WO2019080839A1 - 一种传输下行控制信息的方法及装置 - Google Patents

一种传输下行控制信息的方法及装置

Info

Publication number
WO2019080839A1
WO2019080839A1 PCT/CN2018/111454 CN2018111454W WO2019080839A1 WO 2019080839 A1 WO2019080839 A1 WO 2019080839A1 CN 2018111454 W CN2018111454 W CN 2018111454W WO 2019080839 A1 WO2019080839 A1 WO 2019080839A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
dci
bit
transmission period
group
Prior art date
Application number
PCT/CN2018/111454
Other languages
English (en)
French (fr)
Inventor
丁志明
庄宏成
杜振国
韩云博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810136994.8A external-priority patent/CN109729573B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019080839A1 publication Critical patent/WO2019080839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of information technology, and in particular, to a method and an apparatus for transmitting downlink control information.
  • the Physical Downlink Control Channel (PDCCH) is used to transmit Downlink Control Information (DCI) sent by the base station to the UE.
  • DCI Downlink Control Information
  • One DCI is transmitted in one PDCCH, and the PDCCH is transmitted in the PDCCH resource area.
  • the PDCCH resource area includes a plurality of Control Channel Elements (CCEs), and the base station (BS) selects according to the size of the DCI and the required transmission reliability.
  • the DCI is transmitted on one CCE, two CCEs, four CCEs, or eight CCEs.
  • the number of CCEs used by one PDCCH is called Aggregation Level (AL).
  • A Aggregation Level
  • a fixed PDCCH resource is not configured for each UE in LTE. Therefore, the UE does not know exactly which specific resource location the DCI will transmit on, and the UE must search within a certain resource range.
  • the DCI (which may be referred to as the target DCI, the UE may have one or more target DCIs), such a resource range is called a search space.
  • the PDCCH resource region includes a common search space CSS and a UE-specific search space USS.
  • the CSS resource location is fixed.
  • the USS determines, according to a radio network temporary identifier C-RNTI and a subframe number of the UE, that the USSs of different UEs may partially overlap or even completely overlap.
  • a PDCCH resource region includes a plurality of PDCCH resource units CCEs.
  • the BS selects to transmit DCI on one CCE, two CCEs, four CCEs, or eight CCEs according to the size of the DCI and the required transmission reliability, that is, one PDCCH may include 1, 2, 4, or 8 CCEs.
  • the number of CCEs used by one PDCCH is called aggregation level AL. For example, when 1 CCE is used, AL is equal to 1, and when 4 CCEs are used, AL is equal to 4. With the same DCI, the larger the AL value used for transmission, the higher the reliability, and of course the more resources are occupied.
  • the BS determines the AL value that should be used according to the situation, and determines the DCI of the appropriate location in the USS of the UE in combination with the DCI transmission of other UEs.
  • DCI with a small number of bits may also be transmitted in CSS. If a DCI is transmitted in the CSS, only AL is 4 or 8. As such, the UE needs to attempt to receive its own DCI at different locations in the USS and possibly in the CSS when receiving the DCI, and may need to try on each possible AL value, a process called search.
  • a DCI includes the payload of the DCI as the payload and the scrambled CRC code.
  • the CRC code is 16-bit information calculated by using the CRC algorithm for the payload, and is used by the receiving end to verify whether the received information is correct.
  • the CRC code is scrambled (specifically, XOR operation) with a 16-bit RNTI associated with the DCI, and then the DCI is encoded, rate matched, and then on the PDCCH (according to AL, may occupy 1 CCE or 2 CCEs, etc.) transmission.
  • the UE After receiving a PDCCH, the UE needs to detect which DCI is transmitted on the PDCCH, and then needs to know the size (bit) of the payload of the target DCI to be detected, that is, the number of bits, and input the size to the decoder, and the decoder according to the input.
  • the size output is decoded after the result.
  • the decoded result includes the DCI payload and the scrambled CRC code.
  • the UE calculates the CRC code for the payload portion, scrambles the calculated CRC code using the RNTI corresponding to the target DCI, and then scrambles the CRC code and the decoding result.
  • the scrambled CRC code comparison in the middle if the two are equal (or matched), it indicates that the target DCI is received, if the two are not equal, if it is also required to detect that it has the same payload size as the target DCI However, if the corresponding target RN is different from the RNTI, the RNTI corresponding to the other target DCI is used to detect whether the decoded result is the another target DCI. If all the RNTIs corresponding to the target DCIs with the same payload size are tried, the scrambled CRC codes in the decoding result cannot be matched. If the DCI of other payload sizes needs to be detected, the new net needs to be input to the decoder.
  • the charge size is re-decoded and the above actions are repeated.
  • the process of attempting a different DCI payload for one PDCCH is called blind detection.
  • Each blind test undergoes a decoding process, and the decoding process has a large amount of calculation and consumes a large amount of power.
  • DC may use different ALs for blind detection in different locations in the search space. It may take a large number of blind detections to receive a target DCI, or after exhausting the maximum number of blind detections. Also did not receive a target DCI.
  • the USS of the UE has 6 candidate PDCCHs when AL is 1 and 2, and 2 candidate PDCCHs when AL is 4 and 8, respectively.
  • the DCI refers to control information of downlink transmission, which is transmitted by the BS and received by the UE.
  • the content in the DCI may be control information for controlling uplink data transmission or control information for controlling downlink data transmission.
  • the DCI that controls the uplink data transmission is called the uplink DCI, and the DCI that controls the downlink data transmission is called the downlink DCI.
  • the UE when the UE needs to send uplink data to the BS, the UE first sends a resource request to the BS, and then the BS sends the uplink DCI to the UE to allocate resources required for the uplink data transmission to the UE, and then the UE transmits the uplink on the allocated uplink data channel resource. data. If the BS sends the downlink data to the UE, the BS first sends the downlink DCI to the UE, and indicates the downlink data channel resource to the UE, and then the UE receives the downlink data on the indicated downlink data channel resource.
  • the uplink DCI is triggered by the UE, for example, after the UE sends the resource request, the UE is triggered to send the uplink DCI. According to the protocol, the UE can always know when to receive the expected uplink DCI.
  • the UE Since the downlink DCI is initiated by the BS, the UE cannot know with certainty when there is a downlink DCI sent to the UE. Therefore, if the UE wants to receive downlink data sent by the base station to the UE in time, the UE has to transmit each transmission cycle. (For example, a subframe with a duration of 1 millisecond) is listening for downlink DCI. In fact, when there is no downlink DCI, the maximum number of blind checks is always exhausted, and a lot of power is wasted. In order to save power for the UE, DRX technology is used in LTE, that is, discontinuous reception.
  • the UE attempts to receive downlink DCI every time according to the designation of the BS, for example, every ten transmission periods (10 subframes, ie 10 milliseconds) or one thousand.
  • the transmission period 1000 subframes, that is, 1 second attempts to receive the downlink DCI to achieve the UE power saving purpose.
  • DRX can achieve the purpose of saving power of the UE, the downlink data cannot reach the UE in time.
  • the UE in order to detect the downlink DCI sent by the base station to the UE itself, the UE needs to blindly check the downlink DCI in different locations of the PDCCH resource region, according to different aggregation levels of the PDCCH, and adopt different DCI payload sizes.
  • the detection process itself consumes more power, and after exhausting the maximum number of blind detections, the downlink DCI sent by the base station to the UE itself may not be detected, and more power is wasted.
  • the present invention provides a method and an apparatus for transmitting downlink control information, which are used to solve the problem that the user equipment existing in the prior art consumes a large amount of power when detecting the downlink control information DCI sent by the base station to the user equipment.
  • the present application provides a method for transmitting downlink control information, where the method includes: sending, by a base station, first indication information to a user equipment in a set resource of a physical downlink control channel PDCCH resource region in a transmission period, where The first indication information is used to indicate whether the downlink control information DCI corresponding to the user equipment exists in the PDCCH resource area in the transmission period; the user equipment determines, according to the first indication information, Whether the DCI exists in the PDCCH resource region in the transmission period; if the first indication information indicates that the DCI exists in the PDCCH resource region in the transmission period, the base station is in the transmission period The DCI is sent to the user equipment in a search space of the user equipment in the PDCCH resource area, and then the user equipment searches for a search space corresponding to the user equipment in the PDCCH resource area in the transmission period. Detecting the DCI; if the first indication information indicates that the DCI does not exist in the PDCCH resource area in the transmission period, the user
  • the user equipment determines, according to the received first indication information that the base station sends in one transmission period, whether the DCI of the user equipment exists in the PDCCH resource area in the transmission period, if the first indication information indicates The DCI of the user equipment does not exist in the PDCCH resource area in the transmission period, and the user equipment does not need to detect the DCI of the user equipment in the PDCCH resource area in the transmission period, where the user equipment receives the
  • the first indication information sent by the base station can be used in various manners, and the cost is small, for example, received by a clear detection method, or received with a small number of blind detections.
  • the base station Transmitting, by the base station, the first indication information to the user equipment in the set resource of the PDCCH resource area, so that the user equipment can explicitly detect the first indication information in the set resource, and the cost is relatively If the indication of the first indication information is used, it is determined whether the DCI corresponding to the user equipment exists in the PDCCH resource area in the transmission period, so as to determine whether the DCI detection needs to be performed, and the user equipment is not available in most transmission periods. In the case of the corresponding DCI, the method can significantly reduce the number of times the user equipment blindly checks the DCI, thereby achieving the purpose of power saving.
  • the base station sends a first DCI to the user equipment in the set resource of the PDCCH resource area in the transmission period, where the first DCI includes an indication bit table. And determining, by the user equipment group in the user equipment group where the user equipment is located, whether a corresponding DCI exists in the PDCCH resource area in the transmission period, and at least one bit in the indication bit table is used to indicate that Whether the DCI of the user equipment exists in the PDCCH resource area in a transmission period.
  • the first DCI can simultaneously indicate whether multiple user equipments detect DCI in the PDCCH resource area in the transmission period, and save resources for transmitting the first DCI.
  • the user equipment determines, according to the first indication information, whether the DCI exists in the PDCCH resource area in the transmission period, and may be according to the indication in the transmission period. At least one bit corresponding to itself in the bit table determines whether the DCI exists in the PDCCH resource region in the transmission period.
  • the user equipment may determine, according to at least one bit corresponding to itself in the indication bit table, whether the DCI is detected in the PDCCH resource region in the transmission period, and the bits in the user equipment and the indication bit table are set. Determine the correspondence and improve the accuracy of judgment.
  • the setting resource includes a common search space, or a group common search space corresponding to the user equipment group where the user equipment is located, or a fixed transmission resource corresponding to the user equipment group where the user equipment is located.
  • the user equipment determines that the DCI exists in the PDCCH resource region in the transmission period;
  • the value of the at least one bit of the at least one bit is the second set value, the user equipment determines that the DCI does not exist in the PDCCH resource region in the transmission period.
  • the indication bit table included in the first DCI is an indication bit table of the user equipment group where the user equipment is located, or a compression indication bit table of the user equipment group where the user equipment is located.
  • the compression indication bit table is obtained by compressing the indication bit table of the user equipment group.
  • the bits of the indication bit table in the first DCI can be fully utilized to avoid wasting bits.
  • the base station may send first configuration information to the user equipment, where the user equipment receives first configuration information sent by the base station, where the first configuration information includes the user a public wireless network temporary identifier G-RNTI corresponding to the device group and an intra-group identifier of the user equipment in the user equipment group, where the G-RNTI is used by the user equipment to identify the received DCI as The first DCI corresponding to the user equipment group in which the user equipment is located, the intra-group identifier is used by the user equipment to determine a bit corresponding to the user equipment itself in the indication bit table of the user equipment group.
  • the first configuration information includes the user a public wireless network temporary identifier G-RNTI corresponding to the device group and an intra-group identifier of the user equipment in the user equipment group, where the G-RNTI is used by the user equipment to identify the received DCI as The first DCI corresponding to the user equipment group in which the user equipment is located, the intra-group identifier is used by the user equipment to determine a bit corresponding to the user
  • the base station may further send second configuration information to the user equipment, where the user equipment receives second configuration information sent by the base station, where the second configuration information includes an indicator.
  • a wireless network temporary identifier I-RNTI I-RNTI
  • group identifier of the user equipment group in which the user equipment is located I-RNTI
  • intra-group identifier of the user equipment in the user equipment group I-RNTI is used for the user equipment identification
  • the received DCI is the first DCI
  • the group identifier is used to determine whether the received DCI is the first DCI corresponding to the user equipment group, and the intra-group identifier is used by the user equipment.
  • a bit corresponding to the user equipment itself is determined in the first DCI.
  • the base station may further send at least one bit of information to the user equipment in the set resource of the PDCCH resource area in the transmission period, and then the user equipment is in the transmission period.
  • Receiving at least one bit information that is sent by the base station in a set resource of the PDCCH resource area, where the at least one bit information is used to indicate whether the user equipment is present in the PDCCH resource area in the transmission period The downlink control information DCI, each bit information included in the at least one bit of information may be independently transmitted.
  • the user equipment can be quickly indicated whether the user equipment needs to be in the transmission period.
  • the DCI is detected in a PDCCH resource region.
  • the user equipment may determine at least one bit information corresponding to the at least one bit information, and determine, according to the at least one bit corresponding to the user equipment, in the transmission period. Whether the DCI exists in the PDCCH resource region.
  • the user equipment may determine that the PDCCH resource area exists in the transmission period. The user equipment determines that the PDCCH resource area is not in the transmission period, if the value of the at least one bit included in the at least one bit information corresponding to the user equipment is the fourth set value. There is the DCI.
  • the setting resource includes a fixed transmission resource corresponding to the user equipment.
  • the base station may further send third configuration information to the user equipment, where the third configuration information includes a correspondence between at least one resource location and the user equipment, where each The resource location is used to transmit one bit of the at least one bit of information.
  • the application provides a user equipment, including a transceiver unit and a processing unit, and the transceiver unit and the processing unit may be implemented by hardware or by a corresponding logic function module.
  • the transceiver unit and the processing unit can implement the method process performed by the user equipment in the possible design of any of the above first aspects and the first aspect thereof by interaction.
  • the transceiver unit may refer to a circuit such as a codec and a modem in a baseband processing module in the user equipment, and the processing unit may refer to a processor in the baseband processing module in the user equipment; or The transceiver unit may refer to a baseband processing module in a user equipment, and the processing unit is an application processor other than the baseband processing module.
  • the present application provides a base station, including a transceiver unit, which may be implemented by hardware or by a corresponding logic function module.
  • the transceiver unit may implement the method procedure performed by the base station in any of the possible aspects of the second aspect and the second aspect thereof described above.
  • an embodiment of the present application further provides an apparatus, including a processor and a memory, where the memory is used to store a software program, and the processor is configured to read a software program stored in the memory and implement the first aspect.
  • an apparatus including a processor and a memory, where the memory is used to store a software program, and the processor is configured to read a software program stored in the memory and implement the first aspect.
  • the present application further provides a computer readable storage medium, configured to store computer software instructions for performing the functions of any of the above first aspect, the first aspect, including A program designed according to any one of the first aspect, the second aspect, and the method of any one of the second aspects.
  • the embodiment of the present application further provides a device, where the device is connected to a memory, for reading and executing a software program stored in the memory, to implement the first aspect or any one of the foregoing first aspects.
  • the embodiment of the present application further provides a system, including a user equipment that implements any one of the first aspect or the foregoing first aspect, and a base station that implements any of the second aspect and the second design. .
  • a downlink data transmission method for a user equipment comprising:
  • the user equipment receives the first indication information that is sent by the base station, where the first indication information is used to indicate whether there is downlink control information about the downlink data transmission of the user equipment, that is, the downlink DCI;
  • the user equipment does not detect the downlink DCI
  • the user equipment receives the downlink DCI of the user equipment by using a blind detection, and if the downlink DCI of the user equipment is detected, the control information is received according to the downlink DCI. Decoding downlink data sent by the base station to the user equipment.
  • the receiving, by the user equipment, the first indication information sent by the base station may be in multiple manners, and the cost is small, for example, received by using a clear detection manner, or received by a small number of blind detections.
  • the method can significantly reduce the number of downlink DCIs that are blindly detected by the user equipment, thereby achieving power saving purposes.
  • the first indication information, the downlink DCI, and the downlink data are transmitted in the same transmission period, and the user equipment receives the first indication information in each transmission period.
  • the control information in the downlink DCI includes resource allocation information, transmission rate information, and the like for transmitting the downlink data.
  • the downlink DCI is a type of DCI, and refers to DCI for downlink data transmission, that is, DCI for scheduling downlink data transmission.
  • the receiving, by the user equipment, the first indication information specifically includes:
  • the user equipment receives the indicator downlink control information I-DCI corresponding to the user equipment group where the user equipment is located, where the I-DCI is used to indicate whether each user equipment in the user equipment group has a downlink DCI, and the I- The DCI includes an indication bit table, where the bit corresponding to the user equipment in the indication bit table carries the first indication information, where the first indication information takes a first value indicating that there is a downlink DCI, and the first indication information is taken. The second value indicates no downlink DCI.
  • the I-DCI may be transmitted using a fixed aggregation level, and the search range is small, or transmitted at a fixed location, so that the number of times the user equipment blindly checks the I-DCI is reduced or not blindly detected.
  • the I-DCI may be an existing group public DCI, which also includes other information related to the user equipment group.
  • the indicator bit table included in the I-DCI may be an original indicator bit table, and the user equipment may directly obtain the bit corresponding to the user equipment from the original indicator bit table.
  • the indication bit table included in the I-DCI may also be a compressed indication bit table, and the user equipment needs to expand the compression indication bit table into an original indication bit table, and then obtain the user equipment corresponding from the original indication bit table. Bits.
  • the I-DCI may further include compressing the first indication information to indicate whether the indication bit table included in the I-DCI is an original indication bit table or a compression indication bit table.
  • the I-DCI may also be referred to as a first DCI, and may also be referred to by other names as long as the functions are the same.
  • the method before the receiving, by the user equipment, the first indication information sent by the base station, the method further includes:
  • the public wireless network of the device group temporarily identifies the G-RNTI and the intra-group device identifier of the user equipment in the one user equipment group, and the G-RNTI is used by the user equipment to identify the received DCI as the one user.
  • the second configuration information includes an indicator radio network temporary identifier I-RNTI and at least one user equipment group configuration information where the user equipment is located, where the I- The RNTI is used by the user equipment to identify that the received DCI is an I-DCI, and the one user equipment group configuration information includes at least a short group identifier of the one user equipment group and the user equipment in the one user equipment group.
  • the I-DCI further includes a group identifier field, and the user equipment determines, according to the value of the group identifier field, whether the received I-DCI is an I-DCI corresponding to the one user equipment group,
  • the in-group device identifier is used by the user equipment to determine a bit corresponding to the user equipment from the indication bit table included in the received I-DCI.
  • the indication bit table may be an original indication bit table or a compression indication bit table. If the indication bit table is a compression indication bit table, the user equipment determines the content from the indication bit table according to the device identification in the group. The bit corresponding to the user equipment needs to first expand the compressed indication bit table into the original indication bit table, and then determine the bit corresponding to the user equipment from the original indication bit table according to the device identification in the group.
  • the G-RNTI is used by the user equipment to identify that the received DCI is an I-DCI corresponding to the one user equipment group, and the user equipment uses the G-RNTI to detect a received DCI scrambled CRC. The code, if matched, the received DCI is the I-DCI corresponding to the one user equipment group.
  • the I-RNTI is used by the user equipment to identify that the received DCI is an I-DCI, and the user equipment uses the I-RNTI to detect a scrambled CRC code of a received DCI, and if yes, receive The DCI is an I-DCI.
  • the receiving, by the user equipment, the first indication information specifically includes:
  • the user equipment receives the indicator downlink control information I-DCI corresponding to the user equipment group where the user equipment is located, where the I-DCI includes a Bloom filter, and the Bloom filter includes M bits, and the M If the value is greater than 1, the first indication information occupies K bits in the Bloom filter, the K is greater than 1 and less than M, and the K bits take a first value to indicate that there is a downlink DCI, and the K bits are Taking a second value for any of the bits indicates that there is no downstream DCI.
