WO2018207242A1 - Three-dimensional modeling device, control method thereof, and modeled object thereof - Google Patents

Three-dimensional modeling device, control method thereof, and modeled object thereof Download PDF

Info

Publication number
WO2018207242A1
WO2018207242A1 PCT/JP2017/017421 JP2017017421W WO2018207242A1 WO 2018207242 A1 WO2018207242 A1 WO 2018207242A1 JP 2017017421 W JP2017017421 W JP 2017017421W WO 2018207242 A1 WO2018207242 A1 WO 2018207242A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
modeling
linear
arrangement
materials
Prior art date
Application number
PCT/JP2017/017421
Other languages
French (fr)
Japanese (ja)
Inventor
諒 菅原
Original Assignee
武藤工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武藤工業株式会社 filed Critical 武藤工業株式会社
Priority to JP2019516758A priority Critical patent/JP6821017B2/en
Priority to PCT/JP2017/017421 priority patent/WO2018207242A1/en
Priority to TW107115095A priority patent/TW201843032A/en
Publication of WO2018207242A1 publication Critical patent/WO2018207242A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a three-dimensional modeling apparatus, a control method thereof, and a modeled article thereof.
  • Patent Document 1 discloses a three-dimensional modeling apparatus that manufactures a model based on three-dimensional design data.
  • various methods such as an optical modeling method, a powder sintering method, an ink jet method, and a molten resin lamination method have been proposed and commercialized.
  • a modeling head for discharging molten resin that is a material of a modeled object is mounted on a three-dimensional movement mechanism, and the modeling head is moved in a three-dimensional direction. Then, the molten resin is laminated while discharging the molten resin to obtain a shaped article.
  • a three-dimensional modeling apparatus that employs an ink jet method has a structure in which a modeling head for dropping a heated thermoplastic material is mounted on a three-dimensional movement mechanism.
  • the applicant of the present invention in the first layer, laminates a material having the first direction as the longitudinal direction at a predetermined interval, while the second layer above the first layer is the first direction.
  • a three-dimensional modeling apparatus, a three-dimensional modeling method, and a three-dimensional modeling method capable of generating a modeled article having a so-called cross-girder structure by laminating materials having a second direction intersecting the longitudinal direction at predetermined intervals have been proposed.
  • this modeled object materials that intersect with each other between a plurality of layers are joined at the intersection, so that a strong modeled object can be generated.
  • by incorporating a plurality of types of materials into the cross-girder structure it is possible to provide a shaped article having new characteristics.
  • this modeling method when the modeled object has a predetermined curvature at its contour (for example, a cylinder), anisotropy occurs in the modeled object, and the physical strength required for the modeled object may not be secured.
  • JP 2002-307562 A Japanese Patent No. 5909309
  • An object of the present invention is to provide a three-dimensional modeling apparatus capable of ensuring the physical strength regardless of the contour of a modeled object, a control method thereof, and a modeled object.
  • the three-dimensional modeling apparatus includes a modeling stage on which a model is placed, a modeling head configured to be movable relative to the modeling stage, and supplying a material to the modeling stage, and the modeling head And a control unit for controlling.
  • the said control part is comprised so that a 1st layer and a 2nd layer may be repeatedly produced
  • the control unit arranges at least a part of the material in the first layer so as to extend linearly, while in the second layer, at least a part of the material in the first layer is arranged in the first layer.
  • the shaping head is controlled so that the material formed on the substrate is bonded in the vertical direction.
  • the modeled object according to the present invention is formed by repeatedly laminating the first layer and the second layer.
  • the material is arranged to extend linearly, while in the second layer, the material is in a direction intersecting the material in the first layer and the second layer. Arranged so as to have a curvature corresponding to the contour of the first layer, whereby the material formed in the first layer and the material formed in the second layer are joined in the vertical direction.
  • control method of the three-dimensional modeling apparatus is a control method of the three-dimensional modeling apparatus including a modeling head that supplies a material for generating a modeled object.
  • the control method includes the steps of controlling the shaping head to arrange at least a part of the material in a first layer so as to extend linearly, and at least a part of the material in the second layer.
  • the first layer is arranged so as to have a curvature that intersects with the longitudinal direction of the material in the first layer and corresponds to the contour of the second layer, whereby the material formed in the first layer And controlling the modeling head so that the material formed in the second layer is joined in the vertical direction.
  • FIG. 3 is a block diagram illustrating details of the structure of a driver 300.
  • FIG. 2 is a functional block diagram which shows the structure of the computer 200 (control apparatus).
  • the schematic of the structure of the molded article S formed with the three-dimensional modeling apparatus of 1st Embodiment is shown.
  • a modeled object generated by the three-dimensional modeling method described in Patent Document 2 will be described.
  • a modeled object generated by the three-dimensional modeling method described in Patent Document 2 will be described.
  • the problems of the shaped object having the structure of FIGS. 6 and 7 will be described.
  • the schematic of the structure of the molded article S formed with the three-dimensional modeling apparatus of 1st Embodiment is shown.
  • the effect of the molded article S formed by the three-dimensional modeling apparatus according to the first embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown.
  • the schematic of the structure of the molded article S formed by the three-dimensional modeling apparatus of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown.
  • the schematic of the structure of the molded article S formed by the three-dimensional modeling apparatus of 3rd Embodiment is shown.
  • the schematic of the structure of the molded article S formed with the three-dimensional modeling apparatus of 4th Embodiment is shown.
  • the schematic of the structure of the molded article S formed by the three-dimensional modeling apparatus of 5th Embodiment is shown.
  • FIG. 1 is a perspective view showing a schematic configuration of a so-called hot melt lamination type (FDM, Fused Deposition Molding) 3D printer 100 used in the first embodiment.
  • the FDM 3D printer 100 is an aspect of a 3D printer 100 capable of modeling a model to be described below, and, as will be apparent from the following description, other systems of 3D capable of manufacturing a similar model. It is possible to employ a printer.
  • the FDM type 3D printer 100 in FIG. 1 includes a frame 11, an XY stage 12, a modeling stage 13, a lifting table 14, and a guide shaft 15.
  • a computer 200 is connected to the 3D printer 100 as a control device for controlling the 3D printer 100.
  • a driver 300 for driving various mechanisms in the 3D printer 100 is also connected to the 3D printer 100.
  • the frame 11 has, for example, a rectangular parallelepiped shape and includes a frame made of a metal material such as aluminum.
  • the frame 11 has, for example, a rectangular parallelepiped shape and includes a frame made of a metal material such as aluminum.
  • four guide shafts 15 are formed at four corners of the frame 11 so as to extend in the Z direction in FIG. 1, that is, in a direction perpendicular to the plane of the modeling stage 13.
  • the guide shaft 15 is a linear member that defines a direction in which the elevating table 14 is moved in the vertical direction as will be described later.
  • the number of guide shafts 15 is not limited to four, and is set to a number that can stably maintain and move the lifting table 14.
  • the modeling stage 13 is a table on which the model S is placed, and is a table on which a thermoplastic resin discharged from a modeling head described later is deposited.
  • the lifting table 14 penetrates the guide shaft 15 at its four corners, and is configured to be movable along the longitudinal direction (Z direction) of the guide shaft 15. .
  • the lifting table 14 includes rollers 34 and 35 that are in contact with the guide shaft 15.
  • the rollers 34 and 35 are rotatably installed at arm portions 33 formed at two corners of the lifting table 14.
  • the rollers 34 and 35 rotate while being in contact with the guide shaft 15 so that the elevating table 14 can smoothly move in the Z direction. Further, as shown in FIG.
  • the elevating table 14 transmits a driving force of the motor Mz by a power transmission mechanism including a timing belt, a wire, a pulley, and the like, so that a predetermined interval (for example, 0.1 mm pitch) in the vertical direction.
  • a predetermined interval for example, 0.1 mm pitch
  • the motor Mz for example, a servo motor or a stepping motor is suitable.
  • the actual position of the lifting table 14 in the height direction is measured continuously or intermittently in real time using a position sensor (not shown), and the position accuracy of the lifting table 14 is improved by appropriately correcting the position. May be. The same applies to modeling heads 25A and 25B described later.
  • FIG. 3 is a perspective view showing a schematic configuration of the XY stage 12.
  • the XY stage 12 includes a frame body 21, an X guide rail 22, a Y guide rail 23, reels 24A and 24B, modeling heads 25A and 25B, and a modeling head holder H. Both ends of the X guide rail 22 are fitted into the Y guide rail 23 and are held slidable in the Y direction.
  • the reels 24A and 24B are fixed to the modeling head holder H, and move in the XY directions following the movement of the modeling heads 25A and 25B held by the modeling head holder H.
  • thermoplastic resin that is the material of the shaped object S is a string-like resin (filaments 38A and 38B) having a diameter of about 3 to 1.75 mm, and is usually held in a state of being wound around the reels 24A and 24B. At the time of modeling, it is fed into the modeling heads 25A and 25B by motors (extruders) provided on the modeling heads 25A and 25B described later.
  • the reels 24 ⁇ / b> A and 24 ⁇ / b> B may be fixed to the frame body 21 or the like without being fixed to the modeling head holder H so that the movement of the modeling head 25 is not followed.
  • the filaments 38A and 38B are exposed to be fed into the modeling head 25.
  • the filaments 38A and 38B may be fed into the modeling heads 25A and 25B with a guide (for example, a tube or a ring guide) interposed therebetween. .
  • a guide for example, a tube or a ring guide
  • modeling can be performed using only one of the filaments 38A and 38B.
  • both the filaments 38A and 38B can be used in combination in one model.
  • the filaments 38A and 38B are made of different materials.
  • the other when one is an ABS resin, a polypropylene resin, a nylon resin, or a polycarbonate resin, the other can be a resin other than the one resin. Or even if it is resin of the same material, the kind and ratio of the material of the filler contained in the inside can also be made to differ. That is, it is preferable that the filaments 38A and 38B have different properties, and the characteristics (strength and the like) of the shaped article can be improved by a combination thereof.
  • the modeling head 25A is configured to melt and discharge the filament 38A
  • the modeling head 25B is configured to melt and discharge the filament 38B, and independent modeling for different filaments.
  • a head is prepared.
  • the present invention is not limited to this, and there is a configuration in which only a single modeling head is prepared, and a plurality of types of filaments (resin materials) are selectively melted and discharged by the single modeling head. Can be adopted.
  • the filaments 38A and 38B are fed into the modeling heads 25A and 25B from the reels 24A and 24B through the tube Tb.
  • the modeling heads 25A and 25B are held by the modeling head holder H and configured to be movable along the X and Y guide rails 22 and 23 together with the reels 24A and 24B.
  • an extruder motor for feeding the filaments 38A and 38B downward in the Z direction is disposed in the modeling heads 25A and 25B.
  • the modeling heads 25 ⁇ / b> A and 25 ⁇ / b> B need only be movable with the modeling head holder H while maintaining a fixed positional relationship with each other in the XY plane, but also in the XY plane so that the mutual positional relationship can be changed. It may be configured.
  • motors Mx and My for moving the modeling heads 25 ⁇ / b> A and 25 ⁇ / b> B with respect to the XY stage 12 are also provided on the XY stage 12.
  • the motors Mx and My for example, a servo motor or a stepping motor is suitable.
  • the driver 300 includes a CPU 301, a filament feeding device 302, a head control device 303, a current switch 304, and a motor driver 306.
  • the CPU 301 receives various signals from the computer 200 via the input / output interface 307 and controls the entire driver 300.
  • the filament feeder 302 instructs the extruder motors in the modeling heads 25A and 25B to control the feeding amount (pushing amount or retracting amount) of the filaments 38A and 38B with respect to the modeling heads 25A and 25B. To do.
  • the current switch 304 is a switch circuit for switching the amount of current flowing through the heater 26. By switching the switching state of the current switch 304, the current flowing through the heater 26 is increased or decreased, thereby controlling the temperature of the modeling heads 25A and 25B.
  • the motor driver 306 generates drive signals for controlling the motors Mx, My, and Mz according to the control signal from the CPU 301.
  • FIG. 4B is a functional block diagram showing the configuration of the computer 200 (control device).
  • the computer 200 includes a spatial filter processing unit 201, a slicer 202, a modeling scheduler 203, a modeling instruction unit 204, and a modeling vector generation unit 205. These configurations can be realized by a computer program inside the computer 200.
  • the spatial filter processing unit 201 receives master 3D data indicating the three-dimensional shape of a model to be modeled from the outside, and performs various data processing on the model space in which the model is formed based on the master 3D data. . Specifically, as will be described later, the spatial filter processing unit 201 divides the modeling space into a plurality of modeling units Up (x, y, z) as necessary, and the plurality of modeling units based on the master 3D data. Each of the Ups has a function of assigning property data indicating characteristics to be given to each modeling unit. The necessity of division into modeling units and the size of each modeling unit are determined by the size and shape of the formed object S to be formed. For example, when forming the modeling object S as described below, division into modeling units is unnecessary.
  • the modeling instruction unit 204 provides instruction data regarding the contents of modeling to the spatial filter processing unit 201 and the slicer 202.
  • the modeling instruction unit 204 may receive input of instruction data from an input device such as a keyboard or a mouse, or may be provided with instruction data from a storage device that stores modeling contents. .
  • the slicer 202 has a function of converting each of the modeling units Up into a plurality of slice data.
  • the slice data is sent to the modeling scheduler 203 at the subsequent stage.
  • the modeling scheduler 203 has a role of determining a modeling procedure and a modeling direction in the slice data according to the property data described above.
  • the modeling vector generation unit 205 generates a modeling vector according to the modeling procedure and the modeling direction determined by the modeling scheduler 203. This modeling vector data is transmitted to the driver 300.
  • the driver 300 controls the 3D printer 100 according to the received modeling vector data.
  • FIG. 5 shows a schematic diagram of the structure of the modeled object S formed by the three-dimensional modeling apparatus of the first embodiment.
  • the shaped object S formed according to the present embodiment is configured by alternately laminating a first layer L1 and a second layer L2 over a plurality of layers.
  • the first layer L1 and the second layer L2 are each formed based on the slice data described above.
  • the shaped object having such a cross-girder structure is a very strong shaped object because the material R1 of the first layer L1 and the material R1 of the second layer L2 are alternately stacked and joined at the upper and lower surfaces thereof. Can do. Further, when another material R2 is embedded in the gap between the materials R1, a separate girder structure is formed by the other material R2. Even if the materials R1 and R2 are not joined, the shaped object S can be configured firmly because the structure has a cross-beam structure, and it is possible to configure a shaped object having intermediate properties between the materials R1 and R2. become.
  • the shaped object S has a predetermined curvature in its contour (for example, in the case of a cylindrical shape)
  • a problem may occur in the physical strength of the shaped object.
  • the material R1 is arranged in such a manner that the materials R1 are orthogonal to each other with the X direction or the Y direction as a longitudinal direction, Has sufficient strength, but it cannot have sufficient physical strength against pressurization from the direction crossing the X direction or Y direction (for example, 45 °). That is, a difference in physical strength against pressurization occurs depending on the direction.
  • the material R1 is arranged as follows in the first layer L1 and the second layer L2, so that the problem described in FIG. It has been solved.
  • the materials R1s arranged in the first layer L1 are arranged linearly.
  • the linear material R1s extends radially from the vicinity of the center of the first layer L1 toward the contour direction (outside) of the first layer L1.
  • the material R1s may be linear, and is not limited to a radial arrangement. Further, it is not necessary for all materials to be linear, and the main material only needs to be linear.
  • the material R1r arranged in the second layer L2 is given a predetermined curvature corresponding to the contour of the second layer L2 (hereinafter, such a material R1r is referred to as “curvature material R1r”).
  • curvature material R1r is, for example, a circle or arc shape having a cylindrical radius centered on the central axis of the cylinder. be able to.
  • the “predetermined curvature corresponding to the contour of the second layer L2” does not mean the same curvature but a curvature determined according to the contour.
  • the curvature of the outermost curvature material R1r is substantially the same as the contour of the cylinder,
  • the curvature material R1r is larger in curvature.
  • the material R1r does not have to be all concentric, and several materials, for example, several materials R1r at the outermost periphery are formed on the first layer L1. It may have a shape corresponding to the contour, and the others may be linear, for example.
  • what is necessary is just to form the curvature material along the curvature in the 2nd layer L2, also when the molded article S is a shape which has curvatures other than a column shape.
  • the shaped article S of the present embodiment forms the linear material R1s in the first layer L1, and the curvature material R1r having a curvature corresponding to the contour of the shaped article S in the second layer L2.
  • a curved material R1r intersects and joins the linear material R1s on the upper and lower surfaces, whereby the shaped article S can have a cross-girder structure similar to that of Patent Document 2.
  • the curvature material R1r having a curvature along the contour of the model S, the material arrangement can be made substantially uniform regardless of the location in the model S, and the physical strength of the model S is enhanced. be able to.
  • FIG. 11A to FIG. 11I show a specific arrangement example of the linear material R1s arranged radially in the first layer L1.
  • 11A to 11I are illustrated so that the outer periphery thereof is a circular shape for the sake of convenience, but actually, as shown in FIG. 9, there is a cavity between the materials.
  • FIG. 11A shows an arrangement example in which the first linear material R1sL extending from the vicinity of the center of the first layer L1 (the central axis of the cylindrical shaped object S) and the second linear material R1sS are arranged radially. Yes.
  • the first linear materials R1sL are arranged at 90 ° intervals in the circumferential direction so that their tips are substantially in contact with each other near the center.
