 가까울 수 있다.
한편, 베어링 하우징에는 가스 베어링이 장착되는 가스 베어링 장착부가 형성된다. 그리고, 가스 베어링은 회전축의 외둘레면과 이격되는 내면과, 베어링 하우징에 형성된 가스 베어링 장착부에 접촉되는 외면을 갖는다. 이 경우, 회전축의 외둘레면과 가스 베어링의 내면 사이에는 공기 중의 가스가 회전축을 부양시킬 수 있는 베어링 간극이 형성될 수 있다.
가스 베어링은 소형화 및 재료비 절감을 위해서, 반경 방향으로 최대한 작게 형성될 수 있다. 가스 베어링의 외경은 구름 베어링의 외경 보다 작을 수 있고, 모터는 최대한 경량화될 수 있다.
가스 베어링의 내경은 구름 베어링의 내경 보다 클 수 있다. 회전축은 그 외경이 최대한 일정하게 형성될 경우, 제조가 용이하고 제조단가 낮아질 수 있다.
회전축은 가스 베어링을 향하는 가스 베어링 대향부와, 구름 베어링의 내륜이 장착되는 내륜 장착부를 포함할 수 있다. 가스 베어링 대향부의 외경과 내륜 장착부의 외경이 동일할 경우, 회전축의 제조 단가는 낮을 수 있다. 가스 베어링의 내경은 구름 베어링의 내경 보다 클 수 있다.
가스 베어링은 내면에 코팅층이 형성되어 회전축의 마모를 최소화할 수 있다. 가스 베어링은 코팅층이 금속 판체의 일면에 형성된 상태에서, 우호 형상으로 말려서 제작될 수 있다. 이 경우, 가스 베어링에는 축 방향으로 긴 슬릿이 형성된다. 그리고, 가스 베어링은 부시와, 부시의 내면에 코팅된 코팅층을 포함하게 된다.
가스 베어링은 중공 원통 형상의 부시 내면에 코팅층을 형성하는 것도 가능한데, 이 경우, 코팅층의 코팅 공정이 복잡할 수 있고, 코팅층이 중공 원통 형상의 부시 내면에 고르게 코팅되지 못할 수 있다.
반면에, 본 발명의 가스 베어링은 코팅층이 최대한 고르게 코팅될 수 있고, 가스 베어링의 수명이 최대화될 수 있다.
회전축은 구름 베어링의 내륜이 접촉되는 내륜 접촉부와, 임펠러가 결합되는 임펠러 결합부를 포함할 수 있고, 코팅층은 회전축 중 내륜 접촉부와 임펠러 결합부 사이를 향할 수 있다.
베어링 하우징은 구름 베어링 하우징부과 가스 베어링 하우징부를 포함할 수 있다. 구름 베어링 하우징부는 구름 베어링의 외면을 둘러싸고 축 방향으로 로터를 향할 수 있다. 가스 베어링 하우징부는 가스 베어링의 외면을 둘러싸고 축 방향으로 임펠러를 향할 수 있다.
가스 베어링 하우징부의 내경은 구름 베어링 하우징부의 내경 보다 작을 수 있고, 이 경우, 가스 베어링은 두께가 최소화될 수 있고, 가스 베어링 및 모터는 최대한 경량화될 있다.
가스 베어링 하우징부의 내경은 구름 베어링 하우징부의 내경이 동일할 경우, 가스 베어링의 두께는 구름 베어링의 두께와 근접한 수준으로 두꺼워야 한다.
반면에, 가스 베어링 하우징부의 내경이 구름 베어링 하우징부의 내경 보다 작을 경우, 그 내경 차 만큼 가스 베어링의 두께가 얇을 수 있고, 가스 베어링의 재료비가 감소될 수 있고, 경량화가 가능하다.
한편, 가스 베어링 하우징부와 임펠러 사이에는 가스 베어링과 회전축 사이의 베어링 간극과 연통되는 틈이 형성될 수 있고, 가스 베어링 작동시 에어 등의 가스가 베어링 간극으로 원활하게 출입될 수 있다.
베어링 하우징은 연결부를 더 포함할 수 있다. 연결부는 구름 베어링 하우징부와 가스 베어링 하우징부를 연결할 수 있다. 연결부의 내경은 구름 베어링의 외륜 외경 보다 작을 수 있다. 이 경우, 구름 베어링의 외륜은 연결부에 축 방향이 걸릴 수 있다. 연결부가 구름 베어링의 축 방향 이동을 제한하는 스토퍼로 기능할 수 있다.
연결부의 내경은 구름 베어링 하우징부 내경 보다 작고, 가스 베어링 하우징부의 내경 보다 클 수 있다. 이 경우, 연결부와 회전축의 사이에는 공기 등의 가스가 통과할 수 있는 공간이 형성될 수 있고, 가스 베어링 작동시 에어 등의 가스는 이러한 공간을 통해 베어링 간극으로 원활하게 출입될 수 있다.
한편, 회전축은 대경부와 소경부를 포함할 수 있다.
대경부에는 로터가 장착될 수 있고, 소경부에는 임펠러 및 구름 베어링이 장착될 수 있다.
대경부의 축 방향 일단 외경은 구름 베어링의 내륜 내경 보다 클 수 있고, 구름 베어링은 대경부의 일단에 축 방향으로 걸릴 수 있다.
소경부는 반경 방향으로 가스 베어링을 향할 수 있다.
소경부는 구름 베어링의 내륜이 접촉되는 내륜 접촉부와, 가스 베어링을 반경 방향으로 향하는 가스 베어링 대향부를 갖을 수 있고, 내륜 접촉부의 외경과 가스 베어링 대향부의 외경은 동일할 수 있다. 이 경우, 소경부의 외경은 최대한 일정할 수 있고, 회전축의 제조 단가는 낮아질 수 있다.
모터의 다른 예는 가스 베어링이 축 방향으로 구름 베어링과 로터의 사이에 배치될 수 있고, 구름 베어링은 축 방향으로 가스 베어링과 임펠러의 사이에 배치될 수 있다.
가스 베어링은 대경부를 향할 수 있다. 이 경우, 가스 베어링이 소경부를 향할 경우 보다, 회전축을 향하는 면적이 크고, 가스 베어링과 회전축 사이에 에어 등의 가스가 유동될 수 있는 충분한 넓은 유로가 확보될 수 있다. 즉, 가스 베어링의 축 방향 길이는 최소화될 수 있다.
또한, 구름 베어링은 소경부에 결합될 수 있다. 이 경우, 구름 베어링이 대경부에 장착될 경우 보다 구름 베어링의 소형화가 가능하고, 모터의 경량화가 가능하다.
본 발명의 실시 예에 따르면, 구름 베어링과 가스 베어링의 조합으로 회전축을 지지하여 한 쌍의 구름 베어링이 회전축을 지지할 경우 보다 경량화가 가능하고, 한 쌍의 구름 베어링이 회전축을 지지할 때 발생될 수 있는 동심 오차를 해소할 수 있는 이점이 있다.
또한, 가스 베어링과 구름 베어링 중 하중 지지 능력이 상대적으로 높은 구름 베어링이 로터에 더 근접하게 위치되므로, 회전축을 보다 안정적으로 지지할 수 있고, 로터의 흔들림을 최소화할 수 있다.
또한, 구름 베어링이 회전축과 임펠러와 로터의 조립체인 로터 어셈블리의 무게중심을 지지하거나 무게중심과 근접한 부분을 지지할 수 있어, 로터나 임펠러가 쳐지거나 흔들리는 것이 최소화되면서 안정적으로 회전될 수 있다.
또한, 로터 어셈블리가 저속으로 회전되는 동안 구름 베어링이 로터 어셈블리를 안정적으로 지지할 수 있다.
또한, 가스 베어링의 외경이 구름 베어링의 외경 보다 작아 가스 베어링의 크기가 클 경우 보다 경량화가 가능하고, 가스 베어링의 재료비를 절감할 수 있다.
도 1은 본 발명의 일 실시예에 따른 모터의 측면도,
도 2는 본 발명의 일 실시예에 따른 모터의 단면도,
도 3은 본 발명의 일 실시예에 따른 모터의 분해 사시도,
도 4는 본 발명의 일 실시예에 따른 로터 어셈블리의 단면도,
도 5는 본 발명의 일 실시예에 따른 구름 베어링과, 가스 베어링과, 베어링 하우징이 확대 도시된 단면도이며,
도 6은 본 발명의 일 실시예에 따른 가스 베어링이 확대 도시된 사시도,
도 7은 본 발명의 다른 실시예에 따른 로터 어셈블리의 단면도이다.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다.
도 1은 본 발명의 실시예에 따른 모터의 측면도이고, 도 2는 본 발명의 실시예에 따른 모터의 단면도이며, 도 3은 본 발명의 실시예에 따른 모터의 분해 사시도이고, 도 4는 본 발명의 실시예에 따른 로터 어셈블리의 단면도, 도 5는 본 발명의 실시예에 따른 구름 베어링과, 가스 베어링과, 베어링 하우징이 확대 도시된 단면도이며, 도 6은 본 발명의 실시예에 따른 가스 베어링이 확대 도시된 사시도이다.
모터는 회전축(1)과, 로터(2)와, 스테이터(3), 임펠러(4)와, 베어링 하우징(5)와, 구름 베어링(6) 및 가스 베어링(7)을 포함한다. 그리고, 모터는 그 외관을 형성하는 모터 바디(8)를 더 포함할 수 있다.