  • the I-DCI may be transmitted using a fixed aggregation level, and the search range is small, or transmitted at a fixed location, to allow the user equipment to reduce the number of blind detection I-DCIs or not to blindly check.
  • the I-DCI may be an existing group public DCI in the prior art, and further includes other information related to the user equipment group.
  • the number of user equipments included in the user equipment group corresponding to the I-DCI is greater than the number of bits in the Bloom filter, and any two user equipments in the user equipment group may share one of the Bloom filters. To K bits.
  • the method before the receiving, by the user equipment, the first indication information sent by the base station, the method further includes:
  • the third configuration information includes at least one user equipment group configuration information that is located in the user equipment, where the one user equipment group configuration information includes at least one user
  • the public wireless network of the device group temporarily identifies the G-RNTI and the K bit position information, and the G-RNTI is used by the user equipment to identify that the received DCI is an I-DCI corresponding to the one user equipment group, and the K The bit position information is used by the user equipment to obtain K bits corresponding to the user equipment from a Bloom filter included in the received I-DCI; or
  • the fourth configuration information includes an indicator radio network temporary identifier I-RNTI and at least one user equipment group configuration information where the user equipment is located, where the I- The RNTI is configured to identify that the received DCI is an I-DCI, the one user equipment group configuration information includes at least a user equipment group identifier and K bit position information, and the I-DCI further includes a group identification field, where the user equipment is configured according to The group identification field determines that the received I-DCI is an I-DCI corresponding to the one user equipment group, and the K bit position information is used by the user equipment from the received I-DCI.
  • the K bits corresponding to the user equipment are obtained in the filter.
  • the receiving, by the user equipment, the first indication information specifically includes:
  • the first indication information is one-bit information
  • the user equipment receives the first indication information sent by the base station on a physical downlink indication channel corresponding to the user equipment, where the first indication information takes a first value.
  • the second indication value of the first indication information indicates that there is no downlink DCI.
  • the method before the user equipment receives the first indication information sent by the base station, the method further includes:
  • the user equipment receives the fifth configuration information that is sent by the base station, where the fifth configuration information includes time-frequency resources and code domain resource information of the physical downlink indication channel; or
  • the user equipment receives the sixth configuration information that is sent by the base station, where the sixth configuration information includes code domain resource information and first calculation parameter information of the physical downlink indication channel, and the user equipment calculates according to the first Calculating time-frequency resources of the physical downlink indication channel by using parameter information; or
  • the user equipment receives the second calculation parameter information that is sent by the base station, and the user equipment calculates the time-frequency resource and the code domain resource information of the physical downlink indication channel according to the second calculation parameter information.
  • the first calculation parameter information may include a calculation factor of the user equipment, and the user equipment may calculate, according to the first calculation parameter information, that the time-frequency resource of the physical downlink indication channel is obtained, where the user equipment is The calculation thus calculates the time-frequency resource of the physical downlink indication channel by using information such as the radio network temporary identifier RNTI of the user equipment.
  • the second calculation parameter information may specifically include a radio network temporary identifier RNTI of the user equipment, and the like.
  • the receiving, by the user equipment, the first indication information specifically includes:
  • the first indication information is K-bit information, and the K is greater than 1.
  • the user equipment receives the first indication information sent by the base station on the K physical downlink indication channels corresponding to the user equipment, where the K
  • Each physical downlink indication channel in the physical downlink indication channel transmits 1-bit information, and each bit in the first indication information takes a first value indicating that there is a downlink DCI, and any one of the first indication information is taken.
  • the second value indicates no downlink DCI.
  • the method before the user equipment receives the first indication information sent by the base station, the method further includes:
  • the eighth configuration information includes code domain resource information and third calculation parameter information of the K physical downlink indication channels, where the user equipment is configured according to the Calculating the time-frequency resources of the K physical downlink indication channels by calculating the parameter information;
  • the user equipment receives the fourth calculation parameter information that is sent by the base station, and the user equipment calculates the time-frequency resource and the code domain resource information of the K physical downlink indication channels according to the fourth calculation parameter information.
  • a downlink data transmission method for a base station comprising:
  • the first base station sends the first indication information to the first user equipment, where the first indication information is used to indicate whether there is downlink control information about the downlink data transmission of the first user equipment, that is, the downlink DCI, so that the first user Determining, according to the first indication information, whether the downlink DCI needs to be blindly detected;
  • the base station further sends downlink DCI and downlink data to the first user equipment, where the downlink DCI includes control information for controlling the downlink data transmission.
  • the sending, by the base station, the first indication information to the first user equipment may be in multiple manners, and the cost is small, for example, sending on the fixed resource, causing the first user equipment to receive by using a clear check mode, or The user equipment sends the first indication information in a manner that the first indication information is received by a small number of blind detections.
  • the method can significantly reduce the number of times that the first user equipment blindly detects the downlink DCI, and achieve the purpose of saving power of the first user equipment.
  • the first indication information, the downlink DCI, and the downlink data are transmitted in the same transmission period, and the base station sends the first indication information in each transmission period.
  • the control information in the downlink DCI includes resource allocation information, transmission rate information, and the like for transmitting the downlink data.
  • the sending, by the base station, the first indication information to the first user equipment includes:
  • the base station sends indicator downlink control information I-DCI to a user equipment group where the first user equipment is located, where the I-DCI includes an indication bit table, where the first user equipment corresponding to the indication bit table corresponds to The bit carries the first indication information, where the first indication information takes a first value indicating that there is a downlink DCI, and the first indication information takes a second value indicating that there is no downlink DCI.
  • the I-DCI may be transmitted using a fixed aggregation level, and the search range is small, or transmitted at a fixed location, to reduce the number of times the first user equipment blindly detects I-DCI or does not require the first user equipment to be blind. Check.
  • the I-DCI may be an existing group public DCI, and further includes other information related to the user equipment group where the first user equipment is located.
  • the indicator bit table included in the I-DCI may be an original indicator bit table, where each bit in the original indicator bit table corresponds to one user equipment, and the first user equipment may directly from the indicator bit in the I-DCI.
  • the table gets its own corresponding bit.
  • the indication bit table included in the I-DCI may also be a compression indication bit table, and the compression indication bit table is obtained according to the original indication bit table, and the first user equipment needs to expand the compression indication bit table into The original indication bit table is obtained from the original indication bit table to obtain the bit corresponding to the first user equipment.
  • the I-DCI may further include compressing the first indication information to indicate whether the indication bit table included in the I-DCI is an original indication bit table or a compression indication bit table.
  • the method before the sending, by the base station, the first indication information to the first user equipment, the method further includes:
  • the base station sends the first configuration information to the first user equipment, where the first configuration information includes at least one user equipment group configuration information where the first user equipment is located, and the one user equipment group configuration information includes at least a public wireless network temporary identifier G-RNTI of a user equipment group and an intra-group equipment identifier of the first user equipment in the one user equipment group, where the G-RNTI is used to identify that the DCI sent by the base station is An I-DCI corresponding to the one of the user equipment groups, where the in-group device identifier is used to determine a bit corresponding to the first user equipment in the I-DCI corresponding to the one user equipment group; or
  • the base station Sending, by the base station, the second configuration information to the first user equipment, where the second configuration information includes an indicator radio network temporary identifier I-RNTI and at least one user equipment group configuration information where the first user equipment is located, where The I-RNTI is used to identify that the DCI sent by the base station is an I-DCI, and the one user equipment group configuration information includes at least the group identifier of the one user equipment group and the first user equipment in the one user equipment.
  • An intra-group device identifier in the group the I-DCI further includes a group identifier field, where the value of the group identifier field indicates that the I-DCI sent by the base station is an I-DCI corresponding to the one user equipment group,
  • the intra-group device identifier is used to determine a bit corresponding to the first user equipment in the indication bit table included in the I-DCI corresponding to the one user equipment group.
  • the indicator bit table may be an original indicator bit table or a compressed indicator bit table. If the indicator bit table is a compressed indicator bit table, the group device identifier is used to determine the I-DCI corresponding to the one user equipment group.
  • the bit corresponding to the first user equipment in the included indication bit table is specifically that the base station generates an original indication bit table, and the intra-group device identifier of the first user equipment corresponds to a corresponding bit in the original indication bit table, The base station compresses the original bit table to obtain a compressed indication bit table included in the I-DCI.
  • the G-RNTI is used to identify that the DCI sent by the base station is an I-DCI corresponding to the one user equipment group, and the base station uses the G-RNTI to scramble the CRC code in the sent I-DCI.
  • the I-DCI sent by this identifier is the I-DCI corresponding to the one user equipment group.
  • the I-RNTI is used to identify that the DCI sent by the base station is an I-DCI, and the base station uses the I-RNTI to scramble the CRC code of the transmitted I-DCI, thereby identifying that the transmitted DCI is one. I-DCI.
  • the sending, by the base station, the first indication information to the first user equipment comprises:
  • the base station sends, to the first user equipment, indicator downlink control information I-DCI corresponding to the user equipment group where the first user equipment is located, where the I-DCI includes a Bloom filter, and the Bloom filter Include M bits, the M is greater than 1, the first indication information occupies K bits in the Bloom filter, the K is greater than 1 and less than M, and the K bits take the first value to indicate that there is For downlink DCI, taking any second of the K bits indicates that there is no downlink DCI.
  • the I-DCI may be transmitted using a fixed aggregation level, and the search range is small, or transmitted at a fixed location, so that the first user equipment reduces the number of times of blind detection I-DCI or does not blindly check.
  • the I-DCI may be an existing group public DCI in the prior art, and further includes other information related to the user equipment group.
  • the number of user equipments included in the user equipment group corresponding to the I-DCI is greater than the number of bits in the Bloom filter, and any two user equipments in the first user equipment group may share the Bloom filter. 1 to K bits.
  • the method before the sending, by the base station, the first indication information to the first user equipment, the method further includes:
  • the base station sends the third configuration information to the first user equipment, where the third configuration information includes at least one user equipment group configuration information where the first user equipment is located, and the one user equipment group configuration information includes at least
  • the public radio network temporarily identifies the G-RNTI and the K bit position information of the user equipment group, where the G-RNTI is used to identify that the DCI sent by the base station is an I-DCI corresponding to the one user equipment group,
  • the K bit position information is used to indicate that the first user equipment corresponds to the K bits in the Bloom filter in the I-DCI corresponding to the one user equipment group; or
  • the base station Sending, by the base station, fourth configuration information to the first user equipment, where the fourth configuration information includes an indicator radio network temporary identifier I-RNTI and at least one user equipment group configuration information where the first user equipment is located, where The I-RNTI is used to identify that the DCI sent by the base station is an I-DCI, and the one user equipment group configuration information includes at least a user equipment group identifier and K bit position information, and the I-DCI further includes a group identification field.
  • the fourth configuration information includes an indicator radio network temporary identifier I-RNTI and at least one user equipment group configuration information where the first user equipment is located
  • the I-RNTI is used to identify that the DCI sent by the base station is an I-DCI
  • the one user equipment group configuration information includes at least a user equipment group identifier and K bit position information
  • the I-DCI further includes a group identification field.
  • the value of the group identification field indicates that the I-DCI sent by the base station is an I-DCI corresponding to the one user equipment group, and the K bit position information is used to indicate that the first user equipment is in the one The corresponding K bits in the Bloom filter in the I-DCI corresponding to the user equipment group.
  • the sending, by the base station, the first indication information to the first user equipment includes:
  • the first indication information is one-bit information, and the base station sends the first indication information on a physical downlink indication channel corresponding to the first user equipment, where the first indication information takes a first value indicating that there is a downlink DCI.
  • the first indication information takes a second value indicating that there is no downlink DCI.
  • the first value may be referred to as a first set value
  • the second value may be referred to as a second set value
  • the method before the sending, by the base station, the first indication information to the first user equipment, the method further includes:
  • the base station sends, to the first user equipment, fifth configuration information, where the fifth configuration information includes time-frequency resources and code domain resource information of the physical downlink indication channel; or
  • the base station sends sixth configuration information to the first user equipment, where the sixth configuration information includes code domain resource information and first calculation parameter information of the physical downlink indication channel, where the first calculation parameter information is used. Determining a time-frequency resource of the physical downlink indication channel; or
  • the base station sends second calculation parameter information to the first user equipment, where the second calculation parameter information is used to determine time-frequency resources and code domain resource information of the physical downlink indication channel.
  • the first calculation parameter information may include a calculation factor of the first user equipment, and the base station obtains the physical downlink indication channel according to the first calculation parameter information, the radio network temporary identifier RNTI of the first user equipment, and the like.
  • the time-frequency resource, or the base station first determines the time-frequency resource of the physical downlink indication channel, and then calculates according to the time-frequency resource of the physical downlink indication channel and the radio network temporary identifier RNTI of the first user equipment.
  • the calculation factor is obtained, so that the first user equipment can calculate the time-frequency resource of the physical downlink indication channel according to the calculation factor and the like.
  • the second calculation parameter information may specifically include a radio network temporary identifier RNTI of the first user equipment, and the like.
  • the sending, by the base station, the first indication information to the first user equipment includes:
  • the first indication information is K-bit information, and the K is greater than 1.
  • the base station sends the first indication information, the K physical downlink indications, on the K physical downlink indication channels corresponding to the first user equipment.
  • Each physical downlink indication channel in the channel transmits 1-bit information, where each bit in the first indication information takes a first value indicating that there is a downlink DCI, and any one of the first indication information takes a second value. No downlink DCI.
  • the method before the sending, by the base station, the first indication information to the first user equipment, the method further includes:
  • the base station sends, to the first user equipment, seventh configuration information, where the seventh configuration information includes time-frequency resources and code domain resource information of the K physical downlink indication channels; or
  • the base station sends the eighth configuration information to the first user equipment, where the eighth configuration information includes code domain resource information and third calculation parameter information of the K physical downlink indication channels, and the third calculation parameter information a time-frequency resource for determining the K physical downlink indication channels; or
  • the base station sends fourth calculation parameter information to the first user equipment, where the fourth calculation parameter information is used to determine time-frequency resources and code domain resource information of the K physical downlink indication channels.
  • a user equipment comprising:
  • a memory for storing instructions
  • a processor configured to invoke an instruction in the memory, to perform the method of any of the methods 1-9 above.
  • a base station comprising:
  • a memory for storing instructions
  • a processor configured to invoke an instruction in the memory, to perform the method of any of the methods 10-18 above.
  • a user equipment comprising: a processor, a memory and a wireless transceiver;
  • the wireless transceiver is configured to receive and transmit data, and implement wireless communication with the base station;
  • the memory is for storing instructions
  • the processor is operative to execute the instructions in the memory and perform the method of any of methods 1-9.
  • a base station comprising: a processor, a memory and a wireless transceiver;
  • the wireless transceiver is configured to receive and transmit data, and implement wireless communication with the user equipment;
  • the memory is for storing instructions
  • the processor is operative to execute the instructions in the memory and perform the method of any of methods 10-18.
  • a user equipment configured to perform the method of any of methods 1-9.
  • a base station configured to perform the method of any of methods 10-18.
  • a computer program product comprising a computer program which, when executed on a computer, causes the computer to implement the method of any of methods 1-9.
  • a computer program product comprising a computer program which, when executed on a computer, causes the computer to implement the method of any of methods 10-18.
  • a computer program which, when executed on a computer, causes the computer to implement the method of any of methods 1-9.
  • a computer program which, when executed on a computer, causes the computer to implement the method of any of methods 10-18.
  • a communication system comprising the user equipment of any of methods 1-9 and the base station of any of methods 10-18.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of 1-9.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of 10-18.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the method of any one of claims 1 to 9.
  • the chip according to 32 further comprising a storage module (eg, a memory), the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and Execution of the instructions stored in the storage module causes the processing module to perform the method of any one of claims 1 to 9.
  • a storage module eg, a memory
  • the storage module is configured to store an instruction
  • the processing module is configured to execute an instruction stored by the storage module
  • Execution of the instructions stored in the storage module causes the processing module to perform the method of any one of claims 1 to 9.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the method of any one of claims 10 to 18.
  • the chip of claim 34 the chip further comprising a storage module (eg, a memory), the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and Execution of the instructions stored in the storage module causes the processing module to perform the method of any of claims 10-18.
  • a storage module eg, a memory
  • the storage module is configured to store an instruction
  • the processing module is configured to execute an instruction stored by the storage module
  • Execution of the instructions stored in the storage module causes the processing module to perform the method of any of claims 10-18.
  • FIG. 1 is a schematic diagram of a scenario of a wireless communication system provided by the present application.
  • FIG. 2 is a flowchart of a method for transmitting downlink control information provided by the present application
  • FIG. 3 is a schematic diagram of a physical downlink control channel resource region provided by the present application.
  • FIG. 4 is a schematic diagram of an indicator position table provided by the present application.
  • FIG. 5 is a schematic diagram of another indicator position table provided by the present application.
  • Figure 6 is a schematic diagram of a Bloom filter indication provided by the present application.
  • FIG. 7 is a schematic diagram of another physical downlink control channel resource region provided by the present application.
  • Figure 8 is a schematic view of a Bloom filter provided by the present application.
  • FIG. 9 is a schematic diagram of a user equipment apparatus provided by the present application.
  • FIG. 10 is a schematic diagram of a base station apparatus provided by the present application.
  • FIG. 11 is a hardware structural diagram of a device provided by the present application.
  • the embodiment of the present invention provides a method and a device for transmitting downlink control information, which are used to solve the problem of large power consumption when the user equipment in the prior art is sent to the downlink control information DCI of the user equipment by the blind detection base station. .
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • UE User equipment
  • MS mobile station
  • MT mobile terminal
  • UE User equipment
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • the wireless terminal in the wireless terminal, the wireless terminal in the transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, etc., the UE in the present application can be highly reliable and low latency.
  • a base station is a device in the network that connects a terminal device to a wireless network.
  • the network device is a node in the radio access network, and may also be a network device, and may also be referred to as a radio access network (RAN) node (or device).
  • RAN radio access network
  • Some examples of network devices are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU wireless fidelity (Wifi) access point (AP).
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • the transmission period, the period during which the base station sends data to the user equipment, the transmission period in the present application is the transmission period of the user equipment in the awake state of the connected state, or the transmission period of the user equipment in the idle state, and the transmission period in this application
  • the duration can be 10ms.
  • the first indication information is used to indicate whether the downlink control information corresponding to the user equipment exists in the PDCCH resource area in the transmission period, and the first indication information may be the first DCI (also a type of DCI, and may also be called
  • the indicator downlink control information I-DCI may also be referred to by other names, or may be at least one bit information.
  • An indication bit table comprising a plurality of bits, indicating, by at least one bit, whether each user equipment in the user equipment group has a corresponding DCI in the PDCCH resource area in the transmission period.
  • Common search space a plurality of user equipments can retrieve the first indication information sent by the base station to the user equipment in the common search space.
  • the first set value is a binary number, which is used to indicate that the user equipment detects the DCI in the search space corresponding to the user equipment in the PDCCH resource area in the transmission period, and the specific value is 1 or 0. , different from the second set value.
  • a second set value which is a binary number, is used to indicate that the user equipment does not detect the DCI in the search space corresponding to the user equipment in the PDCCH resource area in the transmission period, where the specific value is 0 or 1, different from the first set value.
  • a third set value which is a binary number, used to indicate that the user equipment determines to detect the DCI in the PDCCH resource area in the transmission period, where the specific value is 0 or 1, and the fourth set value different.
  • the fourth set value is a binary number, and is used to indicate that the user equipment determines that the DCI is not detected in the PDCCH resource area in the transmission period, and the specific value is 1 or 0, and the third setting The values are different.
  • a public radio network tempory identity which indicates a RNTI shared by a group of user equipments, and one G-RNTI corresponds to one user equipment group, and is used to identify that one I-DCI is a UE group corresponding to I-DCI.