  • the first linear material R1sL extending from the vicinity of the center of the first layer L1 (the central axis of the cylindrical shaped object S) and the second linear material R1sS are radially arranged.
  • An example of the arrangement is shown.
  • the eight first linear materials R1sL are arranged at 45 ° intervals in the circumferential direction so that the tips thereof are in contact with each other.
  • 2nd linear material R1sS is arrange
  • the second linear material R1sS has a shorter length in the longitudinal direction than the first linear material R1sL, as in the example of FIG. 11A.
  • the linear materials R1sT are arranged radially in the first layer L1, and this is the same as the arrangement examples of FIGS. 11A and 11B.
  • the width (circumferential direction) of the linear material R1sT is increased from the center side of the first layer L1 toward the outside.
  • the widths of one linear material R1sL and R1sS are uniform, the gap between the plurality of linear materials is widened outside the first layer L1. There is a possibility of affecting the physical strength of the model S.
  • FIG. 11C the linear materials R1sT are arranged radially in the first layer L1, and this is the same as the arrangement examples of FIGS. 11A and 11B.
  • the width (circumferential direction) of the linear material R1sT is increased from the center side of the first layer L1 toward the outside.
  • the widths of one linear material R1sL and R1sS are uniform, the gap between the plurality of linear materials is widened outside the first layer L1. There is a possibility of
  • linear material is used to mean a material that includes a linear portion as well as a material that is generally linear.
  • each of the linear materials R1sp1 and R1sp2 is arranged radially, and this is the same as the above arrangement example.
  • each of the linear materials R1sp1 and R1sp2 is a single material on the center side of the first layer L1, but has a shape branched into two on the outside. Also by this arrangement example, the same effect as the arrangement example of FIG. 11C can be obtained.
  • the number of branches is not limited to two and may be three or more.
  • the first layer L1 is further divided into a plurality of (for example, six) fan-shaped regions SC.
  • a plurality of linear materials R1sL1 and R1sS1 are arranged for each sector region SC.
  • a plurality of linear materials R1sL1 extending in parallel with one side of one sector region SC are arranged, and a plurality of linear materials R1sS1 are arranged in parallel with the other side.
  • the linear material R1sL1 is arranged so as to extend in parallel to the first side and to the second side.
  • the linear material R1sS1 extends in parallel with the second side and extends to reach the linear material R1sL1. For this reason, the length of the linear material R1sL1 is made longer than the length of the linear material R1sS1 as a whole.
  • the first layer L1 is divided into a plurality of sector regions SC, and the linear materials R1sL1 and L1sS1 extend along two sides of the sector, and the linear material R1sL1 is approximately radially. , R1sS1 is arranged. For this reason, these linear materials R1sL1 and R1sS1 can form a cross-girder structure together with the curvature material arranged in the second layer L2.
  • FIG. 11F is an arrangement example in which the first layer L1 is divided into a plurality of sector regions SC, as in FIG. 11E.
  • the central angles ( ⁇ 1, ⁇ 2) of the plurality of sector regions SC are different from each other.
  • the linear material R1sV is arranged so as to be substantially V-shaped in one sector area SC.
  • the arrangement is not limited to this, for example, the same as in FIG. 11E. Arrangement is also possible.
  • FIG. 11G is an arrangement example in which the first layer L1 is divided into a plurality of sector regions SC having different central angles ⁇ , similarly to FIG. 11F.
  • a plurality of V-shaped linear materials R1sV are arranged in each of the sector regions SC.
  • Two linear portions constituting the V-shaped linear material R1sV are arranged so as to extend substantially parallel to the two sides of the sector region SC.
  • the plurality of linear materials R1sV are arranged so that the sides thereof are parallel to each other.
  • the number of linear materials R1sV is large in the sector region SC having a large central angle ⁇ , and the number of linear materials R1sV is decreased in the sector region SC having a small central angle ⁇ .
  • the illustrated example is merely an example, and the number of linear materials R1sV included in one sector region SC may be the same regardless of the size of the central angle ⁇ .
  • the elliptical EPi has a larger curvature as it is closer to the center of the first layer L1, and the curvature becomes smaller as it approaches the outer periphery.
  • the linear material R1sV only needs to be drawn radially as a whole.
  • FIG. 11H and FIG. 11I will be used to describe another example of the arrangement of materials in the first layer L1.
  • FIG. 11H is a plan view showing an arrangement of materials in the first layer L1 and the second layer L2
  • FIG. 11I is a perspective view showing a method of stacking the first layer L1 and the second layer L2. is there.
  • the arrangement examples shown in FIGS. 11H and 11I are the same as the arrangement examples described above in that the first layer L1 and the second layer L2 are repeatedly stacked. However, it differs from the above-described arrangement example in the following points.
  • the linear materials R1sL1 and R1sS1 are arranged in a part of the plurality of sector regions SC in both the first layer L1 and the second layer L2.
  • the curvature material R1r is disposed in the other sector region SC.
  • the 1st layer L1 and the 2nd layer L2 are laminated
  • a cross-girder structure can be comprised with a linear material and a curvature material similarly to the above-mentioned example of arrangement
  • the structures of the first layer L1 and the second layer L2 are substantially the same. The characteristics of the material in S can be made uniform in the vertical direction, and the physical strength of the shaped object S can be further improved.
  • FIG. 12 illustrates still another arrangement example.
  • the linear material R1sL1 and R1sS1 arranged in one of the first layers L1 are linear materials R1sL1 arranged in another first layer L1 in the upper layer, Compared to R1sS1, the positional relationship is rotated by a minute angle ⁇ around a predetermined center of rotation.
  • the minute angle ⁇ can be an arbitrary numerical value, but the gap between the linear materials R1sL1 and R1sS1 in the lower first layer L1 is a linear material R1sL1 in the upper first layer L1. It is preferable to superimpose by R1sS1.
  • the other first layers L1 have a positional relationship in which the linear materials R1sL1 and R1sS1 are rotated by a minute angle ⁇ in two adjacent first layers L1 across the second layer L2 in the vertical direction. Have.
  • the minute angle ⁇ By appropriately setting the minute angle ⁇ , the gap between the linear materials R1sL1 and R1sS1 is substantially filled, and thereby the physical strength of the model S can be improved.
  • the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below.
  • the modeled object S to be modeled is different from the first embodiment.
  • the shaped object S of the second embodiment is formed by alternately laminating the first layer L1 and the second layer L2, and the linear material and the curvature material are joined in the vertical direction.
  • the materials R1s and R2s formed in the first layer L1 are made of different materials.
  • one is an ABS resin, a polypropylene resin, a nylon resin, or a polycarbonate resin
  • the other can be a resin other than the one resin.
  • the materials R1r and R2r formed in the second layer L2 are made of different materials.
  • the materials R1s and R2s are arranged so as to extend radially outward from the vicinity of the center of the first layer L1, as shown in FIG. 13, for example. As shown in FIG. 13, the materials R1s and R2s may be alternately arranged one by one in the circumferential direction, or may be arranged several by one.
  • the materials R1s and R2s extend radially in the first layer L1, while the second layer L2 that is one higher than the material R1s and R2s extends in the direction of the contour of the first layer L1.
  • the materials R1r and R2r extend along.
  • the shaped object S has a structure in which the same material is joined in the vertical direction at a crossing position of the materials R1s and R1r in the first layer L1 and the second layer L2 (so-called girder structure).
  • the materials R2s and R2r have a similar cross beam structure at positions sandwiched between the materials R1 and are joined in the vertical direction.
  • FIGS. 14A to 14F show a specific arrangement example of the linear material in the first layer L1 of the shaped object S of the second embodiment.
  • FIG. 14A is a first material (for example, ABS resin, polypropylene resin, nylon resin, polycarbonate resin) that extends radially from the vicinity of the center of the first layer L1 (center axis of the cylindrical shaped object S).
  • the first linear materials R1sL and R1sS and the second linear material R2s made of a second material (a material different from the first material) that radially extends from the vicinity of the center of the first layer L1 are disposed. An example of the arrangement is shown.
  • the first linear materials R1sL are arranged at intervals of 90 ° in the circumferential direction so that their tips are substantially in contact with each other near the center.
  • the first linear materials R1sS are arranged at 90 ° intervals at positions between the first linear materials R1sL.
  • 2nd linear material R2s is arrange
  • FIG. 14B shows the first linear material R1sL (first material) that extends outward from the vicinity of the center of the first layer L1 (the central axis of the cylindrical shaped object S) and is arranged in the circumferential direction at 45 ° intervals.
  • positioning which has 2nd linear material R2s (2nd material different from 1st material) arrange
  • the linear material R1sT made of the first material and the linear material R2sT made of the second material are alternately arranged radially in the first layer L1.
  • 14A and 14B are similar to the arrangement example.
  • the width (circumferential direction) of the linear materials R1sT and R2sT is increased from the center side of the first layer L1 toward the outside.
  • white regions other than the materials R1sT and R2sT are voids.
  • the linear material R1sp1 made of the first material and the linear material R2sp2 made of the second material are arranged radially, and this is the same as the above example.
  • each of the linear material R1sp1 and the linear material R2sp1 is a single material on the center side of the first layer L1, but has a shape branched into two on the outside.
  • the number of branches is not limited to two and may be three or more. Note that, in the first layer L1 in FIG. 14D, white regions other than the materials R1sp1 and R2sp1 are voids.
  • the first layer L1 is further divided into a plurality of (for example, six) fan-shaped regions SC as in FIG. 11E.
  • a plurality of first linear materials R1sL1 (first material) and second linear materials R2sS1 (second material) are arranged for each sector region SC.
  • a plurality of first linear materials R1sL11 extending in parallel with one side of one sector region SC are arranged, and a plurality of second linear materials R2sS1 are arranged in parallel with the other side. .
  • the first layer L1 is divided into a plurality of sector regions SC, and the linear materials R1sL1 and L2sS1 extend along two sides of the sector shape, and the linear material R1sL1 substantially radially. , L2sS1 is arranged. For this reason, the arc-shaped material and the cross beam structure arranged in the second layer L2 can be configured.
  • regions other than the linear materials R1sL1 and R2sS1 in the first layer L1 are voids.
  • the first layer L1 may be arranged so as not to leave a gap by being embedded with the linear material R1s made of the first material and the linear material R2s made of the second material. it can.
  • the arrangement example of FIG. 14G is the same as the arrangement examples of FIGS. 14E and 14F in that the first layer L1 is divided into a plurality of sector regions SC.
  • linear materials R1sD (first material) and R2sD (second material) having a diamond shape as a whole are arranged in each of the plurality of sector regions SC.
  • the linear materials R1sD and R2sD are drawn so that the two sides of the rhombic linear materials R1sD and R2sD are substantially parallel to the two sides of the fan-shaped region SC.
  • a portion that is not filled except for the rhombic linear materials R1sD and R2sD can form a linear material.
  • no gap is provided between the linear materials R1sD and R2sD, but a gap may be provided between them.
  • the first layer L1 is divided into a plurality of sector regions SC, and each of the sector regions SC has a plurality of first linear materials R1sV (first material), second linear shapes.
  • a material R2sV (second material) is arranged.
  • the second linear material R2sV is disposed in a V shape along two sides of the sector region SC, and further, the first linear material R1sV is disposed along the two sides of the sector region SC. .
  • the V-shaped first linear material R1sV and the second linear material R2sV are alternately arranged to fill the sector region.
  • the V-shaped first linear material R1sV ′ (first material) and the second linear material R2sV ′ (second material) are arranged as in FIG. 14H. It differs from FIG. 14H in that the contour of the material is arcuate.
  • the first layer L1 is divided into a plurality of sector regions SC (in the example shown, a central angle of 90 °) as well as the arrangement example of FIG.
  • a linear material R2sV3 extending along the second material and formed of the second material is formed.
  • This linear material R2sV3 includes portions extending along two sides of the sectoral region SC, like the linear material R2sV ′ in the arrangement example of FIG. 14I.
  • the linear material R2sV3 in FIG. 14J also has a portion extending from the vicinity of the center of the sector region SC toward the middle point of the arc of the sector region SC, and includes three linear portions extending radially. It has a W shape as a whole.
  • a linear material R1sV4 made of the first material is formed between the three linear portions.
  • the linear material R1sV4 has a substantially W shape, and a linear material R2sV4 made of another second material is formed in the gap.
  • one material has three linear portions extending radially, but this is not limiting, and one material has four or more linear portions extending radially. May be.
  • the first layer L1 is divided into a plurality of fan-shaped areas SC and extends along the sides of the fan-shaped areas SC, as in the arrangement example of FIG. 14J.
  • a material R2sCR is formed. Similar to the linear material R2sV3 in the arrangement example of FIG.
  • the linear material R2sCR includes a plurality (three in the illustrated example) of linear portions extending radially along the radial direction of the sector region SC.
  • the linear material R2sCR3 of FIG. 14K also has a plurality of arc-shaped portions extending in the circumferential direction of the sector region SC.
  • the linear material R1sCR also includes a plurality of linear portions extending in the radial direction and an arc-shaped portion extending in the circumferential direction.
  • the arrangement example in FIG. 14L shows an arrangement example of still another material in the first layer L1.
  • the first linear material R1sL made of the first material is radially arranged from the vicinity of the center of the first layer L1 toward the outside.
  • the second linear material R2s made of the second material is disposed along the first linear material R1sL.
  • the gap remaining in the gap of the second linear material R2s is further filled with the material R2ss made of the second material, but as shown in FIG. 14M, this is filled with the first material R1sS. It can also be changed to or can be left as a gap.
  • the arrangement example in FIG. 14N is an arrangement example approximate to the arrangement example in FIG. 14M.
  • the second linear material R2s made of the second material is arranged radially from the vicinity of the center of the first layer L1 toward the outside.
  • V-shaped linear material R1s which consists of 1st materials is arrange
  • the first linear material R1s is formed as a V-shaped linear material.
  • the gap remaining in the gap of the first linear material R1s is further filled with the material R2s ′ made of the second material, but this may be changed to the first material. Or it can be left void.
  • FIGS. 15A and 15B are plan views showing an arrangement of materials in the first layer L1 and the second layer L2, and FIG. 15B is a perspective view showing a method of stacking the first layer L1 and the second layer L2. is there.
  • the arrangement example shown in FIGS. 15A and 15B is similar to the arrangement example shown in FIGS. 11H and 11I (in the case of a single material), in both the first layer L1 and the second layer L2.
  • the linear materials R1sL and R1sS made of the first material and the linear materials R2sL and R2sS made of the second material are disposed in a part of the sector region SC.
  • the curvature material R1r made of the first material and the curvature material R2r made of the second material are arranged in the other sector regions SC.
  • the first layer L1 and the second layer L2 are laminated so that the linear materials R1sL, R1sS, R2sL, RrsS and the curvature materials R1r, R2r overlap in the vertical direction.
  • a cross-girder structure can be comprised with a linear material and a curvature material similarly to the above-mentioned example of arrangement
  • the structures of the first layer L1 and the second layer L2 (including the arrangement density of materials) are substantially the same, and therefore the arrangement examples of FIGS. 14A to 14M described above.
  • the characteristics of the material in the model S can be made uniform in the vertical direction, and the physical strength of the model S can be further improved.
  • the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below.
  • the modeled object S to be modeled is different from the above-described embodiment.
  • the model S to be modeled in the third embodiment is formed by repeatedly laminating the first layer L1 and the second layer L2, and this point is the embodiment described above. Is the same.
  • the first layer L1 of the shaped object S of the third embodiment is obtained by arranging a plurality of linear materials R1s extending in parallel to each other. This is different from the above-described embodiment in which a plurality of linear materials are arranged radially.
  • the direction in which the linear material R1s extends in the first layer L1 is preferably different for each different first layer L1 as shown in FIG.
  • the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below.
  • the modeled object S to be modeled is different from the above-described embodiment.
  • the model S to be modeled in this embodiment is formed by repeatedly laminating the first layer L1 and the second layer L2, and this point is the same as the above-described embodiment. is there.
  • the first layer L1 and the second layer L2 form the curvature materials R1r and R2r only at a predetermined angle (for example, 180 °) in the circumferential direction, for example.
  • a first linear material R1s made of the first material and a second linear shape made of the second material are formed radially from the vicinity of the center of the first layer L1 or the second layer L2 toward the outer periphery.
  • the material R2s is formed.
  • the angle range in which the curvature materials R1r and R2r are formed has a relationship of rotating clockwise by a predetermined angle toward the upper layer. Accordingly, the portions of the curvature materials R1r and R2r are stacked so as to have a spiral structure.
  • the linear materials R1s and R2s intersect the curvature materials R1r and R2r in the gaps of the spiral structure to form a cross-beam structure.
  • the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below.
  • the modeled object S to be modeled is different from the above-described embodiment.
  • the model S to be modeled in this embodiment is formed by repeatedly laminating the first layer L1 and the second layer L2, and this point is the same as the above-described embodiment. is there.
  • the first layer L1 and the second layer L2 form the curvature materials R1r and R2r only at a predetermined angle (for example, 180 °) in the circumferential direction, for example.
  • a predetermined angle for example, 180 °
  • the first linear material R1s made of the first material and the second linear material R2s made of the second material are formed in parallel with each other.
  • the angle range in which the curvature materials R1r and R2r are formed has a relationship of rotating clockwise by a predetermined angle toward the upper layer. Accordingly, the portions of the curvature materials R1r and R2r are stacked so as to have a spiral structure.
  • the linear materials R1s and R2s intersect the curvature materials R1r and R2r in the gaps of the spiral structure to form a cross-beam structure.

