WO2019082420A1 - Movable device - Google Patents

Movable device

Info

Publication number
WO2019082420A1
WO2019082420A1 PCT/JP2018/016387 JP2018016387W WO2019082420A1 WO 2019082420 A1 WO2019082420 A1 WO 2019082420A1 JP 2018016387 W JP2018016387 W JP 2018016387W WO 2019082420 A1 WO2019082420 A1 WO 2019082420A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator element
movable
polymer member
circumferential direction
polymer
Prior art date
Application number
PCT/JP2018/016387
Other languages
French (fr)
Japanese (ja)
Inventor
誠一郎 鷲野
栄太郎 田中
拓磨 山内
高木 賢太郎
寿平 入澤
Original Assignee
株式会社デンソー
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人名古屋大学 filed Critical 株式会社デンソー
Priority to CN201880068866.2A priority Critical patent/CN111344940A/en
Publication of WO2019082420A1 publication Critical patent/WO2019082420A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the disclosure in this specification relates to mobile devices.
  • Patent Document 1 discloses a movable device.
  • the driven body is mechanically moved by directly or indirectly utilizing deformation of the member.
  • an actuator element is an elongated synthetic fiber.
  • One object disclosed is to provide a movable device capable of obtaining a large amount of displacement from an actuator element.
  • Another object disclosed is to provide a movable device in which a large pivoting movement can be obtained by displacement of an actuator element.
  • the movable device disclosed herein is disposed so as to extend in the circumferential direction, and is an actuator element (43) having a polymer member (44, 244, 444, 544) made of resin that expands and contracts in the circumferential direction due to a change in energy state. And a fixed part (21, 45) connected to the fixed end of the actuator element and fixing the actuator element, and a movable part (46) connected to the movable end of the actuator element separated from the fixed end along the circumferential direction And
  • the disclosed movable device comprises an actuator element having a polymeric member.
  • the movable end of the actuator element is displaced by the expansion and contraction of the polymer member. Since the polymer member is arranged to extend in the circumferential direction, the polymer member can provide sufficient length along the circumferential direction. As a result, the movable end of the actuator element can provide a large amount of displacement relative to the fixed end.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. It is a top view which shows the orientation of a polymer. It is a top view which shows orientation of polymer
  • the movable device 1 has a base 2 and a movable mechanism 3.
  • the base 2 is fixed to an appropriate base portion depending on the application.
  • the base 2 can be fixed to, for example, the body of a vehicle.
  • the movable mechanism 3 can mechanically move relative to the base 2.
  • the movable mechanism 3 can pivot about a pivot axis AXR extending along the height direction HD.
  • the movable mechanism 3 reciprocates in a predetermined angular range around the rotation axis AXR.
  • the movable mechanism 3 has a driven body 31.
  • the movement of the movable mechanism 3 is also called rocking.
  • the moving direction of the movable mechanism 3 is not limited to rotation.
  • the moving direction of the movable mechanism 3 can be adapted to various movements such as parallel movement along the height direction HD, parallel movement along the width direction WD, and rotational movement around the depth direction DD, for example.
  • the movable device 1 is also a sensor device.
  • the movable device 1 has a sensor element 32 mounted on a driven body 31.
  • the sensor element 32 has a detection axis VR32 that indicates a detection range.
  • the sensor element 32 detects a physical quantity in the direction of the detection axis VR32.
  • the sensor element 32 is provided by various elements such as, for example, an image sensor, an infrared sensor, an ultrasonic sensor, a radar antenna, an electromagnetic wave sensor, and a radiation sensor.
  • the sensor element 32 is an infrared sensor installed indoors.
  • the detection signal of the sensor element 32 is supplied to a device using infrared information by wire or wirelessly. Infrared information is supplied to, for example, an air conditioner and used.
  • the mobile device 1 is installed in a room such as a residence, an office, a vehicle, a ship, an aircraft, etc., and is used to collect information related to people in the room.
  • the movable device 1 moves the detection axis VR32 so as to swing.
  • the movable device 1 provides a sensor device for moving the detection axis VR32.
  • the movement of the detection axis VR32 makes it possible to provide various sensor devices such as a variable pointing direction type, a tracking type, or a scanning type.
  • a scanning sensor device is provided.
  • the detection axis VR32 rotates around the rotation axis AXR.
  • the detection axis VR32 is movable within a range of a predetermined rotation angle VRS along a plane extending in the width direction WD and the depth direction DD.
  • the pivot angle VRS is a scanning range.
  • the movable device 1 includes an actuator mechanism 4.
  • the actuator mechanism 4 provides a rotational force for rotating the movable mechanism 3.
  • the actuator mechanism 4 is also a power source.
  • the actuator mechanism 4 provides a turning force to reciprocally displace the movable mechanism 3.
  • the actuator mechanism 4 has a first drive mechanism 41 and a second drive mechanism 42.
  • the first drive mechanism 41 actively rotates the movable mechanism 3.
  • the second drive mechanism 42 rotates the movable mechanism 3 passively.
  • the second drive mechanism 42 is also referred to as a return mechanism that applies a force to return the displacement of the movable mechanism 3.
  • the first drive mechanism 41 rotates the movable mechanism 3 in the direction of the displacement amount MD41.
  • the second drive mechanism 42 rotates the movable mechanism 3 in the direction of the displacement amount MD42.
  • the second drive mechanism 42 returns the movable mechanism 3 in the direction opposite to the displacement amount MD41.
  • the second drive mechanism 42 allows the displacement amount MD41 while the first drive mechanism 41 is activated.
  • the second drive mechanism 42 functions to return the displacement amount MD41 while the first drive mechanism 41 is inactivated.
  • the first drive mechanism 41 transitions from the high energy state to the low energy state while being deactivated. As a result, the movable mechanism 3 is displaced over the rotation angle VRS.
  • the first drive mechanism 41 is alternately controlled to the activated state and the deactivated state. Thereby, the movable mechanism 3 is repeatedly displaced over the rotation angle VRS.
  • the first drive mechanism 41 has an actuator element 43.
  • the actuator element 43 has a fixed end 43a and a movable end 43b.
  • the actuator element 43 has a polymer member 44 made of resin.
  • the polymeric member 44 can be provided by a synthetic resin or a material of natural origin.
  • the polymeric member 44 is provided by a thin film. In this embodiment, the actuator element 43 is provided entirely by the polymer member 44 alone.
  • the actuator element 43 is a member that reversibly deforms in response to its own energy state.
  • the actuator element 43 is, for example, a member that reversibly displaces the position of the movable end 43b relative to the fixed end 43a in response to its own temperature.
  • the term "reversible" means that at least in the activated state, it can be actively displaced from the base position in one direction by a predetermined displacement amount, and can be restored to the base position in the inactive state.
  • the restoration in the inactive state may be realized by the active function of the actuator element 43 or may be realized passively by the external force.
  • the actuator element 43 has a predetermined base shape in the first temperature state, which is the low energy state.
  • the actuator element 43 has a contracted shape contracted from the base shape along the circumferential direction in the second temperature state.
  • the second temperature state is a high energy state higher than the first temperature state.
  • the actuator element 43 is disposed on an extension of the rotation axis AXR.
  • the actuator element 43 is disposed beside the driven body 31.
  • the driven body 31 and the actuator element 43 are arranged in series.
  • the entire movable device 1 is illustrated as being emphasized a little longer along the direction of the pivot axis AXR.
  • the actuator element 43 is connected to the fixed rod 45 at the fixed end 43 a.
  • the actuator element 43 is coupled to the movable rod 46 at the movable end 43 b.
  • the actuator element 43 is disposed between the fixed rod 45 and the movable rod 46.
  • the fixing rod 45 is fixed to the base 2 by the anchor 21.
  • the movable rod 46 is connected to the driven body 31.
  • the fixed rod 45 and the anchor 21 provide a support member that supports the actuator element 43.
  • the fixed rod 45 and the anchor 21 are coupled to the fixed end 43 a of the actuator element 43 to provide a fixed portion for fixing the actuator element 43.
  • the movable rod 46 is displaced along with the deformation of the actuator element 43.
  • the movable rod 46 provides a movable portion coupled to the movable end 43 b of the actuator element 43 which is separated from the fixed end 43 a along the circumferential direction.
  • the actuator element 43 has a polymer member 44 arranged to extend in the circumferential direction.
  • the polymer member 44 is made of synthetic resin.
  • the polymer member 44 expands and contracts in the circumferential direction due to the change of the energy state.
  • One end of the polymer member 44 in the circumferential direction is a fixed end 43a.
  • the other end in the circumferential direction of the polymer member 44 is a movable end 43 b.
  • the fixed end 43a and the movable end 43b are separated by a predetermined distance in the circumferential direction.
  • the polymeric member 44 is provided as a film.
  • the polymer member 44 is a roll body in which a ribbon-like film is disposed in a spiral shape.
  • the polymer member 44 is wound to form multiple layers along the radial direction.
  • the polymer member 44 is wound around the fixing rod 45.
  • the polymer member 44 is a cylindrical member extending along an actuator axis AX43 defined by the fixed rod 45.
  • the actuator axis AX43 is also an axis of the actuator element 43.
  • the actuator axis AX43 is located on the extension of the pivot axis AXR.
  • the actuator axis AX43 and the rotation axis AXR are coaxial.
  • the available polymer members 44 and the available energy regulators 71 include those described in JP-A-2016-42783.
  • the contents of Japanese Patent Application Laid-Open No. 2016-42783 are incorporated by reference as a description of technical elements in this specification.
  • the polymeric member 44 can be provided by a variety of materials called artificial muscles.
  • One example of the polymer member 44 is a roll of resin film.
  • a resin is a monofilament resin.
  • Monofilament resin contains polyamide resin and polyethylene resin.
  • a polymer fiber called nylon or polyethylene may have a torsional deformation amount with respect to a temperature change, and can be used as an actuator element 43.
  • the polymer is oriented to extend along the circumferential direction around the actuator axis AX43. The orientation of the polymer is achieved by a manufacturing method that stretches the film.
  • the second drive mechanism 42 has a return element 47.
  • the return element 47 can be provided by various elastic members such as a spring, an air spring, and a rubber. In this embodiment, the return element is a metal or resin tension spring.
  • the return element 47 is connected between the fixed rod 48 and the movable rod 49.
  • the fixing rod 48 is fixed to the base 2 by the anchor 22.
  • the movable rod 49 is connected to the driven body 31.
  • the driven element 31 is displaced in the direction of the displacement amount MD41, the return element 47 is stretched and generates a restoring force. As a result, the second drive mechanism 42 applies a return force to the driven body 31.
  • the movable device 1 has a guide mechanism 5 for guiding the movement of the movable mechanism 3.
  • the guide mechanism 5 is provided between the anchor 23 provided on the base 2 and the driven body 31.
  • the anchors 23 are fixed to the base 2.
  • the guide mechanism 5 allows rotational movement of the driven body 31 around the height direction HD.
  • the guiding mechanism 5 suppresses the rotational movement around the depth direction DD and the rotational movement around the width direction WD.
  • the guide mechanism 5 suppresses the vertical movement in the depth direction DD and the horizontal movement in the width direction WD among the movement of the driven member 31.
  • the guide mechanism 5 may suppress back and forth movement in the height direction HD.
  • the guide mechanism 5 may allow back and forth movement in the height direction HD.
  • the height direction HD can be defined as a roll axis, the width direction WD as a pitching axis, and the depth direction DD as a yaw axis.
  • the guide mechanism 5 permits the roll movement of the driven body 31.
  • the guide mechanism 5 may suppress excessive roll movement beyond the available range. For example, a direct collision between the driven body 31 and the anchor 23 or an indirect collision via an elastic member limits the range of roll movement.
  • the guide mechanism 5 suppresses the yawing motion and the pitching motion of the driven body 31. Further, the guide mechanism 5 suppresses the vertical movement and the horizontal movement of the driven body 31.
  • the guide mechanism 5 may suppress the back and forth movement of the driven body 31.
  • the guide mechanism 5 may allow the back and forth movement of the driven body 31.
  • the mobile device 1 comprises a control system 7.
  • the control system 7 has an energy regulator 71, a driver circuit 72 (DVC), and a controller 73 (CNT).
  • the energy regulator 71 regulates the energy state of the actuator element 43 in order to extract mechanical motion from the actuator element 43.
  • the energy regulator 71 changes the energy state of the actuator element 43 into at least two stages of high and low.
  • the driver circuit 72 adjusts the power supplied to the energy regulator 71 in accordance with an instruction from the controller 73.
  • the energy regulator 71 changes the energy state of the actuator element 43 in both directions between the high energy state and the low energy state.
  • the energy regulator 71 can apply and remove energy electrically, optically, magnetically, electromagnetically, or radiation.
  • the application and removal of electrical energy includes increase and decrease of electrical heat, increase and decrease of current, increase and decrease of electric field, and increase and decrease of charge.
  • the light application can increase the temperature and the light interruption can decrease the temperature.
  • energy may be provided by an energy transfer component that is in direct contact with the actuator element 43, or energy may be applied indirectly by an energy transfer component located remotely from the actuator element 43.
  • the energy transfer component can be provided, for example, by an electrical heating element.
  • the energy regulator 71 increases the thermal energy of the actuator element 43.
  • the increase of the thermal energy is realized, for example, by supplying the current to the heat generating member of the energy regulator 71.
  • the energy regulator 71 reduces the thermal energy of the actuator element 43.
  • the reduction of the thermal energy is realized, for example, by interrupting the current supply to the heat generating member of the energy regulator 71 and dissipating the heat from the actuator element 43.
  • the energy regulator 71 is cylindrical, providing a cavity for receiving the actuator element 43.
  • the actuator element 43 is housed in the energy regulator 71.
  • the energy regulator 71 is provided by a heater which can adjust the amount of heat generation electrically. Thus, the energy regulator 71 regulates the temperature of the actuator element 43.
  • the control device 73 has at least one arithmetic processing unit (CPU) and at least one memory device as a storage medium for storing programs and data.
  • the controller 73 is provided by a microcomputer provided with a computer readable storage medium.
  • a storage medium is a non-transitory tangible storage medium which non-temporarily stores a computer readable program.
  • the storage medium may be provided by semiconductor memory or a magnetic disk or the like.
  • the controller 73 may be provided by one computer or a set of computer resources linked by a data communication device.
  • the program is executed by the controller 73 to cause the controller to function as the device described in this specification and causes the controller 73 to perform the method described in this specification.
  • the control system 7 includes, as input devices, a plurality of signal sources that supply signals indicating information input to the control device 73.
  • the control system 7 acquires information by the control device 73 storing the information in the memory device.
  • the control system 7 has a plurality of controlled objects whose behavior is controlled by the controller 73 as output devices.
  • the control system 7 controls the behavior of the controlled object by converting the information stored in the memory device into a signal and supplying the signal to the controlled object.
  • the control device 73 acquires the operation signal and the stop signal from the outside, and activates the energy regulator 71 intermittently to move the movable device 1 in an oscillating manner.