모터 바디(8)의 내부에는 임펠러(4)가 수용되는 임펠러공간(S1)이 형성될 수 있다. 그리고, 모터 바디(8)의 내부에는 로터(2) 및 스테이터(3)가 수용되는 모터공간(S2)이 형성될 수 있다.
모터 바디(8)에는 공기가 임펠러공간(S1)으로 흡입되는 흡입구(91)가 형성될 수 있다. 그리고, 모터 바디(8)에는 모터공간(S2)의 공기가 모터의 외부로 배출되는 배출구(101)가 형성될 수 있다.
모터 바디(8)는 단일의 부재로 형성되는 것이 가능하고, 복수개 부재의 결합체로 구성되는 것도 가능하다.
모터 바디(8)가 복수개 부재의 결합체일 경우, 모터 바디(8)는 인렛 바디(9)와, 모터 하우징(10)를 포함할 수 있다.
인렛 바디(9)에는 공기가 흡입되는 흡입구(91)가 형성될 수 있다. 인렛 바디(9)는 임펠러(4)의 외둘레를 둘러싸게 배치될 수 있다. 인렛 바디(9)의 내부에는 임펠러(4)가 회전 가능하게 수용되는 임펠러 공간(S1)이 형성될 수 있다.
인렛 바디(9)는 흡입구(91)의 반대편이 모터 하우징(10)과 결합될 수 있다. 인렛 바디(9)는 모터 하우징(10)의 외둘레 전부 또는 외둘레 일부를 둘러쌀 수 있다.
모터 하우징(10)은 스테이터(3)의 외둘레를 둘러쌀 수 있다. 모터 하우징(10)의 내부에는 회전축(1)과 로터(2) 및 스테이터(3)가 수용되는 모터 공간(S2)이 형성될 수 있다. 모터 하우징(10)에는 임펠러(4)에 의해 유동된 후 모터 공간(S2)를 유입된 공기가 모터 바디(8)의 외부로 배출되는 토출구(101)가 형성될 수 있다. 토출구(101)는 흡입구(91)의 반대편에 형성될 수 있다.
모터 하우징(10)은 중공 형상일 수 있다. 본 실시예의 모터는 회전축(1)이 모터 하우징(10)에 지지되지 않고, 모터 하우징(10)은 회전축(1)을 지지하기 위한 별도의 회전축 서포터를 포함하지 않을 수 있다.
회전축(1)은 모터공간(S2)에서 임펠러공간(S1)으로 길게 연장되게 배치될 수 있다. 회전축(1)의 일단(1A)은 모터공간(S2)에 위치할 수 있고, 회전축(1)의 타단(1B)는 임펠러 공간(S2)에 위치할 수 있다.
회전축(1)의 일단(1A)과 회전축(1)의 타단(1B) 각각은 모터 바디(8) 및 베어링 하우징(5)에 지지되지 않는 자유단일 수 있다. 회전축(1)은 그 일단(1A)과 타단(1B) 사이가 복수개 베어링(6)(7)에 의해 지지될 수 있다.
회전축(1)의 일단(1A)는 로터(2)와 임펠러(4) 중 로터(2)에 근접할 수 있고, 로터측 자유단일 수 있다.
회전축(1)의 타단(1B)는 로터(2)와 임펠러(4) 중 임펠러(4)에 더 근접할 수 있고, 임펠러측 자유단일 수 있다.
회전축(1)은 도 2를 참조하면, 임펠러(4)가 결합되는 임펠러 결합부(16)와, 로터(2)가 결합되는 로터 결합부(17)를 포함할 수 있다. 그리고, 회전축(1)은 복수개 베어링(6)(7)에 의해 지지되는 지지부(19, 도 2 참조)를 더 포함할 수 있다. 이러한 지지부(19)는 로터 결합부(17)과, 임펠러 결합부(16)의 사이에 위치할 수 있다. 회전축(1)은 축 방향(L)으로 로터 결합부(17), 지지부(19) 및 임펠러 결합부(16)의 순서일 수 있다.
임펠러 결합부(16)와 지지부(19)는 후술하는 소경부(12)를 구성할 수 있다. 그리고, 로터 결합부(17)는 후술하는 대경부(11)를 구성할 수 있다.
회전축(1)은 대경부(11)와, 소경부(12)를 포함할 수 있다. 대경부(11)와, 소경부(12)는 축 방향으로 연속될 수 있다. 소경부(12)는 대경부(11) 보다 직경이 작은 부분일 수 있다.
대경부(11)는 로터(2)가 장착되는 부분으로서, 그 외경이 소경부(12)의 외경 보다 클 수 있다. 대경부(11)는 회전축(1)의 일단(1A)을 포함할 수 있다. 대경부(11)는 모터공간(S2)에 위치할 수 잇다.
대경부(11)의 축 방향 일단(11A) 외경은 구름 베어링(6)의 내륜(61) 내경 보다 클 수 있다. 이 경우, 구름 베어링(6)의 내륜(61)은 축 방향(L)으로 대경부(11)의 일단(11A)에 걸릴 수 잇다. 대경부(11)의 축 방향 일단(11A)은 구름 베어링(6)의 내륜(61)과 접촉될 수 있고, 구름 베어링(6)은 대경부(11)의 축 방향 일단(11A)에 걸려 로터(2)를 향해 슬라이드되지 않는다.
대경부(11)는 로터(2)가 결합되는 로터 결합부(17)를 포함할 수 있다. 로터 결합부(17)의 외둘레면은 로터(2)에 의해 둘러싸일 수 있다. 로터 결합부(17)는 회전축(1)의 일단(1A)을 포함할 수 있다.
대경부(11)는 구름 베어링(6)과 로터(2)를 이격시키는 스페이서(20)를 더 포함할 수 있다. 스페이서(20)는 대경부(11)의 축 방향 일단(11A)을 포함할 수 있다. 스페이서(20)는 소경부(12)와 단차를 갖는 외경을 갖을 수 있다. 스페이서(20)는 로터 결합부(17)와 단차를 갖는 외경을 갖을 수 있다.
스페이서(20)는 구름 베어링(6)의 내륜(61)이 축 방향으로 걸리는 걸림턱을 포함할 수 있고, 이러한 걸림턱은 구름 베어링(6)의 내륜(61)과 로터(2)의 사이에 위치되게 돌출될 수 잇다.
소경부(12)는 대경부(11)의 축 방향 일단(11A)에서 축 방향으로 연장될 수 있다. 소경부(12)는 베어링 하우징(5)의 통공(H)을 관통할 수 있다.
소경부(12)는 임펠러(4) 및 구름 베어링(6)이 장착되는 부분일 수 있다. 소경부(12)는 회전축(1)의 타단(1B)을 포함할 수 있다. 소경부(12)의 일부는 모터 공간(S1)에 위치될 수 있고, 소경부(12)의 나머지는 임펠러공간(S1)에 위치될 수 있다.
소경부(12)는 반경 방향(R)으로 구름 베어링(6) 및 가스 베어링(7) 각각을 향할 수 있다.
소경부(12)는 도 5에 도시된 바와 같이, 구름 베어링(6)의 내륜(61)이 접촉되는 내륜 접촉부(13)와, 가스 베어링(7)을 반경 방향(R)으로 향하는 가스 베어링 대향부(14)를 포함할 수 있다. 이 경우, 내륜 접촉부(13)의 외경(D4)과 가스 베어링 대향부(14)의 외경(D4)은 동일할 수 있다.
내륜 접촉부(13)과 가스 베어링 대향부(14)가 단차를 갖게 되면, 회전축(1)의 제조공정은 복잡할 수 있는데, 반면에, 내륜 접촉부(13)의 외경(D4)과 가스 베어링 대향부(14)의 외경(D4)이 동일하면, 회전축(1)의 제조공정이 단순할 수 있다.
소경부(12)는 도 4에 도시된 바와 같이, 베어링 하우징(5)의 후술하는 연결부(53)를 반경 방향(R)으로 향하는 연결부 대향부(15)를 더 포함할 수 있다. 연결부 대향부(15)의 외둘레면과 연결부(53)의 내둘레면 사이에는 빈 공간(S3)이 형성될 수 있다. 이러한 빈 공간(S3)는 가스 베어링(7)의 내둘레면과 회전축(1)의 외둘레면 사이로 유,출입되는 공기의 통로로 기능할 수 있다.
한편, 소경부(12)는 도 4에 도시된 바와 같이, 임펠러(4)가 결합되는 임펠러 결합부(16)을 더 포함할 수 있다.
소경부(12)는 내륜 접촉부(13)부터 임펠러 결합부(16)까지 그 외경이 일정할 수 있고, 이 경우, 회전축(1)의 제조 공정은 단순할 수 있다.
내륜 접촉부(13)과 연결부 대향부(15)와 가스 베어링 대향부(14)는 지지부(19)를 구성할 수 있다. 즉, 소경부(12)는 크게 임펠러 연결부(16)와, 지지부(19)를 포함할 수 있고, 지지부(19)는 축 방향(L)으로 일렬로 위치되는 내륜 접촉부(13)과 연결부 대향부(15)와 가스 베어링 대향부(14)를 포함할 수 있다.