Abstract

This three-dimensional modeling device comprises: a modeling stage for the placement and holding of a modeled object; a modeling head configured to be movable relative to the modeling stage and supplying a material to the modeling stage; and a control unit for controlling the modeling head. The control unit repeatedly generates first layers and second layers to form a modeled object. The control unit controls the modeling head to arrange at least a part of the material so as to extend linearly in the first layers, while in the second layers, at least a part of the material is arranged in a direction crossing the longitudinal direction of the material in the first layers and having a curvature corresponding to the contour of the second layers.

Description

三次元造形装置、及びその制御方法、並びにその造形物Three-dimensional modeling apparatus, control method thereof, and modeled object
 本発明は、三次元造形装置、及びその制御方法、並びにその造形物に関する。 The present invention relates to a three-dimensional modeling apparatus, a control method thereof, and a modeled article thereof.
 三次元設計データに基づいて造形物を製造する三次元造形装置が、例えば特許文献1により知られている。このような三次元造形装置の方式としては、光造形法、粉末焼結法、インクジェット法、溶融樹脂積層法など、様々な方式が提案され、製品化されている。 For example, Patent Document 1 discloses a three-dimensional modeling apparatus that manufactures a model based on three-dimensional design data. As a method of such a three-dimensional modeling apparatus, various methods such as an optical modeling method, a powder sintering method, an ink jet method, and a molten resin lamination method have been proposed and commercialized.
 一例として、溶融樹脂積層法を採用した三次元造形装置では、造形物の材料となる溶融樹脂を吐出するための造形ヘッドを三次元移動機構上に搭載し、造形ヘッドを三次元方向に移動させて溶融樹脂を吐出しつつ溶融樹脂を積層させて造形物を得る。その他、インクジェット法を採用した三次元造形装置も、加熱した熱可塑性材料を滴下するための造形ヘッドを三次元移動機構上に搭載した構造を有している。 As an example, in a three-dimensional modeling apparatus that employs a molten resin lamination method, a modeling head for discharging molten resin that is a material of a modeled object is mounted on a three-dimensional movement mechanism, and the modeling head is moved in a three-dimensional direction. Then, the molten resin is laminated while discharging the molten resin to obtain a shaped article. In addition, a three-dimensional modeling apparatus that employs an ink jet method has a structure in which a modeling head for dropping a heated thermoplastic material is mounted on a three-dimensional movement mechanism.
 また、本出願人は、特許文献2において、第1の層では第1方向を長手方向とする材料を所定の間隔で積層させる一方で、その上の第2の層では、第1方向とは交差する第2方向を長手方向とする材料を所定所定間隔で積層させていわゆる井桁構造の造形物を生成することを可能とした三次元造形装置、三次元造形方法及びその造形物を提案した。この造形物では、複数層間で互いに交差する材料がその交点において接合するので、強固な造形物を生成することができる。また、複数種類の材料を井桁構造内に組み込むことにより、新規の特性を有する造形物を提供することができる。
 しかし、この造形方法の場合、造形物がその輪郭において所定の曲率を持つ場合(例えば円柱)、造形物に異方性が生じ、造形物に求められる物理的強度を担保できない虞がある。
In addition, in the patent document 2, the applicant of the present invention, in the first layer, laminates a material having the first direction as the longitudinal direction at a predetermined interval, while the second layer above the first layer is the first direction. A three-dimensional modeling apparatus, a three-dimensional modeling method, and a three-dimensional modeling method capable of generating a modeled article having a so-called cross-girder structure by laminating materials having a second direction intersecting the longitudinal direction at predetermined intervals have been proposed. In this modeled object, materials that intersect with each other between a plurality of layers are joined at the intersection, so that a strong modeled object can be generated. Further, by incorporating a plurality of types of materials into the cross-girder structure, it is possible to provide a shaped article having new characteristics.
However, in the case of this modeling method, when the modeled object has a predetermined curvature at its contour (for example, a cylinder), anisotropy occurs in the modeled object, and the physical strength required for the modeled object may not be secured.
特開2002-307562号公報JP 2002-307562 A 特許第5909309号公報Japanese Patent No. 5909309
 本発明は、造形物の輪郭にかかわらず、その物理的強度を担保することができる三次元造形装置、その制御方法、及び造形物を提供することを目的とする。 An object of the present invention is to provide a three-dimensional modeling apparatus capable of ensuring the physical strength regardless of the contour of a modeled object, a control method thereof, and a modeled object.
 本発明に係る三次元造形装置は、造形物が載置される造形ステージと、前記造形ステージに対し相対的に移動可能に構成され前記造形ステージに対し材料を供給する造形ヘッドと、前記造形ヘッドを制御する制御部とを備える。前記制御部は、前記造形ヘッドから供給される材料により第1の層と第2の層とを繰り返し生成して造形物を造形するように構成される。前記制御部は、前記第1の層において、前記材料の少なくとも一部を直線状に延びるよう配列する一方、前記第2の層において、前記材料の少なくとも一部を、前記第1の層における前記材料の長手方向とは交差する方向で且つ前記第2の層の輪郭に対応した曲率を有するように配列し、これにより、前記第1の層に形成された前記材料と、前記第2の層に形成された前記材料とが上下方向で接合するよう、前記造形ヘッドを制御する。 The three-dimensional modeling apparatus according to the present invention includes a modeling stage on which a model is placed, a modeling head configured to be movable relative to the modeling stage, and supplying a material to the modeling stage, and the modeling head And a control unit for controlling. The said control part is comprised so that a 1st layer and a 2nd layer may be repeatedly produced | generated with the material supplied from the said modeling head, and a modeling thing may be modeled. The control unit arranges at least a part of the material in the first layer so as to extend linearly, while in the second layer, at least a part of the material in the first layer is arranged in the first layer. Arranged so as to have a curvature corresponding to the outline of the second layer in a direction intersecting the longitudinal direction of the material, and thereby the material formed in the first layer and the second layer The shaping head is controlled so that the material formed on the substrate is bonded in the vertical direction.
 また、本発明に係る造形物は、第1の層と、第2の層とを繰り返し積層して形成される。前記第1の層では、材料が直線状に延びるよう配列される一方、前記第2の層では、前記材料が、前記第1の層における前記材料とは交差する方向で且つ前記第2の層の輪郭に対応した曲率を有するように配列され、これにより、前記第1の層に形成された前記材料と、前記第2の層に形成された前記材料とが上下方向で接合するよう構成される。 Further, the modeled object according to the present invention is formed by repeatedly laminating the first layer and the second layer. In the first layer, the material is arranged to extend linearly, while in the second layer, the material is in a direction intersecting the material in the first layer and the second layer. Arranged so as to have a curvature corresponding to the contour of the first layer, whereby the material formed in the first layer and the material formed in the second layer are joined in the vertical direction. The
 また、本発明に係る三次元造形装置の制御方法は、造形物を生成するため材料を供給する造形ヘッドを備える三次元造形装置の制御方法である。この制御方法は、第1の層において、前記材料の少なくとも一部を直線状に延びるよう配列するよう前記造形ヘッドを制御するステップと、第2の層において、前記材料の少なくとも一部を、前記第1の層における前記材料の長手方向とは交差する方向で且つ前記第2の層の輪郭に対応した曲率を有するように配列し、これにより、前記第1の層に形成された前記材料と、前記第2の層に形成された前記材料とが上下方向で接合するよう、前記造形ヘッドを制御するステップとを備える。 Moreover, the control method of the three-dimensional modeling apparatus according to the present invention is a control method of the three-dimensional modeling apparatus including a modeling head that supplies a material for generating a modeled object. The control method includes the steps of controlling the shaping head to arrange at least a part of the material in a first layer so as to extend linearly, and at least a part of the material in the second layer. The first layer is arranged so as to have a curvature that intersects with the longitudinal direction of the material in the first layer and corresponds to the contour of the second layer, whereby the material formed in the first layer And controlling the modeling head so that the material formed in the second layer is joined in the vertical direction.
第1の実施の形態に係る三次元造形装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the three-dimensional modeling apparatus which concerns on 1st Embodiment. 第1の実施の形態に係る三次元造形装置の概略構成を示す正面図である。It is a front view which shows schematic structure of the three-dimensional modeling apparatus which concerns on 1st Embodiment. XYステージ12の構成を示す斜視図である。2 is a perspective view showing a configuration of an XY stage 12. FIG. ドライバ300の構造の詳細について説明するブロック図である。3 is a block diagram illustrating details of the structure of a driver 300. FIG. コンピュータ200(制御装置)の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the computer 200 (control apparatus). 第1の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。The schematic of the structure of the molded article S formed with the three-dimensional modeling apparatus of 1st Embodiment is shown. 特許文献2に記載された三次元造形方法により生成される造形物について説明する。A modeled object generated by the three-dimensional modeling method described in Patent Document 2 will be described. 特許文献2に記載された三次元造形方法により生成される造形物について説明する。A modeled object generated by the three-dimensional modeling method described in Patent Document 2 will be described. 図6及び図7の構造を有する造形物の問題点を説明する。The problems of the shaped object having the structure of FIGS. 6 and 7 will be described. 第1の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。The schematic of the structure of the molded article S formed with the three-dimensional modeling apparatus of 1st Embodiment is shown. 第1の実施の形態の三次元造形装置により形成される造形物Sの効果を示す。The effect of the molded article S formed by the three-dimensional modeling apparatus according to the first embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第1の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 1st Embodiment is shown. 第2の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。The schematic of the structure of the molded article S formed by the three-dimensional modeling apparatus of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第2の実施の形態の造形物Sの第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。The specific example of arrangement | positioning of linear material R1s arranged radially in the 1st layer L1 of the molded article S of 2nd Embodiment is shown. 第3の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。The schematic of the structure of the molded article S formed by the three-dimensional modeling apparatus of 3rd Embodiment is shown. 第4の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。The schematic of the structure of the molded article S formed with the three-dimensional modeling apparatus of 4th Embodiment is shown. 第5の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。The schematic of the structure of the molded article S formed by the three-dimensional modeling apparatus of 5th Embodiment is shown.
 次に、本発明の実施の形態を、図面を参照して詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施の形態]
(全体構成)
 図1は、第1の実施の形態で用いる、いわゆる熱溶解積層型(FDM、Fused Deposition Molding)の3Dプリンタ100の概略構成を示す斜視図である。このFDM方式の3Dプリンタ100は、以下に説明する造形物を造形可能な3Dプリンタ100の一態様であり、以下の説明から明らかなように、同様の造形物を製造可能な他の方式の3Dプリンタを採用することは可能である。
 図1のFDM型の3Dプリンタ100は、フレーム11と、XYステージ12と、造形ステージ13と、昇降テーブル14と、ガイドシャフト15とを備えている。
[First Embodiment]
(overall structure)
FIG. 1 is a perspective view showing a schematic configuration of a so-called hot melt lamination type (FDM, Fused Deposition Molding) 3D printer 100 used in the first embodiment. The FDM 3D printer 100 is an aspect of a 3D printer 100 capable of modeling a model to be described below, and, as will be apparent from the following description, other systems of 3D capable of manufacturing a similar model. It is possible to employ a printer.
The FDM type 3D printer 100 in FIG. 1 includes a frame 11, an XY stage 12, a modeling stage 13, a lifting table 14, and a guide shaft 15.
 この3Dプリンタ100を制御する制御装置としてコンピュータ200が、この3Dプリンタ100に接続されている。また、3Dプリンタ100中の各種機構を駆動するためのドライバ300も、この3Dプリンタ100に接続されている。 A computer 200 is connected to the 3D printer 100 as a control device for controlling the 3D printer 100. A driver 300 for driving various mechanisms in the 3D printer 100 is also connected to the 3D printer 100.
(フレーム11)
 フレーム11は、図1に示すように、例えば直方体の外形を有し、アルミニウム等の金属材料の枠組を備えている。このフレーム11の4つの角部に、例えば4本のガイドシャフト15が、図1のZ方向、すなわち造形ステージ13の平面に対し垂直な方向に延びるように形成されている。ガイドシャフト15は、後述するように昇降テーブル14を上下方向に移動させる方向を規定する直線状の部材である。ガイドシャフト15の本数は4本には限られず、昇降テーブル14を安定的に維持・移動させることができる本数に設定される。
(Frame 11)
As shown in FIG. 1, the frame 11 has, for example, a rectangular parallelepiped shape and includes a frame made of a metal material such as aluminum. For example, four guide shafts 15 are formed at four corners of the frame 11 so as to extend in the Z direction in FIG. 1, that is, in a direction perpendicular to the plane of the modeling stage 13. The guide shaft 15 is a linear member that defines a direction in which the elevating table 14 is moved in the vertical direction as will be described later. The number of guide shafts 15 is not limited to four, and is set to a number that can stably maintain and move the lifting table 14.
(造形ステージ13)
 造形ステージ13は、造形物Sが載置される台であり、後述する造形ヘッドから吐出される熱可塑性樹脂が堆積される台である。
(Modeling stage 13)
The modeling stage 13 is a table on which the model S is placed, and is a table on which a thermoplastic resin discharged from a modeling head described later is deposited.
(昇降テーブル14)
 昇降テーブル14は、図1及び図2に示すように、その4つの角部においてガイドシャフト15を貫通させており、ガイドシャフト15の長手方向(Z方向)に沿って移動可能に構成されている。昇降テーブル14は、ガイドシャフト15と接触するローラ34、35を備えている。ローラ34、35は昇降テーブル14の2つの角部に形成されたアーム部33において回動可能に設置されている。このローラ34、35がガイドシャフト15上と接触しつつ回動することで、昇降テーブル14はZ方向にスムーズに移動することが可能とされている。また、昇降テーブル14は、図2に示すように、モータMzの駆動力をタイミングベルト、ワイヤ、プーリ等からなる動力伝達機構により伝達することにより、上下方向に所定間隔(例えば0.1mmピッチ)で移動する。モータMzは、例えば、サーボモータ、ステッピングモータなどが好適である。なお、実際の昇降テーブル14の高さ方向の位置を連続的又は間欠的にリアルタイムで、図示しない位置センサを用いて測定し、適宜補正をかけることによって、昇降テーブル14の位置精度を高めるようにしてもよい。後述する造形ヘッド25A、25Bについても同様である。
(Elevating table 14)
As shown in FIG. 1 and FIG. 2, the lifting table 14 penetrates the guide shaft 15 at its four corners, and is configured to be movable along the longitudinal direction (Z direction) of the guide shaft 15. . The lifting table 14 includes rollers 34 and 35 that are in contact with the guide shaft 15. The rollers 34 and 35 are rotatably installed at arm portions 33 formed at two corners of the lifting table 14. The rollers 34 and 35 rotate while being in contact with the guide shaft 15 so that the elevating table 14 can smoothly move in the Z direction. Further, as shown in FIG. 2, the elevating table 14 transmits a driving force of the motor Mz by a power transmission mechanism including a timing belt, a wire, a pulley, and the like, so that a predetermined interval (for example, 0.1 mm pitch) in the vertical direction. Move with. As the motor Mz, for example, a servo motor or a stepping motor is suitable. It should be noted that the actual position of the lifting table 14 in the height direction is measured continuously or intermittently in real time using a position sensor (not shown), and the position accuracy of the lifting table 14 is improved by appropriately correcting the position. May be. The same applies to modeling heads 25A and 25B described later.
(XYステージ12)
 XYステージ12は、この昇降テーブル14の上面に載置されている。図3は、このXYステージ12の概略構成を示す斜視図である。XYステージ12は、枠体21と、Xガイドレール22と、Yガイドレール23と、リール24A、24Bと、造形ヘッド25A、25Bと、造形ヘッドホルダHを備えている。Xガイドレール22は、その両端がYガイドレール23に嵌め込まれ、Y方向に摺動自在に保持されている。リール24A、24Bは、造形ヘッドホルダHに固定されており、造形ヘッドホルダHによって保持された造形ヘッド25A、25Bの動きに追従してXY方向を移動する。造形物Sの材料となる熱可塑性樹脂は、径が3~1.75mm程度の紐状の樹脂(フィラメント38A、38B)であり、通常リール24A、24Bに捲かれた状態で保持されているが、造形時には後述する造形ヘッド25A、25Bに設けられたモータ(エクストルーダ)によって造形ヘッド25A、25B内に送り込まれる。
(XY stage 12)
The XY stage 12 is placed on the upper surface of the lifting table 14. FIG. 3 is a perspective view showing a schematic configuration of the XY stage 12. The XY stage 12 includes a frame body 21, an X guide rail 22, a Y guide rail 23, reels 24A and 24B, modeling heads 25A and 25B, and a modeling head holder H. Both ends of the X guide rail 22 are fitted into the Y guide rail 23 and are held slidable in the Y direction. The reels 24A and 24B are fixed to the modeling head holder H, and move in the XY directions following the movement of the modeling heads 25A and 25B held by the modeling head holder H. The thermoplastic resin that is the material of the shaped object S is a string-like resin ( filaments 38A and 38B) having a diameter of about 3 to 1.75 mm, and is usually held in a state of being wound around the reels 24A and 24B. At the time of modeling, it is fed into the modeling heads 25A and 25B by motors (extruders) provided on the modeling heads 25A and 25B described later.
 なお、リール24A、24Bを造形ヘッドホルダHに固定せずに枠体21等に固定し、造形ヘッド25の動きに追従させない構成とすることもできる。また、フィラメント38A、38Bを露出した状態で造形ヘッド25内に送り込まれる構成としたが、ガイド(例えば、チューブ、リングガイド等)を介在させて造形ヘッド25A、25B内に送り込むようにしても良い。
 単一材料のみで造形物を造形する場合には、フィラメント38A、38Bのいずれか一方のみを使用して造形を行うことができる。一方で、後述するように、フィラメント38A及び38Bの両方を1つの造形物において組み合わせて使用することもできる。
 フィラメント38A、38Bはそれぞれ異なる材料からなる。一例として、一方がABS樹脂、ポリプロピレン樹脂、ナイロン樹脂、ポリカーボネイト樹脂のうちのいずれかである場合、他方は、その一方の樹脂以外の樹脂とすることができる。あるいは、同じ材料の樹脂であっても、その内部に含まれるフィラーの材料の種類や割合が異なるようにすることもできる。すなわち、フィラメント38A、38Bは、それぞれ異なる性状を有し、その組み合わせにより造形物の特性(強度など)を向上させることができることが好ましい。
 なお、図1~図3では、造形ヘッド25Aは、フィラメント38Aを溶融・吐出するよう構成され、造形ヘッド25Bは、フィラメント38Bを溶融し吐出するよう構成され、異なるフィラメントのためにそれぞれ独立の造形ヘッドが用意されている。しかし、本発明はこれに限定されるものではなく、単一の造形ヘッドのみを用意し、単一の造形ヘッドにより複数種類のフィラメント(樹脂材料)を選択的に溶融・吐出させるような構成も採用することができる。
Note that the reels 24 </ b> A and 24 </ b> B may be fixed to the frame body 21 or the like without being fixed to the modeling head holder H so that the movement of the modeling head 25 is not followed. In addition, the filaments 38A and 38B are exposed to be fed into the modeling head 25. However, the filaments 38A and 38B may be fed into the modeling heads 25A and 25B with a guide (for example, a tube or a ring guide) interposed therebetween. .
In the case of modeling a model with only a single material, modeling can be performed using only one of the filaments 38A and 38B. On the other hand, as will be described later, both the filaments 38A and 38B can be used in combination in one model.
The filaments 38A and 38B are made of different materials. As an example, when one is an ABS resin, a polypropylene resin, a nylon resin, or a polycarbonate resin, the other can be a resin other than the one resin. Or even if it is resin of the same material, the kind and ratio of the material of the filler contained in the inside can also be made to differ. That is, it is preferable that the filaments 38A and 38B have different properties, and the characteristics (strength and the like) of the shaped article can be improved by a combination thereof.