  • the controller 73, the signal source and the controlled object included in the control system 7 provide various elements. At least some of these elements can be referred to as blocks for performing the function. In another aspect, at least some of those elements can be referred to as modules or sections that are interpreted as a configuration. Furthermore, the elements included in the control system 7 can also be referred to as means for realizing their functions only when intended.
  • the means and / or function provided by the control system 7 may be provided by software stored in a tangible memory device and a computer that executes the software, only software, only hardware, or a combination thereof.
  • the controller 73 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or analog circuit that includes a number of logic circuits.
  • the anchors 21, 22, 23 are fixed to the base 2.
  • the anchor 21 has an inner hole for receiving the fixing rod 45.
  • the anchor 21 has a set screw 21a.
  • the set screw 21a is provided radially toward the inner hole.
  • the set screw 21a connects the anchor 21 and the fixing rod 45 in the axial direction and the circumferential direction by tightening the fixing rod 45 in the radial direction.
  • the set screw 21a is used to set the initial position of the fixed rod 45 in the axial and circumferential directions.
  • the driven body 31 is rotatably supported by the guide mechanism 5.
  • the guide mechanism 5 has a shaft 51 and a guide bore 52.
  • the shaft 51 is provided by a cylindrical member coaxial with the rotation axis AXR.
  • the shaft 51 is fixed to the driven body 31. Both ends of the shaft 51 are fixed to the driven body 31.
  • the driven body 31 has a shaft 51.
  • the guide bore 52 is provided in the anchor 23.
  • the anchor 23 has a guide bore 52.
  • the anchor 23 is a member for supporting the driven body 31.
  • the guide bores 52 are provided by through holes through the anchors 23.
  • the guide bore 52 receives the shaft 51.
  • the guide bores 52 allow rotation of the shaft 51.
  • the anchor 23 rotatably supports the driven body 31.
  • the outer surface of the shaft 51 and the inner surface of the guide bore 52 are in partial contact with each other.
  • the outer surface of the shaft 51 and the inner surface of the guide bore 52 slide on each other when the driven body 31 rotates.
  • the driven body 31 is guided around the shaft 51.
  • the members providing the shaft 51 and the guide bore 52 are made of a low friction material.
  • the shaft 51 or the member providing the guide bore 52 may be made of a low friction material. The friction between the shaft 51 and the guide bore 52 is suppressed.
  • the anchors 23 face the driven body 31 at both end faces.
  • the anchors 23 partially contact the driven body 31 at both end faces.
  • the anchor 23 and the driven body 31 slide relative to each other when the driven body 31 rotates.
  • the actuator element 43 that is, the polymer member 44 is arranged to extend in the circumferential direction CD.
  • the circumferential direction CD is a direction around the actuator axis AX43.
  • the circumferential direction CD is also a direction perpendicular to the actuator axis AX43.
  • the polymer member 44 is disposed in a spiral manner over a plurality of turns.
  • the actuator element 43 has a number of turns that exceeds one turn along the circumferential direction.
  • the fixed end 43a is located at the innermost side of the spiral.
  • the movable end 43 b is located at the outermost side of the spiral. Since the movable rod 46 is connected to the driven body 31, the movable rod 46 can move so as to draw a circular orbit illustrated by the guide mechanism 5.
  • the polymer member 44 has a predetermined first shape illustrated by a solid line at a first temperature.
  • the first shape is also referred to as a base shape or an initial shape.
  • the polymer member 44 positions the movable rod 46 at a first position P1 illustrated by a solid line in the first shape.
  • the polymer member 44 has a second shape at a second temperature.
  • the second shape is also referred to as a contracted or deformed shape.
  • the second temperature is a temperature different from the first temperature.
  • the second shape is a shape deformed in the circumferential direction more than the first shape.
  • the polymer member 44 positions the movable rod 46 at a second position P2 illustrated by a broken line in the second shape.
  • the second temperature is higher than the first temperature.
  • the second shape is a shape that is shrunk from the first shape along the circumferential direction.
  • the polymer member 44 is actively deformable from the first shape to the second shape.
  • the polymer member 44 can be actively or passively restored from the second shape to the first shape.
  • the second shape may be a shape that extends from the first shape along the circumferential direction.
  • FIG. 4 is a plan view showing the orientation of the polymer in the polymer member 44.
  • the base material BMT made of a synthetic resin is manufactured such that the polymer is oriented in the orientation direction ORP.
  • the method of manufacturing the base material BMT includes a stretching step for orienting the polymer along the orientation direction ORP.
  • the polymer member 44 is cut out from the base material BMT.
  • the orientation direction ORP is also referred to as an orientation axis direction.
  • the polymer member 44 is cut out so that its longitudinal direction LD 44, that is, the circumferential direction CD makes a predetermined inclination angle AC with respect to the orientation direction ORP.
  • the inclination angle AC between the alignment direction ORP and the longitudinal direction LD 44 may promote the deformation of the polymer member 44 from the first shape to the second shape.
  • the inclination angle AC is an acute angle (less than 45 degrees).
  • the inclination angle AC is preferably an angle of 10 degrees or less.
  • the tilt angle AC be set such that a plurality of orientation directions ORP extend between the two ends.
  • the longitudinal direction LD 44 is also referred to as the longitudinal axis direction of the polymer member 44.
  • the polymer member 44 is arranged to extend in the circumferential direction.
  • the polymer member 44 can provide a sufficient length along the circumferential direction.
  • the actuator element 43 can provide a large displacement at the movable end 43 b by the expansion and contraction of the polymer member 44.
  • the polymer member 44 is disposed in a spiral shape. Therefore, the movable device 1 can be provided without excessively increasing the length along the actuator axis AX43. As a result, a small and / or high-power movable device 1 is provided.
  • Second Embodiment This embodiment is a modification based on the preceding embodiment.
  • the alignment direction ORP and the longitudinal direction LD 44 define the inclination angle AC.
  • the alignment direction ORP and the longitudinal direction LD 244 may extend in parallel.
  • the longitudinal direction LD 244 that is, the circumferential direction CD coincides with the orientation direction ORP. Therefore, the alignment direction ORP and the longitudinal direction LD 244 are parallel. However, the alignment direction ORP and the longitudinal direction LD 244 may have a minute inclination angle. The alignment direction ORP and the longitudinal direction LD 244 may be microscopically inclined in the polymer member 244. When the width of the base material BMT matches the width of the polymer member 244, the polymer member 244 may be provided only by cutting the base material BMT into the length of the polymer member 244.
  • the polymer member 44 has an air gap between the layers.
  • the polymer member 44 may have an elastic member 361 disposed between the layers.
  • the actuator element 43 has a spiral polymer member 44 and an elastic member 361 that fills the inside in the radial direction of the polymer member 44.
  • the elastic member 361 is bonded to the polymer member 44.
  • the elastic member 361 allows deformation of the polymer member 244 by its own elasticity.
  • the elastic member 361 can be provided by an elastic member such as rubber or an elastomer. According to this embodiment, the shape of the actuator element 43 can be stabilized.
  • the polymer member 44 is a spiral roll body.
  • the polymeric member 44 may be provided by a helical roll.
  • the first drive mechanism 41 has an actuator element 43.
  • the actuator element 43 has a polymer member 444.
  • the polymer member 444 is a spirally wound roll body.
  • the helical polymer member 444 is displaced not only in the circumferential direction but also in the axial direction.
  • the fixed end 43 a of the polymer member 444 is fixed to the outer peripheral surface of the fixed rod 445.
  • the fixing rod 445 is disposed radially inward of the polymer member 444.
  • the fixing rod 445 is also a winding core of the polymer member 444.
  • the fixing rod 445 is also a support member that supports the polymer member 444. Further, the fixed rod 445 is also a guide member for guiding the movable rod 46 along the outer peripheral surface thereof.
  • the movable end 43 b of the polymer member 444 is connected to the movable rod 46.
  • the first drive mechanism 41 has an energy regulator 472.
  • the energy regulator 472 is disposed radially outward of the polymer member 444.
  • the first drive mechanism 41 has an energy regulator 474.
  • the energy regulator 474 is disposed radially inward of the polymer member 444.
  • the energy regulator 474 can be supported by a fixed rod 445.
  • the first drive mechanism 41 may include only one of the energy regulator 472 and the energy regulator 474.
  • the actuator element 43 can be miniaturized in the axial direction.
  • the fixing rod 445 is positioned close to the inner side in the radial direction of the polymer member 444, the deformation of the polymer member 444 is stabilized.
  • the actuator element 43 is provided by the polymer members 44, 244, 444.
  • the actuator element 43 can be provided by a multilayer member having at least a first layer and a second layer.
  • FIG. 8 shows a partial cross section of the actuator element 43 of this embodiment.
  • the actuator element 43 is arranged to be curved along the circumferential direction.
  • the actuator element 43 is a multilayer member having a first layer and a second layer.
  • the first layer is disposed on the radially inner side of the second layer.
  • the first layer may be disposed on the radially outer surface of the second layer.
  • the first layer is a polymer member 544.
  • the polymer member 544 has an orientation direction ORP extending along the circumferential direction of the actuator element 43 as shown.
  • the second layer is a low expansion and contraction member 562.
  • the low expansion and contraction member 562 has a lower expansion and contraction rate than the polymer member 544.
  • the low expansion and contraction member 562 can be provided by, for example, a metal, a resin, or a biological material.
  • the low expansion member 562 can be provided, for example, by a spring material that provides a spring.
  • the polymer member 544 and the low expansion and contraction member 562 are bonded to each other.
  • the overall curvature of the actuator element 43 changes due to the expansion and contraction of the polymer member 544.
  • the low expansion and contraction member 562 winds up to further increase the curvature.
  • the behavior of the actuator element 43 is such that the spring automatically winds up when the energy state changes.
  • the actuator element 43 which is a multi-layered member can also be called a unimorph.
  • the behavior of the polymer member 544 is controlled by the energy regulator 71.
  • the energy regulator 71 When the energy regulator 71 is activated, the polymer member 544 is activated to a high energy state.
  • the polymer member 544 contracts from the first temperature to the second temperature.
  • the contraction of the polymer member 544 causes the actuator element 43 to be wound radially inward.
  • the actuator element 43 deforms so that the spiral spring automatically winds up.
  • the movable rod 46 moves from the first position illustrated by the solid line to the second position illustrated by the broken line.
  • the energy regulator 71 When the energy regulator 71 is deactivated, the polymer member 544 is deactivated to the low energy state.
  • the polymer member 544 gradually dissipates heat from the second temperature.
  • the low expansion and contraction member 562 functions like a spiral spring and loosens circumferential entrapment. At the same time, the low expansion and contraction member 562 elongates the polymer member 544. As a result, the movable rod 46 moves from the second position illustrated by the broken line to the first position illustrated by the solid line.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations based on them by those skilled in the art.
  • the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments have been omitted.
  • the disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment.
  • the disclosed technical scope is not limited to the description of the embodiments. It is to be understood that the technical scopes disclosed herein are indicated by the description of the scope of the claims, and further include all modifications within the meaning and scope equivalent to the descriptions of the scope of the claims.
  • the movable device 1 provides a power source for displacing the detection axis of the sensor device.
  • the mobile device 1 can provide a source of power for a variety of devices.
  • the movable device 1 is, for example, a motive power source for displacing the optical axis of the light source device, a motive power source for displacing the projection axis of the projection device, or a motive power for displacing the blowing direction of the air conditioner It can be used as a source.
  • the actuator element 43 is provided in the first drive mechanism 41, and the second drive mechanism 42 is a return mechanism.
  • the second drive mechanism 42 may also be provided with an actuator element.
  • the actuator element provided in the second drive mechanism 42 outputs a displacement amount MD42.
  • the actuator element 43 and the actuator element of the second drive mechanism are alternately driven.
  • the two actuator elements are complementarily controlled to the activated state and the deactivated state.
  • the energy regulator 71 is cylindrical.
  • the energy regulator 71 can be provided by various shapes.
  • the energy regulator 71 may be provided by a heater disposed along the polymer member 44 of the actuator element 43.
  • the energy regulator 71 may be disposed between the two layers of the polymer member 44.
  • the energy regulator 71 may be provided, for example, by a plurality of heater elements arranged parallel to the actuator axis AX43.
  • the multilayer member includes the polymer member 544 and the low expansion and contraction member 562.
  • the multilayer member may comprise two layers of polymeric members.
  • Bilayer polymeric members can be provided, for example, by members that produce opposite displacements in response to changes in temperature.
  • the polymer member of the first layer is, for example, a member that contracts due to a change from the first temperature to the second temperature.
  • the polymer member of the second layer is, for example, a member which elongates upon change from the second temperature to the first temperature.
  • the polymer member having such reverse stretch characteristics can provide the actuator element 43 that is actively deformed in both directions.
  • the polymer members are arranged in a spiral or spiral shape.
  • the polymeric members may be arranged spirally and spirally.
  • the polymer member may have, for example, a helical first layer and a helical second layer, and the helix of the first layer and the helix of the second layer may be connected.
  • the polymeric members may also be arranged conically and spirally. Such an arrangement allows the energy adjuster 71 to adjust the energy state of the polymer members in each layer because the plurality of layers are exposed in the radial direction.
  • the polymeric members 44, 244, 444, 544 are provided by a film whose polymeric orientation has been adjusted by stretching.
  • the polymeric member may be provided by a member of a shape called linear or rod-like.
  • the polymer member may have a plurality of portions connected along the circumferential direction.
  • the movable device 1 includes the energy regulator 71.
  • a device without the energy regulator 71 can also be provided.
  • the actuator element 43 may be displaced in response to conditions of the environment in which the movable device 1 is installed, for example, temperature or humidity.
  • the actuator element 43 may be displaced in response to the sunlight of the environment in which the movable device 1 is installed.
  • the actuator element 43 has the inner end of the spiral as the fixed end 43a and the outer end of the spiral as the movable end 43b.
  • the actuator element 43 may have the outer end of the spiral as the fixed end 43a and the inner end of the spiral as the movable end 43b.
  • the member itself connected to the movable end 43b may rotate.
  • the member itself connected to the movable end 43b may be displaced.
  • the actuator element 43 is provided as a roll of film.
  • the film can be provided by a roll wound into a plurality of layers.
  • the actuator element 43 can comprise a gap between the films providing the plurality of layers.
  • the actuator element 43 can comprise an elastic member that allows displacement of the film between the films providing the plurality of layers.
  • the actuator element 43 can be provided by a shape-retained film or can be provided with a shape-retaining member for retaining the shape of the film in order to maintain the shape as a roll body.
  • the film may be formed by a heat treated material that has been heat treated after being wound as a roll. Conditions such as the temperature and time of the heat treatment which can extract the amount of reversible displacement from the film are set.

