WO2019082951A1 - 組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法 - Google Patents

組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法

Info

Publication number
WO2019082951A1
WO2019082951A1 PCT/JP2018/039591 JP2018039591W WO2019082951A1 WO 2019082951 A1 WO2019082951 A1 WO 2019082951A1 JP 2018039591 W JP2018039591 W JP 2018039591W WO 2019082951 A1 WO2019082951 A1 WO 2019082951A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
polarization
substance
composition according
spin
Prior art date
Application number
PCT/JP2018/039591
Other languages
English (en)
French (fr)
Inventor
伸浩 楊井
君塚 信夫
将士 細山田
才也 藤原
健一郎 立石
友洋 上坂
Original Assignee
国立大学法人九州大学
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 国立研究開発法人理化学研究所 filed Critical 国立大学法人九州大学
Priority to EP18869820.3A priority Critical patent/EP3702767A4/en
Priority to JP2019551221A priority patent/JPWO2019082951A1/ja
Priority to US16/759,522 priority patent/US20200289678A1/en
Publication of WO2019082951A1 publication Critical patent/WO2019082951A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/12Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using double resonance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/282Means specially adapted for hyperpolarisation or for hyperpolarised contrast agents, e.g. for the generation of hyperpolarised gases using optical pumping cells, for storing hyperpolarised contrast agents or for the determination of the polarisation of a hyperpolarised contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Definitions