1 to 3, the modeling head 25A is configured to melt and discharge the filament 38A, and the modeling head 25B is configured to melt and discharge the filament 38B, and independent modeling for different filaments. A head is prepared. However, the present invention is not limited to this, and there is a configuration in which only a single modeling head is prepared, and a plurality of types of filaments (resin materials) are selectively melted and discharged by the single modeling head. Can be adopted.
 フィラメント38A、38Bは、リール24A、24BからチューブTbを介して造形ヘッド25A、25B内に送り込まれる。造形ヘッド25A、25Bは、造形ヘッドホルダHにより保持され、リール24A、24Bと共にX、Yのガイドレール22、23に沿って移動可能に構成されている。また、図2及び図3では図示を省略するが、造形ヘッド25A、25B内には、フィラメント38A、38BをZ方向下方へ送り込むためのエクストルーダモータが配置される。造形ヘッド25A、25Bは、XY平面内においては互いに一定の位置関係を保って造形ヘッドホルダHと共に移動可能とされていればよいが、XY平面においても、互いの位置関係が変更可能なように構成されていてもよい。 The filaments 38A and 38B are fed into the modeling heads 25A and 25B from the reels 24A and 24B through the tube Tb. The modeling heads 25A and 25B are held by the modeling head holder H and configured to be movable along the X and Y guide rails 22 and 23 together with the reels 24A and 24B. Although not shown in FIGS. 2 and 3, an extruder motor for feeding the filaments 38A and 38B downward in the Z direction is disposed in the modeling heads 25A and 25B. The modeling heads 25 </ b> A and 25 </ b> B need only be movable with the modeling head holder H while maintaining a fixed positional relationship with each other in the XY plane, but also in the XY plane so that the mutual positional relationship can be changed. It may be configured.
 なお、図2及び図3では図示を省略するが、造形ヘッド25A、25BをXYステージ12に対し移動させるためのモータMx、Myも、このXYステージ12上に設けられている。モータMx、Myは、例えば、サーボモータ、ステッピングモータなどが好適である。 Although not shown in FIGS. 2 and 3, motors Mx and My for moving the modeling heads 25 </ b> A and 25 </ b> B with respect to the XY stage 12 are also provided on the XY stage 12. As the motors Mx and My, for example, a servo motor or a stepping motor is suitable.
(ドライバ300)
 次に、図4Aのブロック図を参照してドライバ300の構造の詳細について説明する。ドライバ300は、CPU301、フィラメント送り装置302、ヘッド制御装置303、電流スイッチ304、及びモータドライバ306を含んでいる。CPU301は、コンピュータ200から入出力インタフェース307を介して各種信号を受信して、ドライバ300の全体の制御を行う。フィラメント送り装置302は、CPU301からの制御信号に従い、造形ヘッド25A、25B内のエクストルーダモータに対して、フィラメント38A、38Bの造形ヘッド25A、25Bに対する送り量(押し込み量又は退避量)を指令し制御する。
(Driver 300)
Next, details of the structure of the driver 300 will be described with reference to the block diagram of FIG. 4A. The driver 300 includes a CPU 301, a filament feeding device 302, a head control device 303, a current switch 304, and a motor driver 306. The CPU 301 receives various signals from the computer 200 via the input / output interface 307 and controls the entire driver 300. In accordance with a control signal from the CPU 301, the filament feeder 302 instructs the extruder motors in the modeling heads 25A and 25B to control the feeding amount (pushing amount or retracting amount) of the filaments 38A and 38B with respect to the modeling heads 25A and 25B. To do.
 電流スイッチ304は、ヒータ26に流れる電流量を切換えるためのスイッチ回路である。電流スイッチ304のスイッチング状態が切り替わることにより、ヒータ26に流れる電流が増加又は減少し、これにより造形ヘッド25A、25Bの温度が制御される。また、モータドライバ306は、CPU301からの制御信号に従い、モータMx、My、Mzを制御するための駆動信号を発生させる。 The current switch 304 is a switch circuit for switching the amount of current flowing through the heater 26. By switching the switching state of the current switch 304, the current flowing through the heater 26 is increased or decreased, thereby controlling the temperature of the modeling heads 25A and 25B. The motor driver 306 generates drive signals for controlling the motors Mx, My, and Mz according to the control signal from the CPU 301.
 図4Bは、コンピュータ200(制御装置)の構成を示す機能ブロック図である。コンピュータ200は、空間フィルタ処理部201、スライサ202、造形スケジューラ203、造形指示部204及び造形ベクトル生成部205を備えている。これらの構成は、コンピュータ200の内部において、コンピュータプログラムにより実現することができる。 FIG. 4B is a functional block diagram showing the configuration of the computer 200 (control device). The computer 200 includes a spatial filter processing unit 201, a slicer 202, a modeling scheduler 203, a modeling instruction unit 204, and a modeling vector generation unit 205. These configurations can be realized by a computer program inside the computer 200.
 空間フィルタ処理部201は、造形しようとする造形物の三次元形状を示すマスタ3Dデータを外部から受領し、このマスタ3Dデータに基づいて造形物が形成される造形空間に対し各種データ処理を施す。具体的に空間フィルタ処理部201は、後述するように、造形空間を必要に応じて複数の造形ユニットUp(x、y、z)に分割すると共に、マスタ3Dデータに基づいて前記複数の造形ユニットUpの各々に、各造形ユニットに与えるべき特性を示すプロパティデータを付与する機能を有する。造形ユニットへの分割の要否、及び個々の造形ユニットのサイズは、形成される造形物Sのサイズ、形状によって決定される。例えば、以下に説明するような造形物Sをを形成するような場合には、造形ユニットへの分割は不要である。 The spatial filter processing unit 201 receives master 3D data indicating the three-dimensional shape of a model to be modeled from the outside, and performs various data processing on the model space in which the model is formed based on the master 3D data. . Specifically, as will be described later, the spatial filter processing unit 201 divides the modeling space into a plurality of modeling units Up (x, y, z) as necessary, and the plurality of modeling units based on the master 3D data. Each of the Ups has a function of assigning property data indicating characteristics to be given to each modeling unit. The necessity of division into modeling units and the size of each modeling unit are determined by the size and shape of the formed object S to be formed. For example, when forming the modeling object S as described below, division into modeling units is unnecessary.
 造形指示部204は、造形の内容に関する指示データを、空間フィルタ処理部201及びスライサ202に提供する。なお、造形指示部204は、キーボードやマウス等の入力デバイスから指示データの入力を受けるものであってもよいし、造形内容を記憶した記憶装置から指示データを提供されるものであってもよい。 The modeling instruction unit 204 provides instruction data regarding the contents of modeling to the spatial filter processing unit 201 and the slicer 202. The modeling instruction unit 204 may receive input of instruction data from an input device such as a keyboard or a mouse, or may be provided with instruction data from a storage device that stores modeling contents. .
 また、スライサ202は、造形ユニットUpの各々を、複数のスライスデータに変換する機能を有する。スライスデータは、後段の造形スケジューラ203に送られる。造形スケジューラ203は、前述したプロパティデータに従って、スライスデータにおける造形手順や造形方向などを決定する役割を有する。また、造形ベクトル生成部205は、造形スケジューラ203において決定された造形手順及び造形方向に応じて造形ベクトルを生成する。この造形ベクトルのデータはドライバ300に送信される。ドライバ300は、受信された造形ベクトルのデータに応じて3Dプリンタ100を制御する。 Further, the slicer 202 has a function of converting each of the modeling units Up into a plurality of slice data. The slice data is sent to the modeling scheduler 203 at the subsequent stage. The modeling scheduler 203 has a role of determining a modeling procedure and a modeling direction in the slice data according to the property data described above. Further, the modeling vector generation unit 205 generates a modeling vector according to the modeling procedure and the modeling direction determined by the modeling scheduler 203. This modeling vector data is transmitted to the driver 300. The driver 300 controls the 3D printer 100 according to the received modeling vector data.
 図5に、第1の実施の形態の三次元造形装置により形成される造形物Sの構造の概略図を示す。図5に示すように、本実施の形態により形成される造形物Sは、第1の層L1、及び第2の層L2を交互に、複数層に亘り積層して構成される。第1の層L1、及び第2の層L2は、それぞれ前述したスライスデータに基づいて形成される。 FIG. 5 shows a schematic diagram of the structure of the modeled object S formed by the three-dimensional modeling apparatus of the first embodiment. As shown in FIG. 5, the shaped object S formed according to the present embodiment is configured by alternately laminating a first layer L1 and a second layer L2 over a plurality of layers. The first layer L1 and the second layer L2 are each formed based on the slice data described above.
 ここで、特許文献2に記載された三次元造形方法により生成される造形物について図6及び図7を参照して説明する。この特許文献2では、第1の層L1においては、例えばX方向を長手方向とする直線状の材料R1を、Y方向に所定ピッチで(図7に示す空隙V1を残しつつ)配列する。一方、第2の層L2においては、例えばY方向を長手方向とする直線状の材料R1を、X方向に所定ピッチで配列する。なお、図5では図示を省略しているが、材料R1の隙間に、別の材料R2を配列することもできる。このように、ある材料が、第1の層では一の方向に延び、その上の第2の層ではこれとは異なる方向に延びて交差し上下で接合する構造が繰り返される構造を本明細書では「井桁構造」と称する。 Here, the modeled object produced | generated by the three-dimensional modeling method described in patent document 2 is demonstrated with reference to FIG.6 and FIG.7. In Patent Document 2, in the first layer L1, for example, linear materials R1 whose longitudinal direction is the X direction are arranged at a predetermined pitch in the Y direction (while leaving the gap V1 shown in FIG. 7). On the other hand, in the second layer L2, for example, linear materials R1 whose longitudinal direction is the Y direction are arranged at a predetermined pitch in the X direction. In addition, although illustration is abbreviate | omitted in FIG. 5, another material R2 can also be arranged in the clearance gap between materials R1. In this specification, a structure in which a certain material extends in one direction in the first layer and crosses and joins up and down in the second layer on the first layer is described in this specification. In this case, it is referred to as “well girder structure”.
 このような井桁構造の造形物は、第1の層L1の材料R1と、第2の層L2の材料R1とが交互に積層されその上下面で接合するため非常に強固な造形物とすることができる。また、材料R1の隙間に別の材料R2を埋め込む場合には、その別の材料R2により別途井桁構造が作られる。材料R1とR2とが接合しなくても、井桁構造になっているため、造形物Sは強固に構成され得るとともに、材料R1とR2の中間的な性質を有する造形物を構成することが可能になる。 The shaped object having such a cross-girder structure is a very strong shaped object because the material R1 of the first layer L1 and the material R1 of the second layer L2 are alternately stacked and joined at the upper and lower surfaces thereof. Can do. Further, when another material R2 is embedded in the gap between the materials R1, a separate girder structure is formed by the other material R2. Even if the materials R1 and R2 are not joined, the shaped object S can be configured firmly because the structure has a cross-beam structure, and it is possible to configure a shaped object having intermediate properties between the materials R1 and R2. become.
 しかし、図5に示すように、造形物Sがその輪郭において所定の曲率を有する場合(例えば、円柱形状である場合)、その造形物の物理的強度に問題が生じることがある。例えば、図8に示すように、材料R1がX方向又はY方向を長手方向として互いに直交するような配列である場合、この造形物Sは、X方向又はY方向に平行な加圧に対しては十分な強度を持つ一方で、X方向又はY方向と交差する方向(例えば45°)からの加圧に対しては、十分な物理的強度を有することができない。すなわち、方向によって加圧に対する物理的強度に差が生じてしまう。 However, as shown in FIG. 5, when the shaped object S has a predetermined curvature in its contour (for example, in the case of a cylindrical shape), a problem may occur in the physical strength of the shaped object. For example, as shown in FIG. 8, when the material R1 is arranged in such a manner that the materials R1 are orthogonal to each other with the X direction or the Y direction as a longitudinal direction, Has sufficient strength, but it cannot have sufficient physical strength against pressurization from the direction crossing the X direction or Y direction (for example, 45 °). That is, a difference in physical strength against pressurization occurs depending on the direction.
 そこで、この第1の実施の形態では、図9に示すように、第1の層L1、第2の層L2において、次のように材料R1を配列することで、図8で説明した課題を解決している。
 図9に示すように、この第1の実施の形態で生成される造形物Sにおいては、第1の層L1に配列される材料R1sは、直線状に配列される。この図9の例では、直線状材料R1sは、第1の層L1の中心付近から、第1の層L1の輪郭の方向(外側)に向かって放射状に延びるようにされている。これは一例であり、後述するように、材料R1sは直線状であればよく、放射状の配置に限定されるものではない。また、全ての材料が直線状である必要はなく、主たる材料が直線状に形成されていればよい。
Therefore, in the first embodiment, as shown in FIG. 9, the material R1 is arranged as follows in the first layer L1 and the second layer L2, so that the problem described in FIG. It has been solved.
As shown in FIG. 9, in the shaped object S generated in the first embodiment, the materials R1s arranged in the first layer L1 are arranged linearly. In the example of FIG. 9, the linear material R1s extends radially from the vicinity of the center of the first layer L1 toward the contour direction (outside) of the first layer L1. This is merely an example, and as will be described later, the material R1s may be linear, and is not limited to a radial arrangement. Further, it is not necessary for all materials to be linear, and the main material only needs to be linear.
 そして、第2の層L2に配列される材料R1rは、第2の層L2の輪郭に対応した所定の曲率を与えられる(以下、そのような材料R1rを「曲率材料R1r」のように称する)。一例として、造形物Sが図5に示すような円柱形状の構造物である場合、曲率材料R1rは、例えば、当該円柱の中心軸を中心とした、円柱の半径を有する円又は円弧形状とすることができる。ここで、「第2の層L2の輪郭に対応する所定の曲率」とは、同一の曲率という意味ではなく、その輪郭に応じて決まる曲率、という意味である。例えば、造形物Sが円柱形状である場合、同心円状に配置される複数の曲率材料R1rの曲率に関しては、最外周の曲率材料R1rの曲率は、当該円柱の輪郭と略同一である一方、内側にある曲率材料R1rほど、その曲率は大きくなる。
 なお、造形物Sが円柱形状である場合にも、材料R1rは全てが同心円状とされている必要はなく、いくつかの材料、例えば最外周の数本の材料R1rが第1の層L1の輪郭に対応した形状を有し、その他は例えば直線状とされていてもよい。また、造形物Sが円柱形状以外の曲率を有する形状である場合にも、その曲率に沿った曲率材料を第2の層L2に形成すればよい。
The material R1r arranged in the second layer L2 is given a predetermined curvature corresponding to the contour of the second layer L2 (hereinafter, such a material R1r is referred to as “curvature material R1r”). . As an example, when the shaped object S is a cylindrical structure as shown in FIG. 5, the curvature material R1r is, for example, a circle or arc shape having a cylindrical radius centered on the central axis of the cylinder. be able to. Here, the “predetermined curvature corresponding to the contour of the second layer L2” does not mean the same curvature but a curvature determined according to the contour. For example, when the shaped object S has a cylindrical shape, regarding the curvature of the plurality of curvature materials R1r arranged concentrically, the curvature of the outermost curvature material R1r is substantially the same as the contour of the cylinder, The curvature material R1r is larger in curvature.
Even when the shaped object S has a cylindrical shape, the material R1r does not have to be all concentric, and several materials, for example, several materials R1r at the outermost periphery are formed on the first layer L1. It may have a shape corresponding to the contour, and the others may be linear, for example. Moreover, what is necessary is just to form the curvature material along the curvature in the 2nd layer L2, also when the molded article S is a shape which has curvatures other than a column shape.
 このように、本実施の形態の造形物Sは、直線状材料R1sを第1の層L1に形成するとともに、造形物Sの輪郭に対応した曲率を有する曲率材料R1rを第2の層L2に形成する。このような、曲率材料R1rが直線状材料R1sと上下面で交差し接合することにより、造形物Sは特許文献2と同様の井桁構造とすることができる。更に、造形物Sの輪郭に沿った曲率を有する曲率材料R1rにより、材料の配置関係は造形物S中の場所によらず略均一とすることができ、造形物Sの物理的強度を強化することができる。 As described above, the shaped article S of the present embodiment forms the linear material R1s in the first layer L1, and the curvature material R1r having a curvature corresponding to the contour of the shaped article S in the second layer L2. Form. Such a curved material R1r intersects and joins the linear material R1s on the upper and lower surfaces, whereby the shaped article S can have a cross-girder structure similar to that of Patent Document 2. Furthermore, with the curvature material R1r having a curvature along the contour of the model S, the material arrangement can be made substantially uniform regardless of the location in the model S, and the physical strength of the model S is enhanced. be able to.
 図11A~図11Iは、第1の層L1において放射状に配列される直線形状の材料R1sの具体的な配置例を示している。なお、図11A~図11Iは、便宜上、その外周が円周状であるように図示されているが、実際には図9に示すように、材料と材料の間は空洞である。
 図11Aは、第1の層L1の中心(円柱形状の造形物Sの中心軸)付近から伸びる第1直線状材料R1sLと、第2直線状材料R1sSとを放射状に配置した配置例を示している。第1直線状材料R1sLは、周方向に90°間隔で、その先端が当該中心付近で互いに略接するように配置されている。そして、第2直線状材料R1sSは、第1直線状材料R1sLの隙間に配置されている。このため、第2直線状材料R1sSは、第1直線状材料R1sLよりもその長手方向の長さが短い。この配置例の第1直線状材料R1sLと第2直線状材料R1sSは、いずれもその周方向の幅が位置によらず略同一である。
FIG. 11A to FIG. 11I show a specific arrangement example of the linear material R1s arranged radially in the first layer L1. 11A to 11I are illustrated so that the outer periphery thereof is a circular shape for the sake of convenience, but actually, as shown in FIG. 9, there is a cavity between the materials.
FIG. 11A shows an arrangement example in which the first linear material R1sL extending from the vicinity of the center of the first layer L1 (the central axis of the cylindrical shaped object S) and the second linear material R1sS are arranged radially. Yes. The first linear materials R1sL are arranged at 90 ° intervals in the circumferential direction so that their tips are substantially in contact with each other near the center. And 2nd linear material R1sS is arrange | positioned in the clearance gap between 1st linear material R1sL. For this reason, the second linear material R1sS is shorter in the longitudinal direction than the first linear material R1sL. The first linear material R1sL and the second linear material R1sS in this arrangement example have substantially the same width in the circumferential direction regardless of the position.
 図11Bは、図11Aと同様に、第1の層L1の中心(円柱形状の造形物Sの中心軸)付近から伸びる第1直線状材料R1sLと、第2直線状材料R1sSとを放射状に配置した配置例を示している。ただし、この図11Bの例では、8本の第1直線状材料R1sLが、周方向に45°間隔で、その先端が接するように配置されている。そして、第2直線状材料R1sSは、第1直線状材料R1sLの隙間に配置されている。第2直線状材料R1sSは、第1直線状材料R1sLよりもその長手方向の長さが短いのは、図11Aの例の場合と同様である。 11B, similarly to FIG. 11A, the first linear material R1sL extending from the vicinity of the center of the first layer L1 (the central axis of the cylindrical shaped object S) and the second linear material R1sS are radially arranged. An example of the arrangement is shown. However, in the example of FIG. 11B, the eight first linear materials R1sL are arranged at 45 ° intervals in the circumferential direction so that the tips thereof are in contact with each other. And 2nd linear material R1sS is arrange | positioned in the clearance gap between 1st linear material R1sL. The second linear material R1sS has a shorter length in the longitudinal direction than the first linear material R1sL, as in the example of FIG. 11A.
 図11Cの配置例では、第1の層L1において直線状材料R1sTは放射状に配置されており、この点は図11A及び図11Bの配置例と同様である。ただし、この図11Cの配置例では、直線状材料R1sTの幅(周方向)が、第1の層L1の中心側から外側に向かうにしたがって大きくなるようにされている。図11Aや図11Bの配置例では、1本の直線状材料R1sL、R1sSの幅が均一であるため、第1の層L1の外側では、複数の直線状材料の間の隙間が広くなり、これが造形物Sの物理的強度等に影響を与える虞がある。しかし、この図11Cの配置例のように、1本の直線状材料R1sTの幅が外側に向かうにつれ太くなることにより、第1の層L1の外側においても隙間を狭くすることができ、造形物Sの物理的強度を担保することができる。
 この明細書で「直線状材料」の用語は、全体として直線である材料だけでなく、直線状の部分を含む材料の意味で用いられる。