Abstract

A movable device (1) is provided with an actuator element (43). The actuator element has a resin polymer member (44) that is disposed so as to extend in a peripheral direction, and that expands and contracts in the peripheral direction depending on a change in the energy state. The movable device is provided with a fixed part and a movable part. The fixed part is connected to a fixed end (43a) of the actuator element, and fixes the actuator element. The movable part is connected to a movable end (43b), of the actuator element, located apart from the fixed end in the peripheral direction. The polymer member is disposed so as to extend in the peripheral direction, and therefore the polymer member can provide a sufficient length in the peripheral direction. Thus, the movable end of the actuator element can provide a larger displacement amount with respect to the fixed end.

Description

可動装置Mobile 関連出願の相互参照Cross-reference to related applications
 この出願は、2017年10月25日に日本に出願された特許出願第2017-206256号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on patent application No. 2017-206256 filed in Japan on October 25, 2017, and the contents of the application on the basis are incorporated by reference in its entirety.
 この明細書における開示は、可動装置に関する。 The disclosure in this specification relates to mobile devices.
 特許文献1は、可動装置を開示する。この技術では、部材の変形を直接または間接に利用することにより、被駆動体を機械的に移動させている。アクチュエータ素子のひとつの例は、細長い合成繊維である。 Patent Document 1 discloses a movable device. In this technique, the driven body is mechanically moved by directly or indirectly utilizing deformation of the member. One example of an actuator element is an elongated synthetic fiber.
特開2016-42783号公報JP, 2016-42783, A
 特許文献1の構成では、アクチュエータ素子の変位量が不十分な場合がある。上述の観点において、または言及されていない他の観点において、可動装置にはさらなる改良が求められている。 In the configuration of Patent Document 1, the displacement amount of the actuator element may be insufficient. In the above aspects, or in other aspects not mentioned, there is a need for further improvements in mobile devices.
 開示されるひとつの目的は、アクチュエータ素子から大きい変位量が得られる可動装置を提供することである。 One object disclosed is to provide a movable device capable of obtaining a large amount of displacement from an actuator element.
 開示される他のひとつの目的は、アクチュエータ素子の変位によって大きい回動運動が得られる可動装置を提供することである。 Another object disclosed is to provide a movable device in which a large pivoting movement can be obtained by displacement of an actuator element.
 ここに開示された可動装置は、周方向に延びるように配置され、エネルギ状態の変化によって周方向に伸縮する樹脂製の高分子部材(44、244、444、544)を有するアクチュエータ素子(43)と、アクチュエータ素子の固定端に連結され、アクチュエータ素子を固定する固定部(21、45)と、周方向に沿って固定端から離れているアクチュエータ素子の可動端に連結された可動部(46)とを備える。 The movable device disclosed herein is disposed so as to extend in the circumferential direction, and is an actuator element (43) having a polymer member (44, 244, 444, 544) made of resin that expands and contracts in the circumferential direction due to a change in energy state. And a fixed part (21, 45) connected to the fixed end of the actuator element and fixing the actuator element, and a movable part (46) connected to the movable end of the actuator element separated from the fixed end along the circumferential direction And
 開示される可動装置は、高分子部材を有するアクチュエータ素子を備える。アクチュエータ素子の可動端は、高分子部材の伸縮によって変位する。高分子部材は、周方向に延びるように配置されているから、高分子部材は周方向に沿って充分な長さを提供することができる。この結果、アクチュエータ素子の可動端は、固定端に対して大きい変位量を提供することができる。 The disclosed movable device comprises an actuator element having a polymeric member. The movable end of the actuator element is displaced by the expansion and contraction of the polymer member. Since the polymer member is arranged to extend in the circumferential direction, the polymer member can provide sufficient length along the circumferential direction. As a result, the movable end of the actuator element can provide a large amount of displacement relative to the fixed end.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The disclosed aspects in this specification employ different technical means in order to achieve their respective goals. The claims and the reference numerals in parentheses described in this section exemplarily show the correspondence with parts of the embodiments described later, and are not intended to limit the technical scope. The objects, features and advantages disclosed in the present specification will become more apparent by reference to the following detailed description and the accompanying drawings.
第1実施形態に係る可動装置の斜視図である。It is a perspective view of a movable device concerning a 1st embodiment. 可動装置の断面図である。It is sectional drawing of a movable apparatus. 図2のIII-III線における断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 高分子の配向を示す平面図である。It is a top view which shows the orientation of a polymer. 第2実施形態の高分子の配向を示す平面図である。It is a top view which shows orientation of polymer | macromolecule of 2nd Embodiment. 第3実施形態のアクチュエータ素子の断面図である。It is sectional drawing of the actuator element of 3rd Embodiment. 第4実施形態のアクチュエータ素子の斜視図である。It is a perspective view of the actuator element of 4th Embodiment. 第5実施形態のアクチュエータ素子の部分断面図である。It is a fragmentary sectional view of the actuator element of 5th Embodiment. 第5実施形態のアクチュエータ素子の斜視図である。It is a perspective view of the actuator element of 5th Embodiment.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。 Several embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding portions and / or associated portions may be provided with the same reference symbols, or reference symbols with different places of one hundred or more places. The description of the other embodiments can be referred to for the corresponding parts and / or parts to be associated.
 第1実施形態
 <可動装置>
 図1において、可動装置1は、基台2と、可動機構3とを有する。基台2は、用途に応じて適切な基礎部分に固定されている。基台2は、例えば、車両のボディに固定することができる。可動機構3は、基台2に対して機械的に動くことができる。可動機構3は、高さ方向HDに沿って延びる回動軸AXRの周りを回動移動することができる。可動機構3は、回動軸AXRの周りの所定の角度範囲を往復移動する。可動機構3は、被駆動体31を有する。可動機構3の動きは、揺動とも呼ばれる。なお、可動機構3の移動方向は、回動に限られない。可動機構3の移動方向は、例えば、高さ方向HDに沿う平行移動、幅方向WDに沿う平行移動、奥行き方向DDの周りにおける回転移動など多様な動きに適合可能である。
First Embodiment <Mobile Device>
In FIG. 1, the movable device 1 has a base 2 and a movable mechanism 3. The base 2 is fixed to an appropriate base portion depending on the application. The base 2 can be fixed to, for example, the body of a vehicle. The movable mechanism 3 can mechanically move relative to the base 2. The movable mechanism 3 can pivot about a pivot axis AXR extending along the height direction HD. The movable mechanism 3 reciprocates in a predetermined angular range around the rotation axis AXR. The movable mechanism 3 has a driven body 31. The movement of the movable mechanism 3 is also called rocking. The moving direction of the movable mechanism 3 is not limited to rotation. The moving direction of the movable mechanism 3 can be adapted to various movements such as parallel movement along the height direction HD, parallel movement along the width direction WD, and rotational movement around the depth direction DD, for example.
 可動装置1は、センサ装置でもある。可動装置1は、被駆動体31に搭載されたセンサ素子32を有する。センサ素子32は、検出範囲を示す検出軸VR32を有する。センサ素子32は、検出軸VR32の方向における物理量を検出する。センサ素子32は、例えば、画像センサ、赤外線センサ、超音波センサ、レーダアンテナ、電磁波センサ、放射線センサなど多様な素子によって提供される。この実施形態では、センサ素子32は、室内に設置される赤外線センサである。センサ素子32の検出信号は、有線または無線によって赤外線情報を利用する機器に供給される。赤外線情報は、例えば、空調装置に供給され、利用される。可動装置1は、住居、事務所、車両、船舶、航空機などの室内に設置され、室内の人に関連する情報を収集するために利用される。 The movable device 1 is also a sensor device. The movable device 1 has a sensor element 32 mounted on a driven body 31. The sensor element 32 has a detection axis VR32 that indicates a detection range. The sensor element 32 detects a physical quantity in the direction of the detection axis VR32. The sensor element 32 is provided by various elements such as, for example, an image sensor, an infrared sensor, an ultrasonic sensor, a radar antenna, an electromagnetic wave sensor, and a radiation sensor. In this embodiment, the sensor element 32 is an infrared sensor installed indoors. The detection signal of the sensor element 32 is supplied to a device using infrared information by wire or wirelessly. Infrared information is supplied to, for example, an air conditioner and used. The mobile device 1 is installed in a room such as a residence, an office, a vehicle, a ship, an aircraft, etc., and is used to collect information related to people in the room.
 可動装置1は、検出軸VR32を振るように移動させる。可動装置1は、検出軸VR32を移動させるセンサ装置を提供する。検出軸VR32の移動は、指向方向可変型、追尾型、あるいは走査型といった多様なセンサ装置の提供を可能とする。この実施形態では、被駆動体31は、周期的に揺動するから、走査型のセンサ装置が提供されている。検出軸VR32は、回動軸AXRを中心に回動する。検出軸VR32は、幅方向WDと奥行き方向DDとに広がる平面に沿って、所定の回動角VRSの範囲内を移動可能である。この実施形態では、回動角VRSが走査範囲である。 The movable device 1 moves the detection axis VR32 so as to swing. The movable device 1 provides a sensor device for moving the detection axis VR32. The movement of the detection axis VR32 makes it possible to provide various sensor devices such as a variable pointing direction type, a tracking type, or a scanning type. In this embodiment, since the driven body 31 periodically oscillates, a scanning sensor device is provided. The detection axis VR32 rotates around the rotation axis AXR. The detection axis VR32 is movable within a range of a predetermined rotation angle VRS along a plane extending in the width direction WD and the depth direction DD. In this embodiment, the pivot angle VRS is a scanning range.
 <アクチュエータ機構>
 可動装置1は、アクチュエータ機構4を備える。アクチュエータ機構4は、可動機構3を回動させるための回転力を提供する。アクチュエータ機構4は、動力源でもある。アクチュエータ機構4は、可動機構3を往復的に変位させるように回動力を提供する。アクチュエータ機構4は、第1駆動機構41と、第2駆動機構42とを有する。第1駆動機構41は、可動機構3を能動的に回動させる。第2駆動機構42は、可動機構3を受動的に回動させる。第2駆動機構42は、可動機構3の変位を戻す力を付与するリターン機構とも呼ばれる。
<Actuator mechanism>
The movable device 1 includes an actuator mechanism 4. The actuator mechanism 4 provides a rotational force for rotating the movable mechanism 3. The actuator mechanism 4 is also a power source. The actuator mechanism 4 provides a turning force to reciprocally displace the movable mechanism 3. The actuator mechanism 4 has a first drive mechanism 41 and a second drive mechanism 42. The first drive mechanism 41 actively rotates the movable mechanism 3. The second drive mechanism 42 rotates the movable mechanism 3 passively. The second drive mechanism 42 is also referred to as a return mechanism that applies a force to return the displacement of the movable mechanism 3.
 第1駆動機構41は、可動機構3を変位量MD41の方向へ回動させる。第2駆動機構42は、可動機構3を変位量MD42の方向へ回動させる。第2駆動機構42は、可動機構3を変位量MD41とは逆方向へ戻す。第2駆動機構42は、第1駆動機構41が活性化されている間は、変位量MD41を許容する。第2駆動機構42は、第1駆動機構41が非活性化されている間は、変位量MD41を戻すように機能する。第1駆動機構41は、非活性化されている間に、高エネルギ状態から、低エネルギ状態へと移行する。この結果、可動機構3は、回動角VRSにわたって変位する。第1駆動機構41は、活性化状態と、非活性化状態とに交互に制御される。これにより、可動機構3は、回動角VRSにわたって繰り返して変位させられる。 The first drive mechanism 41 rotates the movable mechanism 3 in the direction of the displacement amount MD41. The second drive mechanism 42 rotates the movable mechanism 3 in the direction of the displacement amount MD42. The second drive mechanism 42 returns the movable mechanism 3 in the direction opposite to the displacement amount MD41. The second drive mechanism 42 allows the displacement amount MD41 while the first drive mechanism 41 is activated. The second drive mechanism 42 functions to return the displacement amount MD41 while the first drive mechanism 41 is inactivated. The first drive mechanism 41 transitions from the high energy state to the low energy state while being deactivated. As a result, the movable mechanism 3 is displaced over the rotation angle VRS. The first drive mechanism 41 is alternately controlled to the activated state and the deactivated state. Thereby, the movable mechanism 3 is repeatedly displaced over the rotation angle VRS.
 第1駆動機構41は、アクチュエータ素子43を有する。アクチュエータ素子43は、固定端43aと、可動端43bとを有する。アクチュエータ素子43は、樹脂製の高分子部材44を有する。高分子部材44は、合成樹脂または天然由来の材料によって提供することができる。高分子部材44は、薄いフィルムによって提供されている。この実施形態において、アクチュエータ素子43は、その全体が高分子部材44だけで提供されている。 The first drive mechanism 41 has an actuator element 43. The actuator element 43 has a fixed end 43a and a movable end 43b. The actuator element 43 has a polymer member 44 made of resin. The polymeric member 44 can be provided by a synthetic resin or a material of natural origin. The polymeric member 44 is provided by a thin film. In this embodiment, the actuator element 43 is provided entirely by the polymer member 44 alone.
 アクチュエータ素子43は、それ自身のエネルギー状態に応答して、可逆的に変形する部材である。アクチュエータ素子43は、例えば、それ自身の温度に応答して、固定端43aに対する可動端43bの位置が可逆的に変位する部材である。この可逆的の語は、少なくとも活性化状態において基底位置から一方の方向へ所定の変位量だけ能動的に変位し、かつ、非活性化状態において基底位置へ復元可能であることを意味する。この非活性化状態における復元は、アクチュエータ素子43の能動的な機能によって実現されてもよいし、外力により受動的に実現されてもよい。 The actuator element 43 is a member that reversibly deforms in response to its own energy state. The actuator element 43 is, for example, a member that reversibly displaces the position of the movable end 43b relative to the fixed end 43a in response to its own temperature. The term "reversible" means that at least in the activated state, it can be actively displaced from the base position in one direction by a predetermined displacement amount, and can be restored to the base position in the inactive state. The restoration in the inactive state may be realized by the active function of the actuator element 43 or may be realized passively by the external force.
 この実施形態では、アクチュエータ素子43は、低エネルギ状態である第1温度状態において、所定の基底形状である。アクチュエータ素子43は、第2温度状態において、周方向に沿って基底形状より収縮した収縮形状である。第2温度状態は、第1温度状態より高温の高エネルギ状態である。アクチュエータ素子43は、非活性化状態から、活性化状態に切り替えられると、基底形状から周方向へ所定の変位量だけ能動的に収縮的に変位する。アクチュエータ素子43は、活性化状態から、活性化状態に切り替えられると、収縮形状から基底位置へ外力によって復元可能である。 In this embodiment, the actuator element 43 has a predetermined base shape in the first temperature state, which is the low energy state. The actuator element 43 has a contracted shape contracted from the base shape along the circumferential direction in the second temperature state. The second temperature state is a high energy state higher than the first temperature state. When the actuator element 43 is switched from the non-activated state to the activated state, the actuator element 43 actively and contractively displaces from the base shape in the circumferential direction by a predetermined displacement amount. When the actuator element 43 is switched from the activated state to the activated state, it can be restored from the contracted shape to the base position by an external force.