소경부(12)는 베이링 지지부(19)의 외경이 일정할 수 있다. 이 경우, 회전축(1)의 제조공정은 단순화될 수 있다.
로터(2)는 회전축(1)에 장착될 수 있다. 로터(2)는 회전축(1)의 외둘레를 둘러싸게 배치될 수 있다. 로터(2)는 회전축(1) 중 모터 공간(S2)에 수용되는 부분에 장착될 수 있다.
로터(2)는 구름 베어링(6)과 축 방향(L)으로 이격될 수 있다.
로터(2)는 마그네트(21)를 포함할 수 있다. 로터(2)는 마그네트(21)가 장착되는 마그네트 코어(22)를 더 포함할 수 있다. 로터(2)는 축 방향(L)으로 이격된 한 쌍의 엔드 플레이트(23)(24)를 더 포함할 수 있다.
로터(2)는 회전축(1)과 임펠러(4) 및 구름 베어링(6)과 함께 로터 어셈블리(A)를 구성할 수 있다. 로터(2)는 임펠러(4) 보다 더 무거울 수 있다. 이러한 로터 어셈블리(A)의 무게 중심은 임펠러(4)와 로터(2) 중 로터(2)에 더 근접할 수 있다.
스테이터(3)는 모터 바디(8)의 내둘레에 배치될 수 있다. 스테이터(3)는 모터 하우징(10)의 내둘레에 배치될 수 있다. 스테이터(3)는 스테이터 코어(31)와, 스테이터 코어에 권선된 코일(32)을 포함할 수 있다.
임펠러(4)는 회전축(1)에 장착될 수 있다. 임펠러(4)는 로터(2)와 이격되게 장착될 수 있다. 임펠러(4)는 로터(2)와 축 방향(L)으로 이격될 수 있다. 임펠러(4)는 로터(2) 보다 경량의 재질일 수 있고, PEEK 등의 고강도 합성수지 재질로 성형될 수 있다.
임펠러(4)는 축 방향(L)으로 에어 등의 가스를 흡입한 후 원심 방향(R)으로 토출하는 원심형 임펠러일 수 있다. 임펠러(4)는 허브(42)와, 허브(42)의 외둘레에 형성된 복수개의 블레이드(44)를 포함할 수 있다.
모터는 임펠러(4)에서 유동된 공기를 안내하는 디퓨져(46, 도 2 및 도 3 참조)을 더 포함할 수 있다. 디퓨져(46)는 모터 바디(8) 특히, 인렛 바디(9)의 내부에 위치될 수 있고, 그 외둘레가 모터 바디(8) 특히, 인렛 바디(9)의 내둘레면을 향할 수 있다.
디퓨져(46)와 인렛 바디(9)의 사이에는 임펠러(4)에 의해 유동된 공기 등의 가스를 모터공간(S2)으로 안내하는 통로가 형성될 수 있다.
베어링 하우징(5)는 임펠러(4)와 로터(2) 사이에 위치할 수 있다. 베어링 하우징(5)에는 회전축(1)이 관통되는 통공(H)이 형성될 수 있다. 베어링 하우징(5)은 회전축(1) 일부(즉, 지지부(19))의 외둘레를 둘러쌀 수 있다. 베이링 하우징(5)은 회전축(1) 중 소경부(12)의 일부 외둘레를 둘러쌀 수 있다. 베이링 하우징(5)의 최소 내경은 소경부(12)의 외경 보다 클 수 있다.
베어링 하우징(5)은 모터 바디(1)와 일체로 형성되는 것도 가능하고, 모터 바디(1)와 별도로 제조된 후, 모터 바디(1)에 결합되는 것도 가능하다. 베어링 하우징(5)이 모터 바디(1)와 일체로 형성될 경우, 조립 공차는 최소화될 수 있다.
베어링 하우징(5)은 모터 바디(1)와 별도로 제조될 경우, 스크류 등의 체결부재로 모터 바디(8) 특히, 인렛 바디(9)나 모터 하우징(10)에 체결될 수 있다.
베어링 하우징(5)는 복수개 베어링(6)(7)을 이격되게 지지하는 하우징부(54, 도 3 내지 도 5 참조)를 포함할 수 있다. 베어링 하우징(5)은 모터 바디(1)에 체결되는 체결부(55, 도 3 참조)를 더 포함할 수 있다. 베어링 하우징(5)은 하우징부(54)와 체결부(55)를 잇는 복수개의 브릿지부(56, 도 3 참조)을 더 포함할 수 있다.
회전축(1)이 관통되는 통공(H)은 하우징부(54)에 형성될 수 있다. 하우징부(54)의 내부에는 복수개의 베어링(6)(7)이 수용되는 베어링 공간이 형성될 수 있다.
모터는 회전축(1)과 상시 접촉된 접촉식 베어링과, 회전축(1)과 상시 접촉되지 않는 비접촉식 베어링을 포함할 수 있고, 이러한 접촉식 베어링과, 비접촉식 베어링의 조합으로 회전축(1)을 지지할 수 있다.
베어링 하우징(5)은 구름 베어링(6) 및 가스 베어링(7)을 지지할 수 있고, 구름 베어링(6) 및 가스 베어링(7)은 베어링 하우징(5)에 지지된 상태에서 회전축(1)을 회전 가능하게 지지할 수 있다.
구름 베어링(6)은 접촉식 베어링의 일예일 수 있다. 구름 베어링(6)은 회전축(1)을 축 방향(L) 및 반경 방향(R)의 2방향으로 지지할 수 있는 베어링일 수 있다.
본 실시예는 구름 베어링(6)과 가스 베어링(7)의 조합에 의해 회전축(1)을 지지할 수 있는데, 본 실시예는 2개의 구름 베어링(6)이 회전축(1)을 지지하는 경우 보다 저항이 감소될 수 있고, 고속 회전하는 회전축(1)을 보다 안정적으로 지지할 수 있다.
가스 베어링(7)은 비접촉식 베어링의 일예일 수 있다. 가스 베어링(7)은 회전축(1)의 회전속도가 높을수록 하중 지지 능력도 높은 특성을 갖고 있고, 본 실시예와 같이, 복수개 베어링 중 적어도 하나가 가스 베어링(7)이면, 복수개 베어링 모두가 구름 베어링일 경우 보다, 고속으로 회전하는 회전축(1)을 보다 안정적으로 지지할 수 있다.
가스 베어링(7)은 회전축(1)을 축 방향(L)으로 지지하는 스러스트 가스 베어링이거나, 회전축(1)을 반경 방향(R)으로 지지하는 레이디얼 가스 베어링(예를 들면, 저널 가스 베어링)일 수 있다. 모터에 2개의 가스 베어링, 즉, 가스 레이디얼 베어링과 가스 스러스트 베어링을 각각 설치할 경우, 회전축(1)의 길이 및 모터의 전체 길이가 증대될 수 있다.
모터는 경량화 및 소형화를 위해 최소 개수의 가스 베어링(7)을 포함하는 것이 바람직하다.
구름 베어링(6)은 회전축(1)을 축 방향(L) 및 반경 방향(R)의 2방향으로 지지할 수 있는 모터이므로, 본 실시예는 구름 베어링(6)과 레이디얼 가스 베어링(7)에 의해 회전축(1)을 안정적으로 지지할 수 있다.
모터는 회전축(1)이 1만 RPM 이상으로 고속 회전될 수 있는 고속 모터일 수 있고, 상기와 같이, 구름 베어링(6)과, 레이디얼 가스 베어링(7)의 조합에 의해 회전축(1)을 지지할 경우, 모터는 회전축(1)을 안정적으로 지지할 수 있다.
구름 베어링(6)은 회전축(1)과 상시 접촉된 상태에서, 회전축(1)의 축 방향 하중과 반경 방향 하중을 지지하고, 레이디얼 가스 베어링(7)은 회전축(1)과 이격된 상태에서, 회전축(1)의 고속 회전시, 구름 베어링(6)과 함께 회전축(1)의 반경 방향 하중을 지지할 수 있다.
한편, 레이디얼 가스 베어링(7)과 구름 베어링(6)의 조합 대신에, 스러스터 가스 베어링(7)과 구름 베어링(6)의 조합도 가능하나, 이 경우, 모터의 외경 및 크기가 증대될 수 있고, 모터의 컴팩트화를 위해서는 레이디얼 가스 베어링(7)과 구름 베어링(6)의 조합이 바람직하다.
한편, 모터가 회전축(1)이 1만 RPM 이상으로 고속 회전되는 고속 모터일 경우, 반경 방향으로 하중을 지지하는 능력은 축 방향으로 하중을 지지하는 능력 보다 중요할 수 있고, 회전축(1)이 1만 RPM 이상으로 고속 회전될 수 있는 고속 모터일 경우, 레이디얼 가스 베어링(7)과 구름 베어링(6)의 조합으로 회전축(1)을 지지하는 것이 가장 바람직하다.
모터는 비접촉 베어링의 일예인 가스 베어링(7)과 접촉식 베어링의 일예인 구름 베어링(6)이 회전축(1) 중 로터(2)와 임펠러(4)의 사이에 위치하는 부분을 지지할 수 있다. 이 경우, 구름 베어링(6)과 가스 베어링(7)은 베어링 하우징(5)에 함께 장착될 수 있고, 모터의 부품수는 최소화될 수 있다.
베어링 하우징(5)은 구름 베어링 하우징부(51)와, 가스 베어링 하우징부(52)를 포함할 수 있다.