  • the present invention provides a composition capable of enhancing the spin polarization of a nucleus, a hyperpolarization method using the composition, a substance highly polarized by the hyperpolarization method, and such a substance. It relates to NMR measurement.
  • MRI magnetic resonance imaging
  • a static magnetic field is applied to the above-described nuclear spin assembly, for example, in the case of a proton, the energy state in which the spins are parallel to the magnetic field and the spins antiparallel to the magnetic field It splits into the energy state it was
  • polarization ratio a value obtained by dividing the difference between the number of spins having each energy state (occupied number) by the total number of spins
  • the intensity of the NMR signal is considered to be proportional to the polarization ratio.
  • the polarization rate of nuclear spins is usually a very low value of several tens of thousands or less at room temperature, which causes the sensitivity of NMR spectroscopy and MRI to be limited.
  • Non-Patent Document 1 describes one obtained by adding pentacene as a photoexcited triplet molecule to an organic crystal substrate of p-terphenyl
  • Patent Document 2 proposes one obtained by adding pentacene as a photoexcited triplet molecule to an amorphous base material of o-terphenyl.
  • Non-Patent Document 1 PNAS, 2014, 111, 7529
  • Non-patent document 2 Angew. Chem. Int. Ed., 2013, 52, 13307
  • Non-Patent Document 1 proposes a dynamic nuclear polarization system in which pentacene as a photoexcited triplet molecule is added to an organic crystal substrate of p-terphenyl, and o -A dynamic nuclear polarization system has been proposed in which pentacene as a photoexcited triplet molecule is added to an amorphous base material of terphenyl.
  • none of these dynamic nuclear polarization systems is sufficiently satisfactory, and further improvement is necessary for practical use. That is, in the dynamic nuclear polarization system using an organic crystal base material, the spin polarization transferred from electrons to the nucleus is accumulated because the spin-lattice relaxation time is as long as 300 seconds or more due to the rigidity of the crystal skeleton.
  • the present inventors therefore aim to provide a dynamic nuclear polarization system having a long spin-lattice relaxation time and easy introduction of a polarization target. We proceeded with the examination.
  • a composition comprising (1) a porous material and (2) a polarization source of dynamic nuclear polarization consisting of molecules capable of taking an excited triplet state.
  • the molecule capable of taking an excited triplet state is a compound having a skeleton in which 4 to 6 benzene rings are condensed.
  • the molecule capable of taking an excited triplet state is a compound having a pentacene skeleton.
  • a metal organic structure, wherein the organic ligand of the metal organic structure has a ring structure substituted with a substituent, and at least one of the hydrogen atoms of the substituent is substituted with deuterium The composition according to [5].
  • the composition according to [5], which comprises a metal organic structure, and the organic ligand of the metal organic structure has an imidazole skeleton.
  • composition according to any one of [5] to [7], which comprises a metal-organic structure, and the metal ion of the metal-organic structure comprises a divalent to tetravalent metal ion.
  • the composition according to any one of [5] to [8], which comprises a metal organic structure, and the metal ion of the metal organic structure comprises a zinc ion Zn 2+ .
  • the molecule capable of taking the excited triplet state has a functional group that interacts with the metal ion of the metal organic structure.
  • the composition according to [10], wherein the functional group is an acidic group.
  • composition according to [10], wherein the functional group is a carboxy group or a carboxylate anion group.
  • the composition according to any one of [1] to [12], wherein the molecule capable of taking the excited triplet state is present in the pores of the porous material.
  • the content of the polarization source is 0.01 mol% or more with respect to the number of moles of metal ions of the metal organic structure. object.
  • the spin-lattice relaxation time T 1 of the composition is 10 seconds or more.
  • composition according to any one of [1] to [15], further comprising a substance capable of transferring nuclear spin polarization generated by the polarization source and the porous material [17] A highly polarized composition comprising the composition according to any one of [1] to [16]. [18] A highly polarized composition which is obtained by highly polarizing the composition according to any one of [1] to [16]. [19] A step of bringing a substance into contact with the hyperpolarized composition according to [18], or, after bringing a substance into contact with a composition according to any one of [1] to [16], A method of hyperpolarization of a substance, comprising the steps of hyperpolarizing a composition to make a hyperpolarized composition.
  • the substance contains a derivative of hydrocarbon in which at least one hydrogen atom is substituted with a substituent, and at least one of the substituents contains an atom having a spin quantum number I other than 0, [23] ]
  • [25] The hyperpolarization method according to [23] or [24], wherein the substituent is a fluorine atom.
  • [26] The hyperpolarization method according to any one of [19] to [25], further comprising the step of transferring nuclear spin polarization of the hyperpolarization composition to the substance.
  • the step of transferring the nuclear spin polarization of the highly polarized composition to the substance is performed by irradiating the highly polarized composition and the substance in contact with each other with a microwave [26] ] The high polarization method as described in [].
  • An NMR measurement method comprising the step of measuring NMR of a substance using the composition according to any one of [1] to [15].
  • composition of the present invention it is possible to realize a dynamic nuclear polarization system in which the spin-lattice relaxation time is long and the introduction of polarization sources and polarization objects is easy.
  • a composition it is possible to highly polarize various substances to polarize nuclear spins, and it is possible to effectively improve the sensitivity of the NMR measurement.
  • FIG. 7 is a transient decay curve of fluorescence emission of the composition of Example 3, a solid of Compound 1 alone, and Compound 1.
  • FIG. The composition of Example 1 in which 0.012 mol% of Compound 1 was introduced in MOF, the composition of Example 2 in which 0.027 mol% of Compound 1 was introduced in MOF, 0.13 mol% of Compound 1 was introduced in MOF It is an electron spin resonance spectrum of the composition of Example 3, and the chloroform solution of DPP.
  • FIG. 7 is a transient decay curve of the composition of Example 3 and the ESR peak at 680 mT of a chloroform solution of DPP.
  • FIG. 6 is an NMR spectrum showing a 1 H-NMR signal observed from the composition of Example 7 in which Compound 1 was introduced to MOF using Ligand 2.
  • FIG. 18 is an NMR spectrum showing a 19 F-NMR signal observed from the object-introduced composition of Example 8 in which the object 1 was introduced into the composition of Example 7.
  • FIG. 6 is an NMR spectrum showing a 1 H-NMR signal observed from the composition of Example 7 in which Compound 1 was introduced to MOF using Ligand 2.
  • FIG. 18 is an NMR spectrum showing a 19 F-NMR signal observed from the object-introduced composition of Example 8 in which the object 1 was introduced into the composition of Example 7.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all hydrogen atoms in the molecule may be 1 H, or some or all of the hydrogen atoms may be 2 H (Deuterium D) may be used.
  • excitation light in the present specification is light causing excitation in an object to cause light emission, and light of a wavelength that matches the absorption wavelength of the object can be used.
  • the composition of the present invention comprises (1) a porous material and (2) a polarization source of dynamic nuclear polarization consisting of a substance capable of taking an excited triplet state.
  • the “porous material” in the present invention is a material which is in a solid state at 20 ° C. and 1 atm and has a plurality of pores in the solid state. The pores possessed by the porous material may be through holes or non-penetrating holes.
  • the “polarization source” in the present invention refers to a nucleus of electron spins and nuclear spins, which is irradiated with an electromagnetic wave while applying an external magnetic field to the assembly of electron spins and nuclear spins to transfer spin polarization of electrons to the nucleus.
  • polarization In dynamic nuclear polarization that polarizes spins, it is a source of electron spins in polarized state.
  • spin polarization refers to spins at energy levels that are split between energy levels that are split when Zeeman splitting is caused by applying a static magnetic field to an assembly of spins. It means that the occupancy number of is different.
  • the difference between the number N 1 of occupied spins in one energy level and the number N 2 of occupied spins in the other energy level The ratio to the total number of spins, that is, (N 1 ⁇ N 2 ) / (N 1 + N 2 ) is called the polarization ratio.
  • each energy level generated by Zeeman splitting is referred to as "zeman level”.
  • the Zeeman levels of electrons and nuclei in the composition of the present invention may be two or three or more.
  • all the combinations of Zeeman levels may be or some combinations in which the polarization ratio is greater than 0 in the spin-polarized state.
  • a molecule capable of taking an excited triplet state is used as a "polarization source".
  • “molecule capable of taking an excited triplet state” means a molecule capable of transitioning to an excited triplet state by applying excitation energy.
  • the transition to the excitation triplet state may be a transition from the ground singlet state to the excitation triplet state which occurs directly upon application of the excitation energy, or excitation from the excitation singlet state generated upon application of the excitation energy It may be an intersystem crossing to the triplet state.
  • the excitation energy causing the transition to the excited state may be energy of excitation light, recombination energy of injected carriers, or excitation energy received from other molecules in the excited state, It is also good.
  • the polarization state of the electron spin of the molecule capable of taking an excited triplet state will be described in the section of the excitation step of the [1] polarization source described below.
  • the composition of the present invention comprises a porous material as described above and a polarization source consisting of molecules capable of having an excited triplet state, and the polarization source and the polarization target are contained in the pores of the porous material. It can be included.
  • the polarization source and the polarization target can be easily introduced into the inside of the porous material, and they can be held in a spatially dispersed state.
  • a flexible material such as amorphous is adopted. It is not necessary to do this, and it is possible to select a material that emphasizes the spin-lattice relaxation time.
  • the composition of the present invention it is possible to realize a dynamic nuclear polarization system in which the spin-lattice relaxation time is long and the introduction of the polarization target is easy.
  • the composition of the present invention by using a molecule capable of taking an excited triplet state as a polarization source, the number of occupied electron spins is largely biased to a specific energy level regardless of the temperature. A polarization state can be realized. Therefore, even when polarization is performed at room temperature, nuclear spins can be efficiently polarized, and operations and equipment relating to temperature control can be simplified.
  • the dynamic nuclear polarization mechanism in the composition of the present invention will be described with reference to FIG. 1, taking as an example the case of exciting a polarized light source by excitation light irradiation.
  • the dynamic nuclear polarization mechanism of the composition of the present invention should not be interpreted in a limited manner by the mechanism described below.
  • the composition is irradiated with excitation light to shift the polarization source consisting of molecules capable of taking an excitation triplet state to an excitation triplet state.
  • the polarized light source transitions from the ground singlet state S 0 to the excited singlet state S 1 and, further, between the terms from the excitation singlet state S 1 Crossing takes place to the excited triplet state T n .
  • the excited triplet state T n is gradually internalized to a lower order excited triplet state, and finally becomes the excited triplet state T 1 of the lowest energy level.
  • the nuclear spins are highly polarized.
  • the highly polarized nuclear spins are accumulated and diffused, whereby the porous material is highly polarized as a whole. Be done. Therefore, when a polarization target is introduced into the porous material, spin polarization is also delivered to the nucleus, and the nuclear spin of the polarization target is highly polarized. .
  • the conditions for hyperpolarization are not particularly limited, but for example, the intensity of the external magnetic field should be appropriately selected from the range of 0.1 to 1 T, the frequency of the electromagnetic wave 2 to 20 GHz, and the intensity of the electromagnetic field 0.1 to 100 W.
  • step [2] may be performed after step [1] is performed, or step [1] and step [2] may be performed simultaneously.
  • the electromagnetic wave in which the excitation light and the electron spins resonate is simultaneously irradiated.
  • the composition of the present invention can highly polarize the nuclear spin of the nuclear spin and the nuclear spin of the polarization object introduced into the composition by dynamic nuclear polarization. Therefore, the composition of the present invention can be effectively used as a composition for dynamic nuclear polarization.
  • the physical properties of each component and the composition contained in the composition of the present invention will be described.
  • the polarization source used in the present invention is composed of molecules capable of being in an excited triplet state, and functions as a source of electron spins in hyperpolarization.
  • the molecule capable of taking an excited triplet state may be an inorganic molecule or an organic molecule, but is preferably an organic molecule.
  • Examples of preferable organic molecules that can be used as a polarization source include compounds having a skeleton in which 4 to 6 benzene rings are condensed.
  • the skeleton in which 4 to 6 benzene rings are fused include tetracene skeleton, pentacene skeleton, hexacene skeleton, rubrene skeleton, picene skeleton, and having a structure in which two or more types of these skeletons are connected Alternatively, it may have a structure in which a benzene ring, a naphthalene ring or a biphenyl ring is connected to these skeletons.
  • the compound having a skeleton in which 4 to 6 benzene rings are fused may be an unsubstituted compound consisting only of the skeleton, or a derivative having a structure in which these skeletons are substituted by a substituent. Although it is good, it is preferable that it is a derivative.
  • the substituent of this skeleton is preferably an atom or atomic group constituting the porous material, and further, when the porous material contains an ion, a group that interacts with at least one of the ions.
  • the molecules of the polarization source are prevented from aggregating to form an aggregate, and the molecules can be more easily introduced into the pores of the porous material.
  • the porous material is a metal organic structure
  • the compound serving as a polarization source preferably has a functional group that interacts with the metal ion of the metal organic structure.
  • Such functional group a carboxy group (-COOH), a sulfo group (-SO 3 H), a phosphono group (-P (O) (OH) 2), phosphonoxy group (-OP (O) (OH) 2) And the like, or an anion group in which a proton is ionized from these groups, and the like, and a carboxy group and a carboxylate anion group are preferable.
  • the compound used as a polarization source it is preferable that at least a part of hydrogen atoms thereof be substituted with deuterium, and 30 to 70% of hydrogen atoms present in the compound be substituted with deuterium. More preferable. This makes it possible to effectively polarize nuclear spins by lengthening the spin-lattice relaxation time of the polarization source.
  • the deuterium-substituted site of the compound is a relatively mobile site.
  • the compound used as a polarization source is preferably a compound represented by the following general formula (A) or a salt thereof.
  • each R independently includes at least one atom selected from the group consisting of hydrogen atom (H), deuterium atom (D), or oxygen atom, sulfur atom, and silicon atom Represents an optionally substituted hydrocarbon group having 1 to 20 carbon atoms.
  • at least one of R is a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and a silicon atom.
  • R in the formula (A) independently includes at least one atom selected from the group consisting of hydrogen atom (H), deuterium atom (D), or oxygen atom, sulfur atom, and silicon atom.
  • hydrocarbon group Represents an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, but the “hydrocarbon group” is not limited to a linear saturated hydrocarbon group, and may be a carbon-carbon unsaturated bond, a branched structure, a cyclic structure It means that you may have each of.
  • a linking group containing an oxygen atom, a sulfur atom, or a silicon atom may be contained at the inside or at the end of the carbon skeleton.
  • the hydrocarbon group “which may contain at least one atom selected from the group consisting of oxygen atom, sulfur atom and silicon atom” is, for example, hydroxyl such as —CH 2 —CH 2 —OH
  • the "salt thereof" of the pentacene derivative is a compound pentacene derivative having an acid point such as a carboxyl group (-COOH) or a sulfo group (-SO 3 H), those whose hydrogen ion is replaced by a metal cation Shall mean.
  • At least one of R is a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and a silicon atom” is: That is, it means that pentacene itself and deuterated pentacene are not included in the pentacene derivative represented by the formula (A).
  • R is a hydrocarbon group
  • the carbon number of the hydrocarbon group is preferably 3 or more, more preferably 6 or more, preferably 12 or less, more preferably 8 or less.
  • the hydrocarbon group include phenyl group, biphenyl group, phenylthio group, decylthio group and ethynyl group.
  • a functional group or linking group contained in a hydrocarbon group carboxyl group (-COOH), potassium salt of carboxyl group (-COOK), thioether group (-S-), triethylsilyl group (-SiEt 3 ), triisopropyl And silyl group (-SiiPr 3 ) and the like.
  • the number of hydrocarbon groups bonded is usually 1 or more, preferably 2 or more, and usually 6 or less, preferably 5 or less.
  • the bonding position of the hydrocarbon group is a combination of 6 and 13 positions (the number of bonding of hydrocarbon group: 2), a combination of 5, 7, 12 and 14 positions (the number of bonding of hydrocarbon group: 4), 1 Combinations of 4th, 8th, and 11th positions (the number of hydrocarbon group bonds 4), 2nd, 3rd, 9th, and 10 positions (the number of hydrocarbon group bonds 4)
  • the combination of 6, 7 and 12 is most preferred, the combination of 5, 7, 12 and 14 the combination of 1, 4, 8, and 11 positions, 3, 9, 9. And in the order of the 10th combination.
  • Pentacene derivatives tend to be susceptible to oxidative decomposition when dissolved in a solvent in the atmosphere, but the decomposition rate slows in the above order depending on the position to which a carbon hydrogen group is added. This corresponds to the order of higher spin density of pentacene ⁇ electron cloud.
  • Examples of the pentacene derivative represented by the formula (A) and / or a salt thereof include the following compounds 1 to 11.
  • polarization source a compound composed of only a carbon atom, a hydrogen atom and a deuterium atom can be preferably used.
  • porous material used in the present invention functions as a substrate that encloses the polarization source in its pores and holds the polarization source in a spatially dispersed state. By dispersing and holding the polarization source, molecules of the polarization source can be prevented from aggregating and relaxation of polarization of triplet electron spin being relaxed. Further, the porous material in the present invention has an action of receiving, storing, and diffusing spin polarization of electrons of a polarization source in an excitation triplet state by its nuclear spin. Thereby, when the polarization target is introduced into the porous material, the spin polarization is also transferred to the polarization target in the process of the spin polarization being diffused in the porous material.
  • porous materials include crystalline porous polymers such as metal organic structure (MOF) and covalent organic skeleton structure (COF), inorganic porous materials, organic porous materials and the like, and metal organic structures It is preferably a body or a covalent organic skeleton structure, and more preferably a metal organic structure.
  • MOF metal organic structure
  • COF covalent organic skeleton structure
  • at least one of the hydrogen atoms present in the organic structure is preferably substituted with deuterium, and 30 to 30 of the hydrogen atoms present in the organic structure More preferably, 70% is substituted with deuterium. This allows the spin-lattice relaxation time of the composition to be extended.
  • the metal organic structure is a crystalline polymer structure having pores inside, which is formed by continuous coordination bond of a metal ion and a crosslinkable organic ligand. Since the metal organic structure has a hard crystalline framework, the spin-lattice relaxation time is long, and spin polarization of nuclei can be effectively accumulated and highly polarized. In addition, since the size of the pore of the metal organic structure is as small as nano level, the polarization source or the polarization target may be included in the pore for every molecule or for every few molecules to suppress aggregation of the molecules. it can. Furthermore, since the metal organic structure has the physical properties of the metal and the organic ligand, the physical properties can be changed in various ways.
  • the metal ion constituting the metal organic structure is not particularly limited, but is preferably a metal ion of a transition metal, a group metal of Groups 2, 13 and 14, copper, zinc, cadmium, silver, cobalt, nickel,
  • the ions of iron, ruthenium, aluminum, chromium, molybdenum, manganese, palladium, rhodium, zirconium, titanium, magnesium, zirconium and lanthanum are more preferable, and the ions of zinc, aluminum, zirconium and lanthanum are further preferable.