In the arrangement example of FIG. 11C, the linear materials R1sT are arranged radially in the first layer L1, and this is the same as the arrangement examples of FIGS. 11A and 11B. However, in the arrangement example of FIG. 11C, the width (circumferential direction) of the linear material R1sT is increased from the center side of the first layer L1 toward the outside. In the arrangement examples of FIG. 11A and FIG. 11B, since the widths of one linear material R1sL and R1sS are uniform, the gap between the plurality of linear materials is widened outside the first layer L1. There is a possibility of affecting the physical strength of the model S. However, as in the arrangement example of FIG. 11C, the width of one linear material R1sT becomes thicker toward the outside, so that the gap can be narrowed outside the first layer L1. The physical strength of S can be secured.
In this specification, the term “linear material” is used to mean a material that includes a linear portion as well as a material that is generally linear.
 また、図11Dの配置例では、直線状材料R1sp1、R1sp2は放射状に配置されており、この点は上述の配置例と同様である。ただし、直線状材料R1sp1、R1sp2のどちらも、第1の層L1の中心側においては1本の材料であるが、外側において2本に分岐する形状を有している。この配置例によっても、図11Cの配置例と同様の効果を得ることができる。なお、分岐する本数は2本に限られず、3本以上であってもよい。 In the arrangement example of FIG. 11D, the linear materials R1sp1 and R1sp2 are arranged radially, and this is the same as the above arrangement example. However, each of the linear materials R1sp1 and R1sp2 is a single material on the center side of the first layer L1, but has a shape branched into two on the outside. Also by this arrangement example, the same effect as the arrangement example of FIG. 11C can be obtained. The number of branches is not limited to two and may be three or more.
 図11Eの配置例は、図11A~図11Dの配置例とは異なり、第1の層L1が、更に複数(例えば6個)の扇形領域SCに分割されている。そして、扇形領域SC毎に複数の直線状材料R1sL1、R1sS1が配置されている。図11Eの例では、1つの扇形領域SCの1つの辺と平行に延びる複数の直線状材料R1sL1が配置され、もう1つの辺と平行に複数の直線状材料R1sS1が配置される。この例では、直線状材料R1sL1が第1の辺に平行に延びるとともに第2の辺まで延びるように配置されている。一方、直線状材料R1sS1は、第2の辺と平行に延びるとともに、直線状材料R1sL1に到達するまで延びるよう配置される。このため、直線状材料R1sL1の長さが、全体として直線状材料R1sS1の長さよりも長くされている。 In the arrangement example of FIG. 11E, unlike the arrangement examples of FIGS. 11A to 11D, the first layer L1 is further divided into a plurality of (for example, six) fan-shaped regions SC. A plurality of linear materials R1sL1 and R1sS1 are arranged for each sector region SC. In the example of FIG. 11E, a plurality of linear materials R1sL1 extending in parallel with one side of one sector region SC are arranged, and a plurality of linear materials R1sS1 are arranged in parallel with the other side. In this example, the linear material R1sL1 is arranged so as to extend in parallel to the first side and to the second side. On the other hand, the linear material R1sS1 extends in parallel with the second side and extends to reach the linear material R1sL1. For this reason, the length of the linear material R1sL1 is made longer than the length of the linear material R1sS1 as a whole.
 この図11Eの配置例では、第1の層L1が複数の扇形領域SCに分割され、その扇形の2つの辺に沿って直線状材料R1sL1、L1sS1が延びており、略放射状に直線状材料R1sL1、R1sS1が配置されている。このため、これらの直線状材料R1sL1、R1sS1は、第2の層L2に配置された曲率材料と共に井桁構造を構成することができる。 In the arrangement example of FIG. 11E, the first layer L1 is divided into a plurality of sector regions SC, and the linear materials R1sL1 and L1sS1 extend along two sides of the sector, and the linear material R1sL1 is approximately radially. , R1sS1 is arranged. For this reason, these linear materials R1sL1 and R1sS1 can form a cross-girder structure together with the curvature material arranged in the second layer L2.
 図11Fは、図11Eと同様に、第1の層L1を複数の扇形領域SCに分割した配置例である。ただし、この配置例では、複数の扇形領域SCの中心角(θ1、θ2)が互いに異なっている。なお、図11Fの配置例では、1つの扇形領域SCにおいて、略V字型となるように直線状材料R1sVが配置されているが、これに限定されるものではなく、例えば図11Eと同様の配置をすることも可能である。 FIG. 11F is an arrangement example in which the first layer L1 is divided into a plurality of sector regions SC, as in FIG. 11E. However, in this arrangement example, the central angles (θ1, θ2) of the plurality of sector regions SC are different from each other. In the arrangement example of FIG. 11F, the linear material R1sV is arranged so as to be substantially V-shaped in one sector area SC. However, the arrangement is not limited to this, for example, the same as in FIG. 11E. Arrangement is also possible.
 図11Gは、図11Fと同様に、第1の層L1を複数の中心角θが異なる扇形領域SCに分割した配置例である。この配置例では、扇形領域SCの各々において、V字型の直線状材料R1sVが複数配置されている。V字型の直線状材料R1sVを構成する2つの直線状部分が、扇形領域SCの2本の辺に略平行に延びる形で配置される。また、複数の直線状材料R1sVが、その辺が互いに平行となるように重なるよう配置される。
 なお、図11Gの例では、中心角θが大きい扇形領域SCでは、直線状材料R1sVの数が多く、中心角θが小さい扇形領域SCでは、直線状材料R1sVの数が少なくされている。ただし、図示の例はあくまで一例であり、中心角θの大きさにかかわらず、1つの扇形領域SCに含まれる直線状材料R1sVの数を同一としてもよい。
FIG. 11G is an arrangement example in which the first layer L1 is divided into a plurality of sector regions SC having different central angles θ, similarly to FIG. 11F. In this arrangement example, a plurality of V-shaped linear materials R1sV are arranged in each of the sector regions SC. Two linear portions constituting the V-shaped linear material R1sV are arranged so as to extend substantially parallel to the two sides of the sector region SC. Further, the plurality of linear materials R1sV are arranged so that the sides thereof are parallel to each other.
In the example of FIG. 11G, the number of linear materials R1sV is large in the sector region SC having a large central angle θ, and the number of linear materials R1sV is decreased in the sector region SC having a small central angle θ. However, the illustrated example is merely an example, and the number of linear materials R1sV included in one sector region SC may be the same regardless of the size of the central angle θ.
 また、図11Gの例では、各直線状材料R1sVは、仮想の楕円形EPi(i=1、2・・・)に沿って描画されている。楕円形EPiは、第1の層L1の中心に近いほど曲率が大きく、外周に近づくにしたがって曲率が小さくなる。これも一例であり、直線状材料R1sVは、その辺が全体として放射状に描画されていればよい。 In the example of FIG. 11G, each linear material R1sV is drawn along a virtual ellipse EPi (i = 1, 2,...). The elliptical EPi has a larger curvature as it is closer to the center of the first layer L1, and the curvature becomes smaller as it approaches the outer periphery. This is also an example, and the linear material R1sV only needs to be drawn radially as a whole.
 図11H、及び図11Iを用いて、第1の層L1における更に別の材料の配置例を説明する。図11Hは、第1の層L1、第2の層L2における材料の配置を示す平面図であり、図11Iは、第1の層L1、第2の層L2の積層の手法を示す斜視図である。この図11H及び図11Iに示す配置例は、第1の層L1、第2の層L2の積層を繰り返すものである点で、上述の配置例と同一である。ただし、以下の点において上述の配置例と異なっている。 11H and FIG. 11I will be used to describe another example of the arrangement of materials in the first layer L1. FIG. 11H is a plan view showing an arrangement of materials in the first layer L1 and the second layer L2, and FIG. 11I is a perspective view showing a method of stacking the first layer L1 and the second layer L2. is there. The arrangement examples shown in FIGS. 11H and 11I are the same as the arrangement examples described above in that the first layer L1 and the second layer L2 are repeatedly stacked. However, it differs from the above-described arrangement example in the following points.
 図11A~図11Gの配置例は、第1の層L1には直線状材料のみを配置し、第2の層L2に曲率材料のみを配置する。これに対し、図11H及び図11Iの配置例では、第1の層L1、第2の層L2のいずれにおいても、複数の扇形領域SCの一部には直線状材料R1sL1、R1sS1を配置する一方、他の扇形領域SCには曲率材料R1rを配置する。 In the arrangement examples of FIGS. 11A to 11G, only the linear material is arranged in the first layer L1, and only the curvature material is arranged in the second layer L2. On the other hand, in the arrangement examples of FIGS. 11H and 11I, the linear materials R1sL1 and R1sS1 are arranged in a part of the plurality of sector regions SC in both the first layer L1 and the second layer L2. The curvature material R1r is disposed in the other sector region SC.
 そして、図11Iに示すように、第1の層L1及び第2の層L2は、直線状材料R1sL1、R1sS1と曲率材料R1rとが上下方向で重なるように積層される。これにより、上述の配置例と同様に、直線状材料と曲率材料とにより井桁構造が構成され得る。この図11H及び図11Iの配置例の場合、第1の層L1、第2の層L2の構造(材料の配置密度等を含む)が略同一であるので、上述の配置例に比べ、造形物S中の材料の特性を上下方向において均一化させることができ、造形物Sの物理的強度を更に向上させることができる。 And as shown to FIG. 11I, the 1st layer L1 and the 2nd layer L2 are laminated | stacked so that linear material R1sL1, R1sS1 and curvature material R1r may overlap in an up-down direction. Thereby, a cross-girder structure can be comprised with a linear material and a curvature material similarly to the above-mentioned example of arrangement | positioning. In the case of the arrangement examples in FIGS. 11H and 11I, the structures of the first layer L1 and the second layer L2 (including the arrangement density of materials) are substantially the same. The characteristics of the material in S can be made uniform in the vertical direction, and the physical strength of the shaped object S can be further improved.
 図12は、更に別の配置例を説明する。図12の配置例は、第1の層L1には直線状材料のみを配置し、第2の層L2に曲率材料のみを配置する。この点では、図11A~図11Gの配置例と同様である。ただし、この図12の配置例では、第1の層L1の1つに配置される直線状材料R1sL1、R1sS1は、その上層にある別の第1の層L1に配置される直線状材料R1sL1、R1sS1に比べ、所定の回転中心を中心として微小角度Δαだけ回転した位置関係となっている。 FIG. 12 illustrates still another arrangement example. In the arrangement example of FIG. 12, only the linear material is arranged in the first layer L1, and only the curvature material is arranged in the second layer L2. This is the same as the arrangement example of FIGS. 11A to 11G. However, in the arrangement example of FIG. 12, the linear materials R1sL1 and R1sS1 arranged in one of the first layers L1 are linear materials R1sL1 arranged in another first layer L1 in the upper layer, Compared to R1sS1, the positional relationship is rotated by a minute angle Δα around a predetermined center of rotation.
 ここでの微小角度Δαは任意の数値とすることができるが、下方にある第1の層L1における直線状材料R1sL1、R1sS1の隙間が、上方にある第1の層L1における直線状材料R1sL1、R1sS1により重畳されるようにするのが好ましい。他の第1の層L1についても同様に、上下方向で第2の層L2を挟んで隣接する2つの第1の層L1では、直線状材料R1sL1、R1sS1が微小角度Δαだけ回転した位置関係を有している。この微小角度Δαが適切に設定されることにより、直線状材料R1sL1、R1sS1の隙間が実質的に埋められ、これにより造形物Sの物理的強度を向上させることができる。 Here, the minute angle Δα can be an arbitrary numerical value, but the gap between the linear materials R1sL1 and R1sS1 in the lower first layer L1 is a linear material R1sL1 in the upper first layer L1. It is preferable to superimpose by R1sS1. Similarly, the other first layers L1 have a positional relationship in which the linear materials R1sL1 and R1sS1 are rotated by a minute angle Δα in two adjacent first layers L1 across the second layer L2 in the vertical direction. Have. By appropriately setting the minute angle Δα, the gap between the linear materials R1sL1 and R1sS1 is substantially filled, and thereby the physical strength of the model S can be improved.
[第2の実施の形態]
 次に、本発明の第2の実施の形態を、図面を参照して詳細に説明する。この第2の実施の形態は、三次元造形装置(3Dプリンタ100)の構成自体は、第1の実施の形態と略同一でよい。したがって、3Dプリンタ100についての重複する説明は以下では省略する。ただし、この第2の実施の形態では、造形される造形物Sが第1の実施の形態とは異なっている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described in detail with reference to the drawings. In the second embodiment, the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below. However, in the second embodiment, the modeled object S to be modeled is different from the first embodiment.
 この第2の実施の形態の造形物Sは、第1の層L1と第2の層L2とを交互に積層し、直線状材料と曲率材料とが上下方向で接合するようにされており、この点は第1の実施の形態と同一である。ただし、この実施の形態では、第1の層L1において形成される材料R1s、R2sは、互いに異なる材料からなる。例えば、一方がABS樹脂、ポリプロピレン樹脂、ナイロン樹脂、ポリカーボネイト樹脂のうちのいずれかである場合、他方は、その一方の樹脂以外の樹脂とすることができる。また、第2の層L2において形成される材料R1r、R2rは、同様に互いに異なる材料からなる。 The shaped object S of the second embodiment is formed by alternately laminating the first layer L1 and the second layer L2, and the linear material and the curvature material are joined in the vertical direction. This is the same as in the first embodiment. However, in this embodiment, the materials R1s and R2s formed in the first layer L1 are made of different materials. For example, when one is an ABS resin, a polypropylene resin, a nylon resin, or a polycarbonate resin, the other can be a resin other than the one resin. Similarly, the materials R1r and R2r formed in the second layer L2 are made of different materials.
 第1の層L1において、材料R1s、R2sは、例えば図13に示すように、いずれも第1の層L1の中心付近から外側に向けて放射状に延びるように配置される。材料R1s及びR2sは、図13に示すように、周方向において1本ずつ交互に配置されてもよいし、数本ずつ配置されるのでもよい。 In the first layer L1, the materials R1s and R2s are arranged so as to extend radially outward from the vicinity of the center of the first layer L1, as shown in FIG. 13, for example. As shown in FIG. 13, the materials R1s and R2s may be alternately arranged one by one in the circumferential direction, or may be arranged several by one.
 このような造形物Sにおいて、第1の層L1において材料R1s、R2sが放射状に延びる一方で、それよりも1つ上の第2の層L2においては、第1の層L1の輪郭の方向に沿って材料R1r、R2rが延びる。これにより、造形物Sは、第1の層L1と第2の層L2とにおける材料R1sとR1rの交差位置において同一の材料同士が上下方向で接合する構造(いわゆる井桁構造)を有している。材料R2s、R2rも、同様に材料R1に挟まれた位置において、同様な井桁構造を有し、上下方向で接合する。このような構造により、たとえ異種材料である材料R1s、R1rと材料R2s、R2rの間の(横方向の)接合力が弱くても、上述のような井桁構造における同一材料間の(積層方向の)接合力が強ければ、造形物Sの強度を十分に高いものとすることができる。 In such a shaped object S, the materials R1s and R2s extend radially in the first layer L1, while the second layer L2 that is one higher than the material R1s and R2s extends in the direction of the contour of the first layer L1. The materials R1r and R2r extend along. As a result, the shaped object S has a structure in which the same material is joined in the vertical direction at a crossing position of the materials R1s and R1r in the first layer L1 and the second layer L2 (so-called girder structure). . Similarly, the materials R2s and R2r have a similar cross beam structure at positions sandwiched between the materials R1 and are joined in the vertical direction. With such a structure, even if the bonding force between the materials R1s and R1r, which are different materials, and the materials R2s and R2r (in the lateral direction) is weak, the same material (in the stacking direction in the stacking direction) as described above ) If the bonding force is strong, the strength of the shaped object S can be made sufficiently high.
 図14A~図14Fは、第2の実施の形態の造形物Sの第1の層L1における直線状材料の具体的な配置例を示している。
 図14Aは、第1の層L1の中心(円柱形状の造形物Sの中心軸)付近から外側へ放射状に延び第1の材料(例えば、ABS樹脂、ポリプロピレン樹脂、ナイロン樹脂、ポリカーボネイト樹脂)からなる第1直線状材料R1sL、R1sSと、同じく第1の層L1の中心付近から外側へ放射状に延び第2の材料(第1の材料とは異なる材料)からなる第2直線状材料R2sとを配置した配置例を示している。この例では、第1直線状材料R1sLは、周方向に90°間隔で、その先端が当該中心付近で互いに略接するように配置されている。また、第1直線状材料R1sSは、第1直線状材料R1sLの間の位置に、同様に90°間隔で配置されている。そして、第2直線状材料R2sは、このように45°間隔で配置された第1直線状材料R1sL、R1sSの間の位置に配置されている。なお、図14A中の第1の層L1のうち、材料R1sL、R1sS、R2s以外の領域白色の領域は、空隙である。
FIGS. 14A to 14F show a specific arrangement example of the linear material in the first layer L1 of the shaped object S of the second embodiment.
FIG. 14A is a first material (for example, ABS resin, polypropylene resin, nylon resin, polycarbonate resin) that extends radially from the vicinity of the center of the first layer L1 (center axis of the cylindrical shaped object S). The first linear materials R1sL and R1sS and the second linear material R2s made of a second material (a material different from the first material) that radially extends from the vicinity of the center of the first layer L1 are disposed. An example of the arrangement is shown. In this example, the first linear materials R1sL are arranged at intervals of 90 ° in the circumferential direction so that their tips are substantially in contact with each other near the center. Similarly, the first linear materials R1sS are arranged at 90 ° intervals at positions between the first linear materials R1sL. And 2nd linear material R2s is arrange | positioned in the position between 1st linear material R1sL and R1sS arrange | positioned at 45 degree intervals in this way. Note that, in the first layer L1 in FIG. 14A, white regions other than the materials R1sL, R1sS, and R2s are voids.
 図14Bは、第1の層L1の中心(円柱形状の造形物Sの中心軸)付近から外側に延びて45°間隔で周方向に配置される第1直線状材料R1sL(第1の材料)と、その間の位置において同じく45°間隔で周方向に配置される第2直線状材料R2s(第1の材料とは異なる第2の材料)と有する配置例を示している。なお、図14B中の第1の層L1のうち、材料R1sL、R2s以外の領域白色の領域は、空隙である。 FIG. 14B shows the first linear material R1sL (first material) that extends outward from the vicinity of the center of the first layer L1 (the central axis of the cylindrical shaped object S) and is arranged in the circumferential direction at 45 ° intervals. And the example of arrangement | positioning which has 2nd linear material R2s (2nd material different from 1st material) arrange | positioned in the circumferential direction at the same 45 degree space | interval in the position between them is shown. Note that in the first layer L1 in FIG. 14B, the white regions other than the materials R1sL and R2s are voids.
 図14Cの配置例では、第1の層L1において第1の材料からなる直線状材料R1sTと、第2の材料からなる直線状材料R2sTとが交互に放射状に配置されており、この点は図14A、図14Bの配置例と同様である。ただし、直線状材料R1sT、R2sTの幅(周方向)が、第1の層L1の中心側から外側に向かうにしたがって大きくなるようにされている。なお、図14C中の第1の層L1のうち、材料R1sT、R2sT以外の領域白色の領域は、空隙である。 In the arrangement example of FIG. 14C, the linear material R1sT made of the first material and the linear material R2sT made of the second material are alternately arranged radially in the first layer L1. 14A and 14B are similar to the arrangement example. However, the width (circumferential direction) of the linear materials R1sT and R2sT is increased from the center side of the first layer L1 toward the outside. Note that, in the first layer L1 in FIG. 14C, white regions other than the materials R1sT and R2sT are voids.
 また、図14Dの配置例では、第1の材料からなる直線状材料R1sp1、第2の材料からなる直線状材料R2sp2は放射状に配置されており、この点は上述の例と同様である。ただし、直線状材料R1sp1、直線状材料R2sp1はどちらも、第1の層L1の中心側においては1本の材料であるが、外側において2本に分岐する形状を有している。この配置例によっても、図14Cの配置例と同様の効果を得ることができる。なお、分岐する本数は2本に限られず、3本以上であってもよい。なお、図14D中の第1の層L1のうち、材料R1sp1、R2sp1以外の領域白色の領域は、空隙である。 In the arrangement example of FIG. 14D, the linear material R1sp1 made of the first material and the linear material R2sp2 made of the second material are arranged radially, and this is the same as the above example. However, each of the linear material R1sp1 and the linear material R2sp1 is a single material on the center side of the first layer L1, but has a shape branched into two on the outside. Also by this arrangement example, the same effect as the arrangement example of FIG. 14C can be obtained. The number of branches is not limited to two and may be three or more. Note that, in the first layer L1 in FIG. 14D, white regions other than the materials R1sp1 and R2sp1 are voids.