구름 베어링 하우징부(51)는 구름 베어링(6)의 외둘레면을 둘러쌀 수 있고, 구름 베어링(6)을 지지 및 보호할 수 있다. 구름 베어링 하우징부(51)는 축 방향(L)으로 로터(2)를 향할 수 있다.
구름 베어링(6)의 외륜(62)은 구름 베어링 하우징부(51)의 내둘레면에 압입되어 밀착될 수 있고, 구름 베어링 하우징부(51)의 내둘레면에 고정될 수 있다.
가스 베어링 하우징부(52)는 가스 베어링(7)의 외둘레면을 둘러쌀 수 있고, 가스 베어링(7)을 지지 및 보호할 수 있다. 가스 베어링 하우징부(52)은 축 방향(L)으로 임펠러(4)를 향할 수 있다. 가스 베어링 하우징부(52)은 임펠러(4)와 축 방향(L)으로 이격될 수 있고, 가스 베어링 하우징부(52)와 임펠러(4)의 사이에는 공기 등의 가스가 가스 베어링 하우징부(52)의 내측으로 유출입되기 위한 틈이 형성될 수 있다. 이러한 틈은 가스 베어링(7)과 회전축(1) 사이의 베어링 간극(G)과 축 방향(L)은 연통될 수 있다.
베어링 하우징(5)에는 가스 베어링(7)의 축방향 일단이 걸리는 제1걸림턱이 돌출될 수 있고, 가스 베어링(7)의 축방향 타단이 걸리는 제2걸림턱이 돌출될 수 있다.
제1걸림턱과 제2걸림턱은 회전축(1)에 의해 마모되지 않는 폭으로 돌출될 수 있고, 회전축(1)과 비접촉되는 폭으로 돌출될 수 있다. 제1걸림턱과 제2걸림턱 각각의 돌출 폭은 가스 베어링(7)의 두께 보다 얇을 수 있다. 이 경우, 회전축(1)의 외둘레면은 가스 베어링(7)의 코팅층(75)에 접촉될 수 있고, 회전축(1)이 제1걸림턱과 제2걸림턱과 접촉되어 마모되는 것은 최소화될 수 있다.
제1걸림턱과 제2걸림턱 각각의 돌출 폭은 가스 베어링(7)의 두께의 50% 내지 90%일 수 있다. 제1걸림턱과 제2걸림턱의 돌출 폭이 너무 작을 경우, 가스 베어링(7)이 제1걸림턱과 제2걸림턱 중 어느 하나를 타고 넘으면서 베어링 하우징(5)의 외부로 쉽게 빠져나올 수 있다.
반면에, 제1걸림턱과 제2걸림턱 각각의 돌출 폭이 가스 베어링의 두께의 50% 내지 90% 일 경우, 가스 베어링(7)은 제1걸림턱과 제2걸림턱 사이에 축 방향(L)으로 안정되게 지지 및 유지될 수 있다.
가스 베어링 하우징부(52)은 구름 베어링 하우징부(51) 보다 내경이 작을 수 있다. 가스 베어링 하우징부(52)는 구름 베어링(6) 보다 크기가 작은 것이 바람직하고, 가스 베어링 하우징부(52)의 내경은 구름 베어링 하우징부(51)의 내경 보다 작을 수 있다.
베어링 하우징(5)은 연결부(53)을 더 포함할 수 있다. 연결부(53)는 구름 베어링 하우징부(51)와 가스 베어링 하우징부(52)를 잇게 형성될 수 있다.
구름 베어링(6)과 가스 베어링(7)은 축 방향(L)으로 이격되고, 구름 베어링 하우징부(51)와 가스 베어링 하우징부(52)도 이격되며, 연결부(53)는 이러한 구름 베어링 하우징부(51)와 가스 베어링 하우징부(52) 사이에서 베어링 하우징부(51)와 가스 베어링 하우징부(52)를 연결할 수 있다.
한편, 연결부(53)는 구름 베어링(6)의 외륜(62)이 축 방향(L)이 걸리게 형성될 수 있다. 연결부(53)의 내경은 구름 베어링(6)의 외륜(62) 외경 보다 작을 수 있다. 연결부(53)의 내경은 구름 베어링 하우징부(51) 내경 보다 작고, 가스 베어링 하우징부(52)의 내경 보다 클 수 있다.
연결부(53)의 내둘레와 회전축(1)의 외둘레면 사이에는 빈 공간(S3)이 형성될 수 있다. 이러한 빈 공간(S3)는 가스 베어링(7)과 회전축(1) 사이의 베어링 간극(G)과 축 방향(L)으로 연통될 수 있다.
구름 베어링 하우징부(51)와, 가스 베어링 하우징부(52) 및 연결부(53)는 종류가 상이한 복수개 베어링(6)(7)을 이격되게 지지하는 하우징부(54)를 구성할 수 있다.
하우징부(54)에는 임펠러(4)에 의해 유동된 공기 중 일부를 베어링 간극(G)으로 안내하기 위한 별도의 에어통로가 형성될 수 있고, 이러한 에어통로의 일예는 하우징부(54)의 외부와 연결부(53)의 공간(S3)을 연통시키게 형성되거나, 하우징부(54)의 외부와 가스 베어링 하우징부(52)의 내부를 연통시키게 형성될 수 있다.
구름 베어링(6)과 가스 베어링(7)은 베어링 하우징(5)에 배치될 수 있다. 구름 베어링(6)과 가스 베어링(7)은 베어링 하우징(5)에 축 방향(L)으로 이격되게 배치될 수 있다.
구름 베어링(6)은 축 방향(L)으로 가스 베어링(7) 및 로터(2)의 사이에 위치될 수 있고, 가스 베어링(7) 및 로터(2) 각각과 이격될 수 있다.
가스 베어링(7)은 축 방향(L)으로 구름 베어링(6)과 임펠러(4)의 사이에 위치될 수 있고, 구름 베어링(6)과 임펠러(4) 각각과 이격될 수 있다.
로터(2)와, 임펠러(4)와 구름 베어링(6) 및 가스 베어링(7)은 축 방향(L)으로 로터(2)와 구름 베어링(6)과 가스 베어링(7)과 임펠러(4) 순서로 배치될 수 있다.
구름 베어링(6)은 회전축(1)에 고정된 내륜(61)과, 외륜(62) 및 구름 부재(63)을 포함할 수 있다.
구름 베어링(6)은 회전축(1)과 상시 접촉된 상태에서 회전축(1)을 지지하는 접촉식 베어링일 수 있고, 회전축(1)이 저속으로 회전될 때, 가스 베어링(7) 보다 하중 지지 능력이 높다.
로터(2) 및 임펠러(4)가 회전축(1)에 장착되었을 때, 회전축(1)과 로터(2) 및 임펠러(4)은 로터 어셈블리(A, 도 4 참조)를 구성할 수 있고, 이러한 회전축(1)과 로터(2) 및 임펠러(4)는 함께 회전될 수 있다.
로터(2)는 임펠러(4) 보다 무거울 수 있고, 이 경우, 로터 어셈블리(A)의 무게중심(C)은 임펠러(4) 보다 로터(3)에 더 근접할 수 있다.
모터는 가스 베어링(7)과 구름 베어링(6) 중 하중 지지 능력이 더 높고 항상 회전축(1)에 접촉된 베어링을 로터(2)에 더 가깝게 배치시키는 것이 바람직하다. 즉, 모터는 구름 베어링(6)이 가스 베어링(7) 보다 로터(2)에 더 가깝게 배치되는 것이 바람직하다. 이 경우, 구름 베어링(6)과 가스 베어링(7)은 로터 어셈블리(A)를 보다 안정적으로 지지할 수 있다.
구름 베어링(6)은 로터(2)와 임펠러(4) 중 로터(2)에 더 가까울 수 있다. 구름 베어링(6)과 로터(2) 사이의 거리(L2)는 구름 베어링(6)과 임펠러(4) 사이의 거리 보다 짧을 수 있다.
구름 베어링(6)과 가스 베어링(7) 각각은 로터 어셈블리(A)의 무게중심(C)에 근접한 위치에서 로터 어셈블리(A)를 지지하는 것이 바람직하다. 이 경우, 로터 어셈블리(A)를 보다 안정적으로 지지할 수 있다.
구름 베어링(6)은 로터 어셈블리(A)의 무게중심(C)이 위치한 부분을 지지하거나, 로터 어셈블리(A)의 무게중심(C)이 위치하는 부분과 근접한 부분을 지지하는 것이 바람직하다.
구름 베어링(6)은 로터 어셈블리(A)의 무게 중심(C)이 위치하는 부분과 로터 결합부(17)의 사이에 위치하는 부분과 접촉되는 것이 바람직하다.
로터 어셈블리(A)의 무게중심(C)과 구름 베어링(7) 사이의 거리(L3)는 로터 어셈블리(A)의 무게중심(C)과 가스 베어링(7) 사이의 거리(L4) 보다 짧을 수 있다.
로터 어셈블리(A)의 무게중심(C)은 지지부(19 도 2 참조)에 위치하는 것이 바람직하고, 회전축(1) 중 내륜 접촉부(13)와 가스 베어링 대향부(14)의 사이에 위치하는 부분(즉, 연결부 대향부(15)))이거나 내륜 접촉부(13)일 수 있다.