  • the crosslinkable organic ligand is a coordinating compound having at least two coordinating groups.
  • the plurality of coordinating groups possessed by the organic ligand may be identical to or different from one another. Further, the number of coordinating groups possessed by the organic ligand is preferably 2 to 8, more preferably 2 to 6, and still more preferably 2 to 4.
  • the coordinating nitrogen atom and carboxy group which a nitrogen atom containing heterocyclic ring contains as a ring member are mentioned.
  • the carboxy group functions as a coordinating group in the form of a carboxylate anion group in which a proton is ionized.
  • the heterocyclic ring containing a coordinating nitrogen atom may be an aliphatic heterocyclic ring or an aromatic heterocyclic ring.
  • Examples of the heterocyclic ring containing a coordinating nitrogen atom include an imidazole ring, a triazine ring, a pyridine ring and a pyrimidine ring, and an imidazole ring is preferable.
  • the organic structure substituted by the carboxy group to be a coordinating group is not particularly limited, but includes, but is not limited to, an aromatic hydrocarbon ring, an alkene, a heterocyclic ring containing the coordinating nitrogen atom described above, an alkane, an alkyne, a nonaromatic hydrocarbon Rings can be mentioned. These organic structures may be substituted by a substituent.
  • R 1 to R 3 each independently represent a hydrogen atom or a substituent. When two or more of R 1 to R 3 are substituents, those substituents may be identical to or different from one another.
  • at least a part of the hydrogen atoms contained in the substituent is preferably substituted with deuterium, and all the hydrogen atoms contained in the substituent are substituted with deuterium Is preferred. This allows the spin-lattice relaxation time of the composition to be extended.
  • the number of substituents among R 1 to R 3 is not particularly limited, but at least R 1 is preferably a substituent.
  • the substituent represented by R 1 is preferably a substituted or unsubstituted alkyl group, more preferably an alkyl group in which at least a portion of hydrogen atoms are substituted by deuterium, and all hydrogen atoms are deuterium. More preferably, it is an alkyl group substituted by The carbon number of the alkyl group is preferably 1 to 20, more preferably 1 to 4, and still more preferably 1.
  • R 1 to R 3 may have include a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • alkyl substituted amino group aryl substituted amino group having 1 to 20 carbon atoms, aryl group having 6 to 40 carbon atoms, heteroaryl group having 3 to 40 carbon atoms, alkenyl group having 2 to 10 carbon atoms, 2 to 10 carbon atoms 10 alkynyl group, alkylamide group having 2 to 20 carbon atoms, arylamide group having 7 to 21 carbon atoms, trialkylsilyl group having 3 to 20 carbon atoms, oligoethylene glycol group having 2 to 20 carbon atoms, etc. may be mentioned .
  • those which can be further substituted by a substituent may be substituted.
  • organic ligands may be used alone or in combination of two or more.
  • the content of the organic ligand in the metal organic structure is preferably 1 to 6, more preferably 1 to 3, and still more preferably 1 or 2 with respect to the number of moles of the metal ion. .
  • the metal organic structure may contain components other than the metal ion and the crosslinkable organic ligand.
  • components include crystal size modifiers, counter ions, proteins, peptides, DNA and the like.
  • a covalent organic skeleton structure, an inorganic porous material, and an organic porous material can also be used as the porous material.
  • the covalently bonded organic framework has a crystalline or amorphous porous polymer structure in which light atoms such as hydrogen atoms, boron atoms, carbon atoms and oxygen atoms are linked by covalent bonds to form a network-like periodic structure. It is a body.
  • This covalent organic framework also has a hard crystalline framework and has a small pore size at the nano level, so the spin-lattice relaxation time is long, and the polarization source or polarization object is in the pore.
  • inorganic porous material silica, organosilica, alumina, carbon, metal oxide and the like can be used, and as the organic porous material, a fiber aggregate etc. in which a fibrous polymer is entangled can be used. it can.
  • the pore diameter of the pores of the porous material used in the present invention is preferably 0.2 to 1000 nm, more preferably 0.2 to 100 nm, and still more preferably 0.2 to 2 nm.
  • the pore size of the pores of the porous material can be measured by gas adsorption.
  • the porosity of the porous material is preferably 1% to 90%, more preferably 20% to 90%, and still more preferably 40% to 90%.
  • the porosity of the porous material can be measured by gas adsorption.
  • the composition of the present invention may be composed of only the porous material and the polarization source, or may contain other components.
  • a basic substance such as sodium hydroxide or potassium hydroxide
  • protons are ionized from the acid group of the polarization source to form a conjugated base, which interacts with the metal ion of the metal organic structure.
  • the composition of the present invention may contain polarization targets such as proteins, peptides and DNA, solvent molecules, template molecules and the like as other components.
  • the polarization target is a substance capable of transferring nuclear spin polarization generated by the polarization source and the porous material.
  • the preferred range, and the specific example, the corresponding description in the ⁇ Highly polarized method> column can be referred to.
  • the amount of polarization source introduced into the porous material is preferably 0.001 mol% to 1 mol%, preferably 0.001 mol%, with respect to the number of moles of the metal ion of the metal organic structure. It is more preferable that the amount is -0.1 mol%, and more preferably 0.01 mol% to 0.05 mol%.
  • the amount of polarization source introduced into the porous material can be determined by decomposing the composition with hydrochloric acid or the like, taking out the polarization source, and measuring the peak intensity of its light absorption spectrum.
  • the spin-lattice relaxation time T 1 of the composition of the present invention is preferably 1 second or more, more preferably 10 seconds or more, and still more preferably 60 seconds or more. As a result, the spin polarization of the nucleus is more easily accumulated, and the nuclear spin of the composition and the nuclear spin of the polarization target can be highly polarized.
  • the spin-lattice relaxation time T 1 can be determined by the saturation recovery method.
  • the composition for dynamic nuclear polarization of the present invention is characterized by comprising the composition of the present invention.
  • the preferable range, and the specific examples the description in the above ⁇ Composition> can be referred to.
  • the composition of the present invention since the composition of the present invention has a long spin-lattice relaxation time and can easily introduce a polarization source or a polarization target, the nucleus spin or the nucleus of the polarization target introduced into the composition The spin can be highly polarized. Therefore, the composition of the present invention can be effectively used as a composition for dynamic nuclear polarization.
  • the highly polarized composition of the present invention is a highly polarized composition of the composition of the present invention.
  • the highly polarized composition of the present invention is a highly polarized composition of the composition of the present invention.
  • the composition of the present invention has a long spin-lattice relaxation time, it is possible to globally polarize the nuclear spins by performing dynamic nuclear polarization. Therefore, the highly polarized composition of the present invention has a high nuclear spin polarization ratio throughout.
  • the "highly polarized composition" of the present invention is confirmed by the observation in the NMR spectrum of a peak (sensitized peak) having a greater intensity than the NMR spectrum of the composition in thermal equilibrium. can do.
  • the intensity of the sensitized peak of the highly polarized composition is preferably 10 times or more, more preferably 100 times or more, relative to the corresponding peak intensity of the composition in thermal equilibrium. It is more preferable that it is twice or more.
  • the method for hyperpolarization of the present invention comprises the steps of contacting a substance with the hyperpolarized composition of the present invention or, after bringing the substance into contact with the composition of the present invention, hyperpolarizing the composition.
  • Providing a highly polarized composition a substance (target of polarization) which polarizes nuclear spins using the above-mentioned composition for dynamic nuclear polarization, and a highly polarized composition of the present invention or A substance which is brought into contact with or contained in the composition of the present invention to polarize nuclear spins (target of polarization) is referred to as "polarization target object".
  • polarization target object For the description of the composition, reference can be made to the description of the above ⁇ Composition> section, and for the description of the highly polarized composition, the description of the above ⁇ Highly polarized composition> can be referred to. You can refer to it.
  • the hyperpolarization method of the present invention may further include the step of transferring nuclear spin polarization of the hyperpolarization composition to a polarization target.
  • the nuclear spin polarization of the hyperpolarized composition is transferred and diffused to the polarized object by bringing the polarized object into contact with the polarized object, without performing a separate step.
  • a process for inducing the transfer of nuclear spin polarization may be performed.
  • Such methods include cross polarization (CP), CP / MAS combining cross polarization and magic angle rotation and broadband decoupling, adiabatic passage cross polarization, etc. It is preferred to use irradiation.
  • the transfer of nuclear spin polarization may be the transfer between the same nuclides, such as the transfer of 1 H of a highly polarized composition to 1 H of a polarized object, as the transition by 1 H to 1 H and different species of polarization object composition, it may be a transition between the different nuclides with each other, or both.
  • the nuclide of the polarization object to which the nuclear spin polarization is transferred can be used without particular limitation as long as the spin quantum number I is other than zero.
  • Specific examples of the nuclide include 1 H, 2 H, 3 He, 11 B, 13 C, 14 N, 15 N, 17 O, 19 F, 29 Si, 31 P, 129 Xe, etc. 1 H, 14 N, 19 F, and 31 P are preferable because the ratio is high, and 1 H and 19 F are more preferable because the NMR signal intensity is high.
  • the polarization target to be brought into contact with the dynamic nuclear polarization composition is preferably a gas, liquid or solution.
  • these polarization objects When these polarization objects are brought into contact with the highly polarized composition of the present invention, the polarization objects easily penetrate into the pores of the porous material and are included. Thereby, the spin polarization of the nucleus of the highly polarized composition is transferred to the polarization target, and the nuclear spin of the polarization target is highly polarized.
  • the method of contacting the gas, liquid or solution with the composition for dynamic nuclear polarization for example, these may be injected into the composition, or these may be filled in a container, A container may be placed in and infiltrated.
  • the polarization target may be mixed with the composition for dynamic nuclear polarization in a state of being dissolved or dispersed in a liquid.
  • the dynamic nuclear polarization composition may polarize the polarization target directly or may polarize through a liquid.
  • the polarization target preferably contains at least one compound selected from a hydrocarbon and a derivative of a hydrocarbon in which at least one hydrogen atom is substituted by a substituent.
  • the hydrocarbon may be an acyclic compound (aliphatic compound) or a cyclic compound, may be a saturated hydrocarbon or an unsaturated hydrocarbon, and may be a low molecular weight compound. It may be a polymer compound.
  • the ring compound may be either alicyclic or aromatic.
  • the carbon number of the hydrocarbon is not particularly limited, and is usually in the range of 1 to 10.
  • the hydrocarbon may also be one in which some carbon atoms in the molecule are substituted with a heteroatom.
  • the hetero atom is not particularly limited, and N, P, O, S and the like can be mentioned.
  • the substituent is not particularly limited, but at least one of the substituents is preferably a substituent containing an atom whose spin quantum number I is other than 0, 13 C, 15 N, 19 F
  • the substituent is more preferably a substituent containing 29 Si, 31 P or the like, and further preferably a fluorine atom.
  • biological components such as proteins, peptides, DNA and the like can also be mentioned as preferable examples of polarization targets.
  • the introduction amount of the polarization target in the hyperpolarization composition is, in the case where the porous material is a metal organic structure, 0. 0 relative to the number of moles of the metal ion. It is preferably 1 mol% to 500 mol%, more preferably 1 mol% to 200 mol%, and still more preferably 10 mol% to 100 mol%.
  • the introduction amount of the polarization target in the highly polarized composition can be determined by thermogravimetric analysis (TGA) and NMR measurement after dissolving the metal organic structure with an acid.
  • the highly polarized substance of the present invention is a substance which is highly polarized by the high polarization method of the present invention.
  • the polarization ratio of the highly polarized substance of the present invention is preferably 10 -4 or more, more preferably 10 -2 or more, and still more preferably 10 -1 or more.
  • the polarization rate of a substance can be measured by comparing the NMR signal intensity when hyperpolarization is performed and the signal intensity when not.
  • the NMR measurement method of the present invention includes the step of measuring NMR (nuclear magnetic resonance) of a substance using the composition of the present invention.
  • the NMR measurement method of the present invention is also a concept including an MRI method.
  • the description of the composition of the present invention and the preferred range and specific examples can be referred to the above ⁇ Composition>.
  • an object to be measured of NMR is brought into contact with a highly polarized composition obtained by subjecting the composition of the present invention to dynamic nuclear polarization, and the nuclear spin of the object to be measured is increased.
  • NMR nuclear magnetic resonance
  • a known detection method of NMR signal is used. This can be performed by observing the NMR of the object to be measured.
  • the nuclide to be observed by NMR is 13 C or 19 F
  • the polarization is transferred from the highly polarized 1 H to 13 C or 19 F by further microwave irradiation, and then the NMR is observed.
  • Detection of the NMR signal can be performed using a known method such as continuous wave method, pulse Fourier transform method, etc.
  • a known method such as continuous wave method, pulse Fourier transform method, etc.
  • an RF coil (probe), amplifier, etc. are provided The device can be used.
  • the composition of the present invention can be used to highly polarize the nuclear spins of the object to be measured, so that NMR signals from the object to be measured can be detected with high intensity. Therefore, by applying this NMR measurement method, analysis of the structure and physical properties of the compound by NMR spectroscopy and inspection of a living organ by MRI can be performed with high sensitivity.
  • the measurement of the light absorption spectrum is performed using a spectrophotometer (manufactured by JASCO: V-670), and the measurement of the emission spectrum is performed using a fluorescence spectrophotometer (manufactured by PerkinElmer: LS55),
  • the measurement of the transient decay curve of luminescence is performed using a luminescence life measuring apparatus (Hantamatsu Photonics Co., Ltd .: Quantaurus-TauC11567-02), and the spin-lattice relaxation time T 1 of proton ( 1 H + ) is determined by the saturation recovery method I asked.
  • Dynamic nuclear polarization was performed by irradiating excitation light of 589 nm and an electromagnetic field of 18.1 GHz while applying an external magnetic field of 0.67 T to the metal organic structure into which the polarization source was introduced.
  • Tetraethylammonium (12.9 mL, 92.5 mmol) and N-dimethylsulfamoyl chloride (10 mL, 90.5 mmol) were added dropwise to a solution of imidazole (5 g, 73.4 mmol) in anhydrous dichloromethane (50 mL). The mixture was stirred at room temperature overnight, then 10% aqueous potassium carbonate solution was added, and the organic layer was separated. The organic layer was dried over sodium sulfate and the solvent was evaporated under vacuum to give a crude orange oil-like product.
  • ligand 2 was synthesized by the following reaction.
  • Example 7 Preparation of Composition Using Metal-Organic Structure Composed of Polarization Source of Compound 1 and Ligand 2 and Zinc Ion Except using Ligand 2 in place of Ligand 1, A composition was obtained in the same manner as Example 6.
  • Comparative Example 1 Preparation of Comparative Composition 1 as Metal Organic Structure Composed of Ligand 1 and Zinc Ion The same steps as in Example 6 were carried out except that Compound 1 and sodium hydroxide were not added to the methanol solution. The procedure was repeated to prepare a metal organic structure, which was designated as Comparative Composition 1.
  • the introduced amount of compound 1 of the composition prepared in each example is shown in Table 1.
  • the light absorption spectrum of the composition (composition of Examples 1 to 3) in which the introduced amount of compound 1 was 0.012 mol%, 0.027 mol%, 0.13 mol% is shown in FIG.
  • the transient decay curve of 620 nm fluorescence emission is shown in Fig. 3
  • the ESR spectrum measured while sweeping the magnetic field by irradiation with 589 nm excitation light and microwave is shown in Fig. 4, the transient decay curve of the ESR signal observed at 680 mT Is shown in FIG.
  • FIG. 2 also shows the measurement results of a methanol solution of compound 1 (concentration: 50 ⁇ M) and a solid of compound 1 alone
  • Example 4 to 5 show 6,13-diphenylpentacene (DPP).
  • DPP 6,13-diphenylpentacene
  • Table 2 The result of measurement of the chloroform solution of Further, for the compositions prepared in Examples 6 and 7 and Comparative Example 1, the peak position of NMR and the spin-lattice relaxation time T 1 measured after performing dynamic nuclear polarization are shown in Table 2.
  • the composition of Example 7 shows the 1 H-NMR signals of 1 H-NMR signals and dynamic Kakuhen Kyokugo in thermal equilibrium was observed at room temperature in Fig.
  • the signal intensity in the thermal equilibrium state is an integrated intensity of 40 integrations
  • the signal intensity after dynamic nuclear polarization is an intensity of 1 integration.
  • the spin-lattice relaxation time T 1 in Table 2 is shown as an average value ⁇ standard deviation when performing three measurements.
  • an absorption peak is observed in the range of 603 to 607 nm.
  • the absorption peak of the solid of Compound 1 alone can be seen as the absorption peak in the aggregation state of Compound 1
  • the absorption peak of the methanol solution of Compound 1 is a state in which Compound 1 is not aggregated at all (completely It can be seen as an absorption peak in the dispersed state).
  • the fact that the absorption peak is observed in the range of 603 to 607 nm indicates that the compound 1 exists in a dispersed state to some extent in the metal organic structure. It is a thing.
  • the resonance lifetime is on the order of microseconds .
  • the lifetime of the excited triplet state is also on the order of microseconds, which is in agreement with the resonance lifetime observed here. From this, it can be confirmed that the electron spins resonating here are derived from the compound 1 in the excited triplet state, and the compound 1 can function as a polarization source.
  • Example 7 In the composition of Example 7, it is inferred that the effective accumulation of such spin polarization detected a strong 1 H NMR signal sensitization after dynamic nuclear polarization (see FIG. 6). From the above, by using a metal organic structure as a base material for introducing a polarization source, it is easy to introduce a polarization source or a polarization target, and dynamic nuclear polarization has a long spin-lattice relaxation time. It turned out that a system could be realized.
  • Example 8 Introduction of Object 1 into the Composition of Example 7 and Transfer of Nuclear Spin Polarization to Object 1
  • the composition (30 mg, 0.13 mmol) prepared in Example 7 was frozen. It was immersed in the liquid of the degassed object 1 (2 ml, 10 mmol) and immersed at room temperature for 1 day under degassing conditions. Thereafter, the solid was recovered by vacuum drying for 30 minutes to obtain a crystalline solid of the composition (target introduction composition) into which the target 1 was introduced.
  • the introduction amount of the object 1 of the object introduction composition prepared in Example 8 was about 2 mol% in molar percentage (mol%) with respect to the number of moles of zinc ion Zn 2+ forming the metal organic structure.
  • dynamic nuclear polarization was performed on this target-introduced composition to obtain a highly polarized composition.
  • the NMR spectrum was observed for the target-introduced composition after dynamic nuclear polarization, when the dynamic nuclear polarization was performed on the composition of Example 7 (composition in which the target 1 was not introduced), At the same position, it was possible to confirm 1 H NMR signals with similar intensities.
  • the composition It is understood that it is derived from 19 F of the object 1 introduced into the From the above, in the highly polarized composition of the present invention, the nuclear spin polarization is transferred to the polarized object contained in the interior thereof to enhance the nuclear spin of the polarized object. It has been shown that it can be realized.
  • the present invention it is possible to provide a dynamic nuclear polarization system in which the spin-lattice relaxation time is long and the introduction of polarization sources and polarization objects is easy.
  • the present invention since nuclear spins of various substances can be highly polarized, the application range of NMR measurement can be expanded, and sensitivity can be increased to improve analysis accuracy. For this reason, the present invention has high industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(1)多孔性材料と、(2)励起三重項状態をとりうる分子からなる動的核偏極の偏極源とを含む組成物。この組成物によれば、スピン-格子緩和時間が長く、偏極対象物の導入が容易な動的核偏極系を提供することができる。