 アクチュエータ素子43は、回動軸AXRの延長線上に配置されている。アクチュエータ素子43は、被駆動体31の横に配置されている。被駆動体31と、アクチュエータ素子43とは、直列的に配置されている。図中では、可動装置1の全体が回動軸AXRの方向に沿って、やや長く強調されて図示されている。 The actuator element 43 is disposed on an extension of the rotation axis AXR. The actuator element 43 is disposed beside the driven body 31. The driven body 31 and the actuator element 43 are arranged in series. In the drawing, the entire movable device 1 is illustrated as being emphasized a little longer along the direction of the pivot axis AXR.
 アクチュエータ素子43は、固定端43aにおいて、固定ロッド45に連結されている。アクチュエータ素子43は、可動端43bにおいて、可動ロッド46に連結されている。アクチュエータ素子43は、固定ロッド45と可動ロッド46との間に配置されている。固定ロッド45は、アンカ21によって基台2に固定されている。可動ロッド46は、被駆動体31に連結されている。固定ロッド45およびアンカ21は、アクチュエータ素子43を支持する支持部材を提供する。固定ロッド45およびアンカ21は、アクチュエータ素子43の固定端43aに連結され、アクチュエータ素子43を固定する固定部を提供する。可動ロッド46は、アクチュエータ素子43の変形に伴って変位する。可動ロッド46は、周方向に沿って固定端43aから離れているアクチュエータ素子43の可動端43bに連結された可動部を提供する。 The actuator element 43 is connected to the fixed rod 45 at the fixed end 43 a. The actuator element 43 is coupled to the movable rod 46 at the movable end 43 b. The actuator element 43 is disposed between the fixed rod 45 and the movable rod 46. The fixing rod 45 is fixed to the base 2 by the anchor 21. The movable rod 46 is connected to the driven body 31. The fixed rod 45 and the anchor 21 provide a support member that supports the actuator element 43. The fixed rod 45 and the anchor 21 are coupled to the fixed end 43 a of the actuator element 43 to provide a fixed portion for fixing the actuator element 43. The movable rod 46 is displaced along with the deformation of the actuator element 43. The movable rod 46 provides a movable portion coupled to the movable end 43 b of the actuator element 43 which is separated from the fixed end 43 a along the circumferential direction.
 アクチュエータ素子43は、周方向に延びるように配置された高分子部材44を有する。高分子部材44は、合成樹脂製である。高分子部材44は、エネルギ状態の変化によって周方向に伸縮する。高分子部材44の周方向における一端が、固定端43aである。高分子部材44の周方向における他端が、可動端43bである。固定端43aと可動端43bとは、周方向に沿って所定の距離離れている。高分子部材44は、フィルムとして提供されている。高分子部材44は、リボン状のフィルムが渦巻状に配置されたロール体である。高分子部材44は、径方向に沿って多層を形成するように巻かれている。高分子部材44は、固定ロッド45の周りに巻き付いている。高分子部材44は、固定ロッド45が規定するアクチュエータ軸AX43に沿って延びる円柱状の部材である。アクチュエータ軸AX43は、アクチュエータ素子43の軸でもある。アクチュエータ軸AX43は、回動軸AXRの延長上に位置している。アクチュエータ軸AX43と回動軸AXRとは同軸である。 The actuator element 43 has a polymer member 44 arranged to extend in the circumferential direction. The polymer member 44 is made of synthetic resin. The polymer member 44 expands and contracts in the circumferential direction due to the change of the energy state. One end of the polymer member 44 in the circumferential direction is a fixed end 43a. The other end in the circumferential direction of the polymer member 44 is a movable end 43 b. The fixed end 43a and the movable end 43b are separated by a predetermined distance in the circumferential direction. The polymeric member 44 is provided as a film. The polymer member 44 is a roll body in which a ribbon-like film is disposed in a spiral shape. The polymer member 44 is wound to form multiple layers along the radial direction. The polymer member 44 is wound around the fixing rod 45. The polymer member 44 is a cylindrical member extending along an actuator axis AX43 defined by the fixed rod 45. The actuator axis AX43 is also an axis of the actuator element 43. The actuator axis AX43 is located on the extension of the pivot axis AXR. The actuator axis AX43 and the rotation axis AXR are coaxial.
 利用可能な高分子部材44と、利用可能なエネルギ調節器71とは、特開2016-42783号公報に記載のものを含む。特開2016-42783号公報の記載内容は、この明細書における技術的要素の説明として、参照により援用される。高分子部材44は、人工筋肉と呼ばれる多様な材料によって提供することができる。 The available polymer members 44 and the available energy regulators 71 include those described in JP-A-2016-42783. The contents of Japanese Patent Application Laid-Open No. 2016-42783 are incorporated by reference as a description of technical elements in this specification. The polymeric member 44 can be provided by a variety of materials called artificial muscles.
 高分子部材44のひとつの例は、樹脂製のフィルムのロール体である。樹脂の典型的なひとつの例は、モノフィラメント樹脂である。モノフィラメント樹脂は、ポリアミド系樹脂、およびポリエチレン系樹脂を含む。例えば、ナイロン、またはポリチレンと呼ばれるポリマ繊維は、温度変化に対するねじり変形量を有する場合があり、アクチュエータ素子43として利用可能である。高分子は、アクチュエータ軸AX43の周りの周方向に沿って延在するように配向されている。高分子の配向は、フィルムを伸長させる製造方法によって実現される。 One example of the polymer member 44 is a roll of resin film. One typical example of a resin is a monofilament resin. Monofilament resin contains polyamide resin and polyethylene resin. For example, a polymer fiber called nylon or polyethylene may have a torsional deformation amount with respect to a temperature change, and can be used as an actuator element 43. The polymer is oriented to extend along the circumferential direction around the actuator axis AX43. The orientation of the polymer is achieved by a manufacturing method that stretches the film.
 第2駆動機構42は、リターン素子47を有する。リターン素子47は、スプリング、空気バネ、ゴムなど多様な弾性部材によって提供することができる。この実施形態において、リターン素子は、金属製または樹脂製の引っ張りスプリングである。リターン素子47は、固定ロッド48と、可動ロッド49との間に連結されている。固定ロッド48は、アンカ22によって基台2に固定されている。可動ロッド49は、被駆動体31に連結されている。リターン素子47は、被駆動体31が変位量MD41の方向へ変位すると、伸ばされ、復元力を発生する。この結果、第2駆動機構42は、被駆動体31に対してリターン力を与える。 The second drive mechanism 42 has a return element 47. The return element 47 can be provided by various elastic members such as a spring, an air spring, and a rubber. In this embodiment, the return element is a metal or resin tension spring. The return element 47 is connected between the fixed rod 48 and the movable rod 49. The fixing rod 48 is fixed to the base 2 by the anchor 22. The movable rod 49 is connected to the driven body 31. When the driven element 31 is displaced in the direction of the displacement amount MD41, the return element 47 is stretched and generates a restoring force. As a result, the second drive mechanism 42 applies a return force to the driven body 31.
 <案内機構>
 可動装置1は、可動機構3の動きを案内するための案内機構5を有する。案内機構5は、基台2に設けられたアンカ23と、被駆動体31との間に設けられている。アンカ23は、基台2に固定されている。案内機構5は、高さ方向HDの周りにおける被駆動体31の回転運動を許容する。案内機構5は、奥行き方向DDの周りにおける回転運動、および幅方向WDの周りにおける回転運動を抑制する。案内機構5は、被駆動体31の移動のうち、奥行き方向DDへの上下運動、および幅方向WDへの左右運動を抑制する。案内機構5は、高さ方向HDへの前後運動を抑制してもよい。案内機構5は、高さ方向HDへの前後運動を許容する場合がある。
<Guide mechanism>
The movable device 1 has a guide mechanism 5 for guiding the movement of the movable mechanism 3. The guide mechanism 5 is provided between the anchor 23 provided on the base 2 and the driven body 31. The anchors 23 are fixed to the base 2. The guide mechanism 5 allows rotational movement of the driven body 31 around the height direction HD. The guiding mechanism 5 suppresses the rotational movement around the depth direction DD and the rotational movement around the width direction WD. The guide mechanism 5 suppresses the vertical movement in the depth direction DD and the horizontal movement in the width direction WD among the movement of the driven member 31. The guide mechanism 5 may suppress back and forth movement in the height direction HD. The guide mechanism 5 may allow back and forth movement in the height direction HD.
 高さ方向HDをロール軸、幅方向WDをピッチング軸、および奥行き方向DDをヨー軸と定義することができる。この場合、案内機構5は、被駆動体31のロール運動を許容する。案内機構5は、利用可能な範囲を超えるような過剰なロール運動を抑制してもよい。例えば、被駆動体31とアンカ23との直接的な衝突、または弾性部材を介した間接的な衝突は、ロール運動範囲を制限する。案内機構5は、被駆動体31のヨーイング運動、およびピッチング運動を抑制する。また、案内機構5は、被駆動体31の上下運動、および左右運動を抑制する。案内機構5は、被駆動体31の前後運動を抑制してもよい。案内機構5は、被駆動体31の前後運動を許容する場合がある。 The height direction HD can be defined as a roll axis, the width direction WD as a pitching axis, and the depth direction DD as a yaw axis. In this case, the guide mechanism 5 permits the roll movement of the driven body 31. The guide mechanism 5 may suppress excessive roll movement beyond the available range. For example, a direct collision between the driven body 31 and the anchor 23 or an indirect collision via an elastic member limits the range of roll movement. The guide mechanism 5 suppresses the yawing motion and the pitching motion of the driven body 31. Further, the guide mechanism 5 suppresses the vertical movement and the horizontal movement of the driven body 31. The guide mechanism 5 may suppress the back and forth movement of the driven body 31. The guide mechanism 5 may allow the back and forth movement of the driven body 31.
 <制御システム>
 可動装置1は、制御システム7を備える。制御システム7は、エネルギ調節器71と、ドライバ回路72(DVC)と、制御装置73(CNT)とを有する。エネルギ調節器71は、アクチュエータ素子43から機械的な運動を取り出すために、アクチュエータ素子43のエネルギ状態を調節する。エネルギ調節器71は、アクチュエータ素子43のエネルギ状態を少なくとも高低の2段階に変化させる。ドライバ回路72は、エネルギ調節器71に供給する電力を制御装置73からの指示に応じて調節する。
<Control system>
The mobile device 1 comprises a control system 7. The control system 7 has an energy regulator 71, a driver circuit 72 (DVC), and a controller 73 (CNT). The energy regulator 71 regulates the energy state of the actuator element 43 in order to extract mechanical motion from the actuator element 43. The energy regulator 71 changes the energy state of the actuator element 43 into at least two stages of high and low. The driver circuit 72 adjusts the power supplied to the energy regulator 71 in accordance with an instruction from the controller 73.
 エネルギ調節器71は、アクチュエータ素子43のエネルギ状態を高エネルギ状態と低エネルギ状態との間で双方向に変化させる。エネルギ調節器71は、電気的に、光学的に、磁気的に、電磁波的に、あるいは放射線的にエネルギを付与し、除去することができる。電気的なエネルギの付与と除去とは、電気的な熱の増減、電流の増減、電界の増減、あるいは電荷の増減などを含む。例えば、アクチュエータ素子43のエネルギ状態が温度で示される場合、光の付与によって温度を増加させ、光の遮断によって温度を低下させることができる。 The energy regulator 71 changes the energy state of the actuator element 43 in both directions between the high energy state and the low energy state. The energy regulator 71 can apply and remove energy electrically, optically, magnetically, electromagnetically, or radiation. The application and removal of electrical energy includes increase and decrease of electrical heat, increase and decrease of current, increase and decrease of electric field, and increase and decrease of charge. For example, when the energy state of the actuator element 43 is indicated by temperature, the light application can increase the temperature and the light interruption can decrease the temperature.
 エネルギの付与と、除去とは、直接的に、または間接的に行うことができる。例えば、アクチュエータ素子43に直接的に接触するエネルギ伝達部品によってエネルギを付与してもよいし、またはアクチュエータ素子43から離れて設置されたエネルギ伝達部品によって間接的にエネルギを付与してもよい。エネルギ伝達部品は、例えば、電気的な発熱部材によって提供できる。 The application and removal of energy can be done directly or indirectly. For example, energy may be provided by an energy transfer component that is in direct contact with the actuator element 43, or energy may be applied indirectly by an energy transfer component located remotely from the actuator element 43. The energy transfer component can be provided, for example, by an electrical heating element.
 例えば、アクチュエータ素子43を能動的に変位させるために、エネルギ調節器71は、アクチュエータ素子43の熱エネルギを増加させる。熱エネルギの増加は、例えば、エネルギ調節器71が備える発熱部材への電流供給を行うことによって実現される。アクチュエータ素子43を復元するために、例えば、エネルギ調節器71は、アクチュエータ素子43の熱エネルギを減少させる。熱エネルギの減少は、例えば、エネルギ調節器71が備える発熱部材への電流供給を遮断し、アクチュエータ素子43から放熱させることによって実現される。 For example, in order to actively displace the actuator element 43, the energy regulator 71 increases the thermal energy of the actuator element 43. The increase of the thermal energy is realized, for example, by supplying the current to the heat generating member of the energy regulator 71. In order to restore the actuator element 43, for example, the energy regulator 71 reduces the thermal energy of the actuator element 43. The reduction of the thermal energy is realized, for example, by interrupting the current supply to the heat generating member of the energy regulator 71 and dissipating the heat from the actuator element 43.
 エネルギ調節器71は、アクチュエータ素子43を収容する空洞を提供する円筒状である。言い換えると、アクチュエータ素子43は、エネルギ調節器71内に収容されている。エネルギ調節器71は、電気的に発熱量を調節可能なヒータによって提供されている。よって、エネルギ調節器71は、アクチュエータ素子43の温度を調節する。 The energy regulator 71 is cylindrical, providing a cavity for receiving the actuator element 43. In other words, the actuator element 43 is housed in the energy regulator 71. The energy regulator 71 is provided by a heater which can adjust the amount of heat generation electrically. Thus, the energy regulator 71 regulates the temperature of the actuator element 43.
 制御装置73は、少なくともひとつの演算処理装置(CPU)と、プログラムとデータとを記憶する記憶媒体としての少なくともひとつのメモリ装置とを有する。制御装置73は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体は、コンピュータによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御装置73は、ひとつのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源によって提供されうる。プログラムは、制御装置73によって実行されることによって、制御装置をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置73を機能させる。 The control device 73 has at least one arithmetic processing unit (CPU) and at least one memory device as a storage medium for storing programs and data. The controller 73 is provided by a microcomputer provided with a computer readable storage medium. A storage medium is a non-transitory tangible storage medium which non-temporarily stores a computer readable program. The storage medium may be provided by semiconductor memory or a magnetic disk or the like. The controller 73 may be provided by one computer or a set of computer resources linked by a data communication device. The program is executed by the controller 73 to cause the controller to function as the device described in this specification and causes the controller 73 to perform the method described in this specification.
 制御システム7は、制御装置73に入力される情報を示す信号を供給する複数の信号源を入力装置として有する。制御システム7は、制御装置73が情報をメモリ装置に格納することにより、情報を取得する。制御システム7は、制御装置73によって挙動が制御される複数の制御対象物を出力装置として有する。制御システム7は、メモリ装置に格納された情報を信号に変換して制御対象物に供給することにより制御対象物の挙動を制御する。例えば、制御装置73は、外部から作動信号と、停止信号とを取得し、エネルギ調節器71を間欠的に活性化することにより、可動装置1を揺動的に運動させる。 The control system 7 includes, as input devices, a plurality of signal sources that supply signals indicating information input to the control device 73. The control system 7 acquires information by the control device 73 storing the information in the memory device. The control system 7 has a plurality of controlled objects whose behavior is controlled by the controller 73 as output devices. The control system 7 controls the behavior of the controlled object by converting the information stored in the memory device into a signal and supplying the signal to the controlled object. For example, the control device 73 acquires the operation signal and the stop signal from the outside, and activates the energy regulator 71 intermittently to move the movable device 1 in an oscillating manner.