모터의 일예는 로터 어셈블리(A)의 무게중심(C)과 내륜 접촉부(13) 사이의 거리(L3)가 로터 어셈블리(A)의 무게중심(C)과 가스 베어링 대향부(14) 사이의 거리(L4) 보다 짧을 수 있다. 이 경우, 구름 베어링(6)은 가스 베어링(7) 보다 로터 어셈블리(A)의 무게중심(C)에 더 가깝게 배치될 수 있다.
모터의 다른 예는 로터 어셈블리(A)의 무게중심(C)과 내륜 접촉부(13) 사이의 거리(L3)가 로터 어셈블리(A)의 무게중심(C)과 가스 베어링 대향부(14) 사이의 거리(L4)와 같을 수 있다. 이 경우, 구름 베어링(6)과 가스 베어링(7)는 로터 어셈블리(A)의 무게중심(C)과 동일한 거리만큼 이격된 상태에서, 회전축(1)을 지지할 수 있다.
구름 베어링(6)은 대경부(11)의 일단(11A)에 축 방향(L)으로 걸릴 수 있다. 구름 베어링(6)의 내륜(61)은 대경부(11)의 일단(11A)에 접촉되어 걸릴 수 있다.
가스 베어링(7)은 로터(2)와 임펠러(4) 중 임펠러(4)에 더 가까울 수 있다. 가스 베어링(7)은 구름 베어링(6)과 임펠러(4) 중 임펠러(4)에 더 가까울 수 있다. 도 4를 참조하면, 가스 베어링(7)과 임펠러(4) 사이의 축 방향 거리(L1)는 구름 베어링(6)과 로터(2) 사이의 축 방향 거리(L2) 보다 짧을 수 있다. 그리고, 도 4 를 참조하면, 가스 베어링(7)은 로터 어셈블리(A)의 무게중심(C)과 임펠러 결합부(16) 사이를 향할 수 있다.
가스 베어링(7)은 오일레스 베어링일 수 있다. 가스 베어링(7)은 윤활성과 내마모성이 뛰어난 저마찰 코팅층이 형성된 베어링일 수 있다. 저마찰 코팅층은 가스 베어링(7)의 내둘레에 형성될 수 있다.
에어 등의 가스는 가스 베어링(7)의 저마찰 코팅층과 회전축(1)의 외둘레면 사이에서 회전축(1)을 지지할 수 있다.
가스 베어링(7)은 동압 가스 베어링일 수 있고, 그 주변에서 가스 베어링(7)의 내둘레면과 회전축(1)의 사이로 유입된 공기 등의 가스에 의해 회전축(1)을 지지할 수 있다.
회전축(1)이 회전될 때, 회전축(1)의 외둘레에는 기류의 속도 성분이 발생되고, 회전축(1)은 가스 베어링(7)의 내측 위치 중 가스 베어링(7)의 일측을 향해 편심되게 위치될 수 있다. 회전축(1)이 편심될 때, 회전축(1)과 가스 베어링(7) 사이에는 회전축(1)이 편심되지 않을 때의 베어링 간극보다 좁은 틈이 형성되게 되고, 가스 베어링(7) 내부에 위치하는 공기 등의 가스는 이러한 좁은 틈을 향해 흡인될 수 있고, 가스 베어링(7) 외부의 공기는 가스 베어링(7)과 회전축(1)의 사이로 흡인될 수 있다.
가스 베어링(7)은 회전축(1)의 외둘레면과 이격되는 내면(71)과, 베어링 하우징(5)에 형성된 가스 베어링 하우징부(52)에 접촉되는 외면(72)을 갖을 수 있다.
가스 베어링(7)은 축 방향(L)으로 긴 슬릿(73, 도 6 참조)이 일측에 형성될 수 있다. 슬릿(73)은 가스 베어링(7)에 반경 방향으로 개방될 수 있다.
가스 베어링(7)은 구름 베어링(6)의 두께 보다 얇은 금속 판체가 단면 형상이 우호 형상이나 고리 형상이 말려서 제작될 수 있고, 이렇게 우호 형상이나 고리 형상으로 말린 상태에서 가스 베어링 하우징부(52)에 삽입되어 수용될 수 있다.
상기와 같이, 금속 판체를 말아서 가스 베어링(7)을 제작하면, 가스 베어링(7)의 두께 산포 관리가 쉬울 수 있고, 회전축(1)의 외둘레면과 베어링 하우징(5)의 내둘레면을 정밀하게 가공하면, 회전축(1)과 가스 베어링(7) 사이의 베어링 간극(G)은 제조자가 원하는 수준으로 관리될 수 있다.
가스 베어링(7)은 슬릿(73)이 형성된 부시(74)와, 부시(74)의 내면에 도포된 코팅층(75)을 포함할 수 있다.
코팅층(75)은 PTFE(Polytetrafluoroethylene), DLC(Diamond like carbon), lubrite, Mos2, D10, Boron nitride, Ceramic powder, Soap이나 구리나 납 등의 Soft metal 등일 수 있다.
가스 베어링(7)의 내면(71)은 코팅층(75) 중 회전축(1)의 외둘레면을 향하는 면일 수 있고, 가스 베어링(7)의 외면(72)은 부시(74) 중 베어링 하우징(5)의 내둘레면을 향하는 면일 수 있다.
코팅층(75)는 가스 베어링(7)이 우호 형상이나 고리 형상으로 말리기 이전에 금속 판체인 상태일 때, 금속 판체의 일면에 도포될 수 있고, 이 경우 코팅층(75)의 두께 균일도는 높게 되고, 가스 베어링(7)은 전체적으로 두께 산포 관리가 용이할 수 있다.
모터 제조방법의 일예는 판체 형상인 금속 박막의 일면에 코팅층(75)을 도포하는 단계와; 금속 박막 중 코팅층(75)이 도포된 일면이 내측에 위치되게 금속 박막을 호 형상으로 말아 코팅층(75)이 형성된 부시(74)을 제조하는 단계와; 이러한 가스 베어링(7)을 베어링 하우징(5)에 삽입하는 단계와; 가스 베어링(7)의 내측으로 회전축(1)을 관통시키는 단계를 포함할 수 있다.
부시(74)은 니켈 함량이 크롬 함량 보다 많은 니켈 크롬 합금일 수 있다. 부시(74)은 일측에 슬릿(73)이 형성된 부시일 수 있고, 가스 베어링(7)은 비접촉식 부시 베어링일 수 있다.
코팅층(75)는 부시(74)가 우호 형상이나 고리 형상으로 말리기 이전인 판체 형상인 상태일 때, 금속 판체의 일면에 도포될 수 있고, 이 경우 코팅층(75)의 두께 균일도는 높고, 가스 베어링(7)은 전체적으로 두께 산포 관리가 용이할 수 있다.
가스 베어링(7)는 베어링 간극(G)에 위치하는 가스 특히 공기에 의해 윤활작용을 하는 베어링일 수 있고, 회전축(1)과 비접촉된 상태에서 회전축(1)을 지지하는 비접촉식 오일레스 베어링일 수 있다.
한편, 가스 베어링(7)은 회전축(1)의 중심에서 임펠러(4)측으로 편심된 위치를 향할 수 있다. 가스 베어링(7)은 로터(2)와 임펠러(4) 중 임펠러(4)에 더 가까울 수 있다. 가스 베어링(7)은 구름 베어링(6)과 임펠러(4) 중 임펠러(4)에 더 가까울 수 있다. 가스 베어링(7)과 임펠러(4) 사이의 축 방향 거리(L1)는 구름 베어링(6)과 로터(2) 사이의 축 방향 거리(L2) 보다 짧을 수 있다. 가스 베어링(7)은 회전축(1)의 무게중심과 회전축(1)의 타단(1B) 사이를 향할 수 있다. 가스 베어링(7)은 회전축(1)의 무게중심과 임펠러 연결부(16) 사이를 향할 수 있다.
임펠러(4)의 고속 회전시, 임펠러(4)에 의해 유동된 공기 중 일부는 베어링 하우징(5)의 주변에서, 베어링 간극(G)으로 유입될 수 있다.
임펠러(4)의 고속 회전시, 베어링 하우징(5) 주변의 공기는 베어링 하우징(5)의 내부 특히, 가스 베어링(7)의 내면과 회전축(1)의 외둘레면 사이의 베어링 간극(G)으로 유입될 수 있고, 베어링 간극(G) 내 공기는 회전축(1)을 부양시킬 수 있다.
가스 베어링(7)은 회전축(1)의 외둘레면과 이격되는 내면(71)과, 베어링 하우징(5)에 형성된 가스 베어링 하우징부(52)에 접촉되는 외면(72)을 갖을 수 있다.
가스 베어링(7)은 베어링 간극(G)을 일정하게 유지할 수 있는 형상 및 두께로 제조되는 것이 바람직하고, 베어링 하우징(5)에 장착되었을 때, 그 형상을 유지할 수 있는 탄성력을 갖는 것이 바람직하다.
가스 베어링(7)의 두께는 베어링 하우징(5)의 내면과 회전축(1)의 외면 사이 간극의 50% 이상이고, 0.3mm 이하이다.
가스 베어링(7)은 그 두께가 너무 두꺼울 경우, 가스 베어링(7)의 두께 산포가 클 수 있고, 베어링 간극(G)이 일정하지 못하고 편차가 클 수 있다.