Description

組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびNMR測定法
 本発明は、核のスピン偏極を高くすることができる組成物、その組成物を用いる高偏極化方法、その高偏極化方法により高偏極化した物質、および、そのような物質のNMR測定法に関する。
 磁気モーメントを有する原子核(核スピン)を静磁場中に置くと歳差運動を行うようになり、この状態で、その歳差運動と同じ周波数の電磁波を照射すると、核スピンが共鳴して電磁場のエネルギーを吸収する核磁気共鳴(NMR)現象が現れる。このNMR現象における共鳴周波数は核種や原子核の置かれた化学的または磁気的環境に応じて差がでることから、有機化学や生化学の分野では、その共鳴によるエネルギー吸収量を電気信号に変換したNMR信号の周波数スペクトル(化学シフト値)を観測して、化合物の分子構造や物性を解析するNMR分光法が多く行われている。また、医療の分野においては、そのNMR信号に位置情報を与えて画像化する磁気共鳴撮像法(MRI)が、脳などの生体器官の非侵襲的検査に応用されている。
 また、上記のような核スピンの集合体に、静磁場を印加すると、例えばプロトンの場合では、その磁場に対してスピンが平行に向いたエネルギー状態と、磁場に対してスピンが反平行に向いたエネルギー状態に分裂する。ここで、それぞれのエネルギー状態をもつスピンの数(占有数)の差をスピン総数で割った値は偏極率と称されており、NMR信号の強度は、この偏極率に比例するとされている。しかし、核スピンの偏極率は、通常、室温では数万分の1以下と非常に低い値であり、このことがNMR分光法やMRIの感度を制限する原因になっている。
 そこで、核スピンを高偏極化する方法として、電子のスピン偏極を、電磁波照射にて誘起される固体効果により、周囲の核に移行させて核スピンを高偏極化する動的核偏極法が提案されている。ここで、電子スピンの供給源には、ラジカルや光励起三重項分子が用いられ、このうち光励起三重項分子は、温度に関わりなく、電子スピンの占有数が特定のエネルギー状態に大きく偏った状態をとるため、室温においても、核スピンを効果的に高偏極化することができるという利点がある。
 こうした光励起三重項分子を用いた動的核偏極系として、非特許文献1には、p-ターフェニルの有機結晶基材に、光励起三重項分子としてのペンタセンを添加したものが記載され、非特許文献2には、o-ターフェニルのアモルファス基材に光励起三重項分子としてのペンタセンを添加したものが提案されている。
非特許文献1:PNAS, 2014, 111, 7529
非特許文献2:Angew. Chem. Int. Ed., 2013, 52, 13307
 上記のように、非特許文献1には、p-ターフェニルの有機結晶基材に光励起三重項分子としてのペンタセンを添加した動的核偏極系が提案され、非特許文献2には、o-ターフェニルのアモルファス基材に光励起三重項分子としてのペンタセンを添加した動的核偏極系が提案されている。しかしながら、これらの動的核偏極系は、いずれも十分に満足のいくものとは言えず、実用化のためにはさらなる改良が必要である。
 すなわち、有機結晶基材を用いた動的核偏極系は、結晶骨格の硬直性から、スピン-格子緩和時間が300秒以上と長いため、電子から核へ移行してきたスピン偏極が蓄積し易く、核スピンを高偏極化できると考えられる。しかし、結晶骨格が硬直であることにより、偏極源や偏極対象物の基材への導入が困難であるという問題がある。一方、アモルファス基材を用いた動的核偏極系では、偏極源や偏極対象物の導入は比較的容易であるものの、o-ターフェニルのガラス転移温度は、-30℃で冷却装置が必須となる。また、ガラス転移温度が20℃(室温)以上のポリスチレンなどは、スピン-格子緩和時間が10秒以下と短いために、核のスピン偏極が蓄積し難く、核スピンを十分に偏極化できないという問題がある。
 そこで本発明者らは、このような従来技術の課題を解決するために、スピン-格子緩和時間が長く、偏極対象物の導入が容易な動的核偏極系を提供することを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、(1)多孔性材料と(2)励起三重項状態をとりうる分子からなる偏極源を組み合わせることにより、スピン-格子緩和時間が長く、偏極源や偏極対象物を容易に導入できる動的核偏極系が実現することを見出した。本発明は、こうした知見に基づいて提案されたものであり、具体的に以下の構成を有する。
[1] (1)多孔性材料と、(2)励起三重項状態をとりうる分子からなる動的核偏極の偏極源とを含む、組成物。
[2] 前記励起三重項状態をとりうる分子が4~6個のベンゼン環が縮合した骨格を有する化合物である、[1]に記載の組成物。
[3] 前記励起三重項状態をとりうる分子がペンタセン骨格を有する化合物である、[2]に記載の組成物。
[4] 前記励起三重項状態をとりうる分子が炭素原子、水素原子および重水素原子のみから構成される化合物である、[1]~[3]のいずれか1項に記載の組成物。
[5] 前記多孔性材料が金属有機構造体または共有結合性有機骨格構造体である、[1]~[4]のいずれか1項に記載の組成物。
[6] 金属有機構造体を含み、前記金属有機構造体の有機配位子が置換基で置換された環構造を有しており、前記置換基の水素原子の少なくとも1つが重水素で置換されている、[5]に記載の組成物。
[7] 金属有機構造体を含み、前記金属有機構造体の有機配位子がイミダゾール骨格を有する、[5]に記載の組成物。
[8] 金属有機構造体を含み、前記金属有機構造体の金属イオンが、2~4価の金属イオンを含む、[5]~[7]のいずれか1項に記載の組成物。
[9] 金属有機構造体を含み、前記金属有機構造体の金属イオンが、亜鉛イオンZn2+を含む、[5]~[8]のいずれか1項に記載の組成物。
[10] 金属有機構造体を含み、前記励起三重項状態をとりうる分子が前記金属有機構造体の金属イオンと相互作用する官能基を有する、[5]~[9]のいずれか1項に記載の組成物。
[11] 前記官能基が酸性基である、[10]に記載の組成物。
[12] 前記官能基がカルボキシ基またはカルボキシラートアニオン基である、[10]に記載の組成物。
[13] 前記励起三重項状態をとりうる分子が前記多孔性材料の孔内に存在する、[1]~[12]のいずれか1項に記載の組成物。
[14] 前記偏極源の含有量が、前記金属有機構造体の金属イオンのモル数に対して0.01mol%以上である、[1]~[13]のいずれか1項に記載の組成物。
[15] 前記組成物のスピン-格子緩和時間Tが10秒以上である、[1]~[14]のいずれか1項に記載の組成物。
[16] さらに、前記偏極源および前記多孔性材料で生成した核スピン偏極を移行させうる物質を含有する、[1]~[15]のいずれか1項に記載の組成物。
[17] [1]~[16]のいずれか1項に記載の組成物からなる高偏極化組成物。
[18] [1]~[16]のいずれか1項に記載の組成物を高偏極化したものである、高偏極化組成物。
[19] [18]に記載の高偏極化組成物に物質を接触させる工程、または、[1]~[16]のいずれか1項に記載の組成物に物質を接触させた後、前記組成物を高偏極化させて高偏極化組成物とする工程を含む、物質の高偏極化方法。
[20] 前記物質が液体または溶液である、[18]に記載の高偏極化方法。
[21] 前記物質がガスである、[18]に記載の高偏極化方法。
[22] 前記高偏極化組成物または前記組成物への前記物質の接触を、前記高偏極化組成物または前記組成物を構成する多孔性材料中に、前記物質を浸透させることにより行う、[20]または[21]に記載の高偏極化方法。
[23] 前記物質が、炭化水素、および、少なくとも1つの水素原子が置換基で置換された炭化水素の誘導体から選択される少なくとも1種の化合物を含有する、[19]~[22]のいずれか1項に記載の高偏極化方法。
[24] 前記物質が、少なくとも1つの水素原子が置換基で置換された炭化水素の誘導体を含有し、前記置換基の少なくとも1つが、スピン量子数Iが0以外である原子を含む、[23]に記載の高偏極化方法。
[25] 前記置換基がフッ素原子である、[23]または[24]に記載の高偏極化方法。
[26] さらに、前記高偏極化組成物の核スピン偏極を前記物質へ移行させる工程を含む、[19]~[25]のいずれか1項に記載の高偏極化方法。
[27] 前記高偏極化組成物の核スピン偏極を前記物質へ移行させる工程を、互いに接触させた前記高偏極化組成物と前記物質にマイクロ波を照射することにより行う、[26]に記載の高偏極化方法。
[28] [18]~[27]のいずれか1項に記載の方法により高偏極化した物質。
[29] [1]~[15]のいずれか1項に記載の組成物を用いて物質のNMRを測定する工程を含む、NMR測定法。
 本発明の組成物によれば、スピン-格子緩和時間が長く、偏極源や偏極対象物の導入が容易な動的核偏極系を実現することができる。こうした組成物を用いることにより、様々な物質について高偏極化を行って核スピンを高偏極化することが可能になり、そのNMR測定の感度を効果的に向上させることができる。
本発明の組成物の動的核偏極メカニズムを説明するための模式図である。 MOFに0.012mol%の化合物1を導入した実施例1の組成物、MOFに0.027mol%の化合物1を導入した実施例2の組成物、MOFに0.13mol%の化合物1を導入した実施例3の組成物、化合物1単体の固体、および化合物1のメタノール溶液の光吸収スペクトルである。 MOFに0.012mol%の化合物1を導入した実施例1の組成物、MOFに0.027mol%の化合物1を導入した実施例2の組成物、MOFに0.13mol%の化合物1を導入した実施例3の組成物、化合物1単体の固体、および化合物1の蛍光発光の過渡減衰曲線である。 MOFに0.012mol%の化合物1を導入した実施例1の組成物、MOFに0.027mol%の化合物1を導入した実施例2の組成物、MOFに0.13mol%の化合物1を導入した実施例3の組成物、およびDPPのクロロホルム溶液の電子スピン共鳴スペクトルである。 MOFに0.012mol%の化合物1を導入した実施例1の組成物、MOFに0.027mol%の化合物1を導入した実施例2の組成物、MOFに0.13mol%の化合物1を導入した実施例3の組成物、およびDPPのクロロホルム溶液の680mTにおけるESRピークの過渡減衰曲線である。 配位子2を用いたMOFに化合物1を導入した実施例7の組成物から観測された、H-NMR信号を示すNMRスペクトルである。 実施例7の組成物に対象物1を導入した実施例8の対象物導入組成物から観測された、19F-NMR信号を示すNMRスペクトルである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。また、本明細書における「励起光」とは、対象物に励起を引き起こして発光を生じさせる光であり、その対象物の吸収波長に一致する波長の光を用いることができる。
<組成物>
 本発明の組成物は、(1)多孔性材料と、(2)励起三重項状態をとりうる物質からなる動的核偏極の偏極源とを含むものである。
 本発明における「多孔性材料」とは、20℃、1気圧で固体状態をなし、その固体状態において複数の細孔を有する材料である。多孔性材料が有する細孔は貫通孔であっても、非貫通の穴であってもよい。
 本発明における「偏極源」とは、偏極状態の電子スピンと核スピンの集合体に、外部磁場を印加しながら電磁波を照射することにより、電子のスピン偏極を核へ移行させて核スピンを高偏極化する動的核偏極において、偏極状態の電子スピンの供給源となるものである。ここで、「偏極」または「スピン偏極」とは、スピンの集合体に静磁場を印加してゼーマン分裂を起こさせた際、分裂したエネルギー準位同士で、そのエネルギー準位にあるスピンの占有数が異なっていることをいう。また、分裂したエネルギー準位のうち、いずれか2つからなる組み合わせを見たとき、一方のエネルギー準位におけるスピンの占有数Nと他方のエネルギー準位におけるスピンの占有数Nの差の総スピン数に対する比、すなわち、(N-N)/(N+N)を偏極率という。ここで、ゼーマン分裂したエネルギー準位の全ての組み合わせで、偏極率が0あるものはスピン偏極しておらず、少なくとも1つの組み合わせで、偏極率が0超であるものはスピン偏極したものと言うことができる。この偏極率が大きいもの程、いずれか一方のエネルギー準位にスピンが過剰に存在しており、スピン偏極が大きいことを意味する。なお、以下の説明では、ゼーマン分裂した各エネルギー準位を「ゼーマン準位」という。本発明の組成物における電子および核のゼーマン準位は、2つであっても3つ以上であってもよい。また、ゼーマン準位が3つ以上であるとき、スピン偏極した状態で偏極率が0超となるものは、ゼーマン準位の全ての組み合わせであってもよいし、一部の組み合わせであってもよい。
 本発明においては、「偏極源」として「励起三重項状態をとりうる分子」を使用する。ここで、「励起三重項状態をとりうる分子」とは、励起エネルギーを印加することにより励起三重項状態へ遷移しうる分子のことを意味する。励起三重項状態への遷移は、励起エネルギーの印加により直接起こる基底一重項状態から励起三重項状態への遷移であってもよいし、励起エネルギーの印加で生じた励起一重項状態からの、励起三重項状態への項間交差であってもよい。励起状態への遷移を引き起こす励起エネルギーは、励起光のエネルギーであっても、注入したキャリアの再結合エネルギーであってもよいし、励起状態になった他の分子から受け取った励起エネルギーであってもよい。励起三重項状態をとりうる分子の電子スピンの偏極状態については、下記の[1]偏極源の励起工程の項で説明する。
 本発明の組成物は、上記のような多孔性材料と、励起三重項状態をとりうる分子からなる偏極源とを含み、偏極源や偏極対象物を多孔性材料の細孔内に包接することができる。こうした態様により、偏極源や偏極対象物を多孔性材料の内部に容易に導入することができ、これらを空間的に分散させた状態で保持することができる。また、このように多孔性材料では、偏極源や偏極対象物を細孔内に包接して導入することができるため、これらの導入を考慮して、アモルファスのような柔軟な素材を採用する必要がなく、スピン-格子緩和時間を重視した素材を選択することができる。そのため、本発明の組成物によれば、スピン-格子緩和時間が長く、偏極対象物の導入が容易な動的核偏極系を実現することができる。
 また、本発明の組成物は、偏極源として励起三重項状態をとりうる分子を用いることにより、温度に関わりなく、特定のエネルギー準位に電子スピンの占有数が大きく偏った、電子スピンの偏極状態を実現することができる。そのため、室温で高偏極化を行った場合でも、核スピンを効率よく高偏極化することができ、温度制御に係る操作や設備を簡易化することが可能になる。
 以下において、本発明の組成物における動的核偏極メカニズムを、励起光照射により偏極源を励起する場合を例にして、図1を参照しながら説明する。ただし、本発明の組成物の動的核偏極メカニズムは、以下で説明するメカニズムによって限定的に解釈されるべきものではない。
[1]偏極源の励起工程
 この工程では、組成物に励起光を照射して、励起三重項状態をとりうる分子からなる偏極源を励起三重項状態へ遷移させる。
