WO2019082341A1 - Molded article and manufacturing method therefor - Google Patents
Molded article and manufacturing method thereforInfo
- Publication number
- WO2019082341A1 WO2019082341A1 PCT/JP2017/038750 JP2017038750W WO2019082341A1 WO 2019082341 A1 WO2019082341 A1 WO 2019082341A1 JP 2017038750 W JP2017038750 W JP 2017038750W WO 2019082341 A1 WO2019082341 A1 WO 2019082341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- material portion
- shaped article
- article according
- modeling
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
Definitions
- the present invention relates to a shaped article and a method of manufacturing the same.
- Patent Document 1 discloses a three-dimensional modeling apparatus that manufactures a three-dimensional object based on three-dimensional design data.
- various methods such as an optical shaping method, a powder sintering method, an inkjet method, a molten resin extrusion molding method, etc. have been proposed and commercialized.
- a modeling head for discharging molten resin to be a material of a modeled object is mounted on a three-dimensional moving mechanism, and the modeling head is moved in three dimensions.
- the molten resin is laminated while discharging the molten resin to obtain a shaped article.
- the three-dimensional modeling apparatus adopting the inkjet method also has a structure in which a modeling head for dropping a heated thermoplastic material is mounted on a three-dimensional moving mechanism.
- An object of the present invention is to provide a shaped article formed of a combination of a plurality of different materials and having high physical strength, and a method of manufacturing the same.
- a three-dimensional object includes a composite material in which a first material which is a powder sintered material and a second material different from the first material are combined, and in the composite material, the first material and It is characterized in that relative movement in three directions in which the second material intersects with each other is restricted.
- the method for producing a shaped article according to the embodiment of the present invention is a method for producing a shaped article including a composite material in which a first material which is a powder sintered material and a second material different from the first material are combined.
- a first material which is a powder sintered material and a second material different from the first material are combined.
- the portion formed of the first material is a first material portion and the portion formed of the second material is a second material portion
- the first material portion has a gap in the first direction.
- first layer including a portion arranged in a second direction and a second layer arranged with a gap in a second direction in which the first material portion intersects the first direction
- first material portion and the first material portion of the second layer are joined to form a first structure body, and the second material is filled in a gap of the first structure body, and then the second material body is formed.
- FIG. 2 is a cross-sectional view in the XY direction of the three-dimensional object according to the same embodiment.
- FIG. 2 is a cross-sectional view in the XY direction of the three-dimensional object according to the same embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a figure explaining the manufacturing method of the modeling thing concerning the embodiment. It is a perspective view of the modification of the modeling thing concerning the embodiment. It is a perspective view of the modification of the modeling thing concerning the embodiment. It is a perspective view of the modification of the modeling thing concerning the embodiment. It is a figure explaining the modeling thing concerning a 2nd embodiment.
- FIG. 1 is a perspective view showing the configuration of a three-dimensional modeling apparatus (hereinafter sometimes referred to as a “3D printer”) used in the method of manufacturing a modeled object according to the present embodiment.
- the 3D printer 100 includes a frame 11, an XY stage 12, a modeling stage 13, an elevating table 14, and a guide shaft 15.
- a computer 200 is connected to the 3D printer 100 as a control device for controlling the 3D printer 100.
- a driver 300 for driving various mechanisms in the 3D printer 100 is also connected to the 3D printer 100.
- the frame 11 has, for example, a rectangular outer shape, and is provided with a framework of a metal material such as aluminum.
- a metal material such as aluminum.
- the guide shaft 15 is a linear member which defines the direction in which the elevating table 14 is moved in the vertical direction as described later.
- the number of guide shafts 15 is not limited to four, and is set to a number that can stably maintain and move the lifting table 14.
- the modeling stage 13 is a stage on which the model S is placed, and is a stage on which a thermoplastic resin discharged from a modeling head described later is deposited.
- the elevating table 14 has the guide shaft 15 penetrating at its four corners, and is configured to be movable along the longitudinal direction (Z direction) of the guide shaft 15. .
- the lifting table 14 is provided with rollers 34 and 35 in contact with the guide shaft 15.
- the rollers 34 and 35 are rotatably installed at arm portions 33 formed at two corners of the lift table 14. As the rollers 34, 35 rotate while being in contact with the guide shaft 15, the elevating table 14 can be smoothly moved in the Z direction. Further, as shown in FIG.
- the lifting table 14 transmits a driving force of the motor Mz by a power transmission mechanism including a timing belt, a wire, a pulley and the like, whereby predetermined intervals (for example, 0.1 mm pitch) in the vertical direction are obtained.
- the motor Mz is preferably, for example, a servomotor, a stepping motor, or the like.
- the actual position of the lifting table 14 in the height direction is measured continuously or intermittently in real time using a position sensor (not shown), and correction is appropriately applied to enhance the position accuracy of the lifting table 14. It is good. The same applies to the forming heads 25A and 25B described later.
- FIG. 3 is a perspective view showing a schematic configuration of the XY stage 12.
- the XY stage 12 includes a frame 21, an X guide rail 22, a Y guide rail 23, reels 24A and 24B, forming heads 25A and 25B, and a forming head holder H. Both ends of the X guide rail 22 are fitted into the Y guide rail 23 and held slidably in the Y direction.
- the reels 24A, 24B are fixed to the modeling head holder H, and move in the XY directions following the movement of the modeling heads 25A, 25B held by the modeling head holder H.
- the thermoplastic resin used as the material of the object S is a string-like resin (filaments 38A and 38B) having a diameter of about 3 to 1.75 mm, and is usually held in a state of being wound by the reels 24A and 24B.
- the molding heads 25A and 25B are fed into the molding heads 25A and 25B by motors (extenders) provided to the molding heads 25A and 25B described later.
- the reels 24A and 24B may be fixed to the frame 21 or the like without being fixed to the modeling head holder H, and the movement of the modeling head 25 may not be followed.
- the configuration is such that the filaments 38A and 38B are fed into the modeling head 25 in the exposed state, it may be fed into the modeling heads 25A and 25B with a guide (for example, a tube, a ring guide, etc.) interposed. .
- the filaments 38A and 38B are resins that decompose at a temperature lower than the temperature at which the powder sintered material cures and shrinks, and for example, nylon, polycarbonate, polybutylene terephthalate (PBT), acrylic Resin materials, such as nitrile butadiene styrene copolymer resin (ABS) and an elastomer, can be used.
- the shaping head 25A is configured to melt and discharge the filament 38A
- the shaping head 25B is configured to melt and discharge the filament 38B, and independent shapings for different filaments are provided.
- a head is prepared.
- the present invention is not limited to this, and a configuration is also possible in which only a single shaping head is prepared, and a plurality of types of filaments (resin materials) are selectively melted and discharged by a single shaping head. It can be adopted.
- the filaments 38A, 38B are fed from the reels 24A, 24B into the shaping heads 25A, 25B via the tubes Tb.
- the forming heads 25A, 25B are held by the forming head holder H and configured to be movable along the X, Y guide rails 22, 23 together with the reels 24A, 24B. Further, although not shown in FIGS. 2 and 3, an extruder motor for feeding the filaments 38A, 38B downward in the Z direction is disposed in the shaping heads 25A, 25B.
- the forming heads 25A and 25B may be movable together with the forming head holder H while maintaining a fixed positional relationship with each other in the XY plane, but the positional relationship between the forming heads 25A and 25B may be changed also in the XY plane. It may be configured.
- motors Mx and My for moving the modeling heads 25 A and 25 B relative to the XY stage 12 are also provided on the XY stage 12.
- the motors Mx and My are preferably servomotors, stepping motors, etc., for example.
- the driver 300 includes a CPU 301, a filament feeding device 302, a head control device 303, a current switch 304, and a motor driver 306.
- the CPU 301 receives various signals from the computer 200 via the input / output interface 307 and controls the entire driver 300.
- the filament feeding device 302 instructs and controls the feed amount (pushing amount or retracting amount) of the filaments 38A, 38B to the shaping heads 25A, 25B to the extruder motor in the shaping heads 25A, 25B according to the control signal from the CPU 301 Do.
- the current switch 304 is a switch circuit for switching the amount of current flowing to the heater 26. By switching the switching state of the current switch 304, the current flowing to the heater 26 increases or decreases, thereby controlling the temperature of the shaping heads 25A and 25B. Further, the motor driver 306 generates a drive signal for controlling the motors Mx, My, Mz in accordance with the control signal from the CPU 301.
- FIG. 5 is a functional block diagram showing a configuration of the computer 200 (control device).
- the computer 200 includes a spatial filter processing unit 201, a slicer 202, a modeling scheduler 203, a modeling instruction unit 204, and a modeling vector generation unit 205. These configurations can be realized by a computer program inside the computer 200.
- the spatial filter processing unit 201 receives from outside the master 3D data indicating the three-dimensional shape of the three-dimensional object to be formed, and performs various data processing on the formation space in which the three-dimensional object is formed based on the master 3D data. . Specifically, as described later, the spatial filter processing unit 201 divides the modeling space into a plurality of modeling units Up (x, y, z) as necessary, and the plurality of modeling units based on master 3D data. Each function Up has a function of giving property data indicating characteristics to be given to each modeling unit. The necessity of division into the forming units and the size of the individual forming units are determined by the size and shape of the formed object S to be formed. For example, in the case where a simple plate material is formed, the division into the formation unit is unnecessary.
- the modeling instruction unit 204 provides the spatial filter processing unit 201 and the slicer 202 with instruction data on the content of modeling.
- the instruction data includes, for example, the following. These are merely examples, and all of these instructions may be input, or only a part may be input. Also, an instruction different from the items listed below may be input.
- Size of one forming unit Up ii) forming order of a plurality of forming units Up (iii) types of materials used in the forming unit Up (iv) blending of different types of materials in the forming unit Up Direction to form the same kind of material continuously in ratio (v) forming unit Up
- modeling instruction unit 204 may receive input of instruction data from an input device such as a keyboard or a mouse, or may be provided with instruction data from a storage device that stores modeling content. .
- the slicer 202 has a function of converting each of the modeling units Up into a plurality of slice data.
- the slice data is sent to the modeling scheduler 203 in the subsequent stage.
- the formation scheduler 203 has a role of determining the formation procedure, the formation direction, and the like in the slice data in accordance with the above-described property data.
- the formation vector generation unit 205 generates a formation vector according to the formation procedure and the formation direction determined in the formation scheduler 203.
- the data of this formation vector is transmitted to the driver 300.
- the driver 300 controls the 3D printer 100 in accordance with the received data of the formation vector.
- FIG. 6 is a perspective view of a three-dimensional object according to the present embodiment
- FIGS. 7 and 8 are cross-sectional views of the same three-dimensional object in the XY direction. Note that broken lines in FIGS. 6 to 7 are auxiliary lines for assisting in understanding of the structure, and are assumed to be actually integrated.
- the three-dimensional object S1 includes a plurality of layers L1 to L12 stacked in the Z direction.
- Each layer Li (i is an integer of 1 to 12) is formed of a plurality of different materials blended in a predetermined ratio.
- the first material M1 is a powder sintered material, for example, powder sintered metal such as copper, nickel, chromium, titanium, tungsten, molybdenum, ceramic, powder sintered resin, etc. It can be used.
- the material M1 starts to cure and shrink at a temperature higher than the decomposition temperature of the material Mb used at least in the manufacturing method described later.
- the second material M2 can be filled in the gaps of the structure of the material M1, which will be described later, such as a material having the property of flowing at a predetermined temperature (hereinafter sometimes referred to as "flowable material") or a powder material. It is a material and is a material different from the material M1.
- the fluid material referred to here corresponds to, for example, heat-melting metals such as iron, aluminum, copper, and brass, thermoplastic resins, and the like.
- the material M2 needs to be a material that melts at a temperature lower than at least the decomposition temperature of the material M1. In the following description, the case where the material M2 is a fluid material is mainly described.
- the material portions P1 formed of the material M1 and the material portions P2 formed of the material M2 are alternately arranged in the Y direction and stretched in a stripe shape along the X direction Including parts.
- the direction in which a plurality of different materials are arranged may be referred to as “arrangement direction”. In this sense, the arrangement direction of the material portions P1 and P2 in the layer L1 is the Y direction.
- the ratio of the width wy1 in the Y direction of the material portion P1 to the width wy2 in the Y direction of the material portion P2 in the layer L1 is 1: 5.
- the compounding ratio of the material M1 to the material M2 in the layer L1 is 1: 5.
- the material portions P1 and the material portions P2 are alternately arranged in the X direction and include portions extending in a stripe along the Y direction. . That is, the arrangement direction of the material portions P1 and P2 in the layer L2 is the X direction intersecting the arrangement direction of the layer L1.
- the ratio of the width wx1 in the X direction of the material portion P1 to the width wx2 in the X direction of the material portion P2 in the layer L2 is 1: 4.
- the compounding ratio of the material M1 to the material M2 in the layer L2 is 1: 4.
- the material portion P1 of the layer L2 is joined to the material portion P1 of the layer L1 in the Z direction, as shown in FIG. Similarly, material portion P2 of layer L2 bonds with material portion P2 of layer L1 in the Z direction.
- the odd-numbered layers Lo (o is an odd number of 1 to 12) including the layer L1 include portions in which the material portions P1 and P2 extend in the Y direction as the arrangement direction and in the stripe shape along the X direction .
- the even-numbered layers Le (e is an even number of 1 to 12) including the layer L2 include portions in which the material portions P1 and P2 extend in a stripe shape with the X direction as the arrangement direction and the Y direction.
- the material portion P1 of the layer Lj (j is an integer of 1 to 12) is joined to the material portion P1 of the layers Lj-1 and Lj + 1 adjacent in the Z direction in the Z direction.