 図14Eの配置例は、図11Eと同様に、第1の層L1が、更に複数(例えば6個)の扇形領域SCに分割されている。そして、扇形領域SC毎に複数の第1直線状材料R1sL1(第1の材料)、第2直線状材料R2sS1(第2の材料)が配置されている。図14Eの例では、1つの扇形領域SCの1つの辺と平行に延びる複数の第1直線状材料R1sL11が配置され、もう1つの辺と平行に複数の第2直線状材料R2sS1が配置される。 In the arrangement example of FIG. 14E, the first layer L1 is further divided into a plurality of (for example, six) fan-shaped regions SC as in FIG. 11E. A plurality of first linear materials R1sL1 (first material) and second linear materials R2sS1 (second material) are arranged for each sector region SC. In the example of FIG. 14E, a plurality of first linear materials R1sL11 extending in parallel with one side of one sector region SC are arranged, and a plurality of second linear materials R2sS1 are arranged in parallel with the other side. .
 この図14Eの配置例では、第1の層L1が複数の扇形領域SCに分割され、その扇形の2つの辺に沿って直線状材料R1sL1、L2sS1が延びており、略放射状に直線状材料R1sL1、L2sS1が配置されている。このため、第2の層L2に配置された円弧状材料と井桁構造を構成することができる。なお、図14Eの配置例では、第1の層L1中で直線状材料R1sL1、R2sS1以外の領域は空隙である。ただし、図14Fに示すように、第1の層L1を第1の材料からなる直線状材料R1s、第2の材料からなる直線状材料R2sにより埋め込んで空隙を残さないような配置とすることもできる。 In the arrangement example of FIG. 14E, the first layer L1 is divided into a plurality of sector regions SC, and the linear materials R1sL1 and L2sS1 extend along two sides of the sector shape, and the linear material R1sL1 substantially radially. , L2sS1 is arranged. For this reason, the arc-shaped material and the cross beam structure arranged in the second layer L2 can be configured. In the arrangement example of FIG. 14E, regions other than the linear materials R1sL1 and R2sS1 in the first layer L1 are voids. However, as shown in FIG. 14F, the first layer L1 may be arranged so as not to leave a gap by being embedded with the linear material R1s made of the first material and the linear material R2s made of the second material. it can.
 図14Gの配置例は、第1の層L1を複数の扇形領域SCに分割している点で図14E、図14Fの配置例と同一である。ただし、この実施の形態では、複数の扇形領域SCの各々において、全体として菱形を有する直線状材料R1sD(第1の材料)、R2sD(第2の材料)を配置してなる。菱形形状の直線状材料R1sD及びR2sDの2辺が、扇形領域SCの2辺と略平行となるように、直線状材料R1sD及びR2sDが描画されている。扇形領域SCの各々において、菱形形状の直線状材料R1sD、R2sD以外で埋め切らない部分は、直線状の材料を形成することができる。なお、図14Gの配置例では、直線状材料R1sDとR2sDとの間に空隙を設けていないが、これらの間に空隙を設けることも可能である。 The arrangement example of FIG. 14G is the same as the arrangement examples of FIGS. 14E and 14F in that the first layer L1 is divided into a plurality of sector regions SC. However, in this embodiment, linear materials R1sD (first material) and R2sD (second material) having a diamond shape as a whole are arranged in each of the plurality of sector regions SC. The linear materials R1sD and R2sD are drawn so that the two sides of the rhombic linear materials R1sD and R2sD are substantially parallel to the two sides of the fan-shaped region SC. In each of the fan-shaped regions SC, a portion that is not filled except for the rhombic linear materials R1sD and R2sD can form a linear material. In the arrangement example of FIG. 14G, no gap is provided between the linear materials R1sD and R2sD, but a gap may be provided between them.
 図14Hの配置例は、同様に、第1の層L1が、複数の扇形領域SCに分割され、扇形領域SC毎に複数の第1直線状材料R1sV(第1の材料)、第2直線状材料R2sV(第2の材料)が配置されている。第2直線状材料R2sVは、扇形領域SCの2辺に沿ってV字型に配置され、更にその内側に、第1直線状材料R1sVが、この扇形領域SCの2辺に沿って配置される。このようにしてV字型の第1直線状材料R1sV、第2直線状材料R2sVが交互に配置されて、扇形領域が埋められている。図14Iの配置例は、図14Hと同様にV字型の第1直線状材料R1sV’(第1の材料)、第2直線状材料R2sV’(第2の材料)を配置しているが、材料の輪郭が円弧状とされている点で図14Hと異なっている。 Similarly, in the arrangement example of FIG. 14H, the first layer L1 is divided into a plurality of sector regions SC, and each of the sector regions SC has a plurality of first linear materials R1sV (first material), second linear shapes. A material R2sV (second material) is arranged. The second linear material R2sV is disposed in a V shape along two sides of the sector region SC, and further, the first linear material R1sV is disposed along the two sides of the sector region SC. . In this way, the V-shaped first linear material R1sV and the second linear material R2sV are alternately arranged to fill the sector region. In the arrangement example of FIG. 14I, the V-shaped first linear material R1sV ′ (first material) and the second linear material R2sV ′ (second material) are arranged as in FIG. 14H. It differs from FIG. 14H in that the contour of the material is arcuate.
 図14Jの配置例は、図14Iの配置例と同様に、第1の層L1が複数の扇形領域SC(図示の例では中心角90°)に分割されるとともに、その扇形領域SCの辺に沿って延び第2の材料からなる直線状材料R2sV3が形成されている。この直線状材料R2sV3は、図14Iの配置例における直線状材料R2sV’と同様に、扇形領域SCの2辺に沿って延びる部分を備える。これに加え、図14Jの直線状材料R2sV3は、扇形領域SCの中心付近から扇形領域SCの円弧の中点付近に向けて延びる部分も有しており、3本の放射状に延びる直線状部分を備え、全体としてW字形を有している。3つの直線状部分の間には、第1の材料からなる直線状材料R1sV4が形成されている。この直線状材料R1sV4も、直線状材料R2sV4と同様に、略W字型を有しており、その隙間には更に別の第2の材料からなる直線状材料R2sV4が形成されている。この図14の配置例では、1つの材料が3本の放射状に延びる直線状部分を有しているが、これに限らず、1つの材料が4本以上の放射状に延びる直線部分を有していても良い。
 図14Kの配置例は、図14Jの配置例と同様に、第1の層L1が複数の扇形領域SCに分割されるとともに、その扇形領域SCの辺に沿って延び第2の材料からなる直線状材料R2sCRが形成されている。この直線状材料R2sCRは、図14Jの配置例における直線状材料R2sV3と同様に、扇形領域SCの径方向に沿って放射状に延びる複数(図示の例では3本)の直線状部分を備える。これに加え、図14Kの直線状材料R2sCR3は、扇形領域SCの周方向に延びる複数の円弧状部分も有している。直線状材料R1sCRも、直線状材料R2sCRと同様に、径方向に延びる複数の直線状部分と、周方向の延びる円弧状部分とを備えている。
In the arrangement example of FIG. 14J, the first layer L1 is divided into a plurality of sector regions SC (in the example shown, a central angle of 90 °) as well as the arrangement example of FIG. A linear material R2sV3 extending along the second material and formed of the second material is formed. This linear material R2sV3 includes portions extending along two sides of the sectoral region SC, like the linear material R2sV ′ in the arrangement example of FIG. 14I. In addition to this, the linear material R2sV3 in FIG. 14J also has a portion extending from the vicinity of the center of the sector region SC toward the middle point of the arc of the sector region SC, and includes three linear portions extending radially. It has a W shape as a whole. A linear material R1sV4 made of the first material is formed between the three linear portions. Similarly to the linear material R2sV4, the linear material R1sV4 has a substantially W shape, and a linear material R2sV4 made of another second material is formed in the gap. In the arrangement example of FIG. 14, one material has three linear portions extending radially, but this is not limiting, and one material has four or more linear portions extending radially. May be.
In the arrangement example of FIG. 14K, the first layer L1 is divided into a plurality of fan-shaped areas SC and extends along the sides of the fan-shaped areas SC, as in the arrangement example of FIG. 14J. A material R2sCR is formed. Similar to the linear material R2sV3 in the arrangement example of FIG. 14J, the linear material R2sCR includes a plurality (three in the illustrated example) of linear portions extending radially along the radial direction of the sector region SC. In addition to this, the linear material R2sCR3 of FIG. 14K also has a plurality of arc-shaped portions extending in the circumferential direction of the sector region SC. Similarly to the linear material R2sCR, the linear material R1sCR also includes a plurality of linear portions extending in the radial direction and an arc-shaped portion extending in the circumferential direction.
 図14Lの配置例は、第1の層L1における更に別の材料の配置例を示している。この配置例は、第1の材料からなる第1直線状材料R1sLを第1の層L1の中心付近から外側に向かって放射状に配置する。そして、第2の材料からなる第2直線状材料R2sを、この第1直線状材料R1sLに沿って配置する。図14Lの配置例では、第2直線状材料R2sの隙間に残った空隙を、更に第2の材料からなる材料R2ssにより埋めているが、図14Mに示すように、これを第1の材料R1sSに変更することもできるし、空隙のままとすることもできる。 The arrangement example in FIG. 14L shows an arrangement example of still another material in the first layer L1. In this arrangement example, the first linear material R1sL made of the first material is radially arranged from the vicinity of the center of the first layer L1 toward the outside. Then, the second linear material R2s made of the second material is disposed along the first linear material R1sL. In the arrangement example of FIG. 14L, the gap remaining in the gap of the second linear material R2s is further filled with the material R2ss made of the second material, but as shown in FIG. 14M, this is filled with the first material R1sS. It can also be changed to or can be left as a gap.
 図14Nの配置例は、図14Mの配置例と近似した配置例である。この図14Nの配置例では、第2の材料からなる第2直線状材料R2sを第1の層L1の中心付近から外側に向かって放射状に配置する。そして、第1の材料からなるV字状の直線状材料R1sを、この第2直線状材料R2sに沿って配置する。図14Mとの相違点は、第1直線状材料R1sがV字型の直線状材料として形成されている点である。なお、図14Nの配置例では、第1直線状材料R1sの隙間に残った空隙を、更に第2の材料からなる材料R2s’により埋めているが、これを第1の材料に変更することもできるし、空隙のままとすることもできる。 The arrangement example in FIG. 14N is an arrangement example approximate to the arrangement example in FIG. 14M. In the arrangement example of FIG. 14N, the second linear material R2s made of the second material is arranged radially from the vicinity of the center of the first layer L1 toward the outside. And V-shaped linear material R1s which consists of 1st materials is arrange | positioned along this 2nd linear material R2s. The difference from FIG. 14M is that the first linear material R1s is formed as a V-shaped linear material. In the arrangement example of FIG. 14N, the gap remaining in the gap of the first linear material R1s is further filled with the material R2s ′ made of the second material, but this may be changed to the first material. Or it can be left void.
 図15A、及び図15Bを用いて、更に別の配置例を説明する。図15Aは、第1の層L1、第2の層L2における材料の配置を示す平面図であり、図15Bは、第1の層L1、第2の層L2の積層の手法を示す斜視図である。この図15A及び図15Bに示す配置例は、図11H及び図11Iの配置例(材料が単一の場合)と同様に、第1の層L1、第2の層L2のいずれにおいても、複数の扇形領域SCの一部には第1の材料からなる直線状材料R1sL、R1sS、及び第2の材料からなる直線状材料R2sL、R2sSを配置する。一方、他の扇形領域SCには第1の材料からなる曲率材料R1r、及び第2の材料からなる曲率材料R2rを配置する。 Still another example of arrangement will be described with reference to FIGS. 15A and 15B. 15A is a plan view showing an arrangement of materials in the first layer L1 and the second layer L2, and FIG. 15B is a perspective view showing a method of stacking the first layer L1 and the second layer L2. is there. The arrangement example shown in FIGS. 15A and 15B is similar to the arrangement example shown in FIGS. 11H and 11I (in the case of a single material), in both the first layer L1 and the second layer L2. The linear materials R1sL and R1sS made of the first material and the linear materials R2sL and R2sS made of the second material are disposed in a part of the sector region SC. On the other hand, the curvature material R1r made of the first material and the curvature material R2r made of the second material are arranged in the other sector regions SC.
 そして、図15Bに示すように、第1の層L1及び第2の層L2は、直線状材料R1sL、R1sS、R2sL、RrsSと曲率材料R1r、R2rとが上下方向で重なるように積層される。これにより、上述の配置例と同様に、直線状材料と曲率材料とにより井桁構造が構成され得る。この図15A及び図15Bの配置例の場合、第1の層L1、第2の層L2の構造(材料の配置密度等を含む)が略同一であるので、上述の図14A~14Mの配置例に比べ、造形物S中の材料の特性を上下方向において均一化させることができ、造形物Sの物理的強度を更に向上させることができる。 15B, the first layer L1 and the second layer L2 are laminated so that the linear materials R1sL, R1sS, R2sL, RrsS and the curvature materials R1r, R2r overlap in the vertical direction. Thereby, a cross-girder structure can be comprised with a linear material and a curvature material similarly to the above-mentioned example of arrangement | positioning. In the arrangement example of FIGS. 15A and 15B, the structures of the first layer L1 and the second layer L2 (including the arrangement density of materials) are substantially the same, and therefore the arrangement examples of FIGS. 14A to 14M described above. As compared with the above, the characteristics of the material in the model S can be made uniform in the vertical direction, and the physical strength of the model S can be further improved.
[第3の実施の形態]
 次に、本発明の第3の実施の形態を、図16を参照して詳細に説明する。この第3の実施の形態は、三次元造形装置(3Dプリンタ100)の構成自体は、第1の実施の形態と略同一でよい。したがって、3Dプリンタ100についての重複する説明は以下では省略する。ただし、この第3の実施の形態では、造形される造形物Sが前述の実施の形態とは異なっている。
[Third Embodiment]
Next, a third embodiment of the present invention will be described in detail with reference to FIG. In the third embodiment, the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below. However, in the third embodiment, the modeled object S to be modeled is different from the above-described embodiment.
 この第3の実施の形態で造形される造形物Sは、図16に示すように、第1の層L1、第2の層L2を繰り返し積層するものであり、この点は前述の実施の形態と同一である。ただし、この第3の実施の形態の造形物Sの第1の層L1は、互いに平行に延びる複数の直線状材料R1sを配列したものである。この点、複数の直線状材料が放射状に配列されている前述の実施の形態と異なっている。
 第1の層L1において直線状材料R1sが延びる方向は、図16に示すように異なる第1の層L1ごとに異なる方向とされるのが好ましい。
As shown in FIG. 16, the model S to be modeled in the third embodiment is formed by repeatedly laminating the first layer L1 and the second layer L2, and this point is the embodiment described above. Is the same. However, the first layer L1 of the shaped object S of the third embodiment is obtained by arranging a plurality of linear materials R1s extending in parallel to each other. This is different from the above-described embodiment in which a plurality of linear materials are arranged radially.
The direction in which the linear material R1s extends in the first layer L1 is preferably different for each different first layer L1 as shown in FIG.
[第4の実施の形態]
 次に、本発明の第4の実施の形態を、図17を参照して詳細に説明する。この第4の実施の形態は、三次元造形装置(3Dプリンタ100)の構成自体は、第1の実施の形態と略同一でよい。したがって、3Dプリンタ100についての重複する説明は以下では省略する。ただし、この第3の実施の形態では、造形される造形物Sが前述の実施の形態とは異なっている。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described in detail with reference to FIG. In the fourth embodiment, the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below. However, in the third embodiment, the modeled object S to be modeled is different from the above-described embodiment.
 この実施の形態で造形される造形物Sは、図17に示すように、第1の層L1、第2の層L2を繰り返し積層するものであり、この点は前述の実施の形態と同一である。ただし、この第4の実施の形態の造形物Sは、第1の層L1、第2の層L2とも、例えば周方向の所定の角度(例えば180°)のみ曲率材料R1r、R2rを形成し、残りの角度については、第1の層L1又は第2の層L2の中心付近から外周に向かう放射状に、第1の材料からなる第1直線状材料R1s、第2の材料からなる第2直線状材料R2sを形成する。 As shown in FIG. 17, the model S to be modeled in this embodiment is formed by repeatedly laminating the first layer L1 and the second layer L2, and this point is the same as the above-described embodiment. is there. However, in the shaped object S of the fourth embodiment, the first layer L1 and the second layer L2 form the curvature materials R1r and R2r only at a predetermined angle (for example, 180 °) in the circumferential direction, for example. Regarding the remaining angles, a first linear material R1s made of the first material and a second linear shape made of the second material are formed radially from the vicinity of the center of the first layer L1 or the second layer L2 toward the outer periphery. The material R2s is formed.
 そして、第1の層L1及び第2の層L2において、曲率材料R1r、R2rが形成される角度範囲は、上層に向かうほど所定角度ずつ時計回りに回転する関係とされている。これにより、曲率材料R1r、R2rの部分は、螺旋構造を有するように積層されている。そして、直線状材料R1s、R2sは、その螺旋構造の隙間において、曲率材料R1r,R2rと交差し、井桁構造を形成している。 In the first layer L1 and the second layer L2, the angle range in which the curvature materials R1r and R2r are formed has a relationship of rotating clockwise by a predetermined angle toward the upper layer. Accordingly, the portions of the curvature materials R1r and R2r are stacked so as to have a spiral structure. The linear materials R1s and R2s intersect the curvature materials R1r and R2r in the gaps of the spiral structure to form a cross-beam structure.
[第5の実施の形態]
 次に、本発明の第5の実施の形態を、図18を参照して詳細に説明する。この第5の実施の形態は、三次元造形装置(3Dプリンタ100)の構成自体は、第1の実施の形態と略同一でよい。したがって、3Dプリンタ100についての重複する説明は以下では省略する。ただし、この第5の実施の形態では、造形される造形物Sが前述の実施の形態とは異なっている。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described in detail with reference to FIG. In the fifth embodiment, the configuration itself of the three-dimensional modeling apparatus (3D printer 100) may be substantially the same as that of the first embodiment. Therefore, a duplicate description of the 3D printer 100 is omitted below. However, in the fifth embodiment, the modeled object S to be modeled is different from the above-described embodiment.
 この実施の形態ので造形される造形物Sは、図18に示すように、第1の層L1、第2の層L2を繰り返し積層するものであり、この点は前述の実施の形態と同一である。ただし、この第5の実施の形態の造形物Sは、第1の層L1、第2の層L2とも、例えば周方向の所定の角度(例えば180°)のみ曲率材料R1r、R2rを形成し、残りの角度については、互いに平行に延びる、第1の材料からなる第1直線状材料R1s、第2の材料からなる第2直線状材料R2sを形成する。 As shown in FIG. 18, the model S to be modeled in this embodiment is formed by repeatedly laminating the first layer L1 and the second layer L2, and this point is the same as the above-described embodiment. is there. However, in the model S of the fifth embodiment, the first layer L1 and the second layer L2 form the curvature materials R1r and R2r only at a predetermined angle (for example, 180 °) in the circumferential direction, for example. For the remaining angles, the first linear material R1s made of the first material and the second linear material R2s made of the second material are formed in parallel with each other.
 そして、第1の層L1及び第2の層L2において、曲率材料R1r、R2rが形成される角度範囲は、上層に向かうほど所定角度ずつ時計回りに回転する関係とされている。これにより、曲率材料R1r、R2rの部分は、螺旋構造を有するように積層されている。そして、直線状材料R1s、R2sは、その螺旋構造の隙間において、曲率材料R1r,R2rと交差し、井桁構造を形成している。 In the first layer L1 and the second layer L2, the angle range in which the curvature materials R1r and R2r are formed has a relationship of rotating clockwise by a predetermined angle toward the upper layer. Accordingly, the portions of the curvature materials R1r and R2r are stacked so as to have a spiral structure. The linear materials R1s and R2s intersect the curvature materials R1r and R2r in the gaps of the spiral structure to form a cross-beam structure.
[その他]
 以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Others]
As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
100・・・3Dプリンタ、 200・・・コンピュータ、 300・・・ドライバ、 11・・・フレーム、 12・・・XYステージ、 13・・・造形ステージ、 14・・・昇降テーブル、 15・・・ガイドシャフト、21・・・枠体、 22・・・Xガイドレール、 23・・・Yガイドレール、 24A、24B・・・フィラメントホルダ、 25A、25B・・・造形ヘッド、 31・・・枠体、 34、35・・・ローラ、 38A、38B・・・フィラメント、 201・・空間フィルタ処理部、 202・・スライサ、 203・・・造形スケジューラ、 204・・・造形指示部、 205・・・造形ベクトル生成部。 100 ... 3D printer, 200 ... computer, 300 ... driver, 11 ... frame, 12 ... XY stage, 13 ... modeling stage, 14 ... lifting table, 15 ... Guide shaft, 21 ... frame, 22 ... X guide rail, 23 ... Y guide rail, 24A, 24B ... filament holder, 25A, 25B ... modeling head, 31 ... frame 34, 35 ... Roller, 38A, 38B ... Filament, 201 ... Spatial filter processing unit, 202 ... Slicer, 203 ... Modeling scheduler, 204 ... Modeling instruction unit, 205 ... Modeling Vector generator.