 組成物に励起光を照射すると、図1に示すように、偏極源が基底一重項状態Sから励起一重項状態Sへと遷移し、さらに、励起一重項状態Sからの項間交差が起こって励起三重項状態Tになる。続いて、励起三重項状態Tが、それよりも低次の励起三重項状態へと段階的に内部転換し、終には最低エネルギー準位の励起三重項状態Tになる。この励起三重項状態Tでの電子スピン(三重項電子スピン)のゼーマン準位の数は、磁気量子数m=-1、0、+1のそれぞれに相当する3つであり、これらのうち、m=0のゼーマン準位に電子スピンが大きく偏って分布した電子スピン高偏極状態になっている。一方、多孔性材料の核のゼーマン準位の数は、例えばプロトンでは、磁気量子数m=+1/2、-1/2のそれぞれに相当する2つである。これらのうちm=+1/2のゼーマン準位の方が、僅かに核スピンの占有数が多いものの、偏極率は10-6程度であり、極めて低い核スピン偏極状態にある。
[2]高偏極化工程
 この工程では、組成物で生成した三重項電子スピンの偏極を核スピンに移行して、核スピンを高偏極化する。
 三重項電子スピンが生じた組成物に、外部磁場を印加しつつ電子スピンが共鳴する電磁波を照射すると、固体効果により、電子スピンが共鳴して歳差運動の角度が変化するとともに、電子スピンの歳差運動が変化する速度に、周囲の核スピンが共鳴する。これにより、その電磁波の周波数に応じて、例えば偏極源のm=0のゼーマン準位にある電子スピンがm=-1のゼーマン準位に落ちると同時に、多孔性材料のm=+1/2のゼーマン準位にある核スピンがm=-1/2のゼーマン準位に上がり、電磁波を照射している間、こうしたサイクルが繰り返されることで電子のスピン偏極と核のスピン偏極が交換されて、核スピンが高偏極化される。このとき、本発明においては、多孔性材料のスピン-格子緩和時間が長いため、その高偏極化された核スピンが蓄積して拡散することにより、多孔性材料が全体的に高偏極化される。そのため、その多孔性材料に偏極対象物が導入されている場合には、その核にもスピン偏極が受け渡され、該偏極対象物の核スピンが高偏極化されることになる。
 高偏極化の条件は特に制限されないが、例えば外部磁場の強度は、0.1~1T、電磁波の周波数は2~20GHz、電磁場の強度は0.1~100Wの各範囲から適宜選択することができる。
 なお、上記の工程[1]、[2]は、工程[1]を行った後に、工程[2]を行うようにしてもよいし、工程[1]と工程[2]を同時に行ってもよい。後者の場合には、組成物に外部磁場を印加しつつ、励起光と電子スピンが共鳴する電磁波を同時に照射する。
 以上のように、本発明の組成物は、動的核偏極により、その核スピンや組成物に導入した偏極対象物の核スピンを高偏極化することができる。そのため、本発明の組成物は、動的核偏極用組成物として効果的に用いることができる。
 次に、本発明の組成物が含む各成分と組成物の物性について説明する。
<偏極源>
 本発明で用いる偏極源は、励起三重項状態をとりうる分子から構成されており、高偏極化における電子スピンの供給源として機能する。
 励起三重項状態をとりうる分子は、無機分子であっても有機分子であってもよいが、有機分子であることが好ましい。
 偏極源として用いうる好ましい有機分子として、4~6個のベンゼン環が縮合した骨格を有する化合物を挙げることができる。4~6個のベンゼン環が縮合した骨格の具体例として、テトラセン骨格、ペンタセン骨格、ヘキサセン骨格、ルブレン骨格、ピセン骨格を挙げることができ、これらの骨格の2種類以上が連結した構造を有するものや、これらの骨格にベンゼン環やナフタレン環、ビフェニル環が連結した構造を有するものであってもよい。4~6個のベンゼン環が縮合した骨格を有する化合物は、その骨格のみからなる無置換の化合物であってもよいし、これらの骨格が置換基で置換された構造を有する誘導体であってもよいが、誘導体であることが好ましい。骨格に置換しうる置換基の好ましい範囲と具体例については、下記のRがとりうる置換基の好ましい範囲、具体例を参照することができる。中でも、この骨格の置換基は、多孔質材料を構成する原子や原子団、さらには、多孔質材料がイオンを含む場合には、そのイオンの少なくともいずれかと相互作用する基であることが好ましい。これにより、偏極源の分子同士が凝集して凝集体を形成することが抑えられ、その分子を多孔質材料の細孔内へより容易に導入できるようになる。例えば、多孔質材料が金属有機構造体である場合には、偏極源となる化合物は、金属有機構造体の金属イオンと相互作用する官能基を有することが好ましい。そのような官能基として、カルボキシ基(-COOH)、スルホ基(-SOH)、ホスホノ基(-P(O)(OH))、ホスホノキシ基(-OP(O)(OH))等の酸性基、またはこれらの基からプロトンが電離したアニオン基等を挙げることができ、カルボキシ基、カルボキシラートアニオン基であることが好ましい。
 また、偏極源として用いる化合物は、その少なくとも一部の水素原子が重水素で置換されていることが好ましく、化合物に存在する水素原子の30~70%が重水素で置換されていることがより好ましい。これにより、偏極源のスピン-格子緩和時間を長くして、核スピンを効果的に高偏極化することができる。ここで、化合物の重水素で置換される箇所は、比較的動きやすい箇所であることが好ましい。例えば、化合物を構成する4~6個のベンゼン環が縮合した骨格に、単結合で結合した原子団(置換基)が存在する場合には、その置換基が有する水素原子の少なくとも一部が重水素で置換されていることが好ましく、その全部の水素原子が重水素で置換されていることが好ましい。重水素で置換するのに好ましい置換基の例として、炭素数1~20のアルキル基を挙げることができる。
 偏極源として用いる化合物は、下記一般式(A)で表される化合物またはその塩であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(A)において、Rはそれぞれ独立して水素原子(H)、重水素原子(D)、又は酸素原子、硫黄原子、及びケイ素原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。但し、Rの少なくとも1つは、酸素原子、硫黄原子、及びケイ素原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基である。
 なお、式(A)のRはそれぞれ独立して水素原子(H)、重水素原子(D)、又は酸素原子、硫黄原子、及びケイ素原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表しているが、「炭化水素基」とは直鎖状の飽和炭化水素基に限られず、炭素-炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよいことを意味する。また、「酸素原子、硫黄原子、及びケイ素原子からなる群より選択される少なくとも1種の原子を含んでいてもよい」とは、酸素原子、硫黄原子、又はケイ素原子を含む官能基を含んでいてもよいことを意味するほか、酸素原子、硫黄原子、又はケイ素原子を含む連結基を炭素骨格の内部又は末端に含んでいてもよいことを意味するものとする。従って、「酸素原子、硫黄原子、及びケイ素原子からなる群より選択される少なくとも1種の原子を含んでいてもよい」炭化水素基には、例えば-CH-CH-OHのようなヒドロキシル基を含む炭素数2の炭化水素基、-CH-O-CHのようなエーテル基を炭素骨格の内部に含む炭素数2の炭化水素基、及び-O-CH-CHのようなエーテル基を炭素骨格の末端に含む炭素数2の炭化水素基等が含まれる。
 ペンタセン誘導体の「その塩」とはペンタセン誘導体がカルボキシル基(-COOH)やスルホ基(-SOH)等の酸点を有する化合物であり、その水素イオンが金属陽イオンに置き換えられているものを意味するものとする。
 「Rの少なくとも1つは、酸素原子、硫黄原子、及びケイ素原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基である」とは、即ち、式(A)で表されるペンタセン誘導体にペンタセン自体と重水素化したペンタセンは含まれないことを意味する。
 Rが炭化水素基である場合、炭化水素基の炭素数は、好ましくは3以上、より好ましくは6以上であり、好ましくは12以下、より好ましくは8以下である。
 炭化水素基としては、フェニル基、ビフェニル基、フェニルチオ基、デシルチオ基、エチニル基等が挙げられる。
 炭化水素基に含まれる官能基や連結基としては、カルボキシル基(-COOH)、カルボキシル基のカリウム塩(-COOK)、チオエーテル基(-S-)、トリエチルシリル基(-SiEt)、トリイソプロピルシリル基(-SiiPr)等が挙げられる。
 炭化水素基の結合数は、通常1以上、好ましくは2以上であり、通常6以下、好ましくは5以下である。
 炭化水素基の結合位置は、6位及び13位の組合せ(炭化水素基の結合数2)、5位、7位、12位、及び14位の組合せ(炭化水素基の結合数4)、1位、4位、8位、及び11位の組合せ(炭化水素基の結合数4)、2位、3位、9位、及び10位の組合せ(炭化水素基の結合数4)が挙げられるが、6位及び13位の組合せが最も好ましく、5位、7位、12位、及び14位の組合せ、1位、4位、8位、及び11位の組合せ、位、3位、9位、及び10位の組合せの順で好ましい。ペンタセン誘導体は大気中で溶媒に溶かすと酸化分解され易い傾向があるが、炭素水素基を付加する位置によって上記の順で分解速度が遅くなる。これは、ペンタセンのπ電子雲のスピン密度の高い順に相当する。
 また、Proc.Natl.Acad.Sci,U.S.A.2014,111,7527-7530.には、ペンタセンに含まれる水素原子を重水素置換することによって、動的核偏極により達成されるHスピン偏極率が向上することが示されている。
Figure JPOXMLDOC01-appb-C000002
 式(A)で表されるペンタセン誘導体及び/又はその塩としては、下記の化合物1~11を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 上記に示されるもののうち、化合物1については、実施例において電子スピン共鳴スペクトルを測定しており、NMR信号が得られることも確認されている。
 また、J.Am.Chem.Soc.2008,130,16274-16286.には、例えば、上記化合物2、3、8、9、11につき、ペンタセン類のHOMO-LUMOギャップや光酸化抵抗性に与える置換基の効果について詳細に説明されている。
 他にも、J.Mater.Chem.C,2013,1,2193-2201.には、上記化合物6、7等のペンタセン誘導体が動的核偏極の偏極源として利用できることも示されている。
 上述の11種類の化合物は、化学式に含まれる水素原子(H)のその一部または全部が重水素原子(D)で置換されていてもよい。
 また、偏極源には、炭素原子、水素原子および重水素原子のみから構成される化合物も好ましく用いることができる。
[多孔性材料]
 本発明で用いる多孔性材料は、その細孔内に偏極源を包接して、該偏極源を空間的に分散させた状態で保持する基材として機能する。偏極源を分散させて保持することにより、偏極源の分子同士が凝集して三重項電子スピンの偏極が緩和することを抑制することができる。また、本発明における多孔性材料は、その核スピンで、励起三重項状態になった偏極源の電子のスピン偏極を受け取って蓄積し、拡散させる作用を奏する。これにより、多孔性材料に偏極対象物が導入されている場合には、多孔性材料内をスピン偏極が拡散している過程で、その偏極対象物にもスピン偏極が受け渡され、その核スピンが高偏極化される。
 多孔性材料として、金属有機構造体(MOF)、共有結合性有機骨格構造体(COF)等の結晶性多孔高分子、無機多孔質材料、有機多孔質材料等を挙げることができ、金属有機構造体、共有結合性有機骨格構造体であることが好ましく、金属有機構造体であることがより好ましい。また、金属有機構造体、共有結合性有機骨格構造体では、その有機構造に存在する水素原子の少なくとも1つが重水素で置換されていることが好ましく、その有機構造に存在する水素原子の30~70%が重水素で置換されていることがより好ましい。これにより、組成物のスピン-格子緩和時間を長くすることができる。
 ここで、金属有機構造体は、金属イオンと架橋性の有機配位子が連続的に配位結合して形成された、内部に細孔を有する結晶性の高分子構造体である。金属有機構造体は、硬い結晶性の骨格を有するため、スピン-格子緩和時間が長く、核のスピン偏極を効果的に蓄積して、高偏極化することができる。また、金属有機構造体は、細孔径がナノレベルと小さいため、偏極源や偏極対象物を分子毎あるいは少数の分子毎に細孔内に包接して、分子同士の凝集を抑えることができる。さらに、金属有機構造体は、金属と有機配位子の物性を併せもつため、物性を多様に変化させることができる。これにより、例えば、その金属有機構造体と偏極源や偏極対象物との相互作用を制御して、その導入量や高偏極化の状態を最適化することが可能である。
 金属有機構造体を構成する金属イオンとしては、特に限定されないが、遷移金属、2、13及び14族の典型金属の金属イオンであることが好ましく、銅、亜鉛、カドミウム、銀、コバルト、ニッケル、鉄、ルテニウム、アルミニウム、クロム、モリブデン、マンガン、パラジウム、ロジウム、ジルコニウム、チタニウム、マグネシウム、ジルコニウム、ランタンの各イオンであることがより好ましく、亜鉛、アルミニウム、ジルコニウム、ランタンの各イオンであることがさらに好ましく、亜鉛イオン、ジルコニウムイオンであることが特に好ましい。これらの金属イオンは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 金属イオンの価数は、特に制限されないが、2~6価であることが好ましく、2~5価であることがより好ましく、2~4価であることがさらに好ましい。
 架橋性の有機配位子は、少なくとも2つの配位性基を有する配位性化合物である。有機配位子が有する複数の配位性基は互いに同一であっても異なっていてもよい。また、有機配位子が有する配位性基の数は、2~8であることが好ましく、2~6であることがより好ましく、2~4であることがさらに好ましい。配位性基の具体例として、窒素原子含有複素環が環員として含む配位性窒素原子やカルボキシ基が挙げられる。このうちカルボキシ基は、プロトンが電離したカルボキシラートアニオン基のかたちで配位性基として機能する。
 配位性窒素原子を含む複素環は、脂肪族複素環であっても芳香族複素環であってもよい。配位性窒素原子を含む複素環として、イミダゾール環、トリアジン環、ピリジン環、ピリミジン環を挙げることができ、イミダゾール環であることが好ましい。これらの複素環は、置換基で置換されていてもよい。この置換基の好ましい範囲と具体例については、下記のR~Rがとりうる置換基の好ましい範囲と具体例を参照することができる。
 配位性基となるカルボキシ基で置換される有機構造は、特に限定されないが、芳香族炭化水素環、アルケン、上記の配位性窒素原子を含む複素環、アルカン、アルキン、非芳香族炭化水素環を挙げることができる。これらの有機構造は、置換基で置換されていてもよい。この置換基の好ましい範囲と具体例については、下記のR~Rがとりうる置換基の好ましい範囲と具体例を参照することができる。
 また、金属有機構造体の有機配位子が置換基で置換された環構造を有する場合、その置換基が含む水素原子の少なくとも1つは重水素で置換されていることが好ましく、その置換基の全ての水素原子が重水素で置換されていることが好ましい。