- the material portion P2 of the layer Lj joins in the Z direction with the material portion P2 of the layers Lj-1 and Lj + 1. That is, focusing on the material portions P1 of all the layers Li, the material portions P1 as a whole have a well-like structure (hereinafter referred to as "well-like structure"). Similarly, focusing on the material portion P2 of all the layers Li, the material portion P2 also has a well-gage structure as a whole. Further, the parallel crosses of the material portion P1 and the material portion P2 are fitted to each other, and the relative movement in the X direction, the Y direction, and the Z direction is restricted. That is, the three-dimensional object S1 is a structure in which the material portions P1 and P2 are integrally combined without using an adhesive, a screw or the like.
- the compounding ratio of the materials M1 and M2 in each layer Li can be freely set.
- the compounding ratio of the materials M1 and M2 gradually changes from 1: 5 to 5: 1, and the compounding ratio of the material M1 increases as it is in the upper layer.
- the compounding ratio of the materials M1 and M2 is constant at 5: 1. That is, the three-dimensional object S1 has the property of changing stepwise from the layer L1 having a large amount of the material M2 to the appearance of the material M2 to the layer L10 to L12 having a large amount of the material M1 and a high appearance of the material M1.
- the material portion P1 formed by sintering the material M1 is The hardness is higher than the material portion P2 formed by curing the material M2, and conversely, the material portion P2 is more flexible than the material portion P1. That is, the shaped article S1 has the property that the flexibility is higher toward the layer L1 and the hardness is higher toward the layers L10 to L12.
- the three-dimensional object S1 is a composite material in which the material M1 having high hardness and the material M2 having high flexibility are firmly joined by fitting the well girder structures without using mechanical joining or adhesive joining. You can also.
- FIGS. 9 to 13 a method of manufacturing the object S1 will be described with reference to FIGS. 9 to 13. Note that broken lines in FIGS. 9 to 13 are auxiliary lines for assisting in understanding of the structure, and in actuality are integrated.
- a 3D printer 100 is used to form a layer L1 ′ to be the layer L1.
- the material portion Pb formed of the material Mb is formed at the portion of the layer L1 where the material portion P2 is disposed.
- material portions Pb which are stretched in the Y direction are arranged while leaving a gap g in the place where the material portion P1 is disposed.
- the material portion Pb is formed such that the ratio of the width wyg in the Y direction of the gap g to the width wyb in the Y direction of the material portion Pb is 1: 5.
- the material Mb is a material having a decomposition temperature lower than the temperature at which the material M1 cures and shrinks in the baking process of the post process, and, for example, nylon, polycarbonate, polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene copolymer Resin materials, such as a polymeric resin (ABS) and an elastomer, can be used.
- the 3D printer 100 is used to form a layer L2 ′ to be the layer L2 on the layer L1 ′.
- the material portion Pb is formed in the portion of the layer L2 where the material portion P2 is disposed.
- material portions Pb to be stretched in the Y direction are arranged while leaving a gap g in the portion where the material portion P1 of the layer L2 is disposed.
- the material portion Pb is formed such that the ratio of the width wxg in the X direction of the gap g to the width wxb in the X direction of the material portion Pb is 1: 4.
- layers L3 ′ to L12 ′ to be layers L3 to L12 are sequentially formed on the layer L2 ′.
- the material portion Pb is formed in the portion of the layers L3 to L12 where the material portion P2 is disposed.
- the material portions Pb to be stretched in the Y direction are arranged while leaving a gap g in the place where the material portion P1 of the layer Lo is disposed in the Y direction.
- the material portions Pb to be stretched in the X direction are arranged while leaving a gap g in the portion where the material portion P1 of the layer Le is disposed in the X direction.
- the material portion Pb is formed such that the width in the X direction of the gap g and the material portion Pb becomes a predetermined ratio for each layer Li ′.
- a material portion Pb having a parallel cross section similar to that of the material portion P2 is formed at the formation portion of the material portion P2, and the structure S1 (3) shown in FIG. 11 is formed.
- a structural body of another material obtained by inverting this as a negative body may be prepared.
- the powder material M1 is filled in the gap g.
- the material M1 is pressurized and filled in the structure S1 (3) . Therefore, in the steps shown in FIGS. 9 to 11, it is desirable to use a material Mb that deforms the structural body S1 (3) .
- the material M1 is, for example, from the decomposition temperature of the material Mb among powder sintered materials such as powder sintered metals such as copper, nickel, chromium, titanium, tungsten, and molybdenum, ceramics, powder sintered resin, etc. It is a material that cures and shrinks at high temperatures.
- a structure S1 ′ ′ which is a complex of the material portion Pb which is the core and the material M1 is formed. It should be noted that, since the material portion Pb has the well girder structure as described above, the material M1 is also filled in the form of the well girder structure fitted with the material portion Pb.
- the structure S1 ′ ′ is compressed and then fired to sinter the powdered material M1.
- the material Mb has a decomposition temperature lower than the temperature at which the material M1 cures and shrinks. Therefore, the material portion Pb is not decomposed and scattered and does not remain in the middle of the firing with respect to the structure S1 ′ ′ without preventing the curing shrinkage of the material M1.
- a structure S1 ' is formed in which only the material portion P1 having a parallel cross section formed of the material M1 remains.
- the material portion P1 of the structure S1 ' is used as a core, and the gap g of the structure S1' is filled with the fluid material M2 by heat and pressure treatment.
- the material M2 is a material having a property of flowing at a predetermined temperature, and for example, a metal that melts heat, such as iron, aluminum, copper, or brass, a thermoplastic resin, or the like can be used.
- the material M2 needs to be a material which is different from the material M1 in relation to the material M1 and which melts at a temperature lower than the decomposition temperature of the material M1 at least. Thereafter, the material M2 is cooled and cured.
- hardness is required for a knife such as a kitchen knife or a knife.
- these cutters are manufactured solely from hard materials such as high speed steels and cemented carbides, they become brittle products susceptible to twisting and impact. Therefore, the blade is required to have not only hardness but also toughness.
- a traditional Japanese sword is mentioned as a knife having both hardness and toughness.
- a traditional Japanese sword while using a hard steel material with a large amount of carbon at the center of the blade, by using a flexible steel material with a small amount of carbon outside the blade, the hardness of the cutting edge and high toughness of the whole are realized. There is.
- by using a composite material in which materials having different properties are combined it is possible to expect an improvement in quality that can not be realized by using only one material.
- the shaped product S1 is formed of a combination of the relatively hard material portion P1 and the relatively flexible material portion P2, and the compounding ratio of the material M1 and the material M2 is from the layer L1 to the layer L10. ⁇ L12 will gradually increase.
- the structure S1 has a structure in which the flexibility is higher toward the layer L1 and the hardness is higher toward the layers L10 to L12.
- the material portions P1 and P2 both have a parallel cross section structure and they are fitted to each other, there is a fear of peeling between the material portion P1 and the material portion P2 than in the case of using adhesive bonding or mechanical bonding. High mechanical strength can be realized.
- a shaped object having characteristics like a Japanese sword can be easily realized.
- a shaped object is produced in which a shaped object in which the shaped object S1 is inverted in the Z direction is further placed on the layer L12 of the shaped object S1, the shaped object has higher flexibility toward the outside in the Z direction. The hardness is higher. And this characteristic is exactly the same as that of a Japanese sword.
- the characteristics of the Japanese sword are realized by adjusting the amount of carbon contained in iron by the manual operation of a sword smith, but in this case the quality may vary depending on the skill of the sword smith, and it takes time to manufacture.
- the problem was that it was a problem.
- the use of the 3D printer 100 makes it possible to use a 3D product having the same characteristics as a Japanese sword with an industrially constant quality regardless of the manufacturer's experience or the like. It can be mass-produced.
- the three-dimensional object S1 combines different materials using a well girder structure
- a flat plate-like knife such as a kitchen knife is manufactured from a three-dimensional object having such a structure
- the crest due to the different material (metal) is displayed. It can also appear on the cutting edge. By using this, it is possible to bring out an apparent uniqueness like a Damascus steel blade.
- the cutter including the above-mentioned Japanese sword is one of the application examples of this embodiment, and this embodiment is not limited to this.
- the three-dimensional object according to the present embodiment is a material that can be filled in a gap between a powder-sintered material and a structure of a powder-sintered material such as a fluid material or a powder material (for example, a structure S1 ′ of FIG. 13). It is sufficient if it is a combination of and its variations are various.
- the direction in which the compounding ratio of materials changes can also be set arbitrarily.
- the structure S1 is changed in the Z direction, it is also possible to change it in the Y direction as in the structure S1A shown in FIG. 14, for example, by devising the arrangement of the material portions P1 and P2 in each layer. It can be made to change with respect to an X direction and a Y direction like structure S1B shown in FIG. Similarly, as in the structure S1C shown in FIG. 16, it is also possible to change in the Y direction and the Z direction.
- the number of types of materials to be combined may be two as in the shaped object S1, or three or more.
- the compounding ratio of the materials for each layer may be gradually changed as in the case of the shaped product S1, or may be sharply changed or constant.
- a combination focusing on flexibility and hardness as in the shaped object S1 may be used, or a combination focusing on magnetism or conductivity may be used.
- the degree of freedom of the structure and the material is high, it is possible to realize a three-dimensional object having various characteristics.
- the three-dimensional object S2 according to the present embodiment is an end mill.
- end mills and drills it is desirable that the cutting edge be hard in terms of cutting ability and wear.
- the twisting force is always applied during use, but also when processing a work in which different materials are combined, the load fluctuation becomes large at the interface of these materials, and in the worst case, it is broken. Therefore, also in the case of an end mill or a drill, high toughness as well as high hardness is required as with a blade.
- FIG. 17 is a view for explaining a three-dimensional object according to the second embodiment.
- A is a side view of the shaped article S2
- B to D show the structure of each portion of the shaped article S2.
- the three-dimensional object S2 of the present embodiment is substantially cylindrical as a whole, and comprises a blade base S2a disposed on the left side of A in FIG. 17, a blade edge S2c disposed on the right side, and a middle portion S2b connecting them.
- the object S2 includes a plurality of layers L stacked in the axial direction Da.
- Each layer L of the three-dimensional object S2 includes a material portion P1 formed of the material M1 and a material portion P2 formed of the material M2 as shown in FIGS.
- the arrangement pattern of the material portions P1 and the material portions P2 in each layer L is different from that of the shaped object S1.
- the odd-numbered layers Lo (o is an odd number) are arranged such that the material portion P1 (or the material portion P2) extends radially from the center of each layer Lo, as shown in B to D in FIG. ing. That is, in the layer Lo, the material portion P1 and the material portion P2 are arranged with the circumferential direction D ⁇ as the arrangement direction.
- the even-numbered layers Le e is an even number
- the material parts P1 and the material parts P2 are alternately arranged concentrically alternately from the central axis CA. There is. That is, in the layer Le, the material portion P1 and the material portion P2 are arranged with the radial direction Dr intersecting the circumferential direction D ⁇ as the arrangement direction. Then, the material portion P1 of the layer Li (i is an integer) is joined with the material portion P1 of the layers Li-1 and Li + 1 in the axial direction Da. Similarly, the material portion P2 of the layer Li bonds in the axial direction Da with the material portion P2 of the layers Li-1 and Li + 1.
- the material portions P1 and the material of the entire object S2 are Since the portion P2 is fitted to each other, the material portion P1 and the material portion P2 can be firmly integrated, as in the case of using the well girder structure.
- the compounding ratio of the materials M1 and M2 is changed with blade origin S2a, middle part S2b, and blade edge
- the material portions P1 are radially arranged, and the material portion P2 is filled in the other places.
- the number of linear portions of the material portion P1 emerging from the central axis CA increases from the blade base S2a to the middle portion S2b.
- the layer Lo of the middle portion S2b to the blade edge S2c as shown in FIG. 17 and FIG.
- the material portions P2 are radially arranged, and the material portion P1 is filled in the other places. Then, the number of linear portions of the material portion P2 emerging from the central axis CA decreases from the middle portion S2b to the cutting edge S2c.
- the material portions P1 and the material portions P2 are alternately arranged concentrically. Then, the thickness tr2 of the material portion P2 in the radial direction Dr gradually decreases and the thickness tr1 of the material portion P1 in the radial direction Dr gradually increases from the blade base S2a to the blade edge S2c.
- the arrangement pattern concentric with the radial arrangement pattern By combining these, it is possible to realize an isotropic characteristic with respect to the circumferential direction D ⁇ and a characteristic that can withstand a twisting force with respect to the axial direction Da.
- the embodiment of the present invention is not limited to the structure such as the shaped object S2 shown in FIG. 17, and the embodiments of the present invention are different as long as the arrangement directions of different materials intersect in each layer and similar materials are joined at this intersection.
- the material parts can be fitted to one another. This enables integration of a plurality of different materials as in the case of the shaped object S1 or the shaped object S2. And it is also possible to manufacture a three-dimensional object of any shape from such freedom of structure. For example, a chisel is required to be as strong in torsion as an end mill, but if the embodiment of the present invention is applied, it is also possible to realize a chisel having a free edge shape that is strong in torsion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
Abstract
The molded article according to the present invention is characterized by comprising a composite material obtained by combining a first material which is a powder sintered material, and a second material which is different from the first material, wherein the first and second materials, in the composite material, mutually restrict the relative movement in three directions in which the two materials intersect with each other.
Description
本発明は、造形物及びその製造方法に関する。
The present invention relates to a shaped article and a method of manufacturing the same.
三次元設計データに基づいて造形物を製造する三次元造形装置が、例えば特許文献1により知られている。このような三次元造形装置の方式としては、光造形法、粉末焼結法、インクジェット法、溶融樹脂押し出し造形法など、様々な方式が提案され、製品化されている。
For example, Patent Document 1 discloses a three-dimensional modeling apparatus that manufactures a three-dimensional object based on three-dimensional design data. As a method of such a three-dimensional shaping apparatus, various methods such as an optical shaping method, a powder sintering method, an inkjet method, a molten resin extrusion molding method, etc. have been proposed and commercialized.