  • Indicators radio network tempory identity indicates the radio network temporary identifier of the I-DCI, and the I-RNTI described herein may be referred to by other names for the user equipment identification.
  • the received DCI is the first DCI.
  • a physical downlink indicator channel (PDICH) is used to indicate whether there is downlink data.
  • PDICH physical downlink indicator channel
  • the physical layer hybrid automatic repeat-requirement indicator channel (PHICH), with 1 bit indicating whether the data transmitted by the sender is correctly received.
  • a resource element (RE), an Orthogonal Frequency Division Multiplexing (OFDM) symbol and a minimum physical signal transmission unit composed of one subcarrier.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present application can be applied to a scenario of a wireless communication system, including multiple BSs, each BS can provide communication services for multiple UEs in coverage, and the UE can move, and can be in different BS coverage at different locations, BS
  • the downlink data can be sent to the UE, as shown in FIG. 1 .
  • 5G requires support for ultra-reliable low latency or URLLC services.
  • the URLLC service requires the UE or BS to complete data transmission in one direction within 0.5 milliseconds.
  • the BS configures the shared uplink data transmission resource area, and once the data transmission is performed, the UE can randomly select one or more resource units to transmit in the shared uplink data transmission resource area, thereby achieving the purpose of low delay.
  • the traditional transmission mode has to be adopted, that is, the BS first transmits a downlink DCI, and indicates the transmission position of the downlink data and other related parameters in the downlink DCI.
  • the UE first receives the downlink DCI and then the downlink DCI.
  • the downlink data transmission resource location receives downlink data.
  • the UE cannot use the DRX technology to detect the downlink DCI at intervals, but has to detect the downlink DCI for each transmission cycle to achieve low latency.
  • this transmission period is shorter than a subframe (length of 1 millisecond) in LTE, for example, one slot (half subframe), or even only 2 OFDM symbols, and the shortest transmission period supported is 0.125 milliseconds.
  • a shorter transmission period means that the downlink DCI is detected more frequently, which causes the UE to consume more power.
  • the downlink DCI is detected, and multiple blind detections are required, and the actual data volume of the URLLC service is not large, and the data transmission is not frequent.
  • the method includes:
  • Step 201 The base station sends the first indication information to the user equipment in one transmission period.
  • Step S202 The user equipment receives, in the transmission period, the first indication information that is sent by the base station in a setting resource of a physical downlink control channel PDCCH resource region, where the first indication information is used to indicate that the transmission period is Whether downlink control information DCI corresponding to the user equipment exists in the PDCCH resource area.
  • the DCI corresponding to the user equipment and the “the DCI” mentioned below, may refer to the downlink DCI described above.
  • Step S203 The user equipment determines, according to the first indication information, whether the DCI exists in the PDCCH resource region in the transmission period.
  • Step S2041 If the first indication information indicates that the DCI exists in the PDCCH resource region in the transmission period, the user equipment corresponds to the user equipment in the PDCCH resource region in the transmission period. The DCI is detected in the search space.
  • Step S2042 If the first indication information indicates that the DCI does not exist in the PDCCH resource region in the transmission period, the user equipment does not detect the DCI in the PDCCH resource region in the transmission period.
  • the user equipment determines, according to the received first indication information that the base station sends in one transmission period, whether the DCI of the user equipment exists in the PDCCH resource area in the transmission period, if the first indication information indicates The DCI of the user equipment does not exist in the PDCCH resource area in the transmission period, and the user equipment does not need to detect the DCI of the user equipment in the PDCCH resource area in the transmission period, reduce the number of blind detections, and reduce power consumption.
  • the first indication information needs to be detected in each transmission period, the power consumption of detecting the first indication information UE is much smaller than the power required by the UE to blindly detect the DCI.
  • the base station when the first indication information indicates that the DCI exists in the PDCCH resource area in the transmission period, the base station also delivers the user in the transmission period in which the first indication information is sent.
  • the DCI corresponding to the device that is, the first indication information
  • the DCI that is, the DCI corresponding to the user equipment described herein, specifically, the downlink DCI
  • the downlink data that is, the information is in the same transmission period. Transmitted, wherein the downlink data is data scheduled by the DCI.
  • the user equipment may receive the first indication information in each transmission period to reduce the amount of power consumed by the user equipment to detect downlink DCI in each transmission period.
  • the first indication information in step S201 is the first DCI or the at least one bit information. The following two cases are respectively illustrated.
  • Case 1 The user equipment receives the first DCI sent by the base station in the set resource of the PDCCH resource area in the transmission period.
  • the first DCI includes an indication bit table, which is used to indicate whether each user equipment in the user equipment group in which the user equipment is located has a corresponding DCI in the PDCCH resource area in the transmission period, At least one bit in the indication bit table is used to indicate whether the DCI of the user equipment exists in the PDCCH resource region in the transmission period, wherein the first DCI may also be referred to as an I-DCI.
  • FIG. 3 is a schematic diagram of a physical downlink control channel resource region in a transmission period, where 301 represents a physical downlink control channel resource region in one transmission period, and 302 represents a transmission of I-DCI in a physical downlink control channel resource region.
  • Setting a resource area that is, setting a resource area, the setting resource includes a common search space, or a group common search space corresponding to the user equipment group where the user equipment is located, or a fixed transmission corresponding to the user equipment group where the user equipment is located.
  • Resources. 303 is a UE-specific search space (USS) of one UE, 304 is an I-DCI, and 305 represents a downlink DCI.
  • USS UE-specific search space
  • FIG. 3 is only a schematic diagram, and does not imply the time-frequency domain information of the physical downlink control channel resource region and the positional relationship between the resource region transmitting the I-DCI and the physical downlink control channel resource region.
  • At least one bit in the indication bit table is used to indicate whether the DCI of the user equipment exists in the PDCCH resource area in the transmission period, including using one bit indication or adopting at least two
  • the two bits indicate two specific implementation manners, and the two embodiments are specifically described below.
  • the DCI in the indication bit table is used as an example to indicate whether a user equipment has the DCI of the user equipment in the PDCCH resource area in the transmission period as an example.
  • the indication bit table is an indication bit table of the user equipment group in which the user equipment is located, or a compression indication bit table of the user equipment group in which the user equipment is located. That is, the indication bit table may be an original indication bit table of a group of user equipments including the user equipment, or may be a compression indication bit table including a large group of user equipments.
  • an indication bit table original indication bit table When used, it is used to indicate a group of user equipments, and the group of user equipments includes 24 user equipments.
  • the schematic diagram of the indication bit table is as shown in FIG. 4, when the indication bit table is Each of the bits corresponds to the set UE, and when the value of the bit is 1, the user equipment corresponding to the bit has DCI in the PDCCH resource area in the transmission period, for example, the first in FIG.
  • the bits correspond to UE1, and the value of the bit is 1, indicating that UE1 has DCI in the PDCCH resource region during the transmission period.
  • the value of the bit When the value of the bit is 0, it indicates that the user equipment corresponding to the bit does not have DCI in the PDCCH resource region in the transmission period.
  • the third bit in FIG. 3 corresponds to UE3, and the value of the bit is 0, indicating The UE3 does not have DCI in the PDCCH resource area in the transmission period, and so on, and so on.
  • the user equipment Before the user equipment receives the first DCI sent by the base station in the set resource of the PDCCH resource area, the user equipment receives the first configuration information sent by the base station,
  • the first configuration information includes a public wireless network temporary identifier G-RNTI corresponding to the user equipment group and an intra-group identifier of the user equipment in the user equipment group, where the G-RNTI is used for the user
  • the device identifies that the received DCI is the first DCI corresponding to the user equipment group where the user equipment is located, and the intra-group identifier is used by the user equipment to determine the user equipment in the indication bit table of the user equipment group. The corresponding bit.
  • the base station needs to send multiple G-RNTIs corresponding to multiple user equipment groups in which the user equipment is located to the user equipment.
  • the I-DCI corresponding to each user equipment group performs a scrambling cyclic redundancy check (CRC) with the G-RNTI of the group.
  • CRC cyclic redundancy check
  • the pre- The configured multiple G-RNTIs descramble the I-DCI, and the base station allocates an intra-group device representation for each UE in the group, so that the BS and the UE determine the location of the corresponding bit of the UE in the indication table according to the intra-group device identifier.
  • the device identifier in the group is substantially an index, and is used to indicate the location of the bit corresponding to the UE in the indication bit table. For example, when a UE group has a maximum of 24 UEs, the device identifier in the group can be in the range of 0 to 23.
  • an indicator bit table is a compressed indicator bit table, it is used to indicate a large group of user equipments, which include more user equipments, for example, more than 24 user equipments, but because each UE
  • the downlink data is sparse, and the number of bits set to 1 in the bit table is usually much smaller than the number of 0 bits, indicating that the bit table is compressible, and the compression indicator bit of one of the cases is illustrated in FIG. 5
  • the table is composed of three smallest-sized user equipments combined into one large group for compression, and the size of the corresponding large group of indication bit tables is unchanged, so the size of the I-DCI is unchanged.
  • the size of the I-DCI is unchanged, which avoids multiple blind detections by the UE when receiving I-DCI because of different I-DCI sizes, thereby reducing power consumption.
  • the group corresponding to the original indicator bit table is called a group
  • the group corresponding to the plurality of groups corresponding to the compressed indicator bit table is called a large group, which is convenient for the UE.
  • the BS may send two G-RNTIs for each UE, and one G-RNTI is used for the corresponding I of the descrambling group -DCI, another G-RNTI is used to descramble a large group of corresponding I-DCIs.
  • each group of the group includes 24 UEs
  • the large group includes 48 or 72 UEs, etc., which is not limited by the present invention.
  • the BS may configure each UE in multiple UE groups of different sizes, and send the G-RNTI of each UE group to the UE.
  • the UE may know the size of the UE group corresponding to the I-DCI according to the G-RNTI used by the received I-DCI, for example, the size of the UE group corresponding to the first G-RNTI is 24 UEs.
  • the size of the UE group corresponding to the second G-RNTI is 48 UEs, and the size of the UE group corresponding to the third G-RNTI is 96 UEs, which is not limited by the present invention.
  • the BS supports a maximum of 96 UEs, and each UE is identified as 0 to 95, which may be referred to as a local short identifier.
  • the BS can classify the 0th to 23rd UEs into the first group, the 24th to 47th UEs to the 2nd group, the 48th to the 71th UEs to the 3rd group, and the 72nd to the 95th UEs to the 4th group, and the 72nd to 95th UEs are assigned to the 4th group. group.
  • the first group to the fourth group are all the smallest UE groups, and each group needs the original indicator bit table length of 24 bits, and each UE group corresponds to one G-RNTI.
  • the BS further merges the UEs of the first group and the second group into the fifth group, and combines the third group and the fourth group into the sixth group, and further can further combine the first group and the third group into the seventh group, and the The 2nd group and the 4th group were combined into the 8th group, the 1st group and the 4th group were combined into the 9th group, and the 2nd group and the 3rd group were combined into the 10th group.
  • Groups 5 through 10 are larger groups and each has a G-RNTI.
  • the BS may separately transmit a total of four I-DCIs corresponding to the first group to the fourth group, or send a total of three I-DCIs corresponding to the first group, the second group, and the sixth group. Or a total of two I-DCIs of the seventh group and the eighth group, which are not limited by the present invention.
  • the indication bit table transmitted in the I-DCI corresponding to the first group to the fourth group is the original indication bit table
  • the indication bit table transmitted in the I-DCI corresponding to the fifth group to the tenth group is the compression indication bit table, and the compression indication table
  • the bit table does not exceed 24 bits.
  • the BS can also put all UEs in one group and set it as the eleventh group.
  • the BS only sends the corresponding I-DCI of the eleventh group.
  • the compressed indication bit table should be first expanded into the original indication bit table according to the intra-group device in the UE group corresponding to the I-DCI.
  • the identifier locates its own bit in the original indicator bit table, and determines whether it has a downlink DCI according to the value of its own bit.
  • the group number is the first group or the second group or the fifth group in the above specific examples, and the like.
  • the indicator bit table transmitted in the corresponding I-DCI is a compression indication. Bit table.
  • the I-DCI corresponding to the large UE group is sent as much as possible to reduce the number of I-DCIs in one transmission period, thereby saving system resources.
  • a compression mode field may be included in the I-DCI to indicate a compression mode of the indication bit table, and the BS may adopt different compression modes according to the distribution of the bits of the original indication bit table that take the first set value.
  • the compression result can be sent within an I-DCI-defined size and the compression mode field is used to indicate compression.
  • the I-DCI always contains a compression mode field. When the value is 0, it indicates that the original indicator bit table is transmitted in the I-DCI, and other values indicate that the I-DCI transmits the compressed indication bit table and the specific compression mode. . If the compression mode field has only 1 bit, only the original indication bit table or the compression indication bit table transmitted in the I-DCI is indicated, and the compression mode is fixed.
  • the compression mode field does not exist in the I-DCI including the original indication bit table, and the I-DCI including the compression indication bit table may indicate one of a plurality of compression modes with a small number of bits, for example, indicated by 2 bits. There are 4 compression modes, and the compression indication bit table does not exceed 22 bits.
  • the compression mode field can be considered as part of the compressed indication bit table, and the compressed indication bit table does not exceed 24 bits.
  • the number of UEs included in one UE group is not limited, and the manner of compressing the indication bit table is not limited, and a run-length compression method or a header-to-tail compression method may be adopted.
  • the BS may allocate each UE to one UE group, indicating that the bit table does not use the compression mode, and the BS only needs to add the G-RNTI to the intra-group device identifier or the I-RNTI plus.
  • the group ID plus the device identifier in the group is sent to the UE.
  • the BS may also not group the UEs, and the configuration information sent by the BS to the UE needs to include the I-RNTI, the BS local short identifier of the UE, and immediately notify the UE of the size information of the I-DCI, because the change of the number of UEs may affect the indication.
  • the length of the bit table How the BS sends the configuration information of the UE to the UE, which is not limited by the present invention.
  • the BS can specify a fixed transmission position of the I-DCI corresponding to the UE group, and the UE can receive its corresponding I-DCI without blind detection.
  • the BS cannot transmit I-DCI at the determined resource location, and the UE needs to blindly check the I-DCI within a certain resource range.
  • UE1 and UE2 are in two different groups, but at the same time in a large group. If the UE where UE1 is located and the group where UE2 is located have more UEs with downlink DCI, the original indicator bits of the large group.
  • the bit taking the first set value in the table is similar to the bit taking the second set value and the distribution is relatively uniform, resulting in incompatibility, and the large set of indication bit table cannot be transmitted in one I-DCI, and the BS can only transmit the corresponding Two groups of I-DCI.
  • the BS sends the I-DCI corresponding to the large group where the UE1 and the UE2 are co-located, and does not need to send two I-DCIs.
  • the UE When the UE sends the I-DCI, it uses a higher aggregation level (AL) to improve the transmission reliability.
  • AL can be 4 or 8.
  • the higher the value of AL the higher the reliability of I-DCI transmission.
  • the UE can be prevented from blindly checking the I-DCI on different values of the AL, and the number of blind detection of the I-DCI by the UE is reduced, which is beneficial to the UE to save power.
  • the following is an example of using the at least two bits in the indication bit table to indicate whether a user equipment has the DCI of the user equipment in the PDCCH resource area in the transmission period, where one mode is a Bloom filter. Instructions are as follows.
  • the I-DCI carries a bloom filter
  • the Bloom filter includes a plurality of bits
  • one UE corresponds to K bits in the Bloom filter
  • K is at least 2, any two UEs.
  • the initial value of each bit in the ridge filter is a second set value, for example, "0”
  • the first bit and the second bit are used to indicate UE1, and the values of the first bit and the first bit are both 1, and therefore are transmitted.
  • the second bit and the third bit are used to indicate UE2, the third bit is 0, so there is no DCI corresponding to UE2 in the PDCCH resource region in the transmission period.
  • the first bit and the third bit are used to indicate UE3, and the third bit is 0. Therefore, there is no downlink DCI corresponding to UE2 in the PDCCH resource region in the transmission period.
  • Figure 6 is only one specific example of the Bloom filter.
  • the BS sets the K bits corresponding to the UE to a first set value, for example, "1".
  • a UE receives the I-DCI and finds that it corresponds to the first set value of the K bits in the Bloom filter, it considers that there is a downlink DCI, but according to the characteristics of the Bloom filter, this may be a false indication. Actually, there may be no downlink DCI corresponding to the UE, but when any one of the K bits corresponding to one UE takes the second set value, the UE certainly does not have the downlink DCI.
  • this feature of the Bloom filter can ensure that the UE does not miss the downlink DCI that occurs irregularly, but in the majority In this case, it is determinable not to detect the downlink DCI and reduce the power consumption.
  • the BS can divide the UE into multiple groups, each using one Bloom filter.
  • each UE group can contain more UEs, while a Bloom filter requires fewer bits, for example, each UE group contains 48 or 72 UEs, while the Bloom filter has only 24 bits.
  • System resources can be saved by indicating 48 or 72 UEs by 24 bits.
  • Case 2 The user equipment receives at least one bit of information sent by the base station in the set resource of the PDCCH resource area in the transmission period.
  • the at least one bit information is used to indicate whether downlink control information DCI of the user equipment exists in the PDCCH resource area in the transmission period, and each bit information included in the at least one bit information is independent.
  • the set resource of the PDCCH resource area may be a PDICH resource area, where the one bit information may be transmitted by using one PDICH resource, where the set resource includes a fixed transmission resource corresponding to the user equipment.
  • FIG. 7 is a schematic diagram of another physical downlink control channel resource region in a transmission period, where 701 represents a physical downlink control channel resource region in one transmission period, and 702 represents a physical downlink control channel resource region.
  • the PDICH resource area, 703 is the USS of one UE, 704 is the PDICH resource of the UE, and 705 represents a downlink DCI.
  • the physical downlink control channel resource area 701 is only a part of all transmission resources in a transmission period, and other possible uplink control channel resource areas, uplink data transmission resource areas, or downlink data transmission resource areas are not shown.
  • the physical downlink control channel resource region 701 may contain one or more OFDM symbols in the time domain and may include the entire carrier or a portion of the carrier in the frequency domain.
  • the shape of the physical downlink control channel resource region 701 shown in FIG. 7 does not imply any meaning in the frequency domain or the time domain, and only represents one radio resource.
  • the location of the physical downlink control channel resource region 701 of the PDICH resource region 702 shown in FIG. 7 does not indicate the true location of the PDICH resource region 702 in the physical downlink control channel resource region 701, and only indicates that the PDICH resource region 702 is a physical downlink control channel.
  • the position of the USS shown in FIG. 7 is only a schematic, and the actual position should be calculated and determined according to a prescribed calculation formula, and the present invention does not limit how to calculate the USS.
  • the position of the PDICH shown in FIG. 7 is only an illustration, and the actual position should be determined according to a prescribed calculation formula or determined according to the configuration of the BS.
  • the user equipment receives the at least one bit information sent by the base station in the set resource of the PDCCH resource area in the transmission period, and the user equipment receives the And a third configuration information, where the third configuration information includes a correspondence between the at least one resource location and the user equipment, where each of the resource locations is used to transmit one bit information.
  • the at least one bit information is used to indicate whether the DCI of the user equipment exists in the PDCCH resource area in the transmission period, including using one bit information to indicate or adopting at least two pieces of bit information. Two specific embodiments are indicated, and the two embodiments are specifically described below.
  • the following describes the DCI as an example of whether the DCI of the user equipment exists in the PDCCH resource area in the transmission period by using one bit information.
  • the user equipment determines, according to the at least one bit information, the detection in the PDCCH resource area in the transmission period.
  • the third set value may be 1 or 0, which is different from the fourth set value; if the value of at least one bit of the at least one bit information corresponding to the user equipment itself is the fourth set value, Determining, by the user equipment, that the DCI is not detected in the PDCCH resource region in the transmission period according to the at least one bit information, where the fourth setting value may be 0 or 1, different from the third setting value.