 架橋性の有機配位子のより好ましい例として、下記一般式(B)で表されるイミダゾール配位子を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 一般式(B)において、R~Rは、各々独立に水素原子または置換基を表す。R~Rのうちの2つ以上が置換基であるとき、それらの置換基は互いに同一であっても異なっていてもよい。また、R~Rにおける置換基は、該置換基が含む水素原子の少なくとも一部が重水素で置換されていることが好ましく、該置換基が含む水素原子の全てが重水素で置換されていることが好ましい。これにより、組成物のスピン-格子緩和時間を長くすることができる。R~Rのうちの置換基の数は特に限定されないが、少なくともRが置換基であることが好ましい。Rが表す置換基は、置換もしくは無置換のアルキル基であることが好ましく、水素原子の少なくとも一部が重水素で置換されたアルキル基であることがより好ましく、水素原子の全部が重水素で置換されたアルキル基であることがさらに好ましい。このアルキル基の炭素数は、1~20であることが好ましく、1~4であることがより好ましく、1であることがさらに好ましい。
 R~Rがとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数1~20のアリール置換アミノ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~20のアルキルアミド基、炭素数7~21のアリールアミド基、炭素数3~20のトリアルキルシリル基、炭素数2~20のオリゴエチレングリコール基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。
 また、架橋性の有機配位子の具体例として、下記式で表されるものを挙げることができる。また、下記の有機配位子のうち、環構造がメチル基で置換されたものにおいて、そのメチル基の水素原子が重水素で置換されたものも具体例として挙げることができる。ただし、本発明の多孔性材料として用いうる金属有機構造体の有機配位子はこれらの具体例によって、限定的に解釈されるものではない。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 以上の有機配位子は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 金属有機構造体における有機配位子の含有量は、金属イオンのモル数に対して1~6であることが好ましく、1~3であることがより好ましく、1または2であることがさらに好ましい。
 また、金属有機構造体は、金属イオンおよび架橋性の有機配位子以外の成分を含んでいてもよい。そうした成分として、例えば結晶径調整剤、カウンターイオン、タンパク質、ペプチド、DNA等を挙げることができる。
 また、本発明では、上記の金属有機構造体の他に、共有結合性有機骨格構造体、無機多孔質材料、有機多孔質材料も多孔性材料として用いることができる。共有結合性有機骨格構造体は、水素原子、ホウ素原子、炭素原子、酸素原子などの軽原子を共有結合により連結して網目状の周期構造を形成した結晶性またはアモルファス状の多孔性高分子構造体である。この共有結合性有機骨格構造体も、硬い結晶性の骨格を有するとともに、細孔径がナノレベルと小さいため、スピン-格子緩和時間が長く、また、偏極源や偏極対象物を細孔内に容易に導入して、これらを分散した状態で保持することができる。また、無機多孔質材料としては、シリカ、オルガノシリカ、アルミナ、カーボン、金属酸化物等を用いることができ、有機多孔質材料としては、繊維状のポリマーを絡めた繊維集合体等が用いることができる。
(多孔性材料の細孔の条件)
 本発明で用いる多孔性材料の細孔の孔径は、0.2~1000nmであることが好ましく、0.2~100nmであることがより好ましく、0.2~2nmであることがさらに好ましい。
 多孔性材料の細孔の孔径は、ガス吸着により測定することができる。
 多孔性材料の空孔率は、1%~90%であることが好ましく、20%~90%であることがより好ましく、40%~90%であることがさらに好ましい。
 多孔性材料の空孔率は、ガス吸着により測定することができる。
 多孔性材料の細孔の孔径、空孔率が上記の範囲であることにより、偏極源や偏極対象物の分子を、多孔性材料の細孔内に容易かつ十分な量で導入して、分散性よく保持させることができる。
[その他の成分]
 本発明の組成物は、多孔性材料と偏極源のみから構成されていてもよいし、その他の成分を含んでいてもよい。例えば、偏極源を構成する分子が酸性基を有する場合には、水酸化ナトリウム、水酸化カリウム等の塩基性物質を組成物に添加することが好ましい。これにより、偏極源の酸性基からプロトンが電離して共役塩基が形成され、金属有機構造体の金属イオンと相互作用するようになる。これにより、金属有機構造体への偏極源の導入量を顕著に上げることができる。
 また、本発明の組成物は、タンパク質、ペプチド、DNA等の偏極対象物や、溶媒分子、テンプレート分子等をその他の成分として含んでいてもよい。ここで、偏極対象物は、偏極源および多孔性材料で生成した核スピン偏極を移行させうる物質である。偏極対象物の説明と好ましい範囲、具体例については、<高偏極化方法>の欄の対応する記載を参照することができる。
[偏極源の導入量]
 本発明の組成物において、多孔性材料における偏極源の導入量は、金属有機構造体の金属イオンのモル数に対して、0.001mol%~1mol%であることが好ましく、0.001mol%~0.1mol%であることがより好ましく、0.01mol%~0.05mol%であることがさらに好ましい。
 多孔性材料における偏極源の導入量は、組成物を塩酸等で分解して偏極源を取り出し、その光吸収スペクトルのピーク強度を測定することにより求めることができる。
[スピン-格子緩和時間T
 本発明の組成物のスピン-格子緩和時間Tは、1秒以上であることが好ましく、10秒以上であることがより好ましく、60秒以上であることがさらに好ましい。これにより、核のスピン偏極がより蓄積し易くなり、その組成物の核スピンや偏極対象物の核スピンを高偏極化することができる。
 スピン-格子緩和時間Tは、飽和回復法により求めることができる。
<動的核偏極用組成物>
 次に、本発明の動的核偏極用組成物について説明する。
 本発明の動的核偏極用組成物は、本発明の組成物からなることを特徴とする。
 本発明の組成物の説明と好ましい範囲、具体例については、上記の<組成物>の項の記載を参照することができる。
 上記のように、本発明の組成物は、スピン-格子緩和時間が長く、偏極源や偏極対象物を容易に導入できるため、その核スピンや組成物に導入した偏極対象物の核スピンを高偏極化することができる。そのため、本発明の組成物は、動的核偏極用組成物として効果的に用いることができる。
<高偏極化組成物>
 次に、本発明の高偏極化組成物について説明する。
 本発明の高偏極化組成物は、本発明の組成物を高偏極化したものである。
 本発明の組成物の説明と好ましい範囲、具体例、高偏極化の方法とメカニズムについては、上記の<組成物>の項の記載を参照することができる。
 上記のように、本発明の組成物は、スピン-格子緩和時間が長いため、動的核偏極を行うことにより、その核スピンを全体的に高偏極化することができる。そのため、本発明の高偏極化組成物は、その全体に亘って核スピンが高い偏極率を有する。そのため、この高偏極化組成物に偏極対象物を接触させると、その核のスピン偏極が偏極対象物へ移行して、該偏極対象物の核スピンを高偏極化することができる。
 本発明の「高偏極化組成物」であることは、そのNMRスペクトルにおいて、熱平衡状態にある組成物のNMRスペクトルよりも、強度が大きいピーク(増感したピーク)が観測されることをもって確認することができる。高偏極化組成物の増感したピークの強度は、熱平衡状態にある組成物の対応するピーク強度に対して、10倍以上であることが好ましく、100倍以上であることがより好ましく、1000倍以上であることがさらに好ましい。
<高偏極化方法>
 次に、本発明の高偏極化方法について説明する。
 本発明の高偏極化方法は、本発明の高偏極化組成物に物質を接触させる工程、または、本発明の組成物に物質を接触させた後、その組成物を高偏極化させて高偏極化組成物とする工程を含む。
 なお、本明細書中では、上記の動的核偏極用組成物を用いて、その核スピンを偏極化する物質(偏極化の対象)、および本発明の高偏極化組成物または本発明の組成物に接触または含有させて核スピンを偏極化する物質(偏極化の対象)を「偏極対象物」という。
 組成物の説明については、上記の<組成物>の項の記載を参照することができ、高偏極化組成物の説明については、上記の<高偏極化組成物>の項の記載を参照することができる。
 また、本発明の高偏極化方法は、さらに、高偏極化組成物の核スピン偏極を、偏極対象物に移行させる工程を含んでいてもよい。
 高偏極化組成物の核スピン偏極は、別段の工程を行わなくても、高偏極化組成物に偏極対象物を接触させることにより該偏極対象物に移行、拡散するが、その際、核スピン偏極の移行を誘起するための工程を行ってもよい。そのような手法として、交差分極法(CP法)、交差分極とマジック角回転と広帯域デカップリングを併用したCP/MAS法、断熱通過交差分極(Adiabatic passage cross polarization)等が挙げられ、マイクロ波の照射を用いて行うことが好ましい。
 核スピン偏極の移行は、高偏極化組成物のHから偏極対象物のHへの移行のように、同じ核種同士の間の移行であってもよいし、高偏極化組成物のHから偏極対象物のHと異なる核種への移行のように、異なる核種同士の間の移行であってもよいし、その両方であってもよい。核スピン偏極を移行させる偏極対象物の核種は、スピン量子数Iが0以外のものであれば特に制限なく用いることができる。核種の具体例として、H、H、He、11B、13C、14N、15N、17O、19F、29Si、31P、129Xe等を挙げることができ、天然存在比が高いことからH、14N、19F、31Pであることが好ましく、NMR信号強度が高いことからH、19Fであることがより好ましい。
 動的核偏極用組成物に接触させる偏極対象物は、ガス、液体または溶液であることが好ましい。これらの偏極対象物を、本発明の高偏極化組成物に接触させると、その偏極対象物が多孔性材料の細孔内へ容易に浸入して包接される。これにより、高偏極化組成物の核のスピン偏極が偏極対象物に移行し、該偏極対象物の核スピンが高偏極化される。
 ガス、液体または溶液の動的核偏極用組成物への接触方法は特に限定されず、例えばこれらのものを組成物へ注入してもよいし、容器内にこれらのものを充填し、その中に容器を配置して浸透させてもよい。
 また、偏極対象物を液体中に溶解または分散させた状態で動的核偏極用組成物と混合してもよい。このとき、動的核偏極用組成物が偏極対象物を直接偏極してもよいし、液体を介して偏極してもよい。
 ここで、偏極対象物は、炭化水素、および、少なくとも1つの水素原子が置換基で置換された炭化水素の誘導体から選択される少なくとも1種の化合物を含有することが好ましい。
 炭化水素は、非環系化合物(脂肪族化合物)であっても環系化合物であってもよく、飽和炭化水素であっても不飽和炭化水素であってもよく、低分子化合物であっても高分子化合物であってもよい。環系化合物は、脂環系および芳香族系のいずれであってもよい。炭化水素の炭素数は特に制限されず、通常は1~10の範囲である。また、炭化水素は、分子内の一部の炭素原子がヘテロ原子で置換されたものであってもよい。ヘテロ原子は特に限定されないが、N,P、O、S等を挙げることができる。
 炭化水素の誘導体において、置換基は特に限定されないが、置換基の少なくとも1つは、スピン量子数Iが0以外である原子を含む置換基であることが好ましく、13C、15N、19F、29Si、31P等を含む置換基であることがより好ましく、フッ素原子であることがさらに好ましい。
 以下において、偏極対象物の具体例を例示する。ただし、本発明の高偏極化方法に用いうる偏極対象物は、この具体例によって、限定的に解釈されるものではない。
Figure JPOXMLDOC01-appb-C000007
 また、タンパク質、ペプチド、DNA等の生体成分も、偏極対象物の好ましい例として挙げることができる。
 本発明の高偏極化方法において、高偏極化組成物における偏極対象物の導入量は、多孔性材料が金属有機構造体である場合、その金属イオンのモル数に対して、0.1mol%~500mol%であることが好ましく、1mol%~200mol%であることがより好ましく、10mol%~100mol%であることがさらに好ましい。
 高偏極化組成物における偏極対象物の導入量は、熱重量分析(TGA)および金属有機構造体を酸で溶解させた後のNMR測定により求めることができる。
<高偏極化した物質>
 次に、本発明の高偏極化した物質について説明する。
 本発明の高偏極化した物質は、本発明の高偏極化方法により高偏極化した物質である。本発明の高偏極化方法の説明については、上記の<高偏極化方法>の項の記載を参照することができる。高偏極化する対象物質については、上記の<高偏極化方法>の項に記載した偏極対象物の説明と好ましい範囲、具体例を参照することができる。
 本発明の高偏極化した物質の偏極率は、10-4以上であることが好ましく、10-2以上であることがより好ましく、10-1以上であることがさらに好ましい。
 物質の偏極率は、高偏極化を実施した場合のNMR信号強度と実施しなかった場合の信号強度を比較することにより測定することができる。
<NMR測定法>
 次に、本発明のNMR測定法について説明する。本発明のNMR測定法は、本発明の組成物を用いて物質のNMR(核磁気共鳴)を測定する工程を含むものである。また、本発明のNMR測定法は、MRI法も含む概念である。
 本発明の組成物の説明と好ましい範囲、具体例については、上記の<組成物>の項を参照することができる。
 本発明のNMR測定法は、本発明の組成物に動的核偏極を行って得た高偏極化組成物にNMRの測定対象物を接触させて、該測定対象物の核スピンを高偏極化した後、公知のNMR信号の検出方法を用いて測定対象物のNMRを観測することにより行うことができる。あるいは、NMRの測定対象物を本発明の組成物に導入した後、動的核偏極を行って該測定対象物の核スピンを高偏極化した後、公知のNMR信号の検出方法を用いて測定対象物のNMRを観測することにより行うことができる。なお、NMRで観測したい核種が13Cや19Fである場合は、高偏極化したHから13Cや19Fへ更なるマイクロ波照射により偏極を移してからNMRを観測する。
 NMRの測定対象物を本発明の組成物に導入する方法および高偏極化の各工程については、上記の<高偏極化方法>および<組成物>の項の記載を参照することができる。
 NMR信号の検出は、連続波法、パルスフーリエ変換法等の公知の方法を用いて行うことができ、例えばパルスフーリエ変換法によるNMR信号の検出には、RFコイル(プローブ)、増幅器等を備えた装置を用いることができる。
 本発明では、本発明の組成物を用いて、測定対象物の核スピンを高偏極化するため、測定対象物からのNMR信号を高い強度で検出することができる。そのため、このNMR測定法を応用することにより、NMR分光法による化合物の構造や物性の解析、MRIによる生体器官の検査を感度よく行うことができる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、光吸収スペクトルの測定は、分光光度計(日本分光社製:V-670)を用いて行い、発光スペクトルの測定は、蛍光分光光度計(パーキンエルマー社製:LS55)を用いて行い、発光の過渡減衰曲線の測定は、発光寿命測定装置(浜松ホトニクス社製:Quantaurus-TauC11567-02)を用いて行い、プロトン()のスピン-格子緩和時間Tは、飽和回復法により求めた。動的核偏極は、偏極源を導入した金属有機構造体に、0.67Tの外部磁場を印加しつつ、589nmの励起光と18.1GHzの電磁場を照射することにより行った。