一例として、溶融樹脂積層法を採用した三次元造形装置では、造形物の材料となる溶融樹脂を吐出するための造形ヘッドを三次元移動機構上に搭載し、造形ヘッドを三次元方向に移動させて溶融樹脂を吐出しつつ溶融樹脂を積層させて造形物を得る。その他、インクジェット法を採用した三次元造形装置も、加熱した熱可塑性材料を滴下するための造形ヘッドを三次元移動機構上に搭載した構造を有している。
As an example, in a three-dimensional modeling apparatus adopting a molten resin lamination method, a modeling head for discharging molten resin to be a material of a modeled object is mounted on a three-dimensional moving mechanism, and the modeling head is moved in three dimensions. The molten resin is laminated while discharging the molten resin to obtain a shaped article. In addition, the three-dimensional modeling apparatus adopting the inkjet method also has a structure in which a modeling head for dropping a heated thermoplastic material is mounted on a three-dimensional moving mechanism.
このような三次元造形装置の利用方法として、これまで複数の異なる材料を組み合せた複合材料から造形物を製造する方法がいくつか提案されている。造形物を複合材料で製造する場合、単一材料で製造する場合よりも有利な点は多い。しかしその反面、材料間の層間剥離が生じるなど接合箇所に起因した物理的強度の面が問題となる。そして、このことは、三次元造形装置を利用した場合であっても考慮すべき問題である。
As a method of using such a three-dimensional shaping apparatus, several methods have been proposed for producing a shaped article from a composite material in which a plurality of different materials are combined. There are many advantages in producing a shaped object from a composite material over producing it from a single material. However, on the other hand, there is a problem in terms of physical strength due to the junction, such as delamination between materials. And this is a problem which should be considered even when using a three-dimensional modeling device.
本発明は、複数の異なる材料の組み合わせによって形成され且つ物理的強度の高い造形物、及びその製造方法を提供することを目的とする。
An object of the present invention is to provide a shaped article formed of a combination of a plurality of different materials and having high physical strength, and a method of manufacturing the same.
本発明の実施形態に係る造形物は、粉体焼結材料である第1材料と前記第1材料とは異なる第2材料を組み合せた複合材料を含み、前記複合材料中、前記第1材料と前記第2材料とが互いに交差する3方向の相対的な移動を制限し合うことを特徴とする。
A three-dimensional object according to an embodiment of the present invention includes a composite material in which a first material which is a powder sintered material and a second material different from the first material are combined, and in the composite material, the first material and It is characterized in that relative movement in three directions in which the second material intersects with each other is restricted.
また、本発明の実施形態に係る造形物の製造方法は、粉体焼結材料である第1材料と前記第1材料とは異なる第2材料を組み合せた複合材料を含む造形物の製造方法であって、前記第1材料で形成された部分を第1材料部分とし、前記第2材料で形成された部分を第2材料部分とした場合、前記第1材料部分が第1方向において隙間を空けて配列された部分を含む第1層と、前記第1材料部分が前記第1方向と交差する第2方向において隙間を空けて配列された第2層とを積層させ、前記第1層の前記第1材料部分と前記第2層の前記第1材料部分が接合された第1構造体を形成し、前記第1構造体の隙間に対して前記第2材料を充填した後、前記第2材料を硬化させて前記第2材料部分を形成することを特徴とする
The method for producing a shaped article according to the embodiment of the present invention is a method for producing a shaped article including a composite material in which a first material which is a powder sintered material and a second material different from the first material are combined. When the portion formed of the first material is a first material portion and the portion formed of the second material is a second material portion, the first material portion has a gap in the first direction. And laminating a first layer including a portion arranged in a second direction and a second layer arranged with a gap in a second direction in which the first material portion intersects the first direction, and The first material portion and the first material portion of the second layer are joined to form a first structure body, and the second material is filled in a gap of the first structure body, and then the second material body is formed. Are cured to form the second material portion.
本発明によれば、複数の異なる材料の組み合わせによって形成され且つ物理的強度の高い造形物、及びその製造方法を提供することができる。
According to the present invention, it is possible to provide a shaped article formed of a combination of a plurality of different materials and having high physical strength, and a method of manufacturing the same.
以下、図面を参照しながら実施形態に係る造形物及びその製造方法について説明する。
Hereinafter, the molded article according to the embodiment and the method for manufacturing the same will be described with reference to the drawings.
[第1の実施形態]
先ず、第1の実施形態に係る造形物及びその製造方法を説明する前提として、当該製造方法で用いる三次元造形装置について説明する。
図1は、本実施形態に係る造形物の製造方法で用いる三次元造形装置(以下、「3Dプリンタ」と称することもある)の構成を示す斜視図である。
3Dプリンタ100は、フレーム11と、XYステージ12と、造形ステージ13と、昇降テーブル14と、ガイドシャフト15とを備えている。
この3Dプリンタ100を制御する制御装置としてコンピュータ200が、この3Dプリンタ100に接続されている。また、3Dプリンタ100中の各種機構を駆動するためのドライバ300も、この3Dプリンタ100に接続されている。 First Embodiment
First, a three-dimensional modeling apparatus used in the manufacturing method will be described on the premise that the three-dimensional object and the manufacturing method thereof according to the first embodiment will be described.
FIG. 1 is a perspective view showing the configuration of a three-dimensional modeling apparatus (hereinafter sometimes referred to as a “3D printer”) used in the method of manufacturing a modeled object according to the present embodiment.
The3D printer 100 includes a frame 11, an XY stage 12, a modeling stage 13, an elevating table 14, and a guide shaft 15.
Acomputer 200 is connected to the 3D printer 100 as a control device for controlling the 3D printer 100. In addition, a driver 300 for driving various mechanisms in the 3D printer 100 is also connected to the 3D printer 100.
先ず、第1の実施形態に係る造形物及びその製造方法を説明する前提として、当該製造方法で用いる三次元造形装置について説明する。
図1は、本実施形態に係る造形物の製造方法で用いる三次元造形装置(以下、「3Dプリンタ」と称することもある)の構成を示す斜視図である。
3Dプリンタ100は、フレーム11と、XYステージ12と、造形ステージ13と、昇降テーブル14と、ガイドシャフト15とを備えている。
この3Dプリンタ100を制御する制御装置としてコンピュータ200が、この3Dプリンタ100に接続されている。また、3Dプリンタ100中の各種機構を駆動するためのドライバ300も、この3Dプリンタ100に接続されている。 First Embodiment
First, a three-dimensional modeling apparatus used in the manufacturing method will be described on the premise that the three-dimensional object and the manufacturing method thereof according to the first embodiment will be described.
FIG. 1 is a perspective view showing the configuration of a three-dimensional modeling apparatus (hereinafter sometimes referred to as a “3D printer”) used in the method of manufacturing a modeled object according to the present embodiment.
The
A
フレーム11は、図1に示すように、例えば直方体の外形を有し、アルミニウム等の金属材料の枠組を備えている。このフレーム11の4つの角部に、例えば4本のガイドシャフト15が、図1のZ方向、すなわち造形ステージ10の平面に対し垂直な方向に延びるように形成されている。ガイドシャフト15は、後述するように昇降テーブル14を上下方向に移動させる方向を規定する直線状の部材である。ガイドシャフト15の本数は4本には限られず、昇降テーブル14を安定的に維持・移動させることができる本数に設定される。
造形ステージ13は、造形物Sが載置される台であり、後述する造形ヘッドから吐出される熱可塑性樹脂が堆積される台である。 As shown in FIG. 1, theframe 11 has, for example, a rectangular outer shape, and is provided with a framework of a metal material such as aluminum. At four corners of the frame 11, for example, four guide shafts 15 are formed to extend in the Z direction of FIG. 1, that is, in the direction perpendicular to the plane of the molding stage 10. The guide shaft 15 is a linear member which defines the direction in which the elevating table 14 is moved in the vertical direction as described later. The number of guide shafts 15 is not limited to four, and is set to a number that can stably maintain and move the lifting table 14.
Themodeling stage 13 is a stage on which the model S is placed, and is a stage on which a thermoplastic resin discharged from a modeling head described later is deposited.
造形ステージ13は、造形物Sが載置される台であり、後述する造形ヘッドから吐出される熱可塑性樹脂が堆積される台である。 As shown in FIG. 1, the
The
昇降テーブル14は、図1及び図2に示すように、その4つの角部においてガイドシャフト15を貫通させており、ガイドシャフト15の長手方向(Z方向)に沿って移動可能に構成されている。昇降テーブル14は、ガイドシャフト15と接触するローラ34、35を備えている。ローラ34、35は昇降テーブル14の2つの角部に形成されたアーム部33において回動可能に設置されている。このローラ34、35がガイドシャフト15上と接触しつつ回動することで、昇降テーブル14はZ方向にスムーズに移動することが可能とされている。また、昇降テーブル14は、図2に示すように、モータMzの駆動力をタイミングベルト、ワイヤ、プーリ等からなる動力伝達機構により伝達することにより、上下方向に所定間隔(例えば0.1mmピッチ)で移動する。モータMzは、例えば、サーボモータ、ステッピングモータなどが好適である。なお、実際の昇降テーブル14の高さ方向の位置を連続的又は間欠的にリアルタイムで、図示しない位置センサを用いて測定し、適宜補正をかけることによって、昇降テーブル14の位置精度を高めるようにしても良い。後述する造形ヘッド25A、25Bについても同様である。
As shown in FIGS. 1 and 2, the elevating table 14 has the guide shaft 15 penetrating at its four corners, and is configured to be movable along the longitudinal direction (Z direction) of the guide shaft 15. . The lifting table 14 is provided with rollers 34 and 35 in contact with the guide shaft 15. The rollers 34 and 35 are rotatably installed at arm portions 33 formed at two corners of the lift table 14. As the rollers 34, 35 rotate while being in contact with the guide shaft 15, the elevating table 14 can be smoothly moved in the Z direction. Further, as shown in FIG. 2, the lifting table 14 transmits a driving force of the motor Mz by a power transmission mechanism including a timing belt, a wire, a pulley and the like, whereby predetermined intervals (for example, 0.1 mm pitch) in the vertical direction are obtained. To move. The motor Mz is preferably, for example, a servomotor, a stepping motor, or the like. The actual position of the lifting table 14 in the height direction is measured continuously or intermittently in real time using a position sensor (not shown), and correction is appropriately applied to enhance the position accuracy of the lifting table 14. It is good. The same applies to the forming heads 25A and 25B described later.
XYステージ12は、この昇降テーブル14の上面に載置されている。図3は、このXYステージ12の概略構成を示す斜視図である。XYステージ12は、枠体21と、Xガイドレール22と、Yガイドレール23と、リール24A、24Bと、造形ヘッド25A、25Bと、造形ヘッドホルダHを備えている。Xガイドレール22は、その両端がYガイドレール23に嵌め込まれ、Y方向に摺動自在に保持されている。リール24A、24Bは、造形ヘッドホルダHに固定されており、造形ヘッドホルダHによって保持された造形ヘッド25A、25Bの動きに追従してXY方向を移動する。造形物Sの材料となる熱可塑性樹脂は、径が3~1.75mm程度の紐状の樹脂(フィラメント38A、38B)であり、通常リール24A、24Bに捲かれた状態で保持されているが、造形時には後述する造形ヘッド25A、25Bに設けられたモータ(エクストルーダ)によって造形ヘッド25A、25B内に送り込まれる。
The XY stage 12 is mounted on the upper surface of the lift table 14. FIG. 3 is a perspective view showing a schematic configuration of the XY stage 12. The XY stage 12 includes a frame 21, an X guide rail 22, a Y guide rail 23, reels 24A and 24B, forming heads 25A and 25B, and a forming head holder H. Both ends of the X guide rail 22 are fitted into the Y guide rail 23 and held slidably in the Y direction. The reels 24A, 24B are fixed to the modeling head holder H, and move in the XY directions following the movement of the modeling heads 25A, 25B held by the modeling head holder H. The thermoplastic resin used as the material of the object S is a string-like resin ( filaments 38A and 38B) having a diameter of about 3 to 1.75 mm, and is usually held in a state of being wound by the reels 24A and 24B. At the time of molding, the molding heads 25A and 25B are fed into the molding heads 25A and 25B by motors (extenders) provided to the molding heads 25A and 25B described later.
なお、リール24A、24Bを造形ヘッドホルダHに固定せずに枠体21等に固定し、造形ヘッド25の動きに追従させない構成とすることもできる。また、フィラメント38A、38Bを露出した状態で造形ヘッド25内に送り込まれる構成としたが、ガイド(例えば、チューブ、リングガイド等)を介在させて造形ヘッド25A、25B内に送り込むようにしても良い。なお、本実施形態の場合、フィラメント38A、38Bには、粉体焼結材料が硬化収縮する温度よりも低い温度で分解する樹脂であり、例えば、ナイロン、ポリカーボネート、ポリブチレンテレフタレート(PBT)、アクリルニトリル・ブタジエン・スチレン共重合樹脂(ABS)、エラストマー等の樹脂材料を用いることができる。
Alternatively, the reels 24A and 24B may be fixed to the frame 21 or the like without being fixed to the modeling head holder H, and the movement of the modeling head 25 may not be followed. Further, although the configuration is such that the filaments 38A and 38B are fed into the modeling head 25 in the exposed state, it may be fed into the modeling heads 25A and 25B with a guide (for example, a tube, a ring guide, etc.) interposed. . In the case of the present embodiment, the filaments 38A and 38B are resins that decompose at a temperature lower than the temperature at which the powder sintered material cures and shrinks, and for example, nylon, polycarbonate, polybutylene terephthalate (PBT), acrylic Resin materials, such as nitrile butadiene styrene copolymer resin (ABS) and an elastomer, can be used.