  • one PDICH occupies a small amount of transmission resources
  • the transmission of the PDICH in the embodiment of the present application may use the PHICH transmission technology in the LTE in the prior art, and each of the 8 PHICHs in the LTE occupy 12
  • the resource units RE form a PHICH group, and different PHICHs in the same PHICH group superimpose signals orthogonally by using Walsh code sequences, and each PHICH occupies 1.5 REs, and each PHICH signal is distributed on 12 REs.
  • the PDICH transmission may also use other technologies, for example, each PDICH monopolizes one or two REs and the like.
  • the present invention does not limit the specific transmission mode of the PDICH.
  • a PDICH resource is a resource occupied by a PDICH.
  • the existing transmission technology is adopted. 8 PDICHs constitute one PDICH group and occupy 12 REs in total. Each PDICH uses a different Walsh code sequence, and one PDICH resource refers to the occupied one. The 12 REs and the Walsh code sequence used.
  • the PDICH resource region may be located in a specific region of the physical downlink control channel resource region specified by the BS or specified by the system.
  • the location of the PDICH resource corresponding to each UE in the PDICH resource area may be explicitly configured by the BS, or may be calculated according to a formula, specifically, using a cell radio network temporary identifier (cell RNTI, C-RNTI) of the UE, Or use the C-RNTI of the UE and the ID number of the transmission period to calculate.
  • cell RNTI cell radio network temporary identifier
  • C-RNTI cell radio network temporary identifier
  • the ID number of the transmission period is the subframe number (for example, one subframe contains 2 slots).
  • the transmission period is a slot (for example, one slot contains 14 OFDM symbols)
  • the ID number of the transmission period is the slot number.
  • the transmission period may be a smaller period than the time slot, for example, 2 OFDM symbols, which may be referred to as a minislot, and the ID number of the transmission period is a microslot number.
  • the BS may also configure each UE with a different calculation factor for calculating the location of the UE's PDICH so that the location of the PDICH calculated by each UE is different.
  • the Walsh code sequence used by the UE may be configured by the BS or may be calculated according to a formula.
  • the calculation formula can be:
  • IPDICH (AUE*(NC-RNTI+P)*Q)mod NPDICH
  • the IPDICH indicates an index number of a plurality of PDICH resources included in a PDICH resource region of a PDICH of the UE.
  • Each PDICH resource corresponds to an index number
  • the index number of the PDICH resource determines the corresponding time-frequency resource and the walsh code sequence
  • the AUE indicates the UE-related calculation factor configured by the BS for the UE, configured by the BS, or not used
  • NC- The RNTI indicates the value of the C-RNTI of the UE, P is a prime number, and may not be used. Q is another prime number or may not be used.
  • the three values AUE, P, and Q are used to make the calculation result have a good distribution. Make the IPDICH of each UE as different as possible.
  • Different UEs having the same IPDICH may affect the power saving effect of the UE, that is, multiple UEs may share one PDICH resource.
  • multiple UEs sharing PDICH resources if only one UE has downlink DCI, use the same PDICH resource with it. Based on this, other UEs judge that they have downlink DCI, then go to their own USS to try to receive downlink DCI, and finally do not receive downlink DCI, but only waste a power, and will not generate wrong actions.
  • the NPDICH indicates the number of PDICH resources included in the PDICH resource region. For example, if the PDICH resource region contains 24 REs, the PDICH resource region includes 2 PDICH groups, that is, 16 PDICH resources. Mod means modularization.
  • the Walsh code sequence corresponding to the UE may also be calculated by using the above formula, and the NPDICH in the formula may be replaced by the number of Walsh code sequences.
  • the UE since the PDICH resource corresponding to the UE is determined, the UE does not need to perform blind detection when receiving the PDICH, and can receive information with a clear amount of information on an explicit resource. And the PDICH only contains 1 bit of information, and the energy consumption required to receive the PDICH is much smaller than the energy required to blindly check the DCI once.
  • the DCI is used as an example to indicate whether a user equipment has the DCI of the user equipment in the PDCCH resource area in the transmission period by using at least two pieces of bit information, where one mode is Bron Filter instructions for a detailed description.
  • This embodiment uses a bloom filter technique in combination with PDICH to reduce the amount of resources occupied by the PDICH resource region.
  • Bloom filter refer to the description in the second embodiment. If the PDICH resource area contains M PDICH resources, M bit information can be transmitted, and the M bits can be organized into a Bloom filter, that is, the BS will be clothed. Each bit in the burst filter is transmitted in the corresponding PDICH. Each UE uses the K bits in the Bloom filter to indicate whether there is downlink DCI, that is, the UE receives the corresponding K PDICHs every period, and when the bits in the K PDICHs take the third set value, for example, 1" indicates that the UE may have a downlink DCI.
  • the UE When at least one of the K bits is a fourth set value, for example, "0", the UE certainly does not have a downlink DCI.
  • M bits can be used to indicate whether each of more than M UEs has downlink DCI, which reduces the amount of resources occupied by the PDICH resource region.
  • FIG. 8 The use of the specific Bloom filter is exemplified in FIG. 8.
  • Each small frame in FIG. 8 represents 1-bit information of one PDICH bearer, and bit information carried by multiple PDICHs is combined to form a bit string, and the PDICH transmission technology can be With the PDICH resource region described in Embodiment 3, which includes 24 REs, there are 16 PDICH resources, that is, 16 bits of information can be transmitted.
  • FIG. 8 shows only 10 bits of information as an indication.
  • the indication bits of UE1 are bits 0 and 2
  • the indication bits of UE2 are bits 2 and 6
  • the indication bits of UE3 are bits 6 and 8
  • the indication bits of UE4 are bits 0 and 6.
  • UE1 and UE4 share bit 0, UE1 and UE2 share bit 2, and UE2 and UE4 share bit 6.
  • the BS indicates that UE1 and UE2 have downlink DCI, so bits 0, 2, and 6 in the Bloom filter are set to the third set value "1", and other bits are set to the fourth set value "0".
  • UE1 and UE2 and UE4 detect that their own indication bits are all "1", then they all think that they have DCI, where UE1 and UE2 will detect their own downlink DCI, because UE4 shares the common bits with UE1 and UE2, but actually The UE4 in the PDCCH resource region does not have the DCI corresponding to the UE in the PDCCH resource region, so the UE4 cannot detect its own DCI, which is a misinformation. The false indication only causes the UE that is misinformed to fail to achieve power saving once, and does not cause other negative effects.
  • UE3 detects that both of its indication bits are not "1", it considers that it does not have downlink DCI, and does not detect downlink DCI and reduce energy consumption.
  • the position of the K bits in the Bloom filter corresponding to a UE may be configured by the BS, or may be calculated according to a setting formula.
  • K when K is 2, refer to the third embodiment.
  • the formula described constructs the following formula:
  • IPDICH1 (AUE*(NC-RNTI+P1)*Q) mod NPDICH
  • IPDICH2 (AUE*(NC-RNTI+P2)*Q) mod NPDICH
  • the IPDICH1 and the IPDICH2 represent two PDICH resources corresponding to the UE, that is, corresponding to the positions of two bits in the Bloom filter.
  • P1 and P2 are different qualities for calculating the two bit positions of the UE.
  • AUE or Q in the formula it is also possible to set AUE or Q in the formula to be different.
  • the sequence of the Walsh code corresponding to the multiple PDICH resources of the UE may be calculated in a similar manner, and specifically refer to the third embodiment.
  • each PDICH transmission Bloom filters are used, and each PDICH transmits one bit in the Bloom filter, and each UE corresponds to multiple bits in the Bloom filter, that is, multiple PDICHs, and the UE according to the cloth
  • the multiple bits corresponding to the UE in the primary filter determine whether to blindly check the downlink DCI, which can save system resources.
  • the present application further provides a schematic diagram of a user equipment, as shown in FIG. 9, including a transceiver unit 901, configured to receive a base station in a physical downlink control channel PDCCH resource region in one transmission period. Setting the first indication information that is sent in the resource, where the first indication information is used to indicate whether downlink control information corresponding to the user equipment to which the transceiver unit belongs is located in the PDCCH resource area in the transmission period.
  • a processing unit 902 configured to determine, according to the first indication information, whether the DCI is detected in the PDCCH resource region in the transmission period; if the first indication information indicates that in the transmission period If the DCI is present in the PDCCH resource region, the transceiver unit detects the DCI in a search space corresponding to the user equipment in the PDCCH resource region in the transmission period; if the first indication information indicates The DCI is not present in the PDCCH resource region in the transmission period, and the transceiver unit does not detect the DCI in the PDCCH resource region in the transmission period.
  • the present application further provides a schematic diagram of a base station, as shown in FIG. 10, including a transceiver unit 1001, configured to set a PDCCH resource region of a physical downlink control channel in one transmission period.
  • the first indication information is sent to the user equipment in the resource, where the first indication information is used to indicate whether the downlink control information DCI corresponding to the user equipment exists in the PDCCH resource area in the transmission period;
  • the first indication information indicates that the DCI exists in the PDCCH resource region in the transmission period, and the transceiver unit sends the search space in the user equipment in the PDCCH resource region to the The user equipment sends the DCI;
  • the processing unit 1002 is configured to control the transceiver unit to send the first indication information and the DCI.
  • each functional module in each embodiment of the present application may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • a device may include the processor 1102.
  • the hardware of the entity corresponding to the processing units 902, 1002 may be the processor 1102.
  • the processor 1102 can be a central processing unit (English: central processing unit, CPU for short), or a digital processing module or the like.
  • the device may further include a communication interface 1101 (which may be a transceiver), and the hardware entity corresponding to the transceiver unit 901, 1001 may be the communication interface 1101.
  • the device may also include a memory 1103 for storing programs executed by the processor 1102.
  • the memory 1103 can be a non-volatile memory, such as a hard disk drive (HDD) or a solid state drive (English: solid-state drive, abbreviated as SSD), or a volatile memory (English: volatile Memory), such as random access memory (English: random-access memory, abbreviation: RAM).