 制御システム7に含まれる制御装置73と信号源と制御対象物とは、多様な要素を提供する。それらの要素の少なくとも一部は、機能を実行するためのブロックと呼ぶことができる。別の観点では、それらの要素の少なくとも一部は、構成として解釈されるモジュール、またはセクションと呼ぶことができる。さらに、制御システム7に含まれる要素は、意図的な場合にのみ、その機能を実現する手段ともよぶことができる。 The controller 73, the signal source and the controlled object included in the control system 7 provide various elements. At least some of these elements can be referred to as blocks for performing the function. In another aspect, at least some of those elements can be referred to as modules or sections that are interpreted as a configuration. Furthermore, the elements included in the control system 7 can also be referred to as means for realizing their functions only when intended.
 制御システム7が提供する手段および/または機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置73がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。 The means and / or function provided by the control system 7 may be provided by software stored in a tangible memory device and a computer that executes the software, only software, only hardware, or a combination thereof. For example, if the controller 73 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or analog circuit that includes a number of logic circuits.
 図2において、アンカ21、22、23は、基台2に固定されている。アンカ21は、固定ロッド45を受け入れる内穴を有する。アンカ21は、セットスクリュ21aを有する。セットスクリュ21aは、内穴に向けて径方向に設けられている。セットスクリュ21aは、固定ロッド45を径方向に締め付けることにより、アンカ21と固定ロッド45とを、軸方向および周方向に関して連結している。セットスクリュ21aは、軸方向および周方向における固定ロッド45の初期位置を設定するために利用される。 In FIG. 2, the anchors 21, 22, 23 are fixed to the base 2. The anchor 21 has an inner hole for receiving the fixing rod 45. The anchor 21 has a set screw 21a. The set screw 21a is provided radially toward the inner hole. The set screw 21a connects the anchor 21 and the fixing rod 45 in the axial direction and the circumferential direction by tightening the fixing rod 45 in the radial direction. The set screw 21a is used to set the initial position of the fixed rod 45 in the axial and circumferential directions.
 被駆動体31は、案内機構5によって回動可能に支持されている。案内機構5は、シャフト51とガイドボア52とを有する。シャフト51は、回動軸AXRと同軸の円筒状部材によって提供されている。シャフト51は、被駆動体31に固定されている。シャフト51の両端が、被駆動体31に固定されている。被駆動体31は、シャフト51を有する。ガイドボア52は、アンカ23に設けられている。アンカ23は、ガイドボア52を有する。アンカ23は、被駆動体31を支持するための部材である。ガイドボア52は、アンカ23を貫通する貫通穴によって提供されている。ガイドボア52は、シャフト51を受け入れている。ガイドボア52は、シャフト51の回転を許容する。この結果、アンカ23は、被駆動体31を回転可能に支持している。 The driven body 31 is rotatably supported by the guide mechanism 5. The guide mechanism 5 has a shaft 51 and a guide bore 52. The shaft 51 is provided by a cylindrical member coaxial with the rotation axis AXR. The shaft 51 is fixed to the driven body 31. Both ends of the shaft 51 are fixed to the driven body 31. The driven body 31 has a shaft 51. The guide bore 52 is provided in the anchor 23. The anchor 23 has a guide bore 52. The anchor 23 is a member for supporting the driven body 31. The guide bores 52 are provided by through holes through the anchors 23. The guide bore 52 receives the shaft 51. The guide bores 52 allow rotation of the shaft 51. As a result, the anchor 23 rotatably supports the driven body 31.
 シャフト51の外面と、ガイドボア52の内面とは、部分的に接触している。シャフト51の外面と、ガイドボア52の内面とは、被駆動体31が回動すると、互いに摺動する。被駆動体31は、シャフト51の周りにおいて案内されている。シャフト51およびガイドボア52を提供する部材は、低摩擦材料製である。シャフト51、またはガイドボア52を提供する部材を、低摩擦材料製としてもよい。シャフト51とガイドボア52との間の摩擦が抑制される。 The outer surface of the shaft 51 and the inner surface of the guide bore 52 are in partial contact with each other. The outer surface of the shaft 51 and the inner surface of the guide bore 52 slide on each other when the driven body 31 rotates. The driven body 31 is guided around the shaft 51. The members providing the shaft 51 and the guide bore 52 are made of a low friction material. The shaft 51 or the member providing the guide bore 52 may be made of a low friction material. The friction between the shaft 51 and the guide bore 52 is suppressed.
 アンカ23は、その両端面において、被駆動体31と対向している。アンカ23は、その両端面において、部分的に被駆動体31と接触している。アンカ23と被駆動体31とは、被駆動体31が回動すると、互いに摺動する。 The anchors 23 face the driven body 31 at both end faces. The anchors 23 partially contact the driven body 31 at both end faces. The anchor 23 and the driven body 31 slide relative to each other when the driven body 31 rotates.
 図3において、アクチュエータ素子43、すなわち高分子部材44は、周方向CDに延びるように配置されている。周方向CDは、アクチュエータ軸AX43周りの方向である。周方向CDは、アクチュエータ軸AX43に直角な方向でもある。高分子部材44は、複数の周回数にわたって渦巻状に配置されている。アクチュエータ素子43は、周方向に沿って一周を上回る周回数を有する。固定端43aは、渦巻きの最も内側に位置する。可動端43bは、渦巻きの最も外側に位置する。可動ロッド46は、被駆動体31に連結されているから、案内機構5によって図示される円軌道を描くように移動可能である。 In FIG. 3, the actuator element 43, that is, the polymer member 44 is arranged to extend in the circumferential direction CD. The circumferential direction CD is a direction around the actuator axis AX43. The circumferential direction CD is also a direction perpendicular to the actuator axis AX43. The polymer member 44 is disposed in a spiral manner over a plurality of turns. The actuator element 43 has a number of turns that exceeds one turn along the circumferential direction. The fixed end 43a is located at the innermost side of the spiral. The movable end 43 b is located at the outermost side of the spiral. Since the movable rod 46 is connected to the driven body 31, the movable rod 46 can move so as to draw a circular orbit illustrated by the guide mechanism 5.
 高分子部材44は、第1温度において、実線で図示される所定の第1形状である。第1形状は、基底形状または初期形状とも呼ばれる。高分子部材44は、第1形状において、可動ロッド46を実線で図示される第1位置P1に位置付ける。高分子部材44は、第2温度において、第2形状である。第2形状は、収縮形状または変形された形状とも呼ばれる。第2温度は、第1温度と異なる温度である。第2形状は、第1形状よりも周方向に変形した形状である。高分子部材44は、第2形状において、可動ロッド46を破線で図示される第2位置P2に位置付ける。 The polymer member 44 has a predetermined first shape illustrated by a solid line at a first temperature. The first shape is also referred to as a base shape or an initial shape. The polymer member 44 positions the movable rod 46 at a first position P1 illustrated by a solid line in the first shape. The polymer member 44 has a second shape at a second temperature. The second shape is also referred to as a contracted or deformed shape. The second temperature is a temperature different from the first temperature. The second shape is a shape deformed in the circumferential direction more than the first shape. The polymer member 44 positions the movable rod 46 at a second position P2 illustrated by a broken line in the second shape.
 ひとつの例としてのこの実施形態では、第2温度は、第1温度より高温である。第2形状は、周方向に沿って第1形状より収縮した形状である。高分子部材44は、第1形状から第2形状へ向けて能動的に変形可能である。高分子部材44は、第2形状から第1形状へ向けて能動的または受動的に復元可能である。第2形状は、周方向に沿って第1形状より伸長した形状であってもよい。 In one example of this embodiment, the second temperature is higher than the first temperature. The second shape is a shape that is shrunk from the first shape along the circumferential direction. The polymer member 44 is actively deformable from the first shape to the second shape. The polymer member 44 can be actively or passively restored from the second shape to the first shape. The second shape may be a shape that extends from the first shape along the circumferential direction.
 図4は、高分子部材44における高分子の配向を示す平面図である。合成樹脂製の母材BMTは、高分子が配向方向ORPに配向されるように製造されている。母材BMTの製造方法は、配向方向ORPに沿って高分子を配向するための延伸工程を含む。高分子部材44は、母材BMTから切り出されている。配向方向ORPは、配向軸方向とも呼ばれる。 FIG. 4 is a plan view showing the orientation of the polymer in the polymer member 44. As shown in FIG. The base material BMT made of a synthetic resin is manufactured such that the polymer is oriented in the orientation direction ORP. The method of manufacturing the base material BMT includes a stretching step for orienting the polymer along the orientation direction ORP. The polymer member 44 is cut out from the base material BMT. The orientation direction ORP is also referred to as an orientation axis direction.
 高分子部材44は、その長手方向LD44、すなわち周方向CDが配向方向ORPに対して所定の傾斜角ACをなすように切り出されている。配向方向ORPと長手方向LD44との間の傾斜角ACは、第1形状から第2形状への高分子部材44変形を促進する場合がある。傾斜角ACは、鋭角(45度未満)である。傾斜角ACは、10度以下の角度であることが望ましい。さらに、直線状に延びる一連の配向方向ORPが、高分子部材244の両端、すなわち固定端43aと可動端43bとの両方に達するように、傾斜角ACは設定されることが望ましい。さらに、傾斜角ACは、複数の配向方向ORPが、両端の間にわたって延びるように設定されることが望ましい。長手方向LD44は、高分子部材44の長手軸方向とも呼ばれる。 The polymer member 44 is cut out so that its longitudinal direction LD 44, that is, the circumferential direction CD makes a predetermined inclination angle AC with respect to the orientation direction ORP. The inclination angle AC between the alignment direction ORP and the longitudinal direction LD 44 may promote the deformation of the polymer member 44 from the first shape to the second shape. The inclination angle AC is an acute angle (less than 45 degrees). The inclination angle AC is preferably an angle of 10 degrees or less. Furthermore, it is desirable that the inclination angle AC be set such that a series of linearly extending alignment directions ORP reach both ends of the polymer member 244, that is, both the fixed end 43a and the movable end 43b. Furthermore, it is desirable that the tilt angle AC be set such that a plurality of orientation directions ORP extend between the two ends. The longitudinal direction LD 44 is also referred to as the longitudinal axis direction of the polymer member 44.
 以上に述べた実施形態によると、高分子部材44は、周方向に延びるように配置されている。よって、高分子部材44は周方向に沿って充分な長さを提供することができる。この結果、アクチュエータ素子43は、高分子部材44の伸縮によって可動端43bにおいて大きい変位を提供することができる。しかも、高分子部材44は、渦巻状に配置されている。このため、アクチュエータ軸AX43に沿う長さを過剰に大型化することなく、可動装置1を提供することができる。この結果、小型および/または高出力の可動装置1が提供される。 According to the embodiment described above, the polymer member 44 is arranged to extend in the circumferential direction. Thus, the polymer member 44 can provide a sufficient length along the circumferential direction. As a result, the actuator element 43 can provide a large displacement at the movable end 43 b by the expansion and contraction of the polymer member 44. Moreover, the polymer member 44 is disposed in a spiral shape. Therefore, the movable device 1 can be provided without excessively increasing the length along the actuator axis AX43. As a result, a small and / or high-power movable device 1 is provided.
 第2実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、配向方向ORPと長手方向LD44とは、傾斜角ACを規定している。これに代えて、配向方向ORPと長手方向LD244とは、平行に伸びていてもよい。
Second Embodiment This embodiment is a modification based on the preceding embodiment. In the above embodiment, the alignment direction ORP and the longitudinal direction LD 44 define the inclination angle AC. Alternatively, the alignment direction ORP and the longitudinal direction LD 244 may extend in parallel.
 図5において、高分子部材244は、その長手方向LD244、すなわち周方向CDが配向方向ORPに一致している。よって、配向方向ORPと長手方向LD244とは、平行である。ただし、配向方向ORPと長手方向LD244とは、微小な傾斜角を有していてもよい。また、配向方向ORPと長手方向LD244とは高分子部材244の内部において微視的に傾斜していてもよい。なお、母材BMTの幅と高分子部材244の幅とが一致する場合、母材BMTを高分子部材244の長さに切断するだけで、高分子部材244が提供されてもよい。 In FIG. 5, in the polymer member 244, the longitudinal direction LD 244, that is, the circumferential direction CD coincides with the orientation direction ORP. Therefore, the alignment direction ORP and the longitudinal direction LD 244 are parallel. However, the alignment direction ORP and the longitudinal direction LD 244 may have a minute inclination angle. The alignment direction ORP and the longitudinal direction LD 244 may be microscopically inclined in the polymer member 244. When the width of the base material BMT matches the width of the polymer member 244, the polymer member 244 may be provided only by cutting the base material BMT into the length of the polymer member 244.
 第3実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、高分子部材44は、層間に空隙を有している。これに代えて、高分子部材44は、層間に配置された弾性部材361を有していてもよい。
Third Embodiment This embodiment is a modification based on the preceding embodiment. In the above embodiment, the polymer member 44 has an air gap between the layers. Instead of this, the polymer member 44 may have an elastic member 361 disposed between the layers.
 図6に図示されるように、アクチュエータ素子43は、渦巻き状の高分子部材44と、高分子部材44の径方向内側を満たす弾性部材361とを有している。弾性部材361は、高分子部材44に接着されている。弾性部材361は、自らの弾性により、高分子部材244の変形を許容する。弾性部材361は、ゴムまたはエラストマ等の弾性を有する部材によって提供することができる。この実施形態によると、アクチュエータ素子43の形状を安定化することができる。 As illustrated in FIG. 6, the actuator element 43 has a spiral polymer member 44 and an elastic member 361 that fills the inside in the radial direction of the polymer member 44. The elastic member 361 is bonded to the polymer member 44. The elastic member 361 allows deformation of the polymer member 244 by its own elasticity. The elastic member 361 can be provided by an elastic member such as rubber or an elastomer. According to this embodiment, the shape of the actuator element 43 can be stabilized.
 第4実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、高分子部材44は、渦巻状のロール体である。これに代えて、高分子部材44は、螺旋状のロール体によって提供されてもよい。
Fourth Embodiment This embodiment is a modification based on the preceding embodiment. In the above embodiment, the polymer member 44 is a spiral roll body. Alternatively, the polymeric member 44 may be provided by a helical roll.
 図7において、第1駆動機構41は、アクチュエータ素子43を有する。アクチュエータ素子43は、高分子部材444を有する。高分子部材444は、螺旋状に巻かれたロール体である。螺旋状の高分子部材444は、周方向だけでなく、軸方向にも変位している。高分子部材444の固定端43aは、固定ロッド445の外周面に固定されている。固定ロッド445は、高分子部材444の径方向内側に配置されている。固定ロッド445は、高分子部材444の巻き芯でもある。固定ロッド445は、高分子部材444を支持する支持部材でもある。さらに、固定ロッド445は、その外周面に沿って可動ロッド46を案内する案内部材でもある。 In FIG. 7, the first drive mechanism 41 has an actuator element 43. The actuator element 43 has a polymer member 444. The polymer member 444 is a spirally wound roll body. The helical polymer member 444 is displaced not only in the circumferential direction but also in the axial direction. The fixed end 43 a of the polymer member 444 is fixed to the outer peripheral surface of the fixed rod 445. The fixing rod 445 is disposed radially inward of the polymer member 444. The fixing rod 445 is also a winding core of the polymer member 444. The fixing rod 445 is also a support member that supports the polymer member 444. Further, the fixed rod 445 is also a guide member for guiding the movable rod 46 along the outer peripheral surface thereof.