Claims (14)

  1.  造形物が載置される造形ステージと、
     前記造形ステージに対し相対的に移動可能に構成され前記造形ステージに対し材料を供給する造形ヘッドと、
     前記造形ヘッドを制御する制御部と、
    を備え、
     前記制御部は、前記造形ヘッドから供給される材料により第1の層と第2の層とを繰り返し生成して造形物を造形するように構成され、
     前記制御部は、前記第1の層において、前記材料の少なくとも一部を直線状に延びるよう配列する一方、前記第2の層において、前記材料の少なくとも一部を、前記第1の層における前記材料の長手方向とは交差する方向で且つ前記第2の層の輪郭に対応した曲率を有するように配列し、これにより、前記第1の層に形成された前記材料と、前記第2の層に形成された前記材料とが上下方向で接合するよう、前記造形ヘッドを制御する
     ことを特徴とする三次元造形装置。
    A modeling stage on which a model is placed;
    A modeling head configured to be movable relative to the modeling stage and supplying material to the modeling stage;
    A control unit for controlling the modeling head;
    With
    The control unit is configured to repeatedly generate the first layer and the second layer with the material supplied from the modeling head to model the modeled object,
    The control unit arranges at least a part of the material in the first layer so as to extend linearly, while in the second layer, at least a part of the material in the first layer is arranged in the first layer. Arranged so as to have a curvature corresponding to the outline of the second layer in a direction intersecting the longitudinal direction of the material, and thereby the material formed in the first layer and the second layer The three-dimensional modeling apparatus, wherein the modeling head is controlled so that the material formed in a vertical direction is joined in the vertical direction.
  2.  前記制御部は、前記第1の層において、前記材料を、前記第1の層の中心付近から前記第1の層の外側に向けて放射状に延びるように配列させる、請求項1記載の三次元造形装置。 The three-dimensional structure according to claim 1, wherein the control unit arranges the material in the first layer so as to extend radially from the vicinity of the center of the first layer toward the outside of the first layer. Modeling equipment.
  3.  前記制御部は、前記第1の層における前記材料の前記長手方向と直交する方向の幅が、前記第1の層の中心付近から前記第1の層の外側に向かうにつれて大きくなるよう、前記材料を形成する、請求項2記載の三次元造形装置。 The control unit is configured so that a width of the material in the first layer in a direction orthogonal to the longitudinal direction increases from the vicinity of the center of the first layer toward the outside of the first layer. The three-dimensional modeling apparatus according to claim 2, wherein:
  4.  前記制御部は、前記造形物に含まれる複数の前記第1の層の1つに含まれる前記材料の配列は、他の前記第1の層に含まれる前記材料を所定位置を中心として所定角度回転させたものである、請求項2記載の三次元造形装置。 The control unit is configured such that the arrangement of the materials included in one of the plurality of first layers included in the modeled object is a predetermined angle with the material included in the other first layer as a center at a predetermined position. The three-dimensional modeling apparatus according to claim 2, which is rotated.
  5.  前記制御部は、前記第1の層を複数の扇形に分割し、前記材料の少なくとも一部を、前記扇形の2つの辺のいずれかと略平行に延びるように配列させる、請求項1記載の三次元造形装置。 2. The tertiary according to claim 1, wherein the control unit divides the first layer into a plurality of sectors and arranges at least a part of the material so as to extend substantially parallel to one of the two sides of the sectors. Original modeling device.
  6.  第1の層と、第2の層とを繰り返し積層して形成され、
     前記第1の層では、材料が直線状に延びるよう配列される一方、
     前記第2の層では、前記材料が、前記第1の層における前記材料とは交差する方向で且つ前記第2の層の輪郭に対応した曲率を有するように配列され、これにより、前記第1の層に形成された前記材料と、前記第2の層に形成された前記材料とが上下方向で接合するよう構成された
    ことを特徴とする造形物。
    Formed by repeatedly laminating a first layer and a second layer;
    In the first layer, the material is arranged to extend linearly,
    In the second layer, the material is arranged to have a curvature corresponding to the contour of the second layer in a direction intersecting the material in the first layer, whereby the first layer A shaped article characterized in that the material formed in the layer and the material formed in the second layer are joined in the vertical direction.
  7.  前記第1の層において、前記材料は、前記第1の層の中心付近から前記第1の層の外側に向けて放射状に延びるように配列されている、請求項6記載の造形物。 The molded article according to claim 6, wherein in the first layer, the material is arranged so as to extend radially from the vicinity of the center of the first layer toward the outside of the first layer.
  8.  前記第1の層においては、前記材料の長手方向と直交する方向の幅が、前記第1の層の中心付近から前記第1の層の外側に向かうにつれて大きくなる、請求項7記載の造形物。 In the said 1st layer, the width | variety of the direction orthogonal to the longitudinal direction of the said material becomes large as it goes to the outer side of the said 1st layer from the center vicinity of the said 1st layer. .
  9.  複数の前記第1の層の1つに含まれる前記材料の配列は、他の前記第1の層に含まれる前記材料を所定位置を中心として所定角度回転させたものである、請求項7記載の造形物。 The arrangement of the materials included in one of the plurality of first layers is obtained by rotating the materials included in other first layers by a predetermined angle around a predetermined position. Modeled object.
  10.  造形物を生成するため材料を供給する造形ヘッドを備える三次元造形装置の制御方法において、
     第1の層において、前記材料の少なくとも一部を直線状に延びるよう配列するよう前記造形ヘッドを制御するステップと、
     第2の層において、前記材料の少なくとも一部を、前記第1の層における前記材料の長手方向とは交差する方向で且つ前記第2の層の輪郭に対応した曲率を有するように配列し、これにより、前記第1の層に形成された前記材料と、前記第2の層に形成された前記材料とが上下方向で接合するよう、前記造形ヘッドを制御するステップと
    を備えたことを特徴とする、三次元造形装置の制御方法。
    In a control method of a three-dimensional modeling apparatus including a modeling head that supplies a material for generating a modeled object,
    Controlling the modeling head to arrange at least a portion of the material to extend linearly in the first layer;
    In the second layer, at least a part of the material is arranged so as to have a curvature corresponding to a contour of the second layer in a direction intersecting a longitudinal direction of the material in the first layer, Thereby, the step of controlling the modeling head is provided so that the material formed in the first layer and the material formed in the second layer are joined in the vertical direction. The control method of the three-dimensional modeling apparatus.
  11.  前記第1の層において、前記材料を、前記第1の層の中心付近から前記第1の層の外側に向けて放射状に延びるように配列させる、請求項10記載の三次元造形装置の制御方法。 The method of controlling a three-dimensional modeling apparatus according to claim 10, wherein in the first layer, the material is arranged so as to extend radially from the vicinity of the center of the first layer toward the outside of the first layer. .
  12.  前記第1の層における前記材料の前記長手方向と直交する方向の幅が、前記第1の層の中心付近から前記第1の層の外側に向かうにつれて大きくなるよう、前記材料を形成する、請求項11記載の三次元造形装置の制御方法。 The material is formed such that a width of the material in the first layer in a direction orthogonal to the longitudinal direction increases from the vicinity of the center of the first layer toward the outside of the first layer. Item 12. A method for controlling a three-dimensional modeling apparatus according to Item 11.
  13.  前記造形物に含まれる複数の前記第1の層の1つに含まれる前記材料の配列は、他の前記第1の層に含まれる前記材料を所定位置を中心として所定角度回転させたものである、請求項11記載の三次元造形装置の制御方法。 The arrangement of the materials included in one of the plurality of first layers included in the modeled object is obtained by rotating the materials included in the other first layers by a predetermined angle around a predetermined position. The method for controlling a three-dimensional modeling apparatus according to claim 11.
  14.  前記第1の層を複数の扇形に分割し、前記材料の少なくとも一部を、前記扇形の2つの辺のいずれかと略平行に延びるように配列させる、請求項10記載の三次元造形装置の制御方法。
     