  • Memory 1103 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 1102 is configured to execute the program code stored by the memory 1103, specifically for executing the method described in the embodiment shown in FIG. 2. For the method described in the embodiment shown in FIG. 2, the application is not described herein again.
  • connection medium between the communication interface 1101, the processor 1102, and the memory 1103 is not limited in the embodiment of the present application.
  • the memory 1103, the processor 1102, and the communication interface 1101 are connected by a bus 1104 in FIG. 11, and the bus is indicated by a thick line in FIG. 11, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the invention further provides a computer readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which comprises a program for executing the above-mentioned processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • At least one means one or more, and "a plurality” means two or more.
  • At least one of the following or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one of "a, b, or c" may mean: a, b, c, ab ( That is, a and b), ac, bc, or abc, wherein a, b, and c may be single or plural.
  • the size of the serial numbers of the above processes does not mean the order of execution, and some or all of the steps may be performed in parallel or sequentially, and the execution order of each process shall be
  • the intrinsic logic is determined without any limitation on the implementation process of the embodiments of the present application.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输下行控制信息的方法及装置,用以解决现有技术中用户设备在检测基站发送给该用户设备自身的下行控制信息时,耗电量大的问题。该方法包括:用户设备在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息;所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI;若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI;若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述用户设备不在所述传输周期内所述PDCCH资源区中检测所述DCI。

Description

一种传输下行控制信息的方法及装置
本申请要求于2017年10月27日提交中国国家知识产权局、申请号为201711056899.9、申请名称为“一种下行数据传输方法及设备”的中国专利申请的优先权,以及于2018年2月9日提交中国国家知识产权局、申请号为201810136994.8、申请名称为“一种传输下行控制信息的方法及装置”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种传输下行控制信息的方法及装置。
背景技术
在长期演进(Long Term Evolution,LTE)中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)用于传输基站发送给UE的下行控制信息(Downlink Control Information,DCI)。一个DCI在一个PDCCH中传输,PDCCH在PDCCH资源区传输,PDCCH资源区包含众多的控制信息单元(Control Channel Element,CCE),基站(Base Station,BS)根据DCI的大小和需要的传输可靠性选择在1个CCE、2个CCE、4个CCE或8个CCE上进行传输该DCI,一个PDCCH所使用的CCE的数量称为聚合等级(Aggregation Level,AL)。
为了提高资源利用率,LTE中不为每个UE配制固定的PDCCH资源,因此UE并不确定地知道自己的任一个DCI会在哪个具体资源位置上传输,UE必须在一定资源范围内搜索可能存在的或自己期待的DCI(可以称为目标DCI,该UE可以有一个或多个目标DCI),这样的资源范围称为搜索空间。PDCCH资源区包含公共搜索空间CSS和UE特定搜索空间USS。CSS的资源位置固定。USS根据UE的一个无线网络临时标识C-RNTI和子帧号确定,不同UE的USS可能会有部分重叠甚至完全重叠。
LTE中,PDCCH资源区包含众多的PDCCH资源单元CCE。BS根据DCI的大小和需要的传输可靠性选择在1个CCE、2个CCE、4个CCE或8个CCE上传输DCI,即一个PDCCH可包含1个、2个、4个或8个CCE。一个PDCCH所使用的CCE的数量称为聚合等级AL,例如使用1个CCE时AL等于1,使用4个CCE时AL等于4。同一个DCI,传输时使用的AL值越大,可靠性越高,当然占用的资源也越多。BS在向UE传输DCI时,会根据情况确定应该使用的AL值,并结合其它UE的DCI的传输情况在该UE的USS中确定一个合适的位置传输DCI。部分比特数较少的DCI也可能在CSS中传输。如果一个DCI在CSS中传输,则仅使用AL为4或8。如此,UE在接收DCI时需要在USS甚至可能在CSS中不同的位置上尝试接收自己的DCI,并且可能需要在各个可能的AL取值上进行尝试,这个过程称为搜索。
一个DCI在传输时包括DCI的净荷(payload)即有效信息和加扰过的CRC码。其中CRC码是对净荷使用CRC算法计算生成的16比特信息,用于接收端校验所接收的信息是否正确。 CRC码使用一个与DCI相关的同为16比特的RNTI加扰(具体为异或运算),然后DCI经过编码、速率匹配后在PDCCH(根据AL,可能占用1个CCE或2个CCE等)上传输。UE在接收一个PDCCH后需检测PDCCH上传输的是哪一种DCI,则需要知道待检测的目标DCI的净荷的尺寸(size)即比特数,将尺寸输入给解码器,解码器根据输入的尺寸输出解码后的结果。解码后的结果包含DCI的净荷和加扰的CRC码,UE对净荷部分计算CRC码,使用目标DCI对应的RNTI对计算出的CRC码加扰,再将加扰的CRC码与解码结果中的加扰的CRC码比较,若两者相等(或匹配),则说明收到了所述目标DCI,若两者不相等,若同时还需检测具有与所述目标DCI具有相同的净荷尺寸但对应的RNTI不同的另一目标DCI,则使用另一目标DCI对应的RNTI检测所解码的结果是否为所述另一目标DCI。若尝试所有具有相同净荷尺寸的各目标DCI对应的RNTI后均不能匹配解码结果中的加扰的CRC码,若还需检测其它净荷尺寸的DCI,则需要重新向解码器输入新的净荷尺寸重新解码,再重复前述动作。对一个PDCCH尝试不同的DCI的净荷尺寸,这个过程称为盲检。每次盲检都经历一次解码过程,解码过程有较大计算量,消耗较多电量。UE为了收到自己期待的或者检测可能随时出现的DCI,在搜索空间不同的位置、使用不同AL进行盲检,可能需要大量的盲检次数才能收到一个目标DCI,或者穷尽最大盲检次数之后也未收到一个目标DCI。LTE中规定UE的USS在AL为1和2时分别有6个候选PDCCH,AL为4和8时分别有2个候选PDCCH,则检测到一个目标DCI的最大盲检次数为6+6+2+2=16次,如果考虑目标DCI有可能在CSS中传输,则盲检次数更多。
DCI是指下行传输的控制信息,由BS发送,UE接收。DCI中的内容可能是控制上行数据传输的控制信息或控制下行数据传输的控制信息。控制上行数据传输的DCI称为上行DCI,控制下行数据传输的DCI称为下行DCI。
一般情况下,UE需要向BS发送上行数据时,UE首先向BS发送资源请求,然后BS向UE发送上行DCI为UE分配上行数据传输需要的资源,之后UE在分配的上行数据信道资源上传输上行数据。若BS向UE发送下行数据,则BS首先向UE发送下行DCI,向UE指示下行数据信道资源,然后UE在指示的下行数据信道资源上接收下行数据。
由于上行DCI都是由UE触发的,例如UE发送资源请求后触发BS发送上行DCI,按照协议的规定,UE总是能知道在什么时间接收期待的上行DCI。
由于下行DCI是由BS发起,UE不能确定地知道何时会有发送给所述UE的下行DCI,因此如果UE要及时收到基站发送给所述UE的下行数据,UE不得不每个传输周期(例如时长为1毫秒的子帧)都侦听是否有下行DCI,在事实上没有下行DCI时,却总是要穷尽最大的盲检次数,浪费许多电量。为了UE省电,LTE中使用DRX技术,即非连续接收,UE按照BS的指定,每隔一段时间尝试接收一下下行DCI,例如每十个传输周期(10个子帧即10毫秒)或者一千个传输周期(1000个子帧即1秒)尝试接收一下下行DCI,以此达到UE省电目的。DRX虽然能达到UE省电的目的,但下行数据就不能及时到达UE。
综上所示,UE为了检测到基站发送给该UE自身的下行DCI,需要在PDCCH资源区的不同位置、根据PDCCH的不同的聚合等级、采用不同的DCI净荷尺寸来盲检下行DCI,盲检过程本身比较耗电,而且穷尽最大盲检次数后可能没有检测到基站发 送给该UE自身的下行DCI,浪费较多电量。
发明内容
本申请提供一种传输下行控制信息的方法及装置,用以解决现有技术中存在的用户设备在检测基站发送给该用户设备自身的下行控制信息DCI时,耗电量大的问题。
第一方面,本申请提供了一种传输下行控制信息的方法,该方法包括:基站在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI;所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI;若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述基站在所述传输周期内所述PDCCH资源区中所述用户设备的搜索空间中向所述用户设备发送所述DCI,然后所述用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI;若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述用户设备不在所述传输周期内所述PDCCH资源区中检测所述DCI。
通过上述方法,用户设备根据接收到的基站在一个传输周期内发送的第一指示信息,确定在该传输周期内PDCCH资源区中是否存在该用户设备的DCI,若所述第一指示信息指示在该传输周期内PDCCH资源区中不存在该用户设备的DCI,则所述用户设备不需要在所述传输周期内所述PDCCH资源区中检测该用户设备的DCI,其中,所述用户设备接收所述基站发送的第一指示信息可用多种方式,且代价较小,例如采用明检方式接收,或者以较少盲检次数接收。通过所述基站在所述PDCCH资源区的设定资源中向用户设备发送第一指示信息,使得用户设备可以明确地在所述设定资源中检测到所述第一指示信息,花费的代价较小,通过所述第一指示信息的指示,获知在该传输周期内PDCCH资源区中是否存在该用户设备对应的DCI,从而确定是否需要进行所述DCI的检测,在多数传输周期没有该用户设备对应的DCI的情况下,采用本方法可显著减少用户设备盲检DCI的次数,达到省电目的。
在一种可能的设计中,所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送第一DCI,其中,所述第一DCI包含一个指示位表,用于指示所述用户设备所在的用户设备组中各个用户设备在所述传输周期内所述PDCCH资源区中是否存在对应的DCI,所述指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI。
通过该方法,所述第一DCI可以同时指示多个用户设备是否在所述传输周期内所述PDCCH资源区中检测DCI,节约传输第一DCI的资源。
在一种可能的设计中,所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI,可以通过在所述传输周期内根据所述指示位表中与自身对应的至少一个比特,判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
通过该方法,用户设备可以根据指示位表中与自身对应的至少一个比特,判断是 否在所述传输周期内所述PDCCH资源区中检测所述DCI,用户设备与指示位表中的比特有设定的对应关系,提高判断的准确性。
在一种可能的设计中,所述设定资源包括公共搜索空间、或者所述用户设备所在用户设备组对应的组公共搜索空间、或者所述用户设备所在用户设备组对应的固定传输资源。
在一种可能的设计中,若所述至少一个比特的值都为第一设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中存在所述DCI;若所述至少一个比特中至少一个比特的值为第二设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中不存在所述DCI。
在一种可能的设计中,所述第一DCI中包含的指示位表为所述用户设备所在的用户设备组的指示位表,或为所述用户设备所在的用户设备组的压缩指示位表,其中,所述压缩指示位表为所述用户设备组的指示位表经过压缩获得。
通过该方法,可以充分利用第一DCI中指示位表的比特,避免浪费比特。
在一种可能的设计中,所述基站可以向所述用户设备发送第一配置信息,所述用户设备接收到所述基站发送的第一配置信息,所述第一配置信息中包括所述用户设备组对应的公共无线网络临时标识G-RNTI以及所述用户设备在所述用户设备组中的组内标识,其中,所述G-RNTI用于所述用户设备识别接收到的DCI为所述用户设备所在用户设备组对应的第一DCI,所述组内标识用于所述用户设备在所述用户设备组的指示位表中确定与所述用户设备自身对应的比特位。
在一种可能的设计中,所述基站还可以向所述用户设备发送第二配置信息,所述用户设备接收到所述基站发送的第二配置信息,所述第二配置信息中包括指示器无线网络临时标识I-RNTI、所述用户设备所在用户设备组的组标识和所述用户设备在所述用户设备组内的组内标识,其中,所述I-RNTI用于所述用户设备识别接收到的DCI为所述第一DCI,所述组标识用于确定所接收到的DCI是否为所述用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述第一DCI中确定与所述用户设备自身对应的比特位。
在一种可能的设计中,所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中还可以向用户设备发送至少1比特信息,然后所述用户设备在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息,其中,所述至少1比特信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的下行控制信息DCI,所述至少1比特信息中包含的每个比特信息可以独立传输。
通过该方法,通过独立传输指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的DCI的至少1比特信息,可以快速的指示用户设备是否需要在所述传输周期内所述PDCCH资源区中检测所述DCI。
在一种可能的设计中,所述用户设备可以在所述至少一个比特信息中确定出自身对应的至少一个比特信息,根据所述用户设备自身对应的至少一个比特判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
在一种可能的设计中,若所述用户设备自身对应的至少1比特信息的值都为第三设定值时,所述用户设备可以确定在所述传输周期内所述PDCCH资源区中存在所述 DCI;若所述用户设备自身对应的至少1比特信息中包含的至少一个比特的值为第四设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中不存在所述DCI。
在一种可能的设计中,所述设定资源包括所述用户设备对应的固定传输资源。
在一种可能的设计中,所述基站还可以向所述用户设备发送第三配置信息,所述第三配置信息中包括至少一个资源位置与所述用户设备的对应关系,其中,每个所述资源位置用于传输所述至少1比特信息中的1个比特信息。
第二方面,本申请提供一种用户设备,包括收发单元和处理单元,所述收发单元和处理单元可以通过硬件实现,也可以通过相应的逻辑功能模块实现。收发单元和处理单元通过交互配合可以实现上述第一方面及其第一方面中任一种可能的设计中由用户设备完成的方法过程。
在一种可能的设计中,所述收发单元可以是指用户设备中基带处理模块中的编解码器和调制解调器等电路,所述处理单元可以是指用户设备中基带处理模块中的处理器;或者,所述收发单元可以是指用户设备中基带处理模块,所述处理单元是基带处理模块之外的应用处理器。
第三方面,本申请提供一种基站,包括收发单元,所述收发单元可以通过硬件实现,也可以通过相应的逻辑功能模块实现。收发单元可以实现上述第二方面及其第二方面中任一种可能的设计中由基站完成的方法过程。
第四方面,本申请实施例还提供了一种设备,包括处理器和存储器,所述存储器用于存储软件程序,所述处理器用于读取所述存储器中存储的软件程序并实现第一方面、第一方面的任意一种设计、第二方面、以及第二方面的任意一种设计提供的方法。
第五方面,本申请还提供了一种计算机可读存储介质,用于存储为执行上述第一方面、第一方面的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述第一方面、第一方面的任意一种设计、第二方面、以及第二方面的任意一种设计的方法所设计的程序。
第六方面,本申请实施例还提供了一种装置,所述装置与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现第一方面或上述第一方面的任意一种设计、第二方面、以及第二的任意一种设计的方法,所述装置为芯片或芯片系统。
第七方面,本申请实施例还提供了一种系统,包括实现第一方面或上述第一方面的任意一种设计的用户设备和,实现第二方面、以及第二的任意一种设计的基站。
本申请还提供了以下任一个实施例:
1.一种下行数据传输方法,用于用户设备,所述方法包括:
所述用户设备接收基站发送的第一指示信息,所述第一指示信息用于指示是否存在所述用户设备的关于下行数据传输的下行控制信息即下行DCI;
若所述第一指示信息指示无下行DCI,所述用户设备不检测下行DCI;或,
若所述第一指示信息指示有下行DCI,所述用户设备通过盲检接收所述用户设备的下行DCI,若检测到所述用户设备的下行DCI则根据所述下行DCI中的控制信息接收所述基站发送给所述用户设备的下行数据。
其中所述用户设备接收所述基站发送的第一指示信息可用多种方式,且代价较小,例如采用明检方式接收,或者以较少盲检次数接收。在多数传输周期没有下行DCI的 情况下,采用本方法可显著减少用户设备盲检下行DCI的次数,达到省电目的。
所述第一指示信息、所述下行DCI和所述下行数据在同一个传输周期传输,所述用户设备在每个传输周期都接收所述第一指示信息。
所述下行DCI中的控制信息包括传输所述下行数据的资源分配信息和传输速率信息等。
其中,所述下行DCI是DCI的一种,是指关于下行数据传输的DCI,也即,用于调度下行数据传输的DCI。
2.根据方法1所述的方法,所述用户设备接收第一指示信息具体包括:
所述用户设备接收所述用户设备所在用户设备组对应的指示器下行控制信息I-DCI,所述I-DCI用于指示所述用户设备组中各个用户设备是否有下行DCI,所述I-DCI中包含指示位表,所述指示位表中所述用户设备对应的比特携带所述第一指示信息,所述第一指示信息取第一值表示有下行DCI,所述第一指示信息取第二值表示无下行DCI。
所述I-DCI可以使用固定的聚合等级传输,且搜索范围较小,或者在固定位置传输,以使所述用户设备盲检I-DCI的次数减少或不要盲检。
所述I-DCI可以是已有组公共DCI,其中还包括其它与用户设备组相关的信息。
所述I-DCI中包含的指示位表可以为原始指示位表,则所述用户设备可以直接从所述原始指示位表中获得所述用户设备对应的比特。所述I-DCI中包含的指示位表也可以为压缩指示位表,则所述用户设备需要将压缩指示位表展开为原始指示位表,再从原始指示位表中获得所述用户设备对应的比特。
所述I-DCI中还可以包含压缩第一指示信息以指示所述I-DCI包含的指示位表是原始指示位表还是压缩指示位表。
其中,所述I-DCI也可以称为第一DCI,也可以以其他名称来称呼,只要其功能相同即可。
3.根据方法2所述的方法,所述用户设备接收基站发送的第一指示信息之前还包括:
所述用户设备接收所述基站发送的第一配置信息,所述第一配置信息包含所述用户设备所在的至少一个用户设备组配置信息,所述一个用户设备组配置信息至少包括所述一个用户设备组的公共无线网络临时标识G-RNTI和所述用户设备在所述一个用户设备组内的组内设备标识,所述G-RNTI用于所述用户设备识别接收的DCI为所述一个用户设备组对应的I-DCI,所述组内设备标识用于所述用户设备从所述指示位表中确定所述用户设备对应的比特;或,
所述用户设备接收所述基站发送的第二配置信息,所述第二配置信息包含指示器无线网络临时标识I-RNTI和所述用户设备所在的至少一个用户设备组配置信息,所述I-RNTI用于所述用户设备识别接收的DCI为I-DCI,所述一个用户设备组配置信息至少包括所述一个用户设备组的简短组标识和所述用户设备在所述一个用户设备组内的组内设备标识,所述I-DCI还包括组标识字段,所述用户设备根据所述组标识字段的取值确定所接收的I-DCI是否为所述一个用户设备组对应的I-DCI,所述组内设备标识用于所述用户设备从所接收的I-DCI中包含的指示位表中确定所述用户设备对应的比 特。
所述指示位表可以是原始指示位表或压缩指示位表,若所述指示位表是压缩指示位表,所述用户设备根据所述组内设备标识从所述指示位表中确定所述用户设备对应的比特时需要首先将压缩指示位表展开为原始指示位表,然后根据所述组内设备标识从所述原始指示位表中确定所述用户设备对应的比特。
所述G-RNTI用于所述用户设备识别接收的DCI为所述一个用户设备组对应的I-DCI具体为,所述用户设备使用所述G-RNTI检测接收的一个DCI的加扰的CRC码,如果匹配,则所接收的DCI就是所述一个用户设备组对应的I-DCI。
所述I-RNTI用于所述用户设备识别接收的DCI为I-DCI具体为,所述用户设备使用所述I-RNTI检测接收的一个DCI的加扰的CRC码,如果匹配,则所接收的DCI就是一个I-DCI。
4.根据方法1所述的方法,所述用户设备接收第一指示信息具体包括:
所述用户设备接收所述用户设备所在用户设备组对应的指示器下行控制信息I-DCI,所述I-DCI中包含布隆过滤器,所述布隆过滤器包含M个比特,所述M大于1,所述第一指示信息占用所述布隆过滤器中的K个比特,所述K大于1小于M,所述K个比特都取第一值表示有下行DCI,所述K个比特中任一比特取第二值表示没有下行DCI。
所述I-DCI可以使用固定的聚合等级传输,且搜索范围较小,或者在固定位置传输,以使所述用户设备减少盲检I-DCI的次数或不要盲检。
所述I-DCI可以是现有技术中已有组公共DCI,其中还包括其它与用户设备组相关的信息。
所述I-DCI对应的用户设备组包含的用户设备数量大于所述布隆过滤器中的比特数,所述用户设备组中的任两个用户设备可能共用所述布隆过滤器中的1到K个比特。
5.根据方法4所述的方法,所述用户设备接收基站发送的第一指示信息之前还包括:
所述用户设备接收所述基站发送的第三配置信息,所述第三配置信息包含所述用户设备所在的至少一个用户设备组配置信息,所述一个用户设备组配置信息至少包括所述一个用户设备组的公共无线网络临时标识G-RNTI和K个比特位置信息,所述G-RNTI用于所述用户设备识别所接收的DCI为所述一个用户设备组对应的I-DCI,所述K个比特位置信息用于所述用户设备从所接收的I-DCI中包含的布隆过滤器中获得所述用户设备对应的K个比特;或,
所述用户设备接收所述基站发送的第四配置信息,所述第四配置信息包含指示器无线网络临时标识I-RNTI和所述用户设备所在的至少一个用户设备组配置信息,所述I-RNTI用于识别所接收的DCI为I-DCI,所述一个用户设备组配置信息至少包括用户设备组标识和K个比特位置信息,所述I-DCI还包括组标识字段,所述用户设备根据所述组标识字段确定所接收的I-DCI为所述一个用户设备组对应的I-DCI,所述K个比特位置信息用于所述用户设备从所接收的I-DCI中包含的布隆过滤器中获得所述用户设备对应的K个比特。
所述G-RNTI和I-RNTI的具体用途可以参考方法3中的描述。
6.根据方法1所述的方法,所述用户设备接收第一指示信息具体包括:
所述第一指示信息为一比特信息,所述用户设备在所述用户设备对应的一个物理下行指示信道接收所述基站发送的所述第一指示信息,所述第一指示信息取第一值表示有下行DCI,所述第一指示信息取第二值表示无下行DCI。
7.根据方法6所述的方法,所述用户设备接收基站发送的第一指示信息之前还包括:
所述用户设备接收所述基站发送的第五配置信息,所述第五配置信息包含所述物理下行指示信道的时频资源和码域资源信息;或,
所述用户设备接收所述基站发送的第六配置信息,所述第六配置信息包含所述物理下行指示信道的码域资源信息和第一计算参数信息,所述用户设备根据所述第一计算参数信息计算获得所述物理下行指示信道的时频资源;或,
所述用户设备接收所述基站发送的第二计算参数信息,所述用户设备根据所述第二计算参数信息计算获得所述物理下行指示信道的时频资源和码域资源信息。