 高分子部材444の可動端43bは、可動ロッド46に連結されている。第1駆動機構41は、エネルギ調節器472を有する。エネルギ調節器472は、高分子部材444の径方向外側に配置されている。さらに、第1駆動機構41は、エネルギ調節器474を有する。エネルギ調節器474は、高分子部材444の径方向内側に配置されている。エネルギ調節器474は、固定ロッド445によって支持することができる。第1駆動機構41は、エネルギ調節器472およびエネルギ調節器474のいずれか一方だけを備えていてもよい。 The movable end 43 b of the polymer member 444 is connected to the movable rod 46. The first drive mechanism 41 has an energy regulator 472. The energy regulator 472 is disposed radially outward of the polymer member 444. Furthermore, the first drive mechanism 41 has an energy regulator 474. The energy regulator 474 is disposed radially inward of the polymer member 444. The energy regulator 474 can be supported by a fixed rod 445. The first drive mechanism 41 may include only one of the energy regulator 472 and the energy regulator 474.
 この実施形態でも、アクチュエータ素子43を軸方向に小型化することができる。また、固定ロッド445は、高分子部材444の径方向内側に近接して位置しているから、高分子部材444の変形が安定化される。 Also in this embodiment, the actuator element 43 can be miniaturized in the axial direction. In addition, since the fixing rod 445 is positioned close to the inner side in the radial direction of the polymer member 444, the deformation of the polymer member 444 is stabilized.
 第5実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、アクチュエータ素子43は、高分子部材44、244、444によって提供されている。これに代えて、アクチュエータ素子43は、少なくとも第1層と第2層とを有する複層部材によって提供することができる。
Fifth Embodiment This embodiment is a modification based on the preceding embodiment. In the above embodiment, the actuator element 43 is provided by the polymer members 44, 244, 444. Alternatively, the actuator element 43 can be provided by a multilayer member having at least a first layer and a second layer.
 図8は、この実施形態のアクチュエータ素子43の部分的な断面を示している。アクチュエータ素子43は、全体が周方向に沿って湾曲するように配置されている。アクチュエータ素子43は、第1層と第2層とを有する複層部材である。この実施形態では、第1層は、第2層の径方向内側面に配置されている。第1層は、第2層の径方向外側面に配置されていてもよい。 FIG. 8 shows a partial cross section of the actuator element 43 of this embodiment. The actuator element 43 is arranged to be curved along the circumferential direction. The actuator element 43 is a multilayer member having a first layer and a second layer. In this embodiment, the first layer is disposed on the radially inner side of the second layer. The first layer may be disposed on the radially outer surface of the second layer.
 第1層は、高分子部材544である。高分子部材544は、図示されるようにアクチュエータ素子43の周方向に沿って延びる配向方向ORPを有している。第2層は、低伸縮部材562である。低伸縮部材562は、高分子部材544より低い伸縮率を有する。低伸縮部材562は、例えば、金属、樹脂または生物材料によって提供することができる。低伸縮部材562は、例えば、ゼンマイを提供するようなバネ材料によって提供することができる。高分子部材544と低伸縮部材562とは、互いに接着されている。 The first layer is a polymer member 544. The polymer member 544 has an orientation direction ORP extending along the circumferential direction of the actuator element 43 as shown. The second layer is a low expansion and contraction member 562. The low expansion and contraction member 562 has a lower expansion and contraction rate than the polymer member 544. The low expansion and contraction member 562 can be provided by, for example, a metal, a resin, or a biological material. The low expansion member 562 can be provided, for example, by a spring material that provides a spring. The polymer member 544 and the low expansion and contraction member 562 are bonded to each other.
 アクチュエータ素子43は、高分子部材544の伸縮により全体の曲率が変化する。高分子部材544が収縮する場合、低伸縮部材562は、曲率をさらに大きくするように巻き込む。アクチュエータ素子43の挙動は、エネルギ状態の変化によってゼンマイが自動的に巻き込むような挙動である。複層部材であるアクチュエータ素子43は、ユニモルフとも呼ぶことができる。 The overall curvature of the actuator element 43 changes due to the expansion and contraction of the polymer member 544. When the polymer member 544 contracts, the low expansion and contraction member 562 winds up to further increase the curvature. The behavior of the actuator element 43 is such that the spring automatically winds up when the energy state changes. The actuator element 43 which is a multi-layered member can also be called a unimorph.
 図9において、高分子部材544は、エネルギ調節器71によって挙動を制御される。エネルギ調節器71が活性化すると、高分子部材544は高エネルギ状態に活性化される。高分子部材544は、第1温度から第2温度になると収縮する。高分子部材544の収縮は、アクチュエータ素子43を径方向内側へ巻き込ませる。アクチュエータ素子43は、ゼンマイバネが自動的に巻き込まれるように変形する。この結果、可動ロッド46は、実線で図示される第1位置から、破線で図示される第2位置へ移動する。エネルギ調節器71が非活性化すると、高分子部材544は低エネルギ状態に非活性化される。高分子部材544は、第2温度から徐々に放熱する。放熱の過程において、低伸縮部材562は、ゼンマイバネのように機能して、周方向への巻き込みを緩めてゆく。同時に、低伸縮部材562は、高分子部材544を伸長させる。この結果、可動ロッド46は、破線で図示される第2位置から、実線で図示される第1位置へ移動する。 In FIG. 9, the behavior of the polymer member 544 is controlled by the energy regulator 71. When the energy regulator 71 is activated, the polymer member 544 is activated to a high energy state. The polymer member 544 contracts from the first temperature to the second temperature. The contraction of the polymer member 544 causes the actuator element 43 to be wound radially inward. The actuator element 43 deforms so that the spiral spring automatically winds up. As a result, the movable rod 46 moves from the first position illustrated by the solid line to the second position illustrated by the broken line. When the energy regulator 71 is deactivated, the polymer member 544 is deactivated to the low energy state. The polymer member 544 gradually dissipates heat from the second temperature. In the process of heat dissipation, the low expansion and contraction member 562 functions like a spiral spring and loosens circumferential entrapment. At the same time, the low expansion and contraction member 562 elongates the polymer member 544. As a result, the movable rod 46 moves from the second position illustrated by the broken line to the first position illustrated by the solid line.
 他の実施形態
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
Other Embodiments The disclosure in this specification is not limited to the illustrated embodiments. The disclosure includes the illustrated embodiments and variations based on them by those skilled in the art. For example, the disclosure is not limited to the combination of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure can have additional parts that can be added to the embodiments. The disclosure includes those in which parts and / or elements of the embodiments have been omitted. The disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment. The disclosed technical scope is not limited to the description of the embodiments. It is to be understood that the technical scopes disclosed herein are indicated by the description of the scope of the claims, and further include all modifications within the meaning and scope equivalent to the descriptions of the scope of the claims.
 上記実施形態では、可動装置1は、センサ装置の検出軸を変位させるための動力源を提供する。これに代えて、可動装置1は、多様な機器のための動力源を提供することができる。可動装置1は、例えば、光源機器の光軸を変位させるための動力源、投影機器の投影軸を変位させるための動力源、または、空気流を吹き出す空調機器の吹出方向を変位させるための動力源として利用することができる。 In the above embodiment, the movable device 1 provides a power source for displacing the detection axis of the sensor device. Alternatively, the mobile device 1 can provide a source of power for a variety of devices. The movable device 1 is, for example, a motive power source for displacing the optical axis of the light source device, a motive power source for displacing the projection axis of the projection device, or a motive power for displacing the blowing direction of the air conditioner It can be used as a source.
 上記実施形態では、第1駆動機構41にアクチュエータ素子43を設け、第2駆動機構42をリターン機構とした。これに代えて、第2駆動機構42にもアクチュエータ素子を設けてもよい。第2駆動機構42に設けられるアクチュエータ素子は、変位量MD42を出力する。この場合、アクチュエータ素子43、第2駆動機構のアクチュエータ素子とは、交互に駆動される。言い換えると、2つのアクチュエータ素子は、相補的に活性化状態および非活性化状態に制御される。 In the above embodiment, the actuator element 43 is provided in the first drive mechanism 41, and the second drive mechanism 42 is a return mechanism. Instead of this, the second drive mechanism 42 may also be provided with an actuator element. The actuator element provided in the second drive mechanism 42 outputs a displacement amount MD42. In this case, the actuator element 43 and the actuator element of the second drive mechanism are alternately driven. In other words, the two actuator elements are complementarily controlled to the activated state and the deactivated state.
 上記実施形態では、エネルギ調節器71は、円筒状である。これに代えて、エネルギ調節器71は、多様な形状によって提供することができる。例えば、エネルギ調節器71は、アクチュエータ素子43の高分子部材44に沿って配置されたヒータによって提供されてもよい。また、エネルギ調節器71は、高分子部材44の2つの層の間に配置されていてもよい。エネルギ調節器71は、例えば、アクチュエータ軸AX43と平行に配置された複数のヒータ素子によって提供されてもよい。 In the above embodiment, the energy regulator 71 is cylindrical. Alternatively, the energy regulator 71 can be provided by various shapes. For example, the energy regulator 71 may be provided by a heater disposed along the polymer member 44 of the actuator element 43. Also, the energy regulator 71 may be disposed between the two layers of the polymer member 44. The energy regulator 71 may be provided, for example, by a plurality of heater elements arranged parallel to the actuator axis AX43.
 上記実施形態では、複層部材は、高分子部材544と、低伸縮部材562とを有する。これに代えて、複層部材は、二層の高分子部材を備えていてもよい。二層の高分子部材は、例えば、温度の変化に応答して、互いに逆の変位を生じる部材によって提供することができる。第1層の高分子部材は、例えば、第1温度から第2温度への変化によって収縮する部材である。第2層の高分子部材は、例えば、第2温度から第1温度への変化によって伸長する部材である。このような逆の伸縮特性を有する高分子部材により、双方向へ能動的に変形するアクチュエータ素子43を提供することができる。 In the above embodiment, the multilayer member includes the polymer member 544 and the low expansion and contraction member 562. Alternatively, the multilayer member may comprise two layers of polymeric members. Bilayer polymeric members can be provided, for example, by members that produce opposite displacements in response to changes in temperature. The polymer member of the first layer is, for example, a member that contracts due to a change from the first temperature to the second temperature. The polymer member of the second layer is, for example, a member which elongates upon change from the second temperature to the first temperature. The polymer member having such reverse stretch characteristics can provide the actuator element 43 that is actively deformed in both directions.
 上記実施形態では、高分子部材は、渦巻状、または螺旋状に配置されている。これに代えて、高分子部材は、渦巻状、かつ螺旋状に配置されてもよい。高分子部材は、例えば、螺旋状の第1層と、螺旋状の第2層とを有し、第1層の螺旋と、第2層の螺旋とが連結されていてもよい。また、高分子部材は、円錐状かつ渦巻状に配置されてもよい。このような配置は、複数の層が径方向に露出するため、エネルギ調節器71によって各層の高分子部材のエネルギ状態を調節可能となる。 In the above embodiment, the polymer members are arranged in a spiral or spiral shape. Alternatively, the polymeric members may be arranged spirally and spirally. The polymer member may have, for example, a helical first layer and a helical second layer, and the helix of the first layer and the helix of the second layer may be connected. The polymeric members may also be arranged conically and spirally. Such an arrangement allows the energy adjuster 71 to adjust the energy state of the polymer members in each layer because the plurality of layers are exposed in the radial direction.
 上記実施形態では、高分子部材44、244、444、544は、延伸によって高分子配向が調節されたフィルムによって提供されている。これに代えて、高分子部材は、線状、または棒状と呼ばれる形状の部材によって提供されてもよい。さらに、高分子部材は、周方向に沿って連結された複数の部分を有していてもよい。 In the above embodiment, the polymeric members 44, 244, 444, 544 are provided by a film whose polymeric orientation has been adjusted by stretching. Alternatively, the polymeric member may be provided by a member of a shape called linear or rod-like. Furthermore, the polymer member may have a plurality of portions connected along the circumferential direction.
 上記実施形態では、可動装置1は、エネルギ調節器71を有している。これに代えて、エネルギ調節器71を備えない装置も提供可能である。アクチュエータ素子43は、可動装置1が設置された環境の条件、例えば、温度または湿度に応答して変位してもよい。アクチュエータ素子43は、可動装置1が設置された環境の日射に応答して変位してもよい。 In the above embodiment, the movable device 1 includes the energy regulator 71. Alternatively, a device without the energy regulator 71 can also be provided. The actuator element 43 may be displaced in response to conditions of the environment in which the movable device 1 is installed, for example, temperature or humidity. The actuator element 43 may be displaced in response to the sunlight of the environment in which the movable device 1 is installed.
 上記実施形態では、アクチュエータ素子43は、渦巻の内側端を固定端43aとし、渦巻の外側端を可動端43bとしている。これに代えて、アクチュエータ素子43は、渦巻の外側端を固定端43aとし、渦巻の内側端を可動端43bとしてもよい。渦巻の内側端を可動端43bとする場合、可動端43bに連結された部材自身が回転してもよい。また、渦巻の内側端を可動端43bとする場合、可動端43bに連結された部材自身が変位してもよい。 In the above embodiment, the actuator element 43 has the inner end of the spiral as the fixed end 43a and the outer end of the spiral as the movable end 43b. Alternatively, the actuator element 43 may have the outer end of the spiral as the fixed end 43a and the inner end of the spiral as the movable end 43b. When the inner end of the spiral is the movable end 43b, the member itself connected to the movable end 43b may rotate. When the inner end of the spiral is the movable end 43b, the member itself connected to the movable end 43b may be displaced.
 上記実施形態では、アクチュエータ素子43は、フィルムのロール体として提供されている。フィルムは、複数の層に巻き重ねられたロール体によって提供することができる。アクチュエータ素子43は、複数の層を提供するフィルムの間に隙間を備えることができる。アクチュエータ素子43は、複数の層を提供するフィルムの間に、フィルムの変位を許容する弾性部材を備えることができる。アクチュエータ素子43は、ロール体としての形状を保つために、形状保持処理されたフィルムによって提供されるか、または、フィルムの形状を保持するための形状保持部材を備えることができる。例えば、フィルムは、ロール体として巻かれた後に熱処理された熱処理後材料によって形成されていてもよい。フィルムから可逆的な変位量を引き出すことができる熱処理の温度、時間などの条件が設定されている。 In the above embodiment, the actuator element 43 is provided as a roll of film. The film can be provided by a roll wound into a plurality of layers. The actuator element 43 can comprise a gap between the films providing the plurality of layers. The actuator element 43 can comprise an elastic member that allows displacement of the film between the films providing the plurality of layers. The actuator element 43 can be provided by a shape-retained film or can be provided with a shape-retaining member for retaining the shape of the film in order to maintain the shape as a roll body. For example, the film may be formed by a heat treated material that has been heat treated after being wound as a roll. Conditions such as the temperature and time of the heat treatment which can extract the amount of reversible displacement from the film are set.