가스 베어링(7)의 최적 베어링 간극(G)은 가스 베어링 대향부(14)의 외경에 따라 상이할 수 있고, 가스 베어링(7)이 가스 베어링 기능을 충분하게 수행하기 위한 가스 베어링(7)의 두께는 가스 베어링 대향부(14) 외경의 0.004배 내지 0.0125배일 수 있다. 회전축(1) 중 가스 베어링 대향부(14)의 외경이 4mm 내지 5mm일 경우, 베어링 간극(G)은 0.02mm 내지 0.05mm 일 수 있다.
가스 베어링(7)은 이러한 베어링 간극(G)을 확보할 수 있는 두께로 제조되는 것이 바람직하다.
통상적으로 두께가 1mm 미만인 가스 베어링(7)의 두께 산포는 약 3% 이내인데, 가스 베어링(7)의 두께가 0.3mm 초과하여 너무 두꺼우면, 가스 베어링(7)의 두께 산포는 0.01mm 정도 될 수 있고, 이러한 두께 산포인 0.01mm는 베어링 간극(G)의 20%~50%에 해당될 수 있고, 가스 베어링(7) 성능 편차가 심할 수 있다.
또한, 가스 베어링(7)의 두께가 0.3mm 초과일 경우, 가스 베어링(7)을 베어링 하우징(5) 내부에 삽입하기 위해 구부렸을 때, 소성 변형이 발생되어 베어링 하우징(5) 내면에 밀착되지 못하고 회전축(1)의 외둘레면에 접촉될 수 있는데, 가스 베어링(7) 중 소성 변형이 발생된 부분은 가스 베어링으로 기능할 수 없게 된다.
한편, 가스 베어링(7)의 두께는 베어링 하우징(5)의 내면과 회전축(1)의 외둘레면 사이 간극(G1)의 50% 이상일 경우, 가스 베어링(7)는 베어링 하우징(5)에 장착되었을 때, 그 일부가 다른 부분과 오버랩되지 못하고, 가스 베어링(7)은 그 전체가 최대한 베어링 하우징(5)에 밀착된 상태를 유지하면서, 베어링 간극(G) 오차가 최소화될 수 있다.
또한, 가스 베어링(7)의 두께가 0.1mm 이하로 너무 얇을 경우, 제조가 용이하지 못할 수 있다.
이를 위한 가스 베어링(7)의 적정 두께는 0.3mm 일 수 있고, 그 바람직한 적정 범위는 0.1mm 이상 0.3mm 이하일 수 있다.
즉, 가스 베어링(7)은 두께가 0.3mm 이하인 판체 형상인 금속 박막이 우호 형상이나 고리 형상으로 말려서 제작될 수 있고, 이렇게 우호 형상이나 고리 형상으로 말린 상태에서 베어링 하우징(5)에 삽입되어 수용될 수 있다.
한편, 도 5를 참조하면, 가스 베어링(7)의 외경(D1)은 구름 베어링(7)의 외경(D2) 보다 작을 수 있다. 가스 베어링(7)의 내경(D3)은 구름 베어링(7)의 내경(D4) 보다 클 수 있다. 여기서, 구름 베어링(7)의 외경(D2)은 외륜(62)의 외경일 수 있고, 구름 베어링(7)의 내경(D)는 내륜(61)의 내경일 수 있다.
가스 베어링(7)은 회전축(1)과 비접촉되는 비접촉식 베어링일 수 있고, 구름 베어링(6)은 내륜(61)의 내둘레면이 회전축(1)과 상시 접촉되는 접촉식 베어링일 수 있으며, 가스 베어링(7)의 내경(D3)은 구름 베어링(7)의 내경(D4) 보다 클 수 있다.
가스 베어링(7)은 회전축(1)과 베어링 간극(G)을 갖을 수 있다. 가스 베어링(7)의 내둘레면과 소경부(12)의 외면 사이에는 베어링 간극(G)이 형성될 수 있다. 베어링 간극(G)은 가스 베어링(7)의 내둘레면과 소경부(12)의 외면 사이의 틈으로 정의될 수 있다.
가스 베어링(7)는 베어링 간극(G)에 위치하는 가스 특히 공기에 의해 윤활작용을 하는 베어링일 수 있다. 가스 베어링(9)은 회전축(1)이 편심되지 않을 때, 회전축(1)과 비접촉된 상태에서 회전축(1)을 지지하는 비접촉식 오일레스 베어링일 수 있다.
가스 베어링(7)은 축 방향(L)으로 회전축(1)의 중심에서 임펠러(4)측으로 편심된 위치를 향할 수 있다. 즉, 가스 베어링(7)은 회전축(1)의 축 방향 중심과 회전축(1)의 타단(1B) 사이를 향할 수 있다.
임펠러(4)의 고속 회전시, 베어링 하우징(5) 주변의 공기는 베어링 하우징(5)의 내부 특히, 가스 베어링(7)의 내둘레면과 회전축(1)의 외둘레면 사이로 유입될 수 있고, 회전축(1)을 부양시킬 수 있다.
임펠러(4)의 고속 회전시, 임펠러(4)에 의해 유동된 공기 중 일부는 베어링 하우징(5)의 주변에서, 베어링 하우징(5)의 내부로 유입될 수 있다.
가스 베어링(7)의 축 방향 길이(L5)가 길 경우, 회전축(1) 중 에어 등의 가스에 의해 지지되는 영역은 증대되고, 축 방향 길이(L5)가 긴 가스 베어링(7)은 회전축(1)을 보다 신뢰성 높게 지지할 수 있다. 반면에, 가스 베어링(7)의 축 방향 길이(L5)가 너무 길 경우, 회전축(1)의 길이도 과도하게 길게 되며, 가스 베어링(7)은 적정 길이를 갖는 것이 바람직하다.
한편, 가스 베어링(7)과 구름 베어링(6) 사이의 거리(L7)가 길 경우, 회전축(1) 중 베어링 하우징(5)과, 구름 베어링(6)과, 가스 베어링(7)에 의해 지지되는 부분(즉, 지지부(19))의 길이는 증대되고, 회전축(1)은 안정적으로 지지될 수 있다.
한편, 가스 베어링(7)과 구름 베어링(6) 사이의 거리(L7)가 너무 길 경우, 회전축(1)의 길이도 과도하게 길게 되며, 가스 베어링(7)과 구름 베어링(6)는 회전축(1)을 안정적으로 지지할 수 있으면서 회전축(1)의 길이가 과도하게 길지 않아도 되는 적정 거리만큼 이격되는 것이 바람직하다.
도 5를 참조하면, 가스 베어링(7)의 축 방향 길이(L5)는 구름 베어링(6)의 축 방향 길이(L6) 보다 긴 것이 바람직하다. 그리고, 가스 베어링(7)과 구름 베어링(6) 사이의 거리(L7)는 가스 베어링(7)의 축 방향 길이(L5) 보다 짧은 것이 바람직하다.
상기와 같이 구성된 모터는 가스 베어링(7)과 회전축(1) 사이로 유입된 공기 및 구름 베어링(6)에 의해 가스 베어링 대향부(14) 및 내륜 접촉부(13)가 각각 지지될 수 있다.
즉, 회전축(1)은 로터 결합부(17)와 임펠러 결합부(16)의 사이에 위치하는 부분 즉, 지지부(19)가 2점 지지될 수 있으며, 회전축(1)은 안정적으로 고속 회전될 수 있다.
한편, 본 실시예의 비교예는 미국 공개특허공보 US 2010/0215491 A1(2010년8월26일 공개)에 개시된 바와 같이, 2개의 구름 베어링이 회전축(1)에 축 방향으로 이격되게 장착하고, 축 방향으로 이격된 2개의 구름 베어링 각각이 회전축을 회전 가능하게 지지하는 경우일 수 있다.
이러한 비교예는 2개 구름 베어링이 축 방향으로 이격된 위치에서 회전축을 2점 지지하므로, 2개 구름 베어링의 동심 오차가 있을 수 있고, 이 경우, 베어링 소음이 클 수 있고, 베어링 수명이 단축될 수 있다.
반면에, 본 실시예와 같이 구름 베어링(6)과, 가스 베어링(7)이 서로 이격되고 구름 베어링(6)과 가스 베어링(7) 중 구름 베어링(6)이 로터(2)에 더 가까우면 2개 베어링의 동심 오차로 인한 소음 및 수명 단축은 최소화될 수 있으면서 로터 어셈블리(A) 중 회전축(1)의 일단(1A) 및 타단(1B)가 쳐지거나 흔들리지 않고 안정적으로 회전될 수 있다.
도 7은 본 발명의 다른 실시예에 따른 로터 어셈블리의 단면도이다.
본 실시예의 모터는 이격되게 배치된 구름 베어링(6') 및 가스 베어링(7')를 포함하되, 구름 베어링(6')은 축 방향(L)으로 가스 베어링(7')과 임펠러(4)의 사이에 위치할 수 있고, 가스 베어링(7')이 축 방향(L)으로 구름 베어링(6')과 로터(2)의 사이에 위치할 수 있다.
구름 베어링(6') 및 가스 베어링(7')는 베어링 하우징(5')에 축 방향(L)으로 이격되게 배치되되, 본 발명 일 실시예와는 그 배치 위치가 반대일 수 있다.