所述第一计算参数信息可以包括所述用户设备的计算因子,所述用户设备根据所述第一计算参数信息计算获得所述物理下行指示信道的时频资源具体可以是,所述用户设备根据所述计算因此、所述用户设备的无线网络临时标识RNTI等信息计算获得所述物理下行指示信道的时频资源。
所述第二计算参数信息具体可以包括所述用户设备的无线网络临时标识RNTI等。
8.根据方法1所述的方法,所述用户设备接收第一指示信息具体包括:
所述第一指示信息为K比特信息,所述K大于1,所述用户设备在所述用户设备对应的K个物理下行指示信道接收所述基站发送的所述第一指示信息,所述K个物理下行指示信道中的每一个物理下行指示信道传输1比特信息,所述第一指示信息中的每个比特都取第一值表示有下行DCI,所述第一指示信息中任一比特取第二值表示无下行DCI。
9.根据方法8所述的方法,所述用户设备接收基站发送的第一指示信息之前还包括:
所述用户设备接收所述基站发送的第七配置信息,所述第七配置信息包含所述K个物理下行指示信道的时频资源和码域资源信息;或,
所述用户设备接收所述基站发送的第八配置信息,所述第八配置信息包含所述K个物理下行指示信道的码域资源信息和第三计算参数信息,所述用户设备根据所述第三计算参数信息计算获得所述K个物理下行指示信道的时频资源;或,
所述用户设备接收所述基站发送的第四计算参数信息,所述用户设备根据所述第四计算参数信息计算获得所述K个物理下行指示信道的时频资源和码域资源信息。
关于所述第三计算参数可以参考方法7中描述的第一计算参数。
关于所述第四计算参数可以参考方法7中描述的第二计算参数。
10.一种下行数据传输方法,用于基站,所述方法包括:
所述基站向第一用户设备发送第一指示信息,所述第一指示信息用于指示是否存在所述第一用户设备的关于下行数据传输的下行控制信息即下行DCI,以便所述第一用户设备根据所述第一指示信息确定是否需要盲检下行DCI;
若所述第一指示信息指示有下行DCI,所述基站还向所述第一用户设备发送下行DCI和下行数据,所述下行DCI包含控制所述下行数据传输的控制信息。
其中所述基站向所述第一用户设备发送第一指示信息可用多种方式,且代价较小,例如在固定资源上发送使所述第一用户设备采用明检方式接收,或者使所述第一用户设备以较少盲检次数接收到所述第一指示信息的方式发送所述第一指示信息。在多数传输周期没有所述第一用户设备的下行DCI的情况下,采用本方法可显著减少所述第一用户设备盲检下行DCI的次数,达到使第一用户设备省电的目的。
所述第一指示信息、所述下行DCI和所述下行数据在同一个传输周期传输,所述基站在每个传输周期都发送所述第一指示信息。
所述下行DCI中的控制信息包括传输所述下行数据的资源分配信息和传输速率信息等。
11.根据方法10所述的方法,所述基站向第一用户设备发送第一指示信息具体包括:
所述基站向所述第一用户设备所在的一个用户设备组发送指示器下行控制信息I-DCI,所述I-DCI中包含指示位表,所述指示位表中所述第一用户设备对应的比特携带所述第一指示信息,所述第一指示信息取第一值表示有下行DCI,所述第一指示信息取第二值表示无下行DCI。
所述I-DCI可以使用固定的聚合等级传输,且搜索范围较小,或者在固定位置传输,以减少所述第一用户设备盲检I-DCI的次数或不需要所述第一用户设备盲检。
所述I-DCI可以是已有组公共DCI,其中还包括其它与所述第一用户设备所在用户设备组相关的信息。
所述I-DCI中包含的指示位表可以为原始指示位表,所述原始指示位表中每个比特对应一个用户设备,则所述第一用户设备可以直接从I-DCI中的指示位表获得自己对应的比特。所述I-DCI中包含的指示位表也可以为压缩指示位表,压缩指示位表根据所述原始指示位表压缩获得,则所述第一用户设备需要将所述压缩指示位表展开为原始指示位表,再从原始指示位表中获得所述第一用户设备对应的比特。
所述I-DCI中还可以包含压缩第一指示信息以指示所述I-DCI包含的指示位表是原始指示位表还是压缩指示位表。
12.根据方法11所述的方法,所述基站向第一用户设备发送第一指示信息之前还包括:
所述基站向所述第一用户设备发送第一配置信息,所述第一配置信息包含所述第一用户设备所在的至少一个用户设备组配置信息,所述一个用户设备组配置信息至少包括所述一个用户设备组的公共无线网络临时标识G-RNTI和所述第一用户设备在所述一个用户设备组内的组内设备标识,所述G-RNTI用于标识所述基站发送的DCI为所述一个用户设备组对应的I-DCI,所述组内设备标识用于确定所述一个用户设备组对应的I-DCI中所述第一用户设备对应的比特;或,
所述基站向所述第一用户设备发送第二配置信息,所述第二配置信息包含指示器无线网络临时标识I-RNTI和所述第一用户设备所在的至少一个用户设备组配置信息,所述I-RNTI用于标识所述基站发送的DCI为I-DCI,所述一个用户设备组配置信息至 少包括所述一个用户设备组的组标识和所述第一用户设备在所述一个用户设备组内的组内设备标识,所述I-DCI还包括组标识字段,所述组标识字段的取值指示所述基站发送的I-DCI为所述一个用户设备组对应的I-DCI,所述组内设备标识用于确定所述一个用户设备组对应的I-DCI中包含的指示位表中所述第一用户设备对应的比特。
所述指示位表可以是原始指示位表或压缩指示位表,若所述指示位表是压缩指示位表,所述组内设备标识用于确定所述一个用户设备组对应的I-DCI中包含的指示位表中所述第一用户设备对应的比特具体为,所述基站生成原始指示位表,所述第一用户设备的组内设备标识对应所述原始指示位表中相应的比特,所述基站将原始位表压缩后得到压缩指示位表包含于所述I-DCI。
所述G-RNTI用于标识所述基站发送的DCI为所述一个用户设备组对应的I-DCI具体为,所述基站使用所述G-RNTI加扰发送的I-DCI中的CRC码,以此标识所发送的I-DCI就是所述一个用户设备组对应的I-DCI。
所述I-RNTI用于标识所述基站发送的DCI为I-DCI具体为,所述基站使用所述I-RNTI加扰发送的I-DCI的CRC码,以此标识所发送的DCI是一个I-DCI。
13.根据方法10所述的方法,其特征在于,所述基站向第一用户设备发送第一指示信息具体包括:
所述基站向所述第一用户设备发送所述第一用户设备所在用户设备组对应的指示器下行控制信息I-DCI,所述I-DCI中包含布隆过滤器,所述布隆过滤器包含M个比特,所述M大于1,所述第一指示信息占用所述布隆过滤器中的K个比特,所述K大于1小于M,所述K个比特都取第一值表示有下行DCI,所述K个比特中任一比特取第二值表示没有下行DCI。
所述I-DCI可以使用固定的聚合等级传输,且搜索范围较小,或者在固定位置传输,以使所述第一用户设备减少盲检I-DCI的次数或不要盲检。
所述I-DCI可以是现有技术中已有组公共DCI,其中还包括其它与用户设备组相关的信息。
所述I-DCI对应的用户设备组包含的用户设备数量大于所述布隆过滤器中的比特数,所述第一用户设备组中的任两个用户设备可以共用所述布隆过滤器中的1到K个比特。
14.根据方法13所述的方法,所述基站向第一用户设备发送第一指示信息之前还包括:
所述基站向所述第一用户设备发送第三配置信息,所述第三配置信息包含所述第一用户设备所在的至少一个用户设备组配置信息,所述一个用户设备组配置信息至少包括所述一个用户设备组的公共无线网络临时标识G-RNTI和K个比特位置信息,所述G-RNTI用于标识所述基站发送的DCI为所述一个用户设备组对应的I-DCI,所述K个比特位置信息用于指示所述第一用户设备在所述一个用户设备组对应的I-DCI中的布隆过滤器中对应的K个比特;或,
所述基站向所述第一用户设备发送第四配置信息,所述第四配置信息包含指示器无线网络临时标识I-RNTI和所述第一用户设备所在的至少一个用户设备组配置信息,所述I-RNTI用于标识所述基站发送的DCI为I-DCI,所述一个用户设备组配置信息至 少包括用户设备组标识和K个比特位置信息,所述I-DCI还包括组标识字段,所述组标识字段的取值指示所述基站发送的I-DCI为所述一个用户设备组对应的I-DCI,所述K个比特位置信息用于指示所述第一用户设备在所述一个用户设备组对应的I-DCI中的布隆过滤器中对应的K个比特。
所述G-RNTI和I-RNTI的具体用途可以参考方法12中的描述。
15.根据方法10所述的方法,所述基站向第一用户设备发送第一指示信息具体包括:
所述第一指示信息为一比特信息,所述基站在所述第一用户设备对应的一个物理下行指示信道发送所述第一指示信息,所述第一指示信息取第一值表示有下行DCI,所述第一指示信息取第二值表示无下行DCI。
其中,所述第一值可以称为第一设定值,第二值可以称为第二设定值。
16.根据方法15所述的方法,所述基站向第一用户设备发送第一指示信息之前还包括:
所述基站向所述第一用户设备发送第五配置信息,所述第五配置信息包含所述物理下行指示信道的时频资源和码域资源信息;或,
所述基站向所述第一用户设备发送第六配置信息,所述第六配置信息包含所述物理下行指示信道的码域资源信息和第一计算参数信息,所述第一计算参数信息用于确定所述物理下行指示信道的时频资源;或,
所述基站向所述第一用户设备发送第二计算参数信息,所述第二计算参数信息用于确定所述物理下行指示信道的时频资源和码域资源信息。
所述第一计算参数信息可以包括所述第一用户设备的计算因子,所述基站根据第一计算参数信息、所述第一用户设备的无线网络临时标识RNTI等计算获得所述物理下行指示信道的时频资源,或者,所述基站先确定所述物理下行指示信道的时频资源,再根据所述物理下行指示信道的时频资源和所述第一用户设备的无线网络临时标识RNTI等计算出所述计算因子,以便所述第一用户设备可以根据所述计算因子等信息计算出所述物理下行指示信道的时频资源。
所述第二计算参数信息具体可以包括所述第一用户设备的无线网络临时标识RNTI等。
17.根据方法10所述的方法,所述基站向第一用户设备发送第一指示信息具体包括:
所述第一指示信息为K比特信息,所述K大于1,所述基站在所述第一用户设备对应的K个物理下行指示信道发送所述第一指示信息,所述K个物理下行指示信道中的每一个物理下行指示信道传输1比特信息,所述第一指示信息中的每个比特都取第一值表示有下行DCI,所述第一指示信息中任一比特取第二值表示无下行DCI。
18.根据方法17所述的方法,所述基站向第一用户设备发送第一指示信息之前还包括:
所述基站向所述第一用户设备发送第七配置信息,所述第七配置信息包含所述K个物理下行指示信道的时频资源和码域资源信息;或,
所述基站向所述第一用户设备发送第八配置信息,所述第八配置信息包含所述K 个物理下行指示信道的码域资源信息和第三计算参数信息,所述第三计算参数信息用于确定所述K个物理下行指示信道的时频资源;或,
所述基站向所述第一用户设备发送第四计算参数信息,所述第四计算参数信息用于确定所述K个物理下行指示信道的时频资源和码域资源信息。
关于所述第三计算参数可以参考方法16中描述的第一计算参数。
关于所述第四计算参数可以参考方法16中描述的第二计算参数。
19.一种用户设备,包括:
存储器,用于存储指令;
处理器,用于调用所述存储器中的指令,执行上述方法1-9任一所述的方法。
20一种基站,包括:
存储器,用于存储指令;
处理器,用于调用所述存储器中的指令,执行上述方法10-18任一所述的方法。
21.一种用户设备,包括:处理器,存储器和无线收发机;
所述无线收发机,用于接收和发送数据,与基站实现无线通信;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如方法1-9任一所述的方法。
22.一种基站,包括:处理器,存储器和无线收发机;
所述无线收发机,用于接收和发送数据,与用户设备实现无线通信;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如方法10-18任一所述的方法。
23、一种用户设备,被配置为执行如方法1-9任一所述的方法。
24、一种基站,被配置为执行如方法10-18任一所述的方法。
25、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现方法1-9任一所述的方法。
26、一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现方法10-18任一所述的方法。
27、一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现方法1-9任一所述的方法。
28、一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现方法10-18任一所述的方法。
29、一种通信系统,包括如方法1-9任一所述的用户设备和如方法10-18任一所述的基站。
30、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现如1-9任一所述的方法。
31、一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现如10-18任一所述的方法。
32、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行权利要求1至9中任一项所述的方法。
33、根据32所述的芯片,所述芯片还包括存储模块(如,存储器),所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行权利要求1至9中任一项所述的方法。
34、一种芯片,包括:处理模块与通信接口,所述处理模块用于执行权利要求10至18中任一项所述的方法。
35、根据34所述的芯片,所述芯片还包括存储模块(如,存储器),所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行权利要求10至18中任一项所述的方法。
前述提供的各实施例的编号与后文的各实施例的编号并无明确的对应关系,仅为了此部分在表述上的方便。
附图说明
图1为本申请提供的一种无线通信系统场景示意图;
图2为本申请提供的一种传输下行控制信息的方法流程图;
图3为本申请提供的一种物理下行控制信道资源区的示意图;
图4为本申请提供的一种指示位表示意图;
图5为本申请提供的另一种指示位表示意图;
图6为本申请提供的一种布隆过滤器指示示意图;
图7为本申请提供的另一种物理下行控制信道资源区的示意图;
图8为本申请提供的一种布隆过滤器示意图;
图9为本申请提供的一种用户设备装置示意图;
图10为本申请提供的一种基站装置示意图;
图11为本申请提供的一种设备的硬件结构图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例提供一种传输下行控制信息的方法及装置,用于解决现有技术中存在的用户设备在盲检基站发送给该用户设备自身的下行控制信息DCI时,耗电量大的问题。其中,方法和设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便使本领域技术人员理解。
1)用户设备(user equipment,UE),又称之为终端设备、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、 智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等,本申请中的UE可以为高可靠低时延通信(ultra-reliability low latency communication,URLLC)UE。
2)基站(base station,BS),是网络中将终端设备接入到无线网络的设备。所述网络设备为无线接入网中的节点,又可以网络设备,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)传输周期,基站向用户设备发送数据的周期,本申请中的传输周期为用户设备在连接态的苏醒状态下的传输周期,或者用户设备在空闲态下的传输周期,本申请中传输周期的时长可以为10ms。
4)第一指示信息,用于指示在传输周期内PDCCH资源区中是否存在所述用户设备对应的下行控制信息,该第一指示信息可以是第一DCI(也是DCI的一种,还可以称为指示器下行控制信息I-DCI,也可以以其他名称称呼),也可以是至少一个比特信息。
5)指示位表,包含多个比特,用至少一个比特指示用户设备组中各个用户设备在所述传输周期内所述PDCCH资源区中是否存在对应的DCI。
6)公共搜索空间(common search space,CSS),多个用户设备都可以在公共搜索空间中检索基站发送给用户设备的第一指示信息。
7)第一设定值,为二进制数,用于指示用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI,具体数值为1或为0,与第二设定值不同。
8)第二设定值,为二进制数,用于指示用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中不检测所述DCI,具体数值为0或为1,与第一设定值不同。
9)第三设定值,为二进制数,用于指示用户设备判断在所述传输周期内的所述PDCCH资源区中检测所述DCI,具体数值为0或为1,与第四设定值不同。
10)第四设定值,为二进制数,用于指示用户设备判断在所述传输周期内的所述PDCCH资源区中不检测所述DCI,具体数值为1或为0,与第三设定值不同。
11)公共无线网络临时标识(group radio network tempory identity,G-RNTI),表示一组用户设备共享的RNTI,一个G-RNTI对应一个用户设备组,用于识别一个I-DCI 是一个UE组对应的I-DCI。
12)指示器无线网络临时标识(indicators radio network tempory identity,I-RNTI)表示I-DCI的无线网络临时标识,本文中所述I-RNTI可以用其他名称来称呼,用于所述用户设备识别接收的DCI为所述第一DCI。
13)物理下行指示信道(physical downlink indicator channel,PDICH),用于指示是否有下行数据,本申请实施例中不对该名称进行限定,只要可以传输1比特信息即可。
14)物理层混合自动重传请求指示器信道(physical hybrid-ARQ indicator channel,PHICH),用1比特指示是否正确接收到发送方发送的数据。
15)资源单元(resource element,RE),一个正交频分多路复用(orthogonal frequency division multiplexing,OFDM)符号和一个子载波构成的最小物理信号传输单元。
16)多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本文涉及的缩略语和关键术语定义:
Figure PCTCN2018111454-appb-000001
Figure PCTCN2018111454-appb-000002
本申请可以应用于无线通信系统的场景,包括多个BS,每个BS可以为覆盖范围内的多个UE提供通信服务,UE可以移动,在不同的位置可以处于不同的BS的覆盖范围,BS可以向UE发送下行数据,具体如图1所示。
5G中的URLLC业务:
目前3GPP正在制定5G通信标准。5G中要求支持超可靠低时延即URLLC业务。URLLC业务要求UE或BS在0.5毫秒内完成一个方向的数据传输。对于上行传输,BS配置了共享的 上行数据传输资源区,UE一旦有数据传输时,可立即在共享的上行数据传输资源区随机选择一个或多个资源单元进行传输,达到低时延的目的。而对于下行数据传输,则不得不采用传统的传输方式,即BS先传输一个下行DCI,在下行DCI中指示下行数据的传输位置和其它相关参数,UE先接收下行DCI,再到下行DCI中指示的下行数据传输资源位置接收下行数据。为了低时延,UE不可能采用DRX技术间隔一段时间检测一下下行DCI,而是不得不每个传输周期都要检测下行DCI,以达到低时延目的。而且为了达到低时延,这个传输周期比LTE中的子帧(时长1毫秒)更短,例如一个时隙(半个子帧),甚至只有2个OFDM符号,支持的最短传输周期为0.125毫秒。更短的传输周期意味着更频繁地检测下行DCI,这导致UE耗电更严重。根据前述描述,检测下行DCI,需要经过多次盲检,而URLLC业务实际数据量并不大,数据传输并不频繁,这导致UE多数时候是穷尽最大盲检次数后却没有收到下行DCI,白白消耗很多电量。
下面结合附图对本申请提供传输下行控制信息的方案进行具体说明。
参见图2,为本申请提供的一种传输下行控制信息的方法流程图。该方法包括:
步骤201、基站在一个传输周期内向用户设备发送第一指示信息。
步骤S202、用户设备在该传输周期内接收到上述基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI。在一种实施方式中,所述用户设备对应的DCI,以及下面提到的“所述DCI”,可以指的是上面所述的下行DCI。
步骤S203、所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
步骤S2041、若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI。
步骤S2042、若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述用户设备不在所述传输周期内所述PDCCH资源区中检测所述DCI。
通过上述方法,用户设备根据接收到的基站在一个传输周期内发送的第一指示信息,确定在该传输周期内PDCCH资源区中是否存在该用户设备的DCI,若所述第一指示信息指示在该传输周期内PDCCH资源区中不存在该用户设备的DCI,则所述用户设备不需要在所述传输周期内所述PDCCH资源区中检测该用户设备的DCI,降低盲检次数,减少电量消耗,虽然每个传输周期都需要检测第一指示信息,但检测第一指示信息UE所消耗的电量远小于UE盲目地检测DCI所需要的电量。
本申请实施例中,当所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI的情况下,基站在下发第一指示信息的传输周期内也下发了用户设备对应的DCI,即所述第一指示信息、所述DCI(即本文中所述的该用户设备对应的DCI,具体可为下行DCI)和下行数据,即,这些信息在同一个传输周期内被传输,其中,所述下行数据是所述DCI所调度的数据。
在一种可能的实施方式中,所述用户设备可以在每个传输周期都接收所述第一指示信息,以减少该用户设备在每个传输周期内检测下行DCI所消耗的电量。
在本身实施例中,步骤S201中的第一指示信息为第一DCI或至少一个比特信息两种情况,下面分别对两种情况进行举例说明。
情况一、所述用户设备在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一DCI。
具体的,所述第一DCI包含一个指示位表,用于指示所述用户设备所在的用户设备组中各个用户设备在所述传输周期内所述PDCCH资源区中是否存在对应的DCI,所述指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的DCI,其中,所述第一DCI也可以称为I-DCI。
在传输周期内物理下行控制信道资源区的示意图,如图3所示,其中,其中301表示一个传输周期中的物理下行控制信道资源区,302表示物理下行控制信道资源区中传输I-DCI的设定资源区,即设定资源区,所述设定资源包括公共搜索空间、或者所述用户设备所在用户设备组对应的组公共搜索空间、或者所述用户设备所在用户设备组对应的固定传输资源。303是一个UE的UE特定的搜索空间(UE-specific search space,USS),304是一个I-DCI,305表示一个下行DCI。举例说明,UE在设定资源区402中接收到一个自身所在用户设备组对应的I-DCI 404之后,若I-DCI 404中指示该UE没有下行DCI,则UE不需要再到自身的USS 403中盲检自己的下行DCI。若I-DCI 404中指示该UE有下行DCI,则该UE到自身的USS 403中盲检自己的下行DCI,即DCI 405。UE若检测到下行DCI,根据检测到的下行DCI中的控制信息接收下行数据或获得所述下行DCI中的配置信息。本申请实施例中,图3仅作为示意图,并不暗示物理下行控制信道资源区的时频域信息以及传输I-DCI的资源区与物理下行控制信道资源区的位置关系。
本申请实施例中,采用指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI,包括使用一个比特指示或者采用至少两个比特指示两种具体实施方式,下面分别对两种实施方式进行具体说明。
具体实施例一、下面以指示位表中使用一个比特指示一个用户设备是否在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI为例,进行详细说明。
指示位表为所述用户设备所在的用户设备组的指示位表,或为所述用户设备所在的用户设备组的压缩指示位表。即指示位表可以是包含所述用户设备的一组用户设备的原始指示位表,也可以是包含一个大组用户设备的压缩指示位表。
(一)当一个指示位表位原始指示位表时,用于指示一组用户设备,该一组用户设备中包含24个用户设备,指示位表的示意图如图4所示,当指示位表中每个比特分别于设定的UE相对应,当比特的值为1时,表示该比特对应的用户设备在所述传输周期内所述PDCCH资源区中存在DCI,例如,图4中第一个比特对应UE1,比特的值为1,表示UE1在所述传输周期内所述PDCCH资源区中存在DCI。当比特的值为0时,表示该比特对应的用户设备在所述传输周期内所述PDCCH资源区中不存在DCI,例如,图3中第三个比特对应UE3,比特的值为0,表示UE3在所述传输周期内所述 PDCCH资源区中不存在DCI,其他以此类推,不再赘述。
在所述用户设备在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一DCI之前,所述用户设备接收到所述基站发送的第一配置信息,所述第一配置信息中包括所述用户设备组对应的公共无线网络临时标识G-RNTI以及所述用户设备在所述用户设备组中的组内标识,其中,所述G-RNTI用于所述用户设备识别接收到的DCI为所述用户设备所在用户设备组对应的第一DCI,所述组内标识用于所述用户设备在所述用户设备组的指示位表中确定与所述用户设备自身对应的比特位。本申请实施例中,若所述用户设备包含在多个用户设备组中,所述基站需要将所述用户设备所在的多个用户设备组对应的多个G-RNTI都发送给用户设备。每个用户设备组对应的I-DCI用本组的G-RNTI进行加扰循环冗余校验(cyclic redundancy check,CRC),当用户设备在设定资源中检索到I-DCI中,采用预先配置的多个G-RNTI对I-DCI进行解扰,并且基站为组内每个UE分配一个组内设备表示,以便BS和UE根据组内设备标识确定UE对应的比特在指示表中的位置。
其中,组内设备标识实质为一个索引,用于指示该UE对应的比特在指示位表中的位置。例如一个UE组最多为24个UE时,组内设备标识的取值范围可以是0~23。
(二)当一个指示位表为压缩指示位表时,用于指示一个大组用户设备,该大组用户设备中包含较多的用户设备,例如多于24个用户设备,但由于每个UE的下行数据比较稀疏,则指示位表中被置为1的比特数通常远小于取0比特数,则指示位表是可以压缩的,以图5所例,说明其中一种情况的压缩指示位表,由3个最小规模的用户设备组合成一个大组进行压缩,对应的大组的指示位表的尺寸不变,因此I-DCI的尺寸不变。I-DCI的尺寸不变,避免了UE在接收I-DCI时因为有不同的I-DCI尺寸而多次盲检,减少耗电。