(実施例で使用した化合物)
 本実施例で使用した偏極源および金属有機構造体の配位子を下記に示す。下記式において、DはH(デューテリウム)を表す。
Figure JPOXMLDOC01-appb-C000008
[1]化合物の合成
 本実施例で使用した化合物1および配位子2の合成方法を下記に示す。
(合成例1) 化合物1の合成
 まず、中間体1を下記の反応により合成した。
Figure JPOXMLDOC01-appb-C000009
 4-ブロモベンズアルデヒド(5.0g、27mmol)、エチレングリコール(3.3g、54mmol)、p-トルエンスルホン酸(0.18g、0.95mmol)およびトルエン(75mL)を容器に入れ、加熱還流を1日行った。この反応液を、炭酸カリウム水溶液50mLで中和した後、酢酸エチル50mLで3回抽出を行った。集めた有機層を、硫酸マグネシウムにて乾燥させた後、ろ過し、減圧下で溶媒を蒸発させることにより、オレンジ油様の粗製物を得た。この粗製物を、ジクロロメタン:ヘキサン=1:1の混合溶媒を溶離液に用いてカラムクロマトグラフィーにて精製することにより、中間体1(2-(4-ブロモフェニル)-1,3-ジオキソラン)の黄色油を、収量5.9g、収率95%で得た。
 次に、中間体2を下記の反応により合成した。
Figure JPOXMLDOC01-appb-C000010
 -78℃の窒素雰囲気下で、中間体1(2.17g、9.5mmol)を含むテトラヒドロフラン溶液125mLに、1.6Mのn-ブチルリチウムのヘキサン溶液5.74mL(n-ブチルリチウムを9.2mmol含有)を加えて60分間攪拌した。この混合物に、6,13-ペンタセンジオン(973mg、3.2mmol)を含むテトラヒドロフラン溶液20mLを加え、室温で24時間撹拌した。この反応液に、塩化アンモニウムの飽和水溶液150mLを加えて反応を停止させた後、酢酸エチル100mLで3回抽出を行った。集めた有機層を硫酸ナトリウムにて乾燥させた後、ろ過し、真空下で溶媒を蒸発させることにより、暗赤油様の粗製物を得た。この粗製物をテトラヒドロフラン20mLで希釈した溶液に、塩化スズ(II)二水和物(2.01g、10.5mmol)と濃塩酸(4mL)を加え、アルミホイルで遮光した後、室温で22時間攪拌した。この反応液に水150mLを加え、クロロホルム100mLで3回抽出を行った。集めた有機層を硫酸ナトリウムにて乾燥させた後、ろ過し、減圧下で溶媒を蒸発させることにより、粗製物を得た。この粗製物を、クロロホルム:ヘキサン=10:1の混合溶媒を溶離液に用いてカラムクロマトグラフィーにて精製することにより、中間体2(4,4’-(ペンタセン-6,13-ジイル)ジベンズアルデヒド)の暗紫色粉末を、収量0.48g、収率31%で得た。
 次に、化合物1を下記の反応により合成した。
Figure JPOXMLDOC01-appb-C000011
 中間体2(1g、2.06mmol)、2-メチル-2-ブテン(22mL、206mmol)およびテトラヒドロフラン200mLをフラスコに入れ、0℃で5時間以上攪拌することにより懸濁液を得た。この懸濁液に、アルゴン雰囲気下で、亜塩素酸ナトリウム(745mg、8.24mmol)とリン酸二水素ナトリウム(1550mg、12.92mmol)を含む水溶液40mlを加え、アルミホイルで遮光した後、徐々に室温に戻して12時間攪拌した。この反応液から、減圧下でテトラヒドロフランを蒸発させた後、水を加えてろ過することにより粗製物を得た。この粗製物を、クロロホルムとメタノールで洗浄することにより、化合物1の暗紫色粉末を収量0.44g、収率41%で得た。
H-NMR(400MHz,DMSO-d6,TMS)δ=8.35(d,4H),8.25(s,4H),7.86(q,4H),7.80(d,4H),7.32(q,4H).Elemental analysis,calculated for C3622+HO=C3624,H:4.51,C:80.58;found H:4.32,C:80.43.
(合成例2) 配位子2の合成
 まず、中間体3を下記の反応により合成した。
Figure JPOXMLDOC01-appb-C000012
 イミダゾール(5g、73.4mmol)を無水ジクロロメタン(50mL)に溶解した溶液に、テトラエチルアンモニウム(12.9mL、92.5mmol)とN-ジメチルスルファモイルクロライド(10mL、90.5mmol)を滴下した。この混合物を、室温で一昼夜攪拌した後、10%炭酸カリウム水溶液を加え、有機層を分離した。有機層を、硫酸ナトリウムで乾燥させ、真空下で溶媒を蒸発させることにより、オレンジ油様の粗製物を得た。この粗製物を、クロロメタン:メタノール=20:1の混合溶媒を溶離液に用いてカラムクロマトグラフィーにて精製することにより、中間体3(N,N-ジメチル-イミダゾール-1-スルホンアミド)の黄色油を、収量8.6g、収率67%で得た。
 次に、中間体4を下記の反応により合成した。
Figure JPOXMLDOC01-appb-C000013
 -78℃の窒素雰囲気下で、中間体3(8.5g、48.5mmol)をTHF(300mL)に溶解した溶液に、n-ブチルリチウム(58.1mmol)を含む1.6Mヘキサン溶液36.3mLを滴下して2時間攪拌した。この混合物に、冷却したヨードメタン-d(4.48mL、72.6mmol)を滴下し、一昼夜攪拌した。この反応液に、10%塩化アンモニウム水溶液150mLを加えて反応を停止させた後、酢酸エチル50mLで3回抽出を行った。集めた有機層から溶媒を蒸発させてオレンジ油様の中間体4(N,N-ジメチル-2-(メチル-d)-イミダゾール-1-スルホンアミド)を得た。
 次に、配位子2を下記の反応により合成した。
Figure JPOXMLDOC01-appb-C000014
 中間体4(8.6g、45.4mmol)を、2Mの塩化水素メタノール溶液(280mL)で36時間還流した後、濃炭酸水素ナトリウム水溶液で中和した。この混合物を濃縮し、イオン交換樹脂で処理することにより、黄橙色の固体を得た。この固体を、トルエンを用いて数回再結晶させることにより、配位子1の無色固体を収量500mg、収率13%で得た。
H-NMR(400MHz,CDCl,TMS):δ=6.95(s,2H).Elemental analysis,calculated for C=H:4.42,C:41.08,N:23.65;found H:4.39,C:40.90,N:23.35.
[2]組成物の作製
(実施例1~6) 化合物1の偏極源と、配位子1および亜鉛イオンからなる金属有機構造体を用いた組成物の作製
 配位子1(250.5mg、3.05mmol)と、化合物1および水酸化ナトリウムを表1に示す量で含むメタノール溶液8.5mLに、硝酸亜鉛六水和物Zn(NO・6HO(225mg、0.76mmol)を含むメタノール溶液6.5mLを注入し、室温で1時間攪拌した。得られた乳紫色の混合物に遠心分離を行うことで結晶性固体を分離し、メタノールで3回洗浄した後、減圧乾燥することにより、組成物1の結晶性固体を収量56mg、収率32%で得た。
(実施例7) 化合物1の偏極源と、配位子2および亜鉛イオンからなる金属有機構造体を用いた組成物の作製
 配位子1の代わりに配位子2を用いること以外は、実施例6と同様にして組成物を得た。
(比較例1) 配位子1および亜鉛イオンからなる金属有機構造体としての比較組成物1の作製
 化合物1と水酸化ナトリウムをメタノール溶液に添加しないこと以外は、実施例6と同様の工程を行って金属有機構造体を作製し、これを比較組成物1とした。
 各実施例で作製した組成物の化合物1の導入量を表1に示す。また、化合物1の導入量が0.012mol%、0.027mol%、0.13mol%であった組成物(実施例1~3の組成物)の光吸収スペクトルを図2に示し、590nm励起光による620nm蛍光発光の過渡減衰曲線を図3に示し、589nm励起光とマイクロ波を照射し、磁場を掃引しながら測定したESRスペクトルを図4に示し、680mTで観測されたESRシグナルの過渡減衰曲線を図5に示す。また、比較のため、図2には、化合物1のメタノール溶液(濃度:50μM)および化合物1単体の固体の測定結果を併せて示し、図4~5には、6,13-ジフェニルペンタセン(DPP)のクロロホルム溶液の測定結果を併せて示す。また、実施例6、7および比較例1で作製した組成物について、動的核偏極を行った後に測定したNMRのピーク位置とスピン-格子緩和時間Tを表2に示す。実施例7の組成物について、室温で観測した熱平衡状態でのH-NMR信号および動的核偏極後のH-NMR信号を図6に示す。図6において、熱平衡状態での信号強度は積算回数40回の積算強度であり、動的核偏極後の信号強度は積算回数1回の強度である。
Figure JPOXMLDOC01-appb-T000015
表1における仕込み量および導入量は、金属有機構造体を形成する亜鉛イオンZn2+のモル数に対するモル百分率(mol%)で示したものである。
Figure JPOXMLDOC01-appb-T000016
表2におけるスピン-格子緩和時間Tは、3回測定を行ったときの平均値±標準偏差で示した。
 表1に示すように、水酸化ナトリウムを添加し、化合物1の仕込み量を増やすことで、0.13mol%の化合物1の導入量を実現することができた。また、表2に示すように、水酸化ナトリウムを添加して作製した金属有機構造体(実施例6の組成物)と、水酸化ナトリウムを添加せずに作製した金属有機構造体(比較例1の組成物)では、スピン-格子緩和時間Tに大きな差がないことから、水酸化ナトリウムの添加の有無は、スピン-格子緩和時間に大きな影響を与えないことがわかった。
 また、図2の光吸収スペクトルを見ると、化合物1のメタノール溶液では593nmに吸収ピークが認められ、化合物1単体の固体では612nmに吸収ピークが認められる。一方、化合物1と金属有機構造体を用いた実施例1~3の組成物では、603~607nmの範囲に吸収ピークが認められる。ここで、化合物1単体の固体の吸収ピークは、化合物1の凝集状態での吸収ピークと見ることができ、化合物1のメタノール溶液の吸収ピークは、化合物1が全く凝集していない状態(完全に分散した状態)での吸収ピークと見ることができる。そうすると、化合物1と金属有機構造体の組成物で、603~607nmの範囲に吸収ピークが認められたことは、金属有機構造体内において、化合物1がある程度分散した状態で存在していることを示すものである。また、化合物1単体の固体では、蛍光発光を検出することができなかった。これは、凝集体である化合物1単体の固体では、分子間の一重項分裂により蛍光の消光が生じるためであると推測される。一方、図3から示されるように、化合物1と金属有機構造体を用いた実施例1~3の組成物では、蛍光発光を観測することができた。このことからも、化合物1は、金属有機構造体内において、ある程度分散した状態で存在していることが示された。
 図4のESRスペクトルを見ると、685mTにESRピークが認められる。このESRピークは、マイクロ波との共鳴による電子スピンのエネルギー状態の変化を反映するものであり、図5に示すESRシグナルの過渡減衰曲線スペクトルから、その共鳴寿命はマイクロ秒オーダーであることがわかる。一方、励起三重項状態の寿命もマイクロ秒オーダーであり、ここで観測された共鳴寿命と合致している。このことから、ここで共鳴している電子スピンは、励起三重項状態になった化合物1に由来するものであり、化合物1が偏極源として機能しうるものであることを確認することができた。
 次に、表2に示したピーク位置に、化合物1と金属有機構造体を用いた実施例6、7の組成物から、動的核偏極を行った後に強いH-NMR信号の増感を検出することができた。特に、図6に示すように、実施例7の組成物のH-NMR信号の増感は、より強いものであった。一方、比較例1の組成物の動的核偏極後のH-NMR信号は、実施例6、7の組成物に比べて弱かった。また、スピン-格子緩和時間Tは、実施例6の組成物で31秒、実施例7の組成物で53秒であった。すなわち、有機配位子のメチル基が重水素で置換された金属有機構造体を用いた組成物(実施例7)で、有機配位子が重水素で置換されていない金属有機構造体を用いた組成物(実施例6)よりも、遥かに長いスピン-格子緩和時間Tが観測された。このことから、有機配位子の置換基を重水素で置換することにより、スピン-格子緩和時間Tをより長くできることがわかった。また、スピン-格子緩和時間Tが長いということは、実施例7の組成物が、実施例6の組成物よりも核のスピン偏極を蓄積し易いことを意味する。実施例7の組成物では、こうしたスピン偏極の効果的な蓄積により、動的核偏極を行った後に強いHのNMR信号の増感が検出されたと推測される(図6参照)。
 以上のことから、金属有機構造体を偏極源を導入する基材として用いることにより、偏極源や偏極対象物を導入し易く、且つ、スピン-格子緩和時間が長い動的核偏極系を実現しうることがわかった。
(実施例8)実施例7の組成物への対象物1の導入、および、対象物1への核スピン偏極の移行
 実施例7で作製した組成物(30mg、0.13mmol)を、凍結脱気処理を行った対象物1(2ml、10mmol)の液体中に浸漬し、脱気条件下、室温で1日浸漬した。その後30分間減圧乾燥することにより固体を回収し、対象物1が導入された組成物(対象物導入組成物)の結晶性固体を得た。
 実施例8で作製した対象物導入組成物の対象物1の導入量は、金属有機構造体を形成する亜鉛イオンZn2+のモル数に対するモル百分率(mol%)で約2mol%であった。
 次に、この対象物導入組成物に動的核偏極を行って高偏極化組成物とした。動的核偏極後の対象物導入組成物について、NMRスペクトルを観測したところ、実施例7の組成物(対象物1を導入していない組成物)に動的核偏極を行ったときと同じ位置に、同程度の強度でHのNMR信号を確認することができた。
 次に、高偏極化した金属有機構造体中のHから、対象物1の19Fへ核スピン偏極を移行するため、対象物導入組成物に、交差分極のための更なるマイクロ波照射を行った。対象物導入組成物について、室温で観測した熱平衡状態での19F-NMR信号および交差分極後(核偏極スピン移行後)の19F-NMR信号を図7に示す。図7において、熱平衡状態での信号強度、動的核偏極および交差分極後の信号強度は、いずれも積算回数100回の積算強度である。
 図7に示しているように、19FのNMR信号の増感を検出することができた。19Fは、配位子2および亜鉛イオンからなる金属有機構造体、ならびに偏極源である化合物1が有さない核種であることから、ここで観測された19F-NMR信号は、組成物に導入された対象物1の19Fに由来するものであることがわかる。以上のことから、本発明の高偏極化組成物は、その内部に包接された偏極対象物へ核スピン偏極を移行させて、該偏極対象物の核スピン高偏極化を実現しうることが示された。
 本発明によれば、スピン-格子緩和時間が長く、偏極源や偏極対象物の導入が容易な動的核偏極系を提供することができる。これにより、様々な物質の核スピンを高度に偏極化できるため、NMR測定の適用範囲を拡大できるとともに、感度を高くして解析精度を上げることができる。このため、本発明は産業上の利用可能性が高い。