     
    The control of the three-dimensional modeling apparatus according to claim 10, wherein the first layer is divided into a plurality of sectors, and at least a part of the material is arranged to extend substantially parallel to one of the two sides of the sectors. Method.

PCT/JP2017/017421 2017-05-08 2017-05-08 Three-dimensional modeling device, control method thereof, and modeled object thereof WO2018207242A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019516758A JP6821017B2 (en) 2017-05-08 2017-05-08 Three-dimensional modeling device, its control method, and its model
PCT/JP2017/017421 WO2018207242A1 (en) 2017-05-08 2017-05-08 Three-dimensional modeling device, control method thereof, and modeled object thereof
TW107115095A TW201843032A (en) 2017-05-08 2018-05-03 Three-dimensional modeling device, control method thereof, and modeled object thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017421 WO2018207242A1 (en) 2017-05-08 2017-05-08 Three-dimensional modeling device, control method thereof, and modeled object thereof

Publications (1)

Publication Number Publication Date
WO2018207242A1 true WO2018207242A1 (en) 2018-11-15

Family

ID=64104625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017421 WO2018207242A1 (en) 2017-05-08 2017-05-08 Three-dimensional modeling device, control method thereof, and modeled object thereof

Country Status (3)

Country Link
JP (1) JP6821017B2 (en)
TW (1) TW201843032A (en)
WO (1) WO2018207242A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082628A (en) * 2018-11-29 2020-06-04 株式会社リコー Molding apparatus, molding method and molding program
WO2020162427A1 (en) * 2019-02-07 2020-08-13 キョーラク株式会社 Granular material for heat-fusion type three-dimensional printers, method for manufacturing molded object, layered structure, and method for manufacturing layered structure
JP2020146988A (en) * 2019-03-15 2020-09-17 キョーラク株式会社 Method for manufacturing granular material and object for thermal fusion-type three-dimensional printer
WO2021060451A1 (en) * 2019-09-26 2021-04-01 キョーラク株式会社 Granular material for thermal fusion type three-dimensional printers, method for producing shaped article, and filament
WO2021177029A1 (en) * 2020-03-06 2021-09-10 日本軽金属株式会社 Shaped article
US20210394452A1 (en) * 2020-06-23 2021-12-23 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
JP7390679B2 (en) 2019-09-30 2023-12-04 キョーラク株式会社 Granules for thermal melting three-dimensional printers, method for producing shaped objects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284346A (en) * 2002-11-07 2004-10-14 Concept Laser Gmbh Method for producing molded article by using powder stereolithographic process or sintering process
JP2016203597A (en) * 2015-04-17 2016-12-08 肇 南澤 Molded product fixation method of 3d printer
WO2017038985A1 (en) * 2015-09-04 2017-03-09 Jsr株式会社 Method for manufacturing three-dimensional modeled object and nozzle movement path data creation method used in same, and device for manufacturing three-dimensional modeled object and nozzle movement path data creation program used in same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766605B1 (en) * 2015-01-15 2017-08-08 무토 고교 가부시키가이샤 Three dimensional shaping apparatus, control method of three dimensional shaping apparatus, and shaped object thereof
JP6550454B2 (en) * 2015-03-31 2019-07-24 武藤工業株式会社 Three-dimensional modeling apparatus, filler feeder, and method of manufacturing shaped article
WO2017130515A1 (en) * 2016-01-25 2017-08-03 武藤工業株式会社 Three-dimensional molding device, method for controlling same, and article molded by same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284346A (en) * 2002-11-07 2004-10-14 Concept Laser Gmbh Method for producing molded article by using powder stereolithographic process or sintering process
JP2016203597A (en) * 2015-04-17 2016-12-08 肇 南澤 Molded product fixation method of 3d printer
WO2017038985A1 (en) * 2015-09-04 2017-03-09 Jsr株式会社 Method for manufacturing three-dimensional modeled object and nozzle movement path data creation method used in same, and device for manufacturing three-dimensional modeled object and nozzle movement path data creation program used in same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082628A (en) * 2018-11-29 2020-06-04 株式会社リコー Molding apparatus, molding method and molding program
JP7154117B2 (en) 2018-11-29 2022-10-17 エス.ラボ株式会社 Modeling apparatus, modeling method, and modeling program
WO2020162427A1 (en) * 2019-02-07 2020-08-13 キョーラク株式会社 Granular material for heat-fusion type three-dimensional printers, method for manufacturing molded object, layered structure, and method for manufacturing layered structure
JP2020146988A (en) * 2019-03-15 2020-09-17 キョーラク株式会社 Method for manufacturing granular material and object for thermal fusion-type three-dimensional printer
JP7205826B2 (en) 2019-03-15 2023-01-17 キョーラク株式会社 Particles for hot-melt three-dimensional printer, method for producing model
WO2021060451A1 (en) * 2019-09-26 2021-04-01 キョーラク株式会社 Granular material for thermal fusion type three-dimensional printers, method for producing shaped article, and filament
CN114450144A (en) * 2019-09-26 2022-05-06 京洛株式会社 Granular body for thermal fusion type three-dimensional printer, method for producing shaped article, and filament
JP7390679B2 (en) 2019-09-30 2023-12-04 キョーラク株式会社 Granules for thermal melting three-dimensional printers, method for producing shaped objects
WO2021177029A1 (en) * 2020-03-06 2021-09-10 日本軽金属株式会社 Shaped article
JP7376971B2 (en) 2020-03-06 2023-11-09 武藤工業株式会社 Modeled object
US20210394452A1 (en) * 2020-06-23 2021-12-23 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11760029B2 (en) * 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing

Also Published As

Publication number Publication date
JP6821017B2 (en) 2021-01-27
TW201843032A (en) 2018-12-16
JPWO2018207242A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2018207242A1 (en) Three-dimensional modeling device, control method thereof, and modeled object thereof
JP6556652B2 (en) Three-dimensional modeling apparatus, control method thereof, and modeled object
US9573323B2 (en) Method for generating and building support structures with deposition-based digital manufacturing systems
TW201532794A (en) 3D printer with native spherical control
JP6526839B2 (en) Three-dimensional shaping apparatus, control method therefor, and shaped article thereof
TW201529349A (en) 3D print head
KR100771169B1 (en) Prototyping apparatus and method using a flexible multiple array nozzle set
US10532511B2 (en) Infill techniques in three-dimensional printing
JP2005534543A (en) Device and method for manufacturing three-dimensional objects by generative manufacturing methods
US20150165682A1 (en) Three-dimensional printing apparatus and printing head module
US20230202097A1 (en) Braided comingled tow filament for use in 3d printing
CN104249454A (en) Three-dimensional printing apparatus and printing method thereof
JP2016055511A (en) Molding device, production method of molded article, and coating part
RU164639U1 (en) 3D-PRINTER &#34;VEPR&#34;
TW201522019A (en) Three-dimensional printing apparatus and printing head module
KR20160109099A (en) Three-dimensional printing apparatus
KR101802197B1 (en) Three dimensional printer using induction heating bed
JP7376971B2 (en) Modeled object
CN108068310A (en) Three-dimensional printing method
RU2706244C1 (en) Device for movement of working element of machine with numerical program control
WO2023007879A1 (en) Additively fabricated object manufacturing method and additive manufacturing system
US20240083117A1 (en) Method of printing a multi-material 3d part and purge tower
JP2021084416A (en) Manufacturing method of three-dimensional modeled object, and three-dimensional modeling device
WO2019082341A1 (en) Molded article and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908997

Country of ref document: EP

Kind code of ref document: A1