베어링 하우징(5')은 구름 베어링 하우징부(51')와, 가스 베어링 하우징부(52')를 포함할 수 있고, 연결부(53')를 더 포함할 수 있다.
구름 베어링 하우징부(51')는 구름 베어링(6')의 외면을 둘러쌀 수 있고, 축 방향(L)으로 임펠러(4)를 향할 수 있다.
구름 베어링 하우징부(51')에는 구름 베어링(6)의 외륜(62)이 축 방향(L)으로 걸리는 걸림턱(51a)이 형성될 수 있다. 이러한 걸림턱(51a)은 구름 베어링(6')의 외륜(62)과 임펠러(4)의 사이에 위치될 수 있고, 구름 베어링(6')의 외륜(62)은 이러한 걸림턱(51a)에 구속되어 임펠러(4)를 향해 이동되지 않고 베어링 하우징(5')에 내부에 유지될 수 있다.
가스 베어링 하우징부(52')는 가스 베어링(7')의 외면을 둘러쌀 수 있고, 축 방향(L)으로 로터(2)를 향할 수 있다.
연결부(53')는 구름 베어링 하우징부(51')와 가스 베어링 하우징부(52') 사이에 위치될 수 있고, 구름 베어링 하우징부(51')와 가스 베어링 하우징부(52')를 연결할 수 있다.
연결부(53')는 가스 베어링 하우징부(52')와 단차를 갖게 형성될 수 있다. 연결부(53')의 내경은 가스 베어링 하우징부(52')의 내경 보다 작을 수 있다.
연결부(53')의 일단(53a)은 가스 베어링(7')이 축 방향(L)으로 걸리는 걸림턱으로 기능할 수 있다.
본 실시예의 모터는 축 방향(L)으로 로터(2)와, 가스 베어링(7')과 구름 베어링(6')과, 임펠러(4)의 순서로 배치될 수 있다.
구름 베어링(6')은 로터(2)와 임펠러(4) 중 임펠러(4)에 더 가깝게 배치될 수 있다. 그리고, 구름 베어링(6')은 가스 베어링(7)과 임펠러(4) 중 임펠러(4)에 더 가깝게 배치될 수 있다. 이러한 구름 베어링(6')은 본 발명 일 실시예의 구름 베어링(6)과 위치가 상이하고, 그 상세 구조 및 기능은 본 발명 일 실시예의 구름 베어링(6)과 동일할 수 있다. 이하, 본 실시예의 구름 베어링(6')에 대해서는 본 발명 일 실시예의 구름 베어링(6)과 상이한 구성에 대해서만 설명한다.
한편, 가스 베어링(7')은 로터(2)와 임펠러(4) 중 로터(2)에 더 가까울 수 있다. 이러한 가스 베어링(7')은 본 발명 일 실시예의 가스 베어링(7)과 위치가 상이하고, 그 상세 구조 및 기능은 본 발명 일 실시예의 가스 베어링(6)과 동일하며, 이하, 본 실시예의 가스 베어링(7')에 대해서는 본 발명 일 실시예의 가스 베어링(7)과 상이한 구성에 대해서만 설명한다.
이하, 본 발명 일 실시예와 동일한 구성에 대해서는 동일 부호를 사용하고 그에 대한 상세한 설명은 생략한다.
본 실시예의 회전축(1')은 임펠러 결합부(16)와, 지지부(13',14',15')와, 로터 결합부(17)를 포함할 수 있고, 지지부(13',14',15')가 임펠러 결합부(16)와, 로터 결합부(17)의 사이에서 구름 베어링(6') 및 가스 베어링(7')에 의해 지지될 수 있다.
지지부(13',14',15')는 내륜 접촉부(13')와, 가스 베어링 대향부(14') 및 연결부 대향부(15')를 포함할 수 있다.
내륜 접촉부(13')는 구름 베어링(6')의 내륜(61)과 접촉될 수 있다.
내륜 접촉부(13')의 외경이 클 경우, 구름 베어링(6')의 크기가 클 수 있고, 구름 베어링(6')의 소형화를 위해서는, 내륜 접촉부(13')의 외경이 작은 것이 바람직하다. 회전축(1)은 내륜 접촉부(13')의 외경과 임펠러 결합부(16')의 외경이 일정한 것이 바람직하다.
가스 베어링 대향부(14')는 가스 베어링(7')을 반경 방향(R)으로 향할 수 있다. 가스 베어링 대향부(14')와 가스 베어링(7')의 사이에는 적정한 베어링 간극(G)이 형성될 수 있다.
연결부 대향부(15')는 연결부(53')을 반경 방향(R)으로 향할 수 있다. 연결부 대향부(15')는 내륜 접촉부(13')와 단차를 갖게 형성될 수 있다. 연결부 대향부(15')의 외경은 내륜 접촉부(13')의 외경보다 클 수 있다.
연결부 대향부(15')의 일단(15a)는 축 방향(L)으로 구름 베어링(6)의 내륜(61)을 향할 수 있다. 구름 베어링(6')의 내륜(61)은 축 방향(L)으로 연결부 대향부(15')의 일단(15a)에 걸릴 수 있다.
구름 베어링(6')은 연결부 대향부(15')에 구속되어 로터(2)를 향해 이동되지 못하고, 구름 베어링(6')은 구름 베어링 하우징부(51')와 연결부 대향부(15')에 의해 지지될 수 있다.
이 경우, 내륜 접촉부(13')의 외경과 가스 베어링 대향부(14')의 외경은 상이할 수 있다. 가스 베어링 대향부(14')의 외경과 연결부 대향부(15')의 외경은 동일할 수 있고, 내륜 접촉부(13')의 외경은 가스 베어링 대향부(14')의 외경 보다 작을 수 있다.
회전축(1')은 축 방향(L)으로 최대한 단턱지지 않게 형성되는 것이 바람직하고, 축 방향(L)으로 외경 변화가 최소화되는 것이 바람직하다. 회전축(1')은 대경부(11')와, 소경부(12')를 포함하되, 구름 베어링(6')은 소경부(12')에 결합되는 것이 바람직하고, 가스 베어링(7')는 대경부(11')를 향하게 배치되는 것이 바람직하다.
대경부(11')는 로터 결합부(17) 및 가스 베어링 대향부(14') 및 연결부 대향부(15')를 포함할 수 있다.
그리고, 소경부(12')는 내륜 접촉부(13') 및 임펠러 결합부(16)를 포함할 수 있다.
한편, 가스 베어링(7')의 직경이 작고, 가스 베어링(7')이 베어링 하우징(5') 중 소경부(12')를 향하는 위치에 배치되는 것도 가능하다. 이 경우, 가스 베어링(7')의 직경은 최소화될 수 있는 반면에, 가스 베어링(7')이 회전축(1')을 향하는 면적이 작고, 가스 베어링(7')과 회전축(1') 사이에 가스 등의 유동될 수 있는 충분한 베어링 간극을 형성하기 위해 가스 베어링(7')이 축 방향 길이가 길게 형성될 수 있다.
가스 베어링(7')의 직경이 크고, 가스 베어링(7')이 베어링 하우징(5') 중 대경부(11')를 향하는 위치에 배치되는 것도 가능하다. 이 경우, 가스 베어링(7')의 직경은 큰 반면에, 가스 베어링(7')이 회전축(1')을 향하는 면적이 크고, 가스 베어링(7')과 회전축(1') 사이에 에어 등 가스가 유동될 수 있는 충분한 유로가 확보될 수 있고, 가스 베어링(7')의 축 방향 길이는 최소화될 수 있다.
즉, 모터의 축 방향(L) 길이를 최소화하고자 할 경우에는 가스 베어링(7')은 대경부(11')를 향하게 배치되는 것이 바람직하다. 그리고, 구름 베어링(6')의 소형화를 위해서는 구름 베어링(6')이 소경부(12')에 결합되는 것이 바람직하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 회전축과;
    상기 회전축에 장착된 로터와;
    상기 로터의 외둘레를 둘러싸는 스테이터와;
    상기 회전축에 상기 로터와 이격되게 장착된 임펠러와
    상기 회전축이 관통되는 통공이 형성된 베어링 하우징과;
    상기 베어링 하우징에 배치되고 상기 회전축에 결합된 구름 베어링과;
    상기 베어링 하우징에 상기 구름 베어링과 축 방향으로 이격되게 배치되고 상기 회전축의 외둘레를 향하는 가스 베어링을 포함하는 모터.
  2. 제 1 항에 있어서,
    상기 회전축은
    상기 임펠러가 결합되는 임펠러 결합부와,
    상기 로터가 결합되는 로터 결합부와,
    상기 구름 베어링 및 가스 베어링에 의해 지지되는 지지부를 포함하고,
    상기 지지부는 축 방향으로 상기 임펠러 결합부와 로터 결합부의 사이에 위치되는 모터.
  3. 제 1 항에 있어서,
    상기 로터와, 임펠러와, 구름 베어링 및 가스 베어링은 축 방향으로 상기 로터와, 구름 베어링과, 가스 베어링과, 임펠러 순서로 배치된 모터.
  4. 제 3 항에 있어서,
    상기 구름 베어링은 상기 로터와 임펠러 중 로터에 더 가까운 모터.
  5. 제 3 항에 있어서,
    상기 가스 베어링은 상기 로터와 임펠러 중 임펠러에 더 가까운 모터.