综合(一)(二)两种指示位表,本申请实施例中,原始指示位表对应的组称为小组,压缩指示位表对应的多个小组合并的组称为大组,为方便UE确定其第一指示信息在小组对应的I-DCI中还是在大组对应的I-DCI中,BS可以为每个UE发送两个G-RNTI,一个G-RNTI用于解扰小组对应的I-DCI,另一个G-RNTI用于解扰大组对应的I-DCI。例如小组的每个组包含24个UE,大组每组包含48或72个UE等,本发明对其不做限定。
进一步地,BS可以将每个UE配置在多个大小不同的UE组内,并将每个UE组的G-RNTI发送给UE。UE在接收I-DCI时,根据接收到的I-DCI所使用的G-RNTI可知道I-DCI对应的UE组的规模,例如第一G-RNTI对应的UE组的规模是24个UE,第二G-RNTI对应的UE组的规模是48个UE,第三G-RNTI对应的UE组的规模是96个UE,本发明对其不做限定。举例说明,假设BS最多支持96个UE,每个UE分别标识为0~95,可以称为局部短标识。BS可以将第0到第23个UE分到第1组,第24到47个UE分到第2组,第48到71个UE分到第3组,第72到95个UE分到第4组。第1组到第4组都是最小规模的UE组,每个组需要的原始指示位表长度为24比特,每个UE组对应一个G-RNTI。BS进一步将第1组和第2组的UE合并成第5组,将第3组和第4组合并成第6组,还可以进一步将1组和第3组合并成第7组,将第2组和第4组合并成第8组,将1组和第4组合并成第9组,将第2组和第3组 合并成第10组。第5组到第10组都是较大的组,分别也有一个G-RNTI。BS在发送I-DCI时,可以根据情况分别发送对应第1组到第4组的共4个I-DCI,或者发送对应第1组、第2组和第6组的共3个I-DCI,或者第7组和第8组的共2个I-DCI,本发明对其不做限定。第1组到第4组对应的I-DCI中传输的指示位表是原始指示位表,第5组到第10组对应的I-DCI中传输的指示位表是压缩指示位表,压缩指示位表不超过24个比特。BS还可以将所有UE放在一个组里,定为第11组,若可以将对应96个UE的指示位表压缩到不超过24比特,则BS只发送第11组对应的I-DCI。UE在收到一个I-DCI后,若其中包含的是压缩指示位表,应该先将压缩指示位表展开成原始指示位表,根据自己在该I-DCI对应的UE组中的组内设备标识在原始指示位表中定位自己的比特,根据自己的比特的取值确定自己是否有下行DCI。
为了支持一个UE在多个大小不同的UE组,也可以只使用一个I-RNTI加扰所有I-DCI的CRC码,在I-DCI中包含一个组号字段指示该I-DCI对应的组号,例如组号是上述具体举例中的第1组或第2组或第5组等等。UE使用I-RNTI接收I-DCI成功后,根据组号字段指示的组号可以知道原始指示位表的大小以及I-DCI传输的是原始指示位表还是压缩指示位表,例如如果是上述的第1组,则相应的I-DCI中传输的指示位表是原始指示位表,如果是上述的第5组或第11组等,则相应的I-DCI中传输的指示位表是压缩指示位表。本申请实施例中,尽可能发送大UE组对应的I-DCI,以减少一个传输周期中I-DCI的数量,节约系统资源。
本申请实施例中,可以在I-DCI中包含一个压缩方式字段指示指示位表的压缩方式,BS可根据原始指示位表中取第一设定值的比特的分布情况采用不同的压缩方式使压缩结果能在一个I-DCI限定的尺寸内发送,并使用压缩方式字段指示压缩方式。例如,I-DCI总是包含一个压缩方式字段,取值为0时表示I-DCI中传输的是原始指示位表,取其它值表示I-DCI中传输的是压缩指示位表和具体压缩方式。如果压缩方式字段只有1比特,则仅指示I-DCI中传输的是原始指示位表或压缩指示位表,压缩方式固定。或者,在包含原始指示位表的I-DCI中不存在压缩方式字段,而包含压缩指示位表的I-DCI中可以用少量比特指示多种压缩方式中的一种,例如用2个比特指示4种压缩方式,压缩指示位表不超过22个比特。可以将压缩方式字段看作压缩指示位表的一部分,则压缩指示位表不超过24比特。
本申请实施例中,对一个UE组包含的UE个数不做限定,对压缩指示位表的方式也不做限定,可采用行程压缩方式或掐头去尾压缩方式。
在一种可能的实现的方式中年,BS可以将每个UE分配在一个UE组,指示位表不使用压缩方式,则BS只需要将G-RNTI加组内设备标识或者是I-RNTI加组号加组内设备标识发送给UE。BS也可以不将UE分组,则BS发给UE的配置信息需包含I-RNTI、UE的BS局部短标识,并即时向UE通知I-DCI的尺寸信息,因为UE数量的变化,会影响指示位表的长度。BS如何将UE的配置信息发送给UE,本发明不作限定。
在一种可能的实现跟当时中,当一个UE只涉及一个UE组时,BS可以指定这个UE组对应的I-DCI的固定传输位置,UE不用盲检即可接收自身对应的I-DCI。当一个UE涉及多个UE组,BS就不能在确定资源位置传输I-DCI,则UE需要在一定资源 范围内盲检I-DCI。
举例说明,假设UE1和UE2分别在两个不同的小组,但同时又在一个大组,如果UE1所在的小组和UE2所在的小组都分别有较多的UE有下行DCI,大组的原始指示位表中取第一设定值的比特和取第二设定值的比特差不多且分布比较均匀导致不能压缩,不能在一个I-DCI中传输大组的指示位表,则BS只能分别发送对应两个小组的I-DCI。而如果UE1所在的小组和UE2所在的小组都分别有较少的甚至没有UE有下行DCI,或者有大量的UE有下行DCI(一个位表中取第一设定值或第二设定值的比特占绝对多数,指示位表可以压缩),或者有下行DCI的UE的分布不均匀,集中在某一个区段,使得对应大组的原始指示位表可以被压缩到足够小可以在一个I-DCI中传输,则BS发送UE1和UE2共同所在的大组对应的I-DCI,就不用发送两个I-DCI。
UE发送I-DCI时,使用较高的聚合等级(aggregation level,AL),提高传输可靠性。例如,AL可以为4或8,AL取值越高,I-DCI的传输可靠性越高。并且,使用一个AL值,可避免UE在不同的AL取值上盲检I-DCI,减少UE盲检I-DCI的次数,有利于UE省电。
具体实施例二
下面以指示位表中使用至少两个比特指示一个用户设备是否在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI为例,其中,一个方式为布隆过滤器指示,具体如下。
本实施例中I-DCI中携带一个布隆过滤器(bloom filter),布隆过滤器包含多个比特,一个UE对应布隆过滤器中的K个比特,K至少为2,任意两个UE对应的比特当中可能有1到多个比特相同,但在一般情况下两个UE对应的K个比特不完全相同,如图6所示。假设隆过滤器中每个比特的初值为第二设定值例如“0”,第一比特和第二比特用于指示UE1,第一比特和第一比特的值都为1,因此在传输周期内PDCCH资源区中有UE1对应的DCI。第二比特和第三比特用于指示UE2,第三比特位0,因此在传输周期内PDCCH资源区中没有UE2对应的DCI。第一比特和第三比特用于指示UE3,第三比特位0,因此在传输周期内PDCCH资源区中没有UE2对应的下行DCI。图6仅仅为布隆过滤器其中一个具体例子。
若一个UE有下行DCI,BS将该UE对应的K个比特都置为第一设定值例如“1”。当一个UE接收到I-DCI之后,发现它对应布隆过滤器中的K个比特都为第一设定值,则认为有下行DCI,但根据布隆过滤器的特点,这可能是误指示,实际可能并没有该UE对应的下行DCI,但当一个UE对应的K个比特中任一个比特取第二设定值时,该UE肯定没有下行DCI。考虑到UE有下行DCI的情况较少,即多数传输周期中,UE是没有下行DCI的,则利用布隆过滤器的这个特点,可以保证UE不会错过不定时出现的下行DCI,而在多数情况下可以确定地不用去检测下行DCI,减少电量消耗。
BS可以将UE分成多个组,每个UE组使用一个布隆过滤器。使用布隆过滤器,每个UE组可以包含较多的UE,而布隆过滤器需要的比特较少,例如,每个UE组包含48或72个UE,而布隆过滤器只有24个比特,通过24个比特指示48或72个UE,可以节约系统资源。
情况二、所述用户设备在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息。
具体的,所述至少1比特信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的下行控制信息DCI,所述至少1比特信息中包含的每个比特信息独立传输,所述PDCCH资源区的设定资源可以为PDICH资源区,所述1个比特信息可以使用一个PDICH资源进行传输,所述设定资源包括所述用户设备对应的固定传输资源。
在传输周期内另一种物理下行控制信道资源区的示意图,如图7所示,其中,701表示一个传输周期中的物理下行控制信道资源区,702表示包含在物理下行控制信道资源区中的PDICH资源区,703是一个UE的USS,704是所述UE的PDICH资源,705表示一个下行DCI。其中物理下行控制信道资源区701只是一个传输周期中全部传输资源的一部分,其它可能存在的上行控制信道资源区、上行数据传输资源区或下行数据传输资源区并未表示出。物理下行控制信道资源区701在时域上可能包含1个或多个OFDM符号,在频域上可能包含整个载波或载波的一部分。图7所示的物理下行控制信道资源区701的形状并不暗示任何频域或时域上的含义,仅仅表示一块无线资源。图7所示的PDICH资源区702在物理下行控制信道资源区701的位置并不表示PDICH资源区702在物理下行控制信道资源区701中的真正位置,仅表示PDICH资源区702是物理下行控制信道资源区701的一部分。图7所示的USS的位置只是示意,实际位置应该根据规定的计算公式计算确定,本发明并不限定如何计算USS。图7所示的PDICH的位置只是示意,实际位置应该根据规定计算公式计算确定,或者根据BS的配置确定。
在一种可能的实现方式中,所述用户设备在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息之前,所述用户设备接收到所述基站发送的第三配置信息,所述第三配置信息中包括至少一个资源位置与所述用户设备的对应关系,其中,每个所述资源位置用于传输1个比特信息。
本申请实施例中,采用至少1个比特信息指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI,包括使用1个比特信息指示或者采用至少两个比特信息指示两种具体实施方式,下面分别对两种实施方式进行具体说明。
具体实施例三、下面以使用一个比特信息指示一个用户设备是否在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI为例,进行详细说明。
若所述用户设备自身对应的至少1比特信息的值都为第三设定值时,所述用户设备根据所述至少1比特信息判断在所述传输周期内的所述PDCCH资源区中检测所述DCI,所述第三设定值可以为1或0,与第四设定值不同;若所述用户设备自身对应的至少1比特信息中至少一个比特的值为第四设定值时,所述用户设备根据所述至少1比特信息判断不在所述传输周期内的所述PDCCH资源区中检测所述DCI,所述第四设定值可以为0或1,与第三设定值不同。
本申请实施例中,一个PDICH占用很少的传输资源,只要能传输1比特信息,本 申请实施例中PDICH的传输可以采用现有技术LTE中PHICH的传输技术,LTE中每8个PHICH占用12个资源单元RE组成一个PHICH组,同一PHICH组内的不同PHICH采用Walsh码序列正交地叠加信号,平均每个PHICH占用1.5个RE,每个PHICH的信号分布在12个RE上。其中,PDICH的传输也可以使用其它技术,例如,每个PDICH独占一个或二个RE等。本发明不限制PDICH具体的传输方式。
一个PDICH资源是一个PDICH占用的资源,采用现有的传输技术,8个PDICH构成一个PDICH组共同占用12个RE,其中每个PDICH使用不同的Walsh码序列,则一个PDICH资源是指其所占用的12个RE和所使用的Walsh码序列。
PDICH资源区可以位于BS指定的或系统规定的物理下行控制信道资源区的特定区域。每个UE对应的PDICH资源在PDICH资源区中的位置可以由BS显式配置,也可以根据公式进行计算获得,具体的,使用UE的小区无线网络临时标识(cell RNTI,C-RNTI)计算,或者使用UE的C-RNTI和传输周期的ID号计算。传输周期是子帧时,则传输周期的ID号就是子帧号(例如,一个子帧包含2个时隙)。传输周期是时隙时(例如,一个时隙包含14个OFDM符号),则传输周期的ID号就是时隙号。传输周期可以是比时隙更小的周期,例如2个OFDM符号,可以称为微时隙,则传输周期的ID号就是微时隙号。BS还可以给每个UE配置一个不同的计算因子,用于计算UE的PDICH的位置,以便每个UE算得的PDICH的位置不同。UE使用的Walsh码序列可以由BS配置,也可以根据公式计算。
在采用公式计算PDICH资源位置的方式时,计算公式可以为:
IPDICH=(AUE*(NC-RNTI+P)*Q)mod NPDICH
其中,IPDICH表示UE的PDICH在PDICH资源区所包含的多个PDICH资源中的索引号。每个PDICH资源对应一个索引号,PDICH资源的索引号确定了相应的时频资源和walsh码序列,AUE表示BS为UE配置的UE相关的计算因子,由BS配置,也可以不使用,NC-RNTI表示UE的C-RNTI的值,P是一个质数,也可以不使用,Q是另一个质数,也可以不使用,AUE、P、Q三个数值是为了使计算结果有较好的分布,使得各个UE的IPDICH尽可能都不同。不同的UE具有相同的IPDICH可能会影响UE的省电效果,即多个UE可以共享一个PDICH资源,对于共享PDICH资源的多个UE,如果只有一个UE有下行DCI,跟它使用相同PDICH资源的其它UE据此判断自己有下行DCI,然后去自己的USS尝试接收下行DCI,最后没有收到下行DCI,只是浪费了一次电量,并不会产生错误动作。NPDICH表示PDICH资源区中包含的PDICH资源数,例如假设PDICH资源区包含24个RE,则PDICH资源区包含2个PDICH组即16个PDICH资源。Mod表示模除。
本申请实施例中,UE对应的Walsh码序列也可以使用上述公式计算,将公式中的NPDICH换成Walsh码序列的数量即可。
在一种可能的实现中,由于UE对应的PDICH资源是确定的,因此UE接收PDICH不需要盲检,在明确的资源上接收明确信息量的信息即可。并且PDICH只包含1比特信息,接收PDICH需要的能耗远小于盲检一次DCI所需要的能耗。
具体实施例四、下面以使用至少两个比特信息指示一个用户设备是否在所述传输 周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI为例,其中,一个方式为布隆过滤器指示,进行详细说明。
本实施例使用布隆过滤器(bloom filter)技术结合PDICH来减少PDICH资源区占用的资源量。关于布隆过滤器可参考实施例二中的描述,假设PDICH资源区包含M个PDICH资源,即可传输M个比特信息,可将这M个比特组织为一个布隆过滤器,即BS将布隆过滤器中每个比特在对应的PDICH中传输。每个UE使用布隆过滤器中的K个比特指示是否有下行DCI,即UE每个周期都接收对应的K个PDICH,当这K个PDICH中的比特都取第三设定值,例如“1”时,表示该UE可能有下行DCI,当这K个比特中至少一个比特为第四设定值,例如“0”时,则该UE肯定没有下行DCI。使用布隆过滤器,M个比特可以用于指示多于M个的UE中每个UE是否有下行DCI,这就减少了PDICH资源区占用的资源量。
具体布隆过滤器的使用以图8为例,图8中每一个小框表示一个PDICH承载的1比特信息,多个PDICH承载的比特信息合在一起就形成一个比特串,PDICH的传输技术可以采用实施例三中所描述的PDICH资源区包含24个RE,则共有16个PDICH资源,也就可以传输16个比特信息,图8仅显示了10个比特信息作为示意。图8中,UE1的指示位是比特0和2,UE2的指示位是比特2和6,UE3的指示位是比特6和8,UE4的指示位是比特0和6。UE1和UE4共用了比特0,UE1和UE2共用了比特2,UE2和UE4共用了比特6。BS指示了UE1、UE2有下行DCI,因此将布隆过滤器中的比特0、2、6置为第三设定值“1”,其它比特置为第四设定值“0”。UE1和UE2和UE4检测到自身的指示位都为“1”,则都认为自身有DCI,其中,UE1和UE2将检测到自己的下行DCI,由于UE4与UE1和UE2公用比特,但实际上在传输周期内PDCCH资源区中UE4并没有UE对应的DCI,因此UE4则不能检测到自己的DCI,这属于一种误指示。误指示仅仅使被误指示的UE未能实现一次省电,不会产生其它负面作用。UE3检测到其2个指示位不都为“1”时,则认为自己没有下行DCI,不会去检测下行DCI,减少能耗。
本申请实施例中,一个UE对应的布隆过滤器中的K个比特的位置,可以由BS配置,也可以按照设定公式进行计算,例如,当K为2时,可以参考实施例三中描述的公式构造以下公式:
IPDICH1=(AUE*(NC-RNTI+P1)*Q)mod NPDICH
IPDICH2=(AUE*(NC-RNTI+P2)*Q)mod NPDICH
其中,IPDICH1和IPDICH2表示UE对应的两个PDICH资源,即对应了布隆过滤器中的两个比特的位置。P1和P2是用于计算UE的两个比特位置的不同质素。为了计算出一个UE对应的2个不同的比特位置,也可以设置公式中的AUE或Q不相同。本申请实施例中,UE的多个PDICH资源对应的Walsh码序列可采用类似方式计算,具体参考具体实施例三。
本申请实施例中,使用多个PDICH传输布隆过滤器,每个PDICH传输布隆过滤器中的一比特,每个UE对应布隆过滤器中的多个比特即多个PDICH,UE根据布隆过滤器中UE对应的多个比特确定是否盲检下行DCI,可以节约系统资源。
基于与方法实施例同样的发明构思,本申请还提供了一种用户设备示意图,如图9所示,包括收发单元901,用于在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述收发单元所属的用户设备对应的下行控制信息DCI;处理单元902,用于根据所述第一指示信息判断是否在所述传输周期内的所述PDCCH资源区中检测所述DCI;若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述收发单元在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI;若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述收发单元不在所述传输周期内所述PDCCH资源区中检测所述DCI。
基于与方法实施例同样的发明构思,本申请还提供了一种基站示意图,如图10所示,包括收发单元1001,用于在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI;若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述收发单元在所述传输周期内所述PDCCH资源区中所述用户设备的搜索空间中向所述用户设备发送所述DCI;处理单元1002,所述处理单元用于控制所述收发单元发送第一指示信息以及DCI。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
其中,集成的模块既可以采用硬件的形式实现时,如图11所示,一种设备可以包括处理器1102。上述处理单元902、1002对应的实体的硬件可以为处理器1102。处理器1102,可以是一个中央处理模块(英文:central processing unit,简称CPU),或者为数字处理模块等等。所述设备还可以包括通信接口1101(可以为收发器),上述收发单元901、1001对应的硬件实体可以为通信接口1101。该设备还可以包括:存储器1103,用于存储处理器1102执行的程序。存储器1103可以是非易失性存储器,比如硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)等,还可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM)。存储器1103是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器1102用于执行存储器1103存储的程序代码,具体用于执行图2所示实施例所述的方法。可以参见图2所示实施例所述的方法,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1101、处理器1102以及存储器1103之间的具体连接介质。本申请实施例在图11中以存储器1103、处理器1102以及通信接口1101之间通过总线1104连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总 线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (54)

  1. 一种传输下行控制信息的方法,其特征在于,所述方法包括:
    用户设备在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI;
    所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI;
    若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI;
    若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述用户设备不在所述传输周期内所述PDCCH资源区中检测所述DCI。
  2. 如权利要求1所述的方法,其特征在于,所述用户设备在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,包括:
    所述用户设备在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一DCI,其中,所述第一DCI包含一个指示位表,用于指示所述用户设备所在的用户设备组中各个用户设备在所述传输周期内所述PDCCH资源区中是否存在对应的DCI,所述指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的DCI。
  3. 如权利要求2所述的方法,其特征在于,所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI,包括:
    所述用户设备在所述传输周期内根据所述指示位表中与所述用户设备对应的至少一个比特,判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述设定资源包括公共搜索空间、或者所述用户设备所在用户设备组对应的组公共搜索空间、或者所述用户设备所在用户设备组对应的固定传输资源。
  5. 如权利要求3所述的方法,其特征在于,所述用户设备在所述传输周期内根据所述指示位表中与所述用户设备对应的至少一个比特,判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI,具体包括:
    若所述至少一个比特的值都为第一设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中存在所述DCI;
    若所述至少一个比特中至少一个比特的值为第二设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中不存在所述DCI。
  6. 如权利要求2-5中任一所述的方法,其特征在于,所述第一DCI中包含的指示位表为所述用户设备所在的用户设备组的指示位表,或为所述用户设备所在的用户设备组的压缩指示位表,其中,所述压缩指示位表为所述用户设备组的指示位表经过压缩获得。
  7. 如权利要求2-6中任一所述的方法,其特征在于,所述用户设备在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一指示信息之前,该方 法还包括:
    所述用户设备接收到所述基站发送的第一配置信息,所述第一配置信息中包括所述用户设备组对应的公共无线网络临时标识G-RNTI以及所述用户设备在所述用户设备组中的组内标识,其中,所述G-RNTI用于所述用户设备识别接收到的DCI为所述用户设备所在用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述用户设备组的指示位表中确定与所述用户设备自身对应的比特位。
  8. 如权利要求2-6任一所述的方法,其特征在于,所述用户设备在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一指示信息之前,该方法还包括:
    所述用户设备接收到所述基站发送的第二配置信息,所述第二配置信息中包括指示器无线网络临时标识I-RNTI、所述用户设备所在用户设备组的组标识和所述用户设备在所述用户设备组内的组内标识,其中,所述I-RNTI用于所述用户设备识别接收到的DCI为所述第一DCI,所述组标识用于确定所接收到的DCI是否为所述用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述第一DCI中确定与所述用户设备自身对应的比特位。
  9. 如权利要求1所述的方法,其特征在于,所述用户设备在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,包括:
    所述用户设备在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息,其中,所述至少1比特信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的下行控制信息DCI,所述至少1比特信息中包含的每个比特信息独立传输。
  10. 如权利要求9所述的方法,其特征在于,所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI,包括:
    所述用户设备在所述至少一个比特信息中确定出自身对应的至少一个比特信息,根据所述用户设备自身对应的至少一个比特判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
  11. 如权利要求9或10所述的方法,其特征在于,所述根据所述用户设备自身对应的至少一个比特判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI,具体包括:
    若所述用户设备自身对应的至少1比特信息的值都为第三设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中存在所述DCI;
    若所述用户设备自身对应的至少1比特信息中包含的至少一个比特的值为第四设定值时,所述用户设备确定在所述传输周期内所述PDCCH资源区中不存在所述DCI。
  12. 如权利要求9-11中任一所述的方法,其特征在于,所述设定资源包括所述用户设备对应的固定传输资源。
  13. 如权利要求9-12任一所述的方法,其特征在于,所述用户设备在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息之前,该方法还包括:
    所述用户设备接收到所述基站发送的第三配置信息,所述第三配置信息中包括至少一个资源位置与所述用户设备的对应关系,其中,每个所述资源位置用于传输所述至少1比特信息中的1个比特信息。