Claims (29)

  1. (1)多孔性材料と、
    (2)励起三重項状態をとりうる分子からなる動的核偏極の偏極源とを含む、
    組成物。
  2.  前記励起三重項状態をとりうる分子が4~6個のベンゼン環が縮合した骨格を有する化合物である、請求項1に記載の組成物。
  3.  前記励起三重項状態をとりうる分子がペンタセン骨格を有する化合物である、請求項2に記載の組成物。
  4.  前記励起三重項状態をとりうる分子が炭素原子、水素原子および重水素原子のみから構成される化合物である、請求項1~3のいずれか1項に記載の組成物。
  5.  前記多孔性材料が金属有機構造体または共有結合性有機骨格構造体である、請求項1~4のいずれか1項に記載の組成物。
  6.  金属有機構造体を含み、前記金属有機構造体の有機配位子が置換基で置換された環構造を有しており、前記置換基の水素原子の少なくとも1つが重水素で置換されている、請求項5に記載の組成物。
  7.  金属有機構造体を含み、前記金属有機構造体の有機配位子がイミダゾール骨格を有する、請求項5に記載の組成物。
  8.  金属有機構造体を含み、前記金属有機構造体の金属イオンが、2~4価の金属イオンを含む、請求項5~7のいずれか1項に記載の組成物。
  9.  金属有機構造体を含み、前記金属有機構造体の金属イオンが、亜鉛イオンZn2+を含む、請求項5~8のいずれか1項に記載の組成物。
  10.  金属有機構造体を含み、前記励起三重項状態をとりうる分子が前記金属有機構造体の金属イオンと相互作用する官能基を有する、請求項5~9のいずれか1項に記載の組成物。
  11.  前記官能基が酸性基である、請求項10に記載の組成物。
  12.  前記官能基がカルボキシ基またはカルボキシラートアニオン基である、請求項10に記載の組成物。
  13.  前記励起三重項状態をとりうる分子が前記多孔性材料の孔内に存在する、請求項1~12のいずれか1項に記載の組成物。
  14.  前記偏極源の含有量が、前記金属有機構造体の金属イオンのモル数に対して0.01mol%以上である、請求項1~13のいずれか1項に記載の組成物。
  15.  前記組成物のスピン-格子緩和時間Tが10秒以上である、請求項1~14のいずれか1項に記載の組成物。
  16.  さらに、前記偏極源および前記多孔性材料で生成した核スピン偏極を移行させうる物質を含有する、請求項1~15のいずれか1項に記載の組成物。
  17.  請求項1~16のいずれか1項に記載の組成物からなる動的核偏極用組成物。
  18.  請求項1~16のいずれか1項に記載の組成物を高偏極化したものである、高偏極化組成物。
  19.  請求項18に記載の高偏極化組成物に物質を接触させる工程、または、請求項1~16のいずれか1項に記載の組成物に物質を接触させた後、前記組成物を高偏極化させて高偏極化組成物とする工程を含む、物質の高偏極化方法。
  20.  前記物質が液体または溶液である、請求項19に記載の高偏極化方法。
  21.  前記物質がガスである、請求項19に記載の高偏極化方法。
  22.  前記高偏極化組成物または前記組成物への前記物質の接触を、前記高偏極化組成物または前記組成物を構成する多孔性材料中に、前記物質を浸透させることにより行う、請求項20または21に記載の高偏極化方法。
  23.  前記物質が、炭化水素、および、少なくとも1つの水素原子が置換基で置換された炭化水素の誘導体から選択される少なくとも1種の化合物を含有する、請求項19~22のいずれか1項に記載の高偏極化方法。
  24.  前記物質が、少なくとも1つの水素原子が置換基で置換された炭化水素の誘導体を含有し、前記置換基の少なくとも1つが、スピン量子数Iが0以外である原子を含む、請求項23に記載の高偏極化方法。
  25.  前記置換基がフッ素原子である、請求項23または24に記載の高偏極化方法。
  26.  さらに、前記高偏極化組成物の核スピン偏極を前記物質へ移行させる工程を含む、請求項19~25のいずれか1項に記載の高偏極化方法。
  27.  前記高偏極化組成物の核スピン偏極を前記物質へ移行させる工程を、互いに接触させた前記高偏極化組成物と前記物質にマイクロ波を照射することにより行う、請求項26に記載の高偏極化方法。
  28.  請求項19~27のいずれか1項に記載の方法により高偏極化した物質。
  29.  請求項1~16のいずれか1項に記載の組成物を用いて物質のNMRを測定する工程を含む、NMR測定法。
     
PCT/JP2018/039591 2017-10-26 2018-10-25 組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法 WO2019082951A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18869820.3A EP3702767A4 (en) 2017-10-26 2018-10-25 COMPOSITION, COMPOSITION FOR DYNAMIC NUCLEAR POLARIZATION, HIGHLY POLARIZED METHOD, HIGHLY POLARIZED SUBSTANCE AND NMR MEASUREMENT METHOD
JP2019551221A JPWO2019082951A1 (ja) 2017-10-26 2018-10-25 組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法
US16/759,522 US20200289678A1 (en) 2017-10-26 2018-10-25 Composition, composition for dynamic nuclear polarization, polarization enhancing method, highly polarized substance, and nmr measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017207239 2017-10-26
JP2017-207239 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019082951A1 true WO2019082951A1 (ja) 2019-05-02

Family

ID=66247885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039591 WO2019082951A1 (ja) 2017-10-26 2018-10-25 組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法

Country Status (4)

Country Link
US (1) US20200289678A1 (ja)
EP (1) EP3702767A4 (ja)
JP (1) JPWO2019082951A1 (ja)
WO (1) WO2019082951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172030A1 (ja) * 2020-02-28 2021-09-02 国立大学法人九州大学 組成物、動的核偏極用組成物、高偏極化組成物、物質の高偏極化方法、高偏極化した物質およびnmr測定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546182B (zh) * 2020-04-24 2022-11-01 中国科学院精密测量科学与技术创新研究院 一种金属有机骨架纳米粒子在超灵敏磁共振成像中的应用
CN112735799B (zh) * 2020-12-10 2022-12-20 华东理工大学 一种新型磁性材料及其制备方法
CN116444814B (zh) * 2023-04-23 2024-06-07 江南大学 一种基于光致变色功能有机配体的锌配位聚合物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205764B1 (en) * 2006-04-11 2007-04-17 Varian, Inc. Method and apparatus for increasing the detection sensitivity in a high resolution NMR analysis
WO2017085220A1 (en) * 2015-11-17 2017-05-26 Universite Claude Bernard Lyon I Dissolution dynamic nuclear using materials obtained by incorporation of radicals by covalent bonding on existing porous solids
US20170252464A1 (en) * 2014-07-29 2017-09-07 Bracco Imaging S.P.A. Preparation of solid amorphous substrates for dnp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789609A1 (en) * 2013-04-11 2014-10-15 Bruker Biospin (SAS) Highly efficient polarizing agents for dynamic nuclear polarization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205764B1 (en) * 2006-04-11 2007-04-17 Varian, Inc. Method and apparatus for increasing the detection sensitivity in a high resolution NMR analysis
US20170252464A1 (en) * 2014-07-29 2017-09-07 Bracco Imaging S.P.A. Preparation of solid amorphous substrates for dnp
WO2017085220A1 (en) * 2015-11-17 2017-05-26 Universite Claude Bernard Lyon I Dissolution dynamic nuclear using materials obtained by incorporation of radicals by covalent bonding on existing porous solids

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 52, 2013, pages 13307
J. AM. CHEM. SOC., vol. 130, 2008, pages 16274 - 16286
J. MATER. CHEM. C, vol. 1, 2013, pages 2193 - 220 1
PNAS, vol. 111, 2014, pages 7529
PROC. NATL. ACAD. SCI, vol. 111, 2014, pages 7527 - 7530
See also references of EP3702767A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172030A1 (ja) * 2020-02-28 2021-09-02 国立大学法人九州大学 組成物、動的核偏極用組成物、高偏極化組成物、物質の高偏極化方法、高偏極化した物質およびnmr測定方法

Also Published As

Publication number Publication date
EP3702767A4 (en) 2021-07-21
EP3702767A1 (en) 2020-09-02
JPWO2019082951A1 (ja) 2020-12-24
US20200289678A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019082951A1 (ja) 組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法
Arikawa et al. Synthesis and isolation of a kinetically stabilized crystalline triangulene
Liu et al. Field-induced single-ion magnets based on enantiopure chiral β-diketonate ligands
Guo et al. Modulating magnetic dynamics of three Dy2 complexes through keto–enol tautomerism of the o-vanillin picolinoylhydrazone ligand
Guo et al. Anion‐templated assembly and magnetocaloric properties of a nanoscale {Gd38} cage versus a {Gd48} barrel
Booth et al. Decamethylytterbocene complexes of bipyridines and diazabutadienes: Multiconfigurational ground states and open-shell singlet formation
JP6925050B2 (ja) 分子構造の特定方法
Poneti et al. Magnetic and spectroscopic investigation of thermally and optically driven valence tautomerism in thioether-bridged dinuclear cobalt–dioxolene complexes
Pietrangeli et al. Water-soluble carboranyl-phthalocyanines for BNCT. Synthesis, characterization, and in vitro tests of the Zn (II)-nido-carboranyl-hexylthiophthalocyanine
Dron et al. Bulk Inclusions of Pyridazine‐Based Molecular Rotors in Tris (o‐phenylenedioxy) cyclotriphosphazene (TPP)
Giovine et al. Study of xenon mobility in the two forms of MIL-53 (Al) using solid-state NMR spectroscopy
Kriemen et al. Synthesis and Structural Analysis of 1, 4, 7, 10‐Tetraazacyclododecane‐1, 4, 7, 10‐tetraazidoethylacetic Acid (DOTAZA) Complexes
Strohmeier et al. Solid state 15N and 13C NMR study of several metal 5, 10, 15, 20-tetraphenylporphyrin complexes
Braunschweig et al. f‐Block Ansa Complexes in the Solid State:[3] Thoro‐and [3] Uranocenophanes
Crewdson et al. Application of Ultrahigh‐Field 59Co Solid‐State NMR Spectroscopy in the Investigation of the 1, 2‐Polybutadiene Catalyst [Co (C8H13)(C4H6)]
Yang et al. Ferromagnetic coupling between 4f-and delocalized π-radical spins in mixed (phthalocyaninato)(porphyrinato) rare earth double-decker SMMs
Fan et al. Lanthanide Metal–Organic Framework Isomers with Novel Water-Boosting Lanthanide Luminescence Behaviors
Zhang et al. A tetranuclear gadolinium (III) macrocyclic complex: towards high relaxivity with the rigid linkers for magnetic resonance imaging contrast agent
Zhang et al. Iodide ion receptors: shape-persistent macrocycles of syn/anti configurations
Bardelang et al. Hosting various guests including fullerenes and free radicals in versatile organic paramagnetic bTbk open frameworks
Eckert Advanced Magnetic Resonance Techniques for the Structural Characterization of Aminoxyl Radicals and Their Inorganic–Organic Nanocomposite Systems
He et al. Synthesis and characterization of a modified “picket fence” porphyrin complex–stronger π bonding interactions between Fe (ii) and axial ligands
WO2020175696A1 (ja) 動的核偏極の偏極源、組成物、動的核偏極用組成物、高偏極化方法、高偏極化した物質およびnmr測定法
Sun et al. Highly Emissive Organic Cage in Single-Molecule and Aggregate States by Anchoring Multiple Aggregation-Caused Quenching Dyes
Ren et al. Two Terbium Metal–Organic Frameworks Showing Fluorescence Sensing and Proton Conductivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018869820

Country of ref document: EP

Effective date: 20200526