Claims (10)

  1.  周方向(CD)に延びるように配置され、エネルギ状態の変化によって前記周方向に伸縮する樹脂製の高分子部材(44、244、444、544)を有するアクチュエータ素子(43)と、
     前記アクチュエータ素子の固定端に連結され、前記アクチュエータ素子を固定する固定部(21、45)と、
     前記周方向に沿って前記固定端から離れている前記アクチュエータ素子の可動端に連結された可動部(46)とを備える可動装置。
    An actuator element (43) having a polymer member (44, 244, 444, 544) made of resin, which is arranged to extend in the circumferential direction (CD) and expands or contracts in the circumferential direction according to a change in energy state
    A fixing portion (21, 45) connected to the fixed end of the actuator element for fixing the actuator element;
    A movable portion (46) coupled to the movable end of the actuator element spaced apart from the fixed end along the circumferential direction.
  2.  前記アクチュエータ素子のエネルギ状態を調節するエネルギ調節器(71)を備える請求項1に記載の可動装置。 The mobile device according to claim 1, further comprising an energy regulator (71) for adjusting the energy state of the actuator element.
  3.  前記アクチュエータ素子は、少なくとも第1層と第2層とを有する複層部材であり、
     前記第1層は、前記高分子部材であり、
     前記第2層は、前記高分子部材より低い伸縮率を有する低伸縮部材(562)であり、
     前記アクチュエータ素子は、前記第1層の伸縮により曲率が変化する請求項1または請求項2に記載の可動装置。
    The actuator element is a multilayer member having at least a first layer and a second layer,
    The first layer is the polymer member,
    The second layer is a low expansion and contraction member (562) having a lower expansion ratio than the polymer member,
    The movable device according to claim 1, wherein a curvature of the actuator element is changed by expansion and contraction of the first layer.
  4.  前記アクチュエータ素子は、前記周方向に沿って一周を上回る周回数を有する請求項1から請求項3のいずれかに記載の可動装置。 The movable device according to any one of claims 1 to 3, wherein the actuator element has a number of turns that exceeds one turn along the circumferential direction.
  5.  前記アクチュエータ素子は、渦巻状に配置されている請求項4に記載の可動装置。 The movable device according to claim 4, wherein the actuator element is disposed in a spiral shape.
  6.  前記アクチュエータ素子は、螺旋状に配置されている請求項5に記載の可動装置。 The movable device according to claim 5, wherein the actuator element is arranged in a spiral shape.
  7.  さらに、前記可動部に連結されており、回動軸(AXR)の周りに回動する可動機構(3)を備え、
     前記アクチュエータ素子は、前記回動軸の延長上に沿って延びるアクチュエータ軸(AX43)を有する請求項1から請求項6のいずれかに記載の可動装置。
    Furthermore, a movable mechanism (3) coupled to the movable portion and pivoted around a pivot shaft (AXR) is provided.
    The movable device according to any one of claims 1 to 6, wherein the actuator element has an actuator shaft (AX43) extending along the extension of the pivot shaft.
  8.  前記高分子部材は、フィルム(44、244、444、544)である請求項1から請求項7のいずれかに記載の可動装置。 The movable device according to any one of claims 1 to 7, wherein the polymer member is a film (44, 244, 444, 544).
  9.  前記高分子部材における高分子の配向方向は、前記周方向に一致しているか、または、前記周方向に対して鋭角をなしている請求項8に記載の可動装置。 The movable device according to claim 8, wherein the alignment direction of the polymer in the polymer member is identical to the circumferential direction or forms an acute angle with the circumferential direction.
  10.  前記高分子部材は、
     第1温度において、所定の第1形状であり、
     前記第1温度より高温の第2温度において、前記第1形状よりも前記周方向に変形した第2形状である請求項1から請求項9のいずれかに記載の可動装置。
    The polymer member is
    A first predetermined shape at a first temperature,
    The movable device according to any one of claims 1 to 9, wherein at a second temperature higher than the first temperature, the second shape is deformed in the circumferential direction more than the first shape.
PCT/JP2018/016387 2017-10-25 2018-04-23 Movable device WO2019082420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880068866.2A CN111344940A (en) 2017-10-25 2018-04-23 Movable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-206256 2017-10-25
JP2017206256A JP2019080439A (en) 2017-10-25 2017-10-25 Movable device