  14. 一种传输下行控制信息的方法,其特征在于,所述方法包括:
    基站在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI;
    若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述基站在所述传输周期内所述PDCCH资源区中所述用户设备的搜索空间中向所述用户设备发送所述DCI。
  15. 如权利要求14述的方法,其特征在于,所述基站在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,包括:
    所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送第一DCI,其中,所述第一DCI包含一个指示位表,用于指示所述用户设备所在的用户设备组中的各个用户设备在所述PDCCH资源区中是否存在对应的DCI,所述指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI。
  16. 如权利要求14或15所述的方法,其特征在于,所述设定资源包括公共搜索空间、或者所述用户设备所在用户设备组对应的组公共搜索空间、或者所述用户设备所在用户设备组对应的固定传输资源。
  17. 如权利要求15所述的方法,其特征在于,若所述至少一个比特的值都为第一设定值,所述第一DCI指示在所述传输周期内所述PDCCH资源区中存在所述用户设备的所述DCI;若所述至少一个比特中至少一个比特的值为第二设定值,所述第一DCI指示在所述传输周期内所述PDCCH资源区中不存在所述用户设备的所述DCI。
  18. 如权利要求15-17中任一所述的方法,其特征在于,所述第一DCI中包含的指示位表为所述用户设备所在的用户设备组的指示位表,或为所述用户设备所在的用户设备组的压缩指示位表,其中,所述压缩指示位表为所述用户设备组的指示位表经过压缩获得。
  19. 如权利要求15所述的方法,其特征在于,所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送第一指示信息之前,该方法还包括:
    所述基站向所述用户设备发送第一配置信息,所述第一配置信息中包括所述用户设备组对应的公共无线网络临时标识G-RNTI以及所述用户设备在所述用户设备组中的组内标识,其中,所述G-RNTI用于所述用户设备识别接收到的DCI为所述用户设备所在用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述用户设备组的指示位表中确定自身对应的比特位。
  20. 如权利要求15-19中任一所述的方法,其特征在于,所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送第一指示信息之前,该方法还包括:
    所述基站向所述用户设备发送第二配置信息,所述第二配置信息中包括指示器无线网络临时标识I-RNTI、所述用户设备所在用户设备组的组标识和所述用户设备在所述用户设备组内的组内标识,其中,所述I-RNTI用于所述用户设备识别接收的DCI为所述第一DCI,所述组标识用于确定所接收的DCI是否为所述用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述第一DCI中确定与所述用户设备自身对应的比特位。
  21. 如权利要求14所述的方法,其特征在于,所述基站在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,包括:
    所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送至少1比特信息,其中,所述至少1比特信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的下行控制信息DCI,所述至少一比特信息中包含的每个比特信息独立传输。
  22. 如权利要求21所述的方法,其特征在于,若所述至少1比特信息的值都为第三设定值,所述至少1比特信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI;若所述至少1比特信息的值都为第四设定值,所述至少1比特信息指示在所述传输周期内所述PDCCH资源区中不存在所述DCI。
  23. 如权利要求21或22所述的方法,其特征在于,所述设定资源包括所述用户设备对应的固定传输资源。
  24. 如权利要求21-23任一所述的方法,其特征在于,所述基站在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送至少1比特信息之前,该方法还包括:
    所述基站向所述用户设备发送第三配置信息,所述第三配置信息中包括至少一个资源位置与所述用户设备的对应关系,其中,每个所述资源位置用于传输所述至少1比特信息中的1个比特信息。
  25. 一种用户设备,其特征在于,所述用户设备包括:
    收发单元,用于在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述收发单元所属的用户设备对应的下行控制信息DCI;
    处理单元,用于根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI;
    若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述收发单元在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI;
    若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述收发单元不在所述传输周期内所述PDCCH资源区中检测所述DCI。
  26. 如权利要求25所述的用户设备,其特征在于,所述收发单元用于在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,包括:
    所述收发单元用于:
    在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一DCI,其中,所述第一DCI包含一个指示位表,用于指示所述用户设备所在的用户设备组中各个用户设备在所述传输周期内所述PDCCH资源区中是否存在对应的DCI,所述指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的DCI。
  27. 如权利要求25所述的用户设备,其特征在于,所述处理单元用于:
    在所述传输周期内根据所述指示位表中与所述用户设备对应的至少一个比特,判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
  28. 如权利要求25-27中任一所述的用户设备,其特征在于,所述设定资源包括公共搜索空间、或者所述用户设备所在用户设备组对应的组公共搜索空间、或者所述用户设备所在用户设备组对应的固定传输资源。
  29. 如权利要求27所述的用户设备,其特征在于,所述处理单元具体用于:
    若所述至少一个比特的值都为第一设定值时,确定在所述传输周期内所述PDCCH资源区中存在所述DCI;
    若所述至少一个比特中至少一个比特的值为第二设定值时,确定在所述传输周期内所述PDCCH资源区中不存在所述DCI。
  30. 如权利要求26-29中任一所述的用户设备,其特征在于,所述第一DCI中包含的指示位表为所述用户设备所在的用户设备组的指示位表,或为所述用户设备所在的用户设备组的压缩指示位表,其中,所述压缩指示位表为所述用户设备组的指示位表压缩获得。
  31. 如权利要求26-30中任一所述的用户设备,其特征在于,所述收发单元还用于:
    在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一指示信息之前,接收所述基站发送的第一配置信息,所述第一配置信息中包括所述用户设备组对应的公共无线网络临时标识G-RNTI以及所述用户设备在所述用户设备组中的组内标识,其中,所述G-RNTI用于所述用户设备识别接收到的DCI为所述用户设备所在用户设备组对应的第一DCI,所述组内标识用于所述用户设备在所述用户设备组的指示位表中确定与所述用户设备自身对应的比特位。
  32. 如权利要求26-30中任一所述的用户设备,其特征在于,所述收发单元还用于:
    在所述传输周期内接收到基站在所述PDCCH资源区的设定资源中发送的第一指示信息之前,接收到所述基站发送的第二配置信息,所述第二配置信息中包括指示器无线网络临时标识I-RNTI、所述用户设备所在用户设备组的组标识和所述用户设备在所述用户设备组内的组内标识,其中,所述I-RNTI用于所述用户设备识别接收到的DCI为所述第一DCI,所述组标识用于确定所接收到的DCI是否为所述用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述第一DCI中确定与所述用户设备自身对应的比特位。
  33. 如权利要求25所述的用户设备,其特征在于,所述收发单元用于:
    在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息,其中,所述至少1比特信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的下行控制信息DCI,所述至少1比特信息中包含的每个比特信息独立传输。
  34. 如权利要求33所述的用户设备,其特征在于,所述处理单元用于:
    在所述至少一个比特信息中确定出自身对应的至少一个比特信息,根据所述用户设备自身对应的至少一个比特判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI。
  35. 如权利要求33或34所述的用户设备,其特征在于,所述处理单元具体用于:
    若所述用户设备自身对应的至少1比特信息的值都为第三设定值时,确定在所述传输周期内所述PDCCH资源区中存在所述DCI;
    若所述用户设备自身对应的至少1比特信息中包含的至少一个比特的值为第四设定值时,确定在所述传输周期内所述PDCCH资源区中不存在所述DCI。
  36. 如权利要求33-35中任一所述的用户设备,其特征在于,所述设定资源包括所述用户设备对应的固定传输资源。
  37. 如权利要求33-36所述的用户设备,其特征在于,所述收发单元还用于:
    在所述传输周期内接收到基站在PDCCH资源区的设定资源中发送的至少1比特信息之前,接收到所述基站发送的第三配置信息,所述第三配置信息中包括至少一个资源位置与所述用户设备的对应关系,其中,每个所述资源位置用于传输所述至少1比特信息的1个比特信息。
  38. 一种基站,其特征在于,所述基站包括:
    收发单元,用于在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI;
    若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述收发单元还用于,在所述传输周期内所述PDCCH资源区中所述用户设备的搜索空间中向所述用户设备发送所述DCI。
  39. 如权利要求38所述的基站,其特征在于,所述收发单元用于:
    在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送第一DCI,其中,所述第一DCI包含一个指示位表,用于指示所述用户设备所在的用户设备组中的各个用户设备在所述PDCCH资源区中是否存在对应的DCI,所述指示位表中的至少一个比特用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的所述DCI。
  40. 如权利要求38或39所述的基站,其特征在于,所述设定资源包括公共搜索空间、或者所述用户设备所在用户设备组对应的组公共搜索空间、或者所述用户设备所在用户设备组对应的固定传输资源。
  41. 如权利要求39所述的基站,其特征在于,若所述至少一个比特的值都为第一 设定值,所述第一DCI指示在所述传输周期内所述PDCCH资源区中存在所述用户设备的所述DCI;若所述至少一个比特中至少一个比特的值为第二设定值,所述第一DCI指示在所述传输周期内所述PDCCH资源区中不存在所述用户设备的所述DCI。
  42. 如权利要求39-41中任一所述的基站,其特征在于,所述第一DCI中包含的指示位表为所述用户设备所在的用户设备组的指示位表,或为所述用户设备所在的用户设备组的压缩指示位表。
  43. 如权利要求39所述的基站,其特征在于,所述收发单元还用于:
    在所述PDCCH资源区的设定资源中向用户设备发送第一指示信息之前,向所述用户设备发送第一配置信息,所述第一配置信息中包括所述用户设备组对应的公共无线网络临时标识G-RNTI以及所述用户设备在所述用户设备组中的组内标识,其中,所述G-RNTI用于所述用户设备识别接收到的DCI为所述用户设备所在用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述用户设备组的指示位表中确定自身对应的比特位。
  44. 如权利要求39-43中任一所述的基站,其特征在于,所述收发单元还用于:
    在所述PDCCH资源区的设定资源中向用户设备发送第一指示信息之前,向所述用户设备发送第二配置信息,所述第二配置信息中包括指示器无线网络临时标识I-RNTI、所述用户设备所在用户设备组的组标识和所述用户设备在所述用户设备组内的组内标识,其中,所述I-RNTI用于所述用户设备识别接收的DCI为第一DCI,所述组标识用于确定所接收的DCI是否为所述用户设备组对应的所述第一DCI,所述组内标识用于所述用户设备在所述第一DCI中确定与所述用户设备自身对应的比特位。
  45. 如权利要求38所述的基站,其特征在于,所述收发单元用于在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向用户设备发送第一指示信息,包括:
    所述收发单元用于:
    在所述传输周期内,在所述PDCCH资源区的设定资源中向用户设备发送至少1比特信息,其中,所述至少1比特信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备的下行控制信息DCI,所述至少一比特信息中包含的每个比特信息独立传输。
  46. 如权利要求45所述的基站,其特征在于,若所述至少1比特信息的值都为第三设定值,所述至少1比特信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI;;若所述至少1比特信息的值都为第四设定值,所述至少1比特信息指示在所述传输周期内所述PDCCH资源区中不存在所述DCI。
  47. 如权利要求45或46所述的基站,其特征在于,所述设定资源包括所述用户设备对应的固定传输资源。
  48. 如权利要求45-57中任一所述的基站,其特征在于,所述收发单元还用于:
    在所述PDCCH资源区的设定资源中向用户设备发送至少1比特信息之前,向所述用户设备发送第三配置信息,所述第三配置信息中包括至少一个资源位置与所述用户设备的对应关系,其中,每个所述资源位置用于传输所述至少1比特信息中的1个比特信息。
  49. 一种设备,其特征在于,包括处理器、存储器和收发器,
    所述存储器,存储有软件程序;
    所述处理器,用于调用并执行所述存储器中存储的软件程序,通过所述收发器收发数据来实现如权利要求1至24中任一项所述的方法。
  50. 一种计算机可读介质,其特征在于,所述计算机可读介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至24中任一项所述的方法。
  51. 一种装置,其特征在于,所述装置与存储器相连,或所述装置内有存储器,所述装置读取并执行所述存储器中存储的软件程序,以实现如权利要求1至24任一项所述的方法。
  52. 如权利要求51所述的装置,其特征在于,所述装置为芯片或芯片系统。
  53. 一种系统,其特征在于,包括如方法权利要求1-13任一所述的用户设备,和如方法权利要求14-24任一所述的基站。
  54. 一种系统,包括基站和用户设备,其特征在于,包括:
    所述基站,用于在一个传输周期内,在物理下行控制信道PDCCH资源区的设定资源中向所述用户设备发送第一指示信息,用户设备在一个传输周期内接收到基站在物理下行控制信道PDCCH资源区的设定资源中发送的第一指示信息,其中,所述第一指示信息用于指示在所述传输周期内所述PDCCH资源区中是否存在所述用户设备对应的下行控制信息DCI;所述用户设备根据所述第一指示信息判断在所述传输周期内所述PDCCH资源区中是否存在所述DCI;
    若所述第一指示信息指示在所述传输周期内所述PDCCH资源区中存在所述DCI,则所述基站在所述传输周期内所述PDCCH资源区中所述用户设备的搜索空间中向所述用户设备发送所述DCI,所述用户设备在所述传输周期内所述PDCCH资源区中所述用户设备对应的搜索空间中检测所述DCI;
    若所述第一指示信息指示所述传输周期内所述PDCCH资源区中不存在所述DCI,则所述用户设备不在所述传输周期内所述PDCCH资源区中检测所述DCI。
PCT/CN2018/111454 2017-10-27 2018-10-23 一种传输下行控制信息的方法及装置 WO2019080839A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711056899.9 2017-10-27
CN201711056899 2017-10-27
CN201810136994.8A CN109729573B (zh) 2017-10-27 2018-02-09 一种传输下行控制信息的方法、设备及系统
CN201810136994.8 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019080839A1 true WO2019080839A1 (zh) 2019-05-02

Family

ID=66247179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111454 WO2019080839A1 (zh) 2017-10-27 2018-10-23 一种传输下行控制信息的方法及装置

Country Status (2)

Country Link
CN (2) CN114040475A (zh)
WO (1) WO2019080839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228794A (zh) * 2021-04-02 2021-08-06 北京小米移动软件有限公司 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381569B (zh) * 2018-04-13 2021-02-05 维沃移动通信有限公司 监听物理下行控制信道的方法、用户设备和网络侧设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877621A (zh) * 2009-04-30 2010-11-03 三星电子株式会社 用于lte-a系统中下行控制信道pdcch的发送方法及发送装置
CN102056198A (zh) * 2009-10-31 2011-05-11 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102123524A (zh) * 2010-01-07 2011-07-13 夏普株式会社 下行控制信息发送和检测方法、基站和用户设备
CN102158976A (zh) * 2011-04-02 2011-08-17 电信科学技术研究院 一种调度和接收数据的方法、系统及设备
CN103220690A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送、下行控制信道的检测方法及装置
CN103796286A (zh) * 2012-11-01 2014-05-14 华为技术有限公司 一种控制ue监听载波的方法及装置
CN104144502A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 物理下行控制信息获取方法、装置、终端和系统
CN104754603A (zh) * 2013-12-31 2015-07-01 联芯科技有限公司 终端对pdcch信道的检测方法及终端
WO2017052199A1 (en) * 2015-09-25 2017-03-30 Lg Electronics Inc. Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932090B (zh) * 2011-08-08 2016-07-13 华为技术有限公司 检测、发送信息的方法及设备
KR101759946B1 (ko) * 2013-02-21 2017-07-20 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2017075787A1 (zh) * 2015-11-05 2017-05-11 华为技术有限公司 用户设备、接入网设备、上行控制信息的收发方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877621A (zh) * 2009-04-30 2010-11-03 三星电子株式会社 用于lte-a系统中下行控制信道pdcch的发送方法及发送装置
CN102056198A (zh) * 2009-10-31 2011-05-11 华为技术有限公司 一种下行信道传输及检测方法、装置和系统
CN102123524A (zh) * 2010-01-07 2011-07-13 夏普株式会社 下行控制信息发送和检测方法、基站和用户设备
CN102158976A (zh) * 2011-04-02 2011-08-17 电信科学技术研究院 一种调度和接收数据的方法、系统及设备
CN103220690A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送、下行控制信道的检测方法及装置
CN103796286A (zh) * 2012-11-01 2014-05-14 华为技术有限公司 一种控制ue监听载波的方法及装置
CN104144502A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 物理下行控制信息获取方法、装置、终端和系统
CN104754603A (zh) * 2013-12-31 2015-07-01 联芯科技有限公司 终端对pdcch信道的检测方法及终端
WO2017052199A1 (en) * 2015-09-25 2017-03-30 Lg Electronics Inc. Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details of bandwidth parts", 3GPP TSG RAN WG1 MEETING #90 R1-1714088, 25 August 2017 (2017-08-25), XP051316878 *
NTT DOCOMO, INC .: "Resource sharing between data and control channels", 3GPP TSG RAN WG1 NR AD-HOC#2 R1-1711093, 30 June 2017 (2017-06-30), XP051300293 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228794A (zh) * 2021-04-02 2021-08-06 北京小米移动软件有限公司 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质

Also Published As

Publication number Publication date
CN114040476B (zh) 2024-04-09
CN114040476A (zh) 2022-02-11
CN114040475A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN110474737B (zh) 参数确定的方法、监控方法、通信装置
CN110830216B (zh) 确定载波聚合下监控pdcch候选数目的方法和装置
WO2016119455A1 (zh) 下行控制信息dci的配置、下行数据的接收方法及装置
EP3914010A1 (en) Transmission method and communication apparatus
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019192345A1 (zh) 一种时域资源分配方法及装置
WO2014000514A1 (zh) 设备间通信方法、用户设备和基站
CN111865479B (zh) 一种通信方法及装置
US10873430B2 (en) Signal sending method and apparatus
WO2013037272A1 (zh) 传输调度信息的方法、用户设备和基站
TW201944750A (zh) 節能信號的傳輸方法和設備
US11252747B2 (en) Communication method and device
US20220039075A1 (en) Communication method and apparatus
US20210337477A1 (en) Communication method and apparatus
WO2019080839A1 (zh) 一种传输下行控制信息的方法及装置
EP3648527B1 (en) Method, device, and system for transmitting downlink control information
CN109729573B (zh) 一种传输下行控制信息的方法、设备及系统
WO2017028052A1 (zh) 一种信息的传输方法和基站以及用户设备
JP2017535222A (ja) 制御チャネルの伝送方法、装置及び通信システム
JP2018515031A (ja) 下りリンク情報受信方法および下りリンク情報送信方法、ユーザ機器、ならびにネットワークデバイス
WO2019205994A1 (zh) 一种时隙格式的确定方法及装置
KR20210141605A (ko) 에너지 절약 신호를 전송하는 방법, 기지국, 단말기
WO2023006067A1 (zh) 一种通信方法及装置
WO2024021773A1 (zh) 一种通信方法和装置
WO2022027508A1 (zh) 一种资源调度方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870248

Country of ref document: EP

Kind code of ref document: A1