なお、図1~図3では、造形ヘッド25Aは、フィラメント38Aを溶融・吐出するよう構成され、造形ヘッド25Bは、フィラメント38Bを溶融し吐出するよう構成され、異なるフィラメントのためにそれぞれ独立の造形ヘッドが用意されている。しかし、本発明はこれに限定されるものではなく、単一の造形ヘッドのみを用意し、単一の造形ヘッドにより複数種類のフィラメント(樹脂材料)を選択的に溶融・吐出させるような構成も採用することができる。
In FIGS. 1 to 3, the shaping head 25A is configured to melt and discharge the filament 38A, and the shaping head 25B is configured to melt and discharge the filament 38B, and independent shapings for different filaments are provided. A head is prepared. However, the present invention is not limited to this, and a configuration is also possible in which only a single shaping head is prepared, and a plurality of types of filaments (resin materials) are selectively melted and discharged by a single shaping head. It can be adopted.
フィラメント38A、38Bは、リール24A、24BからチューブTbを介して造形ヘッド25A、25B内に送り込まれる。造形ヘッド25A、25Bは、造形ヘッドホルダHにより保持され、リール24A、24Bと共にX、Yのガイドレール22、23に沿って移動可能に構成されている。また、図2及び図3では図示を省略するが、造形ヘッド25A、25B内には、フィラメント38A、38BをZ方向下方へ送り込むためのエクストルーダモータが配置される。造形ヘッド25A、25Bは、XY平面内においては互いに一定の位置関係を保って造形ヘッドホルダHと共に移動可能とされていれば良いが、XY平面においても、互いの位置関係が変更可能なように構成されていても良い。
The filaments 38A, 38B are fed from the reels 24A, 24B into the shaping heads 25A, 25B via the tubes Tb. The forming heads 25A, 25B are held by the forming head holder H and configured to be movable along the X, Y guide rails 22, 23 together with the reels 24A, 24B. Further, although not shown in FIGS. 2 and 3, an extruder motor for feeding the filaments 38A, 38B downward in the Z direction is disposed in the shaping heads 25A, 25B. The forming heads 25A and 25B may be movable together with the forming head holder H while maintaining a fixed positional relationship with each other in the XY plane, but the positional relationship between the forming heads 25A and 25B may be changed also in the XY plane. It may be configured.
なお、図2及び図3では図示を省略するが、造形ヘッド25A、25BをXYステージ12に対し移動させるためのモータMx、Myも、このXYステージ12上に設けられている。モータMx、Myは、例えば、サーボモータ、ステッピングモータなどが好適である。
Although not shown in FIGS. 2 and 3, motors Mx and My for moving the modeling heads 25 A and 25 B relative to the XY stage 12 are also provided on the XY stage 12. The motors Mx and My are preferably servomotors, stepping motors, etc., for example.
次に、参照してドライバ300の構造について図4を参照して説明する。ドライバ300は、CPU301、フィラメント送り装置302、ヘッド制御装置303、電流スイッチ304、及びモータドライバ306を含んでいる。
Next, the structure of the driver 300 will be described with reference to FIG. The driver 300 includes a CPU 301, a filament feeding device 302, a head control device 303, a current switch 304, and a motor driver 306.
CPU301は、コンピュータ200から入出力インタフェース307を介して各種信号を受信して、ドライバ300の全体の制御を行う。フィラメント送り装置302は、CPU301からの制御信号に従い、造形ヘッド25A,25B内のエクストルーダモータに対して、フィラメント38A、38Bの造形ヘッド25A、25Bに対する送り量(押し込み量又は退避量)を指令し制御する。
The CPU 301 receives various signals from the computer 200 via the input / output interface 307 and controls the entire driver 300. The filament feeding device 302 instructs and controls the feed amount (pushing amount or retracting amount) of the filaments 38A, 38B to the shaping heads 25A, 25B to the extruder motor in the shaping heads 25A, 25B according to the control signal from the CPU 301 Do.
電流スイッチ304は、ヒータ26に流れる電流量を切換えるためのスイッチ回路である。電流スイッチ304のスイッチング状態が切り替わることにより、ヒータ26に流れる電流が増加又は減少し、これにより造形ヘッド25A,25Bの温度が制御される。また、モータドライバ306は、CPU301からの制御信号に従い、モータMx、My、Mzを制御するための駆動信号を発生させる。
The current switch 304 is a switch circuit for switching the amount of current flowing to the heater 26. By switching the switching state of the current switch 304, the current flowing to the heater 26 increases or decreases, thereby controlling the temperature of the shaping heads 25A and 25B. Further, the motor driver 306 generates a drive signal for controlling the motors Mx, My, Mz in accordance with the control signal from the CPU 301.
図5は、コンピュータ200(制御装置)の構成を示す機能ブロック図である。コンピュータ200は、空間フィルタ処理部201、スライサ202、造形スケジューラ203、造形指示部204及び造形ベクトル生成部205を備えている。これらの構成は、コンピュータ200の内部において、コンピュータプログラムにより実現することができる。
FIG. 5 is a functional block diagram showing a configuration of the computer 200 (control device). The computer 200 includes a spatial filter processing unit 201, a slicer 202, a modeling scheduler 203, a modeling instruction unit 204, and a modeling vector generation unit 205. These configurations can be realized by a computer program inside the computer 200.
空間フィルタ処理部201は、造形しようとする造形物の三次元形状を示すマスタ3Dデータを外部から受領し、このマスタ3Dデータに基づいて造形物が形成される造形空間に対し各種データ処理を施す。具体的に空間フィルタ処理部201は、後述するように、造形空間を必要に応じて複数の造形ユニットUp(x、y、z)に分割すると共に、マスタ3Dデータに基づいて前記複数の造形ユニットUpの各々に、各造形ユニットに与えるべき特性を示すプロパティデータを付与する機能を有する。造形ユニットへの分割の要否、及び個々の造形ユニットのサイズは、形成される造形物Sのサイズ、形状によって決定される。例えば、単なる板材を形成するような場合には、造形ユニットへの分割は不要である。
The spatial filter processing unit 201 receives from outside the master 3D data indicating the three-dimensional shape of the three-dimensional object to be formed, and performs various data processing on the formation space in which the three-dimensional object is formed based on the master 3D data. . Specifically, as described later, the spatial filter processing unit 201 divides the modeling space into a plurality of modeling units Up (x, y, z) as necessary, and the plurality of modeling units based on master 3D data. Each function Up has a function of giving property data indicating characteristics to be given to each modeling unit. The necessity of division into the forming units and the size of the individual forming units are determined by the size and shape of the formed object S to be formed. For example, in the case where a simple plate material is formed, the division into the formation unit is unnecessary.
造形指示部204は、造形の内容に関する指示データを、空間フィルタ処理部201及びスライサ202に提供する。指示データには、一例として以下のものが含まれる。これらは単なる例示であり、これらの指示のうち全てが入力されても良いし、一部のみが入力されても良い。また、下記に列記する事項とは異なる指示が入力されても良い。
(i)1つの造形ユニットUpのサイズ
(ii)複数の造形ユニットUpの造形順序
(iii)造形ユニットUp内で使用される材料の種類
(iv)造形ユニットUp内での異なる種類の材料の配合比
(v)造形ユニットUp内での同種の材料を連続的に形成する方向 Themodeling instruction unit 204 provides the spatial filter processing unit 201 and the slicer 202 with instruction data on the content of modeling. The instruction data includes, for example, the following. These are merely examples, and all of these instructions may be input, or only a part may be input. Also, an instruction different from the items listed below may be input.
(I) Size of one forming unit Up (ii) forming order of a plurality of forming units Up (iii) types of materials used in the forming unit Up (iv) blending of different types of materials in the forming unit Up Direction to form the same kind of material continuously in ratio (v) forming unit Up
(i)1つの造形ユニットUpのサイズ
(ii)複数の造形ユニットUpの造形順序
(iii)造形ユニットUp内で使用される材料の種類
(iv)造形ユニットUp内での異なる種類の材料の配合比
(v)造形ユニットUp内での同種の材料を連続的に形成する方向 The
(I) Size of one forming unit Up (ii) forming order of a plurality of forming units Up (iii) types of materials used in the forming unit Up (iv) blending of different types of materials in the forming unit Up Direction to form the same kind of material continuously in ratio (v) forming unit Up
なお、造形指示部204は、キーボードやマウス等の入力デバイスから指示データの入力を受けるものであっても良いし、造形内容を記憶した記憶装置から指示データを提供されるものであっても良い。
Note that the modeling instruction unit 204 may receive input of instruction data from an input device such as a keyboard or a mouse, or may be provided with instruction data from a storage device that stores modeling content. .
また、スライサ202は、造形ユニットUpの各々を、複数のスライスデータに変換する機能を有する。スライスデータは、後段の造形スケジューラ203に送られる。造形スケジューラ203は、前述したプロパティデータに従って、スライスデータにおける造形手順や造形方向などを決定する役割を有する。また、造形ベクトル生成部205は、造形スケジューラ203において決定された造形手順及び造形方向に応じて造形ベクトルを生成する。この造形ベクトルのデータはドライバ300に送信される。ドライバ300は、受信された造形ベクトルのデータに応じて3Dプリンタ100を制御する。
In addition, the slicer 202 has a function of converting each of the modeling units Up into a plurality of slice data. The slice data is sent to the modeling scheduler 203 in the subsequent stage. The formation scheduler 203 has a role of determining the formation procedure, the formation direction, and the like in the slice data in accordance with the above-described property data. Further, the formation vector generation unit 205 generates a formation vector according to the formation procedure and the formation direction determined in the formation scheduler 203. The data of this formation vector is transmitted to the driver 300. The driver 300 controls the 3D printer 100 in accordance with the received data of the formation vector.
次に、上記3Dプリンタ100を利用して製造される造形物S1について説明する。
図6は本実施形態に係る造形物の斜視図であり、図7及び図8は同造形物のX-Y方向の断面図である。なお、図6~7中の破線は、構造の理解を助けるための補助線であり、実際には一体化されているものとする。 Next, the three-dimensional object S1 manufactured using the3D printer 100 will be described.
FIG. 6 is a perspective view of a three-dimensional object according to the present embodiment, and FIGS. 7 and 8 are cross-sectional views of the same three-dimensional object in the XY direction. Note that broken lines in FIGS. 6 to 7 are auxiliary lines for assisting in understanding of the structure, and are assumed to be actually integrated.
図6は本実施形態に係る造形物の斜視図であり、図7及び図8は同造形物のX-Y方向の断面図である。なお、図6~7中の破線は、構造の理解を助けるための補助線であり、実際には一体化されているものとする。 Next, the three-dimensional object S1 manufactured using the
FIG. 6 is a perspective view of a three-dimensional object according to the present embodiment, and FIGS. 7 and 8 are cross-sectional views of the same three-dimensional object in the XY direction. Note that broken lines in FIGS. 6 to 7 are auxiliary lines for assisting in understanding of the structure, and are assumed to be actually integrated.
造形物S1は、Z方向に積層された複数の層L1~L12を備える。各層Li(iは1~12の整数)は、所定の比率で配合された複数の異なる材料で形成されている。具体的に、1つ目の材料M1は、粉体焼結材料であり、例えば、銅、ニッケル、クロム、チタン、タングステン、モリブデン等の粉体焼結金属、セラミック、粉体焼結樹脂等を用いることができる。この材料M1は、少なくとも後述する製造方法で用いられる材料Mbの分解温度よりも高い温度で硬化収縮を開始する。2つ目の材料M2は、所定温度で流動する性質を持つ材料(以下、「流動性材料」と称することもある)や粉体材料など、後述する材料M1の構造体の隙間に充填可能な材料であり、且つ、材料M1とは異なる材料である。ここで言う流動性材料には、例えば、鉄、アルミ、銅、真鍮等の熱溶解する金属、熱可塑性樹脂等が該当する。但し、材料M2を流動性材料とする場合、材料M2は、少なくとも材料M1の分解温度よりも低い温度で溶融する材料であることを要する。なお、以下の説明では、主に材料M2を流動性材料とした場合について説明する。
The three-dimensional object S1 includes a plurality of layers L1 to L12 stacked in the Z direction. Each layer Li (i is an integer of 1 to 12) is formed of a plurality of different materials blended in a predetermined ratio. Specifically, the first material M1 is a powder sintered material, for example, powder sintered metal such as copper, nickel, chromium, titanium, tungsten, molybdenum, ceramic, powder sintered resin, etc. It can be used. The material M1 starts to cure and shrink at a temperature higher than the decomposition temperature of the material Mb used at least in the manufacturing method described later. The second material M2 can be filled in the gaps of the structure of the material M1, which will be described later, such as a material having the property of flowing at a predetermined temperature (hereinafter sometimes referred to as "flowable material") or a powder material. It is a material and is a material different from the material M1. The fluid material referred to here corresponds to, for example, heat-melting metals such as iron, aluminum, copper, and brass, thermoplastic resins, and the like. However, when using the material M2 as the flowable material, the material M2 needs to be a material that melts at a temperature lower than at least the decomposition temperature of the material M1. In the following description, the case where the material M2 is a fluid material is mainly described.
最下層L1では、図7に示すように、材料M1で形成された材料部分P1と材料M2で形成された材料部分P2がY方向において交互に配置され且つX方向に沿ってストライプ状に延伸した部分を含む。以下において複数の異なる材料が配列される方向を「配列方向」と称することもある。この意味において、層L1における材料部分P1及びP2の配列方向は、Y方向となる。
In the lowermost layer L1, as shown in FIG. 7, the material portions P1 formed of the material M1 and the material portions P2 formed of the material M2 are alternately arranged in the Y direction and stretched in a stripe shape along the X direction Including parts. Hereinafter, the direction in which a plurality of different materials are arranged may be referred to as “arrangement direction”. In this sense, the arrangement direction of the material portions P1 and P2 in the layer L1 is the Y direction.
また、層L1における材料部分P1のY方向の幅wy1と材料部分P2のY方向の幅wy2との比は、1:5となる。換言すれば、層L1における材料M1と材料M2との配合比は、1:5となる。
The ratio of the width wy1 in the Y direction of the material portion P1 to the width wy2 in the Y direction of the material portion P2 in the layer L1 is 1: 5. In other words, the compounding ratio of the material M1 to the material M2 in the layer L1 is 1: 5.