Publications (1)

Publication Number Publication Date
WO2019082420A1 true WO2019082420A1 (en) 2019-05-02

Family

ID=66246356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016387 WO2019082420A1 (en) 2017-10-25 2018-04-23 Movable device

Country Status (3)

Country Link
JP (1) JP2019080439A (en)
CN (1) CN111344940A (en)
WO (1) WO2019082420A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179059U (en) * 1984-05-07 1985-11-28 横河電機株式会社 Ceramic actuator
JP2008236989A (en) * 2007-03-23 2008-10-02 Yamaha Corp High-molecular transducer, and torque arrangement and keyboard instrument using same
JP2012039741A (en) * 2010-08-06 2012-02-23 Canon Inc Actuator
JP2017118811A (en) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 Actuator, actuator set and shrinkable belt

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059870B2 (en) * 2011-12-08 2017-01-11 Juki株式会社 Linear actuator and electronic component mounting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179059U (en) * 1984-05-07 1985-11-28 横河電機株式会社 Ceramic actuator
JP2008236989A (en) * 2007-03-23 2008-10-02 Yamaha Corp High-molecular transducer, and torque arrangement and keyboard instrument using same
JP2012039741A (en) * 2010-08-06 2012-02-23 Canon Inc Actuator
JP2017118811A (en) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 Actuator, actuator set and shrinkable belt

Also Published As

Publication number Publication date
JP2019080439A (en) 2019-05-23
CN111344940A (en) 2020-06-26

Similar Documents

Publication Publication Date Title
US11002256B2 (en) Movable device
US11025178B2 (en) Actuator device
WO2018047505A1 (en) Actuator device
WO2018055972A1 (en) Actuator device
JP6784206B2 (en) Movable device
CN111712637A (en) Asymmetric SMA actuator
WO2018173745A1 (en) Movable device
WO2019082420A1 (en) Movable device
WO2018173743A1 (en) Movable device, production method therefor, and control method therefor
GB2575026A (en) Shape memory alloy actuation apparatus
JP2011148037A (en) Actuator using shape memory polymer, and method of controlling the same
JP2018159351A (en) Movable device
JP4828582B2 (en) Shape memory alloy actuator
WO2019159754A1 (en) Actuator device
JP7091888B2 (en) Actuator device
JP7235293B2 (en) Control device and tactile sensation imparting device
US10148199B1 (en) Loop-band devices configured for motion
KR102565203B1 (en) Omnidirectional bending actuator by using Shape Memory Alloy wires and a ring structure
KR102088631B1 (en) Wide angle imaging apparatus using variable lens array
JP2020120476A (en) Actuator device
GB2607108A (en) SMA actuator assembly
GB2607269A (en) SMA actuator assembly
KR20240049981A (en) Actuator using ferromagnetic shape memory alloy spring and driving meth0d of actuator using ferromagnetic shape memory alloy spring
WO2022152375A1 (en) Shape memory alloy actuator architecture for driving adjustable aperture
Keefe et al. Active materials for automotive adaptive forward lighting Part 1: system requirements vs. material properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869922

Country of ref document: EP

Kind code of ref document: A1