  6. 제 3 항에 있어서,
    상기 가스 베어링은 상기 구름 베어링과 임펠러 중 임펠러에 더 가까운 모터.
  7. 제 1 항에 있어서,
    상기 가스 베어링은
    상기 회전축의 둘레면과 이격되는 내면과,
    상기 베어링 하우징에 형성된 가스 베어링 장착부에 접촉되는 외면을 갖는 모터.
  8. 제 1 항에 있어서,
    상기 가스 베어링의 외경은 상기 구름 베어링의 외경 보다 작은 모터.
  9. 제 1 항에 있어서,
    상기 가스 베어링의 내경은 상기 구름 베어링의 내경 보다 큰 모터.
  10. 제 1 항에 있어서,
    상기 가스 베어링은 축 방향으로 긴 슬릿이 형성되고,
    상기 가스 베어링은
    부시와,
    상기 부시의 내면에 코팅된 코팅층을 포함하며,
    상기 회전축은 상기 구름 베어링의 내륜이 접촉되는 내륜 접촉부와, 상기 임펠러가 결합되는 임펠러 결합부를 포함하며,
    상기 코팅층은 상기 내륜 접촉부와 임펠러 결합부 사이를 향하는 모터.
  11. 제 1 항에 있어서,
    상기 베어링 하우징은
    상기 구름 베어링의 외면을 둘러싸고 축 방향으로 상기 로터를 향하는 구름 베어링 하우징부와,
    상기 가스 베어링의 외면을 둘러싸고 축 방향으로 상기 임펠러를 향하는 가스 베어링 하우징부를 포함하고,
    상기 가스 베어링 하우징부의 내경은 상기 구름 베어링 하우징부의 내경 보다 작은 모터.
  12. 제 11 항에 있어서,
    상기 가스 베어링 하우징부와 상기 임펠러 사이에는 상기 가스 베어링과 회전축 사이의 베어링 간극과 연통되는 틈이 형성된 모터.
  13. 제 1 항에 있어서,
    상기 회전축은
    상기 로터가 장착된 대경부와,
    상기 임펠러 및 구름 베어링이 장착된 소경부를 포함하고,
    상기 소경부는
    상기 구름 베어링의 내륜이 접촉되는 내륜 접촉부와,
    상기 가스 베어링을 반경 방향으로 향하는 가스 베어링 대향부를 갖고,
    상기 내륜 접촉부의 외경과 가스 베어링 대향부의 외경은 동일한 모터.
  14. 제 1 항에 있어서,
    상기 가스 베어링은 축 방향으로 상기 구름 베어링과 로터의 사이에 배치되고,
    상기 구름 베어링은 축 방향으로 상기 가스 베어링과 임펠러의 사이에 배치되는 모터.
  15. 제 14 항에 있어서,
    상기 회전축은
    상기 로터가 장착된 대경부와,
    상기 임펠러가 장착된 소경부를 포함하고,
    상기 가스 베어링은 상기 대경부를 향하며,
    상기 구름 베어링은 상기 소경부에 결합된 모터.
  16. 로터와 구름 베어링과 임펠러가 회전축에 축 방향으로 이격되게 장착된 로터 어셈블리와,
    상기 로터의 외둘레를 둘러싸는 스테이터와;
    상기 회전축이 관통되고 상기 구름 베어링이 고정된 베어링 하우징과;
    상기 베어링 하우징에 상기 구름 베어링과 이격되게 배치된 가스 베어링을 포함하고,
    상기 회전축은
    상기 구름 베어링의 내륜이 접촉되는 내륜 접촉부와,
    상기 가스 베어링을 반경 방향으로 향하는 가스 베어링 대향부를 포함하며,
    상기 로터 어셈블리의 무게중심은 상기 내륜 접촉부와 가스 베어링 대향부 사이이거나 상기 내륜 접촉부인 모터.
  17. 제 16 항에 있어서,
    상기 가스 베어링은 상기 구름 베어링과 임펠러 중 임펠러에 더 가까운 모터.
  18. 제 16 항에 있어서,
    상기 로터 어셈블리의 무게중심과 상기 내륜 접촉부 사이의 거리는 상기 로터 어셈블리의 무게중심과 상기 가스 베어링 대향부 사이의 거리 보다 짧거나 같은 모터.
  19. 제 16 항에 있어서,
    상기 가스 베어링의 외경은 상기 구름 베어링의 외경 보다 작은 모터.
  20. 제 16 항에 있어서,
    상기 가스 베어링의 내경은 상기 구름 베어링의 내경 보다 큰 모터.
PCT/KR2018/012508 2017-10-23 2018-10-22 모터 WO2019083238A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018354513A AU2018354513B2 (en) 2017-10-23 2018-10-22 Motor
US16/631,823 US11608832B2 (en) 2017-10-23 2018-10-22 Rotary drive for an impeller and motor assembly with gas and rolling bearings arranged in housing structure
EP18869845.0A EP3683448A4 (en) 2017-10-23 2018-10-22 ENGINE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0137787 2017-10-23
KR20170137787 2017-10-23
KR10-2018-0113952 2018-09-21
KR1020180113952A KR102136831B1 (ko) 2017-10-23 2018-09-21 모터

Publications (1)

Publication Number Publication Date
WO2019083238A1 true WO2019083238A1 (ko) 2019-05-02

Family

ID=66247967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012508 WO2019083238A1 (ko) 2017-10-23 2018-10-22 모터

Country Status (1)

Country Link
WO (1) WO2019083238A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020203439B2 (en) * 2019-06-14 2021-11-18 Lg Electronics Inc. Motor assembly and method for manufacturing the same
AU2020203500B2 (en) * 2019-06-21 2021-12-02 Lg Electronics Inc. Motor assembly and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554821U (ja) * 1991-12-25 1993-07-23 株式会社ディスコ エアースピンドル
KR19990000361A (ko) * 1997-06-05 1999-01-15 김평길 2단 원심압축기
KR20100033857A (ko) * 2008-09-22 2010-03-31 삼성테크윈 주식회사 영구 자석 모터 및 이를 구비한 유체 과급 장치
US20100215491A1 (en) 2009-02-24 2010-08-26 Dyson Technology Limited Rotor assembly
KR101004701B1 (ko) * 2010-04-19 2011-01-04 주식회사 한국유체기계 원심압축기
KR101633673B1 (ko) * 2015-08-17 2016-06-27 주식회사 뉴로스 베어링 진동 흡수 구조의 공기 압축기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554821U (ja) * 1991-12-25 1993-07-23 株式会社ディスコ エアースピンドル
KR19990000361A (ko) * 1997-06-05 1999-01-15 김평길 2단 원심압축기
KR20100033857A (ko) * 2008-09-22 2010-03-31 삼성테크윈 주식회사 영구 자석 모터 및 이를 구비한 유체 과급 장치
US20100215491A1 (en) 2009-02-24 2010-08-26 Dyson Technology Limited Rotor assembly
KR101004701B1 (ko) * 2010-04-19 2011-01-04 주식회사 한국유체기계 원심압축기
KR101633673B1 (ko) * 2015-08-17 2016-06-27 주식회사 뉴로스 베어링 진동 흡수 구조의 공기 압축기

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020203439B2 (en) * 2019-06-14 2021-11-18 Lg Electronics Inc. Motor assembly and method for manufacturing the same
US11466729B2 (en) 2019-06-14 2022-10-11 Lg Electronics Inc. Motor assembly and method for manufacturing the same
AU2020203500B2 (en) * 2019-06-21 2021-12-02 Lg Electronics Inc. Motor assembly and method for manufacturing the same
US11466695B2 (en) 2019-06-21 2022-10-11 Lg Electronics Inc. Motor assembly and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2016024691A1 (en) Vacuum cleaner
WO2019083238A1 (ko) 모터
WO2016114523A1 (en) Dust collecting apparatus
WO2018199550A1 (ko) 팬 모터 및 그 제조방법
WO2018147574A1 (ko) 리니어 압축기
WO2018155843A1 (ko) 축방향 공극형 모터 및 이를 구비한 의류처리장치
EP3158121A1 (en) Laundry treatment apparatus
WO2019135485A1 (ko) 센싱장치
WO2019177329A1 (ko) 회전운동 밀폐장치
WO2020179985A1 (ko) 펌프 케이싱 및 이를 포함하는 마그넷 펌프
WO2022114700A1 (en) Aerosol-generating device
WO2021261731A1 (ko) 동축 와전류 변위 센서를 갖는 자기베어링
WO2015186896A1 (ko) 모터어셈블리
WO2023224168A1 (ko) 터보 압축기
WO2022139569A1 (ko) 모터
WO2022114705A1 (en) Aerosol-generating device
AU2019337291B2 (en) Rotary switch
WO2021075896A1 (ko) 블로어
WO2021235647A1 (ko) 전동기 및 이를 구비한 청소기, 전동기의 제조방법
WO2022211256A1 (ko) 모터 및 이를 포함하는 청소기
WO2024014726A1 (ko) 시로코팬
WO2024025159A1 (ko) 스크롤 압축기
WO2019235706A1 (ko) 센싱장치
WO2023038293A1 (ko) 스크롤 압축기
WO2020004907A1 (en) Washing machine and method for assembling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018354513

Country of ref document: AU

Date of ref document: 20181022

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018869845

Country of ref document: EP

Effective date: 20200525