一方、層L1の直上にある層L2では、図8に示すように、材料部分P1と材料部分P2がX方向において交互に配置され且つY方向に沿ってストライプ状に延伸した部分を含んでいる。つまり、層L2における材料部分P1及びP2の配列方向は、層L1の配列方向と交差するX方向となる。また、層L2における材料部分P1のX方向の幅wx1と材料部分P2のX方向の幅wx2の比は、1:4となる。換言すれば、層L2における材料M1と材料M2との配合比は、1:4となる。また、層L2の材料部分P1は、図6に示すように、層L1の材料部分P1とZ方向において接合する。同様に、層L2の材料部分P2は、層L1の材料部分P2とZ方向において接合する。
On the other hand, in the layer L2 immediately above the layer L1, as shown in FIG. 8, the material portions P1 and the material portions P2 are alternately arranged in the X direction and include portions extending in a stripe along the Y direction. . That is, the arrangement direction of the material portions P1 and P2 in the layer L2 is the X direction intersecting the arrangement direction of the layer L1. The ratio of the width wx1 in the X direction of the material portion P1 to the width wx2 in the X direction of the material portion P2 in the layer L2 is 1: 4. In other words, the compounding ratio of the material M1 to the material M2 in the layer L2 is 1: 4. The material portion P1 of the layer L2 is joined to the material portion P1 of the layer L1 in the Z direction, as shown in FIG. Similarly, material portion P2 of layer L2 bonds with material portion P2 of layer L1 in the Z direction.
このように、層L1を含む奇数番目の層Lo(oは1~12の奇数)は、材料部分P1及びP2がY方向を配列方向とし且つX方向に沿ってストライプ状に延伸した部分を含む。一方、層L2を含む偶数番目の層Le(eは1~12の偶数)は、材料部分P1及びP2がX方向を配列方向とし且つY方向に沿ってストライプ状に延伸した部分を含む。そして、層Lj(jは1~12の整数)の材料部分P1は、Z方向で隣接する層Lj-1及びLj+1の材料部分P1とZ方向において接合する。同様に、層Ljの材料部分P2は、層Lj-1及びLj+1の材料部分P2とZ方向において接合する。つまり、全ての層Liの材料部分P1に着目すると、材料部分P1は全体として井桁のような構造(以下、「井桁構造」と称する)を持つ。同様に、全ての層Liの材料部分P2に着目すると、材料部分P2も全体として井桁構造を持つ。また、材料部分P1と材料部分P2とは、この井桁構造同士が互いに嵌合しており、X方向、Y方向、及びZ方向の3方向の相対的な移動を制限し合う。つまり、造形物S1は、接着剤やネジ等を用いることなく材料部分P1及びP2を一体的に組み合せた構造物となる。
Thus, the odd-numbered layers Lo (o is an odd number of 1 to 12) including the layer L1 include portions in which the material portions P1 and P2 extend in the Y direction as the arrangement direction and in the stripe shape along the X direction . On the other hand, the even-numbered layers Le (e is an even number of 1 to 12) including the layer L2 include portions in which the material portions P1 and P2 extend in a stripe shape with the X direction as the arrangement direction and the Y direction. The material portion P1 of the layer Lj (j is an integer of 1 to 12) is joined to the material portion P1 of the layers Lj-1 and Lj + 1 adjacent in the Z direction in the Z direction. Similarly, the material portion P2 of the layer Lj joins in the Z direction with the material portion P2 of the layers Lj-1 and Lj + 1. That is, focusing on the material portions P1 of all the layers Li, the material portions P1 as a whole have a well-like structure (hereinafter referred to as "well-like structure"). Similarly, focusing on the material portion P2 of all the layers Li, the material portion P2 also has a well-gage structure as a whole. Further, the parallel crosses of the material portion P1 and the material portion P2 are fitted to each other, and the relative movement in the X direction, the Y direction, and the Z direction is restricted. That is, the three-dimensional object S1 is a structure in which the material portions P1 and P2 are integrally combined without using an adhesive, a screw or the like.
また、各層Liにおける材料M1及びM2の配合比は、自由に設定できる。造形物S1の場合、層L1から層L10までは、材料M1及びM2の配合比が1:5から5:1まで徐々に変化しており、上層になるほど材料M1の配合比が大きくなる。また、層L10から層L12までは、材料M1及びM2の配合比が5:1で一定である。つまり、造形物S1は、材料M2を多く含み材料M2の性質がより現れる層L1から材料M1を多く含み材料M1の性質がより現れる層L10~L12まで、段階的に変化する性質を持つ。ここで、一般的に、粉状体を焼結させた構造物が流体を硬化させた構造物よりも硬度が高い点を鑑みれば、材料M1を焼結して形成される材料部分P1は、材料M2を硬化させて形成される材料部分P2よりも硬度が高く、それとは逆に、材料部分P2は、材料部分P1よりも柔軟性が高くなる。つまり、造形物S1は、層L1側ほど柔軟性が高くなり、層L10~L12側ほど硬度が高くなる性質を持つ。
Further, the compounding ratio of the materials M1 and M2 in each layer Li can be freely set. In the case of the shaped article S1, in the layer L1 to the layer L10, the compounding ratio of the materials M1 and M2 gradually changes from 1: 5 to 5: 1, and the compounding ratio of the material M1 increases as it is in the upper layer. In the layers L10 to L12, the compounding ratio of the materials M1 and M2 is constant at 5: 1. That is, the three-dimensional object S1 has the property of changing stepwise from the layer L1 having a large amount of the material M2 to the appearance of the material M2 to the layer L10 to L12 having a large amount of the material M1 and a high appearance of the material M1. Here, generally, in view of the fact that the structure in which the powdery body is sintered is higher in hardness than the structure in which the fluid is hardened, the material portion P1 formed by sintering the material M1 is The hardness is higher than the material portion P2 formed by curing the material M2, and conversely, the material portion P2 is more flexible than the material portion P1. That is, the shaped article S1 has the property that the flexibility is higher toward the layer L1 and the hardness is higher toward the layers L10 to L12.
以上から、造形物S1は、機械的接合や接着接合を用いることなく、高硬度の材料M1と柔軟性の高い材料M2とを井桁構造同士の嵌合によって強固に接合させた複合材料と考えることもできる。
From the above, it should be considered that the three-dimensional object S1 is a composite material in which the material M1 having high hardness and the material M2 having high flexibility are firmly joined by fitting the well girder structures without using mechanical joining or adhesive joining. You can also.
次に、造形物S1の製造方法について図9~図13を参照して説明する。なお、図9~図13中の破線は、構造の理解を助けるための補助線であり、実際には一体化されているものとする。
Next, a method of manufacturing the object S1 will be described with reference to FIGS. 9 to 13. Note that broken lines in FIGS. 9 to 13 are auxiliary lines for assisting in understanding of the structure, and in actuality are integrated.
始めに、図9に示すように、3Dプリンタ100を用いて、層L1となる層L1´を形成する。ここでは、層L1のうち材料部分P2が配置される箇所に対して材料Mbで形成された材料部分Pbを形成する。具体的には、Y方向において、材料部分P1が配置される箇所に隙間gを空けつつY方向に延伸する材料部分Pbを配列していく。この際、材料部分Pbは、隙間gのY方向の幅wygと材料部分PbのY方向の幅wybとの比が1:5になるように形成する。ここで、材料Mbは、後工程の焼成過程において材料M1が硬化収縮する温度よりも低い分解温度を持つ材料であり、例えばナイロン、ポリカーボネート、ポリブチレンテレフタレート(PBT)、アクリルニトリル・ブタジエン・スチレン共重合樹脂(ABS)、エラストマー等の樹脂材料を用いることができる。
First, as shown in FIG. 9, a 3D printer 100 is used to form a layer L1 ′ to be the layer L1. Here, the material portion Pb formed of the material Mb is formed at the portion of the layer L1 where the material portion P2 is disposed. Specifically, in the Y direction, material portions Pb which are stretched in the Y direction are arranged while leaving a gap g in the place where the material portion P1 is disposed. At this time, the material portion Pb is formed such that the ratio of the width wyg in the Y direction of the gap g to the width wyb in the Y direction of the material portion Pb is 1: 5. Here, the material Mb is a material having a decomposition temperature lower than the temperature at which the material M1 cures and shrinks in the baking process of the post process, and, for example, nylon, polycarbonate, polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene copolymer Resin materials, such as a polymeric resin (ABS) and an elastomer, can be used.
続いて、図10に示すように、3Dプリンタ100を用いて、層L1´上に層L2となる層L2´を形成する。ここでは、層L2のうち材料部分P2が配置される箇所に対して材料部分Pbを形成する。具体的には、Y方向において、層L2の材料部分P1が配置される箇所に隙間gを空けつつY方向に延伸する材料部分Pbを配列していく。この際、材料部分Pbは、隙間gのX方向の幅wxgと材料部分PbのX方向の幅wxbとの比が1:4になるように形成する。
Subsequently, as shown in FIG. 10, the 3D printer 100 is used to form a layer L2 ′ to be the layer L2 on the layer L1 ′. Here, the material portion Pb is formed in the portion of the layer L2 where the material portion P2 is disposed. Specifically, in the Y direction, material portions Pb to be stretched in the Y direction are arranged while leaving a gap g in the portion where the material portion P1 of the layer L2 is disposed. At this time, the material portion Pb is formed such that the ratio of the width wxg in the X direction of the gap g to the width wxb in the X direction of the material portion Pb is 1: 4.
続いて、図11に示すように、3Dプリンタ100を用いて、層L2´上に、層L3~L12となる層L3´~L12´を順次形成する。ここでも、図8及び図9に示す工程と同様、層L3~L12のうち材料部分P2が配置される箇所に対して材料部分Pbを形成する。具体的には、奇数番目の層Lo´では、Y方向において層Loの材料部分P1が配置される箇所に隙間gを空けつつY方向に延伸する材料部分Pbを配列していく。一方、偶数番目の層Le´では、X方向において層Leの材料部分P1が配置される箇所に隙間gを空けつつX方向に延伸する材料部分Pbを配列していく。この際、材料部分Pbは、層Li´毎に隙間g及び材料部分PbのX方向の幅が所定の比率になるように形成する。図9~図11に示す工程によって、材料部分P2の形成箇所には材料部分P2と同様の井桁構造を持つ材料部分Pbが形成され、図11に示す構造体S1(3)が形成される。なお、構造体S1(3)に替えて、これをネガ体として反転させた別材料の構造体を用意しても良い。
Subsequently, as shown in FIG. 11, using the 3D printer 100, layers L3 ′ to L12 ′ to be layers L3 to L12 are sequentially formed on the layer L2 ′. Here, as in the steps shown in FIGS. 8 and 9, the material portion Pb is formed in the portion of the layers L3 to L12 where the material portion P2 is disposed. Specifically, in the odd-numbered layer Lo ′, the material portions Pb to be stretched in the Y direction are arranged while leaving a gap g in the place where the material portion P1 of the layer Lo is disposed in the Y direction. On the other hand, in the even-numbered layer Le ′, the material portions Pb to be stretched in the X direction are arranged while leaving a gap g in the portion where the material portion P1 of the layer Le is disposed in the X direction. At this time, the material portion Pb is formed such that the width in the X direction of the gap g and the material portion Pb becomes a predetermined ratio for each layer Li ′. By the steps shown in FIGS. 9 to 11, a material portion Pb having a parallel cross section similar to that of the material portion P2 is formed at the formation portion of the material portion P2, and the structure S1 (3) shown in FIG. 11 is formed. In place of the structural body S1 (3) , a structural body of another material obtained by inverting this as a negative body may be prepared.
続いて、図12に示すように、構造体S1(3)の材料部分Pbを中子として、その隙間gに対して、粉末状の材料M1を充填する。なお、材料M1は、加圧されて構造体S1(3)に充填される。そのため、図9~11に示す工程では、構造体S1(3)が変形するような材料Mbを利用することが望ましい。ここで材料M1は、例えば、銅、ニッケル、クロム、チタン、タングステン、モリブデン等の粉体焼結金属、セラミック、粉体焼結樹脂等の粉体焼結材料のうち、材料Mbの分解温度よりも高い温度で硬化収縮する材料である。この工程によって、中子である材料部分Pbと材料M1との複合体である構造体S1´´が形成される。なお、材料部分Pbは前述の通り井桁構造を持つため、材料M1も材料部分Pbと嵌合する井桁構造の形で充填される点に留意されたい。
Subsequently, as shown in FIG. 12, with the material portion Pb of the structure S1 (3) as a core, the powder material M1 is filled in the gap g. The material M1 is pressurized and filled in the structure S1 (3) . Therefore, in the steps shown in FIGS. 9 to 11, it is desirable to use a material Mb that deforms the structural body S1 (3) . Here, the material M1 is, for example, from the decomposition temperature of the material Mb among powder sintered materials such as powder sintered metals such as copper, nickel, chromium, titanium, tungsten, and molybdenum, ceramics, powder sintered resin, etc. It is a material that cures and shrinks at high temperatures. By this process, a structure S1 ′ ′ which is a complex of the material portion Pb which is the core and the material M1 is formed. It should be noted that, since the material portion Pb has the well girder structure as described above, the material M1 is also filled in the form of the well girder structure fitted with the material portion Pb.
続いて、構造体S1´´を圧縮した後に焼成して、粉末状の材料M1を焼結させる。ここで、材料Mbは、前述の通り、材料M1が硬化収縮する温度よりも低い分解温度を持つ。そのため、材料部分Pbは、構造体S1´´に対する焼成途中において、材料M1の硬化収縮を妨げることなく、その前に分解して飛散して残らない。この工程によって、図13に示すように、材料M1で形成された井桁構造を持つ材料部分P1のみが残存する構造体S1´が形成される。
Subsequently, the structure S1 ′ ′ is compressed and then fired to sinter the powdered material M1. Here, as described above, the material Mb has a decomposition temperature lower than the temperature at which the material M1 cures and shrinks. Therefore, the material portion Pb is not decomposed and scattered and does not remain in the middle of the firing with respect to the structure S1 ′ ′ without preventing the curing shrinkage of the material M1. By this process, as shown in FIG. 13, a structure S1 'is formed in which only the material portion P1 having a parallel cross section formed of the material M1 remains.
最後に、構造体S1´の材料部分P1を中子とし、加熱加圧処理によって、構造体S1´の隙間gに流体状の材料M2を充填する。ここで、材料M2は、所定温度で流動する性質を持つ材料であり、例えば、鉄、アルミ、銅、真鍮等の熱溶解する金属、熱可塑性樹脂等を用いることができる。但し、材料M2は、材料M1との関係において、材料M1と異なる材料であり且つ少なくとも材料M1の分解温度よりも低い温度で溶融する材料であることを要する。その後、この材料M2を冷却して硬化させる。なお、材料M2の硬化には、その性質に応じて加熱処理や硬化剤の添加などの各種硬化処理を用いることもできる。この工程によって、材料部分P1と嵌合する井桁構造の材料部分P2が形成され、図6に示す造形物S1が完成する。
以上が、造形物S1の製造方法である。 Finally, the material portion P1 of the structure S1 'is used as a core, and the gap g of the structure S1' is filled with the fluid material M2 by heat and pressure treatment. Here, the material M2 is a material having a property of flowing at a predetermined temperature, and for example, a metal that melts heat, such as iron, aluminum, copper, or brass, a thermoplastic resin, or the like can be used. However, the material M2 needs to be a material which is different from the material M1 in relation to the material M1 and which melts at a temperature lower than the decomposition temperature of the material M1 at least. Thereafter, the material M2 is cooled and cured. In addition, various kinds of curing treatments such as heat treatment and addition of a curing agent can also be used for curing of the material M2 depending on its properties. By this process, the material portion P2 of the well girder structure fitted with the material portion P1 is formed, and the shaped article S1 shown in FIG. 6 is completed.
The above is the manufacturing method of modeling object S1.
以上が、造形物S1の製造方法である。 Finally, the material portion P1 of the structure S1 'is used as a core, and the gap g of the structure S1' is filled with the fluid material M2 by heat and pressure treatment. Here, the material M2 is a material having a property of flowing at a predetermined temperature, and for example, a metal that melts heat, such as iron, aluminum, copper, or brass, a thermoplastic resin, or the like can be used. However, the material M2 needs to be a material which is different from the material M1 in relation to the material M1 and which melts at a temperature lower than the decomposition temperature of the material M1 at least. Thereafter, the material M2 is cooled and cured. In addition, various kinds of curing treatments such as heat treatment and addition of a curing agent can also be used for curing of the material M2 depending on its properties. By this process, the material portion P2 of the well girder structure fitted with the material portion P1 is formed, and the shaped article S1 shown in FIG. 6 is completed.
The above is the manufacturing method of modeling object S1.
次に、造形物S1及びその製造方法の効果について説明する。
例えば、包丁やナイフといった刃物には硬さが求められる。しかし、これら刃物を単にハイスピード鋼や超硬合金などの硬い材料だけで製造すると、捩れや衝撃に弱い脆い製品となる。そのため、刃物には、硬さと同時に靭性も求められる。この点、硬度と靭性を兼ね備えた刃物として、伝統的な日本刀が挙げられる。伝統的な日本刀の場合、刃の中心に炭素量の多い硬い鋼材を用いる一方、刃の外側に炭素量の少ない柔軟な鋼材を用いることで、刃先の硬さと全体の高い靭性を実現している。このように、異なる性質の材料を組み合せた複合材料を用いれば、一つの材料を用いただけでは実現できない品質の向上が期待できる。 Next, the effects of the object S1 and the method of manufacturing the same will be described.
For example, hardness is required for a knife such as a kitchen knife or a knife. However, if these cutters are manufactured solely from hard materials such as high speed steels and cemented carbides, they become brittle products susceptible to twisting and impact. Therefore, the blade is required to have not only hardness but also toughness. In this respect, a traditional Japanese sword is mentioned as a knife having both hardness and toughness. In the case of a traditional Japanese sword, while using a hard steel material with a large amount of carbon at the center of the blade, by using a flexible steel material with a small amount of carbon outside the blade, the hardness of the cutting edge and high toughness of the whole are realized. There is. As described above, by using a composite material in which materials having different properties are combined, it is possible to expect an improvement in quality that can not be realized by using only one material.
例えば、包丁やナイフといった刃物には硬さが求められる。しかし、これら刃物を単にハイスピード鋼や超硬合金などの硬い材料だけで製造すると、捩れや衝撃に弱い脆い製品となる。そのため、刃物には、硬さと同時に靭性も求められる。この点、硬度と靭性を兼ね備えた刃物として、伝統的な日本刀が挙げられる。伝統的な日本刀の場合、刃の中心に炭素量の多い硬い鋼材を用いる一方、刃の外側に炭素量の少ない柔軟な鋼材を用いることで、刃先の硬さと全体の高い靭性を実現している。このように、異なる性質の材料を組み合せた複合材料を用いれば、一つの材料を用いただけでは実現できない品質の向上が期待できる。 Next, the effects of the object S1 and the method of manufacturing the same will be described.
For example, hardness is required for a knife such as a kitchen knife or a knife. However, if these cutters are manufactured solely from hard materials such as high speed steels and cemented carbides, they become brittle products susceptible to twisting and impact. Therefore, the blade is required to have not only hardness but also toughness. In this respect, a traditional Japanese sword is mentioned as a knife having both hardness and toughness. In the case of a traditional Japanese sword, while using a hard steel material with a large amount of carbon at the center of the blade, by using a flexible steel material with a small amount of carbon outside the blade, the hardness of the cutting edge and high toughness of the whole are realized. There is. As described above, by using a composite material in which materials having different properties are combined, it is possible to expect an improvement in quality that can not be realized by using only one material.
その点、造形物S1は、比較的硬度の高い材料部分P1と比較的柔軟性の高い材料部分P2との組み合せで形成されており、材料M1及び材料M2の配合比は、層L1から層L10~L12に掛けて次第に大きくなっていく。換言すれば、造形物S1は、層L1側ほど柔軟性が高くなり、層L10~L12側ほど硬度が高くなる構造を持つ。しかも、材料部分P1及びP2が共に井桁構造を持ち且つそれらが互いに嵌合しているため、接着接合や機械的接合を用いた場合よりも、材料部分P1と材料部分P2との剥離等の恐れがない高い機械的強度を実現できる。
In that respect, the shaped product S1 is formed of a combination of the relatively hard material portion P1 and the relatively flexible material portion P2, and the compounding ratio of the material M1 and the material M2 is from the layer L1 to the layer L10. ~ L12 will gradually increase. In other words, the structure S1 has a structure in which the flexibility is higher toward the layer L1 and the hardness is higher toward the layers L10 to L12. In addition, since the material portions P1 and P2 both have a parallel cross section structure and they are fitted to each other, there is a fear of peeling between the material portion P1 and the material portion P2 than in the case of using adhesive bonding or mechanical bonding. High mechanical strength can be realized.
そして、造形物S1を応用すれば、日本刀のような特性を持つ造形物も容易に実現することができる。例えば、造形物S1の層L12上に、更に造形物S1をZ方向で反転させた造形物を載せた造形物を製造すれば、その造形物は、Z方向において外側ほど柔軟性が高く、中心ほど硬度が高い特性を持つことになる。そして、この特性は、まさに日本刀のそれと同じである。
And, if the shaped object S1 is applied, a shaped object having characteristics like a Japanese sword can be easily realized. For example, if a shaped object is produced in which a shaped object in which the shaped object S1 is inverted in the Z direction is further placed on the layer L12 of the shaped object S1, the shaped object has higher flexibility toward the outside in the Z direction. The hardness is higher. And this characteristic is exactly the same as that of a Japanese sword.
また、日本刀の特性は、刀鍛冶の手作業によって、鉄に含ませる炭素量を調整することで実現されているが、この場合、刀鍛冶の技量によって品質にバラツキが出たり、製造に時間が掛かったりといった点が問題であった。この点、本実施形態に係る製造方法によれば、3Dプリンタ100の利用によって、製造者の経験等に左右されることなく工業的に一定の品質で、日本刀と同じ特性を持つ造形物を量産することができる。
In addition, the characteristics of the Japanese sword are realized by adjusting the amount of carbon contained in iron by the manual operation of a sword smith, but in this case the quality may vary depending on the skill of the sword smith, and it takes time to manufacture. The problem was that it was a problem. In this respect, according to the manufacturing method according to the present embodiment, the use of the 3D printer 100 makes it possible to use a 3D product having the same characteristics as a Japanese sword with an industrially constant quality regardless of the manufacturer's experience or the like. It can be mass-produced.
更に、造形物S1は井桁構造を利用して異なる材料を複合させているが、このような構造の造形物から包丁等の平板状の刃物を製造すると、材料(金属)が異なることによる紋を刃先に現すこともできる。これを利用すれば、ダマスカス鋼製の刃物のように、外見的な独自性を出すことも可能である。
Furthermore, although the three-dimensional object S1 combines different materials using a well girder structure, when a flat plate-like knife such as a kitchen knife is manufactured from a three-dimensional object having such a structure, the crest due to the different material (metal) is displayed. It can also appear on the cutting edge. By using this, it is possible to bring out an apparent uniqueness like a Damascus steel blade.
なお、上記日本刀を含む刃物は、本実施形態の応用例の1つであり、本実施形態はこれに限定されるものではない。本実施形態に係る造形物は、粉体焼結材料と流動性材料や粉体材料など粉体焼結材料の構造体(例えば、図13の構造体S1´)の隙間に充填可能な材料との組み合わせであれば良く、そのバリエーションは多様である。
In addition, the cutter including the above-mentioned Japanese sword is one of the application examples of this embodiment, and this embodiment is not limited to this. The three-dimensional object according to the present embodiment is a material that can be filled in a gap between a powder-sintered material and a structure of a powder-sintered material such as a fluid material or a powder material (for example, a structure S1 ′ of FIG. 13). It is sufficient if it is a combination of and its variations are various.
例えば、材料の配合比の変化する方向も任意に設定することができる。構造物S1ではZ方向に対して変化させているが、各層における材料部分P1及びP2の配置を工夫することで、例えば図14に示す構造物S1AのようにY方向に対して変化させることもできるし、図15に示す構造物S1BのようにX方向及びY方向に対して変化させることもできる。同様に、図16に示す構造物S1CのようにY方向及びZ方向に対して変化させることもできる。
For example, the direction in which the compounding ratio of materials changes can also be set arbitrarily. Although the structure S1 is changed in the Z direction, it is also possible to change it in the Y direction as in the structure S1A shown in FIG. 14, for example, by devising the arrangement of the material portions P1 and P2 in each layer. It can be made to change with respect to an X direction and a Y direction like structure S1B shown in FIG. Similarly, as in the structure S1C shown in FIG. 16, it is also possible to change in the Y direction and the Z direction.
その他、組み合せる材料の種類数についても、造形物S1のように2種類であっても良いし、3種類以上であっても良い。また、層毎の材料の配合比についても、造形物S1のように次第に変化させても良いし、急峻に変化させたり或いは一定であっても良い。また、組み合わせる材料の特性についても、造形物S1のように柔軟性と硬度に着目した組み合せであっても良いし、磁性や導電性に着目した組み合わせであっても良い。このように、本実施形態によれば、構造や材料の自由度が高いため様々な特性を持つ造形物を実現することができる。
以上、本実施形態によれば、複数の異なる材料の組み合わせによって形成され且つ物理的強度の高い造形物、及びその製造方法を提供することができる。 In addition, the number of types of materials to be combined may be two as in the shaped object S1, or three or more. In addition, the compounding ratio of the materials for each layer may be gradually changed as in the case of the shaped product S1, or may be sharply changed or constant. Further, as to the characteristics of the materials to be combined, a combination focusing on flexibility and hardness as in the shaped object S1 may be used, or a combination focusing on magnetism or conductivity may be used. As described above, according to the present embodiment, since the degree of freedom of the structure and the material is high, it is possible to realize a three-dimensional object having various characteristics.
As described above, according to the present embodiment, it is possible to provide a shaped article formed of a combination of a plurality of different materials and having high physical strength, and a method of manufacturing the same.
以上、本実施形態によれば、複数の異なる材料の組み合わせによって形成され且つ物理的強度の高い造形物、及びその製造方法を提供することができる。 In addition, the number of types of materials to be combined may be two as in the shaped object S1, or three or more. In addition, the compounding ratio of the materials for each layer may be gradually changed as in the case of the shaped product S1, or may be sharply changed or constant. Further, as to the characteristics of the materials to be combined, a combination focusing on flexibility and hardness as in the shaped object S1 may be used, or a combination focusing on magnetism or conductivity may be used. As described above, according to the present embodiment, since the degree of freedom of the structure and the material is high, it is possible to realize a three-dimensional object having various characteristics.
As described above, according to the present embodiment, it is possible to provide a shaped article formed of a combination of a plurality of different materials and having high physical strength, and a method of manufacturing the same.
[第2の実施形態]
第1の実施形態では、井桁構造を互いに嵌合させた構造を持つ造形物について説明したが、本発明はこれに限定されるものではない。そこで、第2の実施形態では、その他の構造を持つ応用例の1つについて説明する。 Second Embodiment
Although the first embodiment has described the three-dimensional object having a structure in which the well girder structure is fitted to each other, the present invention is not limited to this. Thus, in the second embodiment, one application example having another structure will be described.
第1の実施形態では、井桁構造を互いに嵌合させた構造を持つ造形物について説明したが、本発明はこれに限定されるものではない。そこで、第2の実施形態では、その他の構造を持つ応用例の1つについて説明する。 Second Embodiment
Although the first embodiment has described the three-dimensional object having a structure in which the well girder structure is fitted to each other, the present invention is not limited to this. Thus, in the second embodiment, one application example having another structure will be described.
本実施形態に係る造形物S2は、エンドミルである。エンドミルやドリルの場合、切削能力や磨耗の点から刃先は硬いことが望ましい。一方、使用時には常に捩りの力が掛かるだけでなく、異なる材料を組み合せたワークを加工する場合などはこれら材料の界面で負荷変動が大きくなるため、最悪の場合、破損してしまう。そのため、エンドミルやドリルの場合も、刃物と同様、高い硬度と共に高い靭性が求められる。
The three-dimensional object S2 according to the present embodiment is an end mill. In the case of end mills and drills, it is desirable that the cutting edge be hard in terms of cutting ability and wear. On the other hand, not only the twisting force is always applied during use, but also when processing a work in which different materials are combined, the load fluctuation becomes large at the interface of these materials, and in the worst case, it is broken. Therefore, also in the case of an end mill or a drill, high toughness as well as high hardness is required as with a blade.
そこで、本実施形態では、造形物S2(エンドミル)を次のような構造とする。
図17は、第2の実施形態に係る造形物を説明する図である。図中Aは造形物S2の側面図であり、図中B~Dは造形物S2の各箇所の構造を示している。 So, in this embodiment, let modeling thing S2 (end mill) be the following structures.
FIG. 17 is a view for explaining a three-dimensional object according to the second embodiment. In the figure, A is a side view of the shaped article S2, and in the figure, B to D show the structure of each portion of the shaped article S2.
図17は、第2の実施形態に係る造形物を説明する図である。図中Aは造形物S2の側面図であり、図中B~Dは造形物S2の各箇所の構造を示している。 So, in this embodiment, let modeling thing S2 (end mill) be the following structures.
FIG. 17 is a view for explaining a three-dimensional object according to the second embodiment. In the figure, A is a side view of the shaped article S2, and in the figure, B to D show the structure of each portion of the shaped article S2.
本実施形態の造形物S2は、全体として略円柱状であり、図17中Aの左側に配置された刃元S2a、右側に配置された刃先S2c、及びそれらを繋ぐ中間部S2bからなる。
The three-dimensional object S2 of the present embodiment is substantially cylindrical as a whole, and comprises a blade base S2a disposed on the left side of A in FIG. 17, a blade edge S2c disposed on the right side, and a middle portion S2b connecting them.
造形物S2は、軸方向Daで積層された複数の層Lを備える。造形物S2の各層Lは、造形物S1と同様、図17中B~Dに示すように、材料M1で形成された材料部分P1と材料M2で形成された材料部分P2を含む。
The object S2 includes a plurality of layers L stacked in the axial direction Da. Each layer L of the three-dimensional object S2 includes a material portion P1 formed of the material M1 and a material portion P2 formed of the material M2 as shown in FIGS.
但し、造形物S2の場合、各層Lにおける材料部分P1及び材料部分P2の配列パターンが、造形物S1とは異なる。具体的には、奇数番目の各層Lo(oは奇数)は、図17中B~Dに示すように、材料部分P1(或いは材料部分P2)が各層Loの中心から放射状に延びるように配置されている。つまり、層Loでは、円周方向Dθを配列方向として材料部分P1及び材料部分P2が配列されている。一方、偶数番目の各層Le(eは偶数)は、図17中B~Dに示すように、中心軸CAから外側に掛けて材料部分P1と材料部分P2とが同心円状に交互に配置されている。つまり、層Leでは、円周方向Dθと交差する半径方向Drを配列方向として材料部分P1及び材料部分P2が配列されている。そして、層Li(iは整数)の材料部分P1は、層Li-1及びLi+1の材料部分P1と軸方向Daで接合する。同様に、層Liの材料部分P2は、層Li-1及びLi+1の材料部分P2と軸方向Daにおいて接合する。このように、材料部分P1或いはP2が放射状に配置された層Loと材料部分P1及びP2が同心円状に配列された層Leを交互に積層した場合も、造形物S2全体の材料部分P1と材料部分P2とが互いに嵌合するため、井桁構造を用いた場合と同様、材料部分P1と材料部分P2を強固に一体化できる。
However, in the case of the shaped object S2, the arrangement pattern of the material portions P1 and the material portions P2 in each layer L is different from that of the shaped object S1. Specifically, the odd-numbered layers Lo (o is an odd number) are arranged such that the material portion P1 (or the material portion P2) extends radially from the center of each layer Lo, as shown in B to D in FIG. ing. That is, in the layer Lo, the material portion P1 and the material portion P2 are arranged with the circumferential direction Dθ as the arrangement direction. On the other hand, in the even-numbered layers Le (e is an even number), as shown by B to D in FIG. 17, the material parts P1 and the material parts P2 are alternately arranged concentrically alternately from the central axis CA. There is. That is, in the layer Le, the material portion P1 and the material portion P2 are arranged with the radial direction Dr intersecting the circumferential direction Dθ as the arrangement direction. Then, the material portion P1 of the layer Li (i is an integer) is joined with the material portion P1 of the layers Li-1 and Li + 1 in the axial direction Da. Similarly, the material portion P2 of the layer Li bonds in the axial direction Da with the material portion P2 of the layers Li-1 and Li + 1. As described above, even when the layers Lo in which the material portions P1 or P2 are radially arranged and the layers Le in which the material portions P1 and P2 are concentrically arranged are alternately laminated, the material portions P1 and the material of the entire object S2 are Since the portion P2 is fitted to each other, the material portion P1 and the material portion P2 can be firmly integrated, as in the case of using the well girder structure.
また、造形物S2は、刃元S2a、中間部S2b、刃先S2cによって、材料M1及びM2の配合比を変化させている。
具体的には、刃元S2aから中間部S2bの層Loでは、図17中A及びBに示すように、材料部分P1が放射状に配置され、材料部分P2がその他の箇所に充填されている。そして、刃元S2aから中間部S2bに掛けて、中心軸CAから出る材料部分P1の線状部分の数が増加していく。同様に、中間部S2bから刃先S2cの層Loでは、図17中及びCに示すように、材料部分P2が放射状に配置され、材料部分P1がその他の箇所に充填されている。そして、中間部S2bから刃先S2cに掛けて、中心軸CAから出る材料部分P2の線状部分の数が減少していく。一方、層Leでは、材料部分P1と材料部分P2とが同心円状に交互に配置されている。そして、刃元S2aから刃先S2cに掛けて、材料部分P2の半径方向Drの厚みtr2が次第に小さくなり、材料部分P1の半径方向Drの厚みtr1が次第に大きくなる。このように材料部分P1及びP2を配置することで、柔軟性の高い刃元S2aと高硬度を持つ刃先S2cを持つ造形物S2を形成することができる。また、エンドミルの場合、回転方向に力が掛かりため円周方向Dθに対する等方的な特性が必要であるばかりでなく、軸方向Daに対する捩れの力にも耐え得る特性が必要となる。この点、第1の実施形態のような井桁構造の場合、円周方向Dθに対して異方的な特性が出てしまうが、本実施形態の場合、放射状の配列パターンと同心円状の配列パターンを組み合わせることで、円周方向Dθに対する等方的な特性と、軸方向Daに対する捩れの力に耐え得る特性を実現することができる。 Moreover, as for molded article S2, the compounding ratio of the materials M1 and M2 is changed with blade origin S2a, middle part S2b, and blade edge | tip S2c.
Specifically, in the layer Lo of the blade source S2a to the middle portion S2b, as shown in A and B in FIG. 17, the material portions P1 are radially arranged, and the material portion P2 is filled in the other places. Then, the number of linear portions of the material portion P1 emerging from the central axis CA increases from the blade base S2a to the middle portion S2b. Similarly, in the layer Lo of the middle portion S2b to the blade edge S2c, as shown in FIG. 17 and FIG. 17C, the material portions P2 are radially arranged, and the material portion P1 is filled in the other places. Then, the number of linear portions of the material portion P2 emerging from the central axis CA decreases from the middle portion S2b to the cutting edge S2c. On the other hand, in the layer Le, the material portions P1 and the material portions P2 are alternately arranged concentrically. Then, the thickness tr2 of the material portion P2 in the radial direction Dr gradually decreases and the thickness tr1 of the material portion P1 in the radial direction Dr gradually increases from the blade base S2a to the blade edge S2c. By arranging the material portions P1 and P2 in this manner, it is possible to form a three-dimensional object S2 having a highly flexible blade source S2a and a cutting edge S2c having high hardness. In the case of an end mill, a force is applied in the rotational direction, so that not only an isotropic characteristic with respect to the circumferential direction Dθ is required, but also a characteristic capable of withstanding a torsional force with respect to the axial direction Da is required. In this respect, in the case of the parallel crosses as in the first embodiment, anisotropic characteristics appear in the circumferential direction Dθ. However, in the case of the present embodiment, the arrangement pattern concentric with the radial arrangement pattern By combining these, it is possible to realize an isotropic characteristic with respect to the circumferential direction Dθ and a characteristic that can withstand a twisting force with respect to the axial direction Da.
具体的には、刃元S2aから中間部S2bの層Loでは、図17中A及びBに示すように、材料部分P1が放射状に配置され、材料部分P2がその他の箇所に充填されている。そして、刃元S2aから中間部S2bに掛けて、中心軸CAから出る材料部分P1の線状部分の数が増加していく。同様に、中間部S2bから刃先S2cの層Loでは、図17中及びCに示すように、材料部分P2が放射状に配置され、材料部分P1がその他の箇所に充填されている。そして、中間部S2bから刃先S2cに掛けて、中心軸CAから出る材料部分P2の線状部分の数が減少していく。一方、層Leでは、材料部分P1と材料部分P2とが同心円状に交互に配置されている。そして、刃元S2aから刃先S2cに掛けて、材料部分P2の半径方向Drの厚みtr2が次第に小さくなり、材料部分P1の半径方向Drの厚みtr1が次第に大きくなる。このように材料部分P1及びP2を配置することで、柔軟性の高い刃元S2aと高硬度を持つ刃先S2cを持つ造形物S2を形成することができる。また、エンドミルの場合、回転方向に力が掛かりため円周方向Dθに対する等方的な特性が必要であるばかりでなく、軸方向Daに対する捩れの力にも耐え得る特性が必要となる。この点、第1の実施形態のような井桁構造の場合、円周方向Dθに対して異方的な特性が出てしまうが、本実施形態の場合、放射状の配列パターンと同心円状の配列パターンを組み合わせることで、円周方向Dθに対する等方的な特性と、軸方向Daに対する捩れの力に耐え得る特性を実現することができる。 Moreover, as for molded article S2, the compounding ratio of the materials M1 and M2 is changed with blade origin S2a, middle part S2b, and blade edge | tip S2c.
Specifically, in the layer Lo of the blade source S2a to the middle portion S2b, as shown in A and B in FIG. 17, the material portions P1 are radially arranged, and the material portion P2 is filled in the other places. Then, the number of linear portions of the material portion P1 emerging from the central axis CA increases from the blade base S2a to the middle portion S2b. Similarly, in the layer Lo of the middle portion S2b to the blade edge S2c, as shown in FIG. 17 and FIG. 17C, the material portions P2 are radially arranged, and the material portion P1 is filled in the other places. Then, the number of linear portions of the material portion P2 emerging from the central axis CA decreases from the middle portion S2b to the cutting edge S2c. On the other hand, in the layer Le, the material portions P1 and the material portions P2 are alternately arranged concentrically. Then, the thickness tr2 of the material portion P2 in the radial direction Dr gradually decreases and the thickness tr1 of the material portion P1 in the radial direction Dr gradually increases from the blade base S2a to the blade edge S2c. By arranging the material portions P1 and P2 in this manner, it is possible to form a three-dimensional object S2 having a highly flexible blade source S2a and a cutting edge S2c having high hardness. In the case of an end mill, a force is applied in the rotational direction, so that not only an isotropic characteristic with respect to the circumferential direction Dθ is required, but also a characteristic capable of withstanding a torsional force with respect to the axial direction Da is required. In this respect, in the case of the parallel crosses as in the first embodiment, anisotropic characteristics appear in the circumferential direction Dθ. However, in the case of the present embodiment, the arrangement pattern concentric with the radial arrangement pattern By combining these, it is possible to realize an isotropic characteristic with respect to the circumferential direction Dθ and a characteristic that can withstand a twisting force with respect to the axial direction Da.
図17に示す造形物S2のような構造に限らず、本発明の実施形態は、各層において、異なる材料の配列方向が交差し且つこの交差部において同種の材料同士が接合していれば、異なる材料部分同士を相互に嵌合させることができる。これによって、造形物S1や造形物S2と同様に、複数の異なる材料の一体化が可能となる。そして、このような構造の自由度からあらゆる形状の造形物を製造することも可能である。例えば、彫刻刀はエンドミルと同様に捩りに強いことが要求されるが、本発明の実施形態を応用すれば、捩りに強い自由な刃先形状の彫刻刀を実現することもできる。
The embodiment of the present invention is not limited to the structure such as the shaped object S2 shown in FIG. 17, and the embodiments of the present invention are different as long as the arrangement directions of different materials intersect in each layer and similar materials are joined at this intersection. The material parts can be fitted to one another. This enables integration of a plurality of different materials as in the case of the shaped object S1 or the shaped object S2. And it is also possible to manufacture a three-dimensional object of any shape from such freedom of structure. For example, a chisel is required to be as strong in torsion as an end mill, but if the embodiment of the present invention is applied, it is also possible to realize a chisel having a free edge shape that is strong in torsion.
以上から、本実施形態によれば、材料の組み合わせ、材料の配合比だけでなく、各層の材料の配列パターンを変更することで、形状を含む所望の特性を持った造形物を製造することができる。
From the above, according to the present embodiment, it is possible to manufacture a three-dimensional object having desired characteristics including shape by changing not only the combination of materials and the compounding ratio of materials but also the arrangement pattern of the materials of each layer. it can.
[その他]
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 [Others]
While certain embodiments of the invention have been described above, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in other various forms, and various omissions, replacements and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 [Others]
While certain embodiments of the invention have been described above, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in other various forms, and various omissions, replacements and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
10・・・造形ステージ、11・・・フレーム、12・・・XYステージ、13・・・造形ステージ、14・・・昇降テーブル、15・・・ガイドシャフト、21・・・枠体、22・・・Xガイドレール、23・・・Yガイドレール、24A、24B・・・リール、25A、25B・・・造形ヘッド、26・・・ヒータ、33・・・アーム部、34、35・・・ローラ、38A、38B・・・フィラメント、100・・・3Dプリンタ、200・・・コンピュータ、201・・・空間フィルタ処理部、202・・・スライサ、203・・・造形スケジューラ、
204・・・造形指示部、205・・・造形ベクトル生成部、300・・・ドライバ、301・・・CPU、302・・・フィラメント送り装置、303・・・ヘッド制御装置、304・・・電流スイッチ、306・・・モータドライバ、307・・・入出力インタフェース、H・・・造形ヘッドホルダ、L・・・層、M1、M2、Mb・・・材料、Mx、My、Mz・・・モータ、P1、P2、Pb・・・材料部分、S、S1、S2・・・造形物、S2a・・・刃元、S2b・・・中間部、S2c・・・刃先、Tb・・・チューブ、Up・・・造形ユニット。 10: modeling stage, 11: frame, 12: XY stage, 13: modeling stage, 14: lifting table, 15: guide shaft, 21: frame, 22 · · X guide rail, 23 · · · Y guide rail, 24A, 24B · · · reel, 25A, 25B · · · forming head, 26 · · ·heater 33 33 arm portion 34 35 · · · Roller, 38A, 38B: filament, 100: 3D printer, 200: computer, 201: spatial filter processor, 202: slicer, 203: modeling scheduler,
204: modeling instruction unit, 205: modeling vector generation unit, 300: driver, 301: CPU, 302: filament feeding device, 303: head control device, 304: current Switch, 306: motor driver, 307: input / output interface, H: modeling head holder, L: layer, M1, M2, Mb: material, Mx, My, Mz: motor , P1, P2, Pb: material part, S, S1, S2: shaped object, S2a: blade tip, S2b: middle part, S2c: blade edge, Tb: tube, Up ... modeling unit.
204・・・造形指示部、205・・・造形ベクトル生成部、300・・・ドライバ、301・・・CPU、302・・・フィラメント送り装置、303・・・ヘッド制御装置、304・・・電流スイッチ、306・・・モータドライバ、307・・・入出力インタフェース、H・・・造形ヘッドホルダ、L・・・層、M1、M2、Mb・・・材料、Mx、My、Mz・・・モータ、P1、P2、Pb・・・材料部分、S、S1、S2・・・造形物、S2a・・・刃元、S2b・・・中間部、S2c・・・刃先、Tb・・・チューブ、Up・・・造形ユニット。 10: modeling stage, 11: frame, 12: XY stage, 13: modeling stage, 14: lifting table, 15: guide shaft, 21: frame, 22 · · X guide rail, 23 · · · Y guide rail, 24A, 24B · · · reel, 25A, 25B · · · forming head, 26 · · ·
204: modeling instruction unit, 205: modeling vector generation unit, 300: driver, 301: CPU, 302: filament feeding device, 303: head control device, 304: current Switch, 306: motor driver, 307: input / output interface, H: modeling head holder, L: layer, M1, M2, Mb: material, Mx, My, Mz: motor , P1, P2, Pb: material part, S, S1, S2: shaped object, S2a: blade tip, S2b: middle part, S2c: blade edge, Tb: tube, Up ... modeling unit.
Claims (14)
- 粉体焼結材料である第1材料と前記第1材料とは異なる第2材料を組み合せた複合材料を含み、
前記複合材料中、前記第1材料と前記第2材料とが互いに交差する3方向の相対的な移動を制限し合う
ことを特徴とする造形物。 A composite material in which a first material which is a powder sintered material and a second material different from the first material are combined,
A three-dimensional object characterized in that, in the composite material, relative movement in three directions in which the first material and the second material intersect with each other is restricted. - 第1層及び第2層を備え、
前記第1材料で形成された部分を第1材料部分とし、前記第2材料で形成された部分を第2材料部分とした場合、
前記第1層は、前記第1材料部分及び前記第2材料部分が第1方向において交互に配列された部分を含み、
前記第2層は、前記第1材料部分及び前記第2材料部分が前記第1方向と交差する第2方向において交互に配列された部分を含み、且つ、前記第1層の前記第1材料部分が前記第2層の前記第1材料部分と接合すると共に、前記第1層の前記第2材料部分が前記第2層の前記第2材料部分と接合する
ことを特徴とする請求項1記載の造形物。 Comprising a first layer and a second layer,
When the portion formed of the first material is a first material portion and the portion formed of the second material is a second material portion:
The first layer includes portions in which the first material portion and the second material portion are alternately arranged in a first direction,
The second layer includes portions alternately arranged in a second direction in which the first material portion and the second material portion intersect the first direction, and the first material portion of the first layer Bonding the first material portion of the second layer, and bonding the second material portion of the first layer to the second material portion of the second layer. Shaped object. - 前記第1層は、前記第1材料部分及び前記第2材料部分が前記第1方向と交差する第3方向に沿って延伸する部分を含む
ことを特徴とする請求項2記載の造形物。 The shaped article according to claim 2, wherein the first layer includes a portion extending along a third direction in which the first material portion and the second material portion intersect the first direction. - 前記第2層は、前記第1材料部分及び前記第2材料部分が前記第2方向と交差する第4方向に沿って延伸する部分を含む
ことを特徴とする請求項2又は3記載の造形物。 The three-dimensional object according to claim 2 or 3, wherein the second layer includes a portion extending along a fourth direction in which the first material portion and the second material portion intersect the second direction. . - 前記第1層の前記第1材料と前記第2材料との配合比は、前記第2層の前記第1材料と前記第2材料との配合比と異なる
ことを特徴とする請求項2~4のいずれか1項記載の造形物。 The compounding ratio of the first material to the second material of the first layer is different from the compounding ratio of the first material to the second material of the second layer. The shaped article according to any one of the above. - 前記第1材料と前記第2材料との配合比が、所定の方向で段階的に変化する
ことを特徴とする請求項2~5のいずれか1項記載の造形物。 The three-dimensional structure according to any one of claims 2 to 5, wherein a compounding ratio of the first material and the second material changes stepwise in a predetermined direction. - 前記第1材料は、セラミック、粉体焼結金属、又は粉体焼結樹脂である
ことを特徴とする請求項1~6のいずれか1項記載の造形物。 The shaped article according to any one of claims 1 to 6, wherein the first material is a ceramic, a powder sintered metal, or a powder sintered resin. - 前記第2材料は、所定温度で流動する性質を持つ金属又は熱可塑性樹脂である
ことを特徴とする請求項1~7のいずれか1項記載の造形物。 The shaped article according to any one of claims 1 to 7, wherein the second material is a metal or a thermoplastic resin having a property of flowing at a predetermined temperature. - 前記第2材料は、冷却又は硬化処理によって硬化する材料である
ことを特徴とする請求項1~8のいずれか1項記載の造形物。 The shaped article according to any one of claims 1 to 8, wherein the second material is a material which is cured by a cooling or curing treatment. - 粉体焼結材料である第1材料と前記第1材料とは異なる第2材料を組み合せた複合材料を含む造形物の製造方法であって、
前記第1材料で形成された部分を第1材料部分とし、前記第2材料で形成された部分を第2材料部分とした場合、
前記第1材料部分が第1方向において隙間を空けて配列された部分を含む第1層と、前記第1材料部分が前記第1方向と交差する第2方向において隙間を空けて配列された第2層とを積層させ、前記第1層の前記第1材料部分と前記第2層の前記第1材料部分が接合された第1構造体を形成し、
前記第1構造体の隙間に対して前記第2材料を充填した後、前記第2材料を硬化させて前記第2材料部分を形成する
ことを特徴とする造形物の製造方法。 What is claimed is: 1. A method of producing a shaped article comprising a composite material in which a first material which is a powder sintered material and a second material different from the first material are combined,
When the portion formed of the first material is a first material portion and the portion formed of the second material is a second material portion:
A first layer including a portion in which the first material portion is arranged with a gap in a first direction, and a first layer in which the first material portion is arranged with a gap in a second direction crossing the first direction Forming a first structure in which the first material portion of the first layer and the first material portion of the second layer are joined together by laminating two layers;
After filling the second material into the gaps of the first structure, the second material is cured to form the second material portion. - 前記第1材料とは異なる第3材料で形成された部分を第3材料部分とした場合、
前記第1構造体を形成する前、前記第1構造体の隙間となる箇所に対して前記第3材料部分を含む第2構造体を形成し、
前記第1構造体を形成する際、前記第2構造体のうち前記第3材料部分が形成されていない隙間に対して前記第1材料を充填した後、前記第1材料を焼結して前記第1材料部分を形成する
ことを特徴とする請求項10記載の造形物の製造方法。 When a portion formed of a third material different from the first material is used as a third material portion:
Before forming the first structure, a second structure including the third material portion is formed at a location to be a gap of the first structure,
In forming the first structure, after filling the first material into a gap in which the third material portion is not formed in the second structure, the first material is sintered to form the first structure. The method of manufacturing a shaped article according to claim 10, wherein the first material portion is formed. - 前記第3材料は、樹脂である
ことを特徴とする請求項11記載の造形物の製造方法。 The method according to claim 11, wherein the third material is a resin. - 3Dプリンタによって前記第2構造体を形成する
ことを特徴とする請求項10~12のいずれか1項記載の造形物の製造方法。 The method for producing a shaped article according to any one of claims 10 to 12, wherein the second structure is formed by a 3D printer. - 前記第3材料は、前記第1材料に対する焼結によって前記第1材料が硬化収縮する温度よりも低い温度で分解する
ことを特徴とする請求項10~13のいずれか1項記載の造形物の製造方法。 The shaped article according to any one of claims 10 to 13, wherein the third material decomposes at a temperature lower than a temperature at which the first material cures and shrinks due to sintering with respect to the first material. Production method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019549778A JPWO2019082341A1 (en) | 2017-10-26 | 2017-10-26 | Modeled object and its manufacturing method |
PCT/JP2017/038750 WO2019082341A1 (en) | 2017-10-26 | 2017-10-26 | Molded article and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/038750 WO2019082341A1 (en) | 2017-10-26 | 2017-10-26 | Molded article and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019082341A1 true WO2019082341A1 (en) | 2019-05-02 |
Family
ID=66247254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/038750 WO2019082341A1 (en) | 2017-10-26 | 2017-10-26 | Molded article and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019082341A1 (en) |
WO (1) | WO2019082341A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000272018A (en) * | 1999-03-25 | 2000-10-03 | Matsushita Electric Works Ltd | Method for producing three-dimensional object |
JP2016027595A (en) * | 2014-07-02 | 2016-02-18 | 住友電工焼結合金株式会社 | Heat sink and manufacturing method for the same |
JP2016531770A (en) * | 2013-06-24 | 2016-10-13 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Printed three-dimensional (3D) functional component and manufacturing method |
-
2017
- 2017-10-26 WO PCT/JP2017/038750 patent/WO2019082341A1/en active Application Filing
- 2017-10-26 JP JP2019549778A patent/JPWO2019082341A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000272018A (en) * | 1999-03-25 | 2000-10-03 | Matsushita Electric Works Ltd | Method for producing three-dimensional object |
JP2016531770A (en) * | 2013-06-24 | 2016-10-13 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Printed three-dimensional (3D) functional component and manufacturing method |
JP2016027595A (en) * | 2014-07-02 | 2016-02-18 | 住友電工焼結合金株式会社 | Heat sink and manufacturing method for the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019082341A1 (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10259160B2 (en) | Wear resistance in 3D printing of composites | |
US11214003B2 (en) | Device and method for producing a three-dimensional object with a fibre feeding device | |
JP5920859B2 (en) | 3D printer | |
US20150077215A1 (en) | Device and Method to Additively Fabricate Structures Containing Embedded Electronics or Sensors | |
CN105216322B (en) | The XY axle linkage devices and interlock method of a kind of 3D printer | |
CN104708812B (en) | Three-dimensional printing device and printing head assembly | |
KR101575061B1 (en) | Apparatus for changing nozzle of 3D printer | |
US20170136690A1 (en) | Three-dimensional shaping method and three-dimensional shaping device method | |
KR101736568B1 (en) | 3D printer Head for three dimension production comprised of multi material | |
KR20160016985A (en) | multi color 3D printer | |
CN107914387A (en) | Carbon fibre reinforced composite structural member five degree of freedom 3D printing molding machine and method | |
JP6526839B2 (en) | Three-dimensional shaping apparatus, control method therefor, and shaped article thereof | |
CN105666888B (en) | A kind of numerical control former based on FDM technology | |
TWI678273B (en) | Method for fabricating an electronic component made of only dyneemar and indalloy, method for fabricating an electronic component, and electronic component | |
JP6634155B2 (en) | Method and apparatus for manufacturing thermoplastic resin composite | |
CN103817939A (en) | Powder printer and powder material molding method | |
KR20180100875A (en) | 3D printer and production system having the same | |
CN112477133B (en) | Mixed continuous fiber reinforced material 3D printing extrusion system | |
CN204526179U (en) | A kind of wire feeder for 3D printer | |
WO2019082341A1 (en) | Molded article and manufacturing method therefor | |
WO2015028809A1 (en) | Improvements relating to fused deposition modelling | |
JP2010120320A (en) | Compression-molding device, compression-molding method, and fiber-reinforced composite material manufactured by using the same | |
CN107964205A (en) | A kind of preparation method of PP/SEBS suitable for rapid shaping | |
CN107856295B (en) | 3D printer | |
KR20190114125A (en) | One-stop process for manufacturing highly functional environment-friendly 3D filament and 3D filament using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17929600 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549778 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17929600 Country of ref document: EP Kind code of ref document